|  | //===- CloneFunction.cpp - Clone a function into another function ---------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the CloneFunctionInto interface, which is used as the | 
|  | // low-level function cloner.  This is used by the CloneFunction and function | 
|  | // inliner to do the dirty work of copying the body of a function around. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <map> | 
|  | #include <optional> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "clone-function" | 
|  |  | 
|  | /// See comments in Cloning.h. | 
|  | BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, | 
|  | const Twine &NameSuffix, Function *F, | 
|  | ClonedCodeInfo *CodeInfo, | 
|  | DebugInfoFinder *DIFinder) { | 
|  | BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); | 
|  | if (BB->hasName()) | 
|  | NewBB->setName(BB->getName() + NameSuffix); | 
|  |  | 
|  | bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false; | 
|  | Module *TheModule = F ? F->getParent() : nullptr; | 
|  |  | 
|  | // Loop over all instructions, and copy them over. | 
|  | for (const Instruction &I : *BB) { | 
|  | if (DIFinder && TheModule) | 
|  | DIFinder->processInstruction(*TheModule, I); | 
|  |  | 
|  | Instruction *NewInst = I.clone(); | 
|  | if (I.hasName()) | 
|  | NewInst->setName(I.getName() + NameSuffix); | 
|  | NewInst->insertInto(NewBB, NewBB->end()); | 
|  | VMap[&I] = NewInst; // Add instruction map to value. | 
|  |  | 
|  | if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) { | 
|  | hasCalls = true; | 
|  | hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof); | 
|  | } | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { | 
|  | if (!AI->isStaticAlloca()) { | 
|  | hasDynamicAllocas = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CodeInfo) { | 
|  | CodeInfo->ContainsCalls |= hasCalls; | 
|  | CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; | 
|  | CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; | 
|  | } | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | // Clone OldFunc into NewFunc, transforming the old arguments into references to | 
|  | // VMap values. | 
|  | // | 
|  | void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, | 
|  | ValueToValueMapTy &VMap, | 
|  | CloneFunctionChangeType Changes, | 
|  | SmallVectorImpl<ReturnInst *> &Returns, | 
|  | const char *NameSuffix, ClonedCodeInfo *CodeInfo, | 
|  | ValueMapTypeRemapper *TypeMapper, | 
|  | ValueMaterializer *Materializer) { | 
|  | assert(NameSuffix && "NameSuffix cannot be null!"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (const Argument &I : OldFunc->args()) | 
|  | assert(VMap.count(&I) && "No mapping from source argument specified!"); | 
|  | #endif | 
|  |  | 
|  | bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; | 
|  |  | 
|  | // Copy all attributes other than those stored in the AttributeList.  We need | 
|  | // to remap the parameter indices of the AttributeList. | 
|  | AttributeList NewAttrs = NewFunc->getAttributes(); | 
|  | NewFunc->copyAttributesFrom(OldFunc); | 
|  | NewFunc->setAttributes(NewAttrs); | 
|  |  | 
|  | const RemapFlags FuncGlobalRefFlags = | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; | 
|  |  | 
|  | // Fix up the personality function that got copied over. | 
|  | if (OldFunc->hasPersonalityFn()) | 
|  | NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap, | 
|  | FuncGlobalRefFlags, TypeMapper, | 
|  | Materializer)); | 
|  |  | 
|  | if (OldFunc->hasPrefixData()) { | 
|  | NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap, | 
|  | FuncGlobalRefFlags, TypeMapper, | 
|  | Materializer)); | 
|  | } | 
|  |  | 
|  | if (OldFunc->hasPrologueData()) { | 
|  | NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap, | 
|  | FuncGlobalRefFlags, TypeMapper, | 
|  | Materializer)); | 
|  | } | 
|  |  | 
|  | SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); | 
|  | AttributeList OldAttrs = OldFunc->getAttributes(); | 
|  |  | 
|  | // Clone any argument attributes that are present in the VMap. | 
|  | for (const Argument &OldArg : OldFunc->args()) { | 
|  | if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { | 
|  | NewArgAttrs[NewArg->getArgNo()] = | 
|  | OldAttrs.getParamAttrs(OldArg.getArgNo()); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewFunc->setAttributes( | 
|  | AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(), | 
|  | OldAttrs.getRetAttrs(), NewArgAttrs)); | 
|  |  | 
|  | // Everything else beyond this point deals with function instructions, | 
|  | // so if we are dealing with a function declaration, we're done. | 
|  | if (OldFunc->isDeclaration()) | 
|  | return; | 
|  |  | 
|  | // When we remap instructions within the same module, we want to avoid | 
|  | // duplicating inlined DISubprograms, so record all subprograms we find as we | 
|  | // duplicate instructions and then freeze them in the MD map. We also record | 
|  | // information about dbg.value and dbg.declare to avoid duplicating the | 
|  | // types. | 
|  | std::optional<DebugInfoFinder> DIFinder; | 
|  |  | 
|  | // Track the subprogram attachment that needs to be cloned to fine-tune the | 
|  | // mapping within the same module. | 
|  | DISubprogram *SPClonedWithinModule = nullptr; | 
|  | if (Changes < CloneFunctionChangeType::DifferentModule) { | 
|  | assert((NewFunc->getParent() == nullptr || | 
|  | NewFunc->getParent() == OldFunc->getParent()) && | 
|  | "Expected NewFunc to have the same parent, or no parent"); | 
|  |  | 
|  | // Need to find subprograms, types, and compile units. | 
|  | DIFinder.emplace(); | 
|  |  | 
|  | SPClonedWithinModule = OldFunc->getSubprogram(); | 
|  | if (SPClonedWithinModule) | 
|  | DIFinder->processSubprogram(SPClonedWithinModule); | 
|  | } else { | 
|  | assert((NewFunc->getParent() == nullptr || | 
|  | NewFunc->getParent() != OldFunc->getParent()) && | 
|  | "Expected NewFunc to have different parents, or no parent"); | 
|  |  | 
|  | if (Changes == CloneFunctionChangeType::DifferentModule) { | 
|  | assert(NewFunc->getParent() && | 
|  | "Need parent of new function to maintain debug info invariants"); | 
|  |  | 
|  | // Need to find all the compile units. | 
|  | DIFinder.emplace(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the basic blocks in the function, cloning them as | 
|  | // appropriate.  Note that we save BE this way in order to handle cloning of | 
|  | // recursive functions into themselves. | 
|  | for (const BasicBlock &BB : *OldFunc) { | 
|  |  | 
|  | // Create a new basic block and copy instructions into it! | 
|  | BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, | 
|  | DIFinder ? &*DIFinder : nullptr); | 
|  |  | 
|  | // Add basic block mapping. | 
|  | VMap[&BB] = CBB; | 
|  |  | 
|  | // It is only legal to clone a function if a block address within that | 
|  | // function is never referenced outside of the function.  Given that, we | 
|  | // want to map block addresses from the old function to block addresses in | 
|  | // the clone. (This is different from the generic ValueMapper | 
|  | // implementation, which generates an invalid blockaddress when | 
|  | // cloning a function.) | 
|  | if (BB.hasAddressTaken()) { | 
|  | Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), | 
|  | const_cast<BasicBlock *>(&BB)); | 
|  | VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); | 
|  | } | 
|  |  | 
|  | // Note return instructions for the caller. | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) | 
|  | Returns.push_back(RI); | 
|  | } | 
|  |  | 
|  | if (Changes < CloneFunctionChangeType::DifferentModule && | 
|  | DIFinder->subprogram_count() > 0) { | 
|  | // Turn on module-level changes, since we need to clone (some of) the | 
|  | // debug info metadata. | 
|  | // | 
|  | // FIXME: Metadata effectively owned by a function should be made | 
|  | // local, and only that local metadata should be cloned. | 
|  | ModuleLevelChanges = true; | 
|  |  | 
|  | auto mapToSelfIfNew = [&VMap](MDNode *N) { | 
|  | // Avoid clobbering an existing mapping. | 
|  | (void)VMap.MD().try_emplace(N, N); | 
|  | }; | 
|  |  | 
|  | // Avoid cloning types, compile units, and (other) subprograms. | 
|  | SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs; | 
|  | for (DISubprogram *ISP : DIFinder->subprograms()) { | 
|  | if (ISP != SPClonedWithinModule) { | 
|  | mapToSelfIfNew(ISP); | 
|  | MappedToSelfSPs.insert(ISP); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If a subprogram isn't going to be cloned skip its lexical blocks as well. | 
|  | for (DIScope *S : DIFinder->scopes()) { | 
|  | auto *LScope = dyn_cast<DILocalScope>(S); | 
|  | if (LScope && MappedToSelfSPs.count(LScope->getSubprogram())) | 
|  | mapToSelfIfNew(S); | 
|  | } | 
|  |  | 
|  | for (DICompileUnit *CU : DIFinder->compile_units()) | 
|  | mapToSelfIfNew(CU); | 
|  |  | 
|  | for (DIType *Type : DIFinder->types()) | 
|  | mapToSelfIfNew(Type); | 
|  | } else { | 
|  | assert(!SPClonedWithinModule && | 
|  | "Subprogram should be in DIFinder->subprogram_count()..."); | 
|  | } | 
|  |  | 
|  | const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; | 
|  | // Duplicate the metadata that is attached to the cloned function. | 
|  | // Subprograms/CUs/types that were already mapped to themselves won't be | 
|  | // duplicated. | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; | 
|  | OldFunc->getAllMetadata(MDs); | 
|  | for (auto MD : MDs) { | 
|  | NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag, | 
|  | TypeMapper, Materializer)); | 
|  | } | 
|  |  | 
|  | // Loop over all of the instructions in the new function, fixing up operand | 
|  | // references as we go. This uses VMap to do all the hard work. | 
|  | for (Function::iterator | 
|  | BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), | 
|  | BE = NewFunc->end(); | 
|  | BB != BE; ++BB) | 
|  | // Loop over all instructions, fixing each one as we find it... | 
|  | for (Instruction &II : *BB) | 
|  | RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer); | 
|  |  | 
|  | // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the | 
|  | // same module, the compile unit will already be listed (or not). When | 
|  | // cloning a module, CloneModule() will handle creating the named metadata. | 
|  | if (Changes != CloneFunctionChangeType::DifferentModule) | 
|  | return; | 
|  |  | 
|  | // Update !llvm.dbg.cu with compile units added to the new module if this | 
|  | // function is being cloned in isolation. | 
|  | // | 
|  | // FIXME: This is making global / module-level changes, which doesn't seem | 
|  | // like the right encapsulation  Consider dropping the requirement to update | 
|  | // !llvm.dbg.cu (either obsoleting the node, or restricting it to | 
|  | // non-discardable compile units) instead of discovering compile units by | 
|  | // visiting the metadata attached to global values, which would allow this | 
|  | // code to be deleted. Alternatively, perhaps give responsibility for this | 
|  | // update to CloneFunctionInto's callers. | 
|  | auto *NewModule = NewFunc->getParent(); | 
|  | auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); | 
|  | // Avoid multiple insertions of the same DICompileUnit to NMD. | 
|  | SmallPtrSet<const void *, 8> Visited; | 
|  | for (auto *Operand : NMD->operands()) | 
|  | Visited.insert(Operand); | 
|  | for (auto *Unit : DIFinder->compile_units()) { | 
|  | MDNode *MappedUnit = | 
|  | MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); | 
|  | if (Visited.insert(MappedUnit).second) | 
|  | NMD->addOperand(MappedUnit); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return a copy of the specified function and add it to that function's | 
|  | /// module.  Also, any references specified in the VMap are changed to refer to | 
|  | /// their mapped value instead of the original one.  If any of the arguments to | 
|  | /// the function are in the VMap, the arguments are deleted from the resultant | 
|  | /// function.  The VMap is updated to include mappings from all of the | 
|  | /// instructions and basicblocks in the function from their old to new values. | 
|  | /// | 
|  | Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, | 
|  | ClonedCodeInfo *CodeInfo) { | 
|  | std::vector<Type *> ArgTypes; | 
|  |  | 
|  | // The user might be deleting arguments to the function by specifying them in | 
|  | // the VMap.  If so, we need to not add the arguments to the arg ty vector | 
|  | // | 
|  | for (const Argument &I : F->args()) | 
|  | if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? | 
|  | ArgTypes.push_back(I.getType()); | 
|  |  | 
|  | // Create a new function type... | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, | 
|  | F->getFunctionType()->isVarArg()); | 
|  |  | 
|  | // Create the new function... | 
|  | Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), | 
|  | F->getName(), F->getParent()); | 
|  |  | 
|  | // Loop over the arguments, copying the names of the mapped arguments over... | 
|  | Function::arg_iterator DestI = NewF->arg_begin(); | 
|  | for (const Argument &I : F->args()) | 
|  | if (VMap.count(&I) == 0) {     // Is this argument preserved? | 
|  | DestI->setName(I.getName()); // Copy the name over... | 
|  | VMap[&I] = &*DestI++;        // Add mapping to VMap | 
|  | } | 
|  |  | 
|  | SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned. | 
|  | CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, | 
|  | Returns, "", CodeInfo); | 
|  |  | 
|  | return NewF; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// This is a private class used to implement CloneAndPruneFunctionInto. | 
|  | struct PruningFunctionCloner { | 
|  | Function *NewFunc; | 
|  | const Function *OldFunc; | 
|  | ValueToValueMapTy &VMap; | 
|  | bool ModuleLevelChanges; | 
|  | const char *NameSuffix; | 
|  | ClonedCodeInfo *CodeInfo; | 
|  | bool HostFuncIsStrictFP; | 
|  |  | 
|  | Instruction *cloneInstruction(BasicBlock::const_iterator II); | 
|  |  | 
|  | public: | 
|  | PruningFunctionCloner(Function *newFunc, const Function *oldFunc, | 
|  | ValueToValueMapTy &valueMap, bool moduleLevelChanges, | 
|  | const char *nameSuffix, ClonedCodeInfo *codeInfo) | 
|  | : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), | 
|  | ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), | 
|  | CodeInfo(codeInfo) { | 
|  | HostFuncIsStrictFP = | 
|  | newFunc->getAttributes().hasFnAttr(Attribute::StrictFP); | 
|  | } | 
|  |  | 
|  | /// The specified block is found to be reachable, clone it and | 
|  | /// anything that it can reach. | 
|  | void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, | 
|  | std::vector<const BasicBlock *> &ToClone); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | static bool hasRoundingModeOperand(Intrinsic::ID CIID) { | 
|  | switch (CIID) { | 
|  | #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \ | 
|  | case Intrinsic::INTRINSIC:                                                   \ | 
|  | return ROUND_MODE == 1; | 
|  | #define FUNCTION INSTRUCTION | 
|  | #include "llvm/IR/ConstrainedOps.def" | 
|  | default: | 
|  | llvm_unreachable("Unexpected constrained intrinsic id"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction * | 
|  | PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) { | 
|  | const Instruction &OldInst = *II; | 
|  | Instruction *NewInst = nullptr; | 
|  | if (HostFuncIsStrictFP) { | 
|  | Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst); | 
|  | if (CIID != Intrinsic::not_intrinsic) { | 
|  | // Instead of cloning the instruction, a call to constrained intrinsic | 
|  | // should be created. | 
|  | // Assume the first arguments of constrained intrinsics are the same as | 
|  | // the operands of original instruction. | 
|  |  | 
|  | // Determine overloaded types of the intrinsic. | 
|  | SmallVector<Type *, 2> TParams; | 
|  | SmallVector<Intrinsic::IITDescriptor, 8> Descriptor; | 
|  | getIntrinsicInfoTableEntries(CIID, Descriptor); | 
|  | for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) { | 
|  | Intrinsic::IITDescriptor Operand = Descriptor[I]; | 
|  | switch (Operand.Kind) { | 
|  | case Intrinsic::IITDescriptor::Argument: | 
|  | if (Operand.getArgumentKind() != | 
|  | Intrinsic::IITDescriptor::AK_MatchType) { | 
|  | if (I == 0) | 
|  | TParams.push_back(OldInst.getType()); | 
|  | else | 
|  | TParams.push_back(OldInst.getOperand(I - 1)->getType()); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::IITDescriptor::SameVecWidthArgument: | 
|  | ++I; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create intrinsic call. | 
|  | LLVMContext &Ctx = NewFunc->getContext(); | 
|  | Function *IFn = | 
|  | Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams); | 
|  | SmallVector<Value *, 4> Args; | 
|  | unsigned NumOperands = OldInst.getNumOperands(); | 
|  | if (isa<CallInst>(OldInst)) | 
|  | --NumOperands; | 
|  | for (unsigned I = 0; I < NumOperands; ++I) { | 
|  | Value *Op = OldInst.getOperand(I); | 
|  | Args.push_back(Op); | 
|  | } | 
|  | if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) { | 
|  | FCmpInst::Predicate Pred = CmpI->getPredicate(); | 
|  | StringRef PredName = FCmpInst::getPredicateName(Pred); | 
|  | Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName))); | 
|  | } | 
|  |  | 
|  | // The last arguments of a constrained intrinsic are metadata that | 
|  | // represent rounding mode (absents in some intrinsics) and exception | 
|  | // behavior. The inlined function uses default settings. | 
|  | if (hasRoundingModeOperand(CIID)) | 
|  | Args.push_back( | 
|  | MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest"))); | 
|  | Args.push_back( | 
|  | MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore"))); | 
|  |  | 
|  | NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict"); | 
|  | } | 
|  | } | 
|  | if (!NewInst) | 
|  | NewInst = II->clone(); | 
|  | return NewInst; | 
|  | } | 
|  |  | 
|  | /// The specified block is found to be reachable, clone it and | 
|  | /// anything that it can reach. | 
|  | void PruningFunctionCloner::CloneBlock( | 
|  | const BasicBlock *BB, BasicBlock::const_iterator StartingInst, | 
|  | std::vector<const BasicBlock *> &ToClone) { | 
|  | WeakTrackingVH &BBEntry = VMap[BB]; | 
|  |  | 
|  | // Have we already cloned this block? | 
|  | if (BBEntry) | 
|  | return; | 
|  |  | 
|  | // Nope, clone it now. | 
|  | BasicBlock *NewBB; | 
|  | Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : ""); | 
|  | BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc); | 
|  |  | 
|  | // It is only legal to clone a function if a block address within that | 
|  | // function is never referenced outside of the function.  Given that, we | 
|  | // want to map block addresses from the old function to block addresses in | 
|  | // the clone. (This is different from the generic ValueMapper | 
|  | // implementation, which generates an invalid blockaddress when | 
|  | // cloning a function.) | 
|  | // | 
|  | // Note that we don't need to fix the mapping for unreachable blocks; | 
|  | // the default mapping there is safe. | 
|  | if (BB->hasAddressTaken()) { | 
|  | Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), | 
|  | const_cast<BasicBlock *>(BB)); | 
|  | VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); | 
|  | } | 
|  |  | 
|  | bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; | 
|  | bool hasMemProfMetadata = false; | 
|  |  | 
|  | // Loop over all instructions, and copy them over, DCE'ing as we go.  This | 
|  | // loop doesn't include the terminator. | 
|  | for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; | 
|  | ++II) { | 
|  |  | 
|  | Instruction *NewInst = cloneInstruction(II); | 
|  | NewInst->insertInto(NewBB, NewBB->end()); | 
|  |  | 
|  | if (HostFuncIsStrictFP) { | 
|  | // All function calls in the inlined function must get 'strictfp' | 
|  | // attribute to prevent undesirable optimizations. | 
|  | if (auto *Call = dyn_cast<CallInst>(NewInst)) | 
|  | Call->addFnAttr(Attribute::StrictFP); | 
|  | } | 
|  |  | 
|  | // Eagerly remap operands to the newly cloned instruction, except for PHI | 
|  | // nodes for which we defer processing until we update the CFG. Also defer | 
|  | // debug intrinsic processing because they may contain use-before-defs. | 
|  | if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) { | 
|  | RemapInstruction(NewInst, VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); | 
|  |  | 
|  | // If we can simplify this instruction to some other value, simply add | 
|  | // a mapping to that value rather than inserting a new instruction into | 
|  | // the basic block. | 
|  | if (Value *V = | 
|  | simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { | 
|  | // On the off-chance that this simplifies to an instruction in the old | 
|  | // function, map it back into the new function. | 
|  | if (NewFunc != OldFunc) | 
|  | if (Value *MappedV = VMap.lookup(V)) | 
|  | V = MappedV; | 
|  |  | 
|  | if (!NewInst->mayHaveSideEffects()) { | 
|  | VMap[&*II] = V; | 
|  | NewInst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (II->hasName()) | 
|  | NewInst->setName(II->getName() + NameSuffix); | 
|  | VMap[&*II] = NewInst; // Add instruction map to value. | 
|  | if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) { | 
|  | hasCalls = true; | 
|  | hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof); | 
|  | } | 
|  |  | 
|  | if (CodeInfo) { | 
|  | CodeInfo->OrigVMap[&*II] = NewInst; | 
|  | if (auto *CB = dyn_cast<CallBase>(&*II)) | 
|  | if (CB->hasOperandBundles()) | 
|  | CodeInfo->OperandBundleCallSites.push_back(NewInst); | 
|  | } | 
|  |  | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { | 
|  | if (isa<ConstantInt>(AI->getArraySize())) | 
|  | hasStaticAllocas = true; | 
|  | else | 
|  | hasDynamicAllocas = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, clone over the terminator. | 
|  | const Instruction *OldTI = BB->getTerminator(); | 
|  | bool TerminatorDone = false; | 
|  | if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { | 
|  | if (BI->isConditional()) { | 
|  | // If the condition was a known constant in the callee... | 
|  | ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); | 
|  | // Or is a known constant in the caller... | 
|  | if (!Cond) { | 
|  | Value *V = VMap.lookup(BI->getCondition()); | 
|  | Cond = dyn_cast_or_null<ConstantInt>(V); | 
|  | } | 
|  |  | 
|  | // Constant fold to uncond branch! | 
|  | if (Cond) { | 
|  | BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); | 
|  | VMap[OldTI] = BranchInst::Create(Dest, NewBB); | 
|  | ToClone.push_back(Dest); | 
|  | TerminatorDone = true; | 
|  | } | 
|  | } | 
|  | } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { | 
|  | // If switching on a value known constant in the caller. | 
|  | ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); | 
|  | if (!Cond) { // Or known constant after constant prop in the callee... | 
|  | Value *V = VMap.lookup(SI->getCondition()); | 
|  | Cond = dyn_cast_or_null<ConstantInt>(V); | 
|  | } | 
|  | if (Cond) { // Constant fold to uncond branch! | 
|  | SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); | 
|  | BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor()); | 
|  | VMap[OldTI] = BranchInst::Create(Dest, NewBB); | 
|  | ToClone.push_back(Dest); | 
|  | TerminatorDone = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TerminatorDone) { | 
|  | Instruction *NewInst = OldTI->clone(); | 
|  | if (OldTI->hasName()) | 
|  | NewInst->setName(OldTI->getName() + NameSuffix); | 
|  | NewInst->insertInto(NewBB, NewBB->end()); | 
|  | VMap[OldTI] = NewInst; // Add instruction map to value. | 
|  |  | 
|  | if (CodeInfo) { | 
|  | CodeInfo->OrigVMap[OldTI] = NewInst; | 
|  | if (auto *CB = dyn_cast<CallBase>(OldTI)) | 
|  | if (CB->hasOperandBundles()) | 
|  | CodeInfo->OperandBundleCallSites.push_back(NewInst); | 
|  | } | 
|  |  | 
|  | // Recursively clone any reachable successor blocks. | 
|  | append_range(ToClone, successors(BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | if (CodeInfo) { | 
|  | CodeInfo->ContainsCalls |= hasCalls; | 
|  | CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; | 
|  | CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; | 
|  | CodeInfo->ContainsDynamicAllocas |= | 
|  | hasStaticAllocas && BB != &BB->getParent()->front(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This works like CloneAndPruneFunctionInto, except that it does not clone the | 
|  | /// entire function. Instead it starts at an instruction provided by the caller | 
|  | /// and copies (and prunes) only the code reachable from that instruction. | 
|  | void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, | 
|  | const Instruction *StartingInst, | 
|  | ValueToValueMapTy &VMap, | 
|  | bool ModuleLevelChanges, | 
|  | SmallVectorImpl<ReturnInst *> &Returns, | 
|  | const char *NameSuffix, | 
|  | ClonedCodeInfo *CodeInfo) { | 
|  | assert(NameSuffix && "NameSuffix cannot be null!"); | 
|  |  | 
|  | ValueMapTypeRemapper *TypeMapper = nullptr; | 
|  | ValueMaterializer *Materializer = nullptr; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If the cloning starts at the beginning of the function, verify that | 
|  | // the function arguments are mapped. | 
|  | if (!StartingInst) | 
|  | for (const Argument &II : OldFunc->args()) | 
|  | assert(VMap.count(&II) && "No mapping from source argument specified!"); | 
|  | #endif | 
|  |  | 
|  | PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, | 
|  | NameSuffix, CodeInfo); | 
|  | const BasicBlock *StartingBB; | 
|  | if (StartingInst) | 
|  | StartingBB = StartingInst->getParent(); | 
|  | else { | 
|  | StartingBB = &OldFunc->getEntryBlock(); | 
|  | StartingInst = &StartingBB->front(); | 
|  | } | 
|  |  | 
|  | // Collect debug intrinsics for remapping later. | 
|  | SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics; | 
|  | for (const auto &BB : *OldFunc) { | 
|  | for (const auto &I : BB) { | 
|  | if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I)) | 
|  | DbgIntrinsics.push_back(DVI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clone the entry block, and anything recursively reachable from it. | 
|  | std::vector<const BasicBlock *> CloneWorklist; | 
|  | PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); | 
|  | while (!CloneWorklist.empty()) { | 
|  | const BasicBlock *BB = CloneWorklist.back(); | 
|  | CloneWorklist.pop_back(); | 
|  | PFC.CloneBlock(BB, BB->begin(), CloneWorklist); | 
|  | } | 
|  |  | 
|  | // Loop over all of the basic blocks in the old function.  If the block was | 
|  | // reachable, we have cloned it and the old block is now in the value map: | 
|  | // insert it into the new function in the right order.  If not, ignore it. | 
|  | // | 
|  | // Defer PHI resolution until rest of function is resolved. | 
|  | SmallVector<const PHINode *, 16> PHIToResolve; | 
|  | for (const BasicBlock &BI : *OldFunc) { | 
|  | Value *V = VMap.lookup(&BI); | 
|  | BasicBlock *NewBB = cast_or_null<BasicBlock>(V); | 
|  | if (!NewBB) | 
|  | continue; // Dead block. | 
|  |  | 
|  | // Move the new block to preserve the order in the original function. | 
|  | NewBB->moveBefore(NewFunc->end()); | 
|  |  | 
|  | // Handle PHI nodes specially, as we have to remove references to dead | 
|  | // blocks. | 
|  | for (const PHINode &PN : BI.phis()) { | 
|  | // PHI nodes may have been remapped to non-PHI nodes by the caller or | 
|  | // during the cloning process. | 
|  | if (isa<PHINode>(VMap[&PN])) | 
|  | PHIToResolve.push_back(&PN); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Finally, remap the terminator instructions, as those can't be remapped | 
|  | // until all BBs are mapped. | 
|  | RemapInstruction(NewBB->getTerminator(), VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, | 
|  | TypeMapper, Materializer); | 
|  | } | 
|  |  | 
|  | // Defer PHI resolution until rest of function is resolved, PHI resolution | 
|  | // requires the CFG to be up-to-date. | 
|  | for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) { | 
|  | const PHINode *OPN = PHIToResolve[phino]; | 
|  | unsigned NumPreds = OPN->getNumIncomingValues(); | 
|  | const BasicBlock *OldBB = OPN->getParent(); | 
|  | BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); | 
|  |  | 
|  | // Map operands for blocks that are live and remove operands for blocks | 
|  | // that are dead. | 
|  | for (; phino != PHIToResolve.size() && | 
|  | PHIToResolve[phino]->getParent() == OldBB; | 
|  | ++phino) { | 
|  | OPN = PHIToResolve[phino]; | 
|  | PHINode *PN = cast<PHINode>(VMap[OPN]); | 
|  | for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { | 
|  | Value *V = VMap.lookup(PN->getIncomingBlock(pred)); | 
|  | if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { | 
|  | Value *InVal = | 
|  | MapValue(PN->getIncomingValue(pred), VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); | 
|  | assert(InVal && "Unknown input value?"); | 
|  | PN->setIncomingValue(pred, InVal); | 
|  | PN->setIncomingBlock(pred, MappedBlock); | 
|  | } else { | 
|  | PN->removeIncomingValue(pred, false); | 
|  | --pred; // Revisit the next entry. | 
|  | --e; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The loop above has removed PHI entries for those blocks that are dead | 
|  | // and has updated others.  However, if a block is live (i.e. copied over) | 
|  | // but its terminator has been changed to not go to this block, then our | 
|  | // phi nodes will have invalid entries.  Update the PHI nodes in this | 
|  | // case. | 
|  | PHINode *PN = cast<PHINode>(NewBB->begin()); | 
|  | NumPreds = pred_size(NewBB); | 
|  | if (NumPreds != PN->getNumIncomingValues()) { | 
|  | assert(NumPreds < PN->getNumIncomingValues()); | 
|  | // Count how many times each predecessor comes to this block. | 
|  | std::map<BasicBlock *, unsigned> PredCount; | 
|  | for (BasicBlock *Pred : predecessors(NewBB)) | 
|  | --PredCount[Pred]; | 
|  |  | 
|  | // Figure out how many entries to remove from each PHI. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | ++PredCount[PN->getIncomingBlock(i)]; | 
|  |  | 
|  | // At this point, the excess predecessor entries are positive in the | 
|  | // map.  Loop over all of the PHIs and remove excess predecessor | 
|  | // entries. | 
|  | BasicBlock::iterator I = NewBB->begin(); | 
|  | for (; (PN = dyn_cast<PHINode>(I)); ++I) { | 
|  | for (const auto &PCI : PredCount) { | 
|  | BasicBlock *Pred = PCI.first; | 
|  | for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) | 
|  | PN->removeIncomingValue(Pred, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the loops above have made these phi nodes have 0 or 1 operand, | 
|  | // replace them with poison or the input value.  We must do this for | 
|  | // correctness, because 0-operand phis are not valid. | 
|  | PN = cast<PHINode>(NewBB->begin()); | 
|  | if (PN->getNumIncomingValues() == 0) { | 
|  | BasicBlock::iterator I = NewBB->begin(); | 
|  | BasicBlock::const_iterator OldI = OldBB->begin(); | 
|  | while ((PN = dyn_cast<PHINode>(I++))) { | 
|  | Value *NV = PoisonValue::get(PN->getType()); | 
|  | PN->replaceAllUsesWith(NV); | 
|  | assert(VMap[&*OldI] == PN && "VMap mismatch"); | 
|  | VMap[&*OldI] = NV; | 
|  | PN->eraseFromParent(); | 
|  | ++OldI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make a second pass over the PHINodes now that all of them have been | 
|  | // remapped into the new function, simplifying the PHINode and performing any | 
|  | // recursive simplifications exposed. This will transparently update the | 
|  | // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce | 
|  | // two PHINodes, the iteration over the old PHIs remains valid, and the | 
|  | // mapping will just map us to the new node (which may not even be a PHI | 
|  | // node). | 
|  | const DataLayout &DL = NewFunc->getParent()->getDataLayout(); | 
|  | SmallSetVector<const Value *, 8> Worklist; | 
|  | for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) | 
|  | if (isa<PHINode>(VMap[PHIToResolve[Idx]])) | 
|  | Worklist.insert(PHIToResolve[Idx]); | 
|  |  | 
|  | // Note that we must test the size on each iteration, the worklist can grow. | 
|  | for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { | 
|  | const Value *OrigV = Worklist[Idx]; | 
|  | auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); | 
|  | if (!I) | 
|  | continue; | 
|  |  | 
|  | // Skip over non-intrinsic callsites, we don't want to remove any nodes from | 
|  | // the CGSCC. | 
|  | CallBase *CB = dyn_cast<CallBase>(I); | 
|  | if (CB && CB->getCalledFunction() && | 
|  | !CB->getCalledFunction()->isIntrinsic()) | 
|  | continue; | 
|  |  | 
|  | // See if this instruction simplifies. | 
|  | Value *SimpleV = simplifyInstruction(I, DL); | 
|  | if (!SimpleV) | 
|  | continue; | 
|  |  | 
|  | // Stash away all the uses of the old instruction so we can check them for | 
|  | // recursive simplifications after a RAUW. This is cheaper than checking all | 
|  | // uses of To on the recursive step in most cases. | 
|  | for (const User *U : OrigV->users()) | 
|  | Worklist.insert(cast<Instruction>(U)); | 
|  |  | 
|  | // Replace the instruction with its simplified value. | 
|  | I->replaceAllUsesWith(SimpleV); | 
|  |  | 
|  | // If the original instruction had no side effects, remove it. | 
|  | if (isInstructionTriviallyDead(I)) | 
|  | I->eraseFromParent(); | 
|  | else | 
|  | VMap[OrigV] = I; | 
|  | } | 
|  |  | 
|  | // Remap debug intrinsic operands now that all values have been mapped. | 
|  | // Doing this now (late) preserves use-before-defs in debug intrinsics. If | 
|  | // we didn't do this, ValueAsMetadata(use-before-def) operands would be | 
|  | // replaced by empty metadata. This would signal later cleanup passes to | 
|  | // remove the debug intrinsics, potentially causing incorrect locations. | 
|  | for (const auto *DVI : DbgIntrinsics) { | 
|  | if (DbgVariableIntrinsic *NewDVI = | 
|  | cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI))) | 
|  | RemapInstruction(NewDVI, VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, | 
|  | TypeMapper, Materializer); | 
|  | } | 
|  |  | 
|  | // Simplify conditional branches and switches with a constant operand. We try | 
|  | // to prune these out when cloning, but if the simplification required | 
|  | // looking through PHI nodes, those are only available after forming the full | 
|  | // basic block. That may leave some here, and we still want to prune the dead | 
|  | // code as early as possible. | 
|  | Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); | 
|  | for (BasicBlock &BB : make_range(Begin, NewFunc->end())) | 
|  | ConstantFoldTerminator(&BB); | 
|  |  | 
|  | // Some blocks may have become unreachable as a result. Find and delete them. | 
|  | { | 
|  | SmallPtrSet<BasicBlock *, 16> ReachableBlocks; | 
|  | SmallVector<BasicBlock *, 16> Worklist; | 
|  | Worklist.push_back(&*Begin); | 
|  | while (!Worklist.empty()) { | 
|  | BasicBlock *BB = Worklist.pop_back_val(); | 
|  | if (ReachableBlocks.insert(BB).second) | 
|  | append_range(Worklist, successors(BB)); | 
|  | } | 
|  |  | 
|  | SmallVector<BasicBlock *, 16> UnreachableBlocks; | 
|  | for (BasicBlock &BB : make_range(Begin, NewFunc->end())) | 
|  | if (!ReachableBlocks.contains(&BB)) | 
|  | UnreachableBlocks.push_back(&BB); | 
|  | DeleteDeadBlocks(UnreachableBlocks); | 
|  | } | 
|  |  | 
|  | // Now that the inlined function body has been fully constructed, go through | 
|  | // and zap unconditional fall-through branches. This happens all the time when | 
|  | // specializing code: code specialization turns conditional branches into | 
|  | // uncond branches, and this code folds them. | 
|  | Function::iterator I = Begin; | 
|  | while (I != NewFunc->end()) { | 
|  | BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); | 
|  | if (!BI || BI->isConditional()) { | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BasicBlock *Dest = BI->getSuccessor(0); | 
|  | if (!Dest->getSinglePredecessor()) { | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We shouldn't be able to get single-entry PHI nodes here, as instsimplify | 
|  | // above should have zapped all of them.. | 
|  | assert(!isa<PHINode>(Dest->begin())); | 
|  |  | 
|  | // We know all single-entry PHI nodes in the inlined function have been | 
|  | // removed, so we just need to splice the blocks. | 
|  | BI->eraseFromParent(); | 
|  |  | 
|  | // Make all PHI nodes that referred to Dest now refer to I as their source. | 
|  | Dest->replaceAllUsesWith(&*I); | 
|  |  | 
|  | // Move all the instructions in the succ to the pred. | 
|  | I->splice(I->end(), Dest); | 
|  |  | 
|  | // Remove the dest block. | 
|  | Dest->eraseFromParent(); | 
|  |  | 
|  | // Do not increment I, iteratively merge all things this block branches to. | 
|  | } | 
|  |  | 
|  | // Make a final pass over the basic blocks from the old function to gather | 
|  | // any return instructions which survived folding. We have to do this here | 
|  | // because we can iteratively remove and merge returns above. | 
|  | for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), | 
|  | E = NewFunc->end(); | 
|  | I != E; ++I) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) | 
|  | Returns.push_back(RI); | 
|  | } | 
|  |  | 
|  | /// This works exactly like CloneFunctionInto, | 
|  | /// except that it does some simple constant prop and DCE on the fly.  The | 
|  | /// effect of this is to copy significantly less code in cases where (for | 
|  | /// example) a function call with constant arguments is inlined, and those | 
|  | /// constant arguments cause a significant amount of code in the callee to be | 
|  | /// dead.  Since this doesn't produce an exact copy of the input, it can't be | 
|  | /// used for things like CloneFunction or CloneModule. | 
|  | void llvm::CloneAndPruneFunctionInto( | 
|  | Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, | 
|  | bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns, | 
|  | const char *NameSuffix, ClonedCodeInfo *CodeInfo) { | 
|  | CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, | 
|  | ModuleLevelChanges, Returns, NameSuffix, CodeInfo); | 
|  | } | 
|  |  | 
|  | /// Remaps instructions in \p Blocks using the mapping in \p VMap. | 
|  | void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks, | 
|  | ValueToValueMapTy &VMap) { | 
|  | // Rewrite the code to refer to itself. | 
|  | for (auto *BB : Blocks) | 
|  | for (auto &Inst : *BB) | 
|  | RemapInstruction(&Inst, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | } | 
|  |  | 
|  | /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p | 
|  | /// Blocks. | 
|  | /// | 
|  | /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block | 
|  | /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before. | 
|  | Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, | 
|  | Loop *OrigLoop, ValueToValueMapTy &VMap, | 
|  | const Twine &NameSuffix, LoopInfo *LI, | 
|  | DominatorTree *DT, | 
|  | SmallVectorImpl<BasicBlock *> &Blocks) { | 
|  | Function *F = OrigLoop->getHeader()->getParent(); | 
|  | Loop *ParentLoop = OrigLoop->getParentLoop(); | 
|  | DenseMap<Loop *, Loop *> LMap; | 
|  |  | 
|  | Loop *NewLoop = LI->AllocateLoop(); | 
|  | LMap[OrigLoop] = NewLoop; | 
|  | if (ParentLoop) | 
|  | ParentLoop->addChildLoop(NewLoop); | 
|  | else | 
|  | LI->addTopLevelLoop(NewLoop); | 
|  |  | 
|  | BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); | 
|  | assert(OrigPH && "No preheader"); | 
|  | BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); | 
|  | // To rename the loop PHIs. | 
|  | VMap[OrigPH] = NewPH; | 
|  | Blocks.push_back(NewPH); | 
|  |  | 
|  | // Update LoopInfo. | 
|  | if (ParentLoop) | 
|  | ParentLoop->addBasicBlockToLoop(NewPH, *LI); | 
|  |  | 
|  | // Update DominatorTree. | 
|  | DT->addNewBlock(NewPH, LoopDomBB); | 
|  |  | 
|  | for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { | 
|  | Loop *&NewLoop = LMap[CurLoop]; | 
|  | if (!NewLoop) { | 
|  | NewLoop = LI->AllocateLoop(); | 
|  |  | 
|  | // Establish the parent/child relationship. | 
|  | Loop *OrigParent = CurLoop->getParentLoop(); | 
|  | assert(OrigParent && "Could not find the original parent loop"); | 
|  | Loop *NewParentLoop = LMap[OrigParent]; | 
|  | assert(NewParentLoop && "Could not find the new parent loop"); | 
|  |  | 
|  | NewParentLoop->addChildLoop(NewLoop); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (BasicBlock *BB : OrigLoop->getBlocks()) { | 
|  | Loop *CurLoop = LI->getLoopFor(BB); | 
|  | Loop *&NewLoop = LMap[CurLoop]; | 
|  | assert(NewLoop && "Expecting new loop to be allocated"); | 
|  |  | 
|  | BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); | 
|  | VMap[BB] = NewBB; | 
|  |  | 
|  | // Update LoopInfo. | 
|  | NewLoop->addBasicBlockToLoop(NewBB, *LI); | 
|  |  | 
|  | // Add DominatorTree node. After seeing all blocks, update to correct | 
|  | // IDom. | 
|  | DT->addNewBlock(NewBB, NewPH); | 
|  |  | 
|  | Blocks.push_back(NewBB); | 
|  | } | 
|  |  | 
|  | for (BasicBlock *BB : OrigLoop->getBlocks()) { | 
|  | // Update loop headers. | 
|  | Loop *CurLoop = LI->getLoopFor(BB); | 
|  | if (BB == CurLoop->getHeader()) | 
|  | LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); | 
|  |  | 
|  | // Update DominatorTree. | 
|  | BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); | 
|  | DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), | 
|  | cast<BasicBlock>(VMap[IDomBB])); | 
|  | } | 
|  |  | 
|  | // Move them physically from the end of the block list. | 
|  | F->splice(Before->getIterator(), F, NewPH->getIterator()); | 
|  | F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(), | 
|  | F->end()); | 
|  |  | 
|  | return NewLoop; | 
|  | } | 
|  |  | 
|  | /// Duplicate non-Phi instructions from the beginning of block up to | 
|  | /// StopAt instruction into a split block between BB and its predecessor. | 
|  | BasicBlock *llvm::DuplicateInstructionsInSplitBetween( | 
|  | BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, | 
|  | ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { | 
|  |  | 
|  | assert(count(successors(PredBB), BB) == 1 && | 
|  | "There must be a single edge between PredBB and BB!"); | 
|  | // We are going to have to map operands from the original BB block to the new | 
|  | // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to | 
|  | // account for entry from PredBB. | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) | 
|  | ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); | 
|  |  | 
|  | BasicBlock *NewBB = SplitEdge(PredBB, BB); | 
|  | NewBB->setName(PredBB->getName() + ".split"); | 
|  | Instruction *NewTerm = NewBB->getTerminator(); | 
|  |  | 
|  | // FIXME: SplitEdge does not yet take a DTU, so we include the split edge | 
|  | //        in the update set here. | 
|  | DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, | 
|  | {DominatorTree::Insert, PredBB, NewBB}, | 
|  | {DominatorTree::Insert, NewBB, BB}}); | 
|  |  | 
|  | // Clone the non-phi instructions of BB into NewBB, keeping track of the | 
|  | // mapping and using it to remap operands in the cloned instructions. | 
|  | // Stop once we see the terminator too. This covers the case where BB's | 
|  | // terminator gets replaced and StopAt == BB's terminator. | 
|  | for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { | 
|  | Instruction *New = BI->clone(); | 
|  | New->setName(BI->getName()); | 
|  | New->insertBefore(NewTerm); | 
|  | ValueMapping[&*BI] = New; | 
|  |  | 
|  | // Remap operands to patch up intra-block references. | 
|  | for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { | 
|  | auto I = ValueMapping.find(Inst); | 
|  | if (I != ValueMapping.end()) | 
|  | New->setOperand(i, I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, | 
|  | DenseMap<MDNode *, MDNode *> &ClonedScopes, | 
|  | StringRef Ext, LLVMContext &Context) { | 
|  | MDBuilder MDB(Context); | 
|  |  | 
|  | for (auto *ScopeList : NoAliasDeclScopes) { | 
|  | for (const auto &MDOperand : ScopeList->operands()) { | 
|  | if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { | 
|  | AliasScopeNode SNANode(MD); | 
|  |  | 
|  | std::string Name; | 
|  | auto ScopeName = SNANode.getName(); | 
|  | if (!ScopeName.empty()) | 
|  | Name = (Twine(ScopeName) + ":" + Ext).str(); | 
|  | else | 
|  | Name = std::string(Ext); | 
|  |  | 
|  | MDNode *NewScope = MDB.createAnonymousAliasScope( | 
|  | const_cast<MDNode *>(SNANode.getDomain()), Name); | 
|  | ClonedScopes.insert(std::make_pair(MD, NewScope)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void llvm::adaptNoAliasScopes(Instruction *I, | 
|  | const DenseMap<MDNode *, MDNode *> &ClonedScopes, | 
|  | LLVMContext &Context) { | 
|  | auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { | 
|  | bool NeedsReplacement = false; | 
|  | SmallVector<Metadata *, 8> NewScopeList; | 
|  | for (const auto &MDOp : ScopeList->operands()) { | 
|  | if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { | 
|  | if (auto *NewMD = ClonedScopes.lookup(MD)) { | 
|  | NewScopeList.push_back(NewMD); | 
|  | NeedsReplacement = true; | 
|  | continue; | 
|  | } | 
|  | NewScopeList.push_back(MD); | 
|  | } | 
|  | } | 
|  | if (NeedsReplacement) | 
|  | return MDNode::get(Context, NewScopeList); | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) | 
|  | if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) | 
|  | Decl->setScopeList(NewScopeList); | 
|  |  | 
|  | auto replaceWhenNeeded = [&](unsigned MD_ID) { | 
|  | if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) | 
|  | if (auto *NewScopeList = CloneScopeList(CSNoAlias)) | 
|  | I->setMetadata(MD_ID, NewScopeList); | 
|  | }; | 
|  | replaceWhenNeeded(LLVMContext::MD_noalias); | 
|  | replaceWhenNeeded(LLVMContext::MD_alias_scope); | 
|  | } | 
|  |  | 
|  | void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, | 
|  | ArrayRef<BasicBlock *> NewBlocks, | 
|  | LLVMContext &Context, StringRef Ext) { | 
|  | if (NoAliasDeclScopes.empty()) | 
|  | return; | 
|  |  | 
|  | DenseMap<MDNode *, MDNode *> ClonedScopes; | 
|  | LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " | 
|  | << NoAliasDeclScopes.size() << " node(s)\n"); | 
|  |  | 
|  | cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); | 
|  | // Identify instructions using metadata that needs adaptation | 
|  | for (BasicBlock *NewBlock : NewBlocks) | 
|  | for (Instruction &I : *NewBlock) | 
|  | adaptNoAliasScopes(&I, ClonedScopes, Context); | 
|  | } | 
|  |  | 
|  | void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, | 
|  | Instruction *IStart, Instruction *IEnd, | 
|  | LLVMContext &Context, StringRef Ext) { | 
|  | if (NoAliasDeclScopes.empty()) | 
|  | return; | 
|  |  | 
|  | DenseMap<MDNode *, MDNode *> ClonedScopes; | 
|  | LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " | 
|  | << NoAliasDeclScopes.size() << " node(s)\n"); | 
|  |  | 
|  | cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); | 
|  | // Identify instructions using metadata that needs adaptation | 
|  | assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); | 
|  | auto ItStart = IStart->getIterator(); | 
|  | auto ItEnd = IEnd->getIterator(); | 
|  | ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range | 
|  | for (auto &I : llvm::make_range(ItStart, ItEnd)) | 
|  | adaptNoAliasScopes(&I, ClonedScopes, Context); | 
|  | } | 
|  |  | 
|  | void llvm::identifyNoAliasScopesToClone( | 
|  | ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { | 
|  | for (BasicBlock *BB : BBs) | 
|  | for (Instruction &I : *BB) | 
|  | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) | 
|  | NoAliasDeclScopes.push_back(Decl->getScopeList()); | 
|  | } | 
|  |  | 
|  | void llvm::identifyNoAliasScopesToClone( | 
|  | BasicBlock::iterator Start, BasicBlock::iterator End, | 
|  | SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { | 
|  | for (Instruction &I : make_range(Start, End)) | 
|  | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) | 
|  | NoAliasDeclScopes.push_back(Decl->getScopeList()); | 
|  | } |