|  | //===----------------- LoopRotationUtils.cpp -----------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file provides utilities to convert a loop into a loop with bottom test. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/LoopRotationUtils.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-rotate" | 
|  |  | 
|  | STATISTIC(NumNotRotatedDueToHeaderSize, | 
|  | "Number of loops not rotated due to the header size"); | 
|  | STATISTIC(NumInstrsHoisted, | 
|  | "Number of instructions hoisted into loop preheader"); | 
|  | STATISTIC(NumInstrsDuplicated, | 
|  | "Number of instructions cloned into loop preheader"); | 
|  | STATISTIC(NumRotated, "Number of loops rotated"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, | 
|  | cl::desc("Allow loop rotation multiple times in order to reach " | 
|  | "a better latch exit")); | 
|  |  | 
|  | namespace { | 
|  | /// A simple loop rotation transformation. | 
|  | class LoopRotate { | 
|  | const unsigned MaxHeaderSize; | 
|  | LoopInfo *LI; | 
|  | const TargetTransformInfo *TTI; | 
|  | AssumptionCache *AC; | 
|  | DominatorTree *DT; | 
|  | ScalarEvolution *SE; | 
|  | MemorySSAUpdater *MSSAU; | 
|  | const SimplifyQuery &SQ; | 
|  | bool RotationOnly; | 
|  | bool IsUtilMode; | 
|  | bool PrepareForLTO; | 
|  |  | 
|  | public: | 
|  | LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, | 
|  | const TargetTransformInfo *TTI, AssumptionCache *AC, | 
|  | DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, | 
|  | const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, | 
|  | bool PrepareForLTO) | 
|  | : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), | 
|  | MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), | 
|  | IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} | 
|  | bool processLoop(Loop *L); | 
|  |  | 
|  | private: | 
|  | bool rotateLoop(Loop *L, bool SimplifiedLatch); | 
|  | bool simplifyLoopLatch(Loop *L); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not | 
|  | /// previously exist in the map, and the value was inserted. | 
|  | static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { | 
|  | bool Inserted = VM.insert({K, V}).second; | 
|  | assert(Inserted); | 
|  | (void)Inserted; | 
|  | } | 
|  | /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the | 
|  | /// old header into the preheader.  If there were uses of the values produced by | 
|  | /// these instruction that were outside of the loop, we have to insert PHI nodes | 
|  | /// to merge the two values.  Do this now. | 
|  | static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, | 
|  | BasicBlock *OrigPreheader, | 
|  | ValueToValueMapTy &ValueMap, | 
|  | ScalarEvolution *SE, | 
|  | SmallVectorImpl<PHINode*> *InsertedPHIs) { | 
|  | // Remove PHI node entries that are no longer live. | 
|  | BasicBlock::iterator I, E = OrigHeader->end(); | 
|  | for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); | 
|  |  | 
|  | // Now fix up users of the instructions in OrigHeader, inserting PHI nodes | 
|  | // as necessary. | 
|  | SSAUpdater SSA(InsertedPHIs); | 
|  | for (I = OrigHeader->begin(); I != E; ++I) { | 
|  | Value *OrigHeaderVal = &*I; | 
|  |  | 
|  | // If there are no uses of the value (e.g. because it returns void), there | 
|  | // is nothing to rewrite. | 
|  | if (OrigHeaderVal->use_empty()) | 
|  | continue; | 
|  |  | 
|  | Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); | 
|  |  | 
|  | // The value now exits in two versions: the initial value in the preheader | 
|  | // and the loop "next" value in the original header. | 
|  | SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); | 
|  | // Force re-computation of OrigHeaderVal, as some users now need to use the | 
|  | // new PHI node. | 
|  | if (SE) | 
|  | SE->forgetValue(OrigHeaderVal); | 
|  | SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); | 
|  | SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); | 
|  |  | 
|  | // Visit each use of the OrigHeader instruction. | 
|  | for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) { | 
|  | // SSAUpdater can't handle a non-PHI use in the same block as an | 
|  | // earlier def. We can easily handle those cases manually. | 
|  | Instruction *UserInst = cast<Instruction>(U.getUser()); | 
|  | if (!isa<PHINode>(UserInst)) { | 
|  | BasicBlock *UserBB = UserInst->getParent(); | 
|  |  | 
|  | // The original users in the OrigHeader are already using the | 
|  | // original definitions. | 
|  | if (UserBB == OrigHeader) | 
|  | continue; | 
|  |  | 
|  | // Users in the OrigPreHeader need to use the value to which the | 
|  | // original definitions are mapped. | 
|  | if (UserBB == OrigPreheader) { | 
|  | U = OrigPreHeaderVal; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Anything else can be handled by SSAUpdater. | 
|  | SSA.RewriteUse(U); | 
|  | } | 
|  |  | 
|  | // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug | 
|  | // intrinsics. | 
|  | SmallVector<DbgValueInst *, 1> DbgValues; | 
|  | llvm::findDbgValues(DbgValues, OrigHeaderVal); | 
|  | for (auto &DbgValue : DbgValues) { | 
|  | // The original users in the OrigHeader are already using the original | 
|  | // definitions. | 
|  | BasicBlock *UserBB = DbgValue->getParent(); | 
|  | if (UserBB == OrigHeader) | 
|  | continue; | 
|  |  | 
|  | // Users in the OrigPreHeader need to use the value to which the | 
|  | // original definitions are mapped and anything else can be handled by | 
|  | // the SSAUpdater. To avoid adding PHINodes, check if the value is | 
|  | // available in UserBB, if not substitute undef. | 
|  | Value *NewVal; | 
|  | if (UserBB == OrigPreheader) | 
|  | NewVal = OrigPreHeaderVal; | 
|  | else if (SSA.HasValueForBlock(UserBB)) | 
|  | NewVal = SSA.GetValueInMiddleOfBlock(UserBB); | 
|  | else | 
|  | NewVal = UndefValue::get(OrigHeaderVal->getType()); | 
|  | DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assuming both header and latch are exiting, look for a phi which is only | 
|  | // used outside the loop (via a LCSSA phi) in the exit from the header. | 
|  | // This means that rotating the loop can remove the phi. | 
|  | static bool profitableToRotateLoopExitingLatch(Loop *L) { | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); | 
|  | assert(BI && BI->isConditional() && "need header with conditional exit"); | 
|  | BasicBlock *HeaderExit = BI->getSuccessor(0); | 
|  | if (L->contains(HeaderExit)) | 
|  | HeaderExit = BI->getSuccessor(1); | 
|  |  | 
|  | for (auto &Phi : Header->phis()) { | 
|  | // Look for uses of this phi in the loop/via exits other than the header. | 
|  | if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { | 
|  | return cast<Instruction>(U)->getParent() != HeaderExit; | 
|  | })) | 
|  | continue; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that latch exit is deoptimizing (which means - very unlikely to happen) | 
|  | // and there is another exit from the loop which is non-deoptimizing. | 
|  | // If we rotate latch to that exit our loop has a better chance of being fully | 
|  | // canonical. | 
|  | // | 
|  | // It can give false positives in some rare cases. | 
|  | static bool canRotateDeoptimizingLatchExit(Loop *L) { | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | assert(Latch && "need latch"); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); | 
|  | // Need normal exiting latch. | 
|  | if (!BI || !BI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *Exit = BI->getSuccessor(1); | 
|  | if (L->contains(Exit)) | 
|  | Exit = BI->getSuccessor(0); | 
|  |  | 
|  | // Latch exit is non-deoptimizing, no need to rotate. | 
|  | if (!Exit->getPostdominatingDeoptimizeCall()) | 
|  | return false; | 
|  |  | 
|  | SmallVector<BasicBlock *, 4> Exits; | 
|  | L->getUniqueExitBlocks(Exits); | 
|  | if (!Exits.empty()) { | 
|  | // There is at least one non-deoptimizing exit. | 
|  | // | 
|  | // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, | 
|  | // as it can conservatively return false for deoptimizing exits with | 
|  | // complex enough control flow down to deoptimize call. | 
|  | // | 
|  | // That means here we can report success for a case where | 
|  | // all exits are deoptimizing but one of them has complex enough | 
|  | // control flow (e.g. with loops). | 
|  | // | 
|  | // That should be a very rare case and false positives for this function | 
|  | // have compile-time effect only. | 
|  | return any_of(Exits, [](const BasicBlock *BB) { | 
|  | return !BB->getPostdominatingDeoptimizeCall(); | 
|  | }); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Rotate loop LP. Return true if the loop is rotated. | 
|  | /// | 
|  | /// \param SimplifiedLatch is true if the latch was just folded into the final | 
|  | /// loop exit. In this case we may want to rotate even though the new latch is | 
|  | /// now an exiting branch. This rotation would have happened had the latch not | 
|  | /// been simplified. However, if SimplifiedLatch is false, then we avoid | 
|  | /// rotating loops in which the latch exits to avoid excessive or endless | 
|  | /// rotation. LoopRotate should be repeatable and converge to a canonical | 
|  | /// form. This property is satisfied because simplifying the loop latch can only | 
|  | /// happen once across multiple invocations of the LoopRotate pass. | 
|  | /// | 
|  | /// If -loop-rotate-multi is enabled we can do multiple rotations in one go | 
|  | /// so to reach a suitable (non-deoptimizing) exit. | 
|  | bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { | 
|  | // If the loop has only one block then there is not much to rotate. | 
|  | if (L->getBlocks().size() == 1) | 
|  | return false; | 
|  |  | 
|  | bool Rotated = false; | 
|  | do { | 
|  | BasicBlock *OrigHeader = L->getHeader(); | 
|  | BasicBlock *OrigLatch = L->getLoopLatch(); | 
|  |  | 
|  | BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); | 
|  | if (!BI || BI->isUnconditional()) | 
|  | return Rotated; | 
|  |  | 
|  | // If the loop header is not one of the loop exiting blocks then | 
|  | // either this loop is already rotated or it is not | 
|  | // suitable for loop rotation transformations. | 
|  | if (!L->isLoopExiting(OrigHeader)) | 
|  | return Rotated; | 
|  |  | 
|  | // If the loop latch already contains a branch that leaves the loop then the | 
|  | // loop is already rotated. | 
|  | if (!OrigLatch) | 
|  | return Rotated; | 
|  |  | 
|  | // Rotate if either the loop latch does *not* exit the loop, or if the loop | 
|  | // latch was just simplified. Or if we think it will be profitable. | 
|  | if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && | 
|  | !profitableToRotateLoopExitingLatch(L) && | 
|  | !canRotateDeoptimizingLatchExit(L)) | 
|  | return Rotated; | 
|  |  | 
|  | // Check size of original header and reject loop if it is very big or we can't | 
|  | // duplicate blocks inside it. | 
|  | { | 
|  | SmallPtrSet<const Value *, 32> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(L, AC, EphValues); | 
|  |  | 
|  | CodeMetrics Metrics; | 
|  | Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); | 
|  | if (Metrics.notDuplicatable) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" | 
|  | << " instructions: "; | 
|  | L->dump()); | 
|  | return Rotated; | 
|  | } | 
|  | if (Metrics.convergent) { | 
|  | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " | 
|  | "instructions: "; | 
|  | L->dump()); | 
|  | return Rotated; | 
|  | } | 
|  | if (!Metrics.NumInsts.isValid()) { | 
|  | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions" | 
|  | " with invalid cost: "; | 
|  | L->dump()); | 
|  | return Rotated; | 
|  | } | 
|  | if (Metrics.NumInsts > MaxHeaderSize) { | 
|  | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " | 
|  | << Metrics.NumInsts | 
|  | << " instructions, which is more than the threshold (" | 
|  | << MaxHeaderSize << " instructions): "; | 
|  | L->dump()); | 
|  | ++NumNotRotatedDueToHeaderSize; | 
|  | return Rotated; | 
|  | } | 
|  |  | 
|  | // When preparing for LTO, avoid rotating loops with calls that could be | 
|  | // inlined during the LTO stage. | 
|  | if (PrepareForLTO && Metrics.NumInlineCandidates > 0) | 
|  | return Rotated; | 
|  | } | 
|  |  | 
|  | // Now, this loop is suitable for rotation. | 
|  | BasicBlock *OrigPreheader = L->getLoopPreheader(); | 
|  |  | 
|  | // If the loop could not be converted to canonical form, it must have an | 
|  | // indirectbr in it, just give up. | 
|  | if (!OrigPreheader || !L->hasDedicatedExits()) | 
|  | return Rotated; | 
|  |  | 
|  | // Anything ScalarEvolution may know about this loop or the PHI nodes | 
|  | // in its header will soon be invalidated. We should also invalidate | 
|  | // all outer loops because insertion and deletion of blocks that happens | 
|  | // during the rotation may violate invariants related to backedge taken | 
|  | // infos in them. | 
|  | if (SE) { | 
|  | SE->forgetTopmostLoop(L); | 
|  | // We may hoist some instructions out of loop. In case if they were cached | 
|  | // as "loop variant" or "loop computable", these caches must be dropped. | 
|  | // We also may fold basic blocks, so cached block dispositions also need | 
|  | // to be dropped. | 
|  | SE->forgetBlockAndLoopDispositions(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Find new Loop header. NewHeader is a Header's one and only successor | 
|  | // that is inside loop.  Header's other successor is outside the | 
|  | // loop.  Otherwise loop is not suitable for rotation. | 
|  | BasicBlock *Exit = BI->getSuccessor(0); | 
|  | BasicBlock *NewHeader = BI->getSuccessor(1); | 
|  | if (L->contains(Exit)) | 
|  | std::swap(Exit, NewHeader); | 
|  | assert(NewHeader && "Unable to determine new loop header"); | 
|  | assert(L->contains(NewHeader) && !L->contains(Exit) && | 
|  | "Unable to determine loop header and exit blocks"); | 
|  |  | 
|  | // This code assumes that the new header has exactly one predecessor. | 
|  | // Remove any single-entry PHI nodes in it. | 
|  | assert(NewHeader->getSinglePredecessor() && | 
|  | "New header doesn't have one pred!"); | 
|  | FoldSingleEntryPHINodes(NewHeader); | 
|  |  | 
|  | // Begin by walking OrigHeader and populating ValueMap with an entry for | 
|  | // each Instruction. | 
|  | BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); | 
|  | ValueToValueMapTy ValueMap, ValueMapMSSA; | 
|  |  | 
|  | // For PHI nodes, the value available in OldPreHeader is just the | 
|  | // incoming value from OldPreHeader. | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | InsertNewValueIntoMap(ValueMap, PN, | 
|  | PN->getIncomingValueForBlock(OrigPreheader)); | 
|  |  | 
|  | // For the rest of the instructions, either hoist to the OrigPreheader if | 
|  | // possible or create a clone in the OldPreHeader if not. | 
|  | Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); | 
|  |  | 
|  | // Record all debug intrinsics preceding LoopEntryBranch to avoid | 
|  | // duplication. | 
|  | using DbgIntrinsicHash = | 
|  | std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; | 
|  | auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { | 
|  | auto VarLocOps = D->location_ops(); | 
|  | return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), | 
|  | D->getVariable()}, | 
|  | D->getExpression()}; | 
|  | }; | 
|  | SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; | 
|  | for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) { | 
|  | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) | 
|  | DbgIntrinsics.insert(makeHash(DII)); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Remember the local noalias scope declarations in the header. After the | 
|  | // rotation, they must be duplicated and the scope must be cloned. This | 
|  | // avoids unwanted interaction across iterations. | 
|  | SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; | 
|  | for (Instruction &I : *OrigHeader) | 
|  | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) | 
|  | NoAliasDeclInstructions.push_back(Decl); | 
|  |  | 
|  | while (I != E) { | 
|  | Instruction *Inst = &*I++; | 
|  |  | 
|  | // If the instruction's operands are invariant and it doesn't read or write | 
|  | // memory, then it is safe to hoist.  Doing this doesn't change the order of | 
|  | // execution in the preheader, but does prevent the instruction from | 
|  | // executing in each iteration of the loop.  This means it is safe to hoist | 
|  | // something that might trap, but isn't safe to hoist something that reads | 
|  | // memory (without proving that the loop doesn't write). | 
|  | if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && | 
|  | !Inst->mayWriteToMemory() && !Inst->isTerminator() && | 
|  | !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { | 
|  | Inst->moveBefore(LoopEntryBranch); | 
|  | ++NumInstrsHoisted; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, create a duplicate of the instruction. | 
|  | Instruction *C = Inst->clone(); | 
|  | C->insertBefore(LoopEntryBranch); | 
|  |  | 
|  | ++NumInstrsDuplicated; | 
|  |  | 
|  | // Eagerly remap the operands of the instruction. | 
|  | RemapInstruction(C, ValueMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  |  | 
|  | // Avoid inserting the same intrinsic twice. | 
|  | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) | 
|  | if (DbgIntrinsics.count(makeHash(DII))) { | 
|  | C->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // With the operands remapped, see if the instruction constant folds or is | 
|  | // otherwise simplifyable.  This commonly occurs because the entry from PHI | 
|  | // nodes allows icmps and other instructions to fold. | 
|  | Value *V = simplifyInstruction(C, SQ); | 
|  | if (V && LI->replacementPreservesLCSSAForm(C, V)) { | 
|  | // If so, then delete the temporary instruction and stick the folded value | 
|  | // in the map. | 
|  | InsertNewValueIntoMap(ValueMap, Inst, V); | 
|  | if (!C->mayHaveSideEffects()) { | 
|  | C->eraseFromParent(); | 
|  | C = nullptr; | 
|  | } | 
|  | } else { | 
|  | InsertNewValueIntoMap(ValueMap, Inst, C); | 
|  | } | 
|  | if (C) { | 
|  | // Otherwise, stick the new instruction into the new block! | 
|  | C->setName(Inst->getName()); | 
|  |  | 
|  | if (auto *II = dyn_cast<AssumeInst>(C)) | 
|  | AC->registerAssumption(II); | 
|  | // MemorySSA cares whether the cloned instruction was inserted or not, and | 
|  | // not whether it can be remapped to a simplified value. | 
|  | if (MSSAU) | 
|  | InsertNewValueIntoMap(ValueMapMSSA, Inst, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NoAliasDeclInstructions.empty()) { | 
|  | // There are noalias scope declarations: | 
|  | // (general): | 
|  | // Original:    OrigPre              { OrigHeader NewHeader ... Latch } | 
|  | // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } | 
|  | // | 
|  | // with D: llvm.experimental.noalias.scope.decl, | 
|  | //      U: !noalias or !alias.scope depending on D | 
|  | //       ... { D U1 U2 }   can transform into: | 
|  | // (0) : ... { D U1 U2 }        // no relevant rotation for this part | 
|  | // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader | 
|  | // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader | 
|  | // | 
|  | // We now want to transform: | 
|  | // (1) -> : ... D' { D U1 U2 D'' } | 
|  | // (2) -> : ... D' U1' { D U2 D'' U1'' } | 
|  | // D: original llvm.experimental.noalias.scope.decl | 
|  | // D', U1': duplicate with replaced scopes | 
|  | // D'', U1'': different duplicate with replaced scopes | 
|  | // This ensures a safe fallback to 'may_alias' introduced by the rotate, | 
|  | // as U1'' and U1' scopes will not be compatible wrt to the local restrict | 
|  |  | 
|  | // Clone the llvm.experimental.noalias.decl again for the NewHeader. | 
|  | Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI()); | 
|  | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { | 
|  | LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:" | 
|  | << *NAD << "\n"); | 
|  | Instruction *NewNAD = NAD->clone(); | 
|  | NewNAD->insertBefore(NewHeaderInsertionPoint); | 
|  | } | 
|  |  | 
|  | // Scopes must now be duplicated, once for OrigHeader and once for | 
|  | // OrigPreHeader'. | 
|  | { | 
|  | auto &Context = NewHeader->getContext(); | 
|  |  | 
|  | SmallVector<MDNode *, 8> NoAliasDeclScopes; | 
|  | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) | 
|  | NoAliasDeclScopes.push_back(NAD->getScopeList()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n"); | 
|  | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, | 
|  | "h.rot"); | 
|  | LLVM_DEBUG(OrigHeader->dump()); | 
|  |  | 
|  | // Keep the compile time impact low by only adapting the inserted block | 
|  | // of instructions in the OrigPreHeader. This might result in slightly | 
|  | // more aliasing between these instructions and those that were already | 
|  | // present, but it will be much faster when the original PreHeader is | 
|  | // large. | 
|  | LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n"); | 
|  | auto *FirstDecl = | 
|  | cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); | 
|  | auto *LastInst = &OrigPreheader->back(); | 
|  | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, | 
|  | Context, "pre.rot"); | 
|  | LLVM_DEBUG(OrigPreheader->dump()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n"); | 
|  | LLVM_DEBUG(NewHeader->dump()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Along with all the other instructions, we just cloned OrigHeader's | 
|  | // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's | 
|  | // successors by duplicating their incoming values for OrigHeader. | 
|  | for (BasicBlock *SuccBB : successors(OrigHeader)) | 
|  | for (BasicBlock::iterator BI = SuccBB->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(BI); ++BI) | 
|  | PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); | 
|  |  | 
|  | // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove | 
|  | // OrigPreHeader's old terminator (the original branch into the loop), and | 
|  | // remove the corresponding incoming values from the PHI nodes in OrigHeader. | 
|  | LoopEntryBranch->eraseFromParent(); | 
|  |  | 
|  | // Update MemorySSA before the rewrite call below changes the 1:1 | 
|  | // instruction:cloned_instruction_or_value mapping. | 
|  | if (MSSAU) { | 
|  | InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); | 
|  | MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, | 
|  | ValueMapMSSA); | 
|  | } | 
|  |  | 
|  | SmallVector<PHINode*, 2> InsertedPHIs; | 
|  | // If there were any uses of instructions in the duplicated block outside the | 
|  | // loop, update them, inserting PHI nodes as required | 
|  | RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE, | 
|  | &InsertedPHIs); | 
|  |  | 
|  | // Attach dbg.value intrinsics to the new phis if that phi uses a value that | 
|  | // previously had debug metadata attached. This keeps the debug info | 
|  | // up-to-date in the loop body. | 
|  | if (!InsertedPHIs.empty()) | 
|  | insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); | 
|  |  | 
|  | // NewHeader is now the header of the loop. | 
|  | L->moveToHeader(NewHeader); | 
|  | assert(L->getHeader() == NewHeader && "Latch block is our new header"); | 
|  |  | 
|  | // Inform DT about changes to the CFG. | 
|  | if (DT) { | 
|  | // The OrigPreheader branches to the NewHeader and Exit now. Then, inform | 
|  | // the DT about the removed edge to the OrigHeader (that got removed). | 
|  | SmallVector<DominatorTree::UpdateType, 3> Updates; | 
|  | Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); | 
|  | Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); | 
|  | Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); | 
|  |  | 
|  | if (MSSAU) { | 
|  | MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  | } else { | 
|  | DT->applyUpdates(Updates); | 
|  | } | 
|  | } | 
|  |  | 
|  | // At this point, we've finished our major CFG changes.  As part of cloning | 
|  | // the loop into the preheader we've simplified instructions and the | 
|  | // duplicated conditional branch may now be branching on a constant.  If it is | 
|  | // branching on a constant and if that constant means that we enter the loop, | 
|  | // then we fold away the cond branch to an uncond branch.  This simplifies the | 
|  | // loop in cases important for nested loops, and it also means we don't have | 
|  | // to split as many edges. | 
|  | BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); | 
|  | assert(PHBI->isConditional() && "Should be clone of BI condbr!"); | 
|  | if (!isa<ConstantInt>(PHBI->getCondition()) || | 
|  | PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != | 
|  | NewHeader) { | 
|  | // The conditional branch can't be folded, handle the general case. | 
|  | // Split edges as necessary to preserve LoopSimplify form. | 
|  |  | 
|  | // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and | 
|  | // thus is not a preheader anymore. | 
|  | // Split the edge to form a real preheader. | 
|  | BasicBlock *NewPH = SplitCriticalEdge( | 
|  | OrigPreheader, NewHeader, | 
|  | CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); | 
|  | NewPH->setName(NewHeader->getName() + ".lr.ph"); | 
|  |  | 
|  | // Preserve canonical loop form, which means that 'Exit' should have only | 
|  | // one predecessor. Note that Exit could be an exit block for multiple | 
|  | // nested loops, causing both of the edges to now be critical and need to | 
|  | // be split. | 
|  | SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit)); | 
|  | bool SplitLatchEdge = false; | 
|  | for (BasicBlock *ExitPred : ExitPreds) { | 
|  | // We only need to split loop exit edges. | 
|  | Loop *PredLoop = LI->getLoopFor(ExitPred); | 
|  | if (!PredLoop || PredLoop->contains(Exit) || | 
|  | isa<IndirectBrInst>(ExitPred->getTerminator())) | 
|  | continue; | 
|  | SplitLatchEdge |= L->getLoopLatch() == ExitPred; | 
|  | BasicBlock *ExitSplit = SplitCriticalEdge( | 
|  | ExitPred, Exit, | 
|  | CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); | 
|  | ExitSplit->moveBefore(Exit); | 
|  | } | 
|  | assert(SplitLatchEdge && | 
|  | "Despite splitting all preds, failed to split latch exit?"); | 
|  | (void)SplitLatchEdge; | 
|  | } else { | 
|  | // We can fold the conditional branch in the preheader, this makes things | 
|  | // simpler. The first step is to remove the extra edge to the Exit block. | 
|  | Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); | 
|  | BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); | 
|  | NewBI->setDebugLoc(PHBI->getDebugLoc()); | 
|  | PHBI->eraseFromParent(); | 
|  |  | 
|  | // With our CFG finalized, update DomTree if it is available. | 
|  | if (DT) DT->deleteEdge(OrigPreheader, Exit); | 
|  |  | 
|  | // Update MSSA too, if available. | 
|  | if (MSSAU) | 
|  | MSSAU->removeEdge(OrigPreheader, Exit); | 
|  | } | 
|  |  | 
|  | assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); | 
|  | assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Now that the CFG and DomTree are in a consistent state again, try to merge | 
|  | // the OrigHeader block into OrigLatch.  This will succeed if they are | 
|  | // connected by an unconditional branch.  This is just a cleanup so the | 
|  | // emitted code isn't too gross in this common case. | 
|  | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | 
|  | BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); | 
|  | bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); | 
|  | if (DidMerge) | 
|  | RemoveRedundantDbgInstrs(PredBB); | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); | 
|  |  | 
|  | ++NumRotated; | 
|  |  | 
|  | Rotated = true; | 
|  | SimplifiedLatch = false; | 
|  |  | 
|  | // Check that new latch is a deoptimizing exit and then repeat rotation if possible. | 
|  | // Deoptimizing latch exit is not a generally typical case, so we just loop over. | 
|  | // TODO: if it becomes a performance bottleneck extend rotation algorithm | 
|  | // to handle multiple rotations in one go. | 
|  | } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); | 
|  |  | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether the instructions in this range may be safely and cheaply | 
|  | /// speculated. This is not an important enough situation to develop complex | 
|  | /// heuristics. We handle a single arithmetic instruction along with any type | 
|  | /// conversions. | 
|  | static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, | 
|  | BasicBlock::iterator End, Loop *L) { | 
|  | bool seenIncrement = false; | 
|  | bool MultiExitLoop = false; | 
|  |  | 
|  | if (!L->getExitingBlock()) | 
|  | MultiExitLoop = true; | 
|  |  | 
|  | for (BasicBlock::iterator I = Begin; I != End; ++I) { | 
|  |  | 
|  | if (!isSafeToSpeculativelyExecute(&*I)) | 
|  | return false; | 
|  |  | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::GetElementPtr: | 
|  | // GEPs are cheap if all indices are constant. | 
|  | if (!cast<GEPOperator>(I)->hasAllConstantIndices()) | 
|  | return false; | 
|  | // fall-thru to increment case | 
|  | [[fallthrough]]; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: { | 
|  | Value *IVOpnd = | 
|  | !isa<Constant>(I->getOperand(0)) | 
|  | ? I->getOperand(0) | 
|  | : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; | 
|  | if (!IVOpnd) | 
|  | return false; | 
|  |  | 
|  | // If increment operand is used outside of the loop, this speculation | 
|  | // could cause extra live range interference. | 
|  | if (MultiExitLoop) { | 
|  | for (User *UseI : IVOpnd->users()) { | 
|  | auto *UserInst = cast<Instruction>(UseI); | 
|  | if (!L->contains(UserInst)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (seenIncrement) | 
|  | return false; | 
|  | seenIncrement = true; | 
|  | break; | 
|  | } | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // ignore type conversions | 
|  | break; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Fold the loop tail into the loop exit by speculating the loop tail | 
|  | /// instructions. Typically, this is a single post-increment. In the case of a | 
|  | /// simple 2-block loop, hoisting the increment can be much better than | 
|  | /// duplicating the entire loop header. In the case of loops with early exits, | 
|  | /// rotation will not work anyway, but simplifyLoopLatch will put the loop in | 
|  | /// canonical form so downstream passes can handle it. | 
|  | /// | 
|  | /// I don't believe this invalidates SCEV. | 
|  | bool LoopRotate::simplifyLoopLatch(Loop *L) { | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | if (!Latch || Latch->hasAddressTaken()) | 
|  | return false; | 
|  |  | 
|  | BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); | 
|  | if (!Jmp || !Jmp->isUnconditional()) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *LastExit = Latch->getSinglePredecessor(); | 
|  | if (!LastExit || !L->isLoopExiting(LastExit)) | 
|  | return false; | 
|  |  | 
|  | BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); | 
|  | if (!BI) | 
|  | return false; | 
|  |  | 
|  | if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " | 
|  | << LastExit->getName() << "\n"); | 
|  |  | 
|  | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | 
|  | MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, | 
|  | /*PredecessorWithTwoSuccessors=*/true); | 
|  |  | 
|  | if (SE) { | 
|  | // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache. | 
|  | SE->forgetBlockAndLoopDispositions(); | 
|  | } | 
|  |  | 
|  | if (MSSAU && VerifyMemorySSA) | 
|  | MSSAU->getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Rotate \c L, and return true if any modification was made. | 
|  | bool LoopRotate::processLoop(Loop *L) { | 
|  | // Save the loop metadata. | 
|  | MDNode *LoopMD = L->getLoopID(); | 
|  |  | 
|  | bool SimplifiedLatch = false; | 
|  |  | 
|  | // Simplify the loop latch before attempting to rotate the header | 
|  | // upward. Rotation may not be needed if the loop tail can be folded into the | 
|  | // loop exit. | 
|  | if (!RotationOnly) | 
|  | SimplifiedLatch = simplifyLoopLatch(L); | 
|  |  | 
|  | bool MadeChange = rotateLoop(L, SimplifiedLatch); | 
|  | assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && | 
|  | "Loop latch should be exiting after loop-rotate."); | 
|  |  | 
|  | // Restore the loop metadata. | 
|  | // NB! We presume LoopRotation DOESN'T ADD its own metadata. | 
|  | if ((MadeChange || SimplifiedLatch) && LoopMD) | 
|  | L->setLoopID(LoopMD); | 
|  |  | 
|  | return MadeChange || SimplifiedLatch; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// The utility to convert a loop into a loop with bottom test. | 
|  | bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, | 
|  | AssumptionCache *AC, DominatorTree *DT, | 
|  | ScalarEvolution *SE, MemorySSAUpdater *MSSAU, | 
|  | const SimplifyQuery &SQ, bool RotationOnly = true, | 
|  | unsigned Threshold = unsigned(-1), | 
|  | bool IsUtilMode = true, bool PrepareForLTO) { | 
|  | LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, | 
|  | IsUtilMode, PrepareForLTO); | 
|  | return LR.processLoop(L); | 
|  | } |