|  | //===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file computes an optimal sequence of instructions for doing all shuffles | 
|  | // of two 4-element vectors.  With a release build and when configured to emit | 
|  | // an altivec instruction table, this takes about 30s to run on a 2.7Ghz | 
|  | // PowerPC G5. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include <cassert> | 
|  | #include <cstdlib> | 
|  | #include <iomanip> | 
|  | #include <iostream> | 
|  | #include <vector> | 
|  |  | 
|  | #define GENERATE_NEON | 
|  | #define GENERATE_NEON_INS | 
|  |  | 
|  | struct Operator; | 
|  |  | 
|  | // Masks are 4-nibble hex numbers.  Values 0-7 in any nibble means that it takes | 
|  | // an element from that value of the input vectors.  A value of 8 means the | 
|  | // entry is undefined. | 
|  |  | 
|  | // Mask manipulation functions. | 
|  | static inline unsigned short MakeMask(unsigned V0, unsigned V1, | 
|  | unsigned V2, unsigned V3) { | 
|  | return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4)); | 
|  | } | 
|  |  | 
|  | /// getMaskElt - Return element N of the specified mask. | 
|  | static unsigned getMaskElt(unsigned Mask, unsigned Elt) { | 
|  | return (Mask >> ((3-Elt)*4)) & 0xF; | 
|  | } | 
|  |  | 
|  | static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) { | 
|  | unsigned FieldShift = ((3-Elt)*4); | 
|  | return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift); | 
|  | } | 
|  |  | 
|  | // Reject elements where the values are 9-15. | 
|  | static bool isValidMask(unsigned short Mask) { | 
|  | unsigned short UndefBits = Mask & 0x8888; | 
|  | return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0; | 
|  | } | 
|  |  | 
|  | /// hasUndefElements - Return true if any of the elements in the mask are undefs | 
|  | /// | 
|  | static bool hasUndefElements(unsigned short Mask) { | 
|  | return (Mask & 0x8888) != 0; | 
|  | } | 
|  |  | 
|  | /// isOnlyLHSMask - Return true if this mask only refers to its LHS, not | 
|  | /// including undef values.. | 
|  | static bool isOnlyLHSMask(unsigned short Mask) { | 
|  | return (Mask & 0x4444) == 0; | 
|  | } | 
|  |  | 
|  | /// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to | 
|  | /// refer to the LHS only (for when one argument value is passed into the same | 
|  | /// function twice). | 
|  | #if 0 | 
|  | static unsigned short getLHSOnlyMask(unsigned short Mask) { | 
|  | return Mask & 0xBBBB;  // Keep only LHS and Undefs. | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4 | 
|  | /// bits) into a compressed 13-bit mask, where each elt is multiplied by 9. | 
|  | static unsigned getCompressedMask(unsigned short Mask) { | 
|  | return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 + | 
|  | getMaskElt(Mask, 2)*9     + getMaskElt(Mask, 3); | 
|  | } | 
|  |  | 
|  | static void PrintMask(unsigned i, std::ostream &OS) { | 
|  | OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0))) | 
|  | << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1))) | 
|  | << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2))) | 
|  | << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3))) | 
|  | << ">"; | 
|  | } | 
|  |  | 
|  | /// ShuffleVal - This represents a shufflevector operation. | 
|  | struct ShuffleVal { | 
|  | Operator *Op;   // The Operation used to generate this value. | 
|  | unsigned Cost;  // Number of instrs used to generate this value. | 
|  | unsigned short Arg0, Arg1;  // Input operands for this value. | 
|  |  | 
|  | ShuffleVal() : Cost(1000000) {} | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// ShufTab - This is the actual shuffle table that we are trying to generate. | 
|  | /// | 
|  | static ShuffleVal ShufTab[65536]; | 
|  |  | 
|  | /// TheOperators - All of the operators that this target supports. | 
|  | static std::vector<Operator*> TheOperators; | 
|  |  | 
|  | /// Operator - This is a vector operation that is available for use. | 
|  | struct Operator { | 
|  | const char *Name; | 
|  | unsigned short ShuffleMask; | 
|  | unsigned short OpNum; | 
|  | unsigned Cost; | 
|  |  | 
|  | Operator(unsigned short shufflemask, const char *name, unsigned opnum, | 
|  | unsigned cost = 1) | 
|  | :  Name(name), ShuffleMask(shufflemask), OpNum(opnum),Cost(cost) { | 
|  | TheOperators.push_back(this); | 
|  | } | 
|  | ~Operator() { | 
|  | assert(TheOperators.back() == this); | 
|  | TheOperators.pop_back(); | 
|  | } | 
|  |  | 
|  | bool isOnlyLHSOperator() const { | 
|  | return isOnlyLHSMask(ShuffleMask); | 
|  | } | 
|  |  | 
|  | const char *getName() const { return Name; } | 
|  | unsigned getCost() const { return Cost; } | 
|  |  | 
|  | unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) { | 
|  | // Extract the elements from LHSMask and RHSMask, as appropriate. | 
|  | unsigned Result = 0; | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF; | 
|  | unsigned ResElt; | 
|  | if (SrcElt < 4) | 
|  | ResElt = getMaskElt(LHSMask, SrcElt); | 
|  | else if (SrcElt < 8) | 
|  | ResElt = getMaskElt(RHSMask, SrcElt-4); | 
|  | else { | 
|  | assert(SrcElt == 8 && "Bad src elt!"); | 
|  | ResElt = 8; | 
|  | } | 
|  | Result |= ResElt << (4*i); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifdef GENERATE_NEON_INS | 
|  | // Special case "insert" op identifier used below | 
|  | static Operator InsOp(0, "ins", 15, 1); | 
|  | #endif | 
|  |  | 
|  | static const char *getZeroCostOpName(unsigned short Op) { | 
|  | if (ShufTab[Op].Arg0 == 0x0123) | 
|  | return "LHS"; | 
|  | else if (ShufTab[Op].Arg0 == 0x4567) | 
|  | return "RHS"; | 
|  | else { | 
|  | assert(0 && "bad zero cost operation"); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void PrintOperation(unsigned ValNo, unsigned short Vals[]) { | 
|  | unsigned short ThisOp = Vals[ValNo]; | 
|  | std::cerr << "t" << ValNo; | 
|  | PrintMask(ThisOp, std::cerr); | 
|  | std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "("; | 
|  |  | 
|  | if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) { | 
|  | std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0); | 
|  | PrintMask(ShufTab[ThisOp].Arg0, std::cerr); | 
|  | } else { | 
|  | // Figure out what tmp # it is. | 
|  | for (unsigned i = 0; ; ++i) | 
|  | if (Vals[i] == ShufTab[ThisOp].Arg0) { | 
|  | std::cerr << "t" << i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef GENERATE_NEON_INS | 
|  | if (ShufTab[ThisOp].Op == &InsOp) { | 
|  | std::cerr << ", lane " << ShufTab[ThisOp].Arg1; | 
|  | } else | 
|  | #endif | 
|  | if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) { | 
|  | std::cerr << ", "; | 
|  | if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) { | 
|  | std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1); | 
|  | PrintMask(ShufTab[ThisOp].Arg1, std::cerr); | 
|  | } else { | 
|  | // Figure out what tmp # it is. | 
|  | for (unsigned i = 0; ; ++i) | 
|  | if (Vals[i] == ShufTab[ThisOp].Arg1) { | 
|  | std::cerr << "t" << i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | std::cerr << ")  "; | 
|  | } | 
|  |  | 
|  | static unsigned getNumEntered() { | 
|  | unsigned Count = 0; | 
|  | for (unsigned i = 0; i != 65536; ++i) | 
|  | Count += ShufTab[i].Cost < 100; | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | static void EvaluateOps(unsigned short Elt, unsigned short Vals[], | 
|  | unsigned &NumVals) { | 
|  | if (ShufTab[Elt].Cost == 0) return; | 
|  | #ifdef GENERATE_NEON_INS | 
|  | if (ShufTab[Elt].Op == &InsOp) { | 
|  | EvaluateOps(ShufTab[Elt].Arg0, Vals, NumVals); | 
|  | Vals[NumVals++] = Elt; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // If this value has already been evaluated, it is free.  FIXME: match undefs. | 
|  | for (unsigned i = 0, e = NumVals; i != e; ++i) | 
|  | if (Vals[i] == Elt) return; | 
|  |  | 
|  | // Otherwise, get the operands of the value, then add it. | 
|  | unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1; | 
|  | if (ShufTab[Arg0].Cost) | 
|  | EvaluateOps(Arg0, Vals, NumVals); | 
|  | if (Arg0 != Arg1 && ShufTab[Arg1].Cost) | 
|  | EvaluateOps(Arg1, Vals, NumVals); | 
|  |  | 
|  | Vals[NumVals++] = Elt; | 
|  | } | 
|  |  | 
|  |  | 
|  | int main() { | 
|  | // Seed the table with accesses to the LHS and RHS. | 
|  | ShufTab[0x0123].Cost = 0; | 
|  | ShufTab[0x0123].Op = nullptr; | 
|  | ShufTab[0x0123].Arg0 = 0x0123; | 
|  | ShufTab[0x4567].Cost = 0; | 
|  | ShufTab[0x4567].Op = nullptr; | 
|  | ShufTab[0x4567].Arg0 = 0x4567; | 
|  |  | 
|  | // Seed the first-level of shuffles, shuffles whose inputs are the input to | 
|  | // the vectorshuffle operation. | 
|  | bool MadeChange = true; | 
|  | unsigned OpCount = 0; | 
|  | while (MadeChange) { | 
|  | MadeChange = false; | 
|  | ++OpCount; | 
|  | std::cerr << "Starting iteration #" << OpCount << " with " | 
|  | << getNumEntered() << " entries established.\n"; | 
|  |  | 
|  | // Scan the table for two reasons: First, compute the maximum cost of any | 
|  | // operation left in the table.  Second, make sure that values with undefs | 
|  | // have the cheapest alternative that they match. | 
|  | unsigned MaxCost = ShufTab[0].Cost; | 
|  | for (unsigned i = 1; i != 0x8889; ++i) { | 
|  | if (!isValidMask(i)) continue; | 
|  | if (ShufTab[i].Cost > MaxCost) | 
|  | MaxCost = ShufTab[i].Cost; | 
|  |  | 
|  | // If this value has an undef, make it be computed the cheapest possible | 
|  | // way of any of the things that it matches. | 
|  | if (hasUndefElements(i)) { | 
|  | // This code is a little bit tricky, so here's the idea: consider some | 
|  | // permutation, like 7u4u.  To compute the lowest cost for 7u4u, we | 
|  | // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries.  If | 
|  | // there are 3 undefs, the number rises to 729 entries we have to scan, | 
|  | // and for the 4 undef case, we have to scan the whole table. | 
|  | // | 
|  | // Instead of doing this huge amount of scanning, we process the table | 
|  | // entries *in order*, and use the fact that 'u' is 8, larger than any | 
|  | // valid index.  Given an entry like 7u4u then, we only need to scan | 
|  | // 7[0-7]4u - 8 entries.  We can get away with this, because we already | 
|  | // know that each of 704u, 714u, 724u, etc contain the minimum value of | 
|  | // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively. | 
|  | unsigned UndefIdx; | 
|  | if (i & 0x8000) | 
|  | UndefIdx = 0; | 
|  | else if (i & 0x0800) | 
|  | UndefIdx = 1; | 
|  | else if (i & 0x0080) | 
|  | UndefIdx = 2; | 
|  | else if (i & 0x0008) | 
|  | UndefIdx = 3; | 
|  | else | 
|  | abort(); | 
|  |  | 
|  | unsigned MinVal  = i; | 
|  | unsigned MinCost = ShufTab[i].Cost; | 
|  |  | 
|  | // Scan the 8 entries. | 
|  | for (unsigned j = 0; j != 8; ++j) { | 
|  | unsigned NewElt = setMaskElt(i, UndefIdx, j); | 
|  | if (ShufTab[NewElt].Cost < MinCost) { | 
|  | MinCost = ShufTab[NewElt].Cost; | 
|  | MinVal = NewElt; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found something cheaper than what was here before, use it. | 
|  | if (i != MinVal) { | 
|  | MadeChange = true; | 
|  | ShufTab[i] = ShufTab[MinVal]; | 
|  | } | 
|  | } | 
|  | #ifdef GENERATE_NEON_INS | 
|  | else { | 
|  | // Similarly, if we take the mask (eg 3,6,1,0) and take the cost with | 
|  | // undef for each lane (eg u,6,1,0 or 3,u,1,0 etc), we can use a single | 
|  | // lane insert to fixup the result. | 
|  | for (unsigned LaneIdx = 0; LaneIdx < 4; LaneIdx++) { | 
|  | if (getMaskElt(i, LaneIdx) == 8) | 
|  | continue; | 
|  | unsigned NewElt = setMaskElt(i, LaneIdx, 8); | 
|  | if (ShufTab[NewElt].Cost + 1 < ShufTab[i].Cost) { | 
|  | MadeChange = true; | 
|  | ShufTab[i].Cost = ShufTab[NewElt].Cost + 1; | 
|  | ShufTab[i].Op = &InsOp; | 
|  | ShufTab[i].Arg0 = NewElt; | 
|  | ShufTab[i].Arg1 = LaneIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Similar idea for using a D register mov, masking out 2 lanes to undef | 
|  | for (unsigned LaneIdx = 0; LaneIdx < 4; LaneIdx += 2) { | 
|  | unsigned Ln0 = getMaskElt(i, LaneIdx); | 
|  | unsigned Ln1 = getMaskElt(i, LaneIdx + 1); | 
|  | if ((Ln0 == 0 && Ln1 == 1) || (Ln0 == 2 && Ln1 == 3) || | 
|  | (Ln0 == 4 && Ln1 == 5) || (Ln0 == 6 && Ln1 == 7)) { | 
|  | unsigned NewElt = setMaskElt(i, LaneIdx, 8); | 
|  | NewElt = setMaskElt(NewElt, LaneIdx + 1, 8); | 
|  | if (ShufTab[NewElt].Cost + 1 < ShufTab[i].Cost) { | 
|  | MadeChange = true; | 
|  | ShufTab[i].Cost = ShufTab[NewElt].Cost + 1; | 
|  | ShufTab[i].Op = &InsOp; | 
|  | ShufTab[i].Arg0 = NewElt; | 
|  | ShufTab[i].Arg1 = (LaneIdx >> 1) | 0x4; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | for (unsigned LHS = 0; LHS != 0x8889; ++LHS) { | 
|  | if (!isValidMask(LHS)) continue; | 
|  | if (ShufTab[LHS].Cost > 1000) continue; | 
|  |  | 
|  | // If nothing involving this operand could possibly be cheaper than what | 
|  | // we already have, don't consider it. | 
|  | if (ShufTab[LHS].Cost + 1 >= MaxCost) | 
|  | continue; | 
|  |  | 
|  | for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) { | 
|  | Operator *Op = TheOperators[opnum]; | 
|  | #ifdef GENERATE_NEON_INS | 
|  | if (Op == &InsOp) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | // Evaluate op(LHS,LHS) | 
|  | unsigned ResultMask = Op->getTransformedMask(LHS, LHS); | 
|  |  | 
|  | unsigned Cost = ShufTab[LHS].Cost + Op->getCost(); | 
|  | if (Cost < ShufTab[ResultMask].Cost) { | 
|  | ShufTab[ResultMask].Cost = Cost; | 
|  | ShufTab[ResultMask].Op = Op; | 
|  | ShufTab[ResultMask].Arg0 = LHS; | 
|  | ShufTab[ResultMask].Arg1 = LHS; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // If this is a two input instruction, include the op(x,y) cases.  If | 
|  | // this is a one input instruction, skip this. | 
|  | if (Op->isOnlyLHSOperator()) continue; | 
|  |  | 
|  | for (unsigned RHS = 0; RHS != 0x8889; ++RHS) { | 
|  | if (!isValidMask(RHS)) continue; | 
|  | if (ShufTab[RHS].Cost > 1000) continue; | 
|  |  | 
|  | // If nothing involving this operand could possibly be cheaper than | 
|  | // what we already have, don't consider it. | 
|  | if (ShufTab[RHS].Cost + 1 >= MaxCost) | 
|  | continue; | 
|  |  | 
|  |  | 
|  | // Evaluate op(LHS,RHS) | 
|  | unsigned ResultMask = Op->getTransformedMask(LHS, RHS); | 
|  |  | 
|  | if (ShufTab[ResultMask].Cost <= OpCount || | 
|  | ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost || | 
|  | ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost) | 
|  | continue; | 
|  |  | 
|  | // Figure out the cost to evaluate this, knowing that CSE's only need | 
|  | // to be evaluated once. | 
|  | unsigned short Vals[30]; | 
|  | unsigned NumVals = 0; | 
|  | EvaluateOps(LHS, Vals, NumVals); | 
|  | EvaluateOps(RHS, Vals, NumVals); | 
|  |  | 
|  | unsigned Cost = NumVals + Op->getCost(); | 
|  | if (Cost < ShufTab[ResultMask].Cost) { | 
|  | ShufTab[ResultMask].Cost = Cost; | 
|  | ShufTab[ResultMask].Op = Op; | 
|  | ShufTab[ResultMask].Arg0 = LHS; | 
|  | ShufTab[ResultMask].Arg1 = RHS; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::cerr << "Finished Table has " << getNumEntered() | 
|  | << " entries established.\n"; | 
|  |  | 
|  | unsigned CostArray[10] = { 0 }; | 
|  |  | 
|  | // Compute a cost histogram. | 
|  | for (unsigned i = 0; i != 65536; ++i) { | 
|  | if (!isValidMask(i)) continue; | 
|  | if (ShufTab[i].Cost > 9) | 
|  | ++CostArray[9]; | 
|  | else | 
|  | ++CostArray[ShufTab[i].Cost]; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i != 9; ++i) | 
|  | if (CostArray[i]) | 
|  | std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n"; | 
|  | if (CostArray[9]) | 
|  | std::cout << "// " << CostArray[9] << " entries have higher cost!\n"; | 
|  |  | 
|  |  | 
|  | // Build up the table to emit. | 
|  | std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n"; | 
|  | std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n"; | 
|  |  | 
|  | for (unsigned i = 0; i != 0x8889; ++i) { | 
|  | if (!isValidMask(i)) continue; | 
|  |  | 
|  | // CostSat - The cost of this operation saturated to two bits. | 
|  | unsigned CostSat = ShufTab[i].Cost; | 
|  | if (CostSat > 4) CostSat = 4; | 
|  | if (CostSat == 0) CostSat = 1; | 
|  | --CostSat;  // Cost is now between 0-3. | 
|  |  | 
|  | unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0; | 
|  | assert(OpNum < 16 && "Too few bits to encode operation!"); | 
|  |  | 
|  | unsigned LHS = getCompressedMask(ShufTab[i].Arg0); | 
|  | unsigned RHS = getCompressedMask(ShufTab[i].Arg1); | 
|  |  | 
|  | // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of | 
|  | // LHS, and 13 bits of RHS = 32 bits. | 
|  | unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS; | 
|  |  | 
|  | std::cout << "  " << std::setw(10) << Val << "U, // "; | 
|  | PrintMask(i, std::cout); | 
|  | std::cout << ": Cost " << ShufTab[i].Cost; | 
|  | std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy"); | 
|  | std::cout << " "; | 
|  | if (ShufTab[ShufTab[i].Arg0].Cost == 0) { | 
|  | std::cout << getZeroCostOpName(ShufTab[i].Arg0); | 
|  | } else { | 
|  | PrintMask(ShufTab[i].Arg0, std::cout); | 
|  | } | 
|  |  | 
|  | if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) { | 
|  | std::cout << ", "; | 
|  | if (ShufTab[ShufTab[i].Arg1].Cost == 0) { | 
|  | std::cout << getZeroCostOpName(ShufTab[i].Arg1); | 
|  | } else { | 
|  | PrintMask(ShufTab[i].Arg1, std::cout); | 
|  | } | 
|  | } | 
|  | #ifdef GENERATE_NEON_INS | 
|  | else if (ShufTab[i].Op == &InsOp) { | 
|  | std::cout << ", lane " << ShufTab[i].Arg1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | std::cout << "\n"; | 
|  | } | 
|  | std::cout << "  0\n};\n"; | 
|  |  | 
|  | if (false) { | 
|  | // Print out the table. | 
|  | for (unsigned i = 0; i != 0x8889; ++i) { | 
|  | if (!isValidMask(i)) continue; | 
|  | if (ShufTab[i].Cost < 1000) { | 
|  | PrintMask(i, std::cerr); | 
|  | std::cerr << " - Cost " << ShufTab[i].Cost << " - "; | 
|  |  | 
|  | unsigned short Vals[30]; | 
|  | unsigned NumVals = 0; | 
|  | EvaluateOps(i, Vals, NumVals); | 
|  |  | 
|  | for (unsigned j = 0, e = NumVals; j != e; ++j) | 
|  | PrintOperation(j, Vals); | 
|  | std::cerr << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef GENERATE_ALTIVEC | 
|  |  | 
|  | ///===---------------------------------------------------------------------===// | 
|  | /// The altivec instruction definitions.  This is the altivec-specific part of | 
|  | /// this file. | 
|  | ///===---------------------------------------------------------------------===// | 
|  |  | 
|  | // Note that the opcode numbers here must match those in the PPC backend. | 
|  | enum { | 
|  | OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VMRGHW, | 
|  | OP_VMRGLW, | 
|  | OP_VSPLTISW0, | 
|  | OP_VSPLTISW1, | 
|  | OP_VSPLTISW2, | 
|  | OP_VSPLTISW3, | 
|  | OP_VSLDOI4, | 
|  | OP_VSLDOI8, | 
|  | OP_VSLDOI12 | 
|  | }; | 
|  |  | 
|  | struct vmrghw : public Operator { | 
|  | vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {} | 
|  | } the_vmrghw; | 
|  |  | 
|  | struct vmrglw : public Operator { | 
|  | vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {} | 
|  | } the_vmrglw; | 
|  |  | 
|  | template<unsigned Elt> | 
|  | struct vspltisw : public Operator { | 
|  | vspltisw(const char *N, unsigned Opc) | 
|  | : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {} | 
|  | }; | 
|  |  | 
|  | vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0); | 
|  | vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1); | 
|  | vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2); | 
|  | vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3); | 
|  |  | 
|  | template<unsigned N> | 
|  | struct vsldoi : public Operator { | 
|  | vsldoi(const char *Name, unsigned Opc) | 
|  | : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) { | 
|  | } | 
|  | }; | 
|  |  | 
|  | vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4); | 
|  | vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8); | 
|  | vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef GENERATE_NEON | 
|  | enum { | 
|  | OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
|  | OP_VREV, | 
|  | OP_VDUP0, | 
|  | OP_VDUP1, | 
|  | OP_VDUP2, | 
|  | OP_VDUP3, | 
|  | OP_VEXT1, | 
|  | OP_VEXT2, | 
|  | OP_VEXT3, | 
|  | OP_VUZPL, // VUZP, left result | 
|  | OP_VUZPR, // VUZP, right result | 
|  | OP_VZIPL, // VZIP, left result | 
|  | OP_VZIPR, // VZIP, right result | 
|  | OP_VTRNL, // VTRN, left result | 
|  | OP_VTRNR  // VTRN, right result | 
|  | }; | 
|  |  | 
|  | struct vrev : public Operator { | 
|  | vrev() : Operator(0x1032, "vrev", OP_VREV) {} | 
|  | } the_vrev; | 
|  |  | 
|  | template<unsigned Elt> | 
|  | struct vdup : public Operator { | 
|  | vdup(const char *N, unsigned Opc) | 
|  | : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {} | 
|  | }; | 
|  |  | 
|  | vdup<0> the_vdup0("vdup0", OP_VDUP0); | 
|  | vdup<1> the_vdup1("vdup1", OP_VDUP1); | 
|  | vdup<2> the_vdup2("vdup2", OP_VDUP2); | 
|  | vdup<3> the_vdup3("vdup3", OP_VDUP3); | 
|  |  | 
|  | template<unsigned N> | 
|  | struct vext : public Operator { | 
|  | vext(const char *Name, unsigned Opc) | 
|  | : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) { | 
|  | } | 
|  | }; | 
|  |  | 
|  | vext<1> the_vext1("vext1", OP_VEXT1); | 
|  | vext<2> the_vext2("vext2", OP_VEXT2); | 
|  | vext<3> the_vext3("vext3", OP_VEXT3); | 
|  |  | 
|  | struct vuzpl : public Operator { | 
|  | vuzpl() : Operator(0x0246, "vuzpl", OP_VUZPL, 1) {} | 
|  | } the_vuzpl; | 
|  |  | 
|  | struct vuzpr : public Operator { | 
|  | vuzpr() : Operator(0x1357, "vuzpr", OP_VUZPR, 1) {} | 
|  | } the_vuzpr; | 
|  |  | 
|  | struct vzipl : public Operator { | 
|  | vzipl() : Operator(0x0415, "vzipl", OP_VZIPL, 1) {} | 
|  | } the_vzipl; | 
|  |  | 
|  | struct vzipr : public Operator { | 
|  | vzipr() : Operator(0x2637, "vzipr", OP_VZIPR, 1) {} | 
|  | } the_vzipr; | 
|  |  | 
|  | struct vtrnl : public Operator { | 
|  | vtrnl() : Operator(0x0426, "vtrnl", OP_VTRNL, 1) {} | 
|  | } the_vtrnl; | 
|  |  | 
|  | struct vtrnr : public Operator { | 
|  | vtrnr() : Operator(0x1537, "vtrnr", OP_VTRNR, 1) {} | 
|  | } the_vtrnr; | 
|  |  | 
|  | #endif |