| //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements lowering of vector operations to GPU dialect ops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <type_traits> |
| |
| #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" |
| |
| #include "../PassDetail.h" |
| #include "mlir/Analysis/SliceAnalysis.h" |
| #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
| #include "mlir/Dialect/GPU/GPUDialect.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/SCF/SCF.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/VectorOps.h" |
| #include "mlir/Dialect/Vector/VectorUtils.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "mlir/Transforms/Passes.h" |
| |
| using namespace mlir; |
| |
| // Return true if the contract op can be convert to MMA matmul. |
| static bool contractSupportsMMAMatrixType(vector::ContractionOp contract) { |
| if (llvm::size(contract.masks()) != 0) |
| return false; |
| |
| using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; |
| AffineExpr m, n, k; |
| bindDims(contract.getContext(), m, n, k); |
| auto iteratorTypes = contract.iterator_types().getValue(); |
| if (!(isParallelIterator(iteratorTypes[0]) && |
| isParallelIterator(iteratorTypes[1]) && |
| isReductionIterator(iteratorTypes[2]))) |
| return false; |
| |
| // The contract needs to represent a matmul to be able to convert to |
| // MMAMatrix matmul. |
| if (contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}})) |
| return false; |
| |
| return true; |
| } |
| |
| // Return the stide for the dimension 0 of |type| if it is a memref and has a |
| // constant stride. |
| static llvm::Optional<int64_t> |
| getMemrefConstantHorizontalStride(ShapedType type) { |
| auto memrefType = type.dyn_cast<MemRefType>(); |
| if (!memrefType) |
| return false; |
| int64_t offset = 0; |
| SmallVector<int64_t, 2> strides; |
| if (failed(getStridesAndOffset(memrefType, strides, offset))) |
| return llvm::None; |
| if (strides[0] == ShapedType::kDynamicStrideOrOffset) |
| return llvm::None; |
| return strides[0]; |
| } |
| |
| // Return true if the transfer op can be converted to a MMA matrix load. |
| static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) { |
| if (readOp.mask() || readOp.hasOutOfBoundsDim() || |
| readOp.getVectorType().getRank() != 2) |
| return false; |
| if (!getMemrefConstantHorizontalStride(readOp.getShapedType())) |
| return false; |
| AffineMap map = readOp.permutation_map(); |
| OpBuilder b(readOp.getContext()); |
| AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1); |
| AffineExpr zero = b.getAffineConstantExpr(0); |
| auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim}, |
| readOp.getContext()); |
| // TODO: Support transpose once it is added to GPU dialect ops. |
| // For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1). |
| if (!map.isMinorIdentity() && map != broadcastInnerDim) |
| return false; |
| return true; |
| } |
| |
| // Return true if the transfer op can be converted to a MMA matrix store. |
| static bool |
| transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { |
| if (writeOp.mask() || writeOp.hasOutOfBoundsDim() || |
| writeOp.getVectorType().getRank() != 2) |
| return false; |
| if (!getMemrefConstantHorizontalStride(writeOp.getShapedType())) |
| return false; |
| // TODO: Support transpose once it is added to GPU dialect ops. |
| if (!writeOp.permutation_map().isMinorIdentity()) |
| return false; |
| return true; |
| } |
| |
| /// Return true if the constant is a splat to a 2D vector so that it can be |
| /// converted to a MMA constant matrix op. |
| static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) { |
| auto vecType = constantOp.getType().dyn_cast<VectorType>(); |
| if (!vecType || vecType.getRank() != 2) |
| return false; |
| return constantOp.getValue().isa<SplatElementsAttr>(); |
| } |
| |
| /// Return true if this is a broadcast from scalar to a 2D vector. |
| static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) { |
| return broadcastOp.getVectorType().getRank() == 2 && |
| broadcastOp.source().getType().isa<FloatType>(); |
| } |
| |
| /// Return the MMA elementwise enum associated with `op` if it is supported. |
| /// Return `llvm::None` otherwise. |
| static llvm::Optional<gpu::MMAElementwiseOp> |
| convertElementwiseOpToMMA(Operation *op) { |
| if (isa<arith::AddFOp>(op)) |
| return gpu::MMAElementwiseOp::ADDF; |
| if (isa<arith::MulFOp>(op)) |
| return gpu::MMAElementwiseOp::MULF; |
| if (isa<arith::MaxFOp>(op)) |
| return gpu::MMAElementwiseOp::MAXF; |
| if (isa<arith::MinFOp>(op)) |
| return gpu::MMAElementwiseOp::MINF; |
| if (isa<arith::DivFOp>(op)) |
| return gpu::MMAElementwiseOp::DIVF; |
| return llvm::None; |
| } |
| |
| /// Return true if the op is supported as elementwise op on MMAMatrix type. |
| static bool elementwiseSupportsMMAMatrixType(Operation *op) { |
| return convertElementwiseOpToMMA(op).hasValue(); |
| } |
| |
| static bool supportsMMaMatrixType(Operation *op) { |
| if (isa<scf::ForOp, scf::YieldOp>(op)) |
| return true; |
| if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) |
| return transferReadSupportsMMAMatrixType(transferRead); |
| if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) |
| return transferWriteSupportsMMAMatrixType(transferWrite); |
| if (auto contract = dyn_cast<vector::ContractionOp>(op)) |
| return contractSupportsMMAMatrixType(contract); |
| if (auto constant = dyn_cast<arith::ConstantOp>(op)) |
| return constantSupportsMMAMatrixType(constant); |
| if (auto broadcast = dyn_cast<vector::BroadcastOp>(op)) |
| return broadcastSupportsMMAMatrixType(broadcast); |
| return elementwiseSupportsMMAMatrixType(op); |
| } |
| |
| /// Return an unsorted slice handling scf.for region differently than |
| /// `getSlice`. In scf.for we only want to include as part of the slice elements |
| /// that are part of the use/def chain. |
| static SetVector<Operation *> getSliceContract(Operation *op, |
| TransitiveFilter backwardFilter, |
| TransitiveFilter forwardFilter) { |
| SetVector<Operation *> slice; |
| slice.insert(op); |
| unsigned currentIndex = 0; |
| SetVector<Operation *> backwardSlice; |
| SetVector<Operation *> forwardSlice; |
| while (currentIndex != slice.size()) { |
| auto *currentOp = (slice)[currentIndex]; |
| // Compute and insert the backwardSlice starting from currentOp. |
| backwardSlice.clear(); |
| getBackwardSlice(currentOp, &backwardSlice, backwardFilter); |
| slice.insert(backwardSlice.begin(), backwardSlice.end()); |
| |
| // Compute and insert the forwardSlice starting from currentOp. |
| forwardSlice.clear(); |
| // Special case for ForOp, we don't want to include the whole region but |
| // only the value using the region arguments. |
| // TODO: We should refine this to only care about the region arguments being |
| // converted to matrix type. |
| if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) { |
| for (Value forOpResult : forOp.getResults()) |
| getForwardSlice(forOpResult, &forwardSlice, forwardFilter); |
| for (BlockArgument &arg : forOp.getRegionIterArgs()) |
| getForwardSlice(arg, &forwardSlice, forwardFilter); |
| } else { |
| getForwardSlice(currentOp, &forwardSlice, forwardFilter); |
| } |
| slice.insert(forwardSlice.begin(), forwardSlice.end()); |
| ++currentIndex; |
| } |
| return slice; |
| } |
| |
| // Analyze slice of operations based on convert op to figure out if the whole |
| // slice can be converted to MMA operations. |
| static SetVector<Operation *> getOpToConvert(mlir::Operation *op) { |
| auto hasVectorDest = [](Operation *op) { |
| return llvm::any_of(op->getResultTypes(), |
| [](Type t) { return t.isa<VectorType>(); }); |
| }; |
| auto hasVectorSrc = [](Operation *op) { |
| return llvm::any_of(op->getOperandTypes(), |
| [](Type t) { return t.isa<VectorType>(); }); |
| }; |
| SetVector<Operation *> opToConvert; |
| op->walk([&](vector::ContractionOp contract) { |
| if (opToConvert.contains(contract.getOperation())) |
| return; |
| SetVector<Operation *> dependentOps = |
| getSliceContract(contract, hasVectorDest, hasVectorSrc); |
| // If any instruction cannot use MMA matrix type drop the whole |
| // chain. MMA matrix are stored in an opaque type so they cannot be used |
| // by all operations. |
| if (llvm::any_of(dependentOps, |
| [](Operation *op) { return !supportsMMaMatrixType(op); })) |
| return; |
| opToConvert.insert(dependentOps.begin(), dependentOps.end()); |
| }); |
| // Sort the operations so that we can convert them in topological order. |
| return topologicalSort(opToConvert); |
| } |
| |
| namespace { |
| // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted |
| // to MMA matmul. |
| struct PrepareContractToGPUMMA |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp op, |
| PatternRewriter &rewriter) const override { |
| Location loc = op.getLoc(); |
| Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc(); |
| |
| // Set up the parallel/reduction structure in right form. |
| using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; |
| AffineExpr m, n, k; |
| bindDims(rewriter.getContext(), m, n, k); |
| static constexpr std::array<int64_t, 2> perm = {1, 0}; |
| auto iteratorTypes = op.iterator_types().getValue(); |
| SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); |
| if (!(isParallelIterator(iteratorTypes[0]) && |
| isParallelIterator(iteratorTypes[1]) && |
| isReductionIterator(iteratorTypes[2]))) |
| return failure(); |
| // |
| // Two outer parallel, one inner reduction (matmat flavor). |
| // |
| if (maps == infer({{m, k}, {k, n}, {m, n}})) { |
| // This is the classical row-major matmul, nothing to do. |
| return failure(); |
| } |
| if (maps == infer({{m, k}, {n, k}, {m, n}})) { |
| rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
| lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
| rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
| std::swap(rhs, lhs); |
| rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
| std::swap(rhs, lhs); |
| rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
| std::swap(lhs, rhs); |
| lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
| std::swap(lhs, rhs); |
| } else { |
| return failure(); |
| } |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| op, lhs, rhs, res, |
| rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})), |
| op.iterator_types()); |
| return success(); |
| } |
| }; |
| |
| // Merge transpose op into the transfer read op. Transpose are not supported on |
| // MMA types but MMA load can transpose the matrix when loading. |
| struct CombineTransferReadOpTranspose final |
| : public OpRewritePattern<vector::TransposeOp> { |
| using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransposeOp op, |
| PatternRewriter &rewriter) const override { |
| auto transferReadOp = op.vector().getDefiningOp<vector::TransferReadOp>(); |
| if (!transferReadOp) |
| return failure(); |
| if (transferReadOp.mask() || transferReadOp.hasOutOfBoundsDim()) |
| return failure(); |
| SmallVector<int64_t, 2> perm; |
| op.getTransp(perm); |
| SmallVector<unsigned, 2> permU; |
| for (int64_t o : perm) |
| permU.push_back(unsigned(o)); |
| AffineMap permutationMap = |
| AffineMap::getPermutationMap(permU, op.getContext()); |
| AffineMap newMap = permutationMap.compose(transferReadOp.permutation_map()); |
| rewriter.replaceOpWithNewOp<vector::TransferReadOp>( |
| op, op.getType(), transferReadOp.source(), transferReadOp.indices(), |
| newMap, transferReadOp.padding(), transferReadOp.mask(), |
| transferReadOp.in_boundsAttr()); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| // MMA types have different layout based on how they are used in matmul ops. |
| // Figure the right layout to use by looking at op uses. |
| // TODO: Change the GPU dialect to abstract the layout at the this level and |
| // only care about it during lowering to NVVM. |
| template <typename OpTy> |
| static const char *inferFragType(OpTy op) { |
| for (Operation *users : op->getUsers()) { |
| auto contract = dyn_cast<vector::ContractionOp>(users); |
| if (!contract) |
| continue; |
| if (contract.lhs() == op.getResult()) |
| return "AOp"; |
| if (contract.rhs() == op.getResult()) |
| return "BOp"; |
| } |
| return "COp"; |
| } |
| |
| static void convertTransferReadOp(vector::TransferReadOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| assert(transferReadSupportsMMAMatrixType(op)); |
| Optional<int64_t> stride = |
| getMemrefConstantHorizontalStride(op.getShapedType()); |
| AffineMap map = op.permutation_map(); |
| // Handle broadcast by setting the stride to 0. |
| if (map.getResult(0).isa<AffineConstantExpr>()) { |
| assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0); |
| stride = 0; |
| } |
| assert(stride); |
| const char *fragType = inferFragType(op); |
| gpu::MMAMatrixType type = |
| gpu::MMAMatrixType::get(op.getVectorType().getShape(), |
| op.getVectorType().getElementType(), fragType); |
| OpBuilder b(op); |
| Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>( |
| op.getLoc(), type, op.source(), op.indices(), b.getIndexAttr(*stride)); |
| valueMapping[op.getResult()] = load; |
| } |
| |
| static void convertTransferWriteOp(vector::TransferWriteOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| assert(transferWriteSupportsMMAMatrixType(op)); |
| Optional<int64_t> stride = |
| getMemrefConstantHorizontalStride(op.getShapedType()); |
| assert(stride); |
| OpBuilder b(op); |
| Value matrix = valueMapping.find(op.vector())->second; |
| b.create<gpu::SubgroupMmaStoreMatrixOp>( |
| op.getLoc(), matrix, op.source(), op.indices(), b.getIndexAttr(*stride)); |
| op.erase(); |
| } |
| |
| static void convertContractOp(vector::ContractionOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| OpBuilder b(op); |
| Value opA = valueMapping.find(op.lhs())->second; |
| Value opB = valueMapping.find(op.rhs())->second; |
| Value opC = valueMapping.find(op.acc())->second; |
| Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(), |
| opA, opB, opC); |
| valueMapping[op.getResult()] = matmul; |
| } |
| |
| /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. |
| static void convertConstantOp(arith::ConstantOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| assert(constantSupportsMMAMatrixType(op)); |
| OpBuilder b(op); |
| Attribute splat = |
| op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>(); |
| auto scalarConstant = |
| b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat); |
| const char *fragType = inferFragType(op); |
| auto vecType = op.getType().cast<VectorType>(); |
| gpu::MMAMatrixType type = gpu::MMAMatrixType::get( |
| vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); |
| auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, |
| scalarConstant); |
| valueMapping[op.getResult()] = matrix; |
| } |
| |
| /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op. |
| static void convertBroadcastOp(vector::BroadcastOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| assert(broadcastSupportsMMAMatrixType(op)); |
| OpBuilder b(op); |
| const char *fragType = inferFragType(op); |
| auto vecType = op.getVectorType(); |
| gpu::MMAMatrixType type = gpu::MMAMatrixType::get( |
| vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); |
| auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, |
| op.source()); |
| valueMapping[op.getResult()] = matrix; |
| } |
| |
| // Replace ForOp with a new ForOp with extra operands. The YieldOp is not |
| // updated and needs to be updated separatly for the loop to be correct. |
| static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop, |
| ValueRange newIterOperands) { |
| // Create a new loop before the existing one, with the extra operands. |
| OpBuilder::InsertionGuard g(b); |
| b.setInsertionPoint(loop); |
| auto operands = llvm::to_vector<4>(loop.getIterOperands()); |
| operands.append(newIterOperands.begin(), newIterOperands.end()); |
| scf::ForOp newLoop = |
| b.create<scf::ForOp>(loop.getLoc(), loop.lowerBound(), loop.upperBound(), |
| loop.step(), operands); |
| newLoop.getBody()->erase(); |
| newLoop.getLoopBody().getBlocks().splice( |
| newLoop.getLoopBody().getBlocks().begin(), |
| loop.getLoopBody().getBlocks()); |
| for (auto operand : newIterOperands) |
| newLoop.getBody()->addArgument(operand.getType()); |
| |
| for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front( |
| loop.getNumResults()))) |
| std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); |
| loop.erase(); |
| return newLoop; |
| } |
| |
| static void convertForOp(scf::ForOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| SmallVector<Value> newOperands; |
| SmallVector<std::pair<size_t, size_t>> argMapping; |
| for (auto operand : llvm::enumerate(op.getIterOperands())) { |
| auto it = valueMapping.find(operand.value()); |
| if (it == valueMapping.end()) |
| continue; |
| argMapping.push_back(std::make_pair( |
| operand.index(), op.getNumIterOperands() + newOperands.size())); |
| newOperands.push_back(it->second); |
| } |
| OpBuilder b(op); |
| scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands); |
| Block &loopBody = *newForOp.getBody(); |
| for (auto mapping : argMapping) { |
| valueMapping[newForOp.getResult(mapping.first)] = |
| newForOp.getResult(mapping.second); |
| valueMapping[loopBody.getArgument(mapping.first + |
| newForOp.getNumInductionVars())] = |
| loopBody.getArgument(mapping.second + newForOp.getNumInductionVars()); |
| } |
| } |
| |
| static void convertYieldOp(scf::YieldOp op, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| OpBuilder b(op); |
| auto loop = cast<scf::ForOp>(op->getParentOp()); |
| auto yieldOperands = llvm::to_vector<4>(op.getOperands()); |
| for (auto operand : llvm::enumerate(op.getOperands())) { |
| auto it = valueMapping.find(operand.value()); |
| if (it == valueMapping.end()) |
| continue; |
| // Replace the yield of old value with the for op argument to make it easier |
| // to remove the dead code. |
| yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()]; |
| yieldOperands.push_back(it->second); |
| } |
| b.create<scf::YieldOp>(op.getLoc(), yieldOperands); |
| op.erase(); |
| } |
| |
| /// Convert an elementwise op to the equivalent elementwise op on MMA matrix. |
| static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType, |
| llvm::DenseMap<Value, Value> &valueMapping) { |
| OpBuilder b(op); |
| SmallVector<Value> matrixOperands; |
| for (Value operand : op->getOperands()) |
| matrixOperands.push_back(valueMapping.find(operand)->second); |
| Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>( |
| op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType); |
| valueMapping[op->getResult(0)] = newOp; |
| } |
| |
| namespace mlir { |
| |
| void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns) { |
| patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( |
| patterns.getContext()); |
| } |
| |
| void convertVectorToMMAOps(FuncOp funcOp) { |
| SetVector<Operation *> ops = getOpToConvert(funcOp); |
| llvm::DenseMap<Value, Value> valueMapping; |
| for (Operation *op : ops) { |
| if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { |
| convertTransferReadOp(transferRead, valueMapping); |
| } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { |
| convertTransferWriteOp(transferWrite, valueMapping); |
| } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { |
| convertContractOp(contractOp, valueMapping); |
| } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) { |
| convertConstantOp(constantOp, valueMapping); |
| } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) { |
| convertBroadcastOp(broadcastOp, valueMapping); |
| } else if (auto forOp = dyn_cast<scf::ForOp>(op)) { |
| convertForOp(forOp, valueMapping); |
| } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) { |
| convertYieldOp(yiledOp, valueMapping); |
| } else if (auto elementwiseType = convertElementwiseOpToMMA(op)) { |
| convertElementwiseOp(op, *elementwiseType, valueMapping); |
| } |
| } |
| } |
| |
| } // namespace mlir |
| namespace { |
| |
| struct ConvertVectorToGPUPass |
| : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> { |
| void runOnFunction() override { |
| RewritePatternSet patterns(getFunction().getContext()); |
| populatePrepareVectorToMMAPatterns(patterns); |
| (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); |
| |
| convertVectorToMMAOps(getFunction()); |
| } |
| }; |
| |
| } // namespace |
| |
| std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass() { |
| return std::make_unique<ConvertVectorToGPUPass>(); |
| } |