| //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "HexagonISelLowering.h" | 
 | #include "HexagonRegisterInfo.h" | 
 | #include "HexagonSubtarget.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/IR/IntrinsicsHexagon.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <string> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen", | 
 |   cl::Hidden, cl::init(16), | 
 |   cl::desc("Lower threshold (in bytes) for widening to HVX vectors")); | 
 |  | 
 | static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 }; | 
 | static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 }; | 
 | static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 }; | 
 | static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; | 
 |  | 
 | static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) { | 
 |   // For a float scalar type, return (exp-bits, exp-bias, fraction-bits) | 
 |   MVT ElemTy = Ty.getScalarType(); | 
 |   switch (ElemTy.SimpleTy) { | 
 |     case MVT::f16: | 
 |       return std::make_tuple(5, 15, 10); | 
 |     case MVT::f32: | 
 |       return std::make_tuple(8, 127, 23); | 
 |     case MVT::f64: | 
 |       return std::make_tuple(11, 1023, 52); | 
 |     default: | 
 |       break; | 
 |   } | 
 |   llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str()); | 
 | } | 
 |  | 
 | void | 
 | HexagonTargetLowering::initializeHVXLowering() { | 
 |   if (Subtarget.useHVX64BOps()) { | 
 |     addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass); | 
 |     addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass); | 
 |     addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass); | 
 |     addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass); | 
 |     addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass); | 
 |     addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass); | 
 |     // These "short" boolean vector types should be legal because | 
 |     // they will appear as results of vector compares. If they were | 
 |     // not legal, type legalization would try to make them legal | 
 |     // and that would require using operations that do not use or | 
 |     // produce such types. That, in turn, would imply using custom | 
 |     // nodes, which would be unoptimizable by the DAG combiner. | 
 |     // The idea is to rely on target-independent operations as much | 
 |     // as possible. | 
 |     addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass); | 
 |     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); | 
 |     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); | 
 |   } else if (Subtarget.useHVX128BOps()) { | 
 |     addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass); | 
 |     addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass); | 
 |     addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass); | 
 |     addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass); | 
 |     addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass); | 
 |     addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass); | 
 |     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); | 
 |     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); | 
 |     addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass); | 
 |     if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { | 
 |       addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass); | 
 |       addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass); | 
 |       addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass); | 
 |       addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass); | 
 |     } | 
 |   } | 
 |  | 
 |   // Set up operation actions. | 
 |  | 
 |   bool Use64b = Subtarget.useHVX64BOps(); | 
 |   ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128; | 
 |   ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128; | 
 |   MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8; | 
 |   MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32; | 
 |   MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; | 
 |  | 
 |   auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { | 
 |     setOperationAction(Opc, FromTy, Promote); | 
 |     AddPromotedToType(Opc, FromTy, ToTy); | 
 |   }; | 
 |  | 
 |   // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32). | 
 |   // Note: v16i1 -> i16 is handled in type legalization instead of op | 
 |   // legalization. | 
 |   setOperationAction(ISD::BITCAST,              MVT::i16, Custom); | 
 |   setOperationAction(ISD::BITCAST,              MVT::i32, Custom); | 
 |   setOperationAction(ISD::BITCAST,              MVT::i64, Custom); | 
 |   setOperationAction(ISD::BITCAST,            MVT::v16i1, Custom); | 
 |   setOperationAction(ISD::BITCAST,           MVT::v128i1, Custom); | 
 |   setOperationAction(ISD::BITCAST,             MVT::i128, Custom); | 
 |   setOperationAction(ISD::VECTOR_SHUFFLE,          ByteV, Legal); | 
 |   setOperationAction(ISD::VECTOR_SHUFFLE,          ByteW, Legal); | 
 |   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
 |  | 
 |   if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() && | 
 |       Subtarget.useHVXFloatingPoint()) { | 
 |  | 
 |     static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 }; | 
 |     static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 }; | 
 |  | 
 |     for (MVT T : FloatV) { | 
 |       setOperationAction(ISD::FADD,              T, Legal); | 
 |       setOperationAction(ISD::FSUB,              T, Legal); | 
 |       setOperationAction(ISD::FMUL,              T, Legal); | 
 |       setOperationAction(ISD::FMINNUM,           T, Legal); | 
 |       setOperationAction(ISD::FMAXNUM,           T, Legal); | 
 |  | 
 |       setOperationAction(ISD::INSERT_SUBVECTOR,  T, Custom); | 
 |       setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); | 
 |  | 
 |       setOperationAction(ISD::SPLAT_VECTOR,      T, Legal); | 
 |       setOperationAction(ISD::SPLAT_VECTOR,      T, Legal); | 
 |  | 
 |       setOperationAction(ISD::MLOAD,             T, Custom); | 
 |       setOperationAction(ISD::MSTORE,            T, Custom); | 
 |       // Custom-lower BUILD_VECTOR. The standard (target-independent) | 
 |       // handling of it would convert it to a load, which is not always | 
 |       // the optimal choice. | 
 |       setOperationAction(ISD::BUILD_VECTOR,      T, Custom); | 
 |     } | 
 |  | 
 |  | 
 |     // BUILD_VECTOR with f16 operands cannot be promoted without | 
 |     // promoting the result, so lower the node to vsplat or constant pool | 
 |     setOperationAction(ISD::BUILD_VECTOR,      MVT::f16, Custom); | 
 |     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom); | 
 |     setOperationAction(ISD::SPLAT_VECTOR,      MVT::f16, Custom); | 
 |  | 
 |     // Vector shuffle is always promoted to ByteV and a bitcast to f16 is | 
 |     // generated. | 
 |     setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW); | 
 |     setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f16, ByteV); | 
 |     setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f32, ByteW); | 
 |     setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v32f32, ByteV); | 
 |  | 
 |     for (MVT P : FloatW) { | 
 |       setOperationAction(ISD::LOAD,           P, Custom); | 
 |       setOperationAction(ISD::STORE,          P, Custom); | 
 |       setOperationAction(ISD::FADD,           P, Custom); | 
 |       setOperationAction(ISD::FSUB,           P, Custom); | 
 |       setOperationAction(ISD::FMUL,           P, Custom); | 
 |       setOperationAction(ISD::FMINNUM,        P, Custom); | 
 |       setOperationAction(ISD::FMAXNUM,        P, Custom); | 
 |       setOperationAction(ISD::SETCC,          P, Custom); | 
 |       setOperationAction(ISD::VSELECT,        P, Custom); | 
 |  | 
 |       // Custom-lower BUILD_VECTOR. The standard (target-independent) | 
 |       // handling of it would convert it to a load, which is not always | 
 |       // the optimal choice. | 
 |       setOperationAction(ISD::BUILD_VECTOR,   P, Custom); | 
 |       // Make concat-vectors custom to handle concats of more than 2 vectors. | 
 |       setOperationAction(ISD::CONCAT_VECTORS, P, Custom); | 
 |  | 
 |       setOperationAction(ISD::MLOAD,          P, Custom); | 
 |       setOperationAction(ISD::MSTORE,         P, Custom); | 
 |     } | 
 |  | 
 |     if (Subtarget.useHVXQFloatOps()) { | 
 |       setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom); | 
 |       setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal); | 
 |     } else if (Subtarget.useHVXIEEEFPOps()) { | 
 |       setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal); | 
 |       setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal); | 
 |     } | 
 |   } | 
 |  | 
 |   for (MVT T : LegalV) { | 
 |     setIndexedLoadAction(ISD::POST_INC,  T, Legal); | 
 |     setIndexedStoreAction(ISD::POST_INC, T, Legal); | 
 |  | 
 |     setOperationAction(ISD::ABS,            T, Legal); | 
 |     setOperationAction(ISD::AND,            T, Legal); | 
 |     setOperationAction(ISD::OR,             T, Legal); | 
 |     setOperationAction(ISD::XOR,            T, Legal); | 
 |     setOperationAction(ISD::ADD,            T, Legal); | 
 |     setOperationAction(ISD::SUB,            T, Legal); | 
 |     setOperationAction(ISD::MUL,            T, Legal); | 
 |     setOperationAction(ISD::CTPOP,          T, Legal); | 
 |     setOperationAction(ISD::CTLZ,           T, Legal); | 
 |     setOperationAction(ISD::SELECT,         T, Legal); | 
 |     setOperationAction(ISD::SPLAT_VECTOR,   T, Legal); | 
 |     if (T != ByteV) { | 
 |       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); | 
 |       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); | 
 |       setOperationAction(ISD::BSWAP,                    T, Legal); | 
 |     } | 
 |  | 
 |     setOperationAction(ISD::SMIN,           T, Legal); | 
 |     setOperationAction(ISD::SMAX,           T, Legal); | 
 |     if (T.getScalarType() != MVT::i32) { | 
 |       setOperationAction(ISD::UMIN,         T, Legal); | 
 |       setOperationAction(ISD::UMAX,         T, Legal); | 
 |     } | 
 |  | 
 |     setOperationAction(ISD::CTTZ,               T, Custom); | 
 |     setOperationAction(ISD::LOAD,               T, Custom); | 
 |     setOperationAction(ISD::MLOAD,              T, Custom); | 
 |     setOperationAction(ISD::MSTORE,             T, Custom); | 
 |     if (T.getScalarType() != MVT::i32) { | 
 |       setOperationAction(ISD::MULHS,              T, Legal); | 
 |       setOperationAction(ISD::MULHU,              T, Legal); | 
 |     } | 
 |  | 
 |     setOperationAction(ISD::BUILD_VECTOR,       T, Custom); | 
 |     // Make concat-vectors custom to handle concats of more than 2 vectors. | 
 |     setOperationAction(ISD::CONCAT_VECTORS,     T, Custom); | 
 |     setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom); | 
 |     setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom); | 
 |     setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom); | 
 |     setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); | 
 |     setOperationAction(ISD::ANY_EXTEND,         T, Custom); | 
 |     setOperationAction(ISD::SIGN_EXTEND,        T, Custom); | 
 |     setOperationAction(ISD::ZERO_EXTEND,        T, Custom); | 
 |     setOperationAction(ISD::FSHL,               T, Custom); | 
 |     setOperationAction(ISD::FSHR,               T, Custom); | 
 |     if (T != ByteV) { | 
 |       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); | 
 |       // HVX only has shifts of words and halfwords. | 
 |       setOperationAction(ISD::SRA,                     T, Custom); | 
 |       setOperationAction(ISD::SHL,                     T, Custom); | 
 |       setOperationAction(ISD::SRL,                     T, Custom); | 
 |  | 
 |       // Promote all shuffles to operate on vectors of bytes. | 
 |       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); | 
 |     } | 
 |  | 
 |     if (Subtarget.useHVXFloatingPoint()) { | 
 |       // Same action for both QFloat and IEEE. | 
 |       setOperationAction(ISD::SINT_TO_FP, T, Custom); | 
 |       setOperationAction(ISD::UINT_TO_FP, T, Custom); | 
 |       setOperationAction(ISD::FP_TO_SINT, T, Custom); | 
 |       setOperationAction(ISD::FP_TO_UINT, T, Custom); | 
 |     } | 
 |  | 
 |     setCondCodeAction(ISD::SETNE,  T, Expand); | 
 |     setCondCodeAction(ISD::SETLE,  T, Expand); | 
 |     setCondCodeAction(ISD::SETGE,  T, Expand); | 
 |     setCondCodeAction(ISD::SETLT,  T, Expand); | 
 |     setCondCodeAction(ISD::SETULE, T, Expand); | 
 |     setCondCodeAction(ISD::SETUGE, T, Expand); | 
 |     setCondCodeAction(ISD::SETULT, T, Expand); | 
 |   } | 
 |  | 
 |   for (MVT T : LegalW) { | 
 |     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- | 
 |     // independent) handling of it would convert it to a load, which is | 
 |     // not always the optimal choice. | 
 |     setOperationAction(ISD::BUILD_VECTOR,   T, Custom); | 
 |     // Make concat-vectors custom to handle concats of more than 2 vectors. | 
 |     setOperationAction(ISD::CONCAT_VECTORS, T, Custom); | 
 |  | 
 |     // Custom-lower these operations for pairs. Expand them into a concat | 
 |     // of the corresponding operations on individual vectors. | 
 |     setOperationAction(ISD::ANY_EXTEND,               T, Custom); | 
 |     setOperationAction(ISD::SIGN_EXTEND,              T, Custom); | 
 |     setOperationAction(ISD::ZERO_EXTEND,              T, Custom); | 
 |     setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom); | 
 |     setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom); | 
 |     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); | 
 |     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); | 
 |     setOperationAction(ISD::SPLAT_VECTOR,             T, Custom); | 
 |  | 
 |     setOperationAction(ISD::LOAD,     T, Custom); | 
 |     setOperationAction(ISD::STORE,    T, Custom); | 
 |     setOperationAction(ISD::MLOAD,    T, Custom); | 
 |     setOperationAction(ISD::MSTORE,   T, Custom); | 
 |     setOperationAction(ISD::ABS,      T, Custom); | 
 |     setOperationAction(ISD::CTLZ,     T, Custom); | 
 |     setOperationAction(ISD::CTTZ,     T, Custom); | 
 |     setOperationAction(ISD::CTPOP,    T, Custom); | 
 |  | 
 |     setOperationAction(ISD::ADD,      T, Legal); | 
 |     setOperationAction(ISD::SUB,      T, Legal); | 
 |     setOperationAction(ISD::MUL,      T, Custom); | 
 |     setOperationAction(ISD::MULHS,    T, Custom); | 
 |     setOperationAction(ISD::MULHU,    T, Custom); | 
 |     setOperationAction(ISD::AND,      T, Custom); | 
 |     setOperationAction(ISD::OR,       T, Custom); | 
 |     setOperationAction(ISD::XOR,      T, Custom); | 
 |     setOperationAction(ISD::SETCC,    T, Custom); | 
 |     setOperationAction(ISD::VSELECT,  T, Custom); | 
 |     if (T != ByteW) { | 
 |       setOperationAction(ISD::SRA,      T, Custom); | 
 |       setOperationAction(ISD::SHL,      T, Custom); | 
 |       setOperationAction(ISD::SRL,      T, Custom); | 
 |  | 
 |       // Promote all shuffles to operate on vectors of bytes. | 
 |       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); | 
 |     } | 
 |     setOperationAction(ISD::FSHL,     T, Custom); | 
 |     setOperationAction(ISD::FSHR,     T, Custom); | 
 |  | 
 |     setOperationAction(ISD::SMIN,     T, Custom); | 
 |     setOperationAction(ISD::SMAX,     T, Custom); | 
 |     if (T.getScalarType() != MVT::i32) { | 
 |       setOperationAction(ISD::UMIN,     T, Custom); | 
 |       setOperationAction(ISD::UMAX,     T, Custom); | 
 |     } | 
 |  | 
 |     if (Subtarget.useHVXFloatingPoint()) { | 
 |       // Same action for both QFloat and IEEE. | 
 |       setOperationAction(ISD::SINT_TO_FP, T, Custom); | 
 |       setOperationAction(ISD::UINT_TO_FP, T, Custom); | 
 |       setOperationAction(ISD::FP_TO_SINT, T, Custom); | 
 |       setOperationAction(ISD::FP_TO_UINT, T, Custom); | 
 |     } | 
 |   } | 
 |  | 
 |   // Legalize all of these to HexagonISD::[SU]MUL_LOHI. | 
 |   setOperationAction(ISD::MULHS,      WordV, Custom); // -> _LOHI | 
 |   setOperationAction(ISD::MULHU,      WordV, Custom); // -> _LOHI | 
 |   setOperationAction(ISD::SMUL_LOHI,  WordV, Custom); | 
 |   setOperationAction(ISD::UMUL_LOHI,  WordV, Custom); | 
 |  | 
 |   setCondCodeAction(ISD::SETNE,  MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETLE,  MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETGE,  MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETLT,  MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand); | 
 |   setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand); | 
 |  | 
 |   setCondCodeAction(ISD::SETNE,  MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETLE,  MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETGE,  MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETLT,  MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand); | 
 |   setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand); | 
 |  | 
 |   // Boolean vectors. | 
 |  | 
 |   for (MVT T : LegalW) { | 
 |     // Boolean types for vector pairs will overlap with the boolean | 
 |     // types for single vectors, e.g. | 
 |     //   v64i8  -> v64i1 (single) | 
 |     //   v64i16 -> v64i1 (pair) | 
 |     // Set these actions first, and allow the single actions to overwrite | 
 |     // any duplicates. | 
 |     MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); | 
 |     setOperationAction(ISD::SETCC,              BoolW, Custom); | 
 |     setOperationAction(ISD::AND,                BoolW, Custom); | 
 |     setOperationAction(ISD::OR,                 BoolW, Custom); | 
 |     setOperationAction(ISD::XOR,                BoolW, Custom); | 
 |     // Masked load/store takes a mask that may need splitting. | 
 |     setOperationAction(ISD::MLOAD,              BoolW, Custom); | 
 |     setOperationAction(ISD::MSTORE,             BoolW, Custom); | 
 |   } | 
 |  | 
 |   for (MVT T : LegalV) { | 
 |     MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); | 
 |     setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom); | 
 |     setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom); | 
 |     setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom); | 
 |     setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom); | 
 |     setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom); | 
 |     setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom); | 
 |     setOperationAction(ISD::SELECT,             BoolV, Custom); | 
 |     setOperationAction(ISD::AND,                BoolV, Legal); | 
 |     setOperationAction(ISD::OR,                 BoolV, Legal); | 
 |     setOperationAction(ISD::XOR,                BoolV, Legal); | 
 |   } | 
 |  | 
 |   if (Use64b) { | 
 |     for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) | 
 |       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); | 
 |   } else { | 
 |     for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) | 
 |       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); | 
 |   } | 
 |  | 
 |   // Handle store widening for short vectors. | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   for (MVT ElemTy : Subtarget.getHVXElementTypes()) { | 
 |     if (ElemTy == MVT::i1) | 
 |       continue; | 
 |     int ElemWidth = ElemTy.getFixedSizeInBits(); | 
 |     int MaxElems = (8*HwLen) / ElemWidth; | 
 |     for (int N = 2; N < MaxElems; N *= 2) { | 
 |       MVT VecTy = MVT::getVectorVT(ElemTy, N); | 
 |       auto Action = getPreferredVectorAction(VecTy); | 
 |       if (Action == TargetLoweringBase::TypeWidenVector) { | 
 |         setOperationAction(ISD::LOAD,         VecTy, Custom); | 
 |         setOperationAction(ISD::STORE,        VecTy, Custom); | 
 |         setOperationAction(ISD::SETCC,        VecTy, Custom); | 
 |         setOperationAction(ISD::TRUNCATE,     VecTy, Custom); | 
 |         setOperationAction(ISD::ANY_EXTEND,   VecTy, Custom); | 
 |         setOperationAction(ISD::SIGN_EXTEND,  VecTy, Custom); | 
 |         setOperationAction(ISD::ZERO_EXTEND,  VecTy, Custom); | 
 |         if (Subtarget.useHVXFloatingPoint()) { | 
 |           setOperationAction(ISD::FP_TO_SINT,   VecTy, Custom); | 
 |           setOperationAction(ISD::FP_TO_UINT,   VecTy, Custom); | 
 |           setOperationAction(ISD::SINT_TO_FP,   VecTy, Custom); | 
 |           setOperationAction(ISD::UINT_TO_FP,   VecTy, Custom); | 
 |         } | 
 |  | 
 |         MVT BoolTy = MVT::getVectorVT(MVT::i1, N); | 
 |         if (!isTypeLegal(BoolTy)) | 
 |           setOperationAction(ISD::SETCC, BoolTy, Custom); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT}); | 
 | } | 
 |  | 
 | unsigned | 
 | HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const { | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   unsigned VecLen = VecTy.getVectorNumElements(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |  | 
 |   // Split vectors of i1 that exceed byte vector length. | 
 |   if (ElemTy == MVT::i1 && VecLen > HwLen) | 
 |     return TargetLoweringBase::TypeSplitVector; | 
 |  | 
 |   ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); | 
 |   // For shorter vectors of i1, widen them if any of the corresponding | 
 |   // vectors of integers needs to be widened. | 
 |   if (ElemTy == MVT::i1) { | 
 |     for (MVT T : Tys) { | 
 |       assert(T != MVT::i1); | 
 |       auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen)); | 
 |       if (A != ~0u) | 
 |         return A; | 
 |     } | 
 |     return ~0u; | 
 |   } | 
 |  | 
 |   // If the size of VecTy is at least half of the vector length, | 
 |   // widen the vector. Note: the threshold was not selected in | 
 |   // any scientific way. | 
 |   if (llvm::is_contained(Tys, ElemTy)) { | 
 |     unsigned VecWidth = VecTy.getSizeInBits(); | 
 |     unsigned HwWidth = 8*HwLen; | 
 |     if (VecWidth > 2*HwWidth) | 
 |       return TargetLoweringBase::TypeSplitVector; | 
 |  | 
 |     bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0; | 
 |     if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth) | 
 |       return TargetLoweringBase::TypeWidenVector; | 
 |     if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) | 
 |       return TargetLoweringBase::TypeWidenVector; | 
 |   } | 
 |  | 
 |   // Defer to default. | 
 |   return ~0u; | 
 | } | 
 |  | 
 | unsigned | 
 | HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const { | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   switch (Opc) { | 
 |   case HexagonISD::SMUL_LOHI: | 
 |   case HexagonISD::UMUL_LOHI: | 
 |   case HexagonISD::USMUL_LOHI: | 
 |     return TargetLoweringBase::Custom; | 
 |   } | 
 |   return TargetLoweringBase::Legal; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, | 
 |                               const SDLoc &dl, SelectionDAG &DAG) const { | 
 |   SmallVector<SDValue,4> IntOps; | 
 |   IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); | 
 |   append_range(IntOps, Ops); | 
 |   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); | 
 | } | 
 |  | 
 | MVT | 
 | HexagonTargetLowering::typeJoin(const TypePair &Tys) const { | 
 |   assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); | 
 |  | 
 |   MVT ElemTy = Tys.first.getVectorElementType(); | 
 |   return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + | 
 |                                   Tys.second.getVectorNumElements()); | 
 | } | 
 |  | 
 | HexagonTargetLowering::TypePair | 
 | HexagonTargetLowering::typeSplit(MVT VecTy) const { | 
 |   assert(VecTy.isVector()); | 
 |   unsigned NumElem = VecTy.getVectorNumElements(); | 
 |   assert((NumElem % 2) == 0 && "Expecting even-sized vector type"); | 
 |   MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); | 
 |   return { HalfTy, HalfTy }; | 
 | } | 
 |  | 
 | MVT | 
 | HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); | 
 |   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); | 
 | } | 
 |  | 
 | MVT | 
 | HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); | 
 |   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, | 
 |                                   SelectionDAG &DAG) const { | 
 |   if (ty(Vec).getVectorElementType() == ElemTy) | 
 |     return Vec; | 
 |   MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); | 
 |   return DAG.getBitcast(CastTy, Vec); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, | 
 |                               SelectionDAG &DAG) const { | 
 |   return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), | 
 |                      Ops.first, Ops.second); | 
 | } | 
 |  | 
 | HexagonTargetLowering::VectorPair | 
 | HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, | 
 |                                SelectionDAG &DAG) const { | 
 |   TypePair Tys = typeSplit(ty(Vec)); | 
 |   if (Vec.getOpcode() == HexagonISD::QCAT) | 
 |     return VectorPair(Vec.getOperand(0), Vec.getOperand(1)); | 
 |   return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); | 
 | } | 
 |  | 
 | bool | 
 | HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { | 
 |   return Subtarget.isHVXVectorType(Ty) && | 
 |          Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); | 
 | } | 
 |  | 
 | bool | 
 | HexagonTargetLowering::isHvxPairTy(MVT Ty) const { | 
 |   return Subtarget.isHVXVectorType(Ty) && | 
 |          Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); | 
 | } | 
 |  | 
 | bool | 
 | HexagonTargetLowering::isHvxBoolTy(MVT Ty) const { | 
 |   return Subtarget.isHVXVectorType(Ty, true) && | 
 |          Ty.getVectorElementType() == MVT::i1; | 
 | } | 
 |  | 
 | bool HexagonTargetLowering::allowsHvxMemoryAccess( | 
 |     MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { | 
 |   // Bool vectors are excluded by default, but make it explicit to | 
 |   // emphasize that bool vectors cannot be loaded or stored. | 
 |   // Also, disallow double vector stores (to prevent unnecessary | 
 |   // store widening in DAG combiner). | 
 |   if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength()) | 
 |     return false; | 
 |   if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false)) | 
 |     return false; | 
 |   if (Fast) | 
 |     *Fast = 1; | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses( | 
 |     MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { | 
 |   if (!Subtarget.isHVXVectorType(VecTy)) | 
 |     return false; | 
 |   // XXX Should this be false?  vmemu are a bit slower than vmem. | 
 |   if (Fast) | 
 |     *Fast = 1; | 
 |   return true; | 
 | } | 
 |  | 
 | void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection( | 
 |     MachineInstr &MI, SDNode *Node) const { | 
 |   unsigned Opc = MI.getOpcode(); | 
 |   const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); | 
 |   MachineBasicBlock &MB = *MI.getParent(); | 
 |   MachineFunction &MF = *MB.getParent(); | 
 |   MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |   DebugLoc DL = MI.getDebugLoc(); | 
 |   auto At = MI.getIterator(); | 
 |  | 
 |   switch (Opc) { | 
 |   case Hexagon::PS_vsplatib: | 
 |     if (Subtarget.useHVXV62Ops()) { | 
 |       // SplatV = A2_tfrsi #imm | 
 |       // OutV = V6_lvsplatb SplatV | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
 |         .add(MI.getOperand(1)); | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) | 
 |         .addReg(SplatV); | 
 |     } else { | 
 |       // SplatV = A2_tfrsi #imm:#imm:#imm:#imm | 
 |       // OutV = V6_lvsplatw SplatV | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       const MachineOperand &InpOp = MI.getOperand(1); | 
 |       assert(InpOp.isImm()); | 
 |       uint32_t V = InpOp.getImm() & 0xFF; | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
 |           .addImm(V << 24 | V << 16 | V << 8 | V); | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | 
 |     } | 
 |     MB.erase(At); | 
 |     break; | 
 |   case Hexagon::PS_vsplatrb: | 
 |     if (Subtarget.useHVXV62Ops()) { | 
 |       // OutV = V6_lvsplatb Inp | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) | 
 |         .add(MI.getOperand(1)); | 
 |     } else { | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       const MachineOperand &InpOp = MI.getOperand(1); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV) | 
 |           .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV) | 
 |           .addReg(SplatV); | 
 |     } | 
 |     MB.erase(At); | 
 |     break; | 
 |   case Hexagon::PS_vsplatih: | 
 |     if (Subtarget.useHVXV62Ops()) { | 
 |       // SplatV = A2_tfrsi #imm | 
 |       // OutV = V6_lvsplath SplatV | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
 |         .add(MI.getOperand(1)); | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) | 
 |         .addReg(SplatV); | 
 |     } else { | 
 |       // SplatV = A2_tfrsi #imm:#imm | 
 |       // OutV = V6_lvsplatw SplatV | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       const MachineOperand &InpOp = MI.getOperand(1); | 
 |       assert(InpOp.isImm()); | 
 |       uint32_t V = InpOp.getImm() & 0xFFFF; | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
 |           .addImm(V << 16 | V); | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | 
 |     } | 
 |     MB.erase(At); | 
 |     break; | 
 |   case Hexagon::PS_vsplatrh: | 
 |     if (Subtarget.useHVXV62Ops()) { | 
 |       // OutV = V6_lvsplath Inp | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) | 
 |         .add(MI.getOperand(1)); | 
 |     } else { | 
 |       // SplatV = A2_combine_ll Inp, Inp | 
 |       // OutV = V6_lvsplatw SplatV | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       const MachineOperand &InpOp = MI.getOperand(1); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV) | 
 |           .addReg(InpOp.getReg(), 0, InpOp.getSubReg()) | 
 |           .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); | 
 |       Register OutV = MI.getOperand(0).getReg(); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | 
 |     } | 
 |     MB.erase(At); | 
 |     break; | 
 |   case Hexagon::PS_vsplatiw: | 
 |   case Hexagon::PS_vsplatrw: | 
 |     if (Opc == Hexagon::PS_vsplatiw) { | 
 |       // SplatV = A2_tfrsi #imm | 
 |       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
 |         .add(MI.getOperand(1)); | 
 |       MI.getOperand(1).ChangeToRegister(SplatV, false); | 
 |     } | 
 |     // OutV = V6_lvsplatw SplatV/Inp | 
 |     MI.setDesc(TII.get(Hexagon::V6_lvsplatw)); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, | 
 |                                           SelectionDAG &DAG) const { | 
 |   if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) | 
 |     ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); | 
 |  | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |   if (ElemWidth == 8) | 
 |     return ElemIdx; | 
 |  | 
 |   unsigned L = Log2_32(ElemWidth/8); | 
 |   const SDLoc &dl(ElemIdx); | 
 |   return DAG.getNode(ISD::SHL, dl, MVT::i32, | 
 |                      {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, | 
 |                                         SelectionDAG &DAG) const { | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |   assert(ElemWidth >= 8 && ElemWidth <= 32); | 
 |   if (ElemWidth == 32) | 
 |     return Idx; | 
 |  | 
 |   if (ty(Idx) != MVT::i32) | 
 |     Idx = DAG.getBitcast(MVT::i32, Idx); | 
 |   const SDLoc &dl(Idx); | 
 |   SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); | 
 |   SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); | 
 |   return SubIdx; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, | 
 |                                       SDValue Op1, ArrayRef<int> Mask, | 
 |                                       SelectionDAG &DAG) const { | 
 |   MVT OpTy = ty(Op0); | 
 |   assert(OpTy == ty(Op1)); | 
 |  | 
 |   MVT ElemTy = OpTy.getVectorElementType(); | 
 |   if (ElemTy == MVT::i8) | 
 |     return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); | 
 |   assert(ElemTy.getSizeInBits() >= 8); | 
 |  | 
 |   MVT ResTy = tyVector(OpTy, MVT::i8); | 
 |   unsigned ElemSize = ElemTy.getSizeInBits() / 8; | 
 |  | 
 |   SmallVector<int,128> ByteMask; | 
 |   for (int M : Mask) { | 
 |     if (M < 0) { | 
 |       for (unsigned I = 0; I != ElemSize; ++I) | 
 |         ByteMask.push_back(-1); | 
 |     } else { | 
 |       int NewM = M*ElemSize; | 
 |       for (unsigned I = 0; I != ElemSize; ++I) | 
 |         ByteMask.push_back(NewM+I); | 
 |     } | 
 |   } | 
 |   assert(ResTy.getVectorNumElements() == ByteMask.size()); | 
 |   return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), | 
 |                               opCastElem(Op1, MVT::i8, DAG), ByteMask); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, | 
 |                                          const SDLoc &dl, MVT VecTy, | 
 |                                          SelectionDAG &DAG) const { | 
 |   unsigned VecLen = Values.size(); | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |  | 
 |   unsigned ElemSize = ElemWidth / 8; | 
 |   assert(ElemSize*VecLen == HwLen); | 
 |   SmallVector<SDValue,32> Words; | 
 |  | 
 |   if (VecTy.getVectorElementType() != MVT::i32 && | 
 |       !(Subtarget.useHVXFloatingPoint() && | 
 |       VecTy.getVectorElementType() == MVT::f32)) { | 
 |     assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size"); | 
 |     unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; | 
 |     MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); | 
 |     for (unsigned i = 0; i != VecLen; i += OpsPerWord) { | 
 |       SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); | 
 |       Words.push_back(DAG.getBitcast(MVT::i32, W)); | 
 |     } | 
 |   } else { | 
 |     for (SDValue V : Values) | 
 |       Words.push_back(DAG.getBitcast(MVT::i32, V)); | 
 |   } | 
 |   auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) { | 
 |     unsigned NumValues = Values.size(); | 
 |     assert(NumValues > 0); | 
 |     bool IsUndef = true; | 
 |     for (unsigned i = 0; i != NumValues; ++i) { | 
 |       if (Values[i].isUndef()) | 
 |         continue; | 
 |       IsUndef = false; | 
 |       if (!SplatV.getNode()) | 
 |         SplatV = Values[i]; | 
 |       else if (SplatV != Values[i]) | 
 |         return false; | 
 |     } | 
 |     if (IsUndef) | 
 |       SplatV = Values[0]; | 
 |     return true; | 
 |   }; | 
 |  | 
 |   unsigned NumWords = Words.size(); | 
 |   SDValue SplatV; | 
 |   bool IsSplat = isSplat(Words, SplatV); | 
 |   if (IsSplat && isUndef(SplatV)) | 
 |     return DAG.getUNDEF(VecTy); | 
 |   if (IsSplat) { | 
 |     assert(SplatV.getNode()); | 
 |     if (isNullConstant(SplatV)) | 
 |       return getZero(dl, VecTy, DAG); | 
 |     MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); | 
 |     SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV); | 
 |     return DAG.getBitcast(VecTy, S); | 
 |   } | 
 |  | 
 |   // Delay recognizing constant vectors until here, so that we can generate | 
 |   // a vsplat. | 
 |   SmallVector<ConstantInt*, 128> Consts(VecLen); | 
 |   bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); | 
 |   if (AllConst) { | 
 |     ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), | 
 |                             (Constant**)Consts.end()); | 
 |     Constant *CV = ConstantVector::get(Tmp); | 
 |     Align Alignment(HwLen); | 
 |     SDValue CP = | 
 |         LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG); | 
 |     return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, | 
 |                        MachinePointerInfo::getConstantPool(MF), Alignment); | 
 |   } | 
 |  | 
 |   // A special case is a situation where the vector is built entirely from | 
 |   // elements extracted from another vector. This could be done via a shuffle | 
 |   // more efficiently, but typically, the size of the source vector will not | 
 |   // match the size of the vector being built (which precludes the use of a | 
 |   // shuffle directly). | 
 |   // This only handles a single source vector, and the vector being built | 
 |   // should be of a sub-vector type of the source vector type. | 
 |   auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec, | 
 |                                              SmallVectorImpl<int> &SrcIdx) { | 
 |     SDValue Vec; | 
 |     for (SDValue V : Values) { | 
 |       if (isUndef(V)) { | 
 |         SrcIdx.push_back(-1); | 
 |         continue; | 
 |       } | 
 |       if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
 |         return false; | 
 |       // All extracts should come from the same vector. | 
 |       SDValue T = V.getOperand(0); | 
 |       if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) | 
 |         return false; | 
 |       Vec = T; | 
 |       ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1)); | 
 |       if (C == nullptr) | 
 |         return false; | 
 |       int I = C->getSExtValue(); | 
 |       assert(I >= 0 && "Negative element index"); | 
 |       SrcIdx.push_back(I); | 
 |     } | 
 |     SrcVec = Vec; | 
 |     return true; | 
 |   }; | 
 |  | 
 |   SmallVector<int,128> ExtIdx; | 
 |   SDValue ExtVec; | 
 |   if (IsBuildFromExtracts(ExtVec, ExtIdx)) { | 
 |     MVT ExtTy = ty(ExtVec); | 
 |     unsigned ExtLen = ExtTy.getVectorNumElements(); | 
 |     if (ExtLen == VecLen || ExtLen == 2*VecLen) { | 
 |       // Construct a new shuffle mask that will produce a vector with the same | 
 |       // number of elements as the input vector, and such that the vector we | 
 |       // want will be the initial subvector of it. | 
 |       SmallVector<int,128> Mask; | 
 |       BitVector Used(ExtLen); | 
 |  | 
 |       for (int M : ExtIdx) { | 
 |         Mask.push_back(M); | 
 |         if (M >= 0) | 
 |           Used.set(M); | 
 |       } | 
 |       // Fill the rest of the mask with the unused elements of ExtVec in hopes | 
 |       // that it will result in a permutation of ExtVec's elements. It's still | 
 |       // fine if it doesn't (e.g. if undefs are present, or elements are | 
 |       // repeated), but permutations can always be done efficiently via vdelta | 
 |       // and vrdelta. | 
 |       for (unsigned I = 0; I != ExtLen; ++I) { | 
 |         if (Mask.size() == ExtLen) | 
 |           break; | 
 |         if (!Used.test(I)) | 
 |           Mask.push_back(I); | 
 |       } | 
 |  | 
 |       SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec, | 
 |                                        DAG.getUNDEF(ExtTy), Mask); | 
 |       return ExtLen == VecLen ? S : LoHalf(S, DAG); | 
 |     } | 
 |   } | 
 |  | 
 |   // Find most common element to initialize vector with. This is to avoid | 
 |   // unnecessary vinsert/valign for cases where the same value is present | 
 |   // many times. Creates a histogram of the vector's elements to find the | 
 |   // most common element n. | 
 |   assert(4*Words.size() == Subtarget.getVectorLength()); | 
 |   int VecHist[32]; | 
 |   int n = 0; | 
 |   for (unsigned i = 0; i != NumWords; ++i) { | 
 |     VecHist[i] = 0; | 
 |     if (Words[i].isUndef()) | 
 |       continue; | 
 |     for (unsigned j = i; j != NumWords; ++j) | 
 |       if (Words[i] == Words[j]) | 
 |         VecHist[i]++; | 
 |  | 
 |     if (VecHist[i] > VecHist[n]) | 
 |       n = i; | 
 |   } | 
 |  | 
 |   SDValue HalfV = getZero(dl, VecTy, DAG); | 
 |   if (VecHist[n] > 1) { | 
 |     SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]); | 
 |     HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy, | 
 |                        {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)}); | 
 |   } | 
 |   SDValue HalfV0 = HalfV; | 
 |   SDValue HalfV1 = HalfV; | 
 |  | 
 |   // Construct two halves in parallel, then or them together. Rn and Rm count | 
 |   // number of rotations needed before the next element. One last rotation is | 
 |   // performed post-loop to position the last element. | 
 |   int Rn = 0, Rm = 0; | 
 |   SDValue Sn, Sm; | 
 |   SDValue N = HalfV0; | 
 |   SDValue M = HalfV1; | 
 |   for (unsigned i = 0; i != NumWords/2; ++i) { | 
 |     // Rotate by element count since last insertion. | 
 |     if (Words[i] != Words[n] || VecHist[n] <= 1) { | 
 |       Sn = DAG.getConstant(Rn, dl, MVT::i32); | 
 |       HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); | 
 |       N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, | 
 |                       {HalfV0, Words[i]}); | 
 |       Rn = 0; | 
 |     } | 
 |     if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) { | 
 |       Sm = DAG.getConstant(Rm, dl, MVT::i32); | 
 |       HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); | 
 |       M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, | 
 |                       {HalfV1, Words[i+NumWords/2]}); | 
 |       Rm = 0; | 
 |     } | 
 |     Rn += 4; | 
 |     Rm += 4; | 
 |   } | 
 |   // Perform last rotation. | 
 |   Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32); | 
 |   Sm = DAG.getConstant(Rm, dl, MVT::i32); | 
 |   HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); | 
 |   HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); | 
 |  | 
 |   SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0); | 
 |   SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1); | 
 |  | 
 |   SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1}); | 
 |  | 
 |   SDValue OutV = | 
 |       DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV); | 
 |   return OutV; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, | 
 |       unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { | 
 |   MVT PredTy = ty(PredV); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |  | 
 |   if (Subtarget.isHVXVectorType(PredTy, true)) { | 
 |     // Move the vector predicate SubV to a vector register, and scale it | 
 |     // down to match the representation (bytes per type element) that VecV | 
 |     // uses. The scaling down will pick every 2nd or 4th (every Scale-th | 
 |     // in general) element and put them at the front of the resulting | 
 |     // vector. This subvector will then be inserted into the Q2V of VecV. | 
 |     // To avoid having an operation that generates an illegal type (short | 
 |     // vector), generate a full size vector. | 
 |     // | 
 |     SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); | 
 |     SmallVector<int,128> Mask(HwLen); | 
 |     // Scale = BitBytes(PredV) / Given BitBytes. | 
 |     unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); | 
 |     unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; | 
 |  | 
 |     for (unsigned i = 0; i != HwLen; ++i) { | 
 |       unsigned Num = i % Scale; | 
 |       unsigned Off = i / Scale; | 
 |       Mask[BlockLen*Num + Off] = i; | 
 |     } | 
 |     SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); | 
 |     if (!ZeroFill) | 
 |       return S; | 
 |     // Fill the bytes beyond BlockLen with 0s. | 
 |     // V6_pred_scalar2 cannot fill the entire predicate, so it only works | 
 |     // when BlockLen < HwLen. | 
 |     assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); | 
 |     MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
 |     SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
 |                          {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); | 
 |     SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); | 
 |     return DAG.getNode(ISD::AND, dl, ByteTy, S, M); | 
 |   } | 
 |  | 
 |   // Make sure that this is a valid scalar predicate. | 
 |   assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); | 
 |  | 
 |   unsigned Bytes = 8 / PredTy.getVectorNumElements(); | 
 |   SmallVector<SDValue,4> Words[2]; | 
 |   unsigned IdxW = 0; | 
 |  | 
 |   SDValue W0 = isUndef(PredV) | 
 |                   ? DAG.getUNDEF(MVT::i64) | 
 |                   : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); | 
 |   Words[IdxW].push_back(HiHalf(W0, DAG)); | 
 |   Words[IdxW].push_back(LoHalf(W0, DAG)); | 
 |  | 
 |   while (Bytes < BitBytes) { | 
 |     IdxW ^= 1; | 
 |     Words[IdxW].clear(); | 
 |  | 
 |     if (Bytes < 4) { | 
 |       for (const SDValue &W : Words[IdxW ^ 1]) { | 
 |         SDValue T = expandPredicate(W, dl, DAG); | 
 |         Words[IdxW].push_back(HiHalf(T, DAG)); | 
 |         Words[IdxW].push_back(LoHalf(T, DAG)); | 
 |       } | 
 |     } else { | 
 |       for (const SDValue &W : Words[IdxW ^ 1]) { | 
 |         Words[IdxW].push_back(W); | 
 |         Words[IdxW].push_back(W); | 
 |       } | 
 |     } | 
 |     Bytes *= 2; | 
 |   } | 
 |  | 
 |   assert(Bytes == BitBytes); | 
 |  | 
 |   SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); | 
 |   SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); | 
 |   for (const SDValue &W : Words[IdxW]) { | 
 |     Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); | 
 |     Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); | 
 |   } | 
 |  | 
 |   return Vec; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, | 
 |                                           const SDLoc &dl, MVT VecTy, | 
 |                                           SelectionDAG &DAG) const { | 
 |   // Construct a vector V of bytes, such that a comparison V >u 0 would | 
 |   // produce the required vector predicate. | 
 |   unsigned VecLen = Values.size(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   assert(VecLen <= HwLen || VecLen == 8*HwLen); | 
 |   SmallVector<SDValue,128> Bytes; | 
 |   bool AllT = true, AllF = true; | 
 |  | 
 |   auto IsTrue = [] (SDValue V) { | 
 |     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) | 
 |       return !N->isZero(); | 
 |     return false; | 
 |   }; | 
 |   auto IsFalse = [] (SDValue V) { | 
 |     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) | 
 |       return N->isZero(); | 
 |     return false; | 
 |   }; | 
 |  | 
 |   if (VecLen <= HwLen) { | 
 |     // In the hardware, each bit of a vector predicate corresponds to a byte | 
 |     // of a vector register. Calculate how many bytes does a bit of VecTy | 
 |     // correspond to. | 
 |     assert(HwLen % VecLen == 0); | 
 |     unsigned BitBytes = HwLen / VecLen; | 
 |     for (SDValue V : Values) { | 
 |       AllT &= IsTrue(V); | 
 |       AllF &= IsFalse(V); | 
 |  | 
 |       SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) | 
 |                                  : DAG.getUNDEF(MVT::i8); | 
 |       for (unsigned B = 0; B != BitBytes; ++B) | 
 |         Bytes.push_back(Ext); | 
 |     } | 
 |   } else { | 
 |     // There are as many i1 values, as there are bits in a vector register. | 
 |     // Divide the values into groups of 8 and check that each group consists | 
 |     // of the same value (ignoring undefs). | 
 |     for (unsigned I = 0; I != VecLen; I += 8) { | 
 |       unsigned B = 0; | 
 |       // Find the first non-undef value in this group. | 
 |       for (; B != 8; ++B) { | 
 |         if (!Values[I+B].isUndef()) | 
 |           break; | 
 |       } | 
 |       SDValue F = Values[I+B]; | 
 |       AllT &= IsTrue(F); | 
 |       AllF &= IsFalse(F); | 
 |  | 
 |       SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) | 
 |                             : DAG.getUNDEF(MVT::i8); | 
 |       Bytes.push_back(Ext); | 
 |       // Verify that the rest of values in the group are the same as the | 
 |       // first. | 
 |       for (; B != 8; ++B) | 
 |         assert(Values[I+B].isUndef() || Values[I+B] == F); | 
 |     } | 
 |   } | 
 |  | 
 |   if (AllT) | 
 |     return DAG.getNode(HexagonISD::QTRUE, dl, VecTy); | 
 |   if (AllF) | 
 |     return DAG.getNode(HexagonISD::QFALSE, dl, VecTy); | 
 |  | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); | 
 |   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, | 
 |       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
 |   MVT ElemTy = ty(VecV).getVectorElementType(); | 
 |  | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |   assert(ElemWidth >= 8 && ElemWidth <= 32); | 
 |   (void)ElemWidth; | 
 |  | 
 |   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); | 
 |   SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, | 
 |                                {VecV, ByteIdx}); | 
 |   if (ElemTy == MVT::i32) | 
 |     return ExWord; | 
 |  | 
 |   // Have an extracted word, need to extract the smaller element out of it. | 
 |   // 1. Extract the bits of (the original) IdxV that correspond to the index | 
 |   //    of the desired element in the 32-bit word. | 
 |   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); | 
 |   // 2. Extract the element from the word. | 
 |   SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); | 
 |   return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, | 
 |       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
 |   // Implement other return types if necessary. | 
 |   assert(ResTy == MVT::i1); | 
 |  | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
 |  | 
 |   unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); | 
 |   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); | 
 |   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); | 
 |  | 
 |   SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); | 
 |   SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); | 
 |   return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, | 
 |       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { | 
 |   MVT ElemTy = ty(VecV).getVectorElementType(); | 
 |  | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |   assert(ElemWidth >= 8 && ElemWidth <= 32); | 
 |   (void)ElemWidth; | 
 |  | 
 |   auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, | 
 |                                      SDValue ByteIdxV) { | 
 |     MVT VecTy = ty(VecV); | 
 |     unsigned HwLen = Subtarget.getVectorLength(); | 
 |     SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32, | 
 |                                 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)}); | 
 |     SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); | 
 |     SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); | 
 |     SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
 |                                {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); | 
 |     SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); | 
 |     return TorV; | 
 |   }; | 
 |  | 
 |   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); | 
 |   if (ElemTy == MVT::i32) | 
 |     return InsertWord(VecV, ValV, ByteIdx); | 
 |  | 
 |   // If this is not inserting a 32-bit word, convert it into such a thing. | 
 |   // 1. Extract the existing word from the target vector. | 
 |   SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, | 
 |                                 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); | 
 |   SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, | 
 |                                      dl, MVT::i32, DAG); | 
 |  | 
 |   // 2. Treating the extracted word as a 32-bit vector, insert the given | 
 |   //    value into it. | 
 |   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); | 
 |   MVT SubVecTy = tyVector(ty(Ext), ElemTy); | 
 |   SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), | 
 |                              ValV, SubIdx, dl, ElemTy, DAG); | 
 |  | 
 |   // 3. Insert the 32-bit word back into the original vector. | 
 |   return InsertWord(VecV, Ins, ByteIdx); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, | 
 |       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
 |  | 
 |   unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); | 
 |   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); | 
 |   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); | 
 |   ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); | 
 |  | 
 |   SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); | 
 |   return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV, | 
 |       SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(VecV); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |  | 
 |   // If the source vector is a vector pair, get the single vector containing | 
 |   // the subvector of interest. The subvector will never overlap two single | 
 |   // vectors. | 
 |   if (isHvxPairTy(VecTy)) { | 
 |     if (Idx * ElemWidth >= 8*HwLen) | 
 |       Idx -= VecTy.getVectorNumElements() / 2; | 
 |  | 
 |     VecV = OrigOp; | 
 |     if (typeSplit(VecTy).first == ResTy) | 
 |       return VecV; | 
 |   } | 
 |  | 
 |   // The only meaningful subvectors of a single HVX vector are those that | 
 |   // fit in a scalar register. | 
 |   assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); | 
 |  | 
 |   MVT WordTy = tyVector(VecTy, MVT::i32); | 
 |   SDValue WordVec = DAG.getBitcast(WordTy, VecV); | 
 |   unsigned WordIdx = (Idx*ElemWidth) / 32; | 
 |  | 
 |   SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); | 
 |   SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); | 
 |   if (ResTy.getSizeInBits() == 32) | 
 |     return DAG.getBitcast(ResTy, W0); | 
 |  | 
 |   SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); | 
 |   SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); | 
 |   SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG); | 
 |   return DAG.getBitcast(ResTy, WW); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, | 
 |       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(VecV); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
 |   // IdxV is required to be a constant. | 
 |   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); | 
 |  | 
 |   unsigned ResLen = ResTy.getVectorNumElements(); | 
 |   unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); | 
 |   unsigned Offset = Idx * BitBytes; | 
 |   SDValue Undef = DAG.getUNDEF(ByteTy); | 
 |   SmallVector<int,128> Mask; | 
 |  | 
 |   if (Subtarget.isHVXVectorType(ResTy, true)) { | 
 |     // Converting between two vector predicates. Since the result is shorter | 
 |     // than the source, it will correspond to a vector predicate with the | 
 |     // relevant bits replicated. The replication count is the ratio of the | 
 |     // source and target vector lengths. | 
 |     unsigned Rep = VecTy.getVectorNumElements() / ResLen; | 
 |     assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); | 
 |     for (unsigned i = 0; i != HwLen/Rep; ++i) { | 
 |       for (unsigned j = 0; j != Rep; ++j) | 
 |         Mask.push_back(i + Offset); | 
 |     } | 
 |     SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); | 
 |     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); | 
 |   } | 
 |  | 
 |   // Converting between a vector predicate and a scalar predicate. In the | 
 |   // vector predicate, a group of BitBytes bits will correspond to a single | 
 |   // i1 element of the source vector type. Those bits will all have the same | 
 |   // value. The same will be true for ByteVec, where each byte corresponds | 
 |   // to a bit in the vector predicate. | 
 |   // The algorithm is to traverse the ByteVec, going over the i1 values from | 
 |   // the source vector, and generate the corresponding representation in an | 
 |   // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the | 
 |   // elements so that the interesting 8 bytes will be in the low end of the | 
 |   // vector. | 
 |   unsigned Rep = 8 / ResLen; | 
 |   // Make sure the output fill the entire vector register, so repeat the | 
 |   // 8-byte groups as many times as necessary. | 
 |   for (unsigned r = 0; r != HwLen/ResLen; ++r) { | 
 |     // This will generate the indexes of the 8 interesting bytes. | 
 |     for (unsigned i = 0; i != ResLen; ++i) { | 
 |       for (unsigned j = 0; j != Rep; ++j) | 
 |         Mask.push_back(Offset + i*BitBytes); | 
 |     } | 
 |   } | 
 |  | 
 |   SDValue Zero = getZero(dl, MVT::i32, DAG); | 
 |   SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); | 
 |   // Combine the two low words from ShuffV into a v8i8, and byte-compare | 
 |   // them against 0. | 
 |   SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); | 
 |   SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, | 
 |                            {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); | 
 |   SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG); | 
 |   return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy, | 
 |                   {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, | 
 |       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(VecV); | 
 |   MVT SubTy = ty(SubV); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |  | 
 |   bool IsPair = isHvxPairTy(VecTy); | 
 |   MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); | 
 |   // The two single vectors that VecV consists of, if it's a pair. | 
 |   SDValue V0, V1; | 
 |   SDValue SingleV = VecV; | 
 |   SDValue PickHi; | 
 |  | 
 |   if (IsPair) { | 
 |     V0 = LoHalf(VecV, DAG); | 
 |     V1 = HiHalf(VecV, DAG); | 
 |  | 
 |     SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), | 
 |                                     dl, MVT::i32); | 
 |     PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); | 
 |     if (isHvxSingleTy(SubTy)) { | 
 |       if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) { | 
 |         unsigned Idx = CN->getZExtValue(); | 
 |         assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); | 
 |         unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; | 
 |         return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); | 
 |       } | 
 |       // If IdxV is not a constant, generate the two variants: with the | 
 |       // SubV as the high and as the low subregister, and select the right | 
 |       // pair based on the IdxV. | 
 |       SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); | 
 |       SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); | 
 |       return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); | 
 |     } | 
 |     // The subvector being inserted must be entirely contained in one of | 
 |     // the vectors V0 or V1. Set SingleV to the correct one, and update | 
 |     // IdxV to be the index relative to the beginning of that vector. | 
 |     SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); | 
 |     IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); | 
 |     SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); | 
 |   } | 
 |  | 
 |   // The only meaningful subvectors of a single HVX vector are those that | 
 |   // fit in a scalar register. | 
 |   assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); | 
 |   // Convert IdxV to be index in bytes. | 
 |   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); | 
 |   if (!IdxN || !IdxN->isZero()) { | 
 |     IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
 |                        DAG.getConstant(ElemWidth/8, dl, MVT::i32)); | 
 |     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); | 
 |   } | 
 |   // When inserting a single word, the rotation back to the original position | 
 |   // would be by HwLen-Idx, but if two words are inserted, it will need to be | 
 |   // by (HwLen-4)-Idx. | 
 |   unsigned RolBase = HwLen; | 
 |   if (SubTy.getSizeInBits() == 32) { | 
 |     SDValue V = DAG.getBitcast(MVT::i32, SubV); | 
 |     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, V); | 
 |   } else { | 
 |     SDValue V = DAG.getBitcast(MVT::i64, SubV); | 
 |     SDValue R0 = LoHalf(V, DAG); | 
 |     SDValue R1 = HiHalf(V, DAG); | 
 |     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); | 
 |     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, | 
 |                           DAG.getConstant(4, dl, MVT::i32)); | 
 |     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); | 
 |     RolBase = HwLen-4; | 
 |   } | 
 |   // If the vector wasn't ror'ed, don't ror it back. | 
 |   if (RolBase != 4 || !IdxN || !IdxN->isZero()) { | 
 |     SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
 |                                DAG.getConstant(RolBase, dl, MVT::i32), IdxV); | 
 |     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); | 
 |   } | 
 |  | 
 |   if (IsPair) { | 
 |     SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); | 
 |     SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); | 
 |     return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); | 
 |   } | 
 |   return SingleV; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, | 
 |       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(VecV); | 
 |   MVT SubTy = ty(SubV); | 
 |   assert(Subtarget.isHVXVectorType(VecTy, true)); | 
 |   // VecV is an HVX vector predicate. SubV may be either an HVX vector | 
 |   // predicate as well, or it can be a scalar predicate. | 
 |  | 
 |   unsigned VecLen = VecTy.getVectorNumElements(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   assert(HwLen % VecLen == 0 && "Unexpected vector type"); | 
 |  | 
 |   unsigned Scale = VecLen / SubTy.getVectorNumElements(); | 
 |   unsigned BitBytes = HwLen / VecLen; | 
 |   unsigned BlockLen = HwLen / Scale; | 
 |  | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
 |   SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); | 
 |   SDValue ByteIdx; | 
 |  | 
 |   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); | 
 |   if (!IdxN || !IdxN->isZero()) { | 
 |     ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
 |                           DAG.getConstant(BitBytes, dl, MVT::i32)); | 
 |     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); | 
 |   } | 
 |  | 
 |   // ByteVec is the target vector VecV rotated in such a way that the | 
 |   // subvector should be inserted at index 0. Generate a predicate mask | 
 |   // and use vmux to do the insertion. | 
 |   assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); | 
 |   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
 |   SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
 |                        {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); | 
 |   ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); | 
 |   // Rotate ByteVec back, and convert to a vector predicate. | 
 |   if (!IdxN || !IdxN->isZero()) { | 
 |     SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); | 
 |     SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); | 
 |     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); | 
 |   } | 
 |   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, | 
 |       MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { | 
 |   // Sign- and any-extending of a vector predicate to a vector register is | 
 |   // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and | 
 |   // a vector of 1s (where the 1s are of type matching the vector type). | 
 |   assert(Subtarget.isHVXVectorType(ResTy)); | 
 |   if (!ZeroExt) | 
 |     return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); | 
 |  | 
 |   assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); | 
 |   SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
 |                              DAG.getConstant(1, dl, MVT::i32)); | 
 |   SDValue False = getZero(dl, ResTy, DAG); | 
 |   return DAG.getSelect(dl, ResTy, VecV, True, False); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl, | 
 |       MVT ResTy, SelectionDAG &DAG) const { | 
 |   // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1] | 
 |   // (i.e. the entire predicate register) to bits [0..HwLen-1] of a | 
 |   // vector register. The remaining bits of the vector register are | 
 |   // unspecified. | 
 |  | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   MVT PredTy = ty(VecQ); | 
 |   unsigned PredLen = PredTy.getVectorNumElements(); | 
 |   assert(HwLen % PredLen == 0); | 
 |   MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen); | 
 |  | 
 |   Type *Int8Ty = Type::getInt8Ty(*DAG.getContext()); | 
 |   SmallVector<Constant*, 128> Tmp; | 
 |   // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,... | 
 |   // These are bytes with the LSB rotated left with respect to their index. | 
 |   for (unsigned i = 0; i != HwLen/8; ++i) { | 
 |     for (unsigned j = 0; j != 8; ++j) | 
 |       Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j)); | 
 |   } | 
 |   Constant *CV = ConstantVector::get(Tmp); | 
 |   Align Alignment(HwLen); | 
 |   SDValue CP = | 
 |       LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG); | 
 |   SDValue Bytes = | 
 |       DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP, | 
 |                   MachinePointerInfo::getConstantPool(MF), Alignment); | 
 |  | 
 |   // Select the bytes that correspond to true bits in the vector predicate. | 
 |   SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes), | 
 |       getZero(dl, VecTy, DAG)); | 
 |   // Calculate the OR of all bytes in each group of 8. That will compress | 
 |   // all the individual bits into a single byte. | 
 |   // First, OR groups of 4, via vrmpy with 0x01010101. | 
 |   SDValue All1 = | 
 |       DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32)); | 
 |   SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG); | 
 |   // Then rotate the accumulated vector by 4 bytes, and do the final OR. | 
 |   SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy, | 
 |       {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG); | 
 |   SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot}); | 
 |  | 
 |   // Pick every 8th byte and coalesce them at the beginning of the output. | 
 |   // For symmetry, coalesce every 1+8th byte after that, then every 2+8th | 
 |   // byte and so on. | 
 |   SmallVector<int,128> Mask; | 
 |   for (unsigned i = 0; i != HwLen; ++i) | 
 |     Mask.push_back((8*i) % HwLen + i/(HwLen/8)); | 
 |   SDValue Collect = | 
 |       DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask); | 
 |   return DAG.getBitcast(ResTy, Collect); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, | 
 |                                      const SDLoc &dl, SelectionDAG &DAG) const { | 
 |   // Take a vector and resize the element type to match the given type. | 
 |   MVT InpTy = ty(VecV); | 
 |   if (InpTy == ResTy) | 
 |     return VecV; | 
 |  | 
 |   unsigned InpWidth = InpTy.getSizeInBits(); | 
 |   unsigned ResWidth = ResTy.getSizeInBits(); | 
 |  | 
 |   if (InpTy.isFloatingPoint()) { | 
 |     return InpWidth < ResWidth ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV) | 
 |                                : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV, | 
 |                                              getZero(dl, MVT::i32, DAG)); | 
 |   } | 
 |  | 
 |   assert(InpTy.isInteger()); | 
 |  | 
 |   if (InpWidth < ResWidth) { | 
 |     unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
 |     return DAG.getNode(ExtOpc, dl, ResTy, VecV); | 
 |   } else { | 
 |     unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT; | 
 |     return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy)); | 
 |   } | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx, | 
 |       SelectionDAG &DAG) const { | 
 |   assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0); | 
 |  | 
 |   const SDLoc &dl(Vec); | 
 |   unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements(); | 
 |   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy, | 
 |                      {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)}); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   const SDLoc &dl(Op); | 
 |   MVT VecTy = ty(Op); | 
 |  | 
 |   unsigned Size = Op.getNumOperands(); | 
 |   SmallVector<SDValue,128> Ops; | 
 |   for (unsigned i = 0; i != Size; ++i) | 
 |     Ops.push_back(Op.getOperand(i)); | 
 |  | 
 |   // First, split the BUILD_VECTOR for vector pairs. We could generate | 
 |   // some pairs directly (via splat), but splats should be generated | 
 |   // by the combiner prior to getting here. | 
 |   if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) { | 
 |     ArrayRef<SDValue> A(Ops); | 
 |     MVT SingleTy = typeSplit(VecTy).first; | 
 |     SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG); | 
 |     SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG); | 
 |     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); | 
 |   } | 
 |  | 
 |   if (VecTy.getVectorElementType() == MVT::i1) | 
 |     return buildHvxVectorPred(Ops, dl, VecTy, DAG); | 
 |  | 
 |   // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is | 
 |   // not a legal type, just bitcast the node to use i16 | 
 |   // types and bitcast the result back to f16 | 
 |   if (VecTy.getVectorElementType() == MVT::f16) { | 
 |     SmallVector<SDValue,64> NewOps; | 
 |     for (unsigned i = 0; i != Size; i++) | 
 |       NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i])); | 
 |  | 
 |     SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl, | 
 |         tyVector(VecTy, MVT::i16), NewOps); | 
 |     return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); | 
 |   } | 
 |  | 
 |   return buildHvxVectorReg(Ops, dl, VecTy, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   const SDLoc &dl(Op); | 
 |   MVT VecTy = ty(Op); | 
 |   MVT ArgTy = ty(Op.getOperand(0)); | 
 |  | 
 |   if (ArgTy == MVT::f16) { | 
 |     MVT SplatTy =  MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements()); | 
 |     SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0)); | 
 |     SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16); | 
 |     SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32); | 
 |     return DAG.getBitcast(VecTy, Splat); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   // Vector concatenation of two integer (non-bool) vectors does not need | 
 |   // special lowering. Custom-lower concats of bool vectors and expand | 
 |   // concats of more than 2 vectors. | 
 |   MVT VecTy = ty(Op); | 
 |   const SDLoc &dl(Op); | 
 |   unsigned NumOp = Op.getNumOperands(); | 
 |   if (VecTy.getVectorElementType() != MVT::i1) { | 
 |     if (NumOp == 2) | 
 |       return Op; | 
 |     // Expand the other cases into a build-vector. | 
 |     SmallVector<SDValue,8> Elems; | 
 |     for (SDValue V : Op.getNode()->ops()) | 
 |       DAG.ExtractVectorElements(V, Elems); | 
 |     // A vector of i16 will be broken up into a build_vector of i16's. | 
 |     // This is a problem, since at the time of operation legalization, | 
 |     // all operations are expected to be type-legalized, and i16 is not | 
 |     // a legal type. If any of the extracted elements is not of a valid | 
 |     // type, sign-extend it to a valid one. | 
 |     for (unsigned i = 0, e = Elems.size(); i != e; ++i) { | 
 |       SDValue V = Elems[i]; | 
 |       MVT Ty = ty(V); | 
 |       if (!isTypeLegal(Ty)) { | 
 |         MVT NTy = typeLegalize(Ty, DAG); | 
 |         if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
 |           Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy, | 
 |                                  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy, | 
 |                                              V.getOperand(0), V.getOperand(1)), | 
 |                                  DAG.getValueType(Ty)); | 
 |           continue; | 
 |         } | 
 |         // A few less complicated cases. | 
 |         switch (V.getOpcode()) { | 
 |           case ISD::Constant: | 
 |             Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy); | 
 |             break; | 
 |           case ISD::UNDEF: | 
 |             Elems[i] = DAG.getUNDEF(NTy); | 
 |             break; | 
 |           case ISD::TRUNCATE: | 
 |             Elems[i] = V.getOperand(0); | 
 |             break; | 
 |           default: | 
 |             llvm_unreachable("Unexpected vector element"); | 
 |         } | 
 |       } | 
 |     } | 
 |     return DAG.getBuildVector(VecTy, dl, Elems); | 
 |   } | 
 |  | 
 |   assert(VecTy.getVectorElementType() == MVT::i1); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); | 
 |  | 
 |   SDValue Op0 = Op.getOperand(0); | 
 |  | 
 |   // If the operands are HVX types (i.e. not scalar predicates), then | 
 |   // defer the concatenation, and create QCAT instead. | 
 |   if (Subtarget.isHVXVectorType(ty(Op0), true)) { | 
 |     if (NumOp == 2) | 
 |       return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1)); | 
 |  | 
 |     ArrayRef<SDUse> U(Op.getNode()->ops()); | 
 |     SmallVector<SDValue,4> SV(U.begin(), U.end()); | 
 |     ArrayRef<SDValue> Ops(SV); | 
 |  | 
 |     MVT HalfTy = typeSplit(VecTy).first; | 
 |     SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, | 
 |                              Ops.take_front(NumOp/2)); | 
 |     SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, | 
 |                              Ops.take_back(NumOp/2)); | 
 |     return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1); | 
 |   } | 
 |  | 
 |   // Count how many bytes (in a vector register) each bit in VecTy | 
 |   // corresponds to. | 
 |   unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); | 
 |  | 
 |   SmallVector<SDValue,8> Prefixes; | 
 |   for (SDValue V : Op.getNode()->op_values()) { | 
 |     SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); | 
 |     Prefixes.push_back(P); | 
 |   } | 
 |  | 
 |   unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32); | 
 |   SDValue Res = getZero(dl, ByteTy, DAG); | 
 |   for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { | 
 |     Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); | 
 |     Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); | 
 |   } | 
 |   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   // Change the type of the extracted element to i32. | 
 |   SDValue VecV = Op.getOperand(0); | 
 |   MVT ElemTy = ty(VecV).getVectorElementType(); | 
 |   const SDLoc &dl(Op); | 
 |   SDValue IdxV = Op.getOperand(1); | 
 |   if (ElemTy == MVT::i1) | 
 |     return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); | 
 |  | 
 |   return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   const SDLoc &dl(Op); | 
 |   MVT VecTy = ty(Op); | 
 |   SDValue VecV = Op.getOperand(0); | 
 |   SDValue ValV = Op.getOperand(1); | 
 |   SDValue IdxV = Op.getOperand(2); | 
 |   MVT ElemTy = ty(VecV).getVectorElementType(); | 
 |   if (ElemTy == MVT::i1) | 
 |     return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); | 
 |  | 
 |   if (ElemTy == MVT::f16) { | 
 |     SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
 |         tyVector(VecTy, MVT::i16), | 
 |         DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV), | 
 |         DAG.getBitcast(MVT::i16, ValV), IdxV); | 
 |     return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); | 
 |   } | 
 |  | 
 |   return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   SDValue SrcV = Op.getOperand(0); | 
 |   MVT SrcTy = ty(SrcV); | 
 |   MVT DstTy = ty(Op); | 
 |   SDValue IdxV = Op.getOperand(1); | 
 |   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); | 
 |   assert(Idx % DstTy.getVectorNumElements() == 0); | 
 |   (void)Idx; | 
 |   const SDLoc &dl(Op); | 
 |  | 
 |   MVT ElemTy = SrcTy.getVectorElementType(); | 
 |   if (ElemTy == MVT::i1) | 
 |     return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); | 
 |  | 
 |   return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   // Idx does not need to be a constant. | 
 |   SDValue VecV = Op.getOperand(0); | 
 |   SDValue ValV = Op.getOperand(1); | 
 |   SDValue IdxV = Op.getOperand(2); | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   MVT VecTy = ty(VecV); | 
 |   MVT ElemTy = VecTy.getVectorElementType(); | 
 |   if (ElemTy == MVT::i1) | 
 |     return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); | 
 |  | 
 |   return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { | 
 |   // Lower any-extends of boolean vectors to sign-extends, since they | 
 |   // translate directly to Q2V. Zero-extending could also be done equally | 
 |   // fast, but Q2V is used/recognized in more places. | 
 |   // For all other vectors, use zero-extend. | 
 |   MVT ResTy = ty(Op); | 
 |   SDValue InpV = Op.getOperand(0); | 
 |   MVT ElemTy = ty(InpV).getVectorElementType(); | 
 |   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | 
 |     return LowerHvxSignExt(Op, DAG); | 
 |   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { | 
 |   MVT ResTy = ty(Op); | 
 |   SDValue InpV = Op.getOperand(0); | 
 |   MVT ElemTy = ty(InpV).getVectorElementType(); | 
 |   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | 
 |     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG); | 
 |   return Op; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { | 
 |   MVT ResTy = ty(Op); | 
 |   SDValue InpV = Op.getOperand(0); | 
 |   MVT ElemTy = ty(InpV).getVectorElementType(); | 
 |   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | 
 |     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG); | 
 |   return Op; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { | 
 |   // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): | 
 |   // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) | 
 |   const SDLoc &dl(Op); | 
 |   MVT ResTy = ty(Op); | 
 |   SDValue InpV = Op.getOperand(0); | 
 |   assert(ResTy == ty(InpV)); | 
 |  | 
 |   // Calculate the vectors of 1 and bitwidth(x). | 
 |   MVT ElemTy = ty(InpV).getVectorElementType(); | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |  | 
 |   SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
 |                              DAG.getConstant(1, dl, MVT::i32)); | 
 |   SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
 |                              DAG.getConstant(ElemWidth, dl, MVT::i32)); | 
 |   SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
 |                               DAG.getConstant(-1, dl, MVT::i32)); | 
 |  | 
 |   // Do not use DAG.getNOT, because that would create BUILD_VECTOR with | 
 |   // a BITCAST. Here we can skip the BITCAST (so we don't have to handle | 
 |   // it separately in custom combine or selection). | 
 |   SDValue A = DAG.getNode(ISD::AND, dl, ResTy, | 
 |                           {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}), | 
 |                            DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})}); | 
 |   return DAG.getNode(ISD::SUB, dl, ResTy, | 
 |                      {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)}); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   MVT ResTy = ty(Op); | 
 |   assert(ResTy.getVectorElementType() == MVT::i32); | 
 |  | 
 |   SDValue Vs = Op.getOperand(0); | 
 |   SDValue Vt = Op.getOperand(1); | 
 |  | 
 |   SDVTList ResTys = DAG.getVTList(ResTy, ResTy); | 
 |   unsigned Opc = Op.getOpcode(); | 
 |  | 
 |   // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI. | 
 |   if (Opc == ISD::MULHU) | 
 |     return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); | 
 |   if (Opc == ISD::MULHS) | 
 |     return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); | 
 |  | 
 | #ifndef NDEBUG | 
 |   Op.dump(&DAG); | 
 | #endif | 
 |   llvm_unreachable("Unexpected mulh operation"); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   SDValue Vu = Op.getOperand(0); | 
 |   SDValue Vv = Op.getOperand(1); | 
 |  | 
 |   // If the HI part is not used, convert it to a regular MUL. | 
 |   if (auto HiVal = Op.getValue(1); HiVal.use_empty()) { | 
 |     // Need to preserve the types and the number of values. | 
 |     SDValue Hi = DAG.getUNDEF(ty(HiVal)); | 
 |     SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv}); | 
 |     return DAG.getMergeValues({Lo, Hi}, dl); | 
 |   } | 
 |  | 
 |   bool SignedVu = Opc == HexagonISD::SMUL_LOHI; | 
 |   bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI; | 
 |  | 
 |   // Legal on HVX v62+, but lower it here because patterns can't handle multi- | 
 |   // valued nodes. | 
 |   if (Subtarget.useHVXV62Ops()) | 
 |     return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG); | 
 |  | 
 |   if (Opc == HexagonISD::SMUL_LOHI) { | 
 |     // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI, | 
 |     // for other signedness LOHI is cheaper. | 
 |     if (auto LoVal = Op.getValue(0); LoVal.use_empty()) { | 
 |       SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG); | 
 |       SDValue Lo = DAG.getUNDEF(ty(LoVal)); | 
 |       return DAG.getMergeValues({Lo, Hi}, dl); | 
 |     } | 
 |   } | 
 |  | 
 |   return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const { | 
 |   SDValue Val = Op.getOperand(0); | 
 |   MVT ResTy = ty(Op); | 
 |   MVT ValTy = ty(Val); | 
 |   const SDLoc &dl(Op); | 
 |  | 
 |   if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) { | 
 |     unsigned HwLen = Subtarget.getVectorLength(); | 
 |     MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); | 
 |     SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG); | 
 |     unsigned BitWidth = ResTy.getSizeInBits(); | 
 |  | 
 |     if (BitWidth < 64) { | 
 |       SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32), | 
 |           dl, MVT::i32, DAG); | 
 |       if (BitWidth == 32) | 
 |         return W0; | 
 |       assert(BitWidth < 32u); | 
 |       return DAG.getZExtOrTrunc(W0, dl, ResTy); | 
 |     } | 
 |  | 
 |     // The result is >= 64 bits. The only options are 64 or 128. | 
 |     assert(BitWidth == 64 || BitWidth == 128); | 
 |     SmallVector<SDValue,4> Words; | 
 |     for (unsigned i = 0; i != BitWidth/32; ++i) { | 
 |       SDValue W = extractHvxElementReg( | 
 |           VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG); | 
 |       Words.push_back(W); | 
 |     } | 
 |     SmallVector<SDValue,2> Combines; | 
 |     assert(Words.size() % 2 == 0); | 
 |     for (unsigned i = 0, e = Words.size(); i < e; i += 2) { | 
 |       SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG); | 
 |       Combines.push_back(C); | 
 |     } | 
 |  | 
 |     if (BitWidth == 64) | 
 |       return Combines[0]; | 
 |  | 
 |     return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines); | 
 |   } | 
 |   if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) { | 
 |     // Handle bitcast from i128 -> v128i1 and i64 -> v64i1. | 
 |     unsigned BitWidth = ValTy.getSizeInBits(); | 
 |     unsigned HwLen = Subtarget.getVectorLength(); | 
 |     assert(BitWidth == HwLen); | 
 |  | 
 |     MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8); | 
 |     SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val); | 
 |     // Splat each byte of Val 8 times. | 
 |     // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8] | 
 |     // where b0, b1,..., b15 are least to most significant bytes of I. | 
 |     SmallVector<SDValue, 128> Bytes; | 
 |     // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,... | 
 |     // These are bytes with the LSB rotated left with respect to their index. | 
 |     SmallVector<SDValue, 128> Tmp; | 
 |     for (unsigned I = 0; I != HwLen / 8; ++I) { | 
 |       SDValue Idx = DAG.getConstant(I, dl, MVT::i32); | 
 |       SDValue Byte = | 
 |           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx); | 
 |       for (unsigned J = 0; J != 8; ++J) { | 
 |         Bytes.push_back(Byte); | 
 |         Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8)); | 
 |       } | 
 |     } | 
 |  | 
 |     MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |     SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp); | 
 |     SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG); | 
 |  | 
 |     // Each Byte in the I2V will be set iff corresponding bit is set in Val. | 
 |     I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec}); | 
 |     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V); | 
 |   } | 
 |  | 
 |   return Op; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { | 
 |   // Sign- and zero-extends are legal. | 
 |   assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); | 
 |   return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op), | 
 |                      Op.getOperand(0)); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const { | 
 |   MVT ResTy = ty(Op); | 
 |   if (ResTy.getVectorElementType() != MVT::i1) | 
 |     return Op; | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   unsigned VecLen = ResTy.getVectorNumElements(); | 
 |   assert(HwLen % VecLen == 0); | 
 |   unsigned ElemSize = HwLen / VecLen; | 
 |  | 
 |   MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen); | 
 |   SDValue S = | 
 |       DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0), | 
 |                   DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)), | 
 |                   DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2))); | 
 |   return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { | 
 |   if (SDValue S = getVectorShiftByInt(Op, DAG)) | 
 |     return S; | 
 |   return Op; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op, | 
 |                                            SelectionDAG &DAG) const { | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   assert(Opc == ISD::FSHL || Opc == ISD::FSHR); | 
 |  | 
 |   // Make sure the shift amount is within the range of the bitwidth | 
 |   // of the element type. | 
 |   SDValue A = Op.getOperand(0); | 
 |   SDValue B = Op.getOperand(1); | 
 |   SDValue S = Op.getOperand(2); | 
 |  | 
 |   MVT InpTy = ty(A); | 
 |   MVT ElemTy = InpTy.getVectorElementType(); | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   unsigned ElemWidth = ElemTy.getSizeInBits(); | 
 |   bool IsLeft = Opc == ISD::FSHL; | 
 |  | 
 |   // The expansion into regular shifts produces worse code for i8 and for | 
 |   // right shift of i32 on v65+. | 
 |   bool UseShifts = ElemTy != MVT::i8; | 
 |   if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32) | 
 |     UseShifts = false; | 
 |  | 
 |   if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) { | 
 |     // If this is a funnel shift by a scalar, lower it into regular shifts. | 
 |     SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32); | 
 |     SDValue ModS = | 
 |         DAG.getNode(ISD::AND, dl, MVT::i32, | 
 |                     {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask}); | 
 |     SDValue NegS = | 
 |         DAG.getNode(ISD::SUB, dl, MVT::i32, | 
 |                     {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS}); | 
 |     SDValue IsZero = | 
 |         DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ); | 
 |     // FSHL A, B  =>  A <<  | B >>n | 
 |     // FSHR A, B  =>  A <<n | B >> | 
 |     SDValue Part1 = | 
 |         DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS}); | 
 |     SDValue Part2 = | 
 |         DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS}); | 
 |     SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2}); | 
 |     // If the shift amount was 0, pick A or B, depending on the direction. | 
 |     // The opposite shift will also be by 0, so the "Or" will be incorrect. | 
 |     return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or}); | 
 |   } | 
 |  | 
 |   SDValue Mask = DAG.getSplatBuildVector( | 
 |       InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy)); | 
 |  | 
 |   unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR; | 
 |   return DAG.getNode(MOpc, dl, ty(Op), | 
 |                      {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})}); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
 |   SmallVector<SDValue> Ops(Op->ops().begin(), Op->ops().end()); | 
 |  | 
 |   auto Swap = [&](SDValue P) { | 
 |     return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl); | 
 |   }; | 
 |  | 
 |   switch (IntNo) { | 
 |   case Intrinsic::hexagon_V6_pred_typecast: | 
 |   case Intrinsic::hexagon_V6_pred_typecast_128B: { | 
 |     MVT ResTy = ty(Op), InpTy = ty(Ops[1]); | 
 |     if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) { | 
 |       if (ResTy == InpTy) | 
 |         return Ops[1]; | 
 |       return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]); | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Intrinsic::hexagon_V6_vmpyss_parts: | 
 |   case Intrinsic::hexagon_V6_vmpyss_parts_128B: | 
 |     return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(), | 
 |                             {Ops[1], Ops[2]})); | 
 |   case Intrinsic::hexagon_V6_vmpyuu_parts: | 
 |   case Intrinsic::hexagon_V6_vmpyuu_parts_128B: | 
 |     return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(), | 
 |                             {Ops[1], Ops[2]})); | 
 |   case Intrinsic::hexagon_V6_vmpyus_parts: | 
 |   case Intrinsic::hexagon_V6_vmpyus_parts_128B: { | 
 |     return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(), | 
 |                             {Ops[1], Ops[2]})); | 
 |   } | 
 |   } // switch | 
 |  | 
 |   return Op; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode()); | 
 |   SDValue Mask = MaskN->getMask(); | 
 |   SDValue Chain = MaskN->getChain(); | 
 |   SDValue Base = MaskN->getBasePtr(); | 
 |   auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen); | 
 |  | 
 |   unsigned Opc = Op->getOpcode(); | 
 |   assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE); | 
 |  | 
 |   if (Opc == ISD::MLOAD) { | 
 |     MVT ValTy = ty(Op); | 
 |     SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp); | 
 |     SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru(); | 
 |     if (isUndef(Thru)) | 
 |       return Load; | 
 |     SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru); | 
 |     return DAG.getMergeValues({VSel, Load.getValue(1)}, dl); | 
 |   } | 
 |  | 
 |   // MSTORE | 
 |   // HVX only has aligned masked stores. | 
 |  | 
 |   // TODO: Fold negations of the mask into the store. | 
 |   unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai; | 
 |   SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue(); | 
 |   SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base)); | 
 |  | 
 |   if (MaskN->getAlign().value() % HwLen == 0) { | 
 |     SDValue Store = getInstr(StoreOpc, dl, MVT::Other, | 
 |                              {Mask, Base, Offset0, Value, Chain}, DAG); | 
 |     DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp}); | 
 |     return Store; | 
 |   } | 
 |  | 
 |   // Unaligned case. | 
 |   auto StoreAlign = [&](SDValue V, SDValue A) { | 
 |     SDValue Z = getZero(dl, ty(V), DAG); | 
 |     // TODO: use funnel shifts? | 
 |     // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the | 
 |     // upper half. | 
 |     SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG); | 
 |     SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG); | 
 |     return std::make_pair(LoV, HiV); | 
 |   }; | 
 |  | 
 |   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
 |   SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask); | 
 |   VectorPair Tmp = StoreAlign(MaskV, Base); | 
 |   VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first), | 
 |                       DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)}; | 
 |   VectorPair ValueU = StoreAlign(Value, Base); | 
 |  | 
 |   SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32); | 
 |   SDValue StoreLo = | 
 |       getInstr(StoreOpc, dl, MVT::Other, | 
 |                {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG); | 
 |   SDValue StoreHi = | 
 |       getInstr(StoreOpc, dl, MVT::Other, | 
 |                {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG); | 
 |   DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp}); | 
 |   DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp}); | 
 |   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi}); | 
 | } | 
 |  | 
 | SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op, | 
 |                                                 SelectionDAG &DAG) const { | 
 |   // This conversion only applies to QFloat. IEEE extension from f16 to f32 | 
 |   // is legal (done via a pattern). | 
 |   assert(Subtarget.useHVXQFloatOps()); | 
 |  | 
 |   assert(Op->getOpcode() == ISD::FP_EXTEND); | 
 |  | 
 |   MVT VecTy = ty(Op); | 
 |   MVT ArgTy = ty(Op.getOperand(0)); | 
 |   const SDLoc &dl(Op); | 
 |   assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16); | 
 |  | 
 |   SDValue F16Vec = Op.getOperand(0); | 
 |  | 
 |   APFloat FloatVal = APFloat(1.0f); | 
 |   bool Ignored; | 
 |   FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); | 
 |   SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy); | 
 |   SDValue VmpyVec = | 
 |       getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG); | 
 |  | 
 |   MVT HalfTy = typeSplit(VecTy).first; | 
 |   VectorPair Pair = opSplit(VmpyVec, dl, DAG); | 
 |   SDValue LoVec = | 
 |       getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG); | 
 |   SDValue HiVec = | 
 |       getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG); | 
 |  | 
 |   SDValue ShuffVec = | 
 |       getInstr(Hexagon::V6_vshuffvdd, dl, VecTy, | 
 |                {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG); | 
 |  | 
 |   return ShuffVec; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { | 
 |   // Catch invalid conversion ops (just in case). | 
 |   assert(Op.getOpcode() == ISD::FP_TO_SINT || | 
 |          Op.getOpcode() == ISD::FP_TO_UINT); | 
 |  | 
 |   MVT ResTy = ty(Op); | 
 |   MVT FpTy = ty(Op.getOperand(0)).getVectorElementType(); | 
 |   MVT IntTy = ResTy.getVectorElementType(); | 
 |  | 
 |   if (Subtarget.useHVXIEEEFPOps()) { | 
 |     // There are only conversions from f16. | 
 |     if (FpTy == MVT::f16) { | 
 |       // Other int types aren't legal in HVX, so we shouldn't see them here. | 
 |       assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); | 
 |       // Conversions to i8 and i16 are legal. | 
 |       if (IntTy == MVT::i8 || IntTy == MVT::i16) | 
 |         return Op; | 
 |     } | 
 |   } | 
 |  | 
 |   if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) | 
 |     return EqualizeFpIntConversion(Op, DAG); | 
 |  | 
 |   return ExpandHvxFpToInt(Op, DAG); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { | 
 |   // Catch invalid conversion ops (just in case). | 
 |   assert(Op.getOpcode() == ISD::SINT_TO_FP || | 
 |          Op.getOpcode() == ISD::UINT_TO_FP); | 
 |  | 
 |   MVT ResTy = ty(Op); | 
 |   MVT IntTy = ty(Op.getOperand(0)).getVectorElementType(); | 
 |   MVT FpTy = ResTy.getVectorElementType(); | 
 |  | 
 |   if (Subtarget.useHVXIEEEFPOps()) { | 
 |     // There are only conversions to f16. | 
 |     if (FpTy == MVT::f16) { | 
 |       // Other int types aren't legal in HVX, so we shouldn't see them here. | 
 |       assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); | 
 |       // i8, i16 -> f16 is legal. | 
 |       if (IntTy == MVT::i8 || IntTy == MVT::i16) | 
 |         return Op; | 
 |     } | 
 |   } | 
 |  | 
 |   if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) | 
 |     return EqualizeFpIntConversion(Op, DAG); | 
 |  | 
 |   return ExpandHvxIntToFp(Op, DAG); | 
 | } | 
 |  | 
 | HexagonTargetLowering::TypePair | 
 | HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const { | 
 |   // Compare the widths of elements of the two types, and extend the narrower | 
 |   // type to match the with of the wider type. For vector types, apply this | 
 |   // to the element type. | 
 |   assert(Ty0.isVector() == Ty1.isVector()); | 
 |  | 
 |   MVT ElemTy0 = Ty0.getScalarType(); | 
 |   MVT ElemTy1 = Ty1.getScalarType(); | 
 |  | 
 |   unsigned Width0 = ElemTy0.getSizeInBits(); | 
 |   unsigned Width1 = ElemTy1.getSizeInBits(); | 
 |   unsigned MaxWidth = std::max(Width0, Width1); | 
 |  | 
 |   auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) { | 
 |     if (ScalarTy.isInteger()) | 
 |       return MVT::getIntegerVT(Width); | 
 |     assert(ScalarTy.isFloatingPoint()); | 
 |     return MVT::getFloatingPointVT(Width); | 
 |   }; | 
 |  | 
 |   MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth); | 
 |   MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth); | 
 |  | 
 |   if (!Ty0.isVector()) { | 
 |     // Both types are scalars. | 
 |     return {WideETy0, WideETy1}; | 
 |   } | 
 |  | 
 |   // Vector types. | 
 |   unsigned NumElem = Ty0.getVectorNumElements(); | 
 |   assert(NumElem == Ty1.getVectorNumElements()); | 
 |  | 
 |   return {MVT::getVectorVT(WideETy0, NumElem), | 
 |           MVT::getVectorVT(WideETy1, NumElem)}; | 
 | } | 
 |  | 
 | HexagonTargetLowering::TypePair | 
 | HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const { | 
 |   // Compare the numbers of elements of two vector types, and widen the | 
 |   // narrower one to match the number of elements in the wider one. | 
 |   assert(Ty0.isVector() && Ty1.isVector()); | 
 |  | 
 |   unsigned Len0 = Ty0.getVectorNumElements(); | 
 |   unsigned Len1 = Ty1.getVectorNumElements(); | 
 |   if (Len0 == Len1) | 
 |     return {Ty0, Ty1}; | 
 |  | 
 |   unsigned MaxLen = std::max(Len0, Len1); | 
 |   return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen), | 
 |           MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)}; | 
 | } | 
 |  | 
 | MVT | 
 | HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const { | 
 |   EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty); | 
 |   assert(LegalTy.isSimple()); | 
 |   return LegalTy.getSimpleVT(); | 
 | } | 
 |  | 
 | MVT | 
 | HexagonTargetLowering::typeWidenToHvx(MVT Ty) const { | 
 |   unsigned HwWidth = 8 * Subtarget.getVectorLength(); | 
 |   assert(Ty.getSizeInBits() <= HwWidth); | 
 |   if (Ty.getSizeInBits() == HwWidth) | 
 |     return Ty; | 
 |  | 
 |   MVT ElemTy = Ty.getScalarType(); | 
 |   return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits()); | 
 | } | 
 |  | 
 | HexagonTargetLowering::VectorPair | 
 | HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B, | 
 |       const SDLoc &dl, bool Signed, SelectionDAG &DAG) const { | 
 |   // Compute A+B, return {A+B, O}, where O = vector predicate indicating | 
 |   // whether an overflow has occured. | 
 |   MVT ResTy = ty(A); | 
 |   assert(ResTy == ty(B)); | 
 |   MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements()); | 
 |  | 
 |   if (!Signed) { | 
 |     // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't | 
 |     // save any instructions. | 
 |     SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); | 
 |     SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT); | 
 |     return {Add, Ovf}; | 
 |   } | 
 |  | 
 |   // Signed overflow has happened, if: | 
 |   // (A, B have the same sign) and (A+B has a different sign from either) | 
 |   // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit | 
 |   SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); | 
 |   SDValue NotA = | 
 |       DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getConstant(-1, dl, ResTy)}); | 
 |   SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B}); | 
 |   SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B}); | 
 |   SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1}); | 
 |   SDValue MSB = | 
 |       DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT); | 
 |   return {Add, MSB}; | 
 | } | 
 |  | 
 | HexagonTargetLowering::VectorPair | 
 | HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt, | 
 |       bool Signed, SelectionDAG &DAG) const { | 
 |   // Shift Val right by Amt bits, round the result to the nearest integer, | 
 |   // tie-break by rounding halves to even integer. | 
 |  | 
 |   const SDLoc &dl(Val); | 
 |   MVT ValTy = ty(Val); | 
 |  | 
 |   // This should also work for signed integers. | 
 |   // | 
 |   //   uint tmp0 = inp + ((1 << (Amt-1)) - 1); | 
 |   //   bool ovf = (inp > tmp0); | 
 |   //   uint rup = inp & (1 << (Amt+1)); | 
 |   // | 
 |   //   uint tmp1 = inp >> (Amt-1);    // tmp1 == tmp2 iff | 
 |   //   uint tmp2 = tmp0 >> (Amt-1);   // the Amt-1 lower bits were all 0 | 
 |   //   uint tmp3 = tmp2 + rup; | 
 |   //   uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1; | 
 |   unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits(); | 
 |   MVT ElemTy = MVT::getIntegerVT(ElemWidth); | 
 |   MVT IntTy = tyVector(ValTy, ElemTy); | 
 |   MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements()); | 
 |   unsigned ShRight = Signed ? ISD::SRA : ISD::SRL; | 
 |  | 
 |   SDValue Inp = DAG.getBitcast(IntTy, Val); | 
 |   SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy); | 
 |  | 
 |   SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy); | 
 |   SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1}); | 
 |   SDValue Zero = getZero(dl, IntTy, DAG); | 
 |   SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE); | 
 |   SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy); | 
 |   auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG); | 
 |  | 
 |   SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy); | 
 |   SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1); | 
 |   SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1); | 
 |   SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup); | 
 |  | 
 |   SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ); | 
 |   SDValue One = DAG.getConstant(1, dl, IntTy); | 
 |   SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One}); | 
 |   SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One}); | 
 |   SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4}); | 
 |   return {Mux, Ovf}; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, | 
 |                                        SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(A); | 
 |   MVT PairTy = typeJoin({VecTy, VecTy}); | 
 |   assert(VecTy.getVectorElementType() == MVT::i32); | 
 |  | 
 |   SDValue S16 = DAG.getConstant(16, dl, MVT::i32); | 
 |  | 
 |   // mulhs(A,B) = | 
 |   //   = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32 | 
 |   //   = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16 | 
 |   //      + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32 | 
 |   //   = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32 | 
 |   // The low half of Lo(A)*Lo(B) will be discarded (it's not added to | 
 |   // anything, so it cannot produce any carry over to higher bits), | 
 |   // so everything in [] can be shifted by 16 without loss of precision. | 
 |   //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16 | 
 |   //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16 | 
 |   // The final additions need to make sure to properly maintain any carry- | 
 |   // out bits. | 
 |   // | 
 |   //                Hi(B) Lo(B) | 
 |   //                Hi(A) Lo(A) | 
 |   //               -------------- | 
 |   //                Lo(B)*Lo(A)  | T0 = V6_vmpyewuh(B,A) does this, | 
 |   //         Hi(B)*Lo(A)         |      + dropping the low 16 bits | 
 |   //         Hi(A)*Lo(B)   | T2 | 
 |   //  Hi(B)*Hi(A) | 
 |  | 
 |   SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG); | 
 |   // T1 = get Hi(A) into low halves. | 
 |   SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG); | 
 |   // P0 = interleaved T1.h*B.uh (full precision product) | 
 |   SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG); | 
 |   // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B) | 
 |   SDValue T2 = LoHalf(P0, DAG); | 
 |   // We need to add T0+T2, recording the carry-out, which will be 1<<16 | 
 |   // added to the final sum. | 
 |   // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves | 
 |   SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG); | 
 |   // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves | 
 |   SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG); | 
 |   // T3 = full-precision(T0+T2) >> 16 | 
 |   // The low halves are added-unsigned, the high ones are added-signed. | 
 |   SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, | 
 |                         {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG); | 
 |   SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG); | 
 |   // P3 = interleaved Hi(B)*Hi(A) (full precision), | 
 |   // which is now Lo(T1)*Lo(T4), so we want to keep the even product. | 
 |   SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG); | 
 |   SDValue T5 = LoHalf(P3, DAG); | 
 |   // Add: | 
 |   SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5}); | 
 |   return T6; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, | 
 |                                          bool SignedB, const SDLoc &dl, | 
 |                                          SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(A); | 
 |   MVT PairTy = typeJoin({VecTy, VecTy}); | 
 |   assert(VecTy.getVectorElementType() == MVT::i32); | 
 |  | 
 |   SDValue S16 = DAG.getConstant(16, dl, MVT::i32); | 
 |  | 
 |   if (SignedA && !SignedB) { | 
 |     // Make A:unsigned, B:signed. | 
 |     std::swap(A, B); | 
 |     std::swap(SignedA, SignedB); | 
 |   } | 
 |  | 
 |   // Do halfword-wise multiplications for unsigned*unsigned product, then | 
 |   // add corrections for signed and unsigned*signed. | 
 |  | 
 |   SDValue Lo, Hi; | 
 |  | 
 |   // P0:lo = (uu) products of low halves of A and B, | 
 |   // P0:hi = (uu) products of high halves. | 
 |   SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG); | 
 |  | 
 |   // Swap low/high halves in B | 
 |   SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, | 
 |                         {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); | 
 |   SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG); | 
 |   // P1 = products of even/odd halfwords. | 
 |   // P1:lo = (uu) products of even(A.uh) * odd(B.uh) | 
 |   // P1:hi = (uu) products of odd(A.uh) * even(B.uh) | 
 |   SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG); | 
 |  | 
 |   // P2:lo = low halves of P1:lo + P1:hi, | 
 |   // P2:hi = high halves of P1:lo + P1:hi. | 
 |   SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, | 
 |                         {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG); | 
 |   // Still need to add the high halves of P0:lo to P2:lo | 
 |   SDValue T2 = | 
 |       getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG); | 
 |   SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2}); | 
 |  | 
 |   // The high halves of T3 will contribute to the HI part of LOHI. | 
 |   SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, | 
 |                         {HiHalf(P2, DAG), T3, S16}, DAG); | 
 |  | 
 |   // The low halves of P2 need to be added to high halves of the LO part. | 
 |   Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy, | 
 |                 {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG); | 
 |   Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4}); | 
 |  | 
 |   if (SignedA) { | 
 |     assert(SignedB && "Signed A and unsigned B should have been inverted"); | 
 |  | 
 |     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
 |     SDValue Zero = getZero(dl, VecTy, DAG); | 
 |     SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | 
 |     SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | 
 |     SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero}); | 
 |     SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG); | 
 |     Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG); | 
 |   } else if (SignedB) { | 
 |     // Same correction as for mulhus: | 
 |     // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0) | 
 |     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
 |     SDValue Zero = getZero(dl, VecTy, DAG); | 
 |     SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | 
 |     Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG); | 
 |   } else { | 
 |     assert(!SignedA && !SignedB); | 
 |   } | 
 |  | 
 |   return DAG.getMergeValues({Lo, Hi}, dl); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA, | 
 |                                          SDValue B, bool SignedB, | 
 |                                          const SDLoc &dl, | 
 |                                          SelectionDAG &DAG) const { | 
 |   MVT VecTy = ty(A); | 
 |   MVT PairTy = typeJoin({VecTy, VecTy}); | 
 |   assert(VecTy.getVectorElementType() == MVT::i32); | 
 |  | 
 |   if (SignedA && !SignedB) { | 
 |     // Make A:unsigned, B:signed. | 
 |     std::swap(A, B); | 
 |     std::swap(SignedA, SignedB); | 
 |   } | 
 |  | 
 |   // Do S*S first, then make corrections for U*S or U*U if needed. | 
 |   SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG); | 
 |   SDValue P1 = | 
 |       getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG); | 
 |   SDValue Lo = LoHalf(P1, DAG); | 
 |   SDValue Hi = HiHalf(P1, DAG); | 
 |  | 
 |   if (!SignedB) { | 
 |     assert(!SignedA && "Signed A and unsigned B should have been inverted"); | 
 |     SDValue Zero = getZero(dl, VecTy, DAG); | 
 |     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
 |  | 
 |     // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0). | 
 |     // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)), | 
 |     //          (V6_vaddw (HiHalf (Muls64O $A, $B)), | 
 |     //                    (V6_vaddwq (V6_vgtw (V6_vd0), $B), | 
 |     //                               (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B), | 
 |     //                               $A))>; | 
 |     SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | 
 |     SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | 
 |     SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG); | 
 |     SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG); | 
 |     Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG); | 
 |   } else if (!SignedA) { | 
 |     SDValue Zero = getZero(dl, VecTy, DAG); | 
 |     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
 |  | 
 |     // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0). | 
 |     // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)), | 
 |     //          (V6_vaddwq (V6_vgtw (V6_vd0), $A), | 
 |     //                     (HiHalf (Muls64O $A, $B)), | 
 |     //                     $B)>; | 
 |     SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | 
 |     Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG); | 
 |   } | 
 |  | 
 |   return DAG.getMergeValues({Lo, Hi}, dl); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   // Rewrite conversion between integer and floating-point in such a way that | 
 |   // the integer type is extended/narrowed to match the bitwidth of the | 
 |   // floating-point type, combined with additional integer-integer extensions | 
 |   // or narrowings to match the original input/result types. | 
 |   // E.g.  f32 -> i8  ==>  f32 -> i32 -> i8 | 
 |   // | 
 |   // The input/result types are not required to be legal, but if they are | 
 |   // legal, this function should not introduce illegal types. | 
 |  | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || | 
 |          Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); | 
 |  | 
 |   SDValue Inp = Op.getOperand(0); | 
 |   MVT InpTy = ty(Inp); | 
 |   MVT ResTy = ty(Op); | 
 |  | 
 |   if (InpTy == ResTy) | 
 |     return Op; | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP; | 
 |  | 
 |   auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy); | 
 |   SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG); | 
 |   SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp); | 
 |   SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG); | 
 |   return Res; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT); | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   SDValue Op0 = Op.getOperand(0); | 
 |   MVT InpTy = ty(Op0); | 
 |   MVT ResTy = ty(Op); | 
 |   assert(InpTy.changeTypeToInteger() == ResTy); | 
 |  | 
 |   // int32_t conv_f32_to_i32(uint32_t inp) { | 
 |   //   // s | exp8 | frac23 | 
 |   // | 
 |   //   int neg = (int32_t)inp < 0; | 
 |   // | 
 |   //   // "expm1" is the actual exponent minus 1: instead of "bias", subtract | 
 |   //   // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will | 
 |   //   // produce a large positive "expm1", which will result in max u/int. | 
 |   //   // In all IEEE formats, bias is the largest positive number that can be | 
 |   //   // represented in bias-width bits (i.e. 011..1). | 
 |   //   int32_t expm1 = (inp << 1) - 0x80000000; | 
 |   //   expm1 >>= 24; | 
 |   // | 
 |   //   // Always insert the "implicit 1". Subnormal numbers will become 0 | 
 |   //   // regardless. | 
 |   //   uint32_t frac = (inp << 8) | 0x80000000; | 
 |   // | 
 |   //   // "frac" is the fraction part represented as Q1.31. If it was | 
 |   //   // interpreted as uint32_t, it would be the fraction part multiplied | 
 |   //   // by 2^31. | 
 |   // | 
 |   //   // Calculate the amount of right shift, since shifting further to the | 
 |   //   // left would lose significant bits. Limit it to 32, because we want | 
 |   //   // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift | 
 |   //   // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift | 
 |   //   // left by 31). "rsh" can be negative. | 
 |   //   int32_t rsh = min(31 - (expm1 + 1), 32); | 
 |   // | 
 |   //   frac >>= rsh;   // rsh == 32 will produce 0 | 
 |   // | 
 |   //   // Everything up to this point is the same for conversion to signed | 
 |   //   // unsigned integer. | 
 |   // | 
 |   //   if (neg)                 // Only for signed int | 
 |   //     frac = -frac;          // | 
 |   //   if (rsh <= 0 && neg)     //   bound = neg ? 0x80000000 : 0x7fffffff | 
 |   //     frac = 0x80000000;     //   frac = rsh <= 0 ? bound : frac | 
 |   //   if (rsh <= 0 && !neg)    // | 
 |   //     frac = 0x7fffffff;     // | 
 |   // | 
 |   //   if (neg)                 // Only for unsigned int | 
 |   //     frac = 0;              // | 
 |   //   if (rsh < 0 && !neg)     //   frac = rsh < 0 ? 0x7fffffff : frac; | 
 |   //     frac = 0x7fffffff;     //   frac = neg ? 0 : frac; | 
 |   // | 
 |   //   return frac; | 
 |   // } | 
 |  | 
 |   MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount()); | 
 |  | 
 |   // Zero = V6_vd0(); | 
 |   // Neg = V6_vgtw(Zero, Inp); | 
 |   // One = V6_lvsplatw(1); | 
 |   // M80 = V6_lvsplatw(0x80000000); | 
 |   // Exp00 = V6_vaslwv(Inp, One); | 
 |   // Exp01 = V6_vsubw(Exp00, M80); | 
 |   // ExpM1 = V6_vasrw(Exp01, 24); | 
 |   // Frc00 = V6_vaslw(Inp, 8); | 
 |   // Frc01 = V6_vor(Frc00, M80); | 
 |   // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1); | 
 |   // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32)); | 
 |   // Frc02 = V6_vlsrwv(Frc01, Rsh01); | 
 |  | 
 |   // if signed int: | 
 |   // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff)) | 
 |   // Pos = V6_vgtw(Rsh01, Zero); | 
 |   // Frc13 = V6_vsubw(Zero, Frc02); | 
 |   // Frc14 = V6_vmux(Neg, Frc13, Frc02); | 
 |   // Int = V6_vmux(Pos, Frc14, Bnd); | 
 |   // | 
 |   // if unsigned int: | 
 |   // Rsn = V6_vgtw(Zero, Rsh01) | 
 |   // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02) | 
 |   // Int = V6_vmux(Neg, Zero, Frc23) | 
 |  | 
 |   auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy); | 
 |   unsigned ElemWidth = 1 + ExpWidth + FracWidth; | 
 |   assert((1ull << (ExpWidth - 1)) == (1 + ExpBias)); | 
 |  | 
 |   SDValue Inp = DAG.getBitcast(ResTy, Op0); | 
 |   SDValue Zero = getZero(dl, ResTy, DAG); | 
 |   SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT); | 
 |   SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy); | 
 |   SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy); | 
 |   SDValue One = DAG.getConstant(1, dl, ResTy); | 
 |   SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One}); | 
 |   SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80}); | 
 |   SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy); | 
 |   SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE}); | 
 |  | 
 |   SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy); | 
 |   SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW}); | 
 |   SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80}); | 
 |  | 
 |   SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy); | 
 |   SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1}); | 
 |   SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy); | 
 |   SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW}); | 
 |   SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01}); | 
 |  | 
 |   SDValue Int; | 
 |  | 
 |   if (Opc == ISD::FP_TO_SINT) { | 
 |     SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F}); | 
 |     SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT); | 
 |     SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02}); | 
 |     SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02}); | 
 |     Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd}); | 
 |   } else { | 
 |     assert(Opc == ISD::FP_TO_UINT); | 
 |     SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT); | 
 |     SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02); | 
 |     Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23); | 
 |   } | 
 |  | 
 |   return Int; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   SDValue Op0 = Op.getOperand(0); | 
 |   MVT InpTy = ty(Op0); | 
 |   MVT ResTy = ty(Op); | 
 |   assert(ResTy.changeTypeToInteger() == InpTy); | 
 |  | 
 |   // uint32_t vnoc1_rnd(int32_t w) { | 
 |   //   int32_t iszero = w == 0; | 
 |   //   int32_t isneg = w < 0; | 
 |   //   uint32_t u = __builtin_HEXAGON_A2_abs(w); | 
 |   // | 
 |   //   uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1; | 
 |   //   uint32_t frac0 = (uint64_t)u << norm_left; | 
 |   // | 
 |   //   // Rounding: | 
 |   //   uint32_t frac1 = frac0 + ((1 << 8) - 1); | 
 |   //   uint32_t renorm = (frac0 > frac1); | 
 |   //   uint32_t rup = (int)(frac0 << 22) < 0; | 
 |   // | 
 |   //   uint32_t frac2 = frac0 >> 8; | 
 |   //   uint32_t frac3 = frac1 >> 8; | 
 |   //   uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1; | 
 |   // | 
 |   //   int32_t exp = 32 - norm_left + renorm + 127; | 
 |   //   exp <<= 23; | 
 |   // | 
 |   //   uint32_t sign = 0x80000000 * isneg; | 
 |   //   uint32_t f = sign | exp | frac; | 
 |   //   return iszero ? 0 : f; | 
 |   // } | 
 |  | 
 |   MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount()); | 
 |   bool Signed = Opc == ISD::SINT_TO_FP; | 
 |  | 
 |   auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy); | 
 |   unsigned ElemWidth = 1 + ExpWidth + FracWidth; | 
 |  | 
 |   SDValue Zero = getZero(dl, InpTy, DAG); | 
 |   SDValue One = DAG.getConstant(1, dl, InpTy); | 
 |   SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ); | 
 |   SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0; | 
 |   SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs); | 
 |   SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One}); | 
 |   SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft}); | 
 |  | 
 |   auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG); | 
 |   if (Signed) { | 
 |     SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT); | 
 |     SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy); | 
 |     SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero}); | 
 |     Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac}); | 
 |   } | 
 |  | 
 |   SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy); | 
 |   SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy); | 
 |   SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0}); | 
 |   SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft}); | 
 |   SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy, | 
 |                              {Exp2, DAG.getConstant(FracWidth, dl, InpTy)}); | 
 |   SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3}); | 
 |   SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0}); | 
 |   SDValue Flt = DAG.getBitcast(ResTy, Flt1); | 
 |  | 
 |   return Flt; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const { | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   unsigned TLOpc; | 
 |   switch (Opc) { | 
 |   case ISD::ANY_EXTEND: | 
 |   case ISD::SIGN_EXTEND: | 
 |   case ISD::ZERO_EXTEND: | 
 |     TLOpc = HexagonISD::TL_EXTEND; | 
 |     break; | 
 |   case ISD::TRUNCATE: | 
 |     TLOpc = HexagonISD::TL_TRUNCATE; | 
 |     break; | 
 | #ifndef NDEBUG | 
 |     Op.dump(&DAG); | 
 | #endif | 
 |     llvm_unreachable("Unepected operator"); | 
 |   } | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0), | 
 |                      DAG.getUNDEF(MVT::i128), // illegal type | 
 |                      DAG.getConstant(Opc, dl, MVT::i32)); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const { | 
 |   assert(Op.getOpcode() == HexagonISD::TL_EXTEND || | 
 |          Op.getOpcode() == HexagonISD::TL_TRUNCATE); | 
 |   unsigned Opc = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | 
 |   return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0)); | 
 | } | 
 |  | 
 | HexagonTargetLowering::VectorPair | 
 | HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const { | 
 |   assert(!Op.isMachineOpcode()); | 
 |   SmallVector<SDValue, 2> OpsL, OpsH; | 
 |   const SDLoc &dl(Op); | 
 |  | 
 |   auto SplitVTNode = [&DAG, this](const VTSDNode *N) { | 
 |     MVT Ty = typeSplit(N->getVT().getSimpleVT()).first; | 
 |     SDValue TV = DAG.getValueType(Ty); | 
 |     return std::make_pair(TV, TV); | 
 |   }; | 
 |  | 
 |   for (SDValue A : Op.getNode()->ops()) { | 
 |     auto [Lo, Hi] = | 
 |         ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A); | 
 |     // Special case for type operand. | 
 |     switch (Op.getOpcode()) { | 
 |       case ISD::SIGN_EXTEND_INREG: | 
 |       case HexagonISD::SSAT: | 
 |       case HexagonISD::USAT: | 
 |         if (const auto *N = dyn_cast<const VTSDNode>(A.getNode())) | 
 |           std::tie(Lo, Hi) = SplitVTNode(N); | 
 |       break; | 
 |     } | 
 |     OpsL.push_back(Lo); | 
 |     OpsH.push_back(Hi); | 
 |   } | 
 |  | 
 |   MVT ResTy = ty(Op); | 
 |   MVT HalfTy = typeSplit(ResTy).first; | 
 |   SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL); | 
 |   SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH); | 
 |   return {L, H}; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { | 
 |   auto *MemN = cast<MemSDNode>(Op.getNode()); | 
 |  | 
 |   MVT MemTy = MemN->getMemoryVT().getSimpleVT(); | 
 |   if (!isHvxPairTy(MemTy)) | 
 |     return Op; | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   MVT SingleTy = typeSplit(MemTy).first; | 
 |   SDValue Chain = MemN->getChain(); | 
 |   SDValue Base0 = MemN->getBasePtr(); | 
 |   SDValue Base1 = DAG.getMemBasePlusOffset(Base0, TypeSize::Fixed(HwLen), dl); | 
 |   unsigned MemOpc = MemN->getOpcode(); | 
 |  | 
 |   MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; | 
 |   if (MachineMemOperand *MMO = MemN->getMemOperand()) { | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE) | 
 |                            ? (uint64_t)MemoryLocation::UnknownSize | 
 |                            : HwLen; | 
 |     MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize); | 
 |     MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize); | 
 |   } | 
 |  | 
 |   if (MemOpc == ISD::LOAD) { | 
 |     assert(cast<LoadSDNode>(Op)->isUnindexed()); | 
 |     SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0); | 
 |     SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1); | 
 |     return DAG.getMergeValues( | 
 |         { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1), | 
 |           DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
 |                       Load0.getValue(1), Load1.getValue(1)) }, dl); | 
 |   } | 
 |   if (MemOpc == ISD::STORE) { | 
 |     assert(cast<StoreSDNode>(Op)->isUnindexed()); | 
 |     VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG); | 
 |     SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0); | 
 |     SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1); | 
 |     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1); | 
 |   } | 
 |  | 
 |   assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE); | 
 |  | 
 |   auto MaskN = cast<MaskedLoadStoreSDNode>(Op); | 
 |   assert(MaskN->isUnindexed()); | 
 |   VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG); | 
 |   SDValue Offset = DAG.getUNDEF(MVT::i32); | 
 |  | 
 |   if (MemOpc == ISD::MLOAD) { | 
 |     VectorPair Thru = | 
 |         opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG); | 
 |     SDValue MLoad0 = | 
 |         DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first, | 
 |                           Thru.first, SingleTy, MOp0, ISD::UNINDEXED, | 
 |                           ISD::NON_EXTLOAD, false); | 
 |     SDValue MLoad1 = | 
 |         DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second, | 
 |                           Thru.second, SingleTy, MOp1, ISD::UNINDEXED, | 
 |                           ISD::NON_EXTLOAD, false); | 
 |     return DAG.getMergeValues( | 
 |         { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1), | 
 |           DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
 |                       MLoad0.getValue(1), MLoad1.getValue(1)) }, dl); | 
 |   } | 
 |   if (MemOpc == ISD::MSTORE) { | 
 |     VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG); | 
 |     SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset, | 
 |                                          Masks.first, SingleTy, MOp0, | 
 |                                          ISD::UNINDEXED, false, false); | 
 |     SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset, | 
 |                                          Masks.second, SingleTy, MOp1, | 
 |                                          ISD::UNINDEXED, false, false); | 
 |     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1); | 
 |   } | 
 |  | 
 |   std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG); | 
 |   llvm_unreachable(Name.c_str()); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   auto *LoadN = cast<LoadSDNode>(Op.getNode()); | 
 |   assert(LoadN->isUnindexed() && "Not widening indexed loads yet"); | 
 |   assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && | 
 |          "Not widening loads of i1 yet"); | 
 |  | 
 |   SDValue Chain = LoadN->getChain(); | 
 |   SDValue Base = LoadN->getBasePtr(); | 
 |   SDValue Offset = DAG.getUNDEF(MVT::i32); | 
 |  | 
 |   MVT ResTy = ty(Op); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   unsigned ResLen = ResTy.getStoreSize(); | 
 |   assert(ResLen < HwLen && "vsetq(v1) prerequisite"); | 
 |  | 
 |   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
 |   SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
 |                           {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG); | 
 |  | 
 |   MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen); | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen); | 
 |  | 
 |   SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask, | 
 |                                    DAG.getUNDEF(LoadTy), LoadTy, MemOp, | 
 |                                    ISD::UNINDEXED, ISD::NON_EXTLOAD, false); | 
 |   SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG); | 
 |   return DAG.getMergeValues({Value, Load.getValue(1)}, dl); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   auto *StoreN = cast<StoreSDNode>(Op.getNode()); | 
 |   assert(StoreN->isUnindexed() && "Not widening indexed stores yet"); | 
 |   assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && | 
 |          "Not widening stores of i1 yet"); | 
 |  | 
 |   SDValue Chain = StoreN->getChain(); | 
 |   SDValue Base = StoreN->getBasePtr(); | 
 |   SDValue Offset = DAG.getUNDEF(MVT::i32); | 
 |  | 
 |   SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG); | 
 |   MVT ValueTy = ty(Value); | 
 |   unsigned ValueLen = ValueTy.getVectorNumElements(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |   assert(isPowerOf2_32(ValueLen)); | 
 |  | 
 |   for (unsigned Len = ValueLen; Len < HwLen; ) { | 
 |     Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG); | 
 |     Len = ty(Value).getVectorNumElements(); // This is Len *= 2 | 
 |   } | 
 |   assert(ty(Value).getVectorNumElements() == HwLen);  // Paranoia | 
 |  | 
 |   assert(ValueLen < HwLen && "vsetq(v1) prerequisite"); | 
 |   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
 |   SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
 |                           {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG); | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen); | 
 |   return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value), | 
 |                             MemOp, ISD::UNINDEXED, false, false); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const { | 
 |   const SDLoc &dl(Op); | 
 |   SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); | 
 |   MVT ElemTy = ty(Op0).getVectorElementType(); | 
 |   unsigned HwLen = Subtarget.getVectorLength(); | 
 |  | 
 |   unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits(); | 
 |   assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen); | 
 |   MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen); | 
 |   if (!Subtarget.isHVXVectorType(WideOpTy, true)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG); | 
 |   SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG); | 
 |   EVT ResTy = | 
 |       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy); | 
 |   SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy, | 
 |                               {WideOp0, WideOp1, Op.getOperand(2)}); | 
 |  | 
 |   EVT RetTy = typeLegalize(ty(Op), DAG); | 
 |   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy, | 
 |                      {SetCC, getZero(dl, MVT::i32, DAG)}); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   bool IsPairOp = isHvxPairTy(ty(Op)) || | 
 |                   llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) { | 
 |                     return isHvxPairTy(ty(V)); | 
 |                   }); | 
 |  | 
 |   if (IsPairOp) { | 
 |     switch (Opc) { | 
 |       default: | 
 |         break; | 
 |       case ISD::LOAD: | 
 |       case ISD::STORE: | 
 |       case ISD::MLOAD: | 
 |       case ISD::MSTORE: | 
 |         return SplitHvxMemOp(Op, DAG); | 
 |       case ISD::SINT_TO_FP: | 
 |       case ISD::UINT_TO_FP: | 
 |       case ISD::FP_TO_SINT: | 
 |       case ISD::FP_TO_UINT: | 
 |         if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits()) | 
 |           return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
 |         break; | 
 |       case ISD::ABS: | 
 |       case ISD::CTPOP: | 
 |       case ISD::CTLZ: | 
 |       case ISD::CTTZ: | 
 |       case ISD::MUL: | 
 |       case ISD::FADD: | 
 |       case ISD::FSUB: | 
 |       case ISD::FMUL: | 
 |       case ISD::FMINNUM: | 
 |       case ISD::FMAXNUM: | 
 |       case ISD::MULHS: | 
 |       case ISD::MULHU: | 
 |       case ISD::AND: | 
 |       case ISD::OR: | 
 |       case ISD::XOR: | 
 |       case ISD::SRA: | 
 |       case ISD::SHL: | 
 |       case ISD::SRL: | 
 |       case ISD::FSHL: | 
 |       case ISD::FSHR: | 
 |       case ISD::SMIN: | 
 |       case ISD::SMAX: | 
 |       case ISD::UMIN: | 
 |       case ISD::UMAX: | 
 |       case ISD::SETCC: | 
 |       case ISD::VSELECT: | 
 |       case ISD::SIGN_EXTEND_INREG: | 
 |       case ISD::SPLAT_VECTOR: | 
 |         return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
 |       case ISD::SIGN_EXTEND: | 
 |       case ISD::ZERO_EXTEND: | 
 |         // In general, sign- and zero-extends can't be split and still | 
 |         // be legal. The only exception is extending bool vectors. | 
 |         if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1) | 
 |           return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   switch (Opc) { | 
 |     default: | 
 |       break; | 
 |     case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG); | 
 |     case ISD::SPLAT_VECTOR:            return LowerHvxSplatVector(Op, DAG); | 
 |     case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG); | 
 |     case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG); | 
 |     case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG); | 
 |     case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG); | 
 |     case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG); | 
 |     case ISD::BITCAST:                 return LowerHvxBitcast(Op, DAG); | 
 |     case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG); | 
 |     case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG); | 
 |     case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG); | 
 |     case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG); | 
 |     case ISD::SELECT:                  return LowerHvxSelect(Op, DAG); | 
 |     case ISD::SRA: | 
 |     case ISD::SHL: | 
 |     case ISD::SRL:                     return LowerHvxShift(Op, DAG); | 
 |     case ISD::FSHL: | 
 |     case ISD::FSHR:                    return LowerHvxFunnelShift(Op, DAG); | 
 |     case ISD::MULHS: | 
 |     case ISD::MULHU:                   return LowerHvxMulh(Op, DAG); | 
 |     case ISD::SMUL_LOHI: | 
 |     case ISD::UMUL_LOHI:               return LowerHvxMulLoHi(Op, DAG); | 
 |     case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); | 
 |     case ISD::SETCC: | 
 |     case ISD::INTRINSIC_VOID:          return Op; | 
 |     case ISD::INTRINSIC_WO_CHAIN:      return LowerHvxIntrinsic(Op, DAG); | 
 |     case ISD::MLOAD: | 
 |     case ISD::MSTORE:                  return LowerHvxMaskedOp(Op, DAG); | 
 |     // Unaligned loads will be handled by the default lowering. | 
 |     case ISD::LOAD:                    return SDValue(); | 
 |     case ISD::FP_EXTEND:               return LowerHvxFpExtend(Op, DAG); | 
 |     case ISD::FP_TO_SINT: | 
 |     case ISD::FP_TO_UINT:              return LowerHvxFpToInt(Op, DAG); | 
 |     case ISD::SINT_TO_FP: | 
 |     case ISD::UINT_TO_FP:              return LowerHvxIntToFp(Op, DAG); | 
 |  | 
 |     // Special nodes: | 
 |     case HexagonISD::SMUL_LOHI: | 
 |     case HexagonISD::UMUL_LOHI: | 
 |     case HexagonISD::USMUL_LOHI:       return LowerHvxMulLoHi(Op, DAG); | 
 |   } | 
 | #ifndef NDEBUG | 
 |   Op.dumpr(&DAG); | 
 | #endif | 
 |   llvm_unreachable("Unhandled HVX operation"); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) | 
 |       const { | 
 |   // Rewrite the extension/truncation/saturation op into steps where each | 
 |   // step changes the type widths by a factor of 2. | 
 |   // E.g.  i8 -> i16 remains unchanged, but i8 -> i32  ==>  i8 -> i16 -> i32. | 
 |   // | 
 |   // Some of the vector types in Op may not be legal. | 
 |  | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   switch (Opc) { | 
 |     case HexagonISD::SSAT: | 
 |     case HexagonISD::USAT: | 
 |     case HexagonISD::TL_EXTEND: | 
 |     case HexagonISD::TL_TRUNCATE: | 
 |       break; | 
 |     case ISD::ANY_EXTEND: | 
 |     case ISD::ZERO_EXTEND: | 
 |     case ISD::SIGN_EXTEND: | 
 |     case ISD::TRUNCATE: | 
 |       llvm_unreachable("ISD:: ops will be auto-folded"); | 
 |       break; | 
 | #ifndef NDEBUG | 
 |     Op.dump(&DAG); | 
 | #endif | 
 |     llvm_unreachable("Unexpected operation"); | 
 |   } | 
 |  | 
 |   SDValue Inp = Op.getOperand(0); | 
 |   MVT InpTy = ty(Inp); | 
 |   MVT ResTy = ty(Op); | 
 |  | 
 |   unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits(); | 
 |   unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits(); | 
 |   assert(InpWidth != ResWidth); | 
 |  | 
 |   if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth) | 
 |     return Op; | 
 |  | 
 |   const SDLoc &dl(Op); | 
 |   unsigned NumElems = InpTy.getVectorNumElements(); | 
 |   assert(NumElems == ResTy.getVectorNumElements()); | 
 |  | 
 |   auto repeatOp = [&](unsigned NewWidth, SDValue Arg) { | 
 |     MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems); | 
 |     switch (Opc) { | 
 |       case HexagonISD::SSAT: | 
 |       case HexagonISD::USAT: | 
 |         return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)}); | 
 |       case HexagonISD::TL_EXTEND: | 
 |       case HexagonISD::TL_TRUNCATE: | 
 |         return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)}); | 
 |       default: | 
 |         llvm_unreachable("Unexpected opcode"); | 
 |     } | 
 |   }; | 
 |  | 
 |   SDValue S = Inp; | 
 |   if (InpWidth < ResWidth) { | 
 |     assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)); | 
 |     while (InpWidth * 2 <= ResWidth) | 
 |       S = repeatOp(InpWidth *= 2, S); | 
 |   } else { | 
 |     // InpWidth > ResWidth | 
 |     assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)); | 
 |     while (InpWidth / 2 >= ResWidth) | 
 |       S = repeatOp(InpWidth /= 2, S); | 
 |   } | 
 |   return S; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const { | 
 |   SDValue Inp0 = Op.getOperand(0); | 
 |   MVT InpTy = ty(Inp0); | 
 |   MVT ResTy = ty(Op); | 
 |   unsigned InpWidth = InpTy.getSizeInBits(); | 
 |   unsigned ResWidth = ResTy.getSizeInBits(); | 
 |   unsigned Opc = Op.getOpcode(); | 
 |  | 
 |   if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) { | 
 |     // First, make sure that the narrower type is widened to HVX. | 
 |     // This may cause the result to be wider than what the legalizer | 
 |     // expects, so insert EXTRACT_SUBVECTOR to bring it back to the | 
 |     // desired type. | 
 |     auto [WInpTy, WResTy] = | 
 |         InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy) | 
 |                             : typeWidenToWider(InpTy, typeWidenToHvx(ResTy)); | 
 |     SDValue W = appendUndef(Inp0, WInpTy, DAG); | 
 |     SDValue S; | 
 |     if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) { | 
 |       S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1), | 
 |                       Op.getOperand(2)); | 
 |     } else { | 
 |       S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy)); | 
 |     } | 
 |     SDValue T = ExpandHvxResizeIntoSteps(S, DAG); | 
 |     return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG); | 
 |   } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) { | 
 |     return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
 |   } else { | 
 |     assert(isTypeLegal(InpTy) && isTypeLegal(ResTy)); | 
 |     return RemoveTLWrapper(Op, DAG); | 
 |   } | 
 |   llvm_unreachable("Unexpected situation"); | 
 | } | 
 |  | 
 | void | 
 | HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N, | 
 |       SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | 
 |   unsigned Opc = N->getOpcode(); | 
 |   SDValue Op(N, 0); | 
 |   SDValue Inp0;   // Optional first argument. | 
 |   if (N->getNumOperands() > 0) | 
 |     Inp0 = Op.getOperand(0); | 
 |  | 
 |   switch (Opc) { | 
 |     case ISD::ANY_EXTEND: | 
 |     case ISD::SIGN_EXTEND: | 
 |     case ISD::ZERO_EXTEND: | 
 |     case ISD::TRUNCATE: | 
 |       if (Subtarget.isHVXElementType(ty(Op)) && | 
 |           Subtarget.isHVXElementType(ty(Inp0))) { | 
 |         Results.push_back(CreateTLWrapper(Op, DAG)); | 
 |       } | 
 |       break; | 
 |     case ISD::SETCC: | 
 |       if (shouldWidenToHvx(ty(Inp0), DAG)) { | 
 |         if (SDValue T = WidenHvxSetCC(Op, DAG)) | 
 |           Results.push_back(T); | 
 |       } | 
 |       break; | 
 |     case ISD::STORE: { | 
 |       if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) { | 
 |         SDValue Store = WidenHvxStore(Op, DAG); | 
 |         Results.push_back(Store); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case ISD::MLOAD: | 
 |       if (isHvxPairTy(ty(Op))) { | 
 |         SDValue S = SplitHvxMemOp(Op, DAG); | 
 |         assert(S->getOpcode() == ISD::MERGE_VALUES); | 
 |         Results.push_back(S.getOperand(0)); | 
 |         Results.push_back(S.getOperand(1)); | 
 |       } | 
 |       break; | 
 |     case ISD::MSTORE: | 
 |       if (isHvxPairTy(ty(Op->getOperand(1)))) {    // Stored value | 
 |         SDValue S = SplitHvxMemOp(Op, DAG); | 
 |         Results.push_back(S); | 
 |       } | 
 |       break; | 
 |     case ISD::SINT_TO_FP: | 
 |     case ISD::UINT_TO_FP: | 
 |     case ISD::FP_TO_SINT: | 
 |     case ISD::FP_TO_UINT: | 
 |       if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { | 
 |         SDValue T = EqualizeFpIntConversion(Op, DAG); | 
 |         Results.push_back(T); | 
 |       } | 
 |       break; | 
 |     case HexagonISD::SSAT: | 
 |     case HexagonISD::USAT: | 
 |     case HexagonISD::TL_EXTEND: | 
 |     case HexagonISD::TL_TRUNCATE: | 
 |       Results.push_back(LegalizeHvxResize(Op, DAG)); | 
 |       break; | 
 |     default: | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N, | 
 |       SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | 
 |   unsigned Opc = N->getOpcode(); | 
 |   SDValue Op(N, 0); | 
 |   SDValue Inp0;   // Optional first argument. | 
 |   if (N->getNumOperands() > 0) | 
 |     Inp0 = Op.getOperand(0); | 
 |  | 
 |   switch (Opc) { | 
 |     case ISD::ANY_EXTEND: | 
 |     case ISD::SIGN_EXTEND: | 
 |     case ISD::ZERO_EXTEND: | 
 |     case ISD::TRUNCATE: | 
 |       if (Subtarget.isHVXElementType(ty(Op)) && | 
 |           Subtarget.isHVXElementType(ty(Inp0))) { | 
 |         Results.push_back(CreateTLWrapper(Op, DAG)); | 
 |       } | 
 |       break; | 
 |     case ISD::SETCC: | 
 |       if (shouldWidenToHvx(ty(Op), DAG)) { | 
 |         if (SDValue T = WidenHvxSetCC(Op, DAG)) | 
 |           Results.push_back(T); | 
 |       } | 
 |       break; | 
 |     case ISD::LOAD: { | 
 |       if (shouldWidenToHvx(ty(Op), DAG)) { | 
 |         SDValue Load = WidenHvxLoad(Op, DAG); | 
 |         assert(Load->getOpcode() == ISD::MERGE_VALUES); | 
 |         Results.push_back(Load.getOperand(0)); | 
 |         Results.push_back(Load.getOperand(1)); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case ISD::BITCAST: | 
 |       if (isHvxBoolTy(ty(Inp0))) { | 
 |         SDValue C = LowerHvxBitcast(Op, DAG); | 
 |         Results.push_back(C); | 
 |       } | 
 |       break; | 
 |     case ISD::FP_TO_SINT: | 
 |     case ISD::FP_TO_UINT: | 
 |       if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { | 
 |         SDValue T = EqualizeFpIntConversion(Op, DAG); | 
 |         Results.push_back(T); | 
 |       } | 
 |       break; | 
 |     case HexagonISD::SSAT: | 
 |     case HexagonISD::USAT: | 
 |     case HexagonISD::TL_EXTEND: | 
 |     case HexagonISD::TL_TRUNCATE: | 
 |       Results.push_back(LegalizeHvxResize(Op, DAG)); | 
 |       break; | 
 |     default: | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op, | 
 |                                                   DAGCombinerInfo &DCI) const { | 
 |   // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB | 
 |   // to extract-subvector (shuffle V, pick even, pick odd) | 
 |  | 
 |   assert(Op.getOpcode() == ISD::TRUNCATE); | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |   const SDLoc &dl(Op); | 
 |  | 
 |   if (Op.getOperand(0).getOpcode() == ISD::BITCAST) | 
 |     return SDValue(); | 
 |   SDValue Cast = Op.getOperand(0); | 
 |   SDValue Src = Cast.getOperand(0); | 
 |  | 
 |   EVT TruncTy = Op.getValueType(); | 
 |   EVT CastTy = Cast.getValueType(); | 
 |   EVT SrcTy = Src.getValueType(); | 
 |   if (SrcTy.isSimple()) | 
 |     return SDValue(); | 
 |   if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType()) | 
 |     return SDValue(); | 
 |   unsigned SrcLen = SrcTy.getVectorNumElements(); | 
 |   unsigned CastLen = CastTy.getVectorNumElements(); | 
 |   if (2 * CastLen != SrcLen) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<int, 128> Mask(SrcLen); | 
 |   for (int i = 0; i != static_cast<int>(CastLen); ++i) { | 
 |     Mask[i] = 2 * i; | 
 |     Mask[i + CastLen] = 2 * i + 1; | 
 |   } | 
 |   SDValue Deal = | 
 |       DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask); | 
 |   return opSplit(Deal, dl, DAG).first; | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::combineConcatVectorsBeforeLegal( | 
 |     SDValue Op, DAGCombinerInfo &DCI) const { | 
 |   // Fold | 
 |   //   concat (shuffle x, y, m1), (shuffle x, y, m2) | 
 |   // into | 
 |   //   shuffle (concat x, y), undef, m3 | 
 |   if (Op.getNumOperands() != 2) | 
 |     return SDValue(); | 
 |  | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |   const SDLoc &dl(Op); | 
 |   SDValue V0 = Op.getOperand(0); | 
 |   SDValue V1 = Op.getOperand(1); | 
 |  | 
 |   if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) | 
 |     return SDValue(); | 
 |   if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) | 
 |     return SDValue(); | 
 |  | 
 |   SetVector<SDValue> Order; | 
 |   Order.insert(V0.getOperand(0)); | 
 |   Order.insert(V0.getOperand(1)); | 
 |   Order.insert(V1.getOperand(0)); | 
 |   Order.insert(V1.getOperand(1)); | 
 |  | 
 |   if (Order.size() > 2) | 
 |     return SDValue(); | 
 |  | 
 |   // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the | 
 |   // result must be the same. | 
 |   EVT InpTy = V0.getValueType(); | 
 |   assert(InpTy.isVector()); | 
 |   unsigned InpLen = InpTy.getVectorNumElements(); | 
 |  | 
 |   SmallVector<int, 128> LongMask; | 
 |   auto AppendToMask = [&](SDValue Shuffle) { | 
 |     auto *SV = cast<ShuffleVectorSDNode>(Shuffle.getNode()); | 
 |     ArrayRef<int> Mask = SV->getMask(); | 
 |     SDValue X = Shuffle.getOperand(0); | 
 |     SDValue Y = Shuffle.getOperand(1); | 
 |     for (int M : Mask) { | 
 |       if (M == -1) { | 
 |         LongMask.push_back(M); | 
 |         continue; | 
 |       } | 
 |       SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y; | 
 |       if (static_cast<unsigned>(M) >= InpLen) | 
 |         M -= InpLen; | 
 |  | 
 |       int OutOffset = Order[0] == Src ? 0 : InpLen; | 
 |       LongMask.push_back(M + OutOffset); | 
 |     } | 
 |   }; | 
 |  | 
 |   AppendToMask(V0); | 
 |   AppendToMask(V1); | 
 |  | 
 |   SDValue C0 = Order.front(); | 
 |   SDValue C1 = Order.back();  // Can be same as front | 
 |   EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext()); | 
 |  | 
 |   SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1}); | 
 |   return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask); | 
 | } | 
 |  | 
 | SDValue | 
 | HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) | 
 |       const { | 
 |   const SDLoc &dl(N); | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |   SDValue Op(N, 0); | 
 |   unsigned Opc = Op.getOpcode(); | 
 |  | 
 |   SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end()); | 
 |  | 
 |   if (Opc == ISD::TRUNCATE) | 
 |     return combineTruncateBeforeLegal(Op, DCI); | 
 |   if (Opc == ISD::CONCAT_VECTORS) | 
 |     return combineConcatVectorsBeforeLegal(Op, DCI); | 
 |  | 
 |   if (DCI.isBeforeLegalizeOps()) | 
 |     return SDValue(); | 
 |  | 
 |   switch (Opc) { | 
 |     case ISD::VSELECT: { | 
 |       // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) | 
 |       SDValue Cond = Ops[0]; | 
 |       if (Cond->getOpcode() == ISD::XOR) { | 
 |         SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); | 
 |         if (C1->getOpcode() == HexagonISD::QTRUE) | 
 |           return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case HexagonISD::V2Q: | 
 |       if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) { | 
 |         if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0))) | 
 |           return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op)) | 
 |                              : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op)); | 
 |       } | 
 |       break; | 
 |     case HexagonISD::Q2V: | 
 |       if (Ops[0].getOpcode() == HexagonISD::QTRUE) | 
 |         return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op), | 
 |                            DAG.getConstant(-1, dl, MVT::i32)); | 
 |       if (Ops[0].getOpcode() == HexagonISD::QFALSE) | 
 |         return getZero(dl, ty(Op), DAG); | 
 |       break; | 
 |     case HexagonISD::VINSERTW0: | 
 |       if (isUndef(Ops[1])) | 
 |         return Ops[0]; | 
 |       break; | 
 |     case HexagonISD::VROR: { | 
 |       if (Ops[0].getOpcode() == HexagonISD::VROR) { | 
 |         SDValue Vec = Ops[0].getOperand(0); | 
 |         SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1); | 
 |         SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1}); | 
 |         return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot}); | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | bool | 
 | HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const { | 
 |   if (Subtarget.isHVXVectorType(Ty, true)) | 
 |     return false; | 
 |   auto Action = getPreferredHvxVectorAction(Ty); | 
 |   if (Action == TargetLoweringBase::TypeSplitVector) | 
 |     return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); | 
 |   return false; | 
 | } | 
 |  | 
 | bool | 
 | HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const { | 
 |   if (Subtarget.isHVXVectorType(Ty, true)) | 
 |     return false; | 
 |   auto Action = getPreferredHvxVectorAction(Ty); | 
 |   if (Action == TargetLoweringBase::TypeWidenVector) | 
 |     return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); | 
 |   return false; | 
 | } | 
 |  | 
 | bool | 
 | HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const { | 
 |   if (!Subtarget.useHVXOps()) | 
 |     return false; | 
 |   // If the type of any result, or any operand type are HVX vector types, | 
 |   // this is an HVX operation. | 
 |   auto IsHvxTy = [this](EVT Ty) { | 
 |     return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true); | 
 |   }; | 
 |   auto IsHvxOp = [this](SDValue Op) { | 
 |     return Op.getValueType().isSimple() && | 
 |            Subtarget.isHVXVectorType(ty(Op), true); | 
 |   }; | 
 |   if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp)) | 
 |     return true; | 
 |  | 
 |   // Check if this could be an HVX operation after type widening. | 
 |   auto IsWidenedToHvx = [this, &DAG](SDValue Op) { | 
 |     if (!Op.getValueType().isSimple()) | 
 |       return false; | 
 |     MVT ValTy = ty(Op); | 
 |     return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG); | 
 |   }; | 
 |  | 
 |   for (int i = 0, e = N->getNumValues(); i != e; ++i) { | 
 |     if (IsWidenedToHvx(SDValue(N, i))) | 
 |       return true; | 
 |   } | 
 |   return llvm::any_of(N->ops(), IsWidenedToHvx); | 
 | } |