|  | //===- ThreadSafetyCommon.cpp ---------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of the interfaces declared in ThreadSafetyCommon.h | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclGroup.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/OperationKinds.h" | 
|  | #include "clang/AST/Stmt.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" | 
|  | #include "clang/Analysis/CFG.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/OperatorKinds.h" | 
|  | #include "clang/Basic/Specifiers.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace threadSafety; | 
|  |  | 
|  | // From ThreadSafetyUtil.h | 
|  | std::string threadSafety::getSourceLiteralString(const Expr *CE) { | 
|  | switch (CE->getStmtClass()) { | 
|  | case Stmt::IntegerLiteralClass: | 
|  | return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true); | 
|  | case Stmt::StringLiteralClass: { | 
|  | std::string ret("\""); | 
|  | ret += cast<StringLiteral>(CE)->getString(); | 
|  | ret += "\""; | 
|  | return ret; | 
|  | } | 
|  | case Stmt::CharacterLiteralClass: | 
|  | case Stmt::CXXNullPtrLiteralExprClass: | 
|  | case Stmt::GNUNullExprClass: | 
|  | case Stmt::CXXBoolLiteralExprClass: | 
|  | case Stmt::FloatingLiteralClass: | 
|  | case Stmt::ImaginaryLiteralClass: | 
|  | case Stmt::ObjCStringLiteralClass: | 
|  | default: | 
|  | return "#lit"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if E is a variable that points to an incomplete Phi node. | 
|  | static bool isIncompletePhi(const til::SExpr *E) { | 
|  | if (const auto *Ph = dyn_cast<til::Phi>(E)) | 
|  | return Ph->status() == til::Phi::PH_Incomplete; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | using CallingContext = SExprBuilder::CallingContext; | 
|  |  | 
|  | til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(S); } | 
|  |  | 
|  | til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { | 
|  | Walker.walk(*this); | 
|  | return Scfg; | 
|  | } | 
|  |  | 
|  | static bool isCalleeArrow(const Expr *E) { | 
|  | const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); | 
|  | return ME ? ME->isArrow() : false; | 
|  | } | 
|  |  | 
|  | static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { | 
|  | return A->getName(); | 
|  | } | 
|  |  | 
|  | static StringRef ClassifyDiagnostic(QualType VDT) { | 
|  | // We need to look at the declaration of the type of the value to determine | 
|  | // which it is. The type should either be a record or a typedef, or a pointer | 
|  | // or reference thereof. | 
|  | if (const auto *RT = VDT->getAs<RecordType>()) { | 
|  | if (const auto *RD = RT->getDecl()) | 
|  | if (const auto *CA = RD->getAttr<CapabilityAttr>()) | 
|  | return ClassifyDiagnostic(CA); | 
|  | } else if (const auto *TT = VDT->getAs<TypedefType>()) { | 
|  | if (const auto *TD = TT->getDecl()) | 
|  | if (const auto *CA = TD->getAttr<CapabilityAttr>()) | 
|  | return ClassifyDiagnostic(CA); | 
|  | } else if (VDT->isPointerOrReferenceType()) | 
|  | return ClassifyDiagnostic(VDT->getPointeeType()); | 
|  |  | 
|  | return "mutex"; | 
|  | } | 
|  |  | 
|  | /// Translate a clang expression in an attribute to a til::SExpr. | 
|  | /// Constructs the context from D, DeclExp, and SelfDecl. | 
|  | /// | 
|  | /// \param AttrExp The expression to translate. | 
|  | /// \param D       The declaration to which the attribute is attached. | 
|  | /// \param DeclExp An expression involving the Decl to which the attribute | 
|  | ///                is attached.  E.g. the call to a function. | 
|  | /// \param Self    S-expression to substitute for a \ref CXXThisExpr in a call, | 
|  | ///                or argument to a cleanup function. | 
|  | CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, | 
|  | const NamedDecl *D, | 
|  | const Expr *DeclExp, | 
|  | til::SExpr *Self) { | 
|  | // If we are processing a raw attribute expression, with no substitutions. | 
|  | if (!DeclExp && !Self) | 
|  | return translateAttrExpr(AttrExp, nullptr); | 
|  |  | 
|  | CallingContext Ctx(nullptr, D); | 
|  |  | 
|  | // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute | 
|  | // for formal parameters when we call buildMutexID later. | 
|  | if (!DeclExp) | 
|  | /* We'll use Self. */; | 
|  | else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) { | 
|  | Ctx.SelfArg   = ME->getBase(); | 
|  | Ctx.SelfArrow = ME->isArrow(); | 
|  | } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { | 
|  | Ctx.SelfArg   = CE->getImplicitObjectArgument(); | 
|  | Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); | 
|  | Ctx.NumArgs   = CE->getNumArgs(); | 
|  | Ctx.FunArgs   = CE->getArgs(); | 
|  | } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) { | 
|  | // Calls to operators that are members need to be treated like member calls. | 
|  | if (isa<CXXOperatorCallExpr>(CE) && isa<CXXMethodDecl>(D)) { | 
|  | Ctx.SelfArg = CE->getArg(0); | 
|  | Ctx.SelfArrow = false; | 
|  | Ctx.NumArgs = CE->getNumArgs() - 1; | 
|  | Ctx.FunArgs = CE->getArgs() + 1; | 
|  | } else { | 
|  | Ctx.NumArgs = CE->getNumArgs(); | 
|  | Ctx.FunArgs = CE->getArgs(); | 
|  | } | 
|  | } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { | 
|  | Ctx.SelfArg = nullptr;  // Will be set below | 
|  | Ctx.NumArgs = CE->getNumArgs(); | 
|  | Ctx.FunArgs = CE->getArgs(); | 
|  | } | 
|  |  | 
|  | // Usually we want to substitute the self-argument for "this", but lambdas | 
|  | // are an exception: "this" on or in a lambda call operator doesn't refer | 
|  | // to the lambda, but to captured "this" in the context it was created in. | 
|  | // This can happen for operator calls and member calls, so fix it up here. | 
|  | if (const auto *CMD = dyn_cast<CXXMethodDecl>(D)) | 
|  | if (CMD->getParent()->isLambda()) | 
|  | Ctx.SelfArg = nullptr; | 
|  |  | 
|  | if (Self) { | 
|  | assert(!Ctx.SelfArg && "Ambiguous self argument"); | 
|  | assert(isa<FunctionDecl>(D) && "Self argument requires function"); | 
|  | if (isa<CXXMethodDecl>(D)) | 
|  | Ctx.SelfArg = Self; | 
|  | else | 
|  | Ctx.FunArgs = Self; | 
|  |  | 
|  | // If the attribute has no arguments, then assume the argument is "this". | 
|  | if (!AttrExp) | 
|  | return CapabilityExpr( | 
|  | Self, | 
|  | ClassifyDiagnostic( | 
|  | cast<CXXMethodDecl>(D)->getFunctionObjectParameterType()), | 
|  | false); | 
|  | else  // For most attributes. | 
|  | return translateAttrExpr(AttrExp, &Ctx); | 
|  | } | 
|  |  | 
|  | // If the attribute has no arguments, then assume the argument is "this". | 
|  | if (!AttrExp) | 
|  | return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr); | 
|  | else  // For most attributes. | 
|  | return translateAttrExpr(AttrExp, &Ctx); | 
|  | } | 
|  |  | 
|  | /// Translate a clang expression in an attribute to a til::SExpr. | 
|  | // This assumes a CallingContext has already been created. | 
|  | CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, | 
|  | CallingContext *Ctx) { | 
|  | if (!AttrExp) | 
|  | return CapabilityExpr(); | 
|  |  | 
|  | if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { | 
|  | if (SLit->getString() == "*") | 
|  | // The "*" expr is a universal lock, which essentially turns off | 
|  | // checks until it is removed from the lockset. | 
|  | return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"), | 
|  | false); | 
|  | else | 
|  | // Ignore other string literals for now. | 
|  | return CapabilityExpr(); | 
|  | } | 
|  |  | 
|  | bool Neg = false; | 
|  | if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { | 
|  | if (OE->getOperator() == OO_Exclaim) { | 
|  | Neg = true; | 
|  | AttrExp = OE->getArg(0); | 
|  | } | 
|  | } | 
|  | else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { | 
|  | if (UO->getOpcode() == UO_LNot) { | 
|  | Neg = true; | 
|  | AttrExp = UO->getSubExpr()->IgnoreImplicit(); | 
|  | } | 
|  | } | 
|  |  | 
|  | til::SExpr *E = translate(AttrExp, Ctx); | 
|  |  | 
|  | // Trap mutex expressions like nullptr, or 0. | 
|  | // Any literal value is nonsense. | 
|  | if (!E || isa<til::Literal>(E)) | 
|  | return CapabilityExpr(); | 
|  |  | 
|  | StringRef Kind = ClassifyDiagnostic(AttrExp->getType()); | 
|  |  | 
|  | // Hack to deal with smart pointers -- strip off top-level pointer casts. | 
|  | if (const auto *CE = dyn_cast<til::Cast>(E)) { | 
|  | if (CE->castOpcode() == til::CAST_objToPtr) | 
|  | return CapabilityExpr(CE->expr(), Kind, Neg); | 
|  | } | 
|  | return CapabilityExpr(E, Kind, Neg); | 
|  | } | 
|  |  | 
|  | til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) { | 
|  | return new (Arena) til::LiteralPtr(VD); | 
|  | } | 
|  |  | 
|  | std::pair<til::LiteralPtr *, StringRef> | 
|  | SExprBuilder::createThisPlaceholder(const Expr *Exp) { | 
|  | return {new (Arena) til::LiteralPtr(nullptr), | 
|  | ClassifyDiagnostic(Exp->getType())}; | 
|  | } | 
|  |  | 
|  | // Translate a clang statement or expression to a TIL expression. | 
|  | // Also performs substitution of variables; Ctx provides the context. | 
|  | // Dispatches on the type of S. | 
|  | til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { | 
|  | if (!S) | 
|  | return nullptr; | 
|  |  | 
|  | // Check if S has already been translated and cached. | 
|  | // This handles the lookup of SSA names for DeclRefExprs here. | 
|  | if (til::SExpr *E = lookupStmt(S)) | 
|  | return E; | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | case Stmt::DeclRefExprClass: | 
|  | return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); | 
|  | case Stmt::CXXThisExprClass: | 
|  | return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); | 
|  | case Stmt::MemberExprClass: | 
|  | return translateMemberExpr(cast<MemberExpr>(S), Ctx); | 
|  | case Stmt::ObjCIvarRefExprClass: | 
|  | return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx); | 
|  | case Stmt::CallExprClass: | 
|  | return translateCallExpr(cast<CallExpr>(S), Ctx); | 
|  | case Stmt::CXXMemberCallExprClass: | 
|  | return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); | 
|  | case Stmt::CXXOperatorCallExprClass: | 
|  | return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); | 
|  | case Stmt::UnaryOperatorClass: | 
|  | return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); | 
|  | case Stmt::BinaryOperatorClass: | 
|  | case Stmt::CompoundAssignOperatorClass: | 
|  | return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); | 
|  |  | 
|  | case Stmt::ArraySubscriptExprClass: | 
|  | return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); | 
|  | case Stmt::ConditionalOperatorClass: | 
|  | return translateAbstractConditionalOperator( | 
|  | cast<ConditionalOperator>(S), Ctx); | 
|  | case Stmt::BinaryConditionalOperatorClass: | 
|  | return translateAbstractConditionalOperator( | 
|  | cast<BinaryConditionalOperator>(S), Ctx); | 
|  |  | 
|  | // We treat these as no-ops | 
|  | case Stmt::ConstantExprClass: | 
|  | return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx); | 
|  | case Stmt::ParenExprClass: | 
|  | return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); | 
|  | case Stmt::ExprWithCleanupsClass: | 
|  | return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); | 
|  | case Stmt::CXXBindTemporaryExprClass: | 
|  | return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); | 
|  | case Stmt::MaterializeTemporaryExprClass: | 
|  | return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx); | 
|  |  | 
|  | // Collect all literals | 
|  | case Stmt::CharacterLiteralClass: | 
|  | case Stmt::CXXNullPtrLiteralExprClass: | 
|  | case Stmt::GNUNullExprClass: | 
|  | case Stmt::CXXBoolLiteralExprClass: | 
|  | case Stmt::FloatingLiteralClass: | 
|  | case Stmt::ImaginaryLiteralClass: | 
|  | case Stmt::IntegerLiteralClass: | 
|  | case Stmt::StringLiteralClass: | 
|  | case Stmt::ObjCStringLiteralClass: | 
|  | return new (Arena) til::Literal(cast<Expr>(S)); | 
|  |  | 
|  | case Stmt::DeclStmtClass: | 
|  | return translateDeclStmt(cast<DeclStmt>(S), Ctx); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (const auto *CE = dyn_cast<CastExpr>(S)) | 
|  | return translateCastExpr(CE, Ctx); | 
|  |  | 
|  | return new (Arena) til::Undefined(S); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, | 
|  | CallingContext *Ctx) { | 
|  | const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); | 
|  |  | 
|  | // Function parameters require substitution and/or renaming. | 
|  | if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) { | 
|  | unsigned I = PV->getFunctionScopeIndex(); | 
|  | const DeclContext *D = PV->getDeclContext(); | 
|  | if (Ctx && Ctx->FunArgs) { | 
|  | const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl(); | 
|  | if (isa<FunctionDecl>(D) | 
|  | ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical) | 
|  | : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) { | 
|  | // Substitute call arguments for references to function parameters | 
|  | if (const Expr *const *FunArgs = | 
|  | dyn_cast<const Expr *const *>(Ctx->FunArgs)) { | 
|  | assert(I < Ctx->NumArgs); | 
|  | return translate(FunArgs[I], Ctx->Prev); | 
|  | } | 
|  |  | 
|  | assert(I == 0); | 
|  | return cast<til::SExpr *>(Ctx->FunArgs); | 
|  | } | 
|  | } | 
|  | // Map the param back to the param of the original function declaration | 
|  | // for consistent comparisons. | 
|  | VD = isa<FunctionDecl>(D) | 
|  | ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I) | 
|  | : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I); | 
|  | } | 
|  |  | 
|  | // For non-local variables, treat it as a reference to a named object. | 
|  | return new (Arena) til::LiteralPtr(VD); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, | 
|  | CallingContext *Ctx) { | 
|  | // Substitute for 'this' | 
|  | if (Ctx && Ctx->SelfArg) { | 
|  | if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg)) | 
|  | return translate(SelfArg, Ctx->Prev); | 
|  | else | 
|  | return cast<til::SExpr *>(Ctx->SelfArg); | 
|  | } | 
|  | assert(SelfVar && "We have no variable for 'this'!"); | 
|  | return SelfVar; | 
|  | } | 
|  |  | 
|  | static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { | 
|  | if (const auto *V = dyn_cast<til::Variable>(E)) | 
|  | return V->clangDecl(); | 
|  | if (const auto *Ph = dyn_cast<til::Phi>(E)) | 
|  | return Ph->clangDecl(); | 
|  | if (const auto *P = dyn_cast<til::Project>(E)) | 
|  | return P->clangDecl(); | 
|  | if (const auto *L = dyn_cast<til::LiteralPtr>(E)) | 
|  | return L->clangDecl(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool hasAnyPointerType(const til::SExpr *E) { | 
|  | auto *VD = getValueDeclFromSExpr(E); | 
|  | if (VD && VD->getType()->isAnyPointerType()) | 
|  | return true; | 
|  | if (const auto *C = dyn_cast<til::Cast>(E)) | 
|  | return C->castOpcode() == til::CAST_objToPtr; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Grab the very first declaration of virtual method D | 
|  | static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { | 
|  | while (true) { | 
|  | D = D->getCanonicalDecl(); | 
|  | auto OverriddenMethods = D->overridden_methods(); | 
|  | if (OverriddenMethods.begin() == OverriddenMethods.end()) | 
|  | return D;  // Method does not override anything | 
|  | // FIXME: this does not work with multiple inheritance. | 
|  | D = *OverriddenMethods.begin(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, | 
|  | CallingContext *Ctx) { | 
|  | til::SExpr *BE = translate(ME->getBase(), Ctx); | 
|  | til::SExpr *E  = new (Arena) til::SApply(BE); | 
|  |  | 
|  | const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); | 
|  | if (const auto *VD = dyn_cast<CXXMethodDecl>(D)) | 
|  | D = getFirstVirtualDecl(VD); | 
|  |  | 
|  | til::Project *P = new (Arena) til::Project(E, D); | 
|  | if (hasAnyPointerType(BE)) | 
|  | P->setArrow(true); | 
|  | return P; | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE, | 
|  | CallingContext *Ctx) { | 
|  | til::SExpr *BE = translate(IVRE->getBase(), Ctx); | 
|  | til::SExpr *E = new (Arena) til::SApply(BE); | 
|  |  | 
|  | const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl()); | 
|  |  | 
|  | til::Project *P = new (Arena) til::Project(E, D); | 
|  | if (hasAnyPointerType(BE)) | 
|  | P->setArrow(true); | 
|  | return P; | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, | 
|  | CallingContext *Ctx, | 
|  | const Expr *SelfE) { | 
|  | if (CapabilityExprMode) { | 
|  | // Handle LOCK_RETURNED | 
|  | if (const FunctionDecl *FD = CE->getDirectCallee()) { | 
|  | FD = FD->getMostRecentDecl(); | 
|  | if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) { | 
|  | CallingContext LRCallCtx(Ctx); | 
|  | LRCallCtx.AttrDecl = CE->getDirectCallee(); | 
|  | LRCallCtx.SelfArg = SelfE; | 
|  | LRCallCtx.NumArgs = CE->getNumArgs(); | 
|  | LRCallCtx.FunArgs = CE->getArgs(); | 
|  | return const_cast<til::SExpr *>( | 
|  | translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | til::SExpr *E = translate(CE->getCallee(), Ctx); | 
|  | for (const auto *Arg : CE->arguments()) { | 
|  | til::SExpr *A = translate(Arg, Ctx); | 
|  | E = new (Arena) til::Apply(E, A); | 
|  | } | 
|  | return new (Arena) til::Call(E, CE); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateCXXMemberCallExpr( | 
|  | const CXXMemberCallExpr *ME, CallingContext *Ctx) { | 
|  | if (CapabilityExprMode) { | 
|  | // Ignore calls to get() on smart pointers. | 
|  | if (ME->getMethodDecl()->getNameAsString() == "get" && | 
|  | ME->getNumArgs() == 0) { | 
|  | auto *E = translate(ME->getImplicitObjectArgument(), Ctx); | 
|  | return new (Arena) til::Cast(til::CAST_objToPtr, E); | 
|  | // return E; | 
|  | } | 
|  | } | 
|  | return translateCallExpr(cast<CallExpr>(ME), Ctx, | 
|  | ME->getImplicitObjectArgument()); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( | 
|  | const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { | 
|  | if (CapabilityExprMode) { | 
|  | // Ignore operator * and operator -> on smart pointers. | 
|  | OverloadedOperatorKind k = OCE->getOperator(); | 
|  | if (k == OO_Star || k == OO_Arrow) { | 
|  | auto *E = translate(OCE->getArg(0), Ctx); | 
|  | return new (Arena) til::Cast(til::CAST_objToPtr, E); | 
|  | // return E; | 
|  | } | 
|  | } | 
|  | return translateCallExpr(cast<CallExpr>(OCE), Ctx); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, | 
|  | CallingContext *Ctx) { | 
|  | switch (UO->getOpcode()) { | 
|  | case UO_PostInc: | 
|  | case UO_PostDec: | 
|  | case UO_PreInc: | 
|  | case UO_PreDec: | 
|  | return new (Arena) til::Undefined(UO); | 
|  |  | 
|  | case UO_AddrOf: | 
|  | if (CapabilityExprMode) { | 
|  | // interpret &Graph::mu_ as an existential. | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { | 
|  | if (DRE->getDecl()->isCXXInstanceMember()) { | 
|  | // This is a pointer-to-member expression, e.g. &MyClass::mu_. | 
|  | // We interpret this syntax specially, as a wildcard. | 
|  | auto *W = new (Arena) til::Wildcard(); | 
|  | return new (Arena) til::Project(W, DRE->getDecl()); | 
|  | } | 
|  | } | 
|  | } | 
|  | // otherwise, & is a no-op | 
|  | return translate(UO->getSubExpr(), Ctx); | 
|  |  | 
|  | // We treat these as no-ops | 
|  | case UO_Deref: | 
|  | case UO_Plus: | 
|  | return translate(UO->getSubExpr(), Ctx); | 
|  |  | 
|  | case UO_Minus: | 
|  | return new (Arena) | 
|  | til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); | 
|  | case UO_Not: | 
|  | return new (Arena) | 
|  | til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); | 
|  | case UO_LNot: | 
|  | return new (Arena) | 
|  | til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); | 
|  |  | 
|  | // Currently unsupported | 
|  | case UO_Real: | 
|  | case UO_Imag: | 
|  | case UO_Extension: | 
|  | case UO_Coawait: | 
|  | return new (Arena) til::Undefined(UO); | 
|  | } | 
|  | return new (Arena) til::Undefined(UO); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, | 
|  | const BinaryOperator *BO, | 
|  | CallingContext *Ctx, bool Reverse) { | 
|  | til::SExpr *E0 = translate(BO->getLHS(), Ctx); | 
|  | til::SExpr *E1 = translate(BO->getRHS(), Ctx); | 
|  | if (Reverse) | 
|  | return new (Arena) til::BinaryOp(Op, E1, E0); | 
|  | else | 
|  | return new (Arena) til::BinaryOp(Op, E0, E1); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, | 
|  | const BinaryOperator *BO, | 
|  | CallingContext *Ctx, | 
|  | bool Assign) { | 
|  | const Expr *LHS = BO->getLHS(); | 
|  | const Expr *RHS = BO->getRHS(); | 
|  | til::SExpr *E0 = translate(LHS, Ctx); | 
|  | til::SExpr *E1 = translate(RHS, Ctx); | 
|  |  | 
|  | const ValueDecl *VD = nullptr; | 
|  | til::SExpr *CV = nullptr; | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) { | 
|  | VD = DRE->getDecl(); | 
|  | CV = lookupVarDecl(VD); | 
|  | } | 
|  |  | 
|  | if (!Assign) { | 
|  | til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); | 
|  | E1 = new (Arena) til::BinaryOp(Op, Arg, E1); | 
|  | E1 = addStatement(E1, nullptr, VD); | 
|  | } | 
|  | if (VD && CV) | 
|  | return updateVarDecl(VD, E1); | 
|  | return new (Arena) til::Store(E0, E1); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, | 
|  | CallingContext *Ctx) { | 
|  | switch (BO->getOpcode()) { | 
|  | case BO_PtrMemD: | 
|  | case BO_PtrMemI: | 
|  | return new (Arena) til::Undefined(BO); | 
|  |  | 
|  | case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx); | 
|  | case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx); | 
|  | case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx); | 
|  | case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx); | 
|  | case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx); | 
|  | case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx); | 
|  | case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx); | 
|  | case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx); | 
|  | case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true); | 
|  | case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx); | 
|  | case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true); | 
|  | case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx); | 
|  | case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx); | 
|  | case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx); | 
|  | case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx); | 
|  | case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx); | 
|  | case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx); | 
|  | case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); | 
|  | case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx); | 
|  |  | 
|  | case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true); | 
|  | case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); | 
|  | case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); | 
|  | case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); | 
|  | case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); | 
|  | case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); | 
|  | case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); | 
|  | case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); | 
|  | case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); | 
|  | case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); | 
|  | case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx); | 
|  |  | 
|  | case BO_Comma: | 
|  | // The clang CFG should have already processed both sides. | 
|  | return translate(BO->getRHS(), Ctx); | 
|  | } | 
|  | return new (Arena) til::Undefined(BO); | 
|  | } | 
|  |  | 
|  | til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, | 
|  | CallingContext *Ctx) { | 
|  | CastKind K = CE->getCastKind(); | 
|  | switch (K) { | 
|  | case CK_LValueToRValue: { | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { | 
|  | til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); | 
|  | if (E0) | 
|  | return E0; | 
|  | } | 
|  | til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); | 
|  | return E0; | 
|  | // FIXME!! -- get Load working properly | 
|  | // return new (Arena) til::Load(E0); | 
|  | } | 
|  | case CK_NoOp: | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_FunctionToPointerDecay: { | 
|  | til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); | 
|  | return E0; | 
|  | } | 
|  | default: { | 
|  | // FIXME: handle different kinds of casts. | 
|  | til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); | 
|  | if (CapabilityExprMode) | 
|  | return E0; | 
|  | return new (Arena) til::Cast(til::CAST_none, E0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | til::SExpr * | 
|  | SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, | 
|  | CallingContext *Ctx) { | 
|  | til::SExpr *E0 = translate(E->getBase(), Ctx); | 
|  | til::SExpr *E1 = translate(E->getIdx(), Ctx); | 
|  | return new (Arena) til::ArrayIndex(E0, E1); | 
|  | } | 
|  |  | 
|  | til::SExpr * | 
|  | SExprBuilder::translateAbstractConditionalOperator( | 
|  | const AbstractConditionalOperator *CO, CallingContext *Ctx) { | 
|  | auto *C = translate(CO->getCond(), Ctx); | 
|  | auto *T = translate(CO->getTrueExpr(), Ctx); | 
|  | auto *E = translate(CO->getFalseExpr(), Ctx); | 
|  | return new (Arena) til::IfThenElse(C, T, E); | 
|  | } | 
|  |  | 
|  | til::SExpr * | 
|  | SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { | 
|  | DeclGroupRef DGrp = S->getDeclGroup(); | 
|  | for (auto *I : DGrp) { | 
|  | if (auto *VD = dyn_cast_or_null<VarDecl>(I)) { | 
|  | Expr *E = VD->getInit(); | 
|  | til::SExpr* SE = translate(E, Ctx); | 
|  |  | 
|  | // Add local variables with trivial type to the variable map | 
|  | QualType T = VD->getType(); | 
|  | if (T.isTrivialType(VD->getASTContext())) | 
|  | return addVarDecl(VD, SE); | 
|  | else { | 
|  | // TODO: add alloca | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If (E) is non-trivial, then add it to the current basic block, and | 
|  | // update the statement map so that S refers to E.  Returns a new variable | 
|  | // that refers to E. | 
|  | // If E is trivial returns E. | 
|  | til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, | 
|  | const ValueDecl *VD) { | 
|  | if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) | 
|  | return E; | 
|  | if (VD) | 
|  | E = new (Arena) til::Variable(E, VD); | 
|  | CurrentInstructions.push_back(E); | 
|  | if (S) | 
|  | insertStmt(S, E); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // Returns the current value of VD, if known, and nullptr otherwise. | 
|  | til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { | 
|  | auto It = LVarIdxMap.find(VD); | 
|  | if (It != LVarIdxMap.end()) { | 
|  | assert(CurrentLVarMap[It->second].first == VD); | 
|  | return CurrentLVarMap[It->second].second; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // if E is a til::Variable, update its clangDecl. | 
|  | static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { | 
|  | if (!E) | 
|  | return; | 
|  | if (auto *V = dyn_cast<til::Variable>(E)) { | 
|  | if (!V->clangDecl()) | 
|  | V->setClangDecl(VD); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds a new variable declaration. | 
|  | til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { | 
|  | maybeUpdateVD(E, VD); | 
|  | LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); | 
|  | CurrentLVarMap.makeWritable(); | 
|  | CurrentLVarMap.push_back(std::make_pair(VD, E)); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // Updates a current variable declaration.  (E.g. by assignment) | 
|  | til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { | 
|  | maybeUpdateVD(E, VD); | 
|  | auto It = LVarIdxMap.find(VD); | 
|  | if (It == LVarIdxMap.end()) { | 
|  | til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); | 
|  | til::SExpr *St  = new (Arena) til::Store(Ptr, E); | 
|  | return St; | 
|  | } | 
|  | CurrentLVarMap.makeWritable(); | 
|  | CurrentLVarMap.elem(It->second).second = E; | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // Make a Phi node in the current block for the i^th variable in CurrentVarMap. | 
|  | // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. | 
|  | // If E == null, this is a backedge and will be set later. | 
|  | void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { | 
|  | unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; | 
|  | assert(ArgIndex > 0 && ArgIndex < NPreds); | 
|  |  | 
|  | til::SExpr *CurrE = CurrentLVarMap[i].second; | 
|  | if (CurrE->block() == CurrentBB) { | 
|  | // We already have a Phi node in the current block, | 
|  | // so just add the new variable to the Phi node. | 
|  | auto *Ph = dyn_cast<til::Phi>(CurrE); | 
|  | assert(Ph && "Expecting Phi node."); | 
|  | if (E) | 
|  | Ph->values()[ArgIndex] = E; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make a new phi node: phi(..., E) | 
|  | // All phi args up to the current index are set to the current value. | 
|  | til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); | 
|  | Ph->values().setValues(NPreds, nullptr); | 
|  | for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) | 
|  | Ph->values()[PIdx] = CurrE; | 
|  | if (E) | 
|  | Ph->values()[ArgIndex] = E; | 
|  | Ph->setClangDecl(CurrentLVarMap[i].first); | 
|  | // If E is from a back-edge, or either E or CurrE are incomplete, then | 
|  | // mark this node as incomplete; we may need to remove it later. | 
|  | if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) | 
|  | Ph->setStatus(til::Phi::PH_Incomplete); | 
|  |  | 
|  | // Add Phi node to current block, and update CurrentLVarMap[i] | 
|  | CurrentArguments.push_back(Ph); | 
|  | if (Ph->status() == til::Phi::PH_Incomplete) | 
|  | IncompleteArgs.push_back(Ph); | 
|  |  | 
|  | CurrentLVarMap.makeWritable(); | 
|  | CurrentLVarMap.elem(i).second = Ph; | 
|  | } | 
|  |  | 
|  | // Merge values from Map into the current variable map. | 
|  | // This will construct Phi nodes in the current basic block as necessary. | 
|  | void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { | 
|  | assert(CurrentBlockInfo && "Not processing a block!"); | 
|  |  | 
|  | if (!CurrentLVarMap.valid()) { | 
|  | // Steal Map, using copy-on-write. | 
|  | CurrentLVarMap = std::move(Map); | 
|  | return; | 
|  | } | 
|  | if (CurrentLVarMap.sameAs(Map)) | 
|  | return;  // Easy merge: maps from different predecessors are unchanged. | 
|  |  | 
|  | unsigned NPreds = CurrentBB->numPredecessors(); | 
|  | unsigned ESz = CurrentLVarMap.size(); | 
|  | unsigned MSz = Map.size(); | 
|  | unsigned Sz  = std::min(ESz, MSz); | 
|  |  | 
|  | for (unsigned i = 0; i < Sz; ++i) { | 
|  | if (CurrentLVarMap[i].first != Map[i].first) { | 
|  | // We've reached the end of variables in common. | 
|  | CurrentLVarMap.makeWritable(); | 
|  | CurrentLVarMap.downsize(i); | 
|  | break; | 
|  | } | 
|  | if (CurrentLVarMap[i].second != Map[i].second) | 
|  | makePhiNodeVar(i, NPreds, Map[i].second); | 
|  | } | 
|  | if (ESz > MSz) { | 
|  | CurrentLVarMap.makeWritable(); | 
|  | CurrentLVarMap.downsize(Map.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge a back edge into the current variable map. | 
|  | // This will create phi nodes for all variables in the variable map. | 
|  | void SExprBuilder::mergeEntryMapBackEdge() { | 
|  | // We don't have definitions for variables on the backedge, because we | 
|  | // haven't gotten that far in the CFG.  Thus, when encountering a back edge, | 
|  | // we conservatively create Phi nodes for all variables.  Unnecessary Phi | 
|  | // nodes will be marked as incomplete, and stripped out at the end. | 
|  | // | 
|  | // An Phi node is unnecessary if it only refers to itself and one other | 
|  | // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y. | 
|  |  | 
|  | assert(CurrentBlockInfo && "Not processing a block!"); | 
|  |  | 
|  | if (CurrentBlockInfo->HasBackEdges) | 
|  | return; | 
|  | CurrentBlockInfo->HasBackEdges = true; | 
|  |  | 
|  | CurrentLVarMap.makeWritable(); | 
|  | unsigned Sz = CurrentLVarMap.size(); | 
|  | unsigned NPreds = CurrentBB->numPredecessors(); | 
|  |  | 
|  | for (unsigned i = 0; i < Sz; ++i) | 
|  | makePhiNodeVar(i, NPreds, nullptr); | 
|  | } | 
|  |  | 
|  | // Update the phi nodes that were initially created for a back edge | 
|  | // once the variable definitions have been computed. | 
|  | // I.e., merge the current variable map into the phi nodes for Blk. | 
|  | void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { | 
|  | til::BasicBlock *BB = lookupBlock(Blk); | 
|  | unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; | 
|  | assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); | 
|  |  | 
|  | for (til::SExpr *PE : BB->arguments()) { | 
|  | auto *Ph = dyn_cast_or_null<til::Phi>(PE); | 
|  | assert(Ph && "Expecting Phi Node."); | 
|  | assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); | 
|  |  | 
|  | til::SExpr *E = lookupVarDecl(Ph->clangDecl()); | 
|  | assert(E && "Couldn't find local variable for Phi node."); | 
|  | Ph->values()[ArgIndex] = E; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, | 
|  | const CFGBlock *First) { | 
|  | // Perform initial setup operations. | 
|  | unsigned NBlocks = Cfg->getNumBlockIDs(); | 
|  | Scfg = new (Arena) til::SCFG(Arena, NBlocks); | 
|  |  | 
|  | // allocate all basic blocks immediately, to handle forward references. | 
|  | BBInfo.resize(NBlocks); | 
|  | BlockMap.resize(NBlocks, nullptr); | 
|  | // create map from clang blockID to til::BasicBlocks | 
|  | for (auto *B : *Cfg) { | 
|  | auto *BB = new (Arena) til::BasicBlock(Arena); | 
|  | BB->reserveInstructions(B->size()); | 
|  | BlockMap[B->getBlockID()] = BB; | 
|  | } | 
|  |  | 
|  | CurrentBB = lookupBlock(&Cfg->getEntry()); | 
|  | auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() | 
|  | : cast<FunctionDecl>(D)->parameters(); | 
|  | for (auto *Pm : Parms) { | 
|  | QualType T = Pm->getType(); | 
|  | if (!T.isTrivialType(Pm->getASTContext())) | 
|  | continue; | 
|  |  | 
|  | // Add parameters to local variable map. | 
|  | // FIXME: right now we emulate params with loads; that should be fixed. | 
|  | til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); | 
|  | til::SExpr *Ld = new (Arena) til::Load(Lp); | 
|  | til::SExpr *V  = addStatement(Ld, nullptr, Pm); | 
|  | addVarDecl(Pm, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SExprBuilder::enterCFGBlock(const CFGBlock *B) { | 
|  | // Initialize TIL basic block and add it to the CFG. | 
|  | CurrentBB = lookupBlock(B); | 
|  | CurrentBB->reservePredecessors(B->pred_size()); | 
|  | Scfg->add(CurrentBB); | 
|  |  | 
|  | CurrentBlockInfo = &BBInfo[B->getBlockID()]; | 
|  |  | 
|  | // CurrentLVarMap is moved to ExitMap on block exit. | 
|  | // FIXME: the entry block will hold function parameters. | 
|  | // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); | 
|  | } | 
|  |  | 
|  | void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { | 
|  | // Compute CurrentLVarMap on entry from ExitMaps of predecessors | 
|  |  | 
|  | CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); | 
|  | BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; | 
|  | assert(PredInfo->UnprocessedSuccessors > 0); | 
|  |  | 
|  | if (--PredInfo->UnprocessedSuccessors == 0) | 
|  | mergeEntryMap(std::move(PredInfo->ExitMap)); | 
|  | else | 
|  | mergeEntryMap(PredInfo->ExitMap.clone()); | 
|  |  | 
|  | ++CurrentBlockInfo->ProcessedPredecessors; | 
|  | } | 
|  |  | 
|  | void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { | 
|  | mergeEntryMapBackEdge(); | 
|  | } | 
|  |  | 
|  | void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { | 
|  | // The merge*() methods have created arguments. | 
|  | // Push those arguments onto the basic block. | 
|  | CurrentBB->arguments().reserve( | 
|  | static_cast<unsigned>(CurrentArguments.size()), Arena); | 
|  | for (auto *A : CurrentArguments) | 
|  | CurrentBB->addArgument(A); | 
|  | } | 
|  |  | 
|  | void SExprBuilder::handleStatement(const Stmt *S) { | 
|  | til::SExpr *E = translate(S, nullptr); | 
|  | addStatement(E, S); | 
|  | } | 
|  |  | 
|  | void SExprBuilder::handleDestructorCall(const VarDecl *VD, | 
|  | const CXXDestructorDecl *DD) { | 
|  | til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); | 
|  | til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); | 
|  | til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); | 
|  | til::SExpr *E = new (Arena) til::Call(Ap); | 
|  | addStatement(E, nullptr); | 
|  | } | 
|  |  | 
|  | void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { | 
|  | CurrentBB->instructions().reserve( | 
|  | static_cast<unsigned>(CurrentInstructions.size()), Arena); | 
|  | for (auto *V : CurrentInstructions) | 
|  | CurrentBB->addInstruction(V); | 
|  |  | 
|  | // Create an appropriate terminator | 
|  | unsigned N = B->succ_size(); | 
|  | auto It = B->succ_begin(); | 
|  | if (N == 1) { | 
|  | til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; | 
|  | // TODO: set index | 
|  | unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; | 
|  | auto *Tm = new (Arena) til::Goto(BB, Idx); | 
|  | CurrentBB->setTerminator(Tm); | 
|  | } | 
|  | else if (N == 2) { | 
|  | til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); | 
|  | til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; | 
|  | ++It; | 
|  | til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; | 
|  | // FIXME: make sure these aren't critical edges. | 
|  | auto *Tm = new (Arena) til::Branch(C, BB1, BB2); | 
|  | CurrentBB->setTerminator(Tm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { | 
|  | ++CurrentBlockInfo->UnprocessedSuccessors; | 
|  | } | 
|  |  | 
|  | void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { | 
|  | mergePhiNodesBackEdge(Succ); | 
|  | ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; | 
|  | } | 
|  |  | 
|  | void SExprBuilder::exitCFGBlock(const CFGBlock *B) { | 
|  | CurrentArguments.clear(); | 
|  | CurrentInstructions.clear(); | 
|  | CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); | 
|  | CurrentBB = nullptr; | 
|  | CurrentBlockInfo = nullptr; | 
|  | } | 
|  |  | 
|  | void SExprBuilder::exitCFG(const CFGBlock *Last) { | 
|  | for (auto *Ph : IncompleteArgs) { | 
|  | if (Ph->status() == til::Phi::PH_Incomplete) | 
|  | simplifyIncompleteArg(Ph); | 
|  | } | 
|  |  | 
|  | CurrentArguments.clear(); | 
|  | CurrentInstructions.clear(); | 
|  | IncompleteArgs.clear(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | namespace { | 
|  |  | 
|  | class TILPrinter : | 
|  | public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | namespace clang { | 
|  | namespace threadSafety { | 
|  |  | 
|  | void printSCFG(CFGWalker &Walker) { | 
|  | llvm::BumpPtrAllocator Bpa; | 
|  | til::MemRegionRef Arena(&Bpa); | 
|  | SExprBuilder SxBuilder(Arena); | 
|  | til::SCFG *Scfg = SxBuilder.buildCFG(Walker); | 
|  | TILPrinter::print(Scfg, llvm::errs()); | 
|  | } | 
|  |  | 
|  | } // namespace threadSafety | 
|  | } // namespace clang | 
|  | #endif // NDEBUG |