| //===- LinalgTransformOps.cpp - Implementation of Linalg transform ops ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.h" |
| |
| #include "mlir/AsmParser/AsmParser.h" |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
| #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/TransformOps/GPUHeuristics.h" |
| #include "mlir/Dialect/Linalg/TransformOps/Syntax.h" |
| #include "mlir/Dialect/Linalg/Transforms/Hoisting.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Tensor/Utils/Utils.h" |
| #include "mlir/Dialect/Transform/IR/TransformDialect.h" |
| #include "mlir/Dialect/Transform/IR/TransformOps.h" |
| #include "mlir/Dialect/Transform/IR/TransformTypes.h" |
| #include "mlir/Dialect/Transform/Interfaces/TransformInterfaces.h" |
| #include "mlir/Dialect/Transform/Utils/Utils.h" |
| #include "mlir/Dialect/Utils/IndexingUtils.h" |
| #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| #include "mlir/IR/BuiltinTypeInterfaces.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Interfaces/TilingInterface.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Support/TypeID.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/LogicalResult.h" |
| #include <type_traits> |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| using namespace mlir::transform; |
| |
| #define DEBUG_TYPE "linalg-transforms" |
| #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ") |
| #define DBGSNL() (llvm::dbgs() << "\n") |
| #define LDBG(X) LLVM_DEBUG(DBGS() << (X) << "\n") |
| |
| /// Attempts to apply the pattern specified as template argument to the given |
| /// operation. The pattern is expected to have a `returningMatchAndRewrite` |
| /// function that returns the "main" result or failure. Returns failure if the |
| /// pattern failed to apply. Extra arguments are forwarded to the pattern |
| /// constructor. |
| template <typename PatternTy, typename... Args> |
| static FailureOr<LinalgOp> tryApply(Operation *operation, Args &&...args) { |
| // Check if the given operation has the type expected by the pattern. |
| using OpTy = typename llvm::function_traits< |
| decltype(&PatternTy::returningMatchAndRewrite)>::template arg_t<0>; |
| auto op = dyn_cast<OpTy>(operation); |
| if (!op) |
| return failure(); |
| |
| // Apply the pattern directly to the op. |
| PatternTy pattern(operation->getContext(), std::forward<Args>(args)...); |
| // We want to discourage direct use of PatternRewriter in APIs but In this |
| // very specific case, an IRRewriter is not enough. |
| struct TrivialPatternRewriter : public PatternRewriter { |
| public: |
| explicit TrivialPatternRewriter(MLIRContext *context) |
| : PatternRewriter(context) {} |
| }; |
| TrivialPatternRewriter rewriter(operation->getContext()); |
| rewriter.setInsertionPoint(operation); |
| auto result = pattern.returningMatchAndRewrite(op, rewriter); |
| if (failed(result)) |
| return failure(); |
| return cast<LinalgOp>(result->getOperation()); |
| } |
| |
| /// Assuming that `ofr` is an index attr or a param of index type |
| /// or a transform dialect handle mapped to exactly one op |
| /// with one index result, return that value. |
| static DiagnosedSilenceableFailure unpackSingleIndexResultPayloadOperations( |
| transform::TransformState &state, TransformOpInterface transformOp, |
| SmallVector<OpFoldResult> &result, ArrayRef<OpFoldResult> ofrs) { |
| for (OpFoldResult ofr : ofrs) { |
| if (auto attr = dyn_cast<Attribute>(ofr)) { |
| if (!isa<IntegerAttr>(attr)) |
| return transformOp.emitDefiniteFailure() << "expected IntegerAttr"; |
| result.push_back(ofr); |
| continue; |
| } |
| |
| Value transformValue = cast<Value>(ofr); |
| if (isa<TransformParamTypeInterface>(transformValue.getType())) { |
| ArrayRef<Attribute> params = state.getParams(transformValue); |
| if (params.size() != 1) |
| return transformOp.emitDefiniteFailure() |
| << "requires exactly one parameter associated"; |
| result.push_back(params[0]); |
| continue; |
| } |
| |
| auto payloadOps = state.getPayloadOps(transformValue); |
| if (!llvm::hasSingleElement(payloadOps)) { |
| DiagnosedSilenceableFailure diag = |
| transformOp.emitSilenceableError() |
| << "handle must be mapped to exactly one payload op"; |
| diag.attachNote(transformValue.getLoc()) |
| << "mapped to " << llvm::range_size(payloadOps) << " payload ops"; |
| return diag; |
| } |
| |
| Operation *op = *payloadOps.begin(); |
| if (op->getNumResults() != 1 || !op->getResult(0).getType().isIndex()) { |
| DiagnosedSilenceableFailure diag = |
| transformOp.emitSilenceableError() |
| << "payload op must have exactly 1 index result"; |
| diag.attachNote(op->getLoc()) |
| << "has " << op->getNumResults() << " results"; |
| return diag; |
| } |
| result.push_back(op->getResult(0)); |
| } |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| // Given a list of params that are index attrs or a list of OpFoldResults |
| // that are either index attrs or op handles, return a list of OpFoldResults |
| // of index attrs or a list of OpFoldResults where all op handles are |
| // replaced with the first (and only) OpResult of that payload op. |
| // (There must be exactly one parameter associated with the AnyParamType or |
| // one mapped payload op which must have exactly one index result.) |
| static DiagnosedSilenceableFailure unpackSingleIndexResultPayloadOperations( |
| transform::TransformState &state, TransformOpInterface transformOp, |
| SmallVector<OpFoldResult> &result, Value packedHandle) { |
| if (isa<TransformParamTypeInterface>(packedHandle.getType())) { |
| ArrayRef<Attribute> params = state.getParams(packedHandle); |
| for (auto param : params) { |
| if (!isa<IntegerAttr>(param)) |
| return transformOp.emitDefiniteFailure() |
| << "expected the parameter to be associated with an integer " |
| "attribute"; |
| result.push_back(param); |
| } |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| for (Operation *op : state.getPayloadOps(packedHandle)) { |
| if (op->getNumResults() != 1 || !op->getResult(0).getType().isIndex()) { |
| DiagnosedSilenceableFailure diag = |
| transformOp.emitSilenceableError() |
| << "payload op must have exactly 1 index result"; |
| diag.attachNote(op->getLoc()) |
| << "has " << op->getNumResults() << " results"; |
| return diag; |
| } |
| result.push_back(op->getResult(0)); |
| } |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| /// When possible, converts each `OpFoldResult` in `mixedResult` to |
| /// an integer if the value can be statically inferred. If a result |
| /// is a `Value` then it must be either a `ParamType` or a handle |
| /// to an a constant like op. |
| static DiagnosedSilenceableFailure reifyMixedParamAndHandleResults( |
| TransformState &state, TransformOpInterface &transformOp, |
| ArrayRef<OpFoldResult> mixedResults, SmallVectorImpl<int64_t> &reified) { |
| for (OpFoldResult paramOrHandle : mixedResults) { |
| if (auto attr = dyn_cast<Attribute>(paramOrHandle)) { |
| reified.push_back(cast<IntegerAttr>(attr).getInt()); |
| continue; |
| } else if (isa<ParamType>(cast<Value>(paramOrHandle).getType())) { |
| ArrayRef<Attribute> params = state.getParams(cast<Value>(paramOrHandle)); |
| if (params.size() != 1) |
| return transformOp.emitSilenceableError() << "expected a single param"; |
| reified.push_back( |
| cast<IntegerAttr>(params.front()).getValue().getSExtValue()); |
| continue; |
| } |
| |
| Value handle = cast<Value>(paramOrHandle); |
| if (!isa<TransformHandleTypeInterface>(handle.getType())) |
| return transformOp.emitSilenceableError() << "unexpected value handle"; |
| auto payload = state.getPayloadOps(handle); |
| if (!llvm::hasSingleElement(payload)) |
| return transformOp.emitSilenceableError() |
| << "requires param or handle that is mapped to 1 payload op"; |
| |
| Operation *paramOrHandlePayloadOp = *payload.begin(); |
| if (paramOrHandlePayloadOp->getNumResults() != 1 || |
| !paramOrHandlePayloadOp->getResult(0).getType().isIndex()) { |
| return transformOp.emitSilenceableError() |
| << "requires param or handle to be result of op with 1 index " |
| "result"; |
| } |
| |
| IntegerAttr attr; |
| if (!matchPattern(paramOrHandlePayloadOp->getResult(0), m_Constant(&attr))) |
| return transformOp.emitSilenceableError() |
| << "requires param or handle to be the result of a constant like " |
| "op"; |
| |
| reified.push_back(attr.getInt()); |
| } |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Apply...PatternsOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::ApplyEraseUnnecessaryInputsPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateEraseUnnecessaryInputsPatterns(patterns); |
| } |
| |
| void transform::ApplyDecomposeTensorPackUnpackPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateDecomposePackUnpackPatterns(patterns); |
| } |
| |
| void transform::ApplyDecomposeTensorPadPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateDecomposePadPatterns(patterns); |
| } |
| |
| void transform::ApplyFoldUnitExtentDimsViaReshapesPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::ControlDropUnitDims options; |
| linalg::populateFoldUnitExtentDimsPatterns(patterns, options); |
| } |
| |
| void transform::ApplyFoldUnitExtentDimsViaSlicesPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::ControlDropUnitDims options; |
| options.rankReductionStrategy = |
| linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice; |
| linalg::populateFoldUnitExtentDimsPatterns(patterns, options); |
| } |
| |
| void transform::ApplyTilingCanonicalizationPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateLinalgTilingCanonicalizationPatterns(patterns); |
| } |
| |
| void transform::ApplyFoldAddIntoDestPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateFoldAddIntoDestPatterns(patterns); |
| } |
| |
| void transform::ApplyPadVectorizationPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populatePadOpVectorizationPatterns(patterns); |
| } |
| |
| void transform::ApplyFoldIntoPackAndUnpackPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateFoldIntoPackAndUnpackPatterns(patterns); |
| } |
| |
| void transform::ApplyFoldPackUnpackIntoEmptyPatternsOp::populatePatterns( |
| RewritePatternSet &patterns) { |
| linalg::populateFoldPackUnpackIntoTensorEmptyPatterns(patterns); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BufferizeToAllocationOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::BufferizeToAllocationOp::build(OpBuilder &b, |
| OperationState &result, |
| Value target, |
| Attribute memorySpace) { |
| SmallVector<Type> resultTypes; |
| resultTypes.push_back(b.getType<transform::AnyValueType>()); |
| resultTypes.push_back(b.getType<transform::AnyOpType>()); |
| return build(b, result, |
| /*resultTypes=*/resultTypes, |
| /*target=*/target, |
| /*memorySpace=*/memorySpace); |
| } |
| |
| void transform::BufferizeToAllocationOp::build(OpBuilder &b, |
| OperationState &result, |
| Value target, |
| int64_t memorySpace) { |
| SmallVector<Type> resultTypes; |
| resultTypes.push_back(b.getType<transform::AnyValueType>()); |
| resultTypes.push_back(b.getType<transform::AnyOpType>()); |
| return build(b, result, |
| /*resultTypes=*/resultTypes, |
| /*target=*/target, |
| /*memorySpace=*/b.getI64IntegerAttr(memorySpace)); |
| } |
| |
| namespace { |
| class NewOpsListener : public RewriterBase::ForwardingListener { |
| public: |
| using RewriterBase::ForwardingListener::ForwardingListener; |
| |
| SmallVector<Operation *> getNewOps() const { |
| return SmallVector<Operation *>(newOps.begin(), newOps.end()); |
| } |
| |
| private: |
| void notifyOperationInserted(Operation *op, |
| OpBuilder::InsertPoint previous) override { |
| ForwardingListener::notifyOperationInserted(op, previous); |
| // We only care about newly created ops. |
| if (previous.isSet()) |
| return; |
| auto inserted = newOps.insert(op); |
| (void)inserted; |
| assert(inserted.second && "expected newly created op"); |
| } |
| |
| void notifyOperationErased(Operation *op) override { |
| ForwardingListener::notifyOperationErased(op); |
| op->walk([&](Operation *op) { newOps.erase(op); }); |
| } |
| |
| DenseSet<Operation *> newOps; |
| }; |
| } // namespace |
| |
| DiagnosedSilenceableFailure transform::BufferizeToAllocationOp::apply( |
| transform::TransformRewriter &rewriter, |
| transform::TransformResults &results, transform::TransformState &state) { |
| // Attach listener to keep track of newly created ops. |
| OpBuilder::Listener *previousListener = rewriter.getListener(); |
| auto resetListener = |
| llvm::make_scope_exit([&]() { rewriter.setListener(previousListener); }); |
| NewOpsListener newOpsListener(previousListener); |
| rewriter.setListener(&newOpsListener); |
| |
| linalg::BufferizeToAllocationOptions options; |
| if (getMemcpyOp() == "bufferization.materialize_in_destination") { |
| options.memcpyOp = linalg::BufferizeToAllocationOptions::MemcpyOp:: |
| MaterializeInDestination; |
| } else if (getMemcpyOp() == "memref.copy") { |
| options.memcpyOp = |
| linalg::BufferizeToAllocationOptions::MemcpyOp::MemrefCopy; |
| } else if (getMemcpyOp() == "linalg.copy") { |
| options.memcpyOp = |
| linalg::BufferizeToAllocationOptions::MemcpyOp::LinalgCopy; |
| } else { |
| llvm_unreachable("invalid memcpy op"); |
| } |
| if (getAllocOp() == "memref.alloc") { |
| options.allocOp = |
| linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloc; |
| } else if (getAllocOp() == "memref.alloca") { |
| options.allocOp = |
| linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloca; |
| } else { |
| llvm_unreachable("invalid alloc op"); |
| } |
| options.bufferizeDestinationOnly = getBufferizeDestinationOnly(); |
| options.emitDealloc = getEmitDealloc(); |
| |
| // Bufferize ops. |
| Attribute memorySpace = |
| getMemorySpace().has_value() ? getMemorySpace().value() : Attribute(); |
| SmallVector<Value> allocatedBuffers; |
| for (Operation *op : state.getPayloadOps(getTarget())) { |
| Value buffer = |
| linalg::bufferizeToAllocation(rewriter, options, op, memorySpace); |
| if (!buffer) { |
| DiagnosedSilenceableFailure diag = emitSilenceableError() |
| << "failed to bufferize operation"; |
| diag.attachNote(op->getLoc()) << "target payload op"; |
| return diag; |
| } |
| allocatedBuffers.push_back(buffer); |
| } |
| |
| // Set results. |
| results.setValues(cast<OpResult>(getAllocatedBuffer()), allocatedBuffers); |
| results.set(cast<OpResult>(getNewOps()), newOpsListener.getNewOps()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::BufferizeToAllocationOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| if (getBufferizeDestinationOnly()) { |
| // The destination is replaced with a newly allocated buffer, but the op |
| // itself remains in place. |
| onlyReadsHandle(getTargetMutable(), effects); |
| } else { |
| consumesHandle(getTargetMutable(), effects); |
| } |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| LogicalResult transform::BufferizeToAllocationOp::verify() { |
| if (getMemcpyOp() != "bufferization.materialize_in_destination" && |
| getMemcpyOp() != "memref.copy" && getMemcpyOp() != "linalg.copy") |
| return emitOpError() << "unsupported memcpy op"; |
| if (getAllocOp() != "memref.alloc" && getAllocOp() != "memref.alloca") |
| return emitOpError() << "unsupported alloc op"; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DecomposeOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::DecomposeOp::applyToOne(transform::TransformRewriter &rewriter, |
| LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| #define DOWNSCALE(trans) \ |
| { \ |
| FailureOr<LinalgOp> res = tryApply<trans>(target); \ |
| if (succeeded(res)) { \ |
| results.push_back(*res); \ |
| return DiagnosedSilenceableFailure::success(); \ |
| } \ |
| } |
| |
| #define DOWNSCALE_CALL(a, b) DownscaleSizeOneWindowed2DConvolution<a, b> |
| #define DOWNSCALE_NORMAL(a, b) DOWNSCALE(DOWNSCALE_CALL(a, b)) |
| |
| DOWNSCALE_NORMAL(Conv2DNhwcHwcfOp, Conv1DNwcWcfOp) |
| DOWNSCALE_NORMAL(Conv2DNchwFchwOp, Conv1DNcwFcwOp) |
| DOWNSCALE_NORMAL(PoolingNhwcSumOp, PoolingNwcSumOp) |
| DOWNSCALE_NORMAL(PoolingNchwSumOp, PoolingNcwSumOp) |
| DOWNSCALE_NORMAL(PoolingNhwcMaxOp, PoolingNwcMaxOp) |
| DOWNSCALE_NORMAL(PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp) |
| DOWNSCALE_NORMAL(PoolingNhwcMinOp, PoolingNwcMinOp) |
| DOWNSCALE_NORMAL(PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp) |
| DOWNSCALE_NORMAL(PoolingNchwMaxOp, PoolingNcwMaxOp) |
| DOWNSCALE(DownscaleDepthwiseConv2DNhwcHwcOp) |
| DOWNSCALE(DownscaleConv2DOp) |
| #undef DOWNSCALE_NORMAL |
| #undef DOWNSCALE_CALL |
| #undef DOWNSCALE |
| return emitDefaultSilenceableFailure(target); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DecomposeInterfaceOp |
| //===----------------------------------------------------------------------===// |
| |
| // Decompose the target operation if it implements the AggregatedOpInterface. |
| // Push the decomposed operations (the ones that replaces the values produced by |
| // \p target) in the `results`. |
| DiagnosedSilenceableFailure transform::DecomposeInterfaceOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| auto decomposableOp = dyn_cast<AggregatedOpInterface>(target); |
| if (!decomposableOp) { |
| failed(rewriter.notifyMatchFailure(target, |
| "payload is not a decomposable op")); |
| return emitDefaultSilenceableFailure(target); |
| } |
| |
| FailureOr<SmallVector<Value>> maybeNewResults = |
| decomposableOp.decomposeOperation(rewriter); |
| if (failed(maybeNewResults)) |
| return emitDefaultSilenceableFailure(target); |
| |
| rewriter.replaceOp(decomposableOp, *maybeNewResults); |
| for (Value val : *maybeNewResults) { |
| Operation *definition = val.getDefiningOp(); |
| if (definition) |
| results.push_back(definition); |
| } |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // EliminateLinalgOpAnchoredEmptyTensorsOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::EliminateLinalgOpAnchoredEmptyTensorsOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| onlyReadsHandle(getTargetMutable(), effects); |
| modifiesPayload(effects); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::EliminateLinalgOpAnchoredEmptyTensorsOp::apply( |
| transform::TransformRewriter &rewriter, TransformResults &transformResults, |
| TransformState &state) { |
| bufferization::OneShotBufferizationOptions options; |
| options.allowReturnAllocsFromLoops = true; |
| |
| for (Operation *target : state.getPayloadOps(getTarget())) { |
| bufferization::OneShotAnalysisState state(target, options); |
| if (failed(analyzeOp(target, state))) |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "failed to analyze op"; |
| if (failed(linalg::linalgOpAnchoredEmptyTensorEliminationStep( |
| rewriter, target, state))) |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "failed to eliminate LinalgOp anchored tensor.empty ops"; |
| } |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FuseOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Apply a tiling transformation to all payload ops and store both the |
| /// tiled operation as well as the created tile loops. |
| template <typename Range> |
| static LogicalResult applyTilingToAll( |
| RewriterBase &rewriter, Operation *transformOp, Range &&payloadOps, |
| unsigned numLoops, transform::TransformResults &transformResults, |
| function_ref<FailureOr<scf::SCFTileAndFuseResult>(TilingInterface)> |
| applyFn) { |
| SmallVector<Operation *> tiledLinalgOps; |
| SmallVector<SmallVector<Operation *>> loopOps(numLoops); |
| |
| for (Operation *target : payloadOps) { |
| auto tilingInterfaceOp = dyn_cast<TilingInterface>(target); |
| if (!tilingInterfaceOp) |
| return transformOp->emitError("only TilingInterface ops are supported"); |
| |
| rewriter.setInsertionPoint(target); |
| FailureOr<scf::SCFTileAndFuseResult> tiledResults = |
| applyFn(tilingInterfaceOp); |
| if (failed(tiledResults)) |
| return failure(); |
| |
| // Perform the replacement of tiled and fused values. |
| SmallVector<Operation *> opsToReplace{target}; |
| llvm::append_range(opsToReplace, tiledResults->fusedProducers); |
| for (Operation *toReplace : opsToReplace) { |
| for (OpResult res : toReplace->getResults()) |
| if (auto replacement = tiledResults->replacements.lookup(res)) |
| rewriter.replaceAllUsesWith(res, replacement); |
| if (toReplace->use_empty()) { |
| rewriter.eraseOp(toReplace); |
| } |
| } |
| |
| // Report back the relevant handles to the transform op. |
| tiledLinalgOps.push_back(tiledResults->tiledAndFusedOps.front()); |
| assert(tiledResults->loops.size() == numLoops && |
| "Mismatched number of loops, tile and fuse transform should have " |
| "failed"); |
| for (unsigned int i = 0; i < numLoops; ++i) |
| loopOps[i].push_back(tiledResults->loops[i]); |
| } |
| |
| transformResults.set(transformOp->getOpResult(0), tiledLinalgOps); |
| for (unsigned int i = 0; i < numLoops; ++i) |
| transformResults.set(transformOp->getOpResult(i + 1), loopOps[i]); |
| |
| return success(); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::FuseOp::apply(transform::TransformRewriter &rewriter, |
| mlir::transform::TransformResults &transformResults, |
| mlir::transform::TransformState &state) { |
| SmallVector<int64_t> tileSizes = |
| extractFromIntegerArrayAttr<int64_t>(getTileSizes()); |
| SmallVector<int64_t> tileInterchange = |
| extractFromIntegerArrayAttr<int64_t>(getTileInterchange()); |
| |
| scf::SCFTilingOptions tilingOptions; |
| tilingOptions.interchangeVector = tileInterchange; |
| SmallVector<OpFoldResult> tileSizesOfr = |
| getAsIndexOpFoldResult(rewriter.getContext(), tileSizes); |
| tilingOptions = tilingOptions.setTileSizes(tileSizesOfr); |
| scf::SCFTileAndFuseOptions tileAndFuseOptions; |
| tileAndFuseOptions.tilingOptions = tilingOptions; |
| |
| if (getApplyCleanup()) { |
| MLIRContext *context = rewriter.getContext(); |
| RewritePatternSet patterns(context); |
| tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, context); |
| tensor::populateMergeConsecutiveInsertExtractSlicePatterns(patterns); |
| tensor::populateBubbleUpExtractSliceOpPatterns(patterns); |
| tileAndFuseOptions.cleanupPatterns = std::move(patterns); |
| } |
| |
| LogicalResult result = applyTilingToAll( |
| rewriter, getOperation(), state.getPayloadOps(getTarget()), |
| tileSizes.size() - llvm::count(tileSizes, 0), transformResults, |
| [&](TilingInterface tilingInterfaceOp) |
| -> FailureOr<scf::SCFTileAndFuseResult> { |
| return tileConsumerAndFuseProducersUsingSCF(rewriter, tilingInterfaceOp, |
| tileAndFuseOptions); |
| }); |
| return failed(result) ? DiagnosedSilenceableFailure::definiteFailure() |
| : DiagnosedSilenceableFailure::success(); |
| } |
| |
| LogicalResult transform::FuseOp::verify() { |
| SmallVector<int64_t> permutation = |
| extractFromIntegerArrayAttr<int64_t>(getTileInterchange()); |
| auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size())); |
| if (!std::is_permutation(sequence.begin(), sequence.end(), |
| permutation.begin(), permutation.end())) { |
| return emitOpError() << "expects interchange to be a permutation, found " |
| << getTileInterchange(); |
| } |
| |
| SmallVector<int64_t> sizes = |
| extractFromIntegerArrayAttr<int64_t>(getTileSizes()); |
| size_t numExpectedLoops = sizes.size() - llvm::count(sizes, 0); |
| if (numExpectedLoops != getNumResults() - 1) |
| return emitOpError() << "expects " << numExpectedLoops << " loop results"; |
| |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FuseIntoContainingOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::FuseIntoContainingOp::build(OpBuilder &builder, |
| OperationState &result, |
| Value producerOp, |
| Value containingOp) { |
| result.addOperands({producerOp, containingOp}); |
| auto resultType = transform::AnyOpType::get(builder.getContext()); |
| result.addTypes({resultType, resultType}); |
| } |
| |
| /// Add new operands to the forall op for users of the producerOp |
| /// that are dominated by the containing scf.forall op. |
| static Operation *replaceForAllWithNewSignature( |
| RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp, |
| Operation *containingOp, TilingResult &tileAndFuseResult, |
| int64_t resultNumber, SmallVector<OpFoldResult> &offsets, |
| SmallVector<OpFoldResult> &sizes) { |
| |
| // Count number of users not including the containing op |
| SetVector<Operation *> dominatedUsers; |
| DominanceInfo domInfo(containingOp); |
| for (Operation *user : producerOp->getResult(resultNumber).getUsers()) { |
| if (!containingOp->isAncestor(user) && |
| (domInfo.dominates(containingOp, user))) { |
| dominatedUsers.insert(user); |
| } |
| } |
| if (dominatedUsers.empty()) |
| return nullptr; |
| |
| // Create new scf.forall op |
| auto forallOp = cast<scf::ForallOp>(containingOp); |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(forallOp); |
| |
| // Get new output |
| Location loc = forallOp.getLoc(); |
| auto genericOp = dyn_cast<linalg::GenericOp>(producerOp); |
| if (!genericOp) |
| return nullptr; |
| SmallVector<Value> outputs = genericOp.getOutputs(); |
| SmallVector<Value> newOuts(forallOp.getOutputs()); |
| newOuts.push_back(outputs[resultNumber]); |
| |
| // Create new scf.forall op |
| auto newforallOp = rewriter.create<scf::ForallOp>( |
| loc, forallOp.getMixedLowerBound(), forallOp.getMixedUpperBound(), |
| forallOp.getMixedStep(), newOuts, forallOp.getMapping()); |
| rewriter.eraseBlock(newforallOp.getBody()); |
| newforallOp.getRegion().takeBody(forallOp.getRegion()); |
| |
| // Add additional block argument for new value being returned |
| // and replaces all uses of the new output with corresponding bbArg |
| // inside the scf.forall to enable fusion into this new scf.forall. |
| newforallOp.getBody()->addArgument(newOuts.back().getType(), |
| newOuts.back().getLoc()); |
| auto bbArgs = newforallOp.getBody()->getArguments(); |
| rewriter.replaceUsesWithIf(newOuts.back(), bbArgs.back(), |
| [&](OpOperand &use) { |
| Operation *op = use.getOwner(); |
| return newforallOp->isProperAncestor(op); |
| }); |
| |
| // Fix terminator |
| scf::InParallelOp terminatorOp = newforallOp.getTerminator(); |
| SmallVector<Operation *> yieldingOps = llvm::to_vector<4>(llvm::map_range( |
| terminatorOp.getYieldingOps(), [](Operation &op) { return &op; })); |
| Operation *firstYieldOp = yieldingOps.front(); |
| rewriter.setInsertionPoint(firstYieldOp); |
| Value src = tileAndFuseResult.tiledValues[0]; |
| Value dst = newforallOp.getRegionIterArgs().back(); |
| SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1)); |
| rewriter.create<tensor::ParallelInsertSliceOp>(firstYieldOp->getLoc(), src, |
| dst, offsets, sizes, strides); |
| |
| for (auto result : llvm::enumerate(forallOp.getResults())) { |
| rewriter.replaceAllUsesWith(result.value(), |
| newforallOp->getResult(result.index())); |
| } |
| rewriter.replaceUsesWithIf(producerOp->getResult(resultNumber), |
| newforallOp->getResults().back(), |
| [&](OpOperand &use) { |
| Operation *user = use.getOwner(); |
| return dominatedUsers.contains(user); |
| }); |
| return newforallOp; |
| } |
| |
| /// Given two operands coming from a loop iter arg, 'src' and 'dst', return true |
| /// if the operand 'src' is equal to 'dst' or equal to a iter arg present in a |
| /// outer loop. To determine the second condition, this function iterates |
| /// using a worklist over the enclosing loops, trying to find 'src' in any of |
| /// the parent loop's iter args. |
| static bool sameOrEquivalentIterArg(Value src, Value dst) { |
| // Stack like vector containing possible iterArgs candidates. The first one |
| // is dst, and we will transverse the IR from there. |
| SmallVector<Value> destWorklist; |
| destWorklist.push_back(dst); |
| |
| while (!destWorklist.empty()) { |
| Value currentDst = destWorklist.pop_back_val(); |
| |
| // We have found the same operand in some iter arg in the loop structure, |
| // so src and dst are equivalent. |
| if (src == currentDst) |
| return true; |
| |
| // The operands are not equivalent, look for enclosing loops over |
| // currentDst. |
| auto bbArg = dyn_cast<BlockArgument>(currentDst); |
| if (!bbArg) |
| continue; |
| |
| Block *parentBlock = bbArg.getOwner(); |
| assert(parentBlock && "unlinked block argument"); |
| |
| Operation *parentOp = parentBlock->getParentOp(); |
| assert(parentOp && "expected block argument with parent operation"); |
| |
| // Check if parent is loop-like. If it's not, do not add it to the worklist. |
| auto parentLoop = dyn_cast<LoopLikeOpInterface>(parentOp); |
| if (!parentLoop) |
| continue; |
| |
| for (auto innerIterArg : parentLoop.getRegionIterArgs()) { |
| // No need to check for null as innerIterArg is tied to parentLoop. |
| OpOperand *operand = parentLoop.getTiedLoopInit(innerIterArg); |
| Value loopBlockArgument = |
| parentLoop->getOperand(operand->getOperandNumber()); |
| destWorklist.push_back(loopBlockArgument); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Find the first "extract" user of `producerOp` and tile it right before its |
| /// use. The tiled op is fused under the `containingOp`. |
| /// Return this fused op on success or nullptr if anything fails. |
| /// If tiled op has uses that are dominated by `containingOp`, return |
| /// a new `containingOp` with results of the fused op appended to |
| /// results of the `containingOp` or nullptr if there are no dominated uses. |
| static std::tuple<SmallVector<Operation *>, Operation *> |
| tileAndFuseFirstExtractUse(RewriterBase &rewriter, Diagnostic &diag, |
| Operation *producerOp, Operation *containingOp) { |
| LLVM_DEBUG(DBGS() << "Try to fuse a direct extract use\n"); |
| auto tileableProducer = dyn_cast<TilingInterface>(producerOp); |
| if (!tileableProducer) { |
| diag.attachNote(producerOp->getLoc()) |
| << "producer is not a TileableInterface: " << *producerOp; |
| return {}; |
| } |
| |
| // Search the producer slices accessed within the containing operation. |
| // TODO: Generalize to more extract/insert/parallel_insert triples, maybe |
| // evolve into an interface. |
| auto it = llvm::find_if(tileableProducer->getUsers(), [&](Operation *user) { |
| auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user); |
| return sliceOp && containingOp->isProperAncestor(sliceOp); |
| }); |
| |
| // Find a fusion opportunity. |
| if (it == tileableProducer->getUsers().end()) { |
| diag.attachNote(tileableProducer->getLoc()) |
| << "could not find fusion opportunity for: " << *tileableProducer; |
| return {}; |
| } |
| auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*it); |
| |
| // Try to fuse the producer in-place. |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPoint(sliceOpToTile); |
| |
| // Clone the producer inside the consumer and try to update the producer init |
| // operands using the loop bbArgs if applicable. More precisely, if the bbArg |
| // of the container loop points to a value that it is used by the consumer op, |
| // then, instead of using such value on the consumer, use the value coming |
| // from the bbArg instead. This allows to reuse the output tensor (instead of |
| // creating a new one) of the container when both producer and container write |
| // to the same output. |
| if (LoopLikeOpInterface containerLoop = |
| dyn_cast<LoopLikeOpInterface>(sliceOpToTile->getParentOp())) { |
| Operation *clone = rewriter.clone(*producerOp); |
| rewriter.modifyOpInPlace(clone, [&]() { |
| // Iterate over the outputs of the producer and over the loop bbArgs and |
| // check if any bbArg points to the same value as the producer output. In |
| // such case, make the producer output point to the bbArg directly. |
| for (OpOperand &initOperandPtr : |
| cast<DestinationStyleOpInterface>(clone).getDpsInitsMutable()) { |
| Value producerOperand = |
| clone->getOperand(initOperandPtr.getOperandNumber()); |
| for (BlockArgument containerIterArg : |
| containerLoop.getRegionIterArgs()) { |
| OpOperand *bbArg = containerLoop.getTiedLoopInit(containerIterArg); |
| Value consumerOperand = |
| containerLoop->getOperand(bbArg->getOperandNumber()); |
| // The producer has the same init as the loop bbArg, use it. |
| if (sameOrEquivalentIterArg(producerOperand, consumerOperand)) { |
| initOperandPtr.set(containerIterArg); |
| } |
| } |
| } |
| }); |
| |
| tileableProducer = dyn_cast<TilingInterface>(clone); |
| } |
| |
| // Tile the producer. |
| int64_t resultNumber = |
| cast<OpResult>(sliceOpToTile.getSource()).getResultNumber(); |
| LLVM_DEBUG(DBGS() << "resultNumber: " << resultNumber << "\n"); |
| |
| SmallVector<OpFoldResult> offsets = sliceOpToTile.getMixedOffsets(); |
| SmallVector<OpFoldResult> sizes = sliceOpToTile.getMixedSizes(); |
| |
| FailureOr<TilingResult> tileAndFuseResult = |
| tileableProducer.generateResultTileValue(rewriter, resultNumber, offsets, |
| sizes); |
| |
| if (failed(tileAndFuseResult)) { |
| diag.attachNote(tileableProducer->getLoc()) |
| << "failed to tile producer op: " << *tileableProducer; |
| return {}; |
| } |
| |
| #ifndef NDEBUG |
| for (auto *tiledOp : tileAndFuseResult->tiledOps) { |
| LLVM_DEBUG(DBGS() << "tiledProducer: " << *tiledOp << "\n"); |
| } |
| #endif |
| |
| // Replace the extract op. |
| auto maybeRankReduced = tensor::ExtractSliceOp::rankReduceIfNeeded( |
| rewriter, sliceOpToTile->getLoc(), tileAndFuseResult->tiledValues[0], |
| cast<RankedTensorType>(sliceOpToTile->getResult(0).getType()).getShape()); |
| if (failed(maybeRankReduced)) { |
| diag.attachNote(producerOp->getLoc()) |
| << "shape types don't match (missing canonicalization?):\nTiledOp: " |
| << tileAndFuseResult->tiledValues[0] |
| << "\nSliceOp: " << sliceOpToTile.getOperation() << '\n'; |
| return {}; |
| } |
| rewriter.replaceOp(sliceOpToTile, *maybeRankReduced); |
| |
| // Add new outputs to containing op, if required |
| Operation *newContainingOp = replaceForAllWithNewSignature( |
| rewriter, diag, producerOp, containingOp, *tileAndFuseResult, |
| resultNumber, offsets, sizes); |
| |
| // Cleanup clone. |
| if (dyn_cast<LoopLikeOpInterface>(containingOp)) |
| rewriter.eraseOp(tileableProducer); |
| |
| return std::make_tuple(tileAndFuseResult->tiledOps, newContainingOp); |
| } |
| |
| /// First, find the first "scf::ForallOp" user of `producerOp` and ensure |
| /// it is exactly the `containingOp`, otherwise bail. |
| /// Then, find the first "extract" user of the tied block argument and tile it |
| /// right before its "extract" use. The tiled op is fused under the |
| /// `containingOp`. |
| /// Return this fused op on success or nullptr if anything fails. |
| static SmallVector<Operation *> |
| tileAndFuseFirstExtractUseThroughContainingOpBlockArgument( |
| RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp, |
| Operation *containingOp) { |
| LLVM_DEBUG(DBGS() << "Try to fuse an extract use through block argument\n"); |
| |
| auto tileableProducer = dyn_cast<TilingInterface>(producerOp); |
| if (!tileableProducer) { |
| diag.attachNote(producerOp->getLoc()) |
| << "producer is not a TileableInterface: " << *producerOp; |
| return {}; |
| } |
| |
| // Search the first use by a "scf::ForallOp" user. |
| scf::ForallOp forallOp; |
| auto itProducerUses = |
| llvm::find_if(tileableProducer->getUses(), [&](OpOperand &use) { |
| forallOp = dyn_cast<scf::ForallOp>(use.getOwner()); |
| return forallOp; |
| }); |
| // If it's not from the containing op, return. |
| if (!forallOp || forallOp != containingOp) { |
| diag.attachNote(tileableProducer->getLoc()) |
| << "could not find a use by the containing op: " << *tileableProducer; |
| return {}; |
| } |
| |
| // Search the producer slices accessed within the containing |
| // operation. |
| // TODO: Generalize to more extract/insert/parallel_insert triples. |
| // Maybe evolve into an interface. |
| OpOperand *pUse = &(*itProducerUses); |
| BlockArgument bbArg = forallOp.getTiedBlockArgument(pUse); |
| |
| // Search the producer slices accessed within the containing operation. |
| // TODO: Generalize to more extract/insert/parallel_insert triples, maybe |
| // evolve into an interface. |
| auto itBBArgUsers = llvm::find_if(bbArg.getUsers(), [&](Operation *user) { |
| auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user); |
| return sliceOp && containingOp->isProperAncestor(sliceOp); |
| }); |
| |
| // Find a fusion opportunity. |
| if (itBBArgUsers == bbArg.getUsers().end()) { |
| diag.attachNote(containingOp->getLoc()) |
| << "could not find fusion opportunity for bbArg: " << bbArg; |
| return {}; |
| } |
| auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*itBBArgUsers); |
| |
| // Try to fuse the producer in-place. |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPoint(sliceOpToTile); |
| |
| // Replace the use in the tileableProducer before tiling: clone, replace and |
| // then tile. |
| int64_t resultNumber = cast<OpResult>(pUse->get()).getResultNumber(); |
| LLVM_DEBUG(DBGS() << "resultNumber: " << resultNumber << "\n"); |
| |
| // Gather destination tensors. |
| SmallVector<Value> destinationTensors; |
| if (failed(tensor::getOrCreateDestinations( |
| rewriter, tileableProducer->getLoc(), tileableProducer, |
| destinationTensors))) { |
| diag.attachNote(tileableProducer->getLoc()) |
| << "failed to get destination tensors for: " << *tileableProducer; |
| return {}; |
| } |
| |
| IRMapping bvm; |
| bvm.map(destinationTensors[resultNumber], bbArg); |
| auto tileableProducerClone = |
| cast<TilingInterface>(rewriter.clone(*tileableProducer, bvm)); |
| auto scopeGuard = |
| llvm::make_scope_exit([&]() { rewriter.eraseOp(tileableProducerClone); }); |
| |
| // Tile the producer. |
| FailureOr<TilingResult> tileAndFuseResult = |
| tileableProducerClone.generateResultTileValue( |
| rewriter, resultNumber, sliceOpToTile.getMixedOffsets(), |
| sliceOpToTile.getMixedSizes()); |
| if (failed(tileAndFuseResult)) { |
| diag.attachNote(tileableProducer->getLoc()) |
| << "failed to tile producer op: " << *tileableProducer; |
| return {}; |
| } |
| |
| // Replace the extract op. |
| auto maybeRankReduced = tensor::ExtractSliceOp::rankReduceIfNeeded( |
| rewriter, sliceOpToTile->getLoc(), tileAndFuseResult->tiledValues[0], |
| cast<RankedTensorType>(sliceOpToTile->getResult(0).getType()).getShape()); |
| assert(succeeded(maybeRankReduced) && "unexpected shape"); |
| rewriter.replaceOp(sliceOpToTile, *maybeRankReduced); |
| |
| // Replace the use in containingOp. |
| rewriter.modifyOpInPlace(containingOp, [&]() { |
| containingOp->setOperand(pUse->getOperandNumber(), |
| destinationTensors.front()); |
| }); |
| |
| return tileAndFuseResult->tiledOps; |
| } |
| |
| static Operation *cloneAndFuseFirstUse(RewriterBase &rewriter, Diagnostic &diag, |
| Operation *producerOp, |
| Operation *containingOp) { |
| LLVM_DEBUG(DBGS() << "Try to fuse an use by cloning\n"); |
| |
| // Gather all uses inside the containing op. |
| SmallVector<OpOperand *> uses; |
| for (OpResult result : producerOp->getOpResults()) { |
| for (OpOperand &use : result.getUses()) { |
| if (containingOp->isProperAncestor(use.getOwner())) { |
| uses.push_back(&use); |
| continue; |
| } |
| // Cannot clone and fuse if the use is by the containing op itself: fail |
| // immediately. |
| if (containingOp == use.getOwner()) { |
| diag.attachNote(producerOp->getLoc()) |
| << "producer op use by containing op cannot be fused by cloning"; |
| return nullptr; |
| } |
| } |
| } |
| |
| // Check for a non-empty list of fusion opportunities. |
| if (uses.empty()) { |
| diag.attachNote(producerOp->getLoc()) << "no fusion opportunity by cloning"; |
| return nullptr; |
| } |
| |
| // Clone and fuse inside the containing op. |
| Operation *fusedOp = nullptr; |
| OpOperand *use = uses.front(); |
| // Parallel insert slice is not a valid clone destination. |
| // TODO: Generalize to other type of ops. |
| assert(!isa<tensor::ParallelInsertSliceOp>(use->getOwner()) && |
| "Parallel insert slice is not a valid clone destination"); |
| unsigned resultNumber = cast<OpResult>(use->get()).getResultNumber(); |
| LLVM_DEBUG(DBGS() << "resultNumber: " << resultNumber << "\n"); |
| |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPoint(use->getOwner()); |
| fusedOp = rewriter.clone(*producerOp); |
| rewriter.modifyOpInPlace( |
| use->getOwner(), [&] { use->set(fusedOp->getOpResult(resultNumber)); }); |
| |
| return fusedOp; |
| } |
| |
| bool transform::FuseIntoContainingOp::allowsRepeatedHandleOperands() { |
| // Allow repeated handles since we are fusing everything anyway. |
| return true; |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::FuseIntoContainingOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &results, |
| transform::TransformState &state) { |
| SmallVector<Operation *> fusedOps; |
| auto producerOps = state.getPayloadOps(getProducerOp()); |
| auto containingOps = state.getPayloadOps(getContainingOp()); |
| if (!llvm::hasSingleElement(containingOps)) { |
| return emitDefiniteFailure() |
| << "requires exactly one containing_op handle (got " |
| << llvm::range_size(containingOps) << ")"; |
| } |
| Operation *containingOp = *containingOps.begin(); |
| |
| // If nothing to fuse, propagate success. |
| if (std::empty(producerOps)) { |
| results.set(cast<OpResult>(getFusedOp()), SmallVector<mlir::Operation *>{}); |
| results.set(cast<OpResult>(getNewContainingOp()), {containingOp}); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| // Helper function to find the next producer that should be fused. Take any |
| // producer that has a use inside the containing op. |
| SetVector<Operation *> remainingProducers(llvm::from_range, producerOps); |
| auto getNextProducer = [&]() -> FailureOr<Operation *> { |
| for (const auto &it : enumerate(remainingProducers)) { |
| Operation *producerOp = it.value(); |
| // The containing op may be a user of producerOp: use isAncestor. |
| int64_t numUsesInContainingOp = |
| llvm::count_if(producerOp->getUsers(), [&](Operation *op) { |
| return containingOp->isAncestor(op); |
| }); |
| // TODO: When resolving the TODO below (no duplicate ops), take an op |
| // that has no use among the remaining producers. This is a topological |
| // sorting. |
| if (numUsesInContainingOp > 0) { |
| if (numUsesInContainingOp == 1) |
| remainingProducers.erase(remainingProducers.begin() + it.index()); |
| return producerOp; |
| } |
| } |
| return failure(); |
| }; |
| |
| while (!remainingProducers.empty()) { |
| auto nextProducer = getNextProducer(); |
| if (failed(nextProducer)) { |
| auto diag = mlir::emitSilenceableFailure(getLoc()) |
| << "could not find next producer to fuse into container"; |
| diag.attachNote(containingOp->getLoc()) << "containing op"; |
| return diag; |
| } |
| |
| Operation *producerOp = *nextProducer; |
| |
| // Default diagnostic, to be complemented with more failure information. |
| Diagnostic diag(producerOp->getLoc(), DiagnosticSeverity::Remark); |
| diag << "could not fuse " << *producerOp << " into " << *containingOp; |
| |
| // TODO: If there are multiple uses of the producer in the containing op, |
| // we currently tile/clone the op multiple times (once per use). In some |
| // cases, we can tile/clone once and reuse the value for each use. |
| // Futhermore, producers should then be traversed according to a |
| // topological sorting. |
| auto [tiledOps, newContainingOp] = |
| tileAndFuseFirstExtractUse(rewriter, diag, producerOp, containingOp); |
| if (!tiledOps.empty()) { |
| LLVM_DEBUG(DBGS() << "\nFused a direct extract use\n" << *containingOp); |
| fusedOps.append(tiledOps); |
| if (newContainingOp) { |
| // Update handles associated with the containing op so we don't need to |
| // invalidate them. This is a hack to support better composability |
| // between tiling and fusion while a proper mechanism is being |
| // investigated. |
| // |
| // DO NOT replicate this elsewhere unless you understand what you are |
| // doing. |
| LogicalResult replacementStatus = |
| rewriter.notifyPayloadOperationReplaced(containingOp, |
| newContainingOp); |
| (void)replacementStatus; |
| assert(succeeded(replacementStatus) && |
| "unable to update transform state mapping"); |
| rewriter.eraseOp(containingOp); |
| containingOp = newContainingOp; |
| } |
| continue; |
| } |
| |
| SmallVector<Operation *> tiledContainingOpOperand = |
| tileAndFuseFirstExtractUseThroughContainingOpBlockArgument( |
| rewriter, diag, producerOp, containingOp); |
| if (!tiledContainingOpOperand.empty()) { |
| LLVM_DEBUG(DBGS() << "\nFused an extract use through block argument\n" |
| << *containingOp); |
| fusedOps.append(tiledContainingOpOperand); |
| continue; |
| } |
| |
| Operation *cloned = |
| cloneAndFuseFirstUse(rewriter, diag, producerOp, containingOp); |
| if (cloned) { |
| LLVM_DEBUG(DBGS() << "\nFused an use by cloning\n" << *containingOp); |
| fusedOps.push_back(cloned); |
| continue; |
| } |
| return DiagnosedSilenceableFailure::silenceableFailure(std::move(diag)); |
| } |
| |
| results.set(cast<OpResult>(getFusedOp()), fusedOps); |
| results.set(cast<OpResult>(getNewContainingOp()), {containingOp}); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::FuseIntoContainingOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getProducerOpMutable(), effects); |
| onlyReadsHandle(getContainingOpMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GeneralizeOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::GeneralizeOp::applyToOne(transform::TransformRewriter &rewriter, |
| LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| // Exit early if no transformation is needed. |
| if (isa<GenericOp>(target)) { |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| rewriter.setInsertionPoint(target); |
| FailureOr<LinalgOp> generic = generalizeNamedOp(rewriter, target); |
| if (succeeded(generic)) { |
| results.push_back(generic->getOperation()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| return emitDefaultSilenceableFailure(target); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SpecializeOp |
| //===----------------------------------------------------------------------===/ |
| |
| DiagnosedSilenceableFailure |
| transform::SpecializeOp::applyToOne(transform::TransformRewriter &rewriter, |
| LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| // Exit early if the operation is not a generic. |
| if (!isa<GenericOp>(target)) { |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| rewriter.setInsertionPoint(target); |
| FailureOr<LinalgOp> named = |
| specializeGenericOp(rewriter, cast<GenericOp>(target)); |
| if (succeeded(named)) { |
| results.push_back(named->getOperation()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| return emitDefaultSilenceableFailure(target); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InterchangeOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::InterchangeOp::applyToOne(transform::TransformRewriter &rewriter, |
| GenericOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| ArrayRef<int64_t> interchangeVector = getIteratorInterchange(); |
| // Exit early if no transformation is needed. |
| if (interchangeVector.empty()) { |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| unsigned numLoops = cast<LinalgOp>(target.getOperation()).getNumLoops(); |
| if (interchangeVector.size() != numLoops) { |
| return emitSilenceableError() |
| << getIteratorInterchangeAttrName() << " has length (" |
| << interchangeVector.size() |
| << ") different from the number of loops in the target operation (" |
| << numLoops << ")"; |
| } |
| FailureOr<GenericOp> res = interchangeGenericOp( |
| rewriter, target, SmallVector<unsigned>(interchangeVector)); |
| if (failed(res)) |
| return emitDefiniteFailure() << "failed to apply"; |
| results.push_back(res->getOperation()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| LogicalResult transform::InterchangeOp::verify() { |
| ArrayRef<int64_t> permutation = getIteratorInterchange(); |
| auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size())); |
| if (!std::is_permutation(sequence.begin(), sequence.end(), |
| permutation.begin(), permutation.end())) { |
| return emitOpError() |
| << "expects iterator_interchange to be a permutation, found " |
| << getIteratorInterchange(); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LinalgCopyToMemrefOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::LinalgCopyToMemrefOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *targetOp, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| |
| // Check if the target can be converted. |
| if (!isa<linalg::CopyOp>(targetOp)) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() << "only linalg.copy target ops are supported"; |
| diag.attachNote(targetOp->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| auto copyOp = dyn_cast<linalg::CopyOp>(targetOp); |
| if (!copyOp.hasPureBufferSemantics()) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "cannot transform a linalg.copy on tensors into a memref.copy"; |
| diag.attachNote(targetOp->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| SmallVector<Value> inputs = copyOp.getInputs(); |
| SmallVector<Value> outputs = copyOp.getOutputs(); |
| assert(inputs.size() == 1 && "expected linalg copy op with one input"); |
| assert(outputs.size() == 1 && "expected memref copy op with one output"); |
| Value input = inputs.front(); |
| Value output = outputs.front(); |
| |
| // linalg.copy supports different element types on source/dest whereas |
| // memref.copy does not, so we must check that the source and dest types can |
| // be handled by memref.copy and otherwise reject the transformation. |
| if (!isa<ShapedType>(input.getType())) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "cannot transform a linalg.copy which input has no shape"; |
| diag.attachNote(targetOp->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // linalg.copy destination must be a shaped type. |
| assert(isa<ShapedType>(output.getType())); |
| |
| if (cast<ShapedType>(input.getType()).getElementType() != |
| cast<ShapedType>(output.getType()).getElementType()) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "cannot transform a linalg.copy with different source and " |
| "destination element types "; |
| diag.attachNote(targetOp->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // Target can be converted, do it. |
| auto memrefCopyOp = |
| rewriter.replaceOpWithNewOp<memref::CopyOp>(targetOp, input, output); |
| |
| results.push_back(memrefCopyOp); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LowerPackOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::LowerPackOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::PackOp target, |
| transform::ApplyToEachResultList &transformResults, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| bool lowerPadLikeWithInsertSlice = getLowerPadLikeWithInsertSlice(); |
| FailureOr<LowerPackResult> res = |
| lowerPack(rewriter, target, lowerPadLikeWithInsertSlice); |
| if (failed(res)) { |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "cannot lower to pad + expand + transpose"; |
| } |
| transformResults.push_back(res->padOp); |
| transformResults.push_back(res->expandShapeOp); |
| transformResults.push_back(res->transposeOp); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LowerUnPackOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::LowerUnPackOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::UnPackOp target, |
| transform::ApplyToEachResultList &transformResults, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| bool lowerUnpadLikeWithExtractSlice = getLowerUnpadLikeWithExtractSlice(); |
| FailureOr<LowerUnPackOpResult> res = |
| lowerUnPack(rewriter, target, lowerUnpadLikeWithExtractSlice); |
| if (failed(res)) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "cannot lower to transpose + collapse + extract"; |
| diag.attachNote(target->getLoc()) << "target payload op"; |
| return diag; |
| } |
| transformResults.push_back(res->emptyOp); |
| transformResults.push_back(res->transposeOp); |
| transformResults.push_back(res->collapseShapeOp); |
| transformResults.push_back(res->extractSliceOp); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // MatchOp |
| //===---------------------------------------------------------------------===// |
| |
| void transform::MatchOp::build(OpBuilder &builder, OperationState &result, |
| Value target, ArrayRef<StringRef> opNames) { |
| result.addOperands(target); |
| result.addAttribute(MatchOp::getOpsAttrName(result.name), |
| builder.getStrArrayAttr(opNames)); |
| result.addTypes(transform::AnyOpType::get(builder.getContext())); |
| } |
| |
| void transform::MatchOp::build(OpBuilder &builder, OperationState &result, |
| TypeRange resultTypes, Value target, |
| ArrayRef<StringRef> opNames) { |
| result.addOperands(target); |
| result.addAttribute(MatchOp::getOpsAttrName(result.name), |
| builder.getStrArrayAttr(opNames)); |
| result.addTypes(resultTypes); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::MatchOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &results, |
| transform::TransformState &state) { |
| llvm::StringSet<> strs; |
| if (getOps().has_value()) |
| strs.insert_range(getOps()->getAsValueRange<StringAttr>()); |
| |
| auto payloadOps = state.getPayloadOps(getTarget()); |
| if (!llvm::hasSingleElement(payloadOps)) { |
| return emitDefiniteFailure("requires exactly one target handle"); |
| } |
| |
| SmallVector<Operation *> res; |
| bool incorrectNumOperandTypes = false; |
| auto matchFun = [&](Operation *op) { |
| if (getOps().has_value() && !strs.contains(op->getName().getStringRef())) |
| return; |
| |
| // Interfaces cannot be matched by name, just by ID. |
| // So we specifically encode the interfaces we care about for this op. |
| if (getInterface().has_value()) { |
| auto iface = getInterface().value(); |
| if (iface == transform::MatchInterfaceEnum::LinalgOp && |
| !isa<LinalgOp>(op)) |
| return; |
| if (iface == transform::MatchInterfaceEnum::TilingInterface && |
| !isa<TilingInterface>(op)) |
| return; |
| if (iface == transform::MatchInterfaceEnum::LoopLikeInterface && |
| !isa<LoopLikeOpInterface>(op)) |
| return; |
| } |
| |
| // Check if all specified attributes match. |
| if (getOpAttrs().has_value()) { |
| DictionaryAttr opAttrs = getOpAttrs().value(); |
| for (NamedAttribute attr : opAttrs) { |
| if (attr.getName() == getInterfaceAttrName() || |
| attr.getName() == getOpsAttrName()) |
| continue; |
| if (!op->hasAttr(attr.getName())) |
| return; |
| if (op->getAttr(attr.getName()) != attr.getValue()) |
| return; |
| } |
| } |
| |
| if (getFilterResultType().has_value()) { |
| Type t = getFilterResultType().value(); |
| if (op->getNumResults() != 1 || op->getResultTypes().front() != t) |
| return; |
| } |
| |
| if (getFilterOperandTypes().has_value()) { |
| mlir::ArrayAttr types = getFilterOperandTypes().value(); |
| auto operandTypes = op->getOperandTypes(); |
| |
| if (types.size() == 1) { |
| // All the operands must must be equal to the specified type |
| auto typeattr = |
| dyn_cast<mlir::TypeAttr>(getFilterOperandTypes().value()[0]); |
| Type t = cast<::mlir::Type>(typeattr.getValue()); |
| if (!llvm::all_of(op->getOperandTypes(), |
| [&](Type operandType) { return operandType == t; })) |
| return; |
| } else { |
| // The operand types must match all the types in the list (in the same |
| // order in with they are specified) |
| if (types.size() != operandTypes.size()) { |
| incorrectNumOperandTypes = true; |
| return; |
| } |
| |
| for (auto [attr, operandType] : |
| llvm::zip_equal(getFilterOperandTypes().value(), operandTypes)) { |
| auto typeattr = cast<mlir::TypeAttr>(attr); |
| Type type = cast<::mlir::Type>(typeattr.getValue()); |
| |
| if (type != operandType) |
| return; |
| } |
| } |
| } |
| |
| // All constraints are satisfied. |
| res.push_back(op); |
| return; |
| }; |
| |
| (*payloadOps.begin())->walk(matchFun); |
| if (incorrectNumOperandTypes) |
| return emitDefiniteFailure("If filter_operand_types contains more than a " |
| "type, then it must contain as much types as " |
| "the number of operands in the target ops"); |
| results.set(cast<OpResult>(getResult()), res); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // MultiTileSizesOp |
| //===---------------------------------------------------------------------===// |
| |
| static void printMultitileSizesTypes(OpAsmPrinter &printer, Operation *op, |
| Type targetType, Type lowSizeType, Type, |
| Type) { |
| printer.printFunctionalType(TypeRange{targetType}, TypeRange{lowSizeType}); |
| } |
| |
| static ParseResult parseMultitileSizesTypes(OpAsmParser &parser, |
| Type &targetType, Type &lowSizeType, |
| Type &highSizeType, |
| Type &splitPointType) { |
| FunctionType funcType; |
| llvm::SMLoc typeLoc = parser.getCurrentLocation(); |
| if (failed(parser.parseType<FunctionType>(funcType))) |
| return failure(); |
| |
| if (funcType.getNumInputs() != 1 || funcType.getNumResults() != 1) { |
| parser.emitError(typeLoc) << "expects a trailing functional type with one " |
| "argument and one result"; |
| } |
| targetType = funcType.getInput(0); |
| lowSizeType = highSizeType = splitPointType = funcType.getResult(0); |
| |
| return success(); |
| } |
| |
| DiagnosedSilenceableFailure transform::MultiTileSizesOp::applyToOne( |
| transform::TransformRewriter &rewriter, LinalgOp target, |
| transform::ApplyToEachResultList &results, TransformState &state) { |
| if (isa<TransformParamTypeInterface>(getLowSize().getType())) { |
| if (target.hasDynamicShape()) { |
| auto diag = emitSilenceableError() |
| << "cannot compute parametric tile sizes for dynamically " |
| "shaped payload op"; |
| diag.attachNote(target->getLoc()) << "payload op"; |
| return diag; |
| } |
| |
| FailureOr<StaticMultiSizeSpecification> spec = computeStaticMultiTileSizes( |
| target, getDimension(), getTargetSize(), getDivisor()); |
| if (failed(spec)) { |
| return emitSilenceableError() |
| << "failed to compute multi-size tiling sizes"; |
| } |
| |
| Builder builder(target.getContext()); |
| results.assign(llvm::map_range( |
| ArrayRef<int64_t>({spec->lowTileSize, spec->highTileSize, |
| spec->lowTileSize * spec->lowTripCount}), |
| [&builder, this](int64_t value) { |
| return builder.getIntegerAttr( |
| cast<ParamType>(getLowSize().getType()).getType(), value); |
| })); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| OpBuilder builder(target.getContext()); |
| builder.setInsertionPoint(target); |
| OpFoldResult targetSize = builder.getIndexAttr(getTargetSize()); |
| OpFoldResult divisor = builder.getIndexAttr(getDivisor()); |
| FailureOr<MultiSizeSpecification> spec = computeMultiTileSizes( |
| builder, target, getDimension(), targetSize, divisor); |
| if (failed(spec)) { |
| return emitSilenceableError() << "could not generate tile size computation"; |
| } |
| |
| AffineExpr s0 = builder.getAffineSymbolExpr(0); |
| AffineExpr s1 = builder.getAffineSymbolExpr(1); |
| Operation *splitPoint = |
| affine::makeComposedAffineApply(builder, target.getLoc(), s0 * s1, |
| {spec->lowTileSize, spec->lowTripCount}); |
| Operation *lowTileSize = spec->lowTileSize.getDefiningOp(); |
| Operation *highTileSize = spec->highTileSize.getDefiningOp(); |
| assert(lowTileSize && highTileSize && splitPoint && |
| "tile sizes are not produced by operations"); |
| results.reserve(results.size() + 3); |
| results.push_back(lowTileSize); |
| results.push_back(highTileSize); |
| results.push_back(splitPoint); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::MultiTileSizesOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| onlyReadsHandle(getTargetMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| if (isa<TransformParamTypeInterface>(getLowSize().getType())) |
| onlyReadsPayload(effects); |
| else |
| modifiesPayload(effects); |
| } |
| |
| LogicalResult transform::MultiTileSizesOp::verify() { |
| if (getLowSize().getType() != getHighSize().getType() || |
| getLowSize().getType() != getSplitPoint().getType()) { |
| return emitOpError() << "expects all results type to be the same"; |
| } |
| return success(); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // PackOp |
| //===---------------------------------------------------------------------===// |
| |
| void transform::PackOp::build(OpBuilder &builder, OperationState &result, |
| Value target, |
| ArrayRef<OpFoldResult> mixedPackedSizes) { |
| SmallVector<int64_t> staticPackedSizes; |
| SmallVector<Value> dynamicPackedSizes; |
| dispatchIndexOpFoldResults(mixedPackedSizes, dynamicPackedSizes, |
| staticPackedSizes); |
| // Call the default builder which sets up the proper operands segment sizes |
| // attributes for multiple variadic operands. In the absence of this, horrible |
| // bugs ensue. |
| Type linalgOpHType = transform::OperationType::get( |
| builder.getContext(), GenericOp::getOperationName()); |
| build(builder, result, |
| /*resultType=*/linalgOpHType, |
| /*target=*/target, |
| /*dynamic_sizes=*/dynamicPackedSizes, |
| /*static_sizes=*/builder.getDenseI64ArrayAttr(staticPackedSizes)); |
| } |
| |
| SmallVector<OpFoldResult> transform::PackOp::getMixedPackedSizes() { |
| Builder b(getContext()); |
| return getMixedValues(getStaticPackedSizes(), getPackedSizes(), b); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::PackOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &transformResults, |
| transform::TransformState &state) { |
| auto targetOps = state.getPayloadOps(getTarget()); |
| // If nothing to pack, propagate success. |
| if (std::empty(targetOps)) { |
| transformResults.set(cast<OpResult>(getPackedOp()), |
| ArrayRef<Operation *>({})); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| // Fail on multi-op handles. |
| auto linalgOp = dyn_cast<LinalgOp>(*targetOps.begin()); |
| if (!llvm::hasSingleElement(targetOps) || !linalgOp) { |
| return emitSilenceableError() |
| << "requires target to map to exactly 1 LinalgOp (got " |
| << llvm::range_size(targetOps) << ")"; |
| } |
| // Fail on mismatched number of pack sizes. |
| if (getMixedPackedSizes().size() != linalgOp.getNumLoops()) { |
| return emitSilenceableError() |
| << "requires number of packed sizes match the number of loops (" |
| << getMixedPackedSizes().size() << " vs " << linalgOp.getNumLoops() |
| << ")"; |
| } |
| |
| // Unpack handles to constants or actual SSA index values. |
| SmallVector<OpFoldResult> packedSizes; |
| DiagnosedSilenceableFailure status = unpackSingleIndexResultPayloadOperations( |
| state, *this, packedSizes, getMixedPackedSizes()); |
| |
| rewriter.setInsertionPoint(linalgOp); |
| FailureOr<PackResult> maybeResult = pack(rewriter, linalgOp, packedSizes); |
| if (failed(maybeResult)) |
| return emitDefiniteFailure("data tiling failed"); |
| |
| transformResults.set(cast<OpResult>(getPackedOp()), |
| {maybeResult->packedLinalgOp.getOperation()}); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::PackOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| transform::consumesHandle(getTargetMutable(), effects); |
| transform::onlyReadsHandle(getPackedSizesMutable(), effects); |
| transform::producesHandle(getOperation()->getOpResults(), effects); |
| transform::modifiesPayload(effects); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // PackGreedilyOp. |
| //===---------------------------------------------------------------------===// |
| |
| LogicalResult transform::PackGreedilyOp::verify() { |
| if (!isPermutationVector(getMatmulInnerDimsOrder())) { |
| return emitOpError() << getMatmulInnerDimsOrderAttrName() |
| << " is not a valid permutation"; |
| } |
| // TODO: relax to allow empty once we have another strategy than just matmul. |
| if (!getMatmulPaddedSizesNextMultipleOf().empty()) { |
| for (auto [s, nmo] : |
| llvm::zip_equal(getMixedMatmulPackedSizes(), |
| getMatmulPaddedSizesNextMultipleOf())) { |
| std::optional<int64_t> maybeStaticPackedSize = getConstantIntValue(s); |
| if (nmo != 0 && |
| (!maybeStaticPackedSize.has_value() || *maybeStaticPackedSize != 0)) { |
| return emitOpError() << "at most one of the packed_size and the " |
| "padded_sizes_next_multiple_of can be nonzero " |
| "for the matmul strategy"; |
| } |
| } |
| } |
| return success(); |
| } |
| |
| DiagnosedSilenceableFailure |
| PackGreedilyOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &transformResults, |
| transform::TransformState &state) { |
| SmallVector<Operation *> results; |
| for (Operation *op : state.getPayloadOps(getTarget())) { |
| auto linalgOp = dyn_cast<LinalgOp>(op); |
| if (!linalgOp) |
| continue; |
| // linalgOp will be replaced and the insertion point may be invalidated if |
| // we set it before -> set it after. |
| rewriter.setInsertionPointAfter(linalgOp); |
| // Failing to pack greedily is perfectly fine. |
| // In the future we will want to order packings according to some metric. |
| FailureOr<PackResult> packResult = packMatmulGreedily( |
| /*rewriter=*/rewriter, |
| /*linalgOp=*/linalgOp, |
| /*mnkPackedSizes=*/getMixedMatmulPackedSizes(), |
| /*mnkPaddedSizesNextMultipleOf=*/ |
| getMatmulPaddedSizesNextMultipleOf(), |
| /*mnkOrder=*/getMatmulInnerDimsOrder()); |
| if (succeeded(packResult)) { |
| results.push_back(packResult->packedLinalgOp); |
| continue; |
| } |
| results.push_back(linalgOp); |
| } |
| transformResults.set(cast<OpResult>(getPackedOp()), results); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| SmallVector<OpFoldResult> PackGreedilyOp::getMixedMatmulPackedSizes() { |
| Builder b(getContext()); |
| return getMixedValues(getStaticMatmulPackedSizes(), getMatmulPackedSizes(), |
| b); |
| } |
| |
| void transform::PackGreedilyOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| transform::consumesHandle(getTargetMutable(), effects); |
| transform::onlyReadsHandle(getMatmulPackedSizesMutable(), effects); |
| transform::producesHandle(getOperation()->getOpResults(), effects); |
| transform::modifiesPayload(effects); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // PackTransposeOp |
| //===---------------------------------------------------------------------===// |
| |
| LogicalResult transform::PackTransposeOp::verify() { |
| if (!isPermutationVector(getInnerPerm())) { |
| return emitOpError() << getInnerPermAttrName() |
| << " is not a valid permutation"; |
| } |
| if (!isPermutationVector(getOuterPerm())) { |
| return emitOpError() << getOuterPermAttrName() |
| << " is not a valid permutation"; |
| } |
| if (getInnerPerm().empty() && getOuterPerm().empty()) { |
| return emitOpError() << " at least one of " << getInnerPermAttrName() |
| << " or " << getOuterPermAttrName() |
| << " must be specified"; |
| } |
| return success(); |
| } |
| |
| namespace { |
| enum class OuterOrInnerPerm { Outer = 0, Inner = 1 }; |
| } // namespace |
| |
| /// Return true if `permutation` is a valid permutation of the |
| /// `outer_dims_perm` (case OuterOrInnerPerm::Outer) or `inner_dims_pos` |
| /// (OuterOrInnerPerm::Inner) of the `tensor.pack` or `tensor.unpack` `op. |
| /// This is the case when the `permutation` rank matches the rank expected by |
| /// `op` and `permutation` is itself a permutation vector. |
| /// Return true if either `op` or `permutation` are empty to allow a simpler |
| /// polymorphic implementation. |
| template <typename RelayoutOpTy> |
| bool isValidPackingPermutation( |
| RelayoutOpTy op, ArrayRef<int64_t> permutation, |
| OuterOrInnerPerm outerOrInnerPerm = OuterOrInnerPerm::Outer) { |
| static_assert( |
| llvm::is_one_of<RelayoutOpTy, linalg::PackOp, linalg::UnPackOp>::value, |
| "applies to only pack or unpack operations"); |
| if (!op || permutation.empty()) |
| return true; |
| size_t innerRank = op.getInnerDimsPos().size(); |
| if (outerOrInnerPerm == OuterOrInnerPerm::Inner) |
| return permutation.size() == innerRank && isPermutationVector(permutation); |
| // op.getOuterDimsPerm() may be empty, in which case it is identity. |
| // Don't rely on it. |
| if (std::is_same<RelayoutOpTy, linalg::PackOp>::value) { |
| return permutation.size() == op.getSourceRank() && |
| isPermutationVector(permutation); |
| } |
| return permutation.size() == op.getDestRank() && |
| isPermutationVector(permutation); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::PackTransposeOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &transformResults, |
| transform::TransformState &state) { |
| auto packOrUnpackOps = state.getPayloadOps(getTargetPackOrUnPackOp()); |
| auto linalgOps = state.getPayloadOps(getTargetLinalgOp()); |
| // Step 1. If nothing to pack, propagate success. |
| if (std::empty(packOrUnpackOps)) { |
| transformResults.set(cast<OpResult>(getPackedOp()), {}); |
| transformResults.set(cast<OpResult>(getPackOp()), {}); |
| transformResults.set(cast<OpResult>(getUnPackOp()), {}); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| // Step 2. Bunch of runtime sanity check and error messages. |
| // Step 2.1. Fail on multi-op handles. |
| if (!llvm::hasSingleElement(packOrUnpackOps) || |
| !llvm::hasSingleElement(linalgOps)) { |
| return emitSilenceableError() |
| << "requires target to map to exactly 1 " |
| "packing op and 1 packed op (" |
| << "got " << llvm::range_size(packOrUnpackOps) << " and " |
| << llvm::range_size(linalgOps) << ")"; |
| } |
| |
| // Step 2.2. Fail on wrong type. |
| auto packOp = dyn_cast<linalg::PackOp>(*packOrUnpackOps.begin()); |
| auto unPackOp = dyn_cast<linalg::UnPackOp>(*packOrUnpackOps.begin()); |
| if ((!packOp && !unPackOp)) { |
| return emitSilenceableError() << "requires target to map to a " |
| "linalg.pack or linalg.unpack"; |
| } |
| LinalgOp linalgOpTarget = dyn_cast<LinalgOp>(*linalgOps.begin()); |
| if (!linalgOpTarget) |
| return emitSilenceableError() << "requires a LinalgOp target"; |
| |
| // Step 2.3. Fail if we can't get the producer / consumer Linalg op. |
| LinalgOp linalgOp; |
| if (packOp && packOp.getResult().hasOneUse()) |
| linalgOp = dyn_cast<LinalgOp>(*(packOp.getResult().getUsers().begin())); |
| else if (unPackOp) |
| linalgOp = unPackOp.getSource().getDefiningOp<LinalgOp>(); |
| if (linalgOp != linalgOpTarget) { |
| auto errorMsg = |
| packOp ? StringLiteral{"not a single use by the LinalgOp target"} |
| : StringLiteral{"not produced by the LinalgOp target"}; |
| return emitSilenceableError() << errorMsg; |
| } |
| |
| // Step 2.4. If we have an UnPackOp, we need to fetch the symmetrical |
| // PackOp. |
| if (unPackOp) { |
| assert(!packOp && "packOp must be null on entry when unPackOp is not null"); |
| OpOperand *packUse = linalgOp.getDpsInitOperand( |
| cast<OpResult>(unPackOp.getSource()).getResultNumber()); |
| packOp = dyn_cast_or_null<linalg::PackOp>(packUse->get().getDefiningOp()); |
| if (!packOp || !packOp.getResult().hasOneUse()) |
| return emitSilenceableError() << "could not find matching pack op"; |
| } |
| |
| // Step 2.5. Fail if any permutation does not validate. |
| for (auto permType : {OuterOrInnerPerm::Outer, OuterOrInnerPerm::Inner}) { |
| ArrayRef<int64_t> perm = |
| (permType == OuterOrInnerPerm::Outer) ? getOuterPerm() : getInnerPerm(); |
| auto errorMsg = (permType == OuterOrInnerPerm::Outer) |
| ? StringLiteral{"invalid outer_perm"} |
| : StringLiteral{"invalid inner_perm"}; |
| if (!isValidPackingPermutation(packOp, perm, permType) || |
| !isValidPackingPermutation(unPackOp, perm, permType)) { |
| Operation *packOrUnpackOp = |
| unPackOp ? unPackOp.getOperation() : packOp.getOperation(); |
| return emitSilenceableError() << errorMsg << ": " << *packOrUnpackOp; |
| } |
| } |
| |
| // From here on, packOp and linalgOp are always present, unPackOp may or may |
| // not be present. |
| assert(packOp && linalgOp && "unexpected null op"); |
| |
| // Step 3. Actually transpose the ops. |
| FailureOr<PackTransposeResult> res = packTranspose( |
| rewriter, packOp, linalgOp, unPackOp, getOuterPerm(), getInnerPerm()); |
| // Preconditions have been checked, it is an error to fail here. |
| assert(succeeded(res) && "unexpected packTranspose failure"); |
| |
| // Step 4. Return results. |
| transformResults.set(cast<OpResult>(getPackOp()), {res->transposedPackOp}); |
| transformResults.set(cast<OpResult>(getPackedOp()), |
| {res->transposedLinalgOp}); |
| if (unPackOp) { |
| transformResults.set(cast<OpResult>(getUnPackOp()), |
| {res->transposedUnPackOp}); |
| } else { |
| transformResults.set(cast<OpResult>(getUnPackOp()), {}); |
| } |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // PadOp |
| //===---------------------------------------------------------------------===// |
| |
| void transform::PadOp::build(OpBuilder &b, OperationState &result, Value target, |
| ArrayRef<int64_t> paddingDimensions, |
| ArrayRef<int64_t> padToMultipleOf, |
| ArrayRef<int64_t> nofoldFlags, |
| ArrayRef<Attribute> transposePaddings, |
| StringRef copyBackOp, |
| bool usePrescribedTensorShapes) { |
| auto resultType = transform::AnyOpType::get(b.getContext()); |
| return build(/*builder=*/b, |
| /*result=*/result, |
| /*types=*/TypeRange{resultType, resultType}, |
| /*target=*/target, |
| /*paddingValues=*/ArrayAttr(), // let inference handle this |
| /*paddingDimensions=*/b.getI64ArrayAttr(paddingDimensions), |
| /*padToMultipleOf=*/ValueRange{}, |
| /*padToMultipleOf=*/ |
| (padToMultipleOf.empty() |
| ? DenseI64ArrayAttr() |
| : b.getDenseI64ArrayAttr(padToMultipleOf)), |
| /*nofoldFlags=*/b.getI64ArrayAttr(nofoldFlags), |
| /*transposePaddings=*/b.getArrayAttr(transposePaddings), |
| /*copyBackOp=*/b.getStringAttr(copyBackOp), |
| /*usePrescribedTensorShapes=*/ |
| usePrescribedTensorShapes ? b.getUnitAttr() : nullptr); |
| } |
| |
| void transform::PadOp::build(OpBuilder &b, OperationState &result, Value target, |
| ArrayRef<int64_t> paddingDimensions, |
| ArrayRef<OpFoldResult> mixedPadToMultipleOf, |
| ArrayRef<int64_t> nofoldFlags, |
| ArrayRef<Attribute> transposePaddings, |
| StringRef copyBackOp, |
| bool usePrescribedTensorShapes) { |
| auto resultType = transform::AnyOpType::get(b.getContext()); |
| SmallVector<int64_t> staticPadToMultipleOf; |
| SmallVector<Value> dynamicPadToMultipleOf; |
| dispatchIndexOpFoldResults(mixedPadToMultipleOf, dynamicPadToMultipleOf, |
| staticPadToMultipleOf); |
| return build(/*builder=*/b, |
| /*result=*/result, |
| /*types=*/TypeRange{resultType, resultType}, |
| /*target=*/target, |
| /*paddingValues=*/ArrayAttr(), // let inference handle this |
| /*paddingDimensions=*/b.getI64ArrayAttr(paddingDimensions), |
| /*padToMultipleOf=*/dynamicPadToMultipleOf, |
| /*padToMultipleOf=*/staticPadToMultipleOf, |
| /*nofoldFlags=*/b.getI64ArrayAttr(nofoldFlags), |
| /*transposePaddings=*/b.getArrayAttr(transposePaddings), |
| /*copyBackOp=*/copyBackOp, |
| /*usePrescribedTensorShapes=*/usePrescribedTensorShapes); |
| } |
| |
| void PadOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| onlyReadsHandle(getPadToMultipleOfMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| SmallVector<OpFoldResult> PadOp::getMixedPadToMultipleOf() { |
| Builder b(getContext()); |
| return getMixedValues(getStaticPadToMultipleOf(), getPadToMultipleOf(), b); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::PadOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &results, |
| transform::TransformState &state) { |
| auto transformOp = cast<TransformOpInterface>(getOperation()); |
| SmallVector<Operation *> paddedOps, padOps, copyBackOps; |
| |
| for (Operation *target : state.getPayloadOps(getTarget())) { |
| auto linalgTarget = dyn_cast<LinalgOp>(target); |
| if (!linalgTarget) { |
| auto diag = emitSilenceableError() << "expected LinalgOp target"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // Convert the integer packing flags to booleans. |
| SmallVector<bool> nofoldFlags; |
| for (int64_t packPadding : |
| extractFromIntegerArrayAttr<int64_t>(getNofoldFlags())) |
| nofoldFlags.push_back(static_cast<bool>(packPadding)); |
| |
| // Convert the padding values to attributes. |
| SmallVector<Attribute> paddingValues; |
| for (auto const &it : |
| llvm::zip(getPaddingValues(), linalgTarget->getOperandTypes())) { |
| auto attr = dyn_cast<TypedAttr>(std::get<0>(it)); |
| if (!attr) { |
| emitOpError("expects padding values to be typed attributes"); |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| Type elementType = getElementTypeOrSelf(std::get<1>(it)); |
| // Try to parse string attributes to obtain an attribute of element type. |
| if (auto stringAttr = dyn_cast<StringAttr>(attr)) { |
| auto parsedAttr = dyn_cast_if_present<TypedAttr>(parseAttribute( |
| stringAttr, getContext(), elementType, |
| /*numRead=*/nullptr, /*isKnownNullTerminated=*/true)); |
| if (!parsedAttr || parsedAttr.getType() != elementType) { |
| auto diag = this->emitOpError("expects a padding that parses to ") |
| << elementType << ", got " << std::get<0>(it); |
| diag.attachNote(linalgTarget.getLoc()) << "when applied to this op"; |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| paddingValues.push_back(parsedAttr); |
| continue; |
| } |
| // Otherwise, add the attribute directly. |
| if (attr.getType() != elementType) { |
| auto diag = this->emitOpError("expects a padding value of type ") |
| << elementType << ", got " << attr; |
| diag.attachNote(linalgTarget.getLoc()) << "when applied to this op"; |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| paddingValues.push_back(attr); |
| } |
| |
| // Extract the transpose vectors. |
| SmallVector<SmallVector<int64_t>> transposePaddings; |
| for (Attribute transposeVector : cast<ArrayAttr>(getTransposePaddings())) |
| transposePaddings.push_back(extractFromIntegerArrayAttr<int64_t>( |
| cast<ArrayAttr>(transposeVector))); |
| |
| LinalgOp paddedOp; |
| LinalgPaddingOptions options; |
| options.paddingDimensions = |
| extractFromIntegerArrayAttr<int64_t>(getPaddingDimensions()); |
| |
| SmallVector<int64_t> padToMultipleOf; |
| DiagnosedSilenceableFailure status = reifyMixedParamAndHandleResults( |
| state, transformOp, getMixedPadToMultipleOf(), padToMultipleOf); |
| if (!status.succeeded()) |
| return status; |
| if (padToMultipleOf.empty()) |
| padToMultipleOf = |
| SmallVector<int64_t>(options.paddingDimensions.size(), 1); |
| |
| options.padToMultipleOf = padToMultipleOf; |
| options.paddingValues = paddingValues; |
| options.nofoldFlags = nofoldFlags; |
| if (getCopyBackOp() == |
| bufferization::MaterializeInDestinationOp::getOperationName()) { |
| options.copyBackOp = LinalgPaddingOptions::CopyBackOp:: |
| BufferizationMaterializeInDestination; |
| } else if (getCopyBackOp() == linalg::CopyOp::getOperationName()) { |
| options.copyBackOp = LinalgPaddingOptions::CopyBackOp::LinalgCopy; |
| } else if (getCopyBackOp() == kCopyOpNone) { |
| options.copyBackOp = LinalgPaddingOptions::CopyBackOp::None; |
| } else { |
| llvm_unreachable("unsupported copy_back op"); |
| } |
| // Populate `sizeToPadTo` with the dynamic tensor sizes for each operand. |
| bool irChanged = false; |
| if (getUsePrescribedTensorShapes() && |
| linalgTarget.hasPureTensorSemantics()) { |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(linalgTarget); |
| for (OpOperand &operand : linalgTarget->getOpOperands()) { |
| for (auto [i, dim] : llvm::enumerate(linalgTarget.getShape(&operand))) { |
| if (!ShapedType::isDynamic(dim)) |
| continue; |
| options.setSizeToPadTo(operand.getOperandNumber(), i, |
| tensor::getMixedSize(rewriter, |
| operand.get().getLoc(), |
| operand.get(), i)); |
| irChanged = true; |
| } |
| } |
| } |
| |
| SmallVector<Value> replacements; |
| SmallVector<tensor::PadOp> newPadOps; |
| if (failed(rewriteAsPaddedOp(rewriter, linalgTarget, options, paddedOp, |
| replacements, newPadOps))) { |
| if (irChanged) { |
| auto diag = emitDefiniteFailure() << "failed to pad op"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| auto diag = emitSilenceableError() << "failed to pad op"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // We need to perform our own replacement here because this API is still |
| // used in patterns that "pad and hoist", for which the replacement values |
| // need to be different. |
| // TODO: clean this up and stop "pad and hoist" behavior more globally now |
| // that we have more composable abstractions. |
| rewriter.replaceOp(linalgTarget, replacements); |
| paddedOps.push_back(paddedOp); |
| padOps.append(newPadOps.begin(), newPadOps.end()); |
| if (options.copyBackOp != LinalgPaddingOptions::CopyBackOp::None) { |
| for (Value v : replacements) { |
| Operation *copyBackOp = v.getDefiningOp(); |
| if (!llvm::is_contained(copyBackOps, copyBackOp)) |
| copyBackOps.push_back(copyBackOp); |
| } |
| } |
| } |
| |
| results.set(cast<OpResult>(getPadded()), paddedOps); |
| results.set(cast<OpResult>(getPad()), padOps); |
| results.set(cast<OpResult>(getCopy()), copyBackOps); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| LogicalResult transform::PadOp::verify() { |
| SmallVector<int64_t> nofoldFlags = |
| extractFromIntegerArrayAttr<int64_t>(getNofoldFlags()); |
| if (any_of(nofoldFlags, [](int64_t packPadding) { |
| return packPadding != 0 && packPadding != 1; |
| })) { |
| return emitOpError() |
| << "expects nofold_flags to contain booleans (0/1), found " |
| << getNofoldFlags(); |
| } |
| |
| SmallVector<int64_t> paddingDimensions = |
| extractFromIntegerArrayAttr<int64_t>(getPaddingDimensions()); |
| if (any_of(paddingDimensions, |
| [](int64_t paddingDimension) { return paddingDimension < 0; })) { |
| return emitOpError() << "expects padding_dimensions to contain positive " |
| "integers, found " |
| << getPaddingDimensions(); |
| } |
| if (!getMixedPadToMultipleOf().empty()) { |
| if (getMixedPadToMultipleOf().size() != paddingDimensions.size()) { |
| return emitOpError() << "expects as many multiples as padding_dimensions"; |
| } |
| } |
| ArrayAttr transposes = getTransposePaddings(); |
| for (Attribute attr : transposes) { |
| SmallVector<int64_t> transpose = extractFromIntegerArrayAttr<int64_t>(attr); |
| auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size())); |
| if (!std::is_permutation(sequence.begin(), sequence.end(), |
| transpose.begin(), transpose.end())) { |
| return emitOpError() |
| << "expects transpose_paddings to be a permutation, found " |
| << attr; |
| } |
| } |
| if (getCopyBackOp() != |
| bufferization::MaterializeInDestinationOp::getOperationName() && |
| getCopyBackOp() != linalg::CopyOp::getOperationName() && |
| getCopyBackOp() != kCopyOpNone) |
| return emitOpError() << "invalid copy_back_op"; |
| return success(); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // PadTilingInterfaceOp |
| //===---------------------------------------------------------------------===// |
| |
| void transform::PadTilingInterfaceOp::build(OpBuilder &b, |
| OperationState &result, |
| Value target, |
| ArrayRef<int64_t> paddingSizes, |
| bool padToMultipleOf) { |
| auto resultType = transform::AnyOpType::get(b.getContext()); |
| return build(/*builder=*/b, |
| /*result=*/result, |
| /*types=*/TypeRange{resultType, resultType}, |
| /*target=*/target, |
| /*paddingValues=*/ArrayAttr(), // let inference handle this |
| /*paddingSizes=*/ValueRange{}, |
| /*paddingSizes=*/ |
| (paddingSizes.empty() ? DenseI64ArrayAttr() |
| : b.getDenseI64ArrayAttr(paddingSizes)), |
| /*padToMultipleOf=*/ |
| padToMultipleOf ? b.getUnitAttr() : nullptr); |
| } |
| |
| void transform::PadTilingInterfaceOp::build( |
| OpBuilder &b, OperationState &result, Value target, |
| ArrayRef<OpFoldResult> mixedPaddingSizes, bool padToMultipleOf) { |
| auto resultType = transform::AnyOpType::get(b.getContext()); |
| SmallVector<int64_t> staticPaddingSizes; |
| SmallVector<Value> dynamicPaddingSizes; |
| dispatchIndexOpFoldResults(mixedPaddingSizes, dynamicPaddingSizes, |
| staticPaddingSizes); |
| return build(/*builder=*/b, |
| /*result=*/result, |
| /*types=*/TypeRange{resultType, resultType}, |
| /*target=*/target, |
| /*paddingValues=*/ArrayAttr(), // let inference handle this |
| /*paddingSizes=*/dynamicPaddingSizes, |
| /*paddingSizes=*/staticPaddingSizes, |
| /*usePrescribedTensorShapes=*/padToMultipleOf); |
| } |
| |
| void transform::PadTilingInterfaceOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| onlyReadsHandle(getPaddingSizesMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| SmallVector<OpFoldResult> |
| transform::PadTilingInterfaceOp::getMixedPaddingSizes() { |
| Builder b(getContext()); |
| return getMixedValues(getStaticPaddingSizes(), getPaddingSizes(), b); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::PadTilingInterfaceOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &results, |
| transform::TransformState &state) { |
| SmallVector<Operation *> paddedOps, padOps; |
| |
| for (Operation *target : state.getPayloadOps(getTarget())) { |
| auto targetOp = dyn_cast<TilingInterface>(target); |
| if (!targetOp) { |
| auto diag = emitSilenceableError() << "expected TilingInterface target"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // Only IndexingMapOpInterface ops for now, until TilingInterface exposes a |
| // loopsToOperand map / C++ APIs to compute the effect of padding on |
| // operands. |
| if (!isa<IndexingMapOpInterface>(targetOp.getOperation())) { |
| auto diag = emitSilenceableError() << "only IndexingMapOpInterface ops " |
| "supported atm"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // Convert the padding values to attributes. |
| SmallVector<Attribute> paddingValues; |
| for (auto const &[untypedAttr, elementOrTensorType] : |
| llvm::zip(getPaddingValues(), targetOp->getOperandTypes())) { |
| auto attr = dyn_cast<TypedAttr>(untypedAttr); |
| Type elementType = getElementTypeOrSelf(elementOrTensorType); |
| if (!attr) { |
| emitOpError("expects padding values to be typed attributes"); |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| // Try to parse string attributes to obtain an attribute of element type. |
| if (auto stringAttr = dyn_cast<StringAttr>(attr)) { |
| auto parsedAttr = dyn_cast_if_present<TypedAttr>(parseAttribute( |
| stringAttr, getContext(), elementType, |
| /*numRead=*/nullptr, /*isKnownNullTerminated=*/true)); |
| if (!parsedAttr || parsedAttr.getType() != elementType) { |
| auto diag = this->emitOpError("expects a padding that parses to ") |
| << elementType << ", got " << attr; |
| diag.attachNote(targetOp.getLoc()) << "when applied to this op"; |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| paddingValues.push_back(parsedAttr); |
| continue; |
| } |
| // Otherwise, add the attribute directly. |
| if (attr.getType() != elementType) { |
| auto diag = this->emitOpError("expects a padding value of type ") |
| << elementType << ", got " << attr; |
| diag.attachNote(targetOp.getLoc()) << "when applied to this op"; |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| paddingValues.push_back(attr); |
| } |
| |
| // Set options. |
| TilingInterface paddedOp; |
| PadTilingInterfaceOptions options; |
| options.setPaddingValues(paddingValues) |
| .setPaddingSizes(getMixedPaddingSizes()) |
| .setPadToMultipleOf(getPadToMultipleOf()); |
| |
| // Apply padding. |
| SmallVector<tensor::PadOp> newPadOps; |
| FailureOr<TilingInterface> maybePaddedOp = rewriteAsPaddedOp( |
| rewriter, cast<TilingInterface>(targetOp.getOperation()), options, |
| newPadOps); |
| if (failed(maybePaddedOp)) { |
| auto diag = emitSilenceableError() << "failed to pad op"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // Set transform results. |
| paddedOps.push_back(cast<TilingInterface>(maybePaddedOp->getOperation())); |
| padOps.append(newPadOps.begin(), newPadOps.end()); |
| } |
| |
| results.set(cast<OpResult>(getPadded()), paddedOps); |
| results.set(cast<OpResult>(getPad()), padOps); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| LogicalResult transform::PadTilingInterfaceOp::verify() { return success(); } |
| |
| //===---------------------------------------------------------------------===// |
| // HoistPadOp |
| //===---------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::HoistPadBuildPackingLoopNestOp::apply( |
| transform::TransformRewriter &rewriter, |
| transform::TransformResults &transformResults, |
| transform::TransformState &state) { |
| auto targetOps = state.getPayloadOps(getTarget()); |
| auto loopOps = state.getPayloadOps(getLoop()); |
| if (!llvm::hasSingleElement(targetOps) || !llvm::hasSingleElement(loopOps)) { |
| return emitDefiniteFailure() |
| << "requires exactly one target and one loop handle (got " |
| << llvm::range_size(targetOps) << " and " |
| << llvm::range_size(loopOps) << ")"; |
| } |
| |
| auto padOp = dyn_cast_or_null<tensor::PadOp>(*targetOps.begin()); |
| auto loopOp = dyn_cast_or_null<scf::ForOp>(*loopOps.begin()); |
| if (!padOp || !loopOp) |
| return emitDefiniteFailure() << "requires exactly 2 non-null handles"; |
| |
| FailureOr<linalg::detail::PackingResult> result = |
| linalg::detail::buildPackingLoopNest(rewriter, padOp, loopOp, |
| getTranspose()); |
| if (failed(result)) |
| return emitDefiniteFailure() << "could not build packing loop nest"; |
| |
| if (result->clonedLoopIvs.empty()) { |
| transformResults.set(cast<OpResult>(getPackingLoop()), |
| {result->hoistedPadOp.getOperation()}); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| auto outerPackedLoop = |
| scf::getForInductionVarOwner(result->clonedLoopIvs.front()); |
| transformResults.set(cast<OpResult>(getPackingLoop()), |
| {outerPackedLoop.getOperation()}); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| LogicalResult transform::HoistPadBuildPackingLoopNestOp::verify() { |
| ArrayRef<int64_t> transpose = getTranspose(); |
| auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size())); |
| if (!std::is_permutation(sequence.begin(), sequence.end(), transpose.begin(), |
| transpose.end())) { |
| return emitOpError() << "expects transpose to be a permutation, found " |
| << getTranspose(); |
| } |
| return success(); |
| } |
| |
| void transform::HoistPadBuildPackingLoopNestOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| transform::onlyReadsHandle(getTargetMutable(), effects); |
| transform::onlyReadsHandle(getLoopMutable(), effects); |
| transform::producesHandle(getOperation()->getOpResults(), effects); |
| transform::modifiesPayload(effects); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::HoistPadOp::applyToOne(transform::TransformRewriter &rewriter, |
| tensor::PadOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| tensor::PadOp hoistedPadOp; |
| SmallVector<TransposeOp> transposeOps; |
| FailureOr<Value> result = |
| hoistPaddingOnTensors(rewriter, target, getNumLoops(), getTranspose(), |
| hoistedPadOp, transposeOps); |
| if (succeeded(result)) { |
| // We need to perform our own replacement here because this API is still |
| // used in patterns that "pad and hoist", for which the replacement values |
| // need to be different. |
| // TODO: clean this up and stop "pad and hoist" behavior more globally now |
| // that we have more composable abstractions. |
| rewriter.replaceOp(target, *result); |
| results.push_back(hoistedPadOp); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| return emitDefaultSilenceableFailure(target); |
| } |
| |
| LogicalResult transform::HoistPadOp::verify() { |
| ArrayRef<int64_t> transpose = getTranspose(); |
| auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size())); |
| if (!std::is_permutation(sequence.begin(), sequence.end(), transpose.begin(), |
| transpose.end())) { |
| return emitOpError() << "expects transpose to be a permutation, found " |
| << getTranspose(); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PromoteOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::PromoteOp::applyToOne(transform::TransformRewriter &rewriter, |
| LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| LinalgPromotionOptions promotionOptions; |
| if (!getOperandsToPromote().empty()) |
| promotionOptions = promotionOptions.setOperandsToPromote( |
| extractFromIntegerArrayAttr<int64_t>(getOperandsToPromote())); |
| if (getUseFullTilesByDefault()) |
| promotionOptions = promotionOptions.setUseFullTileBuffersByDefault( |
| getUseFullTilesByDefault()); |
| if (getUseOriginalSubviewSize()) |
| promotionOptions = |
| promotionOptions.setUseOriginalSubviewSize(getUseOriginalSubviewSize()); |
| if (getUseAlloca()) |
| promotionOptions = promotionOptions.setUseAlloca(getUseAlloca()); |
| if (!getUseFullTileBuffers().empty()) |
| promotionOptions = promotionOptions.setUseFullTileBuffers( |
| llvm::to_vector(getUseFullTileBuffers().getAsValueRange<BoolAttr>())); |
| if (getAlignment().has_value()) |
| promotionOptions = promotionOptions.setAlignment(*getAlignment()); |
| if (getMemorySpace().has_value()) |
| promotionOptions = promotionOptions.setMemorySpace(*getMemorySpace()); |
| |
| if (getMapping().has_value()) { |
| // The mapping should only contain an element |
| auto mapping = *getMapping(); |
| if (mapping.size() > 1) |
| return emitDefaultDefiniteFailure(target); |
| |
| auto addressSpace = cast<mlir::gpu::GPUMemorySpaceMappingAttr>(mapping[0]); |
| |
| if (addressSpace.getAddressSpace() == |
| mlir::gpu::GPUDialect::getWorkgroupAddressSpace()) { |
| promotionOptions = |
| promotionOptions |
| .setAllocationDeallocationFns(allocateWorkgroupMemory, |
| deallocateWorkgroupMemory) |
| .setCopyInOutFns(copyToWorkgroupMemory, copyToWorkgroupMemory) |
| .setUseFullTileBuffers({false, false}); |
| } else if (addressSpace.getAddressSpace() == |
| mlir::gpu::GPUDialect::getPrivateAddressSpace()) { |
| promotionOptions = |
| promotionOptions |
| .setAllocationDeallocationFns(allocateGPUPrivateMemory, |
| deallocateGPUPrivateMemory) |
| .setCopyInOutFns(copyToGPUPrivateMemory, copyToGPUPrivateMemory) |
| .setUseFullTileBuffers({false, false}); |
| } else { |
| return emitDefaultDefiniteFailure(target); |
| } |
| } |
| |
| if (failed(promoteSubviewsPrecondition(target, promotionOptions))) |
| return emitDefaultDefiniteFailure(target); |
| |
| rewriter.setInsertionPoint(target); |
| FailureOr<LinalgOp> res = promoteSubViews(rewriter, target, promotionOptions); |
| if (failed(res)) |
| return emitDefaultDefiniteFailure(target); |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReplaceOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::ReplaceOp::apply(transform::TransformRewriter &rewriter, |
| TransformResults &transformResults, |
| TransformState &state) { |
| auto payload = state.getPayloadOps(getTarget()); |
| |
| // Check for invalid targets. |
| for (Operation *target : payload) { |
| if (target->getNumOperands() > 0) |
| return emitDefiniteFailure() << "expected target without operands"; |
| if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>() && |
| target->getNumRegions() > 0) |
| return emitDefiniteFailure() |
| << "expected target that is isolated from above"; |
| } |
| |
| // Clone and replace. |
| Operation *pattern = &getBodyRegion().front().front(); |
| SmallVector<Operation *> replacements; |
| for (Operation *target : payload) { |
| if (getOperation()->isAncestor(target)) |
| continue; |
| rewriter.setInsertionPoint(target); |
| Operation *replacement = rewriter.clone(*pattern); |
| rewriter.replaceOp(target, replacement->getResults()); |
| replacements.push_back(replacement); |
| } |
| transformResults.set(cast<OpResult>(getReplacement()), replacements); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::ReplaceOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| LogicalResult transform::ReplaceOp::verify() { |
| if (!getBodyRegion().hasOneBlock()) |
| return emitOpError() << "expected one block"; |
| if (std::distance(getBodyRegion().front().begin(), |
| getBodyRegion().front().end()) != 1) |
| return emitOpError() << "expected one operation in block"; |
| Operation *replacement = &getBodyRegion().front().front(); |
| if (replacement->getNumOperands() > 0) |
| return replacement->emitOpError() |
| << "expected replacement without operands"; |
| if (!replacement->hasTrait<OpTrait::IsIsolatedFromAbove>() && |
| replacement->getNumRegions() > 0) |
| return replacement->emitOpError() |
| << "expect op that is isolated from above"; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ScalarizeOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::ScalarizeOp::applyToOne(transform::TransformRewriter &rewriter, |
| LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| scf::SCFTilingOptions tilingOptions; |
| tilingOptions.setTileSizeComputationFunction([&](OpBuilder &b, Operation *) { |
| SmallVector<OpFoldResult> tileSizes; |
| Location loc = target.getLoc(); |
| SmallVector<OpFoldResult> allShapeSizes = |
| target.createFlatListOfOperandDims(b, loc); |
| AffineMap map = target.getShapesToLoopsMap(); |
| if (!map) |
| return tileSizes; |
| SmallVector<OpFoldResult> shapeSizes = |
| affine::makeComposedFoldedMultiResultAffineApply(rewriter, loc, map, |
| allShapeSizes); |
| // If the shape size is dynamic, tile by 1. |
| // Otherwise, do not tile (i.e. tile size 0). |
| for (OpFoldResult shapeSize : shapeSizes) { |
| tileSizes.push_back(getConstantIntValue(shapeSize) ? b.getIndexAttr(0) |
| : b.getIndexAttr(1)); |
| } |
| return tileSizes; |
| }); |
| rewriter.setInsertionPoint(target); |
| FailureOr<scf::SCFTilingResult> maybeTilingResult = tileUsingSCF( |
| rewriter, cast<TilingInterface>(target.getOperation()), tilingOptions); |
| if (failed(maybeTilingResult)) |
| return emitDefaultDefiniteFailure(target); |
| |
| if (target->getNumResults()) |
| rewriter.replaceOp(target, maybeTilingResult->replacements); |
| else |
| rewriter.eraseOp(target); |
| |
| results.reserve(maybeTilingResult->tiledOps.size()); |
| for (Operation *tiled : maybeTilingResult->tiledOps) |
| results.push_back(tiled); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConvertToLoopsOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::ConvertToLoopsOp::apply(transform::TransformRewriter &rewriter, |
| transform::TransformResults &results, |
| transform::TransformState &state) { |
| SmallVector<Operation *> loops; |
| for (Operation *target : state.getPayloadOps(getTarget())) { |
| auto tilingOp = dyn_cast<TilingInterface>(*target); |
| if (!tilingOp) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "expected the payload to implement TilingInterface"; |
| diag.attachNote(target->getLoc()) << "payload op"; |
| return diag; |
| } |
| rewriter.setInsertionPoint(target); |
| FailureOr<SmallVector<scf::ForOp>> generatedLoops = |
| scf::lowerToLoopsUsingSCFForOp(rewriter, tilingOp); |
| if (failed(generatedLoops)) |
| return emitDefaultDefiniteFailure(target); |
| for (scf::ForOp &loop : *generatedLoops) { |
| loops.push_back(loop.getOperation()); |
| } |
| rewriter.eraseOp(target); |
| } |
| results.set(cast<OpResult>(getResult()), loops); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RewriteInDestinationPassingStyleOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::RewriteInDestinationPassingStyleOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| FailureOr<Operation *> maybeResult = |
| TypeSwitch<Operation *, FailureOr<Operation *>>(target) |
| .Case<tensor::FromElementsOp, tensor::GenerateOp, tensor::PadOp>( |
| [&rewriter](auto op) { |
| return rewriteInDestinationPassingStyle(rewriter, op); |
| }); |
| if (failed(maybeResult)) |
| return emitDefaultSilenceableFailure(target); |
| results.push_back(*maybeResult); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SplitOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| SplitOp::apply(transform::TransformRewriter &rewriter, |
| TransformResults &results, TransformState &state) { |
| // Collect the dynamic split points if provided. |
| SmallVector<Operation *> payload = |
| llvm::to_vector(state.getPayloadOps(getTarget())); |
| |
| bool isMultiwaySplit = getMultiway(); |
| |
| if (isMultiwaySplit && !llvm::hasSingleElement(payload)) { |
| return mlir::emitSilenceableFailure(getLoc()) |
| << "requires exactly one target when " |
| "multiway split is enabled (got " |
| << llvm::range_size(payload) << ")"; |
| } |
| |
| SmallVector<OpFoldResult> chunkSizes; |
| |
| if (!isMultiwaySplit) |
| chunkSizes.reserve(payload.size()); |
| |
| if (getDynamicChunkSizes()) { |
| auto diag = DiagnosedSilenceableFailure::success(); |
| if (isa<TransformHandleTypeInterface>(getDynamicChunkSizes().getType())) { |
| chunkSizes = llvm::to_vector(llvm::map_range( |
| state.getPayloadOps(getDynamicChunkSizes()), [&](Operation *op) { |
| if (op->getNumResults() != 1 || |
| !op->getResult(0).getType().isIndex()) { |
| diag = emitSilenceableError() |
| << "expected dynamic split point handle to point to a " |
| "single-result index-typed op"; |
| diag.attachNote(op->getLoc()) << "dynamic split point"; |
| } |
| return OpFoldResult(op->getResult(0)); |
| })); |
| } else { |
| chunkSizes = llvm::to_vector( |
| llvm::map_range(state.getParams(getDynamicChunkSizes()), |
| [](Attribute attr) { return OpFoldResult(attr); })); |
| } |
| if (diag.isSilenceableFailure()) |
| return diag; |
| |
| // For multiway split, a single payload is expected to have multiple |
| // split points. |
| if (!isMultiwaySplit && chunkSizes.size() != payload.size()) { |
| return emitDefiniteFailure() |
| << "expected the dynamic split point handle to point to as " |
| "many operations (" |
| << chunkSizes.size() << ") as the target handle (" |
| << payload.size() << ")"; |
| } |
| } else { |
| chunkSizes.resize(payload.size(), |
| rewriter.getIndexAttr(getStaticChunkSizes())); |
| } |
| |
| auto checkStructuredOpAndDimensions = |
| [&](LinalgOp linalgOp, Location loc) -> DiagnosedSilenceableFailure { |
| if (!linalgOp) { |
| auto diag = emitSilenceableError() << "only applies to structured ops"; |
| diag.attachNote(loc) << "target op"; |
| return diag; |
| } |
| |
| if (getDimension() >= linalgOp.getNumLoops()) { |
| auto diag = emitSilenceableError() << "dimension " << getDimension() |
| << " does not exist in target op"; |
| diag.attachNote(loc) << "target op"; |
| return diag; |
| } |
| return DiagnosedSilenceableFailure::success(); |
| }; |
| |
| auto checkFailureInSplitting = |
| [&](bool hasFailed, Location loc) -> DiagnosedSilenceableFailure { |
| if (hasFailed) { |
| auto diag = emitDefiniteFailure() << "internal failure in splitting"; |
| diag.attachNote(loc) << "target op"; |
| return diag; |
| } |
| return DiagnosedSilenceableFailure::success(); |
| }; |
| |
| SmallVector<Operation *> opList; |
| if (isMultiwaySplit) { |
| |
| // Split a single target operation at multiple points. |
| TilingInterface head, tail; |
| Operation *target = payload.front(); |
| |
| LinalgOp linalgOp = dyn_cast<LinalgOp>(target); |
| |
| // Check that the target is a valid LinalgOp with correct dimensions. |
| DiagnosedSilenceableFailure diag = |
| checkStructuredOpAndDimensions(linalgOp, target->getLoc()); |
| if (diag.isSilenceableFailure()) |
| return diag; |
| |
| for (auto &&[idx, chunkSize] : llvm::enumerate(chunkSizes)) { |
| |
| if (idx > 0) |
| target = tail.getOperation(); |
| |
| if (!target) |
| break; |
| |
| linalgOp = cast<LinalgOp>(target); |
| Location loc = target->getLoc(); |
| |
| rewriter.setInsertionPoint(linalgOp); |
| std::tie(head, tail) = linalg::splitOp( |
| rewriter, cast<TilingInterface>(linalgOp.getOperation()), |
| getDimension(), chunkSize); |
| |
| // Propagate errors. |
| DiagnosedSilenceableFailure diag = |
| checkFailureInSplitting(!head && !tail, loc); |
| if (diag.isDefiniteFailure()) |
| return diag; |
| |
| opList.push_back(head.getOperation()); |
| } |
| |
| // Append any leftover parts to the end of the result list. |
| if (tail) |
| opList.push_back(tail.getOperation()); |
| |
| } else { |
| // Split each target operation. |
| SmallVector<Operation *> first, second; |
| Operation *noSecondPart = nullptr; |
| for (const auto &pair : llvm::zip(payload, chunkSizes)) { |
| Operation *target = std::get<0>(pair); |
| Location loc = target->getLoc(); |
| LinalgOp linalgOp = dyn_cast<LinalgOp>(target); |
| DiagnosedSilenceableFailure diag = |
| checkStructuredOpAndDimensions(linalgOp, target->getLoc()); |
| |
| if (diag.isSilenceableFailure()) |
| return diag; |
| |
| rewriter.setInsertionPoint(linalgOp); |
| std::tie(first.emplace_back(), second.emplace_back()) = linalg::splitOp( |
| rewriter, cast<TilingInterface>(linalgOp.getOperation()), |
| getDimension(), std::get<1>(pair)); |
| |
| // Propagate errors. |
| DiagnosedSilenceableFailure diagSplit = |
| checkFailureInSplitting(!first.back() && !second.back(), loc); |
| if (diagSplit.isDefiniteFailure()) |
| return diag; |
| |
| // Do not add null second parts. |
| if (!second.back()) { |
| noSecondPart = target; |
| second.pop_back(); |
| } |
| } |
| |
| if (second.size() != first.size() && !second.empty()) { |
| auto diag = emitSilenceableError() |
| << "splitting does not produce the second part for a subset " |
| "of targets"; |
| diag.attachNote() |
| << "expected splitting to produce the second part of all " |
| "or none of the targets"; |
| diag.attachNote(noSecondPart->getLoc()) |
| << "first target with no second part"; |
| return diag; |
| } |
| |
| opList.append(first); |
| if (second.size()) |
| opList.append(second); |
| } |
| results.set(cast<OpResult>(getSplitList()), opList); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void SplitOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| if (getDynamicChunkSizes()) |
| onlyReadsHandle(getDynamicChunkSizesMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| ParseResult SplitOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand target, dynamicChunkSizes; |
| IntegerAttr staticChunkSizes; |
| if (parser.parseOperand(target) || parser.parseKeyword("after")) |
| return failure(); |
| |
| OptionalParseResult dynamicPointParseResult = |
| parser.parseOptionalOperand(dynamicChunkSizes); |
| if (!dynamicPointParseResult.has_value()) { |
| int64_t staticChunkSizesValue; |
| if (failed(parser.parseInteger(staticChunkSizesValue))) |
| return failure(); |
| |
| staticChunkSizes = |
| parser.getBuilder().getI64IntegerAttr(staticChunkSizesValue); |
| } |
| |
| Type targetType; |
| if (parser.parseOptionalAttrDict(result.attributes) || |
| parser.parseColonType(targetType) || |
| parser.resolveOperand(target, targetType, result.operands)) { |
| return failure(); |
| } |
| if (dynamicPointParseResult.has_value()) { |
| Type ChunkSizesType; |
| if (failed(*dynamicPointParseResult) || parser.parseComma() || |
| parser.parseType(ChunkSizesType) || |
| parser.resolveOperand(dynamicChunkSizes, ChunkSizesType, |
| result.operands)) { |
| return failure(); |
| } |
| |
| staticChunkSizes = |
| parser.getBuilder().getI64IntegerAttr(ShapedType::kDynamic); |
| } |
| |
| result.addAttribute( |
| SplitOp::getStaticChunkSizesAttrName(result.name).getValue(), |
| staticChunkSizes); |
| result.addTypes(targetType); |
| return success(); |
| } |
| |
| void SplitOp::print(OpAsmPrinter &printer) { |
| printer << " " << getTarget() << " after "; |
| int64_t staticChunkSize = static_cast<int64_t>(getStaticChunkSizes()); |
| if (staticChunkSize != ShapedType::kDynamic) |
| printer << staticChunkSize; |
| else |
| printer << getDynamicChunkSizes(); |
| printer << " "; |
| printer.printOptionalAttrDict(getOperation()->getAttrs(), |
| {getStaticChunkSizesAttrName()}); |
| printer << " : " << getTarget().getType(); |
| if (staticChunkSize == ShapedType::kDynamic) |
| printer << ", " << getDynamicChunkSizes().getType(); |
| } |
| |
| LogicalResult SplitOp::verify() { |
| if ((static_cast<int64_t>(getStaticChunkSizes()) != ShapedType::kDynamic) ^ |
| (getDynamicChunkSizes() == nullptr)) { |
| return emitOpError() << "expects either a dynamic or a static split " |
| "point to be provided"; |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SplitReductionOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::SplitReductionOp::build( |
| OpBuilder &builder, OperationState &result, Value target, |
| int64_t splitFactor, int64_t insertSplitDimension, bool innerParallel, |
| bool useScalingAlgorithm, bool useAlloc) { |
| MLIRContext *ctx = builder.getContext(); |
| result.addOperands(target); |
| result.addAttribute(SplitReductionOp::getSplitFactorAttrName(result.name), |
| builder.getI64IntegerAttr(splitFactor)); |
| result.addAttribute( |
| SplitReductionOp::getInsertSplitDimensionAttrName(result.name), |
| builder.getI64IntegerAttr(insertSplitDimension)); |
| if (innerParallel) { |
| result.addAttribute(SplitReductionOp::getInnerParallelAttrName(result.name), |
| builder.getUnitAttr()); |
| } |
| if (useScalingAlgorithm) { |
| result.addAttribute( |
| SplitReductionOp::getUseScalingAlgorithmAttrName(result.name), |
| builder.getUnitAttr()); |
| } |
| if (useAlloc) { |
| result.addAttribute(SplitReductionOp::getUseAllocAttrName(result.name), |
| builder.getUnitAttr()); |
| } |
| auto resultType = transform::AnyOpType::get(ctx); |
| result.addTypes({resultType, resultType, resultType, resultType}); |
| } |
| |
| DiagnosedSilenceableFailure transform::SplitReductionOp::applyToOne( |
| transform::TransformRewriter &rewriter, LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| ControlSplitReductionFn splitFn = [&](LinalgOp) { |
| return linalg::SplitReductionOptions{int64_t(getSplitFactor()), |
| unsigned(getInsertSplitDimension()), |
| bool(getInnerParallel())}; |
| }; |
| rewriter.setInsertionPoint(target); |
| FailureOr<SplitReductionResult> splitResult = |
| (getUseScalingAlgorithm()) |
| ? splitReductionByScaling(rewriter, target, splitFn, getUseAlloc()) |
| : splitReduction(rewriter, target, splitFn, getUseAlloc()); |
| if (failed(splitResult)) |
| return emitDefaultDefiniteFailure(target); |
| |
| results.push_back(splitResult->initOrAlloc); |
| results.push_back(splitResult->fillOp); |
| results.push_back(splitResult->splitLinalgOp); |
| results.push_back(splitResult->resultCombiningLinalgOp); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TileReductionUsingForOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::TileReductionUsingForOp::build( |
| OpBuilder &builder, OperationState &result, Value target, |
| ArrayRef<int64_t> staticTileSizes) { |
| // Call the default builder. |
| // This is future-proof re mixed static-dynamic and setting up the proper |
| // operands segment sizes attributes for multiple variadic operands. |
| // In the absence of this, horrible bugs ensue. |
| // TODO: support mixed static-dynamic (see TileUsingForallOp). |
| MLIRContext *ctx = builder.getContext(); |
| auto opTy = transform::AnyOpType::get(ctx); |
| auto staticTileSizesAttr = builder.getI64ArrayAttr(staticTileSizes); |
| build(builder, result, |
| /*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy}, |
| /*target=*/target, |
| /*reduction_dims=*/nullptr, |
| /*tile_sizes=*/staticTileSizesAttr); |
| } |
| |
| DiagnosedSilenceableFailure transform::TileReductionUsingForOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| |
| auto partialReductionOp = dyn_cast<PartialReductionOpInterface>(target); |
| if (!partialReductionOp) { |
| return emitSilenceableFailure( |
| target->getLoc(), |
| "Operation should implement PartialReductionOpInterface"); |
| } |
| |
| SmallVector<unsigned> reductionDims = |
| extractFromIntegerArrayAttr<unsigned>(getReductionDims()); |
| if (reductionDims.empty()) { |
| for (auto [idx, iteratorType] : |
| llvm::enumerate(partialReductionOp.getLoopIteratorTypes())) { |
| if (iteratorType == utils::IteratorType::reduction) |
| reductionDims.push_back(idx); |
| } |
| } |
| |
| scf::SCFTilingOptions options; |
| options.setLoopType(scf::SCFTilingOptions::LoopType::ForOp); |
| options.setReductionTilingStrategy( |
| ReductionTilingStrategy::PartialReductionOuterReduction); |
| options.setTileSizes(getAsOpFoldResult(getTileSizesAttr())); |
| options.setReductionDims(reductionDims); |
| FailureOr<scf::SCFTilingResult> result = |
| scf::tileUsingSCF(rewriter, partialReductionOp, options); |
| |
| if (failed(result)) { |
| return emitSilenceableFailure(getLoc(), |
| "failed to tile using partial reduction"); |
| } |
| rewriter.replaceOp(target, result->replacements); |
| for (Value initValue : result->initialValues) |
| results.push_back(initValue.getDefiningOp()); |
| for (auto parallelTiledOp : result->tiledOps) |
| results.push_back(parallelTiledOp); |
| for (auto mergeOp : result->mergeOps) |
| results.push_back(mergeOp); |
| results.push_back(result->loops.front()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TileReductionUsingForallOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::TileReductionUsingForallOp::build( |
| OpBuilder &builder, OperationState &result, Value target, |
| ArrayRef<int64_t> staticNumThreads, ArrayRef<int64_t> staticTileSizes, |
| ArrayAttr mapping) { |
| // Call the default builder. |
| // This is future-proof re mixed static-dynamic and setting up the proper |
| // operands segment sizes attributes for multiple variadic operands. |
| // In the absence of this, horrible bugs ensue. |
| // TODO: support mixed static-dynamic (see TileUsingForallOp). |
| MLIRContext *ctx = builder.getContext(); |
| auto opTy = transform::AnyOpType::get(ctx); |
| auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads); |
| auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
| build(builder, result, |
| /*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy}, |
| /*target=*/target, |
| /*reduction_dims=*/{}, |
| /*num_threads=*/staticNumThreadsAttr, |
| /*tile_sizes=*/staticTileSizesAttr, |
| /*mapping=*/mapping); |
| } |
| |
| DiagnosedSilenceableFailure transform::TileReductionUsingForallOp::applyToOne( |
| transform::TransformRewriter &rewriter, LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| SmallVector<OpFoldResult> numThreads = |
| getAsOpFoldResult(rewriter.getI64ArrayAttr(getNumThreads())); |
| SmallVector<OpFoldResult> tileSizes = |
| getAsOpFoldResult(rewriter.getI64ArrayAttr(getTileSizes())); |
| |
| scf::SCFTilingOptions options; |
| options.setLoopType(scf::SCFTilingOptions::LoopType::ForallOp); |
| options.setReductionTilingStrategy( |
| ReductionTilingStrategy::PartialReductionOuterParallel); |
| if (!getNumThreads().empty()) { |
| options.setNumThreads(numThreads); |
| } else { |
| options.setTileSizes(tileSizes); |
| } |
| if (auto mapping = getMapping()) { |
| options.setMapping(mapping.value().getValue()); |
| } |
| SmallVector<unsigned> reductionDims = |
| extractFromIntegerArrayAttr<unsigned>(getReductionDims()); |
| if (reductionDims.empty()) { |
| for (auto [idx, iteratorType] : |
| llvm::enumerate(target.getIteratorTypesArray())) { |
| if (iteratorType == utils::IteratorType::reduction) |
| reductionDims.push_back(idx); |
| } |
| } |
| options.setReductionDims(reductionDims); |
| FailureOr<scf::SCFTilingResult> result = scf::tileUsingSCF( |
| rewriter, cast<TilingInterface>(target.getOperation()), options); |
| |
| if (failed(result)) { |
| auto diag = emitSilenceableError() << "could not tile reduction"; |
| return diag; |
| } |
| rewriter.replaceOp(target, result->replacements); |
| |
| for (Value initValue : result->initialValues) |
| results.push_back(initValue.getDefiningOp()); |
| for (auto parallelTiledOp : result->tiledOps) |
| results.push_back(parallelTiledOp); |
| for (auto mergeOp : result->mergeOps) |
| results.push_back(mergeOp); |
| results.push_back(result->loops.front()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ContinuousTileSizesOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::ContinuousTileSizesOp::apply(transform::TransformRewriter &rewriter, |
| TransformResults &transformResults, |
| TransformState &state) { |
| |
| SmallVector<Operation *> targetOps = |
| llvm::to_vector(state.getPayloadOps(getTarget())); |
| |
| if (!llvm::hasSingleElement(targetOps)) { |
| return mlir::emitSilenceableFailure(getLoc()) |
| << "requires exactly one target (got " << llvm::range_size(targetOps) |
| << ")"; |
| } |
| |
| Operation *target = *targetOps.begin(); |
| auto linalgOp = dyn_cast<LinalgOp>(target); |
| auto tileableOp = dyn_cast<TilingInterface>(target); |
| |
| if (!linalgOp) |
| return emitDefiniteFailure() << "expected Linalg Op"; |
| |
| OpBuilder builder(linalgOp.getContext()); |
| |
| if (isa<TransformParamTypeInterface>(getChunkSizes().getType())) { |
| if (linalgOp.hasDynamicShape()) { |
| auto diag = emitSilenceableError() |
| << "cannot compute parametric tile sizes for dynamically " |
| "shaped payload op"; |
| diag.attachNote(linalgOp->getLoc()) << "payload op"; |
| return diag; |
| } |
| |
| FailureOr<StaticContinuousTileSizeSpecification> spec = |
| computeStaticContinuousTileSizes(linalgOp, getDimension(), |
| getTargetSize()); |
| if (failed(spec)) { |
| return emitSilenceableError() |
| << "failed to compute multi-size tiling sizes"; |
| } |
| |
| SmallVector<int64_t> chunkSizes; |
| |
| for (auto &&[tileSize, tripCount] : |
| llvm::zip_equal(spec->tileSizes, spec->tripCounts)) |
| chunkSizes.push_back(tileSize * tripCount); |
| |
| auto getI64AttrsFromI64 = [&](ArrayRef<int64_t> values) { |
| return llvm::map_to_vector(values, [&](int64_t value) -> Attribute { |
| return builder.getI64IntegerAttr(value); |
| }); |
| }; |
| transformResults.setParams(cast<OpResult>(getTileSizes()), |
| getI64AttrsFromI64(spec->tileSizes)); |
| transformResults.setParams(cast<OpResult>(getChunkSizes()), |
| getI64AttrsFromI64(chunkSizes)); |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| builder.setInsertionPoint(linalgOp); |
| |
| OpFoldResult targetSize = builder.getIndexAttr(getTargetSize()); |
| unsigned dimension = getDimension(); |
| |
| FailureOr<ContinuousTileSizeSpecification> spec = computeContinuousTileSizes( |
| builder, tileableOp, dimension, targetSize, true); |
| if (failed(spec)) { |
| return emitSilenceableError() << "could not generate tile size computation"; |
| } |
| |
| AffineExpr s0 = builder.getAffineSymbolExpr(0); |
| AffineExpr s1 = builder.getAffineSymbolExpr(1); |
| auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value { |
| return affine::makeComposedAffineApply(builder, linalgOp->getLoc(), expr, |
| ofrs); |
| }; |
| |
| SmallVector<Value> chunkSizes; |
| Value splitPoint; |
| for (auto &&[tileSize, tripCount] : |
| llvm::zip_equal(spec->tileSizes, spec->tripCounts)) { |
| splitPoint = apply(s0 * s1, {tileSize, tripCount}); |
| chunkSizes.push_back(splitPoint); |
| } |
| |
| auto getDefiningOps = [&](ArrayRef<Value> values) { |
| return llvm::map_to_vector(values, [&](Value value) -> Operation * { |
| return value.getDefiningOp(); |
| }); |
| }; |
| |
| transformResults.set(cast<OpResult>(getTileSizes()), |
| getDefiningOps(spec->tileSizes)); |
| transformResults.set(cast<OpResult>(getChunkSizes()), |
| getDefiningOps(chunkSizes)); |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| LogicalResult transform::ContinuousTileSizesOp::verify() { |
| |
| if (getTileSizes().getType() != getChunkSizes().getType()) { |
| return emitOpError() << "expects all results type to be the same"; |
| } |
| |
| return success(); |
| } |
| |
| void transform::ContinuousTileSizesOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| if (isa<TransformParamTypeInterface>(getTileSizes().getType())) |
| onlyReadsPayload(effects); |
| else |
| modifiesPayload(effects); |
| onlyReadsHandle(getTargetMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| } |
| |
| static void printContinuousTileSizeTypes(OpAsmPrinter &printer, Operation *op, |
| Type targetType, Type tile_sizes, |
| Type) { |
| printer.printFunctionalType(TypeRange{targetType}, TypeRange{tile_sizes}); |
| } |
| |
| static ParseResult parseContinuousTileSizeTypes(OpAsmParser &parser, |
| Type &targetType, |
| Type &tileSizesType, |
| Type &chunkSizesType) { |
| FunctionType funcType; |
| llvm::SMLoc typeLoc = parser.getCurrentLocation(); |
| if (failed(parser.parseType<FunctionType>(funcType))) |
| return failure(); |
| |
| if (funcType.getNumInputs() != 1 || funcType.getNumResults() != 1) { |
| parser.emitError(typeLoc) << "expects a trailing functional type with one " |
| "argument and one result"; |
| } |
| targetType = funcType.getInput(0); |
| tileSizesType = chunkSizesType = funcType.getResult(0); |
| |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TileUsingForOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::TileUsingForOp::build( |
| OpBuilder &builder, OperationState &result, TypeRange loopTypes, |
| Value target, ArrayRef<int64_t> staticTileSizes, |
| ArrayRef<int64_t> interchange, |
| std::optional<ArrayRef<bool>> scalableSizes) { |
| return build(builder, result, loopTypes, |
| /*target=*/target, |
| /*mixedTileSizes=*/ |
| getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)), |
| interchange, scalableSizes); |
| } |
| |
| void transform::TileUsingForOp::build( |
| OpBuilder &builder, OperationState &result, Value target, |
| ArrayRef<int64_t> staticTileSizes, ArrayRef<int64_t> interchange, |
| std::optional<ArrayRef<bool>> scalableSizes) { |
| build(builder, result, target, |
| getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)), |
| interchange, scalableSizes); |
| } |
| |
| void transform::TileUsingForOp::build( |
| OpBuilder &builder, OperationState &result, Value target, |
| ArrayRef<OpFoldResult> mixedTileSizes, ArrayRef<int64_t> interchange, |
| std::optional<ArrayRef<bool>> scalableSizes) { |
| // Loop types are automaticaly splat by the callee, setting up one is |
| // enough. |
| SmallVector<Type> loopTypes(1, builder.getType<transform::AnyOpType>()); |
| build(builder, result, loopTypes, target, mixedTileSizes, interchange, |
| scalableSizes); |
| } |
| |
| void transform::TileUsingForOp::build( |
| OpBuilder &builder, OperationState &result, TypeRange loopTypes, |
| Value target, ArrayRef<OpFoldResult> mixedTileSizes, |
| ArrayRef<int64_t> interchange, |
| std::optional<ArrayRef<bool>> scalableSizes) { |
| SmallVector<int64_t> staticTileSizes; |
| SmallVector<Value> dynamicTileSizes; |
| dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes); |
| // Call the default builder which sets up the proper operands segment sizes |
| // attributes for multiple variadic operands. In the absence of this, |
| // horrible bugs ensue. |
| auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
| unsigned numExpectedLoops = |
| staticTileSizes.size() - llvm::count(staticTileSizes, 0); |
| SmallVector<Type> resultTypes; |
| resultTypes.reserve(numExpectedLoops); |
| assert((loopTypes.size() == 1 || loopTypes.size() == numExpectedLoops) && |
| "expected one loop type or as many as loops"); |
| if (loopTypes.size() == 1) |
| resultTypes.append(numExpectedLoops, loopTypes[0]); |
| else |
| llvm::append_range(resultTypes, loopTypes); |
| SmallVector<bool> expandedScalableSizes(mixedTileSizes.size(), false); |
| if (scalableSizes.has_value()) |
| expandedScalableSizes.assign(scalableSizes->begin(), scalableSizes->end()); |
| build(builder, result, /*tiled_linalg_op=*/target.getType(), |
| /*loops=*/resultTypes, |
| /*target=*/target, |
| /*dynamic_sizes=*/dynamicTileSizes, |
| /*static_sizes=*/staticTileSizesAttr, |
| /*interchange=*/builder.getDenseI64ArrayAttr(interchange), |
| /*scalable_sizes=*/expandedScalableSizes); |
| } |
| |
| LogicalResult transform::TileUsingForOp::verify() { |
| if (getMixedSizes().size() != getScalableSizes().size()) |
| return emitOpError("expected same number of sizes (") |
| << getMixedSizes().size() << ") and scalable sizes (" |
| << getScalableSizes().size() << ")"; |
| ArrayRef<int64_t> staticSizes = getStaticSizes(); |
| unsigned numExpectedLoops = staticSizes.size() - llvm::count(staticSizes, 0); |
| if (getLoops().size() != numExpectedLoops) |
| return emitOpError("expected number of loops to tile (") |
| << numExpectedLoops << ") to match number of `loops` results (" |
| << getLoops().size() << ")"; |
| return success(); |
| } |
| |
| DiagnosedSilenceableFailure |
| transform::TileUsingForOp::apply(transform::TransformRewriter &rewriter, |
| TransformResults &transformResults, |
| TransformState &state) { |
| ArrayRef<int64_t> tileSizes = getStaticSizes(); |
| |
| SmallVector<Operation *> targets = |
| llvm::to_vector(state.getPayloadOps(getTarget())); |
| SmallVector<SmallVector<Operation *>> dynamicSizeProducers; |
| SmallVector<SmallVector<int64_t>> paramSizes; |
| dynamicSizeProducers.reserve(getDynamicSizes().size()); |
| paramSizes.reserve(getDynamicSizes().size()); |
| for (Value transformValue : getDynamicSizes()) { |
| if (isa<ParamType>(transformValue.getType())) { |
| dynamicSizeProducers.push_back({}); |
| ArrayRef<Attribute> params = state.getParams(transformValue); |
| paramSizes.push_back( |
| llvm::to_vector(llvm::map_range(params, [](Attribute attr) { |
| return cast<IntegerAttr>(attr).getValue().getSExtValue(); |
| }))); |
| |
| if (paramSizes.back().size() != targets.size()) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "expected as many parameter values (" |
| << dynamicSizeProducers.back().size() << ") as target ops (" |
| << targets.size() << ")"; |
| diag.attachNote(transformValue.getLoc()) << "for this parameter"; |
| return diag; |
| } |
| |
| continue; |
| } |
| paramSizes.push_back({}); |
| dynamicSizeProducers.push_back( |
| llvm::to_vector(state.getPayloadOps(transformValue))); |
| |
| if (dynamicSizeProducers.back().size() != targets.size()) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "expected as many dynamic size-producing operations (" |
| << dynamicSizeProducers.back().size() << ") as target ops (" |
| << targets.size() << ")"; |
| diag.attachNote(transformValue.getLoc()) << "for this handle"; |
| return diag; |
| } |
| |
| for (Operation *op : dynamicSizeProducers.back()) { |
| if (op->getNumResults() == 1 && |
| isa<IndexType>(op->getResult(0).getType())) { |
| continue; |
| } |
| |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() << "expected sizes to be produced by ops " |
| "with a single index-type result"; |
| diag.attachNote(op->getLoc()) << "size producer op"; |
| diag.attachNote(transformValue.getLoc()) << "for this handle"; |
| return diag; |
| } |
| } |
| |
| SmallVector<Operation *> tiled; |
| SmallVector<SmallVector<Operation *, 4>, 4> loops; |
| loops.resize(getLoops().size()); |
| auto scalableSizes = getScalableSizes(); |
| for (auto [i, op] : llvm::enumerate(targets)) { |
| auto tilingInterface = dyn_cast<TilingInterface>(op); |
| if (!tilingInterface) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "only ops implementing TilingInterface are supported"; |
| diag.attachNote(op->getLoc()) << "target op"; |
| return diag; |
| } |
| if (tileSizes.size() > tilingInterface.getLoopIteratorTypes().size()) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "too many tiles provided, expected at most " |
| << tilingInterface.getLoopIteratorTypes().size() << " found " |
| << tileSizes.size(); |
| diag.attachNote(op->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| scf::SCFTilingOptions tilingOptions; |
| if (tileSizes.empty()) { |
| tilingOptions.setTileSizeComputationFunction( |
| [](OpBuilder &, Operation *) -> SmallVector<OpFoldResult> { |
| return {}; |
| }); |
| } else { |
| tilingOptions.setTileSizeComputationFunction([&, index = i](OpBuilder &b, |
| Operation *) { |
| SmallVector<OpFoldResult> sizes; |
| sizes.reserve(tileSizes.size()); |
| unsigned dynamicIdx = 0; |
| |
| for (auto [ofrIdx, ofr] : llvm::enumerate(getMixedSizes())) { |
| if (auto attr = llvm::dyn_cast_if_present<Attribute>(ofr)) { |
| if (scalableSizes[ofrIdx]) { |
| auto val = b.create<arith::ConstantIndexOp>( |
| getLoc(), cast<IntegerAttr>(attr).getInt()); |
| Value vscale = |
| b.create<vector::VectorScaleOp>(getLoc(), b.getIndexType()); |
| sizes.push_back( |
| b.create<arith::MulIOp>(getLoc(), val, vscale).getResult()); |
| } else { |
| sizes.push_back(attr); |
| } |
| continue; |
| } |
| ArrayRef<Operation *> dynamicSizes = dynamicSizeProducers[dynamicIdx]; |
| ArrayRef<int64_t> params = paramSizes[dynamicIdx]; |
| ++dynamicIdx; |
| assert((dynamicSizes.empty() ^ params.empty()) && |
| "expected either dynamic sizes or parameters"); |
| if (!params.empty()) { |
| sizes.push_back(b.getIndexAttr(params[index])); |
| } else { |
| sizes.push_back(dynamicSizes[index]->getResult(0)); |
| } |
| } |
| return sizes; |
| }); |
| } |
| |
| tilingOptions.setInterchange(getInterchange()); |
| FailureOr<scf::SCFTilingResult> maybeTilingResult = |
| tileUsingSCF(rewriter, tilingInterface, tilingOptions); |
| if (failed(maybeTilingResult)) |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| |
| rewriter.replaceOp(op, maybeTilingResult->replacements); |
| |
| tiled.append(maybeTilingResult->tiledOps); |
| for (const auto &en2 : llvm::enumerate(maybeTilingResult->loops)) |
| loops[en2.index()].push_back(en2.value()); |
| } |
| |
| transformResults.set(cast<OpResult>(getTiledLinalgOp()), tiled); |
| for (const auto &en : llvm::enumerate(loops)) |
| transformResults.set(cast<OpResult>(getLoops()[en.index()]), en.value()); |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| SmallVector<OpFoldResult> transform::TileUsingForOp::getMixedSizes() { |
| ValueRange dynamic = getDynamicSizes(); |
| ArrayRef<int64_t> tileSizes = getStaticSizes(); |
| SmallVector<OpFoldResult> results; |
| results.reserve(tileSizes.size()); |
| unsigned dynamicPos = 0; |
| Builder builder(getContext()); |
| for (int64_t size : tileSizes) { |
| if (size == ShapedType::kDynamic) { |
| results.push_back(dynamic[dynamicPos++]); |
| } else { |
| results.push_back(builder.getIndexAttr(size)); |
| } |
| } |
| return results; |
| } |
| |
| void transform::TileUsingForOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| onlyReadsHandle(getDynamicSizesMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TileUsingForallOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::TileUsingForallOp::build(OpBuilder &builder, |
| OperationState &result, Value target, |
| ArrayRef<int64_t> staticTileSizes, |
| transform::TileSizesSpec, |
| ArrayAttr mapping) { |
| return build(builder, result, |
| /*target=*/target, |
| /*mixedTileSizes=*/ |
| getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)), |
| /*_=*/TileSizesSpec(), |
| /*mapping=*/mapping); |
| } |
| |
| void transform::TileUsingForallOp::build(OpBuilder &builder, |
| OperationState &result, Value target, |
| ArrayRef<OpFoldResult> mixedTileSizes, |
| transform::TileSizesSpec, |
| ArrayAttr mapping) { |
| SmallVector<int64_t> staticTileSizes; |
| SmallVector<Value> dynamicTileSizes; |
| dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes); |
| // Call the default builder which sets up the proper operands segment sizes |
| // attributes for multiple variadic operands. In the absence of this, |
| // horrible bugs ensue. |
| MLIRContext *ctx = builder.getContext(); |
| auto operationType = transform::AnyOpType::get(ctx); |
| auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
| build(builder, result, |
| /*resultTypes=*/TypeRange{operationType, operationType}, |
| /*target=*/target, |
| /*num_threads=*/ValueRange{}, |
| /*tile_sizes=*/dynamicTileSizes, |
| /*packed_num_threads=*/Value(), |
| /*packed_tile_sizes=*/Value(), |
| /*static_num_threads=*/builder.getDenseI64ArrayAttr({}), |
| /*static_tile_sizes=*/staticTileSizesAttr, |
| /*mapping=*/mapping); |
| } |
| |
| void transform::TileUsingForallOp::build(OpBuilder &builder, |
| OperationState &result, Value target, |
| ArrayRef<int64_t> staticNumThreads, |
| transform::NumThreadsSpec, |
| ArrayAttr mapping) { |
| return build(builder, result, target, |
| getAsOpFoldResult(builder.getI64ArrayAttr(staticNumThreads)), |
| NumThreadsSpec(), mapping); |
| } |
| |
| void transform::TileUsingForallOp::build(OpBuilder &builder, |
| OperationState &result, Value target, |
| ArrayRef<OpFoldResult> mixedNumThreads, |
| transform::NumThreadsSpec, |
| ArrayAttr mapping) { |
| SmallVector<int64_t> staticNumThreads; |
| SmallVector<Value> dynamicNumThreads; |
| dispatchIndexOpFoldResults(mixedNumThreads, dynamicNumThreads, |
| staticNumThreads); |
| // Call the default builder which sets up the proper operands segment sizes |
| // attributes for multiple variadic operands. In the absence of this, |
| // horrible bugs ensue. |
| MLIRContext *ctx = builder.getContext(); |
| auto operationType = transform::AnyOpType::get(ctx); |
| auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads); |
| build(builder, result, |
| /*resultTypes=*/TypeRange{operationType, operationType}, |
| /*target=*/target, |
| /*num_threads=*/dynamicNumThreads, |
| /*tile_sizes=*/ValueRange{}, |
| /*packed_num_threads=*/Value(), |
| /*packed_tile_sizes=*/Value(), |
| /*static_num_threads=*/staticNumThreadsAttr, |
| /*static_tile_sizes=*/builder.getDenseI64ArrayAttr({}), |
| /*mapping=*/mapping); |
| } |
| |
| /// Given `lbs`, `ubs` and `steps` of loops, return (for each loop), the |
| /// normalized upper bound. |
| static SmallVector<OpFoldResult> |
| normalizeUpperBounds(RewriterBase &rewriter, Location loc, |
| ArrayRef<OpFoldResult> lbs, ArrayRef<OpFoldResult> ubs, |
| ArrayRef<OpFoldResult> steps) { |
| AffineExpr s0, s1, s2; |
| bindSymbols(rewriter.getContext(), s0, s1, s2); |
| AffineExpr normalizedUbExpr = (s1 - s0).ceilDiv(s2); |
| SmallVector<OpFoldResult> normalizedUbs; |
| for (auto [lb, ub, step] : llvm::zip_equal(lbs, ubs, steps)) { |
| OpFoldResult normalizedUb = affine::makeComposedFoldedAffineApply( |
| rewriter, loc, normalizedUbExpr, {lb, ub, step}); |
| normalizedUbs.push_back(normalizedUb); |
| } |
| return normalizedUbs; |
| } |
| |
| /// When a loop is normalized, the uses of the induction variable within the |
| /// loop need to replaced with `original_lb + old_iv * original_step`. |
| static SmallVector<Value> denormalizeIndVar(RewriterBase &rewriter, |
| Location loc, ValueRange ivs, |
| ArrayRef<OpFoldResult> lbs, |
| ArrayRef<OpFoldResult> steps) { |
| AffineExpr s0, s1; |
| AffineExpr d0; |
| bindSymbols(rewriter.getContext(), s0, s1); |
| bindDims(rewriter.getContext(), d0); |
| AffineExpr denormExpr = s0 + d0 * s1; |
| SmallVector<Value> denormalizedIvs; |
| |
| for (auto [iv, lb, step] : llvm::zip_equal(ivs, lbs, steps)) { |
| OpFoldResult denormValue = affine::makeComposedFoldedAffineApply( |
| rewriter, loc, denormExpr, ArrayRef<OpFoldResult>{iv, lb, step}); |
| denormalizedIvs.push_back( |
| getValueOrCreateConstantIndexOp(rewriter, loc, denormValue)); |
| } |
| return denormalizedIvs; |
| } |
| |
| /// Given a `scf.forall` loop return a loop op with the loop bounds |
| /// normalized. |
| /// TODO: Replace this with a general utility to normalize `scf.forall`. |
| /// At the time of writing, this wasnt done since adding this to `scf` |
| /// dialect would disallow using of `affine.apply` operations due |
| /// to cyclic dependencies. To avoid churn in lit tests |
| /// with the change this was added with, defer that to a follow up. |
| static scf::ForallOp normalizeForallLoopOp(RewriterBase &rewriter, |
| scf::ForallOp loop) { |
| SmallVector<OpFoldResult> lbs = loop.getMixedLowerBound(); |
| SmallVector<OpFoldResult> ubs = loop.getMixedUpperBound(); |
| SmallVector<OpFoldResult> steps = loop.getMixedStep(); |
| |
| if (llvm::all_of(lbs, isZeroInteger) && llvm::all_of(steps, isOneInteger)) { |
| return loop; |
| } |
| |
| Location loc = loop.getLoc(); |
| SmallVector<OpFoldResult> normalizedUbs = |
| normalizeUpperBounds(rewriter, loc, lbs, ubs, steps); |
| SmallVector<OpFoldResult> normalizedLbs(normalizedUbs.size(), |
| rewriter.getIndexAttr(0)); |
| SmallVector<OpFoldResult> normalizedSteps(normalizedUbs.size(), |
| rewriter.getIndexAttr(1)); |
| |
| auto normalizedForallOp = rewriter.create<scf::ForallOp>( |
| loc, normalizedLbs, normalizedUbs, normalizedSteps, loop.getOutputs(), |
| loop.getMapping(), [](OpBuilder &, Location, ValueRange) {}); |
| |
| auto normalizedLoopIvs = normalizedForallOp.getInductionVars(); |
| OpBuilder::InsertionGuard g(rewriter); |
| Block *normalizedLoopBlock = normalizedForallOp.getBody(); |
| rewriter.setInsertionPointToStart(normalizedLoopBlock); |
| |
| SmallVector<Value> argValues = |
| denormalizeIndVar(rewriter, loc, normalizedLoopIvs, lbs, steps); |
| argValues.append(normalizedForallOp.getRegionIterArgs().begin(), |
| normalizedForallOp.getRegionIterArgs().end()); |
| Block *origLoopBlock = loop.getBody(); |
| rewriter.mergeBlocks(origLoopBlock, normalizedLoopBlock, argValues); |
| |
| rewriter.replaceOp(loop, normalizedForallOp); |
| return normalizedForallOp; |
| } |
| |
| DiagnosedSilenceableFailure transform::tileToForallOpImpl( |
| RewriterBase &rewriter, transform::TransformState &state, |
| TransformOpInterface transformOp, Operation *target, |
| ArrayRef<OpFoldResult> mixedNumThreads, |
| ArrayRef<OpFoldResult> mixedTileSizes, std::optional<ArrayAttr> mapping, |
| scf::SCFTilingResult &tilingResult) { |
| // Transform all targets one by one. |
| auto tileableOp = dyn_cast<TilingInterface>(target); |
| if (!tileableOp) { |
| DiagnosedSilenceableFailure diag = |
| transformOp.emitSilenceableError() |
| << "only TilingInterface ops are supported"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| rewriter.setInsertionPoint(tileableOp); |
| scf::SCFTilingOptions options; |
| options.setLoopType(scf::SCFTilingOptions::LoopType::ForallOp); |
| if (!mixedNumThreads.empty()) { |
| options.setNumThreads(mixedNumThreads); |
| } else { |
| options.setTileSizes(mixedTileSizes); |
| } |
| if (mapping) { |
| options.setMapping(mapping.value().getValue()); |
| } |
| FailureOr<scf::SCFTilingResult> maybeTilingResult = |
| scf::tileUsingSCF(rewriter, tileableOp, options); |
| |
| if (failed(maybeTilingResult)) |
| return transformOp.emitDefaultSilenceableFailure(tileableOp); |
| |
| rewriter.replaceOp(tileableOp, maybeTilingResult->replacements); |
| |
| tilingResult = *maybeTilingResult; |
| |
| if (mixedNumThreads.empty()) { |
| auto generatedForallOp = cast<scf::ForallOp>(tilingResult.loops.front()); |
| OpBuilder::InsertionGuard g(rewriter); |
| rewriter.setInsertionPoint(generatedForallOp); |
| scf::ForallOp normalizedForallOp = |
| normalizeForallLoopOp(rewriter, generatedForallOp); |
| tilingResult.loops.front() = normalizedForallOp; |
| } |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| DiagnosedSilenceableFailure transform::TileUsingForallOp::apply( |
| transform::TransformRewriter &rewriter, |
| transform::TransformResults &transformResults, |
| transform::TransformState &state) { |
| auto transformOp = cast<TransformOpInterface>(getOperation()); |
| |
| // Result payload ops. |
| SmallVector<Operation *> tileOps; |
| SmallVector<Operation *> tiledOps; |
| |
| // Unpack handles. |
| SmallVector<OpFoldResult> mixedNumThreads; |
| DiagnosedSilenceableFailure status = |
| getPackedNumThreads() |
| ? unpackSingleIndexResultPayloadOperations( |
| state, transformOp, mixedNumThreads, getPackedNumThreads()) |
| : unpackSingleIndexResultPayloadOperations( |
| state, transformOp, mixedNumThreads, getMixedNumThreads()); |
| if (!status.succeeded()) |
| return status; |
| SmallVector<OpFoldResult> mixedTileSizes; |
| status = getPackedTileSizes() |
| ? unpackSingleIndexResultPayloadOperations( |
| state, transformOp, mixedTileSizes, getPackedTileSizes()) |
| : unpackSingleIndexResultPayloadOperations( |
| state, transformOp, mixedTileSizes, getMixedTileSizes()); |
| if (!status.succeeded()) |
| return status; |
| |
| for (Operation *target : state.getPayloadOps(getTarget())) { |
| scf::SCFTilingResult tilingResult; |
| DiagnosedSilenceableFailure diag = tileToForallOpImpl( |
| rewriter, state, transformOp, target, mixedNumThreads, mixedTileSizes, |
| getMapping(), tilingResult); |
| if (!diag.succeeded()) |
| return diag; |
| tileOps.push_back(tilingResult.loops.front()); |
| tiledOps.append(tilingResult.tiledOps); |
| } |
| |
| transformResults.set(cast<OpResult>(getForallOp()), tileOps); |
| transformResults.set(cast<OpResult>(getTiledOp()), tiledOps); |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::TileUsingForallOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| onlyReadsHandle(getTileSizesMutable(), effects); |
| onlyReadsHandle(getNumThreadsMutable(), effects); |
| onlyReadsHandle(getPackedNumThreadsMutable(), effects); |
| onlyReadsHandle(getPackedTileSizesMutable(), effects); |
| producesHandle(getOperation()->getOpResults(), effects); |
| modifiesPayload(effects); |
| } |
| |
| SmallVector<OpFoldResult> TileUsingForallOp::getMixedNumThreads() { |
| Builder b(getContext()); |
| return getMixedValues(getStaticNumThreads(), getNumThreads(), b); |
| } |
| |
| SmallVector<OpFoldResult> TileUsingForallOp::getMixedTileSizes() { |
| Builder b(getContext()); |
| return getMixedValues(getStaticTileSizes(), getTileSizes(), b); |
| } |
| |
| LogicalResult TileUsingForallOp::verify() { |
| int numThreadsSpec = static_cast<int>(!getMixedNumThreads().empty()) + |
| static_cast<int>(getPackedNumThreads() != Value()); |
| if (numThreadsSpec > 1) |
| return emitOpError( |
| "num_threads and packed_num_threads are mutually exclusive"); |
| int tileSizesSpec = static_cast<int>(!getMixedTileSizes().empty()) + |
| static_cast<int>(getPackedTileSizes() != Value()); |
| if (tileSizesSpec > 1) |
| return emitOpError( |
| "tile_sizes and packed_tile_sizes are mutually exclusive"); |
| if (numThreadsSpec == 0 && tileSizesSpec == 0) |
| return emitOpError("either (packed_)num_threads or (packed_)tile_sizes " |
| "must be specified"); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // VectorizeChildrenAndApplyPatternsOp |
| //===----------------------------------------------------------------------===// |
| |
| void transform::VectorizeChildrenAndApplyPatternsOp::build( |
| OpBuilder &builder, OperationState &result, Value target, |
| bool vectorizePadding, bool vectorizeExtract, bool flatten1DDepthwiseConv) { |
| result.addOperands(target); |
| if (vectorizePadding) { |
| result.addAttribute( |
| VectorizeChildrenAndApplyPatternsOp::getVectorizePaddingAttrName( |
| result.name), |
| builder.getUnitAttr()); |
| } |
| if (vectorizeExtract) { |
| result.addAttribute( |
| VectorizeChildrenAndApplyPatternsOp::getVectorizeNdExtractAttrName( |
| result.name), |
| builder.getUnitAttr()); |
| } |
| if (flatten1DDepthwiseConv) { |
| result.addAttribute( |
| VectorizeChildrenAndApplyPatternsOp::getFlatten_1dDepthwiseConvAttrName( |
| result.name), |
| builder.getUnitAttr()); |
| } |
| result.addTypes(transform::AnyOpType::get(builder.getContext())); |
| } |
| |
| namespace { |
| /// This is an helper only to call vectorize via a pattern inside of |
| /// VectorizeChildrenAndApplyPatternsOp::applyToOne. |
| struct VectorizationPattern : public RewritePattern { |
| explicit VectorizationPattern(MLIRContext *context, |
| bool vectorizeExtract = false, |
| bool flattenConv = false) |
| : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context), |
| vectorizeNDExtract(vectorizeExtract), |
| flatten1DDepthwiseConv(flattenConv) {} |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (!linalg::hasVectorizationImpl(op)) |
| return rewriter.notifyMatchFailure(op, |
| "Unsupported Op, cannot vectorize"); |
| FailureOr<VectorizationResult> vectorResults = |
| vectorize(rewriter, op, /*inputVectorSizes=*/{}, |
| /*inputScalableVecDims=*/{}, vectorizeNDExtract, |
| flatten1DDepthwiseConv); |
| if (failed(vectorResults)) |
| return failure(); |
| rewriter.replaceOp(op, vectorResults->replacements); |
| return success(); |
| } |
| |
| private: |
| /// Controls whether to vectorize `tensor.extract` when the input tensor is |
| /// rank >= 2. |
| bool vectorizeNDExtract = false; |
| /// Controls whether to "flatten" the channel dimension when vectorising 1D |
| /// depthwise convolutions. This should lead to bette vectorization for |
| /// tensors with a low number of channel dimensions. |
| bool flatten1DDepthwiseConv = false; |
| }; |
| } // namespace |
| |
| DiagnosedSilenceableFailure |
| transform::VectorizeChildrenAndApplyPatternsOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>()) { |
| auto diag = this->emitOpError("requires isolated-from-above targets"); |
| diag.attachNote(target->getLoc()) << "non-isolated target"; |
| return DiagnosedSilenceableFailure::definiteFailure(); |
| } |
| |
| MLIRContext *ctx = getContext(); |
| RewritePatternSet patterns(ctx); |
| patterns.add<VectorizationPattern>(ctx, getVectorizeNdExtract(), |
| getFlatten_1dDepthwiseConv()); |
| |
| if (!getDisableTransferPermutationMapLoweringPatterns()) |
| vector::populateVectorTransferPermutationMapLoweringPatterns(patterns); |
| |
| if (!getDisableMultiReductionToContractPatterns()) |
| vector::populateVectorReductionToContractPatterns(patterns); |
| |
| vector::populateSinkVectorOpsPatterns(patterns); |
| |
| patterns.add<linalg::LinalgCopyVTRForwardingPattern, |
| linalg::LinalgCopyVTWForwardingPattern>(ctx, |
| /*benefit=*/2); |
| vector::TransferReadOp::getCanonicalizationPatterns(patterns, ctx); |
| vector::TransferWriteOp::getCanonicalizationPatterns(patterns, ctx); |
| tensor::populateFoldTensorSubsetIntoVectorTransferPatterns(patterns); |
| |
| patterns.add<CopyVectorizationPattern>(ctx); |
| |
| if (getVectorizePadding()) { |
| linalg::populatePadOpVectorizationPatterns(patterns); |
| // This creates an alternative path for lowering tensor.pad - by |
| // decomposing it into e.g. linalg.fill. |
| linalg::populateDecomposePadPatterns(patterns); |
| } |
| vector::populateVectorStepLoweringPatterns(patterns); |
| |
| TrackingListener listener(state, *this); |
| if (failed( |
| applyPatternsGreedily(target, std::move(patterns), |
| GreedyRewriteConfig().setListener(&listener)))) |
| return emitDefaultDefiniteFailure(target); |
| |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // VectorizeOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::VectorizeOp::apply( |
| transform::TransformRewriter &rewriter, |
| mlir::transform::TransformResults &transformResults, |
| mlir::transform::TransformState &state) { |
| auto targets = state.getPayloadOps(getTarget()); |
| if (std::empty(targets)) |
| return DiagnosedSilenceableFailure::success(); |
| auto transformOp = cast<TransformOpInterface>(getOperation()); |
| SmallVector<int64_t> vectorSizes; |
| DiagnosedSilenceableFailure status = reifyMixedParamAndHandleResults( |
| state, transformOp, getMixedVectorSizes(), vectorSizes); |
| if (!status.succeeded()) |
| return status; |
| |
| // TODO: Check that the correct number of vectorSizes was provided. |
| for (Operation *target : targets) { |
| if (!linalg::hasVectorizationImpl(target)) { |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "Unsupported Op, cannot vectorize"; |
| } |
| FailureOr<VectorizationResult> vectorResults = |
| linalg::vectorize(rewriter, target, vectorSizes, getScalableSizes(), |
| getVectorizeNdExtract().value_or(false)); |
| if (failed(vectorResults)) { |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "Attempted to vectorize, but failed"; |
| } |
| rewriter.replaceOp(target, vectorResults->replacements); |
| } |
| |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| void transform::VectorizeOp::getEffects( |
| SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
| consumesHandle(getTargetMutable(), effects); |
| onlyReadsHandle(getVectorSizesMutable(), effects); |
| modifiesPayload(effects); |
| } |
| |
| SmallVector<OpFoldResult> VectorizeOp::getMixedVectorSizes() { |
| OpBuilder b(getContext()); |
| return getMixedValues(getStaticVectorSizes(), getVectorSizes(), b); |
| } |
| |
| LogicalResult transform::VectorizeOp::verify() { |
| if (getStaticVectorSizes().size() != getScalableSizes().size()) |
| return emitOpError("expected same number of vector sizes (") |
| << getStaticVectorSizes().size() << ") and scalable sizes (" |
| << getScalableSizes().size() << ")"; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // HoistRedundantVectorTransfersOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::HoistRedundantVectorTransfersOp::applyToOne( |
| transform::TransformRewriter &rewriter, func::FuncOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| // WARNING: This hoisting does not model parallelism and is generally |
| // incorrect when used on distributed loops with memref semantics! |
| // TODO: obsolete and should be retired. |
| linalg::hoistRedundantVectorTransfers(target, getVerifyNonZeroTrip()); |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // HoistRedundantVectorBroadcastsOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure |
| transform::HoistRedundantVectorBroadcastsOp::applyToOne( |
| transform::TransformRewriter &rewriter, mlir::Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| linalg::hoistRedundantVectorBroadcasts(rewriter, target); |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConvertConv2DToImg2ColOp. |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::ConvertConv2DToImg2ColOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| auto maybeTransformed = |
| TypeSwitch<Operation *, FailureOr<std::pair<Operation *, Operation *>>>( |
| target) |
| .Case([&](linalg::Conv2DNhwcHwcfOp op) { |
| return rewriteInIm2Col(rewriter, op); |
| }) |
| .Case([&](linalg::Conv2DNhwcFhwcOp op) { |
| return rewriteInIm2Col(rewriter, op); |
| }) |
| .Case([&](linalg::DepthwiseConv2DNhwcHwcOp op) { |
| return rewriteInIm2Col(rewriter, op); |
| }) |
| .Case([&](linalg::Conv2DNchwFchwOp op) { |
| return rewriteInIm2Col(rewriter, op); |
| }) |
| .Default([&](Operation *op) { |
| return rewriter.notifyMatchFailure(op, "not supported"); |
| }); |
| if (failed(maybeTransformed)) |
| return emitDefaultSilenceableFailure(target); |
| // Handle to the operation producing the img2col tensor. |
| results.push_back(maybeTransformed->first); |
| // Handle to the operation that replaces the original convolution. |
| results.push_back(maybeTransformed->second); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FlattenElementwiseLinalgOp. |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::FlattenElementwiseLinalgOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| if (!isElementwise(target)) |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "only elementwise flattening is supported"; |
| |
| // If rank <= 1, do nothing |
| if (target.getNumLoops() <= 1) { |
| results.push_back(target); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| // Attempt to flatten all dims to one. |
| ReassociationIndices reassociation(target.getNumLoops()); |
| std::iota(reassociation.begin(), reassociation.end(), 0); |
| auto maybeFlattened = |
| collapseOpIterationDims(target, reassociation, rewriter); |
| if (failed(maybeFlattened)) |
| return mlir::emitSilenceableFailure(target->getLoc()) |
| << "attempted to flatten, but failed"; |
| results.push_back(maybeFlattened->collapsedOp); |
| rewriter.replaceOp(target, maybeFlattened->results); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TransposeConv2DOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::TransposeConv2DOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| auto maybeTransformed = |
| TypeSwitch<Operation *, FailureOr<Operation *>>(target) |
| .Case([&](linalg::Conv2DNhwcFhwcOp op) { |
| return transposeConv2D(rewriter, op); |
| }) |
| .Case([&](linalg::Conv2DNhwcFhwcQOp op) { |
| return transposeConv2D(rewriter, op); |
| }) |
| .Default([&](Operation *op) { |
| return rewriter.notifyMatchFailure(op, "not supported"); |
| }); |
| if (failed(maybeTransformed)) |
| return emitDefaultSilenceableFailure(target); |
| // Handle to the new Conv2D operation with transposed filters |
| results.push_back(*maybeTransformed); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TransposeMatmulOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::TransposeMatmulOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| bool transposeLHS = getInputToTranspose() == TransposeMatmulInput::lhs; |
| auto maybeTransformed = |
| TypeSwitch<Operation *, FailureOr<Operation *>>(target) |
| .Case([&](linalg::MatmulOp op) { |
| return transposeMatmul(rewriter, op, transposeLHS); |
| }) |
| .Case([&](linalg::BatchMatmulOp op) { |
| return transposeBatchMatmul(rewriter, op, transposeLHS); |
| }) |
| .Default([&](Operation *op) { return failure(); }); |
| if (failed(maybeTransformed)) |
| return emitSilenceableFailure(target->getLoc()) << "not supported"; |
| // Handle to the new Matmul operation with transposed filters |
| results.push_back(*maybeTransformed); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InsertSliceToCopyOp |
| //===----------------------------------------------------------------------===// |
| template <typename OpTy> |
| DiagnosedSilenceableFailure doit(RewriterBase &rewriter, OpTy target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| static_assert(llvm::is_one_of<OpTy, tensor::InsertSliceOp, |
| tensor::ParallelInsertSliceOp>() && |
| "wrong op type"); |
| |
| if (auto copySource = |
| target.getSource().template getDefiningOp<linalg::CopyOp>()) { |
| results.push_back(copySource); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| // If we are inside an InParallel region, temporarily set the insertion point |
| // outside: only tensor.parallel_insert_slice ops are allowed in there. |
| if constexpr (std::is_same_v<OpTy, tensor::ParallelInsertSliceOp>) { |
| rewriter.setInsertionPoint( |
| target->template getParentOfType<scf::InParallelOp>()); |
| } |
| |
| Value extracted = rewriter.create<tensor::ExtractSliceOp>( |
| target.getLoc(), target.getDest(), target.getMixedOffsets(), |
| target.getMixedSizes(), target.getMixedStrides()); |
| Value copied = rewriter |
| .create<linalg::CopyOp>(target.getLoc(), |
| target.getSource(), extracted) |
| .getResult(0); |
| // Reset the insertion point. |
| rewriter.setInsertionPoint(target); |
| rewriter.replaceOpWithNewOp<OpTy>( |
| target, copied, target.getDest(), target.getMixedOffsets(), |
| target.getMixedSizes(), target.getMixedStrides()); |
| |
| results.push_back(copied.getDefiningOp()); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| DiagnosedSilenceableFailure transform::InsertSliceToCopyOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *targetOp, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| |
| rewriter.setInsertionPoint(targetOp); |
| if (auto target = dyn_cast<tensor::InsertSliceOp>(targetOp)) |
| return doit(rewriter, target, results, state); |
| if (auto target = dyn_cast<tensor::ParallelInsertSliceOp>(targetOp)) |
| return doit(rewriter, target, results, state); |
| |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "only InsertSliceOp and ParallelInsertSliceOp ops are supported"; |
| diag.attachNote(targetOp->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MapCopyToThreadsOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::MapCopyToThreadsOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| // Check if the op is supported. |
| if (!isa<linalg::CopyOp, tensor::PadOp>(target)) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "only linalg.copy and tensor.pad target ops are supported"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| assert(target->getNumResults() == 1 && "expected single result"); |
| auto resultShapedType = cast<ShapedType>(target->getResult(0).getType()); |
| if (!resultShapedType.hasStaticShape()) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "only statically sized ops of rank <= 3 are supported"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // Conservatively set the minimum viable desired bitwidth alignment. |
| int64_t desiredBitAlignment = getDesiredBitAlignment(); |
| int64_t eltBitwidth = |
| resultShapedType.getElementType().getIntOrFloatBitWidth(); |
| if (desiredBitAlignment % eltBitwidth != 0) { |
| desiredBitAlignment = eltBitwidth; |
| } |
| |
| gpu::CopyMappingInfo mapping( |
| /*ctx=*/getContext(), |
| /*totalNumThreads=*/getTotalNumThreads(), |
| /*alignment=*/desiredBitAlignment, |
| /*sizes=*/resultShapedType.getShape(), |
| /*favorPredication=*/false, |
| /*elementalBitwidth=*/ |
| resultShapedType.getElementType().getIntOrFloatBitWidth()); |
| if (mapping.status == gpu::CopyMappingInfo::Status::Invalid) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "too few threads to map copy op to threads on the most minor " |
| "dimension, given alignment and vector size constraints, try " |
| "smaller tile size of mapping to more threads"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| // OpBuilder only used to compute attributes. |
| OpBuilder b(getContext()); |
| scf::SCFTilingResult tilingResult; |
| DiagnosedSilenceableFailure diag = tileToForallOpImpl( |
| /*rewriter=*/rewriter, |
| /*state=*/state, |
| /*transformOp=*/*this, |
| /*target=*/target, |
| /*mixedNumThreads=*/getMixedValues(mapping.numThreads, {}, b), |
| /*mixedTileSizes=*/ArrayRef<OpFoldResult>{}, |
| /*mapping=*/b.getArrayAttr(mapping.threadMapping), |
| /*tilingResult=*/tilingResult); |
| if (!diag.succeeded()) |
| return diag; |
| |
| results.push_back(tilingResult.loops.front()); |
| for (auto op : tilingResult.tiledOps) |
| results.push_back(op); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // WinogradConv2DOp |
| //===----------------------------------------------------------------------===// |
| |
| DiagnosedSilenceableFailure transform::WinogradConv2DOp::applyToOne( |
| transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| FailureOr<Operation *> maybeTransformed = failure(); |
| bool supported = TypeSwitch<Operation *, bool>(target) |
| .Case([&](linalg::Conv2DNhwcFhwcOp op) { |
| maybeTransformed = |
| winogradConv2D(rewriter, op, getFmr()); |
| return true; |
| }) |
| .Default([&](Operation *op) { return false; }); |
| |
| if (!supported) { |
| return emitSilenceableError() |
| << "this operation is not supported to convert to Winograd Conv2D"; |
| } |
| |
| if (failed(maybeTransformed)) { |
| return emitSilenceableError() << "apply Winograd Conv2D failed"; |
| } |
| |
| results.push_back(*maybeTransformed); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| DiagnosedSilenceableFailure transform::DecomposeWinogradOp::applyToOne( |
| transform::TransformRewriter &rewriter, Operation *target, |
| transform::ApplyToEachResultList &results, |
| transform::TransformState &state) { |
| rewriter.setInsertionPoint(target); |
| FailureOr<Operation *> maybeTransformed = failure(); |
| bool supported = |
| TypeSwitch<Operation *, bool>(target) |
| .Case([&](linalg::WinogradFilterTransformOp op) { |
| maybeTransformed = decomposeWinogradFilterTransformOp(rewriter, op); |
| return true; |
| }) |
| .Case([&](linalg::WinogradInputTransformOp op) { |
| maybeTransformed = decomposeWinogradInputTransformOp(rewriter, op); |
| return true; |
| }) |
| .Case([&](linalg::WinogradOutputTransformOp op) { |
| maybeTransformed = decomposeWinogradOutputTransformOp(rewriter, op); |
| return true; |
| }) |
| .Default([&](Operation *op) { return false; }); |
| |
| if (!supported) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() |
| << "this operation is not supported to decompose into other operations"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| if (failed(maybeTransformed)) { |
| DiagnosedSilenceableFailure diag = |
| emitSilenceableError() << "decompose Winograd operations failed"; |
| diag.attachNote(target->getLoc()) << "target op"; |
| return diag; |
| } |
| |
| results.push_back(*maybeTransformed); |
| return DiagnosedSilenceableFailure::success(); |
| } |
| |
| #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOpsEnums.cpp.inc" |
| |
| #define GET_OP_CLASSES |
| #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp.inc" |