blob: 2e46ca18782dc5ec1a33015d39cb75fba9049eb4 [file] [log] [blame]
//===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel. The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SCFToGPU/SCFToGPU.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/GPU/ParallelLoopMapper.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "loops-to-gpu"
using namespace mlir;
using namespace mlir::scf;
// Name of internal attribute to mark visited operations during conversion.
//
// NOTE: The conversion originally used the following legality criteria:
// `!parallelOp->hasAttr(gpu::getMappingAttrName())`
// But the provided pattern might reject some cases based on more detailed
// analysis of the `mapping` attribute.
// To avoid dialect conversion failure due to non-converted illegal operation
// we use this extra Unit attribute as a marker, that the operation was checked
// by the pattern and is should be considered as legal in the following legality
// checks. The `finalizeParallelLoopToGPUConversion` function performs clean up
// of this extra attributes ans is supposed to be called after the dialect
// conversion.
//
// TODO: Implement a cleaner solution, factoring out the "matching" logic
// from the pattern and its callees into a separate function that can be called
// from both the pattern and the op legality check.
static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited";
// Extract an indexed value from KernelDim3.
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
switch (pos) {
case 0:
return dim3.x;
case 1:
return dim3.y;
case 2:
return dim3.z;
default:
llvm_unreachable("dim3 position out of bounds");
}
return nullptr;
}
// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
return forOp.getLowerBoundOperands();
}
// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
return forOp.getUpperBoundOperands();
}
// Get a Value that corresponds to the loop step. If the step is an attribute,
// materialize a corresponding constant using builder.
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
return builder.create<arith::ConstantIndexOp>(forOp.getLoc(),
forOp.getStep());
}
// Get a Value for the loop lower bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineLowerBound(forOp, builder);
}
// Get a Value for the loop upper bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineUpperBound(forOp, builder);
}
// Check the structure of the loop nest:
// - there are enough loops to map to numDims;
// - the loops are perfectly nested;
// - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
unsigned numDims) {
Region &limit = forOp.region();
for (unsigned i = 0, e = numDims; i < e; ++i) {
Operation *nested = &forOp.getBody()->front();
if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
!areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
return forOp.emitError(
"loops with bounds depending on other mapped loops "
"are not supported");
// The innermost loop can have an arbitrary body, skip the perfect nesting
// check for it.
if (i == e - 1)
break;
auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
if (forOp.getBody()->empty() || std::next(begin, 2) != end)
return forOp.emitError("expected perfectly nested loops in the body");
if (!(forOp = dyn_cast<AffineForOp>(nested)))
return nested->emitError("expected a nested loop");
}
return success();
}
static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
}
namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct AffineLoopToGpuConverter {
Optional<AffineForOp> collectBounds(AffineForOp forOp, unsigned numLoops);
void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
unsigned numBlockDims, unsigned numThreadDims);
// Ranges of the loops mapped to blocks or threads.
SmallVector<Value, 6> dims;
// Lower bounds of the loops mapped to blocks or threads.
SmallVector<Value, 6> lbs;
// Induction variables of the loops mapped to blocks or threads.
SmallVector<Value, 6> ivs;
// Steps of the loops mapped to blocks or threads.
SmallVector<Value, 6> steps;
};
} // namespace
// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value value) {
if (auto def = value.getDefiningOp<arith::ConstantIndexOp>())
return def.value() == 1;
return false;
}
// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, llvm::None on failure.
Optional<AffineForOp>
AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
OpBuilder builder(forOp.getOperation());
dims.reserve(numLoops);
lbs.reserve(numLoops);
ivs.reserve(numLoops);
steps.reserve(numLoops);
AffineForOp currentLoop = forOp;
for (unsigned i = 0; i < numLoops; ++i) {
Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
Value upperBound = getOrEmitUpperBound(currentLoop, builder);
if (!lowerBound || !upperBound) {
return llvm::None;
}
Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(),
upperBound, lowerBound);
Value step = getOrCreateStep(currentLoop, builder);
if (!isConstantOne(step))
range = builder.create<arith::DivSIOp>(currentLoop.getLoc(), range, step);
dims.push_back(range);
lbs.push_back(lowerBound);
ivs.push_back(currentLoop.getInductionVar());
steps.push_back(step);
if (i != numLoops - 1)
currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
}
return currentLoop;
}
// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
AffineForOp innermostForOp,
unsigned numBlockDims,
unsigned numThreadDims) {
OpBuilder builder(rootForOp.getOperation());
// Prepare the grid and block sizes for the launch operation. If there is
// no loop mapped to a specific dimension, use constant "1" as its size.
Value constOne =
(numBlockDims < 3 || numThreadDims < 3)
? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1)
: nullptr;
Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
// Create a launch op and move the body region of the innermost loop to the
// launch op.
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
blockSizeY, blockSizeZ);
// Replace the loop terminator (loops contain only a single block) with the
// gpu terminator and move the operations from the loop body block to the gpu
// launch body block. Do not move the entire block because of the difference
// in block arguments.
Operation &terminator = innermostForOp.getBody()->back();
Location terminatorLoc = terminator.getLoc();
terminator.erase();
builder.setInsertionPointToEnd(innermostForOp.getBody());
builder.create<gpu::TerminatorOp>(terminatorLoc, llvm::None);
launchOp.body().front().getOperations().splice(
launchOp.body().front().begin(),
innermostForOp.getBody()->getOperations());
// Remap the loop iterators to use block/thread identifiers instead. Loops
// may iterate from LB with step S whereas GPU thread/block ids always iterate
// from 0 to N with step 1. Therefore, loop induction variables are replaced
// with (gpu-thread/block-id * S) + LB.
builder.setInsertionPointToStart(&launchOp.body().front());
auto lbArgumentIt = lbs.begin();
auto stepArgumentIt = steps.begin();
for (auto en : llvm::enumerate(ivs)) {
Value id =
en.index() < numBlockDims
? getDim3Value(launchOp.getBlockIds(), en.index())
: getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
Value step = steps[en.index()];
if (!isConstantOne(step))
id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id);
Value ivReplacement =
builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
en.value().replaceAllUsesWith(ivReplacement);
std::advance(lbArgumentIt, 1);
std::advance(stepArgumentIt, 1);
}
// We are done and can erase the original outermost loop.
rootForOp.erase();
}
// Generic loop to GPU kernel conversion function.
static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
return failure();
AffineLoopToGpuConverter converter;
auto maybeInnerLoop =
converter.collectBounds(forOp, numBlockDims + numThreadDims);
if (!maybeInnerLoop)
return failure();
converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
return success();
}
LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
namespace {
struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp parallelOp,
PatternRewriter &rewriter) const override;
};
} // namespace
/// Tries to derive a static upper bound from the defining operation of
/// `upperBound`.
static Value deriveStaticUpperBound(Value upperBound,
PatternRewriter &rewriter) {
if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) {
return op;
}
if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) {
for (const AffineExpr &result : minOp.map().getResults()) {
if (auto constExpr = result.dyn_cast<AffineConstantExpr>()) {
return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(),
constExpr.getValue());
}
}
}
if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) {
if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>(
deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter)
.getDefiningOp()))
if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>(
deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter)
.getDefiningOp())) {
// Assumptions about the upper bound of minimum computations no longer
// work if multiplied by a negative value, so abort in this case.
if (lhs.value() < 0 || rhs.value() < 0)
return {};
return rewriter.create<arith::ConstantIndexOp>(
multiplyOp.getLoc(), lhs.value() * rhs.value());
}
}
return {};
}
static bool isMappedToProcessor(gpu::Processor processor) {
return processor != gpu::Processor::Sequential;
}
static unsigned getLaunchOpArgumentNum(gpu::Processor processor) {
switch (processor) {
case gpu::Processor::BlockX:
return 0;
case gpu::Processor::BlockY:
return 1;
case gpu::Processor::BlockZ:
return 2;
case gpu::Processor::ThreadX:
return 3;
case gpu::Processor::ThreadY:
return 4;
case gpu::Processor::ThreadZ:
return 5;
default:;
}
llvm_unreachable(
"invalid processor type while retrieving launch op argument number");
}
/// Modifies the current transformation state to capture the effect of the given
/// `scf.parallel` operation on index substitutions and the operations to be
/// inserted.
/// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
/// this function will
/// - compute the loop index based on the hardware id and affine map from the
/// mapping and update `cloningMap` to substitute all uses.
/// - derive a new upper bound for the hardware id and augment the provided
/// `gpu.launch operation` accordingly.
/// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
/// and update the rewriter to insert into the conditional's body.
/// If the dimension is mapped to sequential,
/// - insert a for loop into the body and update the rewriter to insert into
/// the for loop's body.
/// - update the `cloningMap` to replace uses of the index with the index of
/// the new for loop.
/// In either case,
/// - append the instructions from the loops body to worklist, in reverse order.
/// To note the end of the current scope in case a loop or conditional was
/// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
/// worklist. This signals the processor of the worklist to pop the rewriter
/// one scope-level up.
static LogicalResult processParallelLoop(
ParallelOp parallelOp, gpu::LaunchOp launchOp,
BlockAndValueMapping &cloningMap, SmallVectorImpl<Operation *> &worklist,
DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) {
// TODO: Verify that this is a valid GPU mapping.
// processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
ArrayAttr mapping =
parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
// TODO: Support reductions.
if (!mapping || parallelOp.getNumResults() != 0)
return failure();
Location loc = parallelOp.getLoc();
auto launchIndependent = [&launchOp](Value val) {
return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
};
auto ensureLaunchIndependent = [&rewriter,
launchIndependent](Value val) -> Value {
if (launchIndependent(val))
return val;
if (auto constOp = val.getDefiningOp<arith::ConstantOp>())
return rewriter.create<arith::ConstantOp>(constOp.getLoc(),
constOp.getValue());
return {};
};
for (auto config : llvm::zip(mapping, parallelOp.getInductionVars(),
parallelOp.lowerBound(), parallelOp.upperBound(),
parallelOp.step())) {
Attribute mappingAttribute;
Value iv, lowerBound, upperBound, step;
std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
auto annotation = mappingAttribute.dyn_cast<gpu::ParallelLoopDimMapping>();
if (!annotation)
return parallelOp.emitOpError()
<< "expected mapping attribute for lowering to GPU";
Value newIndex;
gpu::Processor processor = gpu::getProcessor(annotation);
if (isMappedToProcessor(processor)) {
// Use the corresponding thread/grid index as replacement for the loop iv.
Value operand =
launchOp.body().getArgument(getLaunchOpArgumentNum(processor));
// Take the indexmap and add the lower bound and step computations in.
// This computes operand * step + lowerBound.
// Use an affine map here so that it composes nicely with the provided
// annotation.
AffineMap lowerAndStep = AffineMap::get(
1, 2,
rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
rewriter.getAffineSymbolExpr(1));
newIndex = rewriter.create<AffineApplyOp>(
loc, annotation.map().getValue().compose(lowerAndStep),
ValueRange{operand, step, lowerBound});
// If there was also a bound, insert that, too.
// TODO: Check that we do not assign bounds twice.
if (annotation.bound().getValue()) {
// We pass as the single operand to the bound-map the number of
// iterations, which is (upperBound - lowerBound) ceilDiv step. To
// support inner loops with dynamic upper bounds (as generated by e.g.
// tiling), try to derive a max for the bounds. If the used bound for
// the hardware id is imprecise, wrap the contained code into a
// conditional. If the lower-bound is constant or defined before the
// launch, we can use it in the launch bounds. Otherwise fail.
if (!launchIndependent(lowerBound) &&
!isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp()))
return failure();
// The step must also be constant or defined outside of the loop nest.
if (!launchIndependent(step) &&
!isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp()))
return failure();
// If the upper-bound is constant or defined before the launch, we can
// use it in the launch bounds directly. Otherwise try derive a bound.
bool boundIsPrecise =
launchIndependent(upperBound) ||
isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp());
{
PatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(launchOp);
if (!boundIsPrecise) {
upperBound = deriveStaticUpperBound(upperBound, rewriter);
if (!upperBound) {
return rewriter.notifyMatchFailure(
parallelOp,
"cannot derive loop-invariant upper bound for number of"
"iterations");
}
}
// Compute the number of iterations needed. We compute this as an
// affine expression ceilDiv (upperBound - lowerBound) step. We use
// affine.apply here so that it composes nicely with the provided map.
AffineMap stepMap = AffineMap::get(
1, 2,
((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0))
.ceilDiv(rewriter.getAffineSymbolExpr(1))));
Value launchBound = rewriter.create<AffineApplyOp>(
loc, annotation.bound().getValue().compose(stepMap),
ValueRange{
ensureLaunchIndependent(
cloningMap.lookupOrDefault(upperBound)),
ensureLaunchIndependent(
cloningMap.lookupOrDefault(lowerBound)),
ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
// todo(herhut,ravishankarm): Update the behavior of setMappingAttr
// when this condition is relaxed.
if (bounds.find(processor) != bounds.end()) {
return rewriter.notifyMatchFailure(
parallelOp, "cannot redefine the bound for processor " +
Twine(static_cast<int64_t>(processor)));
}
bounds[processor] = launchBound;
}
if (!boundIsPrecise) {
// We are using an approximation, create a surrounding conditional.
Value originalBound = std::get<3>(config);
arith::CmpIOp pred = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, newIndex,
cloningMap.lookupOrDefault(originalBound));
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false);
rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
// Put a sentinel into the worklist so we know when to pop out of the
// if body again. We use the launchOp here, as that cannot be part of
// the bodies instruction.
worklist.push_back(launchOp.getOperation());
}
}
} else {
// Create a sequential for loop.
auto loopOp = rewriter.create<scf::ForOp>(
loc, cloningMap.lookupOrDefault(lowerBound),
cloningMap.lookupOrDefault(upperBound),
cloningMap.lookupOrDefault(step));
newIndex = loopOp.getInductionVar();
rewriter.setInsertionPointToStart(loopOp.getBody());
// Put a sentinel into the worklist so we know when to pop out of the loop
// body again. We use the launchOp here, as that cannot be part of the
// bodies instruction.
worklist.push_back(launchOp.getOperation());
}
cloningMap.map(iv, newIndex);
}
// Propagate custom user defined optional attributes, that can be used at
// later stage, such as extension data for GPU kernel dispatch
for (const auto &namedAttr : parallelOp->getAttrs()) {
if (namedAttr.getName() == gpu::getMappingAttrName() ||
namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
continue;
launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
}
Block *body = parallelOp.getBody();
worklist.reserve(worklist.size() + body->getOperations().size());
for (Operation &op : llvm::reverse(body->without_terminator()))
worklist.push_back(&op);
return success();
}
/// Lower a `scf.parallel` operation into a corresponding `gpu.launch`
/// operation.
///
/// This essentially transforms a loop nest into a corresponding SIMT function.
/// The conversion is driven by mapping annotations on the `scf.parallel`
/// operations. The mapping is provided via a `DictionaryAttribute` named
/// `mapping`, which has three entries:
/// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
/// thread dimensions and 6 is sequential.
/// - map : An affine map that is used to pre-process hardware ids before
/// substitution.
/// - bound : An affine map that is used to compute the bound of the hardware
/// id based on an upper bound of the number of iterations.
/// If the `scf.parallel` contains nested `scf.parallel` operations, those
/// need to be annotated, as well. Structurally, the transformation works by
/// splicing all operations from nested `scf.parallel` operations into a single
/// sequence. Indices mapped to hardware ids are substituted with those ids,
/// wheras sequential mappings result in a sequential for-loop. To have more
/// flexibility when mapping code to hardware ids, the transform supports two
/// affine maps. The first `map` is used to compute the actual index for
/// substitution from the hardware id. The second `bound` is used to compute the
/// launch dimension for the hardware id from the number of iterations the
/// mapped loop is performing. Note that the number of iterations might be
/// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
/// the hardware id might iterate over additional indices. The transformation
/// caters for this by predicating the created sequence of instructions on
/// the actual loop bound. This only works if an static upper bound for the
/// dynamic loop bound can be derived, currently via analyzing `affine.min`
/// operations.
LogicalResult
ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
PatternRewriter &rewriter) const {
// Mark the operation as visited for recursive legality check.
parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr());
// We can only transform starting at the outer-most loop. Launches inside of
// parallel loops are not supported.
if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
return failure();
// Create a launch operation. We start with bound one for all grid/block
// sizes. Those will be refined later as we discover them from mappings.
Location loc = parallelOp.getLoc();
Value constantOne =
rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1);
gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
constantOne, constantOne);
rewriter.setInsertionPointToEnd(&launchOp.body().front());
rewriter.create<gpu::TerminatorOp>(loc);
rewriter.setInsertionPointToStart(&launchOp.body().front());
BlockAndValueMapping cloningMap;
llvm::DenseMap<gpu::Processor, Value> launchBounds;
SmallVector<Operation *, 16> worklist;
if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
launchBounds, rewriter)))
return failure();
// Whether we have seen any side-effects. Reset when leaving an inner scope.
bool seenSideeffects = false;
// Whether we have left a nesting scope (and hence are no longer innermost).
bool leftNestingScope = false;
while (!worklist.empty()) {
Operation *op = worklist.pop_back_val();
// Now walk over the body and clone it.
// TODO: This is only correct if there either is no further scf.parallel
// nested or this code is side-effect free. Otherwise we might need
// predication. We are overly conservative for now and only allow
// side-effects in the innermost scope.
if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
// Before entering a nested scope, make sure there have been no
// sideeffects until now.
if (seenSideeffects)
return failure();
// A nested scf.parallel needs insertion of code to compute indices.
// Insert that now. This will also update the worklist with the loops
// body.
if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
worklist, launchBounds, rewriter)))
return failure();
} else if (op == launchOp.getOperation()) {
// Found our sentinel value. We have finished the operations from one
// nesting level, pop one level back up.
auto parent = rewriter.getInsertionPoint()->getParentOp();
rewriter.setInsertionPointAfter(parent);
leftNestingScope = true;
seenSideeffects = false;
} else {
// Otherwise we copy it over.
Operation *clone = rewriter.clone(*op, cloningMap);
cloningMap.map(op->getResults(), clone->getResults());
// Check for side effects.
// TODO: Handle region side effects properly.
seenSideeffects |= !MemoryEffectOpInterface::hasNoEffect(clone) ||
clone->getNumRegions() != 0;
// If we are no longer in the innermost scope, sideeffects are disallowed.
if (seenSideeffects && leftNestingScope)
return failure();
}
}
// Now that we succeeded creating the launch operation, also update the
// bounds.
for (auto bound : launchBounds)
launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)),
std::get<1>(bound));
rewriter.eraseOp(parallelOp);
return success();
}
void mlir::populateParallelLoopToGPUPatterns(RewritePatternSet &patterns) {
patterns.add<ParallelToGpuLaunchLowering>(patterns.getContext());
}
void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) {
target.addLegalDialect<memref::MemRefDialect>();
target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
return !parallelOp->hasAttr(gpu::getMappingAttrName()) ||
parallelOp->hasAttr(kVisitedAttrName);
});
}
void mlir::finalizeParallelLoopToGPUConversion(Operation *op) {
op->walk([](scf::ParallelOp parallelOp) {
parallelOp->removeAttr(kVisitedAttrName);
});
}