| //===- SyntheticSections.cpp ----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains linker-synthesized sections. Currently, |
| // synthetic sections are created either output sections or input sections, |
| // but we are rewriting code so that all synthetic sections are created as |
| // input sections. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SyntheticSections.h" |
| #include "Config.h" |
| #include "DWARF.h" |
| #include "EhFrame.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "Writer.h" |
| #include "lld/Common/CommonLinkerContext.h" |
| #include "lld/Common/DWARF.h" |
| #include "lld/Common/Strings.h" |
| #include "lld/Common/Version.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" |
| #include "llvm/Support/DJB.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/Parallel.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include <cinttypes> |
| #include <cstdlib> |
| |
| using namespace llvm; |
| using namespace llvm::dwarf; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| using llvm::support::endian::read32le; |
| using llvm::support::endian::write32le; |
| using llvm::support::endian::write64le; |
| |
| constexpr size_t MergeNoTailSection::numShards; |
| |
| static uint64_t readUint(Ctx &ctx, uint8_t *buf) { |
| return ctx.arg.is64 ? read64(ctx, buf) : read32(ctx, buf); |
| } |
| |
| static void writeUint(Ctx &ctx, uint8_t *buf, uint64_t val) { |
| if (ctx.arg.is64) |
| write64(ctx, buf, val); |
| else |
| write32(ctx, buf, val); |
| } |
| |
| // Returns an LLD version string. |
| static ArrayRef<uint8_t> getVersion(Ctx &ctx) { |
| // Check LLD_VERSION first for ease of testing. |
| // You can get consistent output by using the environment variable. |
| // This is only for testing. |
| StringRef s = getenv("LLD_VERSION"); |
| if (s.empty()) |
| s = ctx.saver.save(Twine("Linker: ") + getLLDVersion()); |
| |
| // +1 to include the terminating '\0'. |
| return {(const uint8_t *)s.data(), s.size() + 1}; |
| } |
| |
| // Creates a .comment section containing LLD version info. |
| // With this feature, you can identify LLD-generated binaries easily |
| // by "readelf --string-dump .comment <file>". |
| // The returned object is a mergeable string section. |
| MergeInputSection *elf::createCommentSection(Ctx &ctx) { |
| auto *sec = |
| make<MergeInputSection>(ctx, ".comment", SHT_PROGBITS, |
| SHF_MERGE | SHF_STRINGS, 1, getVersion(ctx)); |
| sec->splitIntoPieces(); |
| return sec; |
| } |
| |
| // .MIPS.abiflags section. |
| template <class ELFT> |
| MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Ctx &ctx, |
| Elf_Mips_ABIFlags flags) |
| : SyntheticSection(ctx, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, 8), |
| flags(flags) { |
| this->entsize = sizeof(Elf_Mips_ABIFlags); |
| } |
| |
| template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { |
| memcpy(buf, &flags, sizeof(flags)); |
| } |
| |
| template <class ELFT> |
| std::unique_ptr<MipsAbiFlagsSection<ELFT>> |
| MipsAbiFlagsSection<ELFT>::create(Ctx &ctx) { |
| Elf_Mips_ABIFlags flags = {}; |
| bool create = false; |
| |
| for (InputSectionBase *sec : ctx.inputSections) { |
| if (sec->type != SHT_MIPS_ABIFLAGS) |
| continue; |
| sec->markDead(); |
| create = true; |
| |
| const size_t size = sec->content().size(); |
| // Older version of BFD (such as the default FreeBSD linker) concatenate |
| // .MIPS.abiflags instead of merging. To allow for this case (or potential |
| // zero padding) we ignore everything after the first Elf_Mips_ABIFlags |
| if (size < sizeof(Elf_Mips_ABIFlags)) { |
| Err(ctx) << sec->file << ": invalid size of .MIPS.abiflags section: got " |
| << size << " instead of " << sizeof(Elf_Mips_ABIFlags); |
| return nullptr; |
| } |
| auto *s = |
| reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data()); |
| if (s->version != 0) { |
| Err(ctx) << sec->file << ": unexpected .MIPS.abiflags version " |
| << s->version; |
| return nullptr; |
| } |
| |
| // LLD checks ISA compatibility in calcMipsEFlags(). Here we just |
| // select the highest number of ISA/Rev/Ext. |
| flags.isa_level = std::max(flags.isa_level, s->isa_level); |
| flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); |
| flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); |
| flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); |
| flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); |
| flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); |
| flags.ases |= s->ases; |
| flags.flags1 |= s->flags1; |
| flags.flags2 |= s->flags2; |
| flags.fp_abi = |
| elf::getMipsFpAbiFlag(ctx, sec->file, flags.fp_abi, s->fp_abi); |
| }; |
| |
| if (create) |
| return std::make_unique<MipsAbiFlagsSection<ELFT>>(ctx, flags); |
| return nullptr; |
| } |
| |
| // .MIPS.options section. |
| template <class ELFT> |
| MipsOptionsSection<ELFT>::MipsOptionsSection(Ctx &ctx, Elf_Mips_RegInfo reginfo) |
| : SyntheticSection(ctx, ".MIPS.options", SHT_MIPS_OPTIONS, SHF_ALLOC, 8), |
| reginfo(reginfo) { |
| this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { |
| auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); |
| options->kind = ODK_REGINFO; |
| options->size = getSize(); |
| |
| if (!ctx.arg.relocatable) |
| reginfo.ri_gp_value = ctx.in.mipsGot->getGp(); |
| memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); |
| } |
| |
| template <class ELFT> |
| std::unique_ptr<MipsOptionsSection<ELFT>> |
| MipsOptionsSection<ELFT>::create(Ctx &ctx) { |
| // N64 ABI only. |
| if (!ELFT::Is64Bits) |
| return nullptr; |
| |
| SmallVector<InputSectionBase *, 0> sections; |
| for (InputSectionBase *sec : ctx.inputSections) |
| if (sec->type == SHT_MIPS_OPTIONS) |
| sections.push_back(sec); |
| |
| if (sections.empty()) |
| return nullptr; |
| |
| Elf_Mips_RegInfo reginfo = {}; |
| for (InputSectionBase *sec : sections) { |
| sec->markDead(); |
| |
| ArrayRef<uint8_t> d = sec->content(); |
| while (!d.empty()) { |
| if (d.size() < sizeof(Elf_Mips_Options)) { |
| Err(ctx) << sec->file << ": invalid size of .MIPS.options section"; |
| break; |
| } |
| |
| auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); |
| if (opt->kind == ODK_REGINFO) { |
| reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; |
| sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; |
| break; |
| } |
| |
| if (!opt->size) { |
| Err(ctx) << sec->file << ": zero option descriptor size"; |
| break; |
| } |
| d = d.slice(opt->size); |
| } |
| }; |
| |
| return std::make_unique<MipsOptionsSection<ELFT>>(ctx, reginfo); |
| } |
| |
| // MIPS .reginfo section. |
| template <class ELFT> |
| MipsReginfoSection<ELFT>::MipsReginfoSection(Ctx &ctx, Elf_Mips_RegInfo reginfo) |
| : SyntheticSection(ctx, ".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC, 4), |
| reginfo(reginfo) { |
| this->entsize = sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { |
| if (!ctx.arg.relocatable) |
| reginfo.ri_gp_value = ctx.in.mipsGot->getGp(); |
| memcpy(buf, ®info, sizeof(reginfo)); |
| } |
| |
| template <class ELFT> |
| std::unique_ptr<MipsReginfoSection<ELFT>> |
| MipsReginfoSection<ELFT>::create(Ctx &ctx) { |
| // Section should be alive for O32 and N32 ABIs only. |
| if (ELFT::Is64Bits) |
| return nullptr; |
| |
| SmallVector<InputSectionBase *, 0> sections; |
| for (InputSectionBase *sec : ctx.inputSections) |
| if (sec->type == SHT_MIPS_REGINFO) |
| sections.push_back(sec); |
| |
| if (sections.empty()) |
| return nullptr; |
| |
| Elf_Mips_RegInfo reginfo = {}; |
| for (InputSectionBase *sec : sections) { |
| sec->markDead(); |
| |
| if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) { |
| Err(ctx) << sec->file << ": invalid size of .reginfo section"; |
| return nullptr; |
| } |
| |
| auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data()); |
| reginfo.ri_gprmask |= r->ri_gprmask; |
| sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; |
| }; |
| |
| return std::make_unique<MipsReginfoSection<ELFT>>(ctx, reginfo); |
| } |
| |
| InputSection *elf::createInterpSection(Ctx &ctx) { |
| // StringSaver guarantees that the returned string ends with '\0'. |
| StringRef s = ctx.saver.save(ctx.arg.dynamicLinker); |
| ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; |
| |
| return make<InputSection>(ctx.internalFile, ".interp", SHT_PROGBITS, |
| SHF_ALLOC, |
| /*addralign=*/1, /*entsize=*/0, contents); |
| } |
| |
| Defined *elf::addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type, |
| uint64_t value, uint64_t size, |
| InputSectionBase §ion) { |
| Defined *s = makeDefined(ctx, section.file, name, STB_LOCAL, STV_DEFAULT, |
| type, value, size, §ion); |
| if (ctx.in.symTab) |
| ctx.in.symTab->addSymbol(s); |
| |
| if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 && |
| (section.flags & SHF_EXECINSTR)) |
| // Adding Linker generated mapping symbols to the arm specific mapping |
| // symbols list. |
| addArmSyntheticSectionMappingSymbol(s); |
| |
| return s; |
| } |
| |
| static size_t getHashSize(Ctx &ctx) { |
| switch (ctx.arg.buildId) { |
| case BuildIdKind::Fast: |
| return 8; |
| case BuildIdKind::Md5: |
| case BuildIdKind::Uuid: |
| return 16; |
| case BuildIdKind::Sha1: |
| return 20; |
| case BuildIdKind::Hexstring: |
| return ctx.arg.buildIdVector.size(); |
| default: |
| llvm_unreachable("unknown BuildIdKind"); |
| } |
| } |
| |
| // This class represents a linker-synthesized .note.gnu.property section. |
| // |
| // In x86 and AArch64, object files may contain feature flags indicating the |
| // features that they have used. The flags are stored in a .note.gnu.property |
| // section. |
| // |
| // lld reads the sections from input files and merges them by computing AND of |
| // the flags. The result is written as a new .note.gnu.property section. |
| // |
| // If the flag is zero (which indicates that the intersection of the feature |
| // sets is empty, or some input files didn't have .note.gnu.property sections), |
| // we don't create this section. |
| GnuPropertySection::GnuPropertySection(Ctx &ctx) |
| : SyntheticSection(ctx, ".note.gnu.property", SHT_NOTE, SHF_ALLOC, |
| ctx.arg.wordsize) {} |
| |
| void GnuPropertySection::writeTo(uint8_t *buf) { |
| write32(ctx, buf, 4); // Name size |
| write32(ctx, buf + 4, getSize() - 16); // Content size |
| write32(ctx, buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type |
| memcpy(buf + 12, "GNU", 4); // Name string |
| |
| uint32_t featureAndType = ctx.arg.emachine == EM_AARCH64 |
| ? GNU_PROPERTY_AARCH64_FEATURE_1_AND |
| : GNU_PROPERTY_X86_FEATURE_1_AND; |
| |
| unsigned offset = 16; |
| if (ctx.arg.andFeatures != 0) { |
| write32(ctx, buf + offset + 0, featureAndType); // Feature type |
| write32(ctx, buf + offset + 4, 4); // Feature size |
| write32(ctx, buf + offset + 8, ctx.arg.andFeatures); // Feature flags |
| if (ctx.arg.is64) |
| write32(ctx, buf + offset + 12, 0); // Padding |
| offset += 16; |
| } |
| |
| if (!ctx.aarch64PauthAbiCoreInfo.empty()) { |
| write32(ctx, buf + offset + 0, GNU_PROPERTY_AARCH64_FEATURE_PAUTH); |
| write32(ctx, buf + offset + 4, ctx.aarch64PauthAbiCoreInfo.size()); |
| memcpy(buf + offset + 8, ctx.aarch64PauthAbiCoreInfo.data(), |
| ctx.aarch64PauthAbiCoreInfo.size()); |
| } |
| } |
| |
| size_t GnuPropertySection::getSize() const { |
| uint32_t contentSize = 0; |
| if (ctx.arg.andFeatures != 0) |
| contentSize += ctx.arg.is64 ? 16 : 12; |
| if (!ctx.aarch64PauthAbiCoreInfo.empty()) |
| contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size(); |
| assert(contentSize != 0); |
| return contentSize + 16; |
| } |
| |
| BuildIdSection::BuildIdSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".note.gnu.build-id", SHT_NOTE, SHF_ALLOC, 4), |
| hashSize(getHashSize(ctx)) {} |
| |
| void BuildIdSection::writeTo(uint8_t *buf) { |
| write32(ctx, buf, 4); // Name size |
| write32(ctx, buf + 4, hashSize); // Content size |
| write32(ctx, buf + 8, NT_GNU_BUILD_ID); // Type |
| memcpy(buf + 12, "GNU", 4); // Name string |
| hashBuf = buf + 16; |
| } |
| |
| void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { |
| assert(buf.size() == hashSize); |
| memcpy(hashBuf, buf.data(), hashSize); |
| } |
| |
| BssSection::BssSection(Ctx &ctx, StringRef name, uint64_t size, |
| uint32_t alignment) |
| : SyntheticSection(ctx, name, SHT_NOBITS, SHF_ALLOC | SHF_WRITE, |
| alignment) { |
| this->bss = true; |
| this->size = size; |
| } |
| |
| EhFrameSection::EhFrameSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, 1) {} |
| |
| // Search for an existing CIE record or create a new one. |
| // CIE records from input object files are uniquified by their contents |
| // and where their relocations point to. |
| template <class ELFT, class RelTy> |
| CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { |
| Symbol *personality = nullptr; |
| unsigned firstRelI = cie.firstRelocation; |
| if (firstRelI != (unsigned)-1) |
| personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]); |
| |
| // Search for an existing CIE by CIE contents/relocation target pair. |
| CieRecord *&rec = cieMap[{cie.data(), personality}]; |
| |
| // If not found, create a new one. |
| if (!rec) { |
| rec = make<CieRecord>(); |
| rec->cie = &cie; |
| cieRecords.push_back(rec); |
| } |
| return rec; |
| } |
| |
| // There is one FDE per function. Returns a non-null pointer to the function |
| // symbol if the given FDE points to a live function. |
| template <class ELFT, class RelTy> |
| Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { |
| auto *sec = cast<EhInputSection>(fde.sec); |
| unsigned firstRelI = fde.firstRelocation; |
| |
| // An FDE should point to some function because FDEs are to describe |
| // functions. That's however not always the case due to an issue of |
| // ld.gold with -r. ld.gold may discard only functions and leave their |
| // corresponding FDEs, which results in creating bad .eh_frame sections. |
| // To deal with that, we ignore such FDEs. |
| if (firstRelI == (unsigned)-1) |
| return nullptr; |
| |
| const RelTy &rel = rels[firstRelI]; |
| Symbol &b = sec->file->getRelocTargetSym(rel); |
| |
| // FDEs for garbage-collected or merged-by-ICF sections, or sections in |
| // another partition, are dead. |
| if (auto *d = dyn_cast<Defined>(&b)) |
| if (!d->folded && d->section && d->section->partition == partition) |
| return d; |
| return nullptr; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. In general, there |
| // is one CIE record per input object file which is followed by |
| // a list of FDEs. This function searches an existing CIE or create a new |
| // one and associates FDEs to the CIE. |
| template <class ELFT, class RelTy> |
| void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { |
| offsetToCie.clear(); |
| for (EhSectionPiece &cie : sec->cies) |
| offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels); |
| for (EhSectionPiece &fde : sec->fdes) { |
| uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); |
| CieRecord *rec = offsetToCie[fde.inputOff + 4 - id]; |
| if (!rec) |
| Fatal(ctx) << sec << ": invalid CIE reference"; |
| |
| if (!isFdeLive<ELFT>(fde, rels)) |
| continue; |
| rec->fdes.push_back(&fde); |
| numFdes++; |
| } |
| } |
| |
| template <class ELFT> |
| void EhFrameSection::addSectionAux(EhInputSection *sec) { |
| if (!sec->isLive()) |
| return; |
| const RelsOrRelas<ELFT> rels = |
| sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| if (rels.areRelocsRel()) |
| addRecords<ELFT>(sec, rels.rels); |
| else |
| addRecords<ELFT>(sec, rels.relas); |
| } |
| |
| // Used by ICF<ELFT>::handleLSDA(). This function is very similar to |
| // EhFrameSection::addRecords(). |
| template <class ELFT, class RelTy> |
| void EhFrameSection::iterateFDEWithLSDAAux( |
| EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, |
| llvm::function_ref<void(InputSection &)> fn) { |
| for (EhSectionPiece &cie : sec.cies) |
| if (hasLSDA(cie)) |
| ciesWithLSDA.insert(cie.inputOff); |
| for (EhSectionPiece &fde : sec.fdes) { |
| uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); |
| if (!ciesWithLSDA.contains(fde.inputOff + 4 - id)) |
| continue; |
| |
| // The CIE has a LSDA argument. Call fn with d's section. |
| if (Defined *d = isFdeLive<ELFT>(fde, rels)) |
| if (auto *s = dyn_cast_or_null<InputSection>(d->section)) |
| fn(*s); |
| } |
| } |
| |
| template <class ELFT> |
| void EhFrameSection::iterateFDEWithLSDA( |
| llvm::function_ref<void(InputSection &)> fn) { |
| DenseSet<size_t> ciesWithLSDA; |
| for (EhInputSection *sec : sections) { |
| ciesWithLSDA.clear(); |
| const RelsOrRelas<ELFT> rels = |
| sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| if (rels.areRelocsRel()) |
| iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); |
| else |
| iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); |
| } |
| } |
| |
| static void writeCieFde(Ctx &ctx, uint8_t *buf, ArrayRef<uint8_t> d) { |
| memcpy(buf, d.data(), d.size()); |
| // Fix the size field. -4 since size does not include the size field itself. |
| write32(ctx, buf, d.size() - 4); |
| } |
| |
| void EhFrameSection::finalizeContents() { |
| assert(!this->size); // Not finalized. |
| |
| switch (ctx.arg.ekind) { |
| case ELFNoneKind: |
| llvm_unreachable("invalid ekind"); |
| case ELF32LEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF32LE>(sec); |
| break; |
| case ELF32BEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF32BE>(sec); |
| break; |
| case ELF64LEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF64LE>(sec); |
| break; |
| case ELF64BEKind: |
| for (EhInputSection *sec : sections) |
| addSectionAux<ELF64BE>(sec); |
| break; |
| } |
| |
| size_t off = 0; |
| for (CieRecord *rec : cieRecords) { |
| rec->cie->outputOff = off; |
| off += rec->cie->size; |
| |
| for (EhSectionPiece *fde : rec->fdes) { |
| fde->outputOff = off; |
| off += fde->size; |
| } |
| } |
| |
| // The LSB standard does not allow a .eh_frame section with zero |
| // Call Frame Information records. glibc unwind-dw2-fde.c |
| // classify_object_over_fdes expects there is a CIE record length 0 as a |
| // terminator. Thus we add one unconditionally. |
| off += 4; |
| |
| this->size = off; |
| } |
| |
| // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table |
| // to get an FDE from an address to which FDE is applied. This function |
| // returns a list of such pairs. |
| SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { |
| uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; |
| SmallVector<FdeData, 0> ret; |
| |
| uint64_t va = getPartition(ctx).ehFrameHdr->getVA(); |
| for (CieRecord *rec : cieRecords) { |
| uint8_t enc = getFdeEncoding(rec->cie); |
| for (EhSectionPiece *fde : rec->fdes) { |
| uint64_t pc = getFdePc(buf, fde->outputOff, enc); |
| uint64_t fdeVA = getParent()->addr + fde->outputOff; |
| if (!isInt<32>(pc - va)) { |
| Err(ctx) << fde->sec << ": PC offset is too large: 0x" |
| << Twine::utohexstr(pc - va); |
| continue; |
| } |
| ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); |
| } |
| } |
| |
| // Sort the FDE list by their PC and uniqueify. Usually there is only |
| // one FDE for a PC (i.e. function), but if ICF merges two functions |
| // into one, there can be more than one FDEs pointing to the address. |
| auto less = [](const FdeData &a, const FdeData &b) { |
| return a.pcRel < b.pcRel; |
| }; |
| llvm::stable_sort(ret, less); |
| auto eq = [](const FdeData &a, const FdeData &b) { |
| return a.pcRel == b.pcRel; |
| }; |
| ret.erase(llvm::unique(ret, eq), ret.end()); |
| |
| return ret; |
| } |
| |
| static uint64_t readFdeAddr(Ctx &ctx, uint8_t *buf, int size) { |
| switch (size) { |
| case DW_EH_PE_udata2: |
| return read16(ctx, buf); |
| case DW_EH_PE_sdata2: |
| return (int16_t)read16(ctx, buf); |
| case DW_EH_PE_udata4: |
| return read32(ctx, buf); |
| case DW_EH_PE_sdata4: |
| return (int32_t)read32(ctx, buf); |
| case DW_EH_PE_udata8: |
| case DW_EH_PE_sdata8: |
| return read64(ctx, buf); |
| case DW_EH_PE_absptr: |
| return readUint(ctx, buf); |
| } |
| Err(ctx) << "unknown FDE size encoding"; |
| return 0; |
| } |
| |
| // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. |
| // We need it to create .eh_frame_hdr section. |
| uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, |
| uint8_t enc) const { |
| // The starting address to which this FDE applies is |
| // stored at FDE + 8 byte. And this offset is within |
| // the .eh_frame section. |
| size_t off = fdeOff + 8; |
| uint64_t addr = readFdeAddr(ctx, buf + off, enc & 0xf); |
| if ((enc & 0x70) == DW_EH_PE_absptr) |
| return ctx.arg.is64 ? addr : uint32_t(addr); |
| if ((enc & 0x70) == DW_EH_PE_pcrel) |
| return addr + getParent()->addr + off + outSecOff; |
| Err(ctx) << "unknown FDE size relative encoding"; |
| return 0; |
| } |
| |
| void EhFrameSection::writeTo(uint8_t *buf) { |
| // Write CIE and FDE records. |
| for (CieRecord *rec : cieRecords) { |
| size_t cieOffset = rec->cie->outputOff; |
| writeCieFde(ctx, buf + cieOffset, rec->cie->data()); |
| |
| for (EhSectionPiece *fde : rec->fdes) { |
| size_t off = fde->outputOff; |
| writeCieFde(ctx, buf + off, fde->data()); |
| |
| // FDE's second word should have the offset to an associated CIE. |
| // Write it. |
| write32(ctx, buf + off + 4, off + 4 - cieOffset); |
| } |
| } |
| |
| // Apply relocations. .eh_frame section contents are not contiguous |
| // in the output buffer, but relocateAlloc() still works because |
| // getOffset() takes care of discontiguous section pieces. |
| for (EhInputSection *s : sections) |
| ctx.target->relocateAlloc(*s, buf); |
| |
| if (getPartition(ctx).ehFrameHdr && getPartition(ctx).ehFrameHdr->getParent()) |
| getPartition(ctx).ehFrameHdr->write(); |
| } |
| |
| GotSection::GotSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, |
| ctx.target->gotEntrySize) { |
| numEntries = ctx.target->gotHeaderEntriesNum; |
| } |
| |
| void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); } |
| void GotSection::addEntry(const Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().gotIdx = numEntries++; |
| } |
| |
| void GotSection::addAuthEntry(const Symbol &sym) { |
| authEntries.push_back({(numEntries - 1) * ctx.arg.wordsize, sym.isFunc()}); |
| } |
| |
| bool GotSection::addTlsDescEntry(const Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().tlsDescIdx = numEntries; |
| numEntries += 2; |
| return true; |
| } |
| |
| void GotSection::addTlsDescAuthEntry() { |
| authEntries.push_back({(numEntries - 2) * ctx.arg.wordsize, true}); |
| authEntries.push_back({(numEntries - 1) * ctx.arg.wordsize, false}); |
| } |
| |
| bool GotSection::addDynTlsEntry(const Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().tlsGdIdx = numEntries; |
| // Global Dynamic TLS entries take two GOT slots. |
| numEntries += 2; |
| return true; |
| } |
| |
| // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| // In total it takes two GOT slots. |
| bool GotSection::addTlsIndex() { |
| if (tlsIndexOff != uint32_t(-1)) |
| return false; |
| tlsIndexOff = numEntries * ctx.arg.wordsize; |
| numEntries += 2; |
| return true; |
| } |
| |
| uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { |
| return sym.getTlsDescIdx(ctx) * ctx.arg.wordsize; |
| } |
| |
| uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { |
| return getVA() + getTlsDescOffset(sym); |
| } |
| |
| uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { |
| return this->getVA() + b.getTlsGdIdx(ctx) * ctx.arg.wordsize; |
| } |
| |
| uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { |
| return b.getTlsGdIdx(ctx) * ctx.arg.wordsize; |
| } |
| |
| void GotSection::finalizeContents() { |
| if (ctx.arg.emachine == EM_PPC64 && |
| numEntries <= ctx.target->gotHeaderEntriesNum && |
| !ctx.sym.globalOffsetTable) |
| size = 0; |
| else |
| size = numEntries * ctx.arg.wordsize; |
| } |
| |
| bool GotSection::isNeeded() const { |
| // Needed if the GOT symbol is used or the number of entries is more than just |
| // the header. A GOT with just the header may not be needed. |
| return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum; |
| } |
| |
| void GotSection::writeTo(uint8_t *buf) { |
| // On PPC64 .got may be needed but empty. Skip the write. |
| if (size == 0) |
| return; |
| ctx.target->writeGotHeader(buf); |
| ctx.target->relocateAlloc(*this, buf); |
| for (const AuthEntryInfo &authEntry : authEntries) { |
| // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#default-signing-schema |
| // Signed GOT entries use the IA key for symbols of type STT_FUNC and the |
| // DA key for all other symbol types, with the address of the GOT entry as |
| // the modifier. The static linker must encode the signing schema into the |
| // GOT slot. |
| // |
| // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#encoding-the-signing-schema |
| // If address diversity is set and the discriminator |
| // is 0 then modifier = Place |
| uint8_t *dest = buf + authEntry.offset; |
| uint64_t key = authEntry.isSymbolFunc ? /*IA=*/0b00 : /*DA=*/0b10; |
| uint64_t addrDiversity = 1; |
| write64(ctx, dest, (addrDiversity << 63) | (key << 60)); |
| } |
| } |
| |
| static uint64_t getMipsPageAddr(uint64_t addr) { |
| return (addr + 0x8000) & ~0xffff; |
| } |
| |
| static uint64_t getMipsPageCount(uint64_t size) { |
| return (size + 0xfffe) / 0xffff + 1; |
| } |
| |
| MipsGotSection::MipsGotSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".got", SHT_PROGBITS, |
| SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, 16) {} |
| |
| void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, |
| RelExpr expr) { |
| FileGot &g = getGot(file); |
| if (expr == RE_MIPS_GOT_LOCAL_PAGE) { |
| if (const OutputSection *os = sym.getOutputSection()) |
| g.pagesMap.insert({os, {}}); |
| else |
| g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(ctx, addend))}, 0}); |
| } else if (sym.isTls()) |
| g.tls.insert({&sym, 0}); |
| else if (sym.isPreemptible && expr == R_ABS) |
| g.relocs.insert({&sym, 0}); |
| else if (sym.isPreemptible) |
| g.global.insert({&sym, 0}); |
| else if (expr == RE_MIPS_GOT_OFF32) |
| g.local32.insert({{&sym, addend}, 0}); |
| else |
| g.local16.insert({{&sym, addend}, 0}); |
| } |
| |
| void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { |
| getGot(file).dynTlsSymbols.insert({&sym, 0}); |
| } |
| |
| void MipsGotSection::addTlsIndex(InputFile &file) { |
| getGot(file).dynTlsSymbols.insert({nullptr, 0}); |
| } |
| |
| size_t MipsGotSection::FileGot::getEntriesNum() const { |
| return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + |
| tls.size() + dynTlsSymbols.size() * 2; |
| } |
| |
| size_t MipsGotSection::FileGot::getPageEntriesNum() const { |
| size_t num = 0; |
| for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) |
| num += p.second.count; |
| return num; |
| } |
| |
| size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { |
| size_t count = getPageEntriesNum() + local16.size() + global.size(); |
| // If there are relocation-only entries in the GOT, TLS entries |
| // are allocated after them. TLS entries should be addressable |
| // by 16-bit index so count both reloc-only and TLS entries. |
| if (!tls.empty() || !dynTlsSymbols.empty()) |
| count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; |
| return count; |
| } |
| |
| MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { |
| if (f.mipsGotIndex == uint32_t(-1)) { |
| gots.emplace_back(); |
| gots.back().file = &f; |
| f.mipsGotIndex = gots.size() - 1; |
| } |
| return gots[f.mipsGotIndex]; |
| } |
| |
| uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, |
| const Symbol &sym, |
| int64_t addend) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| uint64_t index = 0; |
| if (const OutputSection *outSec = sym.getOutputSection()) { |
| uint64_t secAddr = getMipsPageAddr(outSec->addr); |
| uint64_t symAddr = getMipsPageAddr(sym.getVA(ctx, addend)); |
| index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; |
| } else { |
| index = |
| g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(ctx, addend))}); |
| } |
| return index * ctx.arg.wordsize; |
| } |
| |
| uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, |
| int64_t addend) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| Symbol *sym = const_cast<Symbol *>(&s); |
| if (sym->isTls()) |
| return g.tls.lookup(sym) * ctx.arg.wordsize; |
| if (sym->isPreemptible) |
| return g.global.lookup(sym) * ctx.arg.wordsize; |
| return g.local16.lookup({sym, addend}) * ctx.arg.wordsize; |
| } |
| |
| uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| return g.dynTlsSymbols.lookup(nullptr) * ctx.arg.wordsize; |
| } |
| |
| uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, |
| const Symbol &s) const { |
| const FileGot &g = gots[f->mipsGotIndex]; |
| Symbol *sym = const_cast<Symbol *>(&s); |
| return g.dynTlsSymbols.lookup(sym) * ctx.arg.wordsize; |
| } |
| |
| const Symbol *MipsGotSection::getFirstGlobalEntry() const { |
| if (gots.empty()) |
| return nullptr; |
| const FileGot &primGot = gots.front(); |
| if (!primGot.global.empty()) |
| return primGot.global.front().first; |
| if (!primGot.relocs.empty()) |
| return primGot.relocs.front().first; |
| return nullptr; |
| } |
| |
| unsigned MipsGotSection::getLocalEntriesNum() const { |
| if (gots.empty()) |
| return headerEntriesNum; |
| return headerEntriesNum + gots.front().getPageEntriesNum() + |
| gots.front().local16.size(); |
| } |
| |
| bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { |
| FileGot tmp = dst; |
| set_union(tmp.pagesMap, src.pagesMap); |
| set_union(tmp.local16, src.local16); |
| set_union(tmp.global, src.global); |
| set_union(tmp.relocs, src.relocs); |
| set_union(tmp.tls, src.tls); |
| set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); |
| |
| size_t count = isPrimary ? headerEntriesNum : 0; |
| count += tmp.getIndexedEntriesNum(); |
| |
| if (count * ctx.arg.wordsize > ctx.arg.mipsGotSize) |
| return false; |
| |
| std::swap(tmp, dst); |
| return true; |
| } |
| |
| void MipsGotSection::finalizeContents() { updateAllocSize(ctx); } |
| |
| bool MipsGotSection::updateAllocSize(Ctx &ctx) { |
| size = headerEntriesNum * ctx.arg.wordsize; |
| for (const FileGot &g : gots) |
| size += g.getEntriesNum() * ctx.arg.wordsize; |
| return false; |
| } |
| |
| void MipsGotSection::build() { |
| if (gots.empty()) |
| return; |
| |
| std::vector<FileGot> mergedGots(1); |
| |
| // For each GOT move non-preemptible symbols from the `Global` |
| // to `Local16` list. Preemptible symbol might become non-preemptible |
| // one if, for example, it gets a related copy relocation. |
| for (FileGot &got : gots) { |
| for (auto &p: got.global) |
| if (!p.first->isPreemptible) |
| got.local16.insert({{p.first, 0}, 0}); |
| got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { |
| return !p.first->isPreemptible; |
| }); |
| } |
| |
| // For each GOT remove "reloc-only" entry if there is "global" |
| // entry for the same symbol. And add local entries which indexed |
| // using 32-bit value at the end of 16-bit entries. |
| for (FileGot &got : gots) { |
| got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { |
| return got.global.count(p.first); |
| }); |
| set_union(got.local16, got.local32); |
| got.local32.clear(); |
| } |
| |
| // Evaluate number of "reloc-only" entries in the resulting GOT. |
| // To do that put all unique "reloc-only" and "global" entries |
| // from all GOTs to the future primary GOT. |
| FileGot *primGot = &mergedGots.front(); |
| for (FileGot &got : gots) { |
| set_union(primGot->relocs, got.global); |
| set_union(primGot->relocs, got.relocs); |
| got.relocs.clear(); |
| } |
| |
| // Evaluate number of "page" entries in each GOT. |
| for (FileGot &got : gots) { |
| for (std::pair<const OutputSection *, FileGot::PageBlock> &p : |
| got.pagesMap) { |
| const OutputSection *os = p.first; |
| uint64_t secSize = 0; |
| for (SectionCommand *cmd : os->commands) { |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) |
| for (InputSection *isec : isd->sections) { |
| uint64_t off = alignToPowerOf2(secSize, isec->addralign); |
| secSize = off + isec->getSize(); |
| } |
| } |
| p.second.count = getMipsPageCount(secSize); |
| } |
| } |
| |
| // Merge GOTs. Try to join as much as possible GOTs but do not exceed |
| // maximum GOT size. At first, try to fill the primary GOT because |
| // the primary GOT can be accessed in the most effective way. If it |
| // is not possible, try to fill the last GOT in the list, and finally |
| // create a new GOT if both attempts failed. |
| for (FileGot &srcGot : gots) { |
| InputFile *file = srcGot.file; |
| if (tryMergeGots(mergedGots.front(), srcGot, true)) { |
| file->mipsGotIndex = 0; |
| } else { |
| // If this is the first time we failed to merge with the primary GOT, |
| // MergedGots.back() will also be the primary GOT. We must make sure not |
| // to try to merge again with isPrimary=false, as otherwise, if the |
| // inputs are just right, we could allow the primary GOT to become 1 or 2 |
| // words bigger due to ignoring the header size. |
| if (mergedGots.size() == 1 || |
| !tryMergeGots(mergedGots.back(), srcGot, false)) { |
| mergedGots.emplace_back(); |
| std::swap(mergedGots.back(), srcGot); |
| } |
| file->mipsGotIndex = mergedGots.size() - 1; |
| } |
| } |
| std::swap(gots, mergedGots); |
| |
| // Reduce number of "reloc-only" entries in the primary GOT |
| // by subtracting "global" entries in the primary GOT. |
| primGot = &gots.front(); |
| primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { |
| return primGot->global.count(p.first); |
| }); |
| |
| // Calculate indexes for each GOT entry. |
| size_t index = headerEntriesNum; |
| for (FileGot &got : gots) { |
| got.startIndex = &got == primGot ? 0 : index; |
| for (std::pair<const OutputSection *, FileGot::PageBlock> &p : |
| got.pagesMap) { |
| // For each output section referenced by GOT page relocations calculate |
| // and save into pagesMap an upper bound of MIPS GOT entries required |
| // to store page addresses of local symbols. We assume the worst case - |
| // each 64kb page of the output section has at least one GOT relocation |
| // against it. And take in account the case when the section intersects |
| // page boundaries. |
| p.second.firstIndex = index; |
| index += p.second.count; |
| } |
| for (auto &p: got.local16) |
| p.second = index++; |
| for (auto &p: got.global) |
| p.second = index++; |
| for (auto &p: got.relocs) |
| p.second = index++; |
| for (auto &p: got.tls) |
| p.second = index++; |
| for (auto &p: got.dynTlsSymbols) { |
| p.second = index; |
| index += 2; |
| } |
| } |
| |
| // Update SymbolAux::gotIdx field to use this |
| // value later in the `sortMipsSymbols` function. |
| for (auto &p : primGot->global) { |
| if (p.first->auxIdx == 0) |
| p.first->allocateAux(ctx); |
| ctx.symAux.back().gotIdx = p.second; |
| } |
| for (auto &p : primGot->relocs) { |
| if (p.first->auxIdx == 0) |
| p.first->allocateAux(ctx); |
| ctx.symAux.back().gotIdx = p.second; |
| } |
| |
| // Create dynamic relocations. |
| for (FileGot &got : gots) { |
| // Create dynamic relocations for TLS entries. |
| for (std::pair<Symbol *, size_t> &p : got.tls) { |
| Symbol *s = p.first; |
| uint64_t offset = p.second * ctx.arg.wordsize; |
| // When building a shared library we still need a dynamic relocation |
| // for the TP-relative offset as we don't know how much other data will |
| // be allocated before us in the static TLS block. |
| if (s->isPreemptible || ctx.arg.shared) |
| ctx.mainPart->relaDyn->addReloc( |
| {ctx.target->tlsGotRel, this, offset, |
| DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS}); |
| } |
| for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { |
| Symbol *s = p.first; |
| uint64_t offset = p.second * ctx.arg.wordsize; |
| if (s == nullptr) { |
| if (!ctx.arg.shared) |
| continue; |
| ctx.mainPart->relaDyn->addReloc( |
| {ctx.target->tlsModuleIndexRel, this, offset}); |
| } else { |
| // When building a shared library we still need a dynamic relocation |
| // for the module index. Therefore only checking for |
| // S->isPreemptible is not sufficient (this happens e.g. for |
| // thread-locals that have been marked as local through a linker script) |
| if (!s->isPreemptible && !ctx.arg.shared) |
| continue; |
| ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsModuleIndexRel, |
| *this, offset, *s); |
| // However, we can skip writing the TLS offset reloc for non-preemptible |
| // symbols since it is known even in shared libraries |
| if (!s->isPreemptible) |
| continue; |
| offset += ctx.arg.wordsize; |
| ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsOffsetRel, *this, |
| offset, *s); |
| } |
| } |
| |
| // Do not create dynamic relocations for non-TLS |
| // entries in the primary GOT. |
| if (&got == primGot) |
| continue; |
| |
| // Dynamic relocations for "global" entries. |
| for (const std::pair<Symbol *, size_t> &p : got.global) { |
| uint64_t offset = p.second * ctx.arg.wordsize; |
| ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->relativeRel, *this, |
| offset, *p.first); |
| } |
| if (!ctx.arg.isPic) |
| continue; |
| // Dynamic relocations for "local" entries in case of PIC. |
| for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : |
| got.pagesMap) { |
| size_t pageCount = l.second.count; |
| for (size_t pi = 0; pi < pageCount; ++pi) { |
| uint64_t offset = (l.second.firstIndex + pi) * ctx.arg.wordsize; |
| ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset, |
| l.first, int64_t(pi * 0x10000)}); |
| } |
| } |
| for (const std::pair<GotEntry, size_t> &p : got.local16) { |
| uint64_t offset = p.second * ctx.arg.wordsize; |
| ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset, |
| DynamicReloc::AddendOnlyWithTargetVA, |
| *p.first.first, p.first.second, R_ABS}); |
| } |
| } |
| } |
| |
| bool MipsGotSection::isNeeded() const { |
| // We add the .got section to the result for dynamic MIPS target because |
| // its address and properties are mentioned in the .dynamic section. |
| return !ctx.arg.relocatable; |
| } |
| |
| uint64_t MipsGotSection::getGp(const InputFile *f) const { |
| // For files without related GOT or files refer a primary GOT |
| // returns "common" _gp value. For secondary GOTs calculate |
| // individual _gp values. |
| if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) |
| return ctx.sym.mipsGp->getVA(ctx, 0); |
| return getVA() + gots[f->mipsGotIndex].startIndex * ctx.arg.wordsize + 0x7ff0; |
| } |
| |
| void MipsGotSection::writeTo(uint8_t *buf) { |
| // Set the MSB of the second GOT slot. This is not required by any |
| // MIPS ABI documentation, though. |
| // |
| // There is a comment in glibc saying that "The MSB of got[1] of a |
| // gnu object is set to identify gnu objects," and in GNU gold it |
| // says "the second entry will be used by some runtime loaders". |
| // But how this field is being used is unclear. |
| // |
| // We are not really willing to mimic other linkers behaviors |
| // without understanding why they do that, but because all files |
| // generated by GNU tools have this special GOT value, and because |
| // we've been doing this for years, it is probably a safe bet to |
| // keep doing this for now. We really need to revisit this to see |
| // if we had to do this. |
| writeUint(ctx, buf + ctx.arg.wordsize, |
| (uint64_t)1 << (ctx.arg.wordsize * 8 - 1)); |
| for (const FileGot &g : gots) { |
| auto write = [&](size_t i, const Symbol *s, int64_t a) { |
| uint64_t va = a; |
| if (s) |
| va = s->getVA(ctx, a); |
| writeUint(ctx, buf + i * ctx.arg.wordsize, va); |
| }; |
| // Write 'page address' entries to the local part of the GOT. |
| for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : |
| g.pagesMap) { |
| size_t pageCount = l.second.count; |
| uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); |
| for (size_t pi = 0; pi < pageCount; ++pi) |
| write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); |
| } |
| // Local, global, TLS, reloc-only entries. |
| // If TLS entry has a corresponding dynamic relocations, leave it |
| // initialized by zero. Write down adjusted TLS symbol's values otherwise. |
| // To calculate the adjustments use offsets for thread-local storage. |
| // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL |
| for (const std::pair<GotEntry, size_t> &p : g.local16) |
| write(p.second, p.first.first, p.first.second); |
| // Write VA to the primary GOT only. For secondary GOTs that |
| // will be done by REL32 dynamic relocations. |
| if (&g == &gots.front()) |
| for (const std::pair<Symbol *, size_t> &p : g.global) |
| write(p.second, p.first, 0); |
| for (const std::pair<Symbol *, size_t> &p : g.relocs) |
| write(p.second, p.first, 0); |
| for (const std::pair<Symbol *, size_t> &p : g.tls) |
| write(p.second, p.first, |
| p.first->isPreemptible || ctx.arg.shared ? 0 : -0x7000); |
| for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { |
| if (p.first == nullptr && !ctx.arg.shared) |
| write(p.second, nullptr, 1); |
| else if (p.first && !p.first->isPreemptible) { |
| // If we are emitting a shared library with relocations we mustn't write |
| // anything to the GOT here. When using Elf_Rel relocations the value |
| // one will be treated as an addend and will cause crashes at runtime |
| if (!ctx.arg.shared) |
| write(p.second, nullptr, 1); |
| write(p.second + 1, p.first, -0x8000); |
| } |
| } |
| } |
| } |
| |
| // On PowerPC the .plt section is used to hold the table of function addresses |
| // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss |
| // section. I don't know why we have a BSS style type for the section but it is |
| // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. |
| GotPltSection::GotPltSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, |
| ctx.arg.wordsize) { |
| if (ctx.arg.emachine == EM_PPC) { |
| name = ".plt"; |
| } else if (ctx.arg.emachine == EM_PPC64) { |
| type = SHT_NOBITS; |
| name = ".plt"; |
| } |
| } |
| |
| void GotPltSection::addEntry(Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1 && |
| ctx.symAux.back().pltIdx == entries.size()); |
| entries.push_back(&sym); |
| } |
| |
| size_t GotPltSection::getSize() const { |
| return (ctx.target->gotPltHeaderEntriesNum + entries.size()) * |
| ctx.target->gotEntrySize; |
| } |
| |
| void GotPltSection::writeTo(uint8_t *buf) { |
| ctx.target->writeGotPltHeader(buf); |
| buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize; |
| for (const Symbol *b : entries) { |
| ctx.target->writeGotPlt(buf, *b); |
| buf += ctx.target->gotEntrySize; |
| } |
| } |
| |
| bool GotPltSection::isNeeded() const { |
| // We need to emit GOTPLT even if it's empty if there's a relocation relative |
| // to it. |
| return !entries.empty() || hasGotPltOffRel; |
| } |
| |
| static StringRef getIgotPltName(Ctx &ctx) { |
| // On ARM the IgotPltSection is part of the GotSection. |
| if (ctx.arg.emachine == EM_ARM) |
| return ".got"; |
| |
| // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection |
| // needs to be named the same. |
| if (ctx.arg.emachine == EM_PPC64) |
| return ".plt"; |
| |
| return ".got.plt"; |
| } |
| |
| // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit |
| // with the IgotPltSection. |
| IgotPltSection::IgotPltSection(Ctx &ctx) |
| : SyntheticSection(ctx, getIgotPltName(ctx), |
| ctx.arg.emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, |
| SHF_ALLOC | SHF_WRITE, ctx.target->gotEntrySize) {} |
| |
| void IgotPltSection::addEntry(Symbol &sym) { |
| assert(ctx.symAux.back().pltIdx == entries.size()); |
| entries.push_back(&sym); |
| } |
| |
| size_t IgotPltSection::getSize() const { |
| return entries.size() * ctx.target->gotEntrySize; |
| } |
| |
| void IgotPltSection::writeTo(uint8_t *buf) { |
| for (const Symbol *b : entries) { |
| ctx.target->writeIgotPlt(buf, *b); |
| buf += ctx.target->gotEntrySize; |
| } |
| } |
| |
| StringTableSection::StringTableSection(Ctx &ctx, StringRef name, bool dynamic) |
| : SyntheticSection(ctx, name, SHT_STRTAB, dynamic ? (uint64_t)SHF_ALLOC : 0, |
| 1), |
| dynamic(dynamic) { |
| // ELF string tables start with a NUL byte. |
| strings.push_back(""); |
| stringMap.try_emplace(CachedHashStringRef(""), 0); |
| size = 1; |
| } |
| |
| // Adds a string to the string table. If `hashIt` is true we hash and check for |
| // duplicates. It is optional because the name of global symbols are already |
| // uniqued and hashing them again has a big cost for a small value: uniquing |
| // them with some other string that happens to be the same. |
| unsigned StringTableSection::addString(StringRef s, bool hashIt) { |
| if (hashIt) { |
| auto r = stringMap.try_emplace(CachedHashStringRef(s), size); |
| if (!r.second) |
| return r.first->second; |
| } |
| if (s.empty()) |
| return 0; |
| unsigned ret = this->size; |
| this->size = this->size + s.size() + 1; |
| strings.push_back(s); |
| return ret; |
| } |
| |
| void StringTableSection::writeTo(uint8_t *buf) { |
| for (StringRef s : strings) { |
| memcpy(buf, s.data(), s.size()); |
| buf[s.size()] = '\0'; |
| buf += s.size() + 1; |
| } |
| } |
| |
| // Returns the number of entries in .gnu.version_d: the number of |
| // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. |
| // Note that we don't support vd_cnt > 1 yet. |
| static unsigned getVerDefNum(Ctx &ctx) { |
| return namedVersionDefs(ctx).size() + 1; |
| } |
| |
| template <class ELFT> |
| DynamicSection<ELFT>::DynamicSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE, |
| ctx.arg.wordsize) { |
| this->entsize = ELFT::Is64Bits ? 16 : 8; |
| |
| // .dynamic section is not writable on MIPS and on Fuchsia OS |
| // which passes -z rodynamic. |
| // See "Special Section" in Chapter 4 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (ctx.arg.emachine == EM_MIPS || ctx.arg.zRodynamic) |
| this->flags = SHF_ALLOC; |
| } |
| |
| // The output section .rela.dyn may include these synthetic sections: |
| // |
| // - part.relaDyn |
| // - ctx.in.relaPlt: this is included if a linker script places .rela.plt inside |
| // .rela.dyn |
| // |
| // DT_RELASZ is the total size of the included sections. |
| static uint64_t addRelaSz(Ctx &ctx, const RelocationBaseSection &relaDyn) { |
| size_t size = relaDyn.getSize(); |
| if (ctx.in.relaPlt->getParent() == relaDyn.getParent()) |
| size += ctx.in.relaPlt->getSize(); |
| return size; |
| } |
| |
| // A Linker script may assign the RELA relocation sections to the same |
| // output section. When this occurs we cannot just use the OutputSection |
| // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to |
| // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). |
| static uint64_t addPltRelSz(Ctx &ctx) { return ctx.in.relaPlt->getSize(); } |
| |
| // Add remaining entries to complete .dynamic contents. |
| template <class ELFT> |
| std::vector<std::pair<int32_t, uint64_t>> |
| DynamicSection<ELFT>::computeContents() { |
| elf::Partition &part = getPartition(ctx); |
| bool isMain = part.name.empty(); |
| std::vector<std::pair<int32_t, uint64_t>> entries; |
| |
| auto addInt = [&](int32_t tag, uint64_t val) { |
| entries.emplace_back(tag, val); |
| }; |
| auto addInSec = [&](int32_t tag, const InputSection &sec) { |
| entries.emplace_back(tag, sec.getVA()); |
| }; |
| |
| for (StringRef s : ctx.arg.filterList) |
| addInt(DT_FILTER, part.dynStrTab->addString(s)); |
| for (StringRef s : ctx.arg.auxiliaryList) |
| addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); |
| |
| if (!ctx.arg.rpath.empty()) |
| addInt(ctx.arg.enableNewDtags ? DT_RUNPATH : DT_RPATH, |
| part.dynStrTab->addString(ctx.arg.rpath)); |
| |
| for (SharedFile *file : ctx.sharedFiles) |
| if (file->isNeeded) |
| addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); |
| |
| if (isMain) { |
| if (!ctx.arg.soName.empty()) |
| addInt(DT_SONAME, part.dynStrTab->addString(ctx.arg.soName)); |
| } else { |
| if (!ctx.arg.soName.empty()) |
| addInt(DT_NEEDED, part.dynStrTab->addString(ctx.arg.soName)); |
| addInt(DT_SONAME, part.dynStrTab->addString(part.name)); |
| } |
| |
| // Set DT_FLAGS and DT_FLAGS_1. |
| uint32_t dtFlags = 0; |
| uint32_t dtFlags1 = 0; |
| if (ctx.arg.bsymbolic == BsymbolicKind::All) |
| dtFlags |= DF_SYMBOLIC; |
| if (ctx.arg.zGlobal) |
| dtFlags1 |= DF_1_GLOBAL; |
| if (ctx.arg.zInitfirst) |
| dtFlags1 |= DF_1_INITFIRST; |
| if (ctx.arg.zInterpose) |
| dtFlags1 |= DF_1_INTERPOSE; |
| if (ctx.arg.zNodefaultlib) |
| dtFlags1 |= DF_1_NODEFLIB; |
| if (ctx.arg.zNodelete) |
| dtFlags1 |= DF_1_NODELETE; |
| if (ctx.arg.zNodlopen) |
| dtFlags1 |= DF_1_NOOPEN; |
| if (ctx.arg.pie) |
| dtFlags1 |= DF_1_PIE; |
| if (ctx.arg.zNow) { |
| dtFlags |= DF_BIND_NOW; |
| dtFlags1 |= DF_1_NOW; |
| } |
| if (ctx.arg.zOrigin) { |
| dtFlags |= DF_ORIGIN; |
| dtFlags1 |= DF_1_ORIGIN; |
| } |
| if (!ctx.arg.zText) |
| dtFlags |= DF_TEXTREL; |
| if (ctx.hasTlsIe && ctx.arg.shared) |
| dtFlags |= DF_STATIC_TLS; |
| |
| if (dtFlags) |
| addInt(DT_FLAGS, dtFlags); |
| if (dtFlags1) |
| addInt(DT_FLAGS_1, dtFlags1); |
| |
| // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We |
| // need it for each process, so we don't write it for DSOs. The loader writes |
| // the pointer into this entry. |
| // |
| // DT_DEBUG is the only .dynamic entry that needs to be written to. Some |
| // systems (currently only Fuchsia OS) provide other means to give the |
| // debugger this information. Such systems may choose make .dynamic read-only. |
| // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. |
| if (!ctx.arg.shared && !ctx.arg.relocatable && !ctx.arg.zRodynamic) |
| addInt(DT_DEBUG, 0); |
| |
| if (part.relaDyn->isNeeded()) { |
| addInSec(part.relaDyn->dynamicTag, *part.relaDyn); |
| entries.emplace_back(part.relaDyn->sizeDynamicTag, |
| addRelaSz(ctx, *part.relaDyn)); |
| |
| bool isRela = ctx.arg.isRela; |
| addInt(isRela ? DT_RELAENT : DT_RELENT, |
| isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); |
| |
| // MIPS dynamic loader does not support RELCOUNT tag. |
| // The problem is in the tight relation between dynamic |
| // relocations and GOT. So do not emit this tag on MIPS. |
| if (ctx.arg.emachine != EM_MIPS) { |
| size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); |
| if (ctx.arg.zCombreloc && numRelativeRels) |
| addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); |
| } |
| } |
| if (part.relrDyn && part.relrDyn->getParent() && |
| !part.relrDyn->relocs.empty()) { |
| addInSec(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, |
| *part.relrDyn); |
| addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, |
| part.relrDyn->getParent()->size); |
| addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, |
| sizeof(Elf_Relr)); |
| } |
| if (part.relrAuthDyn && part.relrAuthDyn->getParent() && |
| !part.relrAuthDyn->relocs.empty()) { |
| addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn); |
| addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size); |
| addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr)); |
| } |
| if (isMain && ctx.in.relaPlt->isNeeded()) { |
| addInSec(DT_JMPREL, *ctx.in.relaPlt); |
| entries.emplace_back(DT_PLTRELSZ, addPltRelSz(ctx)); |
| switch (ctx.arg.emachine) { |
| case EM_MIPS: |
| addInSec(DT_MIPS_PLTGOT, *ctx.in.gotPlt); |
| break; |
| case EM_S390: |
| addInSec(DT_PLTGOT, *ctx.in.got); |
| break; |
| case EM_SPARCV9: |
| addInSec(DT_PLTGOT, *ctx.in.plt); |
| break; |
| case EM_AARCH64: |
| if (llvm::find_if(ctx.in.relaPlt->relocs, [&ctx = ctx]( |
| const DynamicReloc &r) { |
| return r.type == ctx.target->pltRel && |
| r.sym->stOther & STO_AARCH64_VARIANT_PCS; |
| }) != ctx.in.relaPlt->relocs.end()) |
| addInt(DT_AARCH64_VARIANT_PCS, 0); |
| addInSec(DT_PLTGOT, *ctx.in.gotPlt); |
| break; |
| case EM_RISCV: |
| if (llvm::any_of(ctx.in.relaPlt->relocs, [&ctx = ctx]( |
| const DynamicReloc &r) { |
| return r.type == ctx.target->pltRel && |
| (r.sym->stOther & STO_RISCV_VARIANT_CC); |
| })) |
| addInt(DT_RISCV_VARIANT_CC, 0); |
| [[fallthrough]]; |
| default: |
| addInSec(DT_PLTGOT, *ctx.in.gotPlt); |
| break; |
| } |
| addInt(DT_PLTREL, ctx.arg.isRela ? DT_RELA : DT_REL); |
| } |
| |
| if (ctx.arg.emachine == EM_AARCH64) { |
| if (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) |
| addInt(DT_AARCH64_BTI_PLT, 0); |
| if (ctx.arg.zPacPlt) |
| addInt(DT_AARCH64_PAC_PLT, 0); |
| |
| if (hasMemtag(ctx)) { |
| addInt(DT_AARCH64_MEMTAG_MODE, ctx.arg.androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC); |
| addInt(DT_AARCH64_MEMTAG_HEAP, ctx.arg.androidMemtagHeap); |
| addInt(DT_AARCH64_MEMTAG_STACK, ctx.arg.androidMemtagStack); |
| if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) { |
| addInSec(DT_AARCH64_MEMTAG_GLOBALS, |
| *ctx.mainPart->memtagGlobalDescriptors); |
| addInt(DT_AARCH64_MEMTAG_GLOBALSSZ, |
| ctx.mainPart->memtagGlobalDescriptors->getSize()); |
| } |
| } |
| } |
| |
| addInSec(DT_SYMTAB, *part.dynSymTab); |
| addInt(DT_SYMENT, sizeof(Elf_Sym)); |
| addInSec(DT_STRTAB, *part.dynStrTab); |
| addInt(DT_STRSZ, part.dynStrTab->getSize()); |
| if (!ctx.arg.zText) |
| addInt(DT_TEXTREL, 0); |
| if (part.gnuHashTab && part.gnuHashTab->getParent()) |
| addInSec(DT_GNU_HASH, *part.gnuHashTab); |
| if (part.hashTab && part.hashTab->getParent()) |
| addInSec(DT_HASH, *part.hashTab); |
| |
| if (isMain) { |
| if (ctx.out.preinitArray) { |
| addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr); |
| addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size); |
| } |
| if (ctx.out.initArray) { |
| addInt(DT_INIT_ARRAY, ctx.out.initArray->addr); |
| addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size); |
| } |
| if (ctx.out.finiArray) { |
| addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr); |
| addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size); |
| } |
| |
| if (Symbol *b = ctx.symtab->find(ctx.arg.init)) |
| if (b->isDefined()) |
| addInt(DT_INIT, b->getVA(ctx)); |
| if (Symbol *b = ctx.symtab->find(ctx.arg.fini)) |
| if (b->isDefined()) |
| addInt(DT_FINI, b->getVA(ctx)); |
| } |
| |
| if (part.verSym && part.verSym->isNeeded()) |
| addInSec(DT_VERSYM, *part.verSym); |
| if (part.verDef && part.verDef->isLive()) { |
| addInSec(DT_VERDEF, *part.verDef); |
| addInt(DT_VERDEFNUM, getVerDefNum(ctx)); |
| } |
| if (part.verNeed && part.verNeed->isNeeded()) { |
| addInSec(DT_VERNEED, *part.verNeed); |
| unsigned needNum = 0; |
| for (SharedFile *f : ctx.sharedFiles) |
| if (!f->vernauxs.empty()) |
| ++needNum; |
| addInt(DT_VERNEEDNUM, needNum); |
| } |
| |
| if (ctx.arg.emachine == EM_MIPS) { |
| addInt(DT_MIPS_RLD_VERSION, 1); |
| addInt(DT_MIPS_FLAGS, RHF_NOTPOT); |
| addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase()); |
| addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); |
| addInt(DT_MIPS_LOCAL_GOTNO, ctx.in.mipsGot->getLocalEntriesNum()); |
| |
| if (const Symbol *b = ctx.in.mipsGot->getFirstGlobalEntry()) |
| addInt(DT_MIPS_GOTSYM, b->dynsymIndex); |
| else |
| addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); |
| addInSec(DT_PLTGOT, *ctx.in.mipsGot); |
| if (ctx.in.mipsRldMap) { |
| if (!ctx.arg.pie) |
| addInSec(DT_MIPS_RLD_MAP, *ctx.in.mipsRldMap); |
| // Store the offset to the .rld_map section |
| // relative to the address of the tag. |
| addInt(DT_MIPS_RLD_MAP_REL, |
| ctx.in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); |
| } |
| } |
| |
| // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, |
| // glibc assumes the old-style BSS PLT layout which we don't support. |
| if (ctx.arg.emachine == EM_PPC) |
| addInSec(DT_PPC_GOT, *ctx.in.got); |
| |
| // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. |
| if (ctx.arg.emachine == EM_PPC64 && ctx.in.plt->isNeeded()) { |
| // The Glink tag points to 32 bytes before the first lazy symbol resolution |
| // stub, which starts directly after the header. |
| addInt(DT_PPC64_GLINK, |
| ctx.in.plt->getVA() + ctx.target->pltHeaderSize - 32); |
| } |
| |
| if (ctx.arg.emachine == EM_PPC64) |
| addInt(DT_PPC64_OPT, ctx.target->ppc64DynamicSectionOpt); |
| |
| addInt(DT_NULL, 0); |
| return entries; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { |
| if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| this->size = computeContents().size() * this->entsize; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { |
| auto *p = reinterpret_cast<Elf_Dyn *>(buf); |
| |
| for (std::pair<int32_t, uint64_t> kv : computeContents()) { |
| p->d_tag = kv.first; |
| p->d_un.d_val = kv.second; |
| ++p; |
| } |
| } |
| |
| uint64_t DynamicReloc::getOffset() const { |
| return inputSec->getVA(offsetInSec); |
| } |
| |
| int64_t DynamicReloc::computeAddend(Ctx &ctx) const { |
| switch (kind) { |
| case AddendOnly: |
| assert(sym == nullptr); |
| return addend; |
| case AgainstSymbol: |
| assert(sym != nullptr); |
| return addend; |
| case AddendOnlyWithTargetVA: |
| case AgainstSymbolWithTargetVA: { |
| uint64_t ca = inputSec->getRelocTargetVA( |
| ctx, Relocation{expr, type, 0, addend, sym}, getOffset()); |
| return ctx.arg.is64 ? ca : SignExtend64<32>(ca); |
| } |
| case MipsMultiGotPage: |
| assert(sym == nullptr); |
| return getMipsPageAddr(outputSec->addr) + addend; |
| } |
| llvm_unreachable("Unknown DynamicReloc::Kind enum"); |
| } |
| |
| uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { |
| if (!needsDynSymIndex()) |
| return 0; |
| |
| size_t index = symTab->getSymbolIndex(*sym); |
| assert((index != 0 || |
| (type != symTab->ctx.target->gotRel && |
| type != symTab->ctx.target->pltRel) || |
| !symTab->ctx.mainPart->dynSymTab->getParent()) && |
| "GOT or PLT relocation must refer to symbol in dynamic symbol table"); |
| return index; |
| } |
| |
| RelocationBaseSection::RelocationBaseSection(Ctx &ctx, StringRef name, |
| uint32_t type, int32_t dynamicTag, |
| int32_t sizeDynamicTag, |
| bool combreloc, |
| unsigned concurrency) |
| : SyntheticSection(ctx, name, type, SHF_ALLOC, ctx.arg.wordsize), |
| dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), |
| relocsVec(concurrency), combreloc(combreloc) {} |
| |
| void RelocationBaseSection::addSymbolReloc( |
| RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, |
| int64_t addend, std::optional<RelType> addendRelType) { |
| addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, |
| R_ADDEND, addendRelType ? *addendRelType : ctx.target->noneRel); |
| } |
| |
| void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( |
| RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, |
| RelType addendRelType) { |
| // No need to write an addend to the section for preemptible symbols. |
| if (sym.isPreemptible) |
| addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, |
| R_ABS}); |
| else |
| addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, |
| sym, 0, R_ABS, addendRelType); |
| } |
| |
| void RelocationBaseSection::mergeRels() { |
| size_t newSize = relocs.size(); |
| for (const auto &v : relocsVec) |
| newSize += v.size(); |
| relocs.reserve(newSize); |
| for (const auto &v : relocsVec) |
| llvm::append_range(relocs, v); |
| relocsVec.clear(); |
| } |
| |
| void RelocationBaseSection::partitionRels() { |
| if (!combreloc) |
| return; |
| const RelType relativeRel = ctx.target->relativeRel; |
| numRelativeRelocs = |
| std::stable_partition(relocs.begin(), relocs.end(), |
| [=](auto &r) { return r.type == relativeRel; }) - |
| relocs.begin(); |
| } |
| |
| void RelocationBaseSection::finalizeContents() { |
| SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| |
| // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE |
| // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that |
| // case. |
| if (symTab && symTab->getParent()) |
| getParent()->link = symTab->getParent()->sectionIndex; |
| else |
| getParent()->link = 0; |
| |
| if (ctx.in.relaPlt.get() == this && ctx.in.gotPlt->getParent()) { |
| getParent()->flags |= ELF::SHF_INFO_LINK; |
| getParent()->info = ctx.in.gotPlt->getParent()->sectionIndex; |
| } |
| } |
| |
| void DynamicReloc::computeRaw(Ctx &ctx, SymbolTableBaseSection *symt) { |
| r_offset = getOffset(); |
| r_sym = getSymIndex(symt); |
| addend = computeAddend(ctx); |
| kind = AddendOnly; // Catch errors |
| } |
| |
| void RelocationBaseSection::computeRels() { |
| SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| parallelForEach(relocs, [&ctx = ctx, symTab](DynamicReloc &rel) { |
| rel.computeRaw(ctx, symTab); |
| }); |
| |
| auto irelative = std::stable_partition( |
| relocs.begin() + numRelativeRelocs, relocs.end(), |
| [t = ctx.target->iRelativeRel](auto &r) { return r.type != t; }); |
| |
| // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to |
| // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset |
| // is to make results easier to read. |
| if (combreloc) { |
| auto nonRelative = relocs.begin() + numRelativeRelocs; |
| parallelSort(relocs.begin(), nonRelative, |
| [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); |
| // Non-relative relocations are few, so don't bother with parallelSort. |
| llvm::sort(nonRelative, irelative, [&](auto &a, auto &b) { |
| return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); |
| }); |
| } |
| } |
| |
| template <class ELFT> |
| RelocationSection<ELFT>::RelocationSection(Ctx &ctx, StringRef name, |
| bool combreloc, unsigned concurrency) |
| : RelocationBaseSection(ctx, name, ctx.arg.isRela ? SHT_RELA : SHT_REL, |
| ctx.arg.isRela ? DT_RELA : DT_REL, |
| ctx.arg.isRela ? DT_RELASZ : DT_RELSZ, combreloc, |
| concurrency) { |
| this->entsize = ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { |
| computeRels(); |
| for (const DynamicReloc &rel : relocs) { |
| auto *p = reinterpret_cast<Elf_Rela *>(buf); |
| p->r_offset = rel.r_offset; |
| p->setSymbolAndType(rel.r_sym, rel.type, ctx.arg.isMips64EL); |
| if (ctx.arg.isRela) |
| p->r_addend = rel.addend; |
| buf += ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| } |
| } |
| |
| RelrBaseSection::RelrBaseSection(Ctx &ctx, unsigned concurrency, |
| bool isAArch64Auth) |
| : SyntheticSection( |
| ctx, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn", |
| isAArch64Auth |
| ? SHT_AARCH64_AUTH_RELR |
| : (ctx.arg.useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR), |
| SHF_ALLOC, ctx.arg.wordsize), |
| relocsVec(concurrency) {} |
| |
| void RelrBaseSection::mergeRels() { |
| size_t newSize = relocs.size(); |
| for (const auto &v : relocsVec) |
| newSize += v.size(); |
| relocs.reserve(newSize); |
| for (const auto &v : relocsVec) |
| llvm::append_range(relocs, v); |
| relocsVec.clear(); |
| } |
| |
| template <class ELFT> |
| AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( |
| Ctx &ctx, StringRef name, unsigned concurrency) |
| : RelocationBaseSection( |
| ctx, name, ctx.arg.isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, |
| ctx.arg.isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, |
| ctx.arg.isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, |
| /*combreloc=*/false, concurrency) { |
| this->entsize = 1; |
| } |
| |
| template <class ELFT> |
| bool AndroidPackedRelocationSection<ELFT>::updateAllocSize(Ctx &ctx) { |
| // This function computes the contents of an Android-format packed relocation |
| // section. |
| // |
| // This format compresses relocations by using relocation groups to factor out |
| // fields that are common between relocations and storing deltas from previous |
| // relocations in SLEB128 format (which has a short representation for small |
| // numbers). A good example of a relocation type with common fields is |
| // R_*_RELATIVE, which is normally used to represent function pointers in |
| // vtables. In the REL format, each relative relocation has the same r_info |
| // field, and is only different from other relative relocations in terms of |
| // the r_offset field. By sorting relocations by offset, grouping them by |
| // r_info and representing each relocation with only the delta from the |
| // previous offset, each 8-byte relocation can be compressed to as little as 1 |
| // byte (or less with run-length encoding). This relocation packer was able to |
| // reduce the size of the relocation section in an Android Chromium DSO from |
| // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. |
| // |
| // A relocation section consists of a header containing the literal bytes |
| // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two |
| // elements are the total number of relocations in the section and an initial |
| // r_offset value. The remaining elements define a sequence of relocation |
| // groups. Each relocation group starts with a header consisting of the |
| // following elements: |
| // |
| // - the number of relocations in the relocation group |
| // - flags for the relocation group |
| // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta |
| // for each relocation in the group. |
| // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info |
| // field for each relocation in the group. |
| // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and |
| // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for |
| // each relocation in the group. |
| // |
| // Following the relocation group header are descriptions of each of the |
| // relocations in the group. They consist of the following elements: |
| // |
| // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset |
| // delta for this relocation. |
| // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info |
| // field for this relocation. |
| // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and |
| // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for |
| // this relocation. |
| |
| size_t oldSize = relocData.size(); |
| |
| relocData = {'A', 'P', 'S', '2'}; |
| raw_svector_ostream os(relocData); |
| auto add = [&](int64_t v) { encodeSLEB128(v, os); }; |
| |
| // The format header includes the number of relocations and the initial |
| // offset (we set this to zero because the first relocation group will |
| // perform the initial adjustment). |
| add(relocs.size()); |
| add(0); |
| |
| std::vector<Elf_Rela> relatives, nonRelatives; |
| |
| for (const DynamicReloc &rel : relocs) { |
| Elf_Rela r; |
| r.r_offset = rel.getOffset(); |
| r.setSymbolAndType(rel.getSymIndex(getPartition(ctx).dynSymTab.get()), |
| rel.type, false); |
| r.r_addend = ctx.arg.isRela ? rel.computeAddend(ctx) : 0; |
| |
| if (r.getType(ctx.arg.isMips64EL) == ctx.target->relativeRel) |
| relatives.push_back(r); |
| else |
| nonRelatives.push_back(r); |
| } |
| |
| llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { |
| return a.r_offset < b.r_offset; |
| }); |
| |
| // Try to find groups of relative relocations which are spaced one word |
| // apart from one another. These generally correspond to vtable entries. The |
| // format allows these groups to be encoded using a sort of run-length |
| // encoding, but each group will cost 7 bytes in addition to the offset from |
| // the previous group, so it is only profitable to do this for groups of |
| // size 8 or larger. |
| std::vector<Elf_Rela> ungroupedRelatives; |
| std::vector<std::vector<Elf_Rela>> relativeGroups; |
| for (auto i = relatives.begin(), e = relatives.end(); i != e;) { |
| std::vector<Elf_Rela> group; |
| do { |
| group.push_back(*i++); |
| } while (i != e && (i - 1)->r_offset + ctx.arg.wordsize == i->r_offset); |
| |
| if (group.size() < 8) |
| ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), |
| group.end()); |
| else |
| relativeGroups.emplace_back(std::move(group)); |
| } |
| |
| // For non-relative relocations, we would like to: |
| // 1. Have relocations with the same symbol offset to be consecutive, so |
| // that the runtime linker can speed-up symbol lookup by implementing an |
| // 1-entry cache. |
| // 2. Group relocations by r_info to reduce the size of the relocation |
| // section. |
| // Since the symbol offset is the high bits in r_info, sorting by r_info |
| // allows us to do both. |
| // |
| // For Rela, we also want to sort by r_addend when r_info is the same. This |
| // enables us to group by r_addend as well. |
| llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { |
| if (a.r_info != b.r_info) |
| return a.r_info < b.r_info; |
| if (a.r_addend != b.r_addend) |
| return a.r_addend < b.r_addend; |
| return a.r_offset < b.r_offset; |
| }); |
| |
| // Group relocations with the same r_info. Note that each group emits a group |
| // header and that may make the relocation section larger. It is hard to |
| // estimate the size of a group header as the encoded size of that varies |
| // based on r_info. However, we can approximate this trade-off by the number |
| // of values encoded. Each group header contains 3 values, and each relocation |
| // in a group encodes one less value, as compared to when it is not grouped. |
| // Therefore, we only group relocations if there are 3 or more of them with |
| // the same r_info. |
| // |
| // For Rela, the addend for most non-relative relocations is zero, and thus we |
| // can usually get a smaller relocation section if we group relocations with 0 |
| // addend as well. |
| std::vector<Elf_Rela> ungroupedNonRelatives; |
| std::vector<std::vector<Elf_Rela>> nonRelativeGroups; |
| for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { |
| auto j = i + 1; |
| while (j != e && i->r_info == j->r_info && |
| (!ctx.arg.isRela || i->r_addend == j->r_addend)) |
| ++j; |
| if (j - i < 3 || (ctx.arg.isRela && i->r_addend != 0)) |
| ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); |
| else |
| nonRelativeGroups.emplace_back(i, j); |
| i = j; |
| } |
| |
| // Sort ungrouped relocations by offset to minimize the encoded length. |
| llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { |
| return a.r_offset < b.r_offset; |
| }); |
| |
| unsigned hasAddendIfRela = |
| ctx.arg.isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; |
| |
| uint64_t offset = 0; |
| uint64_t addend = 0; |
| |
| // Emit the run-length encoding for the groups of adjacent relative |
| // relocations. Each group is represented using two groups in the packed |
| // format. The first is used to set the current offset to the start of the |
| // group (and also encodes the first relocation), and the second encodes the |
| // remaining relocations. |
| for (std::vector<Elf_Rela> &g : relativeGroups) { |
| // The first relocation in the group. |
| add(1); |
| add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | |
| RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| add(g[0].r_offset - offset); |
| add(ctx.target->relativeRel); |
| if (ctx.arg.isRela) { |
| add(g[0].r_addend - addend); |
| addend = g[0].r_addend; |
| } |
| |
| // The remaining relocations. |
| add(g.size() - 1); |
| add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | |
| RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| add(ctx.arg.wordsize); |
| add(ctx.target->relativeRel); |
| if (ctx.arg.isRela) { |
| for (const auto &i : llvm::drop_begin(g)) { |
| add(i.r_addend - addend); |
| addend = i.r_addend; |
| } |
| } |
| |
| offset = g.back().r_offset; |
| } |
| |
| // Now the ungrouped relatives. |
| if (!ungroupedRelatives.empty()) { |
| add(ungroupedRelatives.size()); |
| add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| add(ctx.target->relativeRel); |
| for (Elf_Rela &r : ungroupedRelatives) { |
| add(r.r_offset - offset); |
| offset = r.r_offset; |
| if (ctx.arg.isRela) { |
| add(r.r_addend - addend); |
| addend = r.r_addend; |
| } |
| } |
| } |
| |
| // Grouped non-relatives. |
| for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { |
| add(g.size()); |
| add(RELOCATION_GROUPED_BY_INFO_FLAG); |
| add(g[0].r_info); |
| for (const Elf_Rela &r : g) { |
| add(r.r_offset - offset); |
| offset = r.r_offset; |
| } |
| addend = 0; |
| } |
| |
| // Finally the ungrouped non-relative relocations. |
| if (!ungroupedNonRelatives.empty()) { |
| add(ungroupedNonRelatives.size()); |
| add(hasAddendIfRela); |
| for (Elf_Rela &r : ungroupedNonRelatives) { |
| add(r.r_offset - offset); |
| offset = r.r_offset; |
| add(r.r_info); |
| if (ctx.arg.isRela) { |
| add(r.r_addend - addend); |
| addend = r.r_addend; |
| } |
| } |
| } |
| |
| // Don't allow the section to shrink; otherwise the size of the section can |
| // oscillate infinitely. |
| if (relocData.size() < oldSize) |
| relocData.append(oldSize - relocData.size(), 0); |
| |
| // Returns whether the section size changed. We need to keep recomputing both |
| // section layout and the contents of this section until the size converges |
| // because changing this section's size can affect section layout, which in |
| // turn can affect the sizes of the LEB-encoded integers stored in this |
| // section. |
| return relocData.size() != oldSize; |
| } |
| |
| template <class ELFT> |
| RelrSection<ELFT>::RelrSection(Ctx &ctx, unsigned concurrency, |
| bool isAArch64Auth) |
| : RelrBaseSection(ctx, concurrency, isAArch64Auth) { |
| this->entsize = ctx.arg.wordsize; |
| } |
| |
| template <class ELFT> bool RelrSection<ELFT>::updateAllocSize(Ctx &ctx) { |
| // This function computes the contents of an SHT_RELR packed relocation |
| // section. |
| // |
| // Proposal for adding SHT_RELR sections to generic-abi is here: |
| // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg |
| // |
| // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks |
| // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] |
| // |
| // i.e. start with an address, followed by any number of bitmaps. The address |
| // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 |
| // relocations each, at subsequent offsets following the last address entry. |
| // |
| // The bitmap entries must have 1 in the least significant bit. The assumption |
| // here is that an address cannot have 1 in lsb. Odd addresses are not |
| // supported. |
| // |
| // Excluding the least significant bit in the bitmap, each non-zero bit in |
| // the bitmap represents a relocation to be applied to a corresponding machine |
| // word that follows the base address word. The second least significant bit |
| // represents the machine word immediately following the initial address, and |
| // each bit that follows represents the next word, in linear order. As such, |
| // a single bitmap can encode up to 31 relocations in a 32-bit object, and |
| // 63 relocations in a 64-bit object. |
| // |
| // This encoding has a couple of interesting properties: |
| // 1. Looking at any entry, it is clear whether it's an address or a bitmap: |
| // even means address, odd means bitmap. |
| // 2. Just a simple list of addresses is a valid encoding. |
| |
| size_t oldSize = relrRelocs.size(); |
| relrRelocs.clear(); |
| |
| const size_t wordsize = sizeof(typename ELFT::uint); |
| |
| // Number of bits to use for the relocation offsets bitmap. |
| // Must be either 63 or 31. |
| const size_t nBits = wordsize * 8 - 1; |
| |
| // Get offsets for all relative relocations and sort them. |
| std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); |
| for (auto [i, r] : llvm::enumerate(relocs)) |
| offsets[i] = r.getOffset(); |
| llvm::sort(offsets.get(), offsets.get() + relocs.size()); |
| |
| // For each leading relocation, find following ones that can be folded |
| // as a bitmap and fold them. |
| for (size_t i = 0, e = relocs.size(); i != e;) { |
| // Add a leading relocation. |
| relrRelocs.push_back(Elf_Relr(offsets[i])); |
| uint64_t base = offsets[i] + wordsize; |
| ++i; |
| |
| // Find foldable relocations to construct bitmaps. |
| for (;;) { |
| uint64_t bitmap = 0; |
| for (; i != e; ++i) { |
| uint64_t d = offsets[i] - base; |
| if (d >= nBits * wordsize || d % wordsize) |
| break; |
| bitmap |= uint64_t(1) << (d / wordsize); |
| } |
| if (!bitmap) |
| break; |
| relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); |
| base += nBits * wordsize; |
| } |
| } |
| |
| // Don't allow the section to shrink; otherwise the size of the section can |
| // oscillate infinitely. Trailing 1s do not decode to more relocations. |
| if (relrRelocs.size() < oldSize) { |
| Log(ctx) << ".relr.dyn needs " << (oldSize - relrRelocs.size()) |
| << " padding word(s)"; |
| relrRelocs.resize(oldSize, Elf_Relr(1)); |
| } |
| |
| return relrRelocs.size() != oldSize; |
| } |
| |
| SymbolTableBaseSection::SymbolTableBaseSection(Ctx &ctx, |
| StringTableSection &strTabSec) |
| : SyntheticSection(ctx, strTabSec.isDynamic() ? ".dynsym" : ".symtab", |
| strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, |
| ctx.arg.wordsize), |
| strTabSec(strTabSec) {} |
| |
| // Orders symbols according to their positions in the GOT, |
| // in compliance with MIPS ABI rules. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| static void sortMipsSymbols(Ctx &ctx, SmallVector<SymbolTableEntry, 0> &syms) { |
| llvm::stable_sort(syms, |
| [&](const SymbolTableEntry &l, const SymbolTableEntry &r) { |
| // Sort entries related to non-local preemptible symbols |
| // by GOT indexes. All other entries go to the beginning |
| // of a dynsym in arbitrary order. |
| if (l.sym->isInGot(ctx) && r.sym->isInGot(ctx)) |
| return l.sym->getGotIdx(ctx) < r.sym->getGotIdx(ctx); |
| if (!l.sym->isInGot(ctx) && !r.sym->isInGot(ctx)) |
| return false; |
| return !l.sym->isInGot(ctx); |
| }); |
| } |
| |
| void SymbolTableBaseSection::finalizeContents() { |
| if (OutputSection *sec = strTabSec.getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| if (this->type != SHT_DYNSYM) { |
| sortSymTabSymbols(); |
| return; |
| } |
| |
| // If it is a .dynsym, there should be no local symbols, but we need |
| // to do a few things for the dynamic linker. |
| |
| // Section's Info field has the index of the first non-local symbol. |
| // Because the first symbol entry is a null entry, 1 is the first. |
| getParent()->info = 1; |
| |
| if (getPartition(ctx).gnuHashTab) { |
| // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| getPartition(ctx).gnuHashTab->addSymbols(symbols); |
| } else if (ctx.arg.emachine == EM_MIPS) { |
| sortMipsSymbols(ctx, symbols); |
| } |
| |
| // Only the main partition's dynsym indexes are stored in the symbols |
| // themselves. All other partitions use a lookup table. |
| if (this == ctx.mainPart->dynSymTab.get()) { |
| size_t i = 0; |
| for (const SymbolTableEntry &s : symbols) |
| s.sym->dynsymIndex = ++i; |
| } |
| } |
| |
| // The ELF spec requires that all local symbols precede global symbols, so we |
| // sort symbol entries in this function. (For .dynsym, we don't do that because |
| // symbols for dynamic linking are inherently all globals.) |
| // |
| // Aside from above, we put local symbols in groups starting with the STT_FILE |
| // symbol. That is convenient for purpose of identifying where are local symbols |
| // coming from. |
| void SymbolTableBaseSection::sortSymTabSymbols() { |
| // Move all local symbols before global symbols. |
| auto e = std::stable_partition( |
| symbols.begin(), symbols.end(), |
| [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); |
| size_t numLocals = e - symbols.begin(); |
| getParent()->info = numLocals + 1; |
| |
| // We want to group the local symbols by file. For that we rebuild the local |
| // part of the symbols vector. We do not need to care about the STT_FILE |
| // symbols, they are already naturally placed first in each group. That |
| // happens because STT_FILE is always the first symbol in the object and hence |
| // precede all other local symbols we add for a file. |
| MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; |
| for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) |
| arr[s.sym->file].push_back(s); |
| |
| auto i = symbols.begin(); |
| for (auto &p : arr) |
| for (SymbolTableEntry &entry : p.second) |
| *i++ = entry; |
| } |
| |
| void SymbolTableBaseSection::addSymbol(Symbol *b) { |
| // Adding a local symbol to a .dynsym is a bug. |
| assert(this->type != SHT_DYNSYM || !b->isLocal()); |
| symbols.push_back({b, strTabSec.addString(b->getName(), false)}); |
| } |
| |
| size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) { |
| if (this == ctx.mainPart->dynSymTab.get()) |
| return sym.dynsymIndex; |
| |
| // Initializes symbol lookup tables lazily. This is used only for -r, |
| // --emit-relocs and dynsyms in partitions other than the main one. |
| llvm::call_once(onceFlag, [&] { |
| symbolIndexMap.reserve(symbols.size()); |
| size_t i = 0; |
| for (const SymbolTableEntry &e : symbols) { |
| if (e.sym->type == STT_SECTION) |
| sectionIndexMap[e.sym->getOutputSection()] = ++i; |
| else |
| symbolIndexMap[e.sym] = ++i; |
| } |
| }); |
| |
| // Section symbols are mapped based on their output sections |
| // to maintain their semantics. |
| if (sym.type == STT_SECTION) |
| return sectionIndexMap.lookup(sym.getOutputSection()); |
| return symbolIndexMap.lookup(&sym); |
| } |
| |
| template <class ELFT> |
| SymbolTableSection<ELFT>::SymbolTableSection(Ctx &ctx, |
| StringTableSection &strTabSec) |
| : SymbolTableBaseSection(ctx, strTabSec) { |
| this->entsize = sizeof(Elf_Sym); |
| } |
| |
| static BssSection *getCommonSec(bool relocatable, Symbol *sym) { |
| if (relocatable) |
| if (auto *d = dyn_cast<Defined>(sym)) |
| return dyn_cast_or_null<BssSection>(d->section); |
| return nullptr; |
| } |
| |
| static uint32_t getSymSectionIndex(Symbol *sym) { |
| assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject())); |
| if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY)) |
| return SHN_UNDEF; |
| if (const OutputSection *os = sym->getOutputSection()) |
| return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX |
| : os->sectionIndex; |
| return SHN_ABS; |
| } |
| |
| // Write the internal symbol table contents to the output symbol table. |
| template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { |
| // The first entry is a null entry as per the ELF spec. |
| buf += sizeof(Elf_Sym); |
| |
| auto *eSym = reinterpret_cast<Elf_Sym *>(buf); |
| bool relocatable = ctx.arg.relocatable; |
| for (SymbolTableEntry &ent : symbols) { |
| Symbol *sym = ent.sym; |
| bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; |
| |
| // Set st_name, st_info and st_other. |
| eSym->st_name = ent.strTabOffset; |
| eSym->setBindingAndType(sym->binding, sym->type); |
| eSym->st_other = sym->stOther; |
| |
| if (BssSection *commonSec = getCommonSec(relocatable, sym)) { |
| // When -r is specified, a COMMON symbol is not allocated. Its st_shndx |
| // holds SHN_COMMON and st_value holds the alignment. |
| eSym->st_shndx = SHN_COMMON; |
| eSym->st_value = commonSec->addralign; |
| eSym->st_size = cast<Defined>(sym)->size; |
| } else { |
| const uint32_t shndx = getSymSectionIndex(sym); |
| if (isDefinedHere) { |
| eSym->st_shndx = shndx; |
| eSym->st_value = sym->getVA(ctx); |
| // Copy symbol size if it is a defined symbol. st_size is not |
| // significant for undefined symbols, so whether copying it or not is up |
| // to us if that's the case. We'll leave it as zero because by not |
| // setting a value, we can get the exact same outputs for two sets of |
| // input files that differ only in undefined symbol size in DSOs. |
| eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; |
| } else { |
| eSym->st_shndx = 0; |
| eSym->st_value = 0; |
| eSym->st_size = 0; |
| } |
| } |
| |
| ++eSym; |
| } |
| |
| // On MIPS we need to mark symbol which has a PLT entry and requires |
| // pointer equality by STO_MIPS_PLT flag. That is necessary to help |
| // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. |
| // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| if (ctx.arg.emachine == EM_MIPS) { |
| auto *eSym = reinterpret_cast<Elf_Sym *>(buf); |
| |
| for (SymbolTableEntry &ent : symbols) { |
| Symbol *sym = ent.sym; |
| if (sym->isInPlt(ctx) && sym->hasFlag(NEEDS_COPY)) |
| eSym->st_other |= STO_MIPS_PLT; |
| if (isMicroMips(ctx)) { |
| // We already set the less-significant bit for symbols |
| // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT |
| // records. That allows us to distinguish such symbols in |
| // the `MIPS<ELFT>::relocate()` routine. Now we should |
| // clear that bit for non-dynamic symbol table, so tools |
| // like `objdump` will be able to deal with a correct |
| // symbol position. |
| if (sym->isDefined() && |
| ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) { |
| if (!strTabSec.isDynamic()) |
| eSym->st_value &= ~1; |
| eSym->st_other |= STO_MIPS_MICROMIPS; |
| } |
| } |
| if (ctx.arg.relocatable) |
| if (auto *d = dyn_cast<Defined>(sym)) |
| if (isMipsPIC<ELFT>(d)) |
| eSym->st_other |= STO_MIPS_PIC; |
| ++eSym; |
| } |
| } |
| } |
| |
| SymtabShndxSection::SymtabShndxSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".symtab_shndx", SHT_SYMTAB_SHNDX, 0, 4) { |
| this->entsize = 4; |
| } |
| |
| void SymtabShndxSection::writeTo(uint8_t *buf) { |
| // We write an array of 32 bit values, where each value has 1:1 association |
| // with an entry in ctx.in.symTab if the corresponding entry contains |
| // SHN_XINDEX, we need to write actual index, otherwise, we must write |
| // SHN_UNDEF(0). |
| buf += 4; // Ignore .symtab[0] entry. |
| bool relocatable = ctx.arg.relocatable; |
| for (const SymbolTableEntry &entry : ctx.in.symTab->getSymbols()) { |
| if (!getCommonSec(relocatable, entry.sym) && |
| getSymSectionIndex(entry.sym) == SHN_XINDEX) |
| write32(ctx, buf, entry.sym->getOutputSection()->sectionIndex); |
| buf += 4; |
| } |
| } |
| |
| bool SymtabShndxSection::isNeeded() const { |
| // SHT_SYMTAB can hold symbols with section indices values up to |
| // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX |
| // section. Problem is that we reveal the final section indices a bit too |
| // late, and we do not know them here. For simplicity, we just always create |
| // a .symtab_shndx section when the amount of output sections is huge. |
| size_t size = 0; |
| for (SectionCommand *cmd : ctx.script->sectionCommands) |
| if (isa<OutputDesc>(cmd)) |
| ++size; |
| return size >= SHN_LORESERVE; |
| } |
| |
| void SymtabShndxSection::finalizeContents() { |
| getParent()->link = ctx.in.symTab->getParent()->sectionIndex; |
| } |
| |
| size_t SymtabShndxSection::getSize() const { |
| return ctx.in.symTab->getNumSymbols() * 4; |
| } |
| |
| // .hash and .gnu.hash sections contain on-disk hash tables that map |
| // symbol names to their dynamic symbol table indices. Their purpose |
| // is to help the dynamic linker resolve symbols quickly. If ELF files |
| // don't have them, the dynamic linker has to do linear search on all |
| // dynamic symbols, which makes programs slower. Therefore, a .hash |
| // section is added to a DSO by default. |
| // |
| // The Unix semantics of resolving dynamic symbols is somewhat expensive. |
| // Each ELF file has a list of DSOs that the ELF file depends on and a |
| // list of dynamic symbols that need to be resolved from any of the |
| // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) |
| // where m is the number of DSOs and n is the number of dynamic |
| // symbols. For modern large programs, both m and n are large. So |
| // making each step faster by using hash tables substantially |
| // improves time to load programs. |
| // |
| // (Note that this is not the only way to design the shared library. |
| // For instance, the Windows DLL takes a different approach. On |
| // Windows, each dynamic symbol has a name of DLL from which the symbol |
| // has to be resolved. That makes the cost of symbol resolution O(n). |
| // This disables some hacky techniques you can use on Unix such as |
| // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) |
| // |
| // Due to historical reasons, we have two different hash tables, .hash |
| // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new |
| // and better version of .hash. .hash is just an on-disk hash table, but |
| // .gnu.hash has a bloom filter in addition to a hash table to skip |
| // DSOs very quickly. If you are sure that your dynamic linker knows |
| // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a |
| // safe bet is to specify --hash-style=both for backward compatibility. |
| GnuHashTableSection::GnuHashTableSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".gnu.hash", SHT_GNU_HASH, SHF_ALLOC, |
| ctx.arg.wordsize) {} |
| |
| void GnuHashTableSection::finalizeContents() { |
| if (OutputSection *sec = getPartition(ctx).dynSymTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| // Computes bloom filter size in word size. We want to allocate 12 |
| // bits for each symbol. It must be a power of two. |
| if (symbols.empty()) { |
| maskWords = 1; |
| } else { |
| uint64_t numBits = symbols.size() * 12; |
| maskWords = NextPowerOf2(numBits / (ctx.arg.wordsize * 8)); |
| } |
| |
| size = 16; // Header |
| size += ctx.arg.wordsize * maskWords; // Bloom filter |
| size += nBuckets * 4; // Hash buckets |
| size += symbols.size() * 4; // Hash values |
| } |
| |
| void GnuHashTableSection::writeTo(uint8_t *buf) { |
| // Write a header. |
| write32(ctx, buf, nBuckets); |
| write32(ctx, buf + 4, |
| getPartition(ctx).dynSymTab->getNumSymbols() - symbols.size()); |
| write32(ctx, buf + 8, maskWords); |
| write32(ctx, buf + 12, Shift2); |
| buf += 16; |
| |
| // Write the 2-bit bloom filter. |
| const unsigned c = ctx.arg.is64 ? 64 : 32; |
| for (const Entry &sym : symbols) { |
| // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in |
| // the word using bits [0:5] and [26:31]. |
| size_t i = (sym.hash / c) & (maskWords - 1); |
| uint64_t val = readUint(ctx, buf + i * ctx.arg.wordsize); |
| val |= uint64_t(1) << (sym.hash % c); |
| val |= uint64_t(1) << ((sym.hash >> Shift2) % c); |
| writeUint(ctx, buf + i * ctx.arg.wordsize, val); |
| } |
| buf += ctx.arg.wordsize * maskWords; |
| |
| // Write the hash table. |
| uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); |
| uint32_t oldBucket = -1; |
| uint32_t *values = buckets + nBuckets; |
| for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { |
| // Write a hash value. It represents a sequence of chains that share the |
| // same hash modulo value. The last element of each chain is terminated by |
| // LSB 1. |
| uint32_t hash = i->hash; |
| bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; |
| hash = isLastInChain ? hash | 1 : hash & ~1; |
| write32(ctx, values++, hash); |
| |
| if (i->bucketIdx == oldBucket) |
| continue; |
| // Write a hash bucket. Hash buckets contain indices in the following hash |
| // value table. |
| write32(ctx, buckets + i->bucketIdx, |
| getPartition(ctx).dynSymTab->getSymbolIndex(*i->sym)); |
| oldBucket = i->bucketIdx; |
| } |
| } |
| |
| // Add symbols to this symbol hash table. Note that this function |
| // destructively sort a given vector -- which is needed because |
| // GNU-style hash table places some sorting requirements. |
| void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { |
| // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce |
| // its type correctly. |
| auto mid = |
| std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { |
| return !s.sym->isDefined() || s.sym->partition != partition; |
| }); |
| |
| // We chose load factor 4 for the on-disk hash table. For each hash |
| // collision, the dynamic linker will compare a uint32_t hash value. |
| // Since the integer comparison is quite fast, we believe we can |
| // make the load factor even larger. 4 is just a conservative choice. |
| // |
| // Note that we don't want to create a zero-sized hash table because |
| // Android loader as of 2018 doesn't like a .gnu.hash containing such |
| // table. If that's the case, we create a hash table with one unused |
| // dummy slot. |
| nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); |
| |
| if (mid == v.end()) |
| return; |
| |
| for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { |
| Symbol *b = ent.sym; |
| uint32_t hash = hashGnu(b->getName()); |
| uint32_t bucketIdx = hash % nBuckets; |
| symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); |
| } |
| |
| llvm::sort(symbols, [](const Entry &l, const Entry &r) { |
| return std::tie(l.bucketIdx, l.strTabOffset) < |
| std::tie(r.bucketIdx, r.strTabOffset); |
| }); |
| |
| v.erase(mid, v.end()); |
| for (const Entry &ent : symbols) |
| v.push_back({ent.sym, ent.strTabOffset}); |
| } |
| |
| HashTableSection::HashTableSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".hash", SHT_HASH, SHF_ALLOC, 4) { |
| this->entsize = 4; |
| } |
| |
| void HashTableSection::finalizeContents() { |
| SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| |
| if (OutputSection *sec = symTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| unsigned numEntries = 2; // nbucket and nchain. |
| numEntries += symTab->getNumSymbols(); // The chain entries. |
| |
| // Create as many buckets as there are symbols. |
| numEntries += symTab->getNumSymbols(); |
| this->size = numEntries * 4; |
| } |
| |
| void HashTableSection::writeTo(uint8_t *buf) { |
| SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| unsigned numSymbols = symTab->getNumSymbols(); |
| |
| uint32_t *p = reinterpret_cast<uint32_t *>(buf); |
| write32(ctx, p++, numSymbols); // nbucket |
| write32(ctx, p++, numSymbols); // nchain |
| |
| uint32_t *buckets = p; |
| uint32_t *chains = p + numSymbols; |
| |
| for (const SymbolTableEntry &s : symTab->getSymbols()) { |
| Symbol *sym = s.sym; |
| StringRef name = sym->getName(); |
| unsigned i = sym->dynsymIndex; |
| uint32_t hash = hashSysV(name) % numSymbols; |
| chains[i] = buckets[hash]; |
| write32(ctx, buckets + hash, i); |
| } |
| } |
| |
| PltSection::PltSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, |
| 16), |
| headerSize(ctx.target->pltHeaderSize) { |
| // On AArch64, PLT entries only do loads from the .got.plt section, so the |
| // .plt section can be marked with the SHF_AARCH64_PURECODE section flag. |
| if (ctx.arg.emachine == EM_AARCH64) |
| this->flags |= SHF_AARCH64_PURECODE; |
| |
| // On PowerPC, this section contains lazy symbol resolvers. |
| if (ctx.arg.emachine == EM_PPC64) { |
| name = ".glink"; |
| addralign = 4; |
| } |
| |
| // On x86 when IBT is enabled, this section contains the second PLT (lazy |
| // symbol resolvers). |
| if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) && |
| (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) |
| name = ".plt.sec"; |
| |
| // The PLT needs to be writable on SPARC as the dynamic linker will |
| // modify the instructions in the PLT entries. |
| if (ctx.arg.emachine == EM_SPARCV9) |
| this->flags |= SHF_WRITE; |
| } |
| |
| void PltSection::writeTo(uint8_t *buf) { |
| // At beginning of PLT, we have code to call the dynamic |
| // linker to resolve dynsyms at runtime. Write such code. |
| ctx.target->writePltHeader(buf); |
| size_t off = headerSize; |
| |
| for (const Symbol *sym : entries) { |
| ctx.target->writePlt(buf + off, *sym, getVA() + off); |
| off += ctx.target->pltEntrySize; |
| } |
| } |
| |
| void PltSection::addEntry(Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().pltIdx = entries.size(); |
| entries.push_back(&sym); |
| } |
| |
| size_t PltSection::getSize() const { |
| return headerSize + entries.size() * ctx.target->pltEntrySize; |
| } |
| |
| bool PltSection::isNeeded() const { |
| // For -z retpolineplt, .iplt needs the .plt header. |
| return !entries.empty() || (ctx.arg.zRetpolineplt && ctx.in.iplt->isNeeded()); |
| } |
| |
| // Used by ARM to add mapping symbols in the PLT section, which aid |
| // disassembly. |
| void PltSection::addSymbols() { |
| ctx.target->addPltHeaderSymbols(*this); |
| |
| size_t off = headerSize; |
| for (size_t i = 0; i < entries.size(); ++i) { |
| ctx.target->addPltSymbols(*this, off); |
| off += ctx.target->pltEntrySize; |
| } |
| } |
| |
| IpltSection::IpltSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".iplt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, |
| 16) { |
| // On AArch64, PLT entries only do loads from the .got.plt section, so the |
| // .iplt section can be marked with the SHF_AARCH64_PURECODE section flag. |
| if (ctx.arg.emachine == EM_AARCH64) |
| this->flags |= SHF_AARCH64_PURECODE; |
| |
| if (ctx.arg.emachine == EM_PPC || ctx.arg.emachine == EM_PPC64) { |
| name = ".glink"; |
| addralign = 4; |
| } |
| } |
| |
| void IpltSection::writeTo(uint8_t *buf) { |
| uint32_t off = 0; |
| for (const Symbol *sym : entries) { |
| ctx.target->writeIplt(buf + off, *sym, getVA() + off); |
| off += ctx.target->ipltEntrySize; |
| } |
| } |
| |
| size_t IpltSection::getSize() const { |
| return entries.size() * ctx.target->ipltEntrySize; |
| } |
| |
| void IpltSection::addEntry(Symbol &sym) { |
| assert(sym.auxIdx == ctx.symAux.size() - 1); |
| ctx.symAux.back().pltIdx = entries.size(); |
| entries.push_back(&sym); |
| } |
| |
| // ARM uses mapping symbols to aid disassembly. |
| void IpltSection::addSymbols() { |
| size_t off = 0; |
| for (size_t i = 0, e = entries.size(); i != e; ++i) { |
| ctx.target->addPltSymbols(*this, off); |
| off += ctx.target->pltEntrySize; |
| } |
| } |
| |
| PPC32GlinkSection::PPC32GlinkSection(Ctx &ctx) : PltSection(ctx) { |
| name = ".glink"; |
| addralign = 4; |
| } |
| |
| void PPC32GlinkSection::writeTo(uint8_t *buf) { |
| writePPC32GlinkSection(ctx, buf, entries.size()); |
| } |
| |
| size_t PPC32GlinkSection::getSize() const { |
| return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize; |
| } |
| |
| // This is an x86-only extra PLT section and used only when a security |
| // enhancement feature called CET is enabled. In this comment, I'll explain what |
| // the feature is and why we have two PLT sections if CET is enabled. |
| // |
| // So, what does CET do? CET introduces a new restriction to indirect jump |
| // instructions. CET works this way. Assume that CET is enabled. Then, if you |
| // execute an indirect jump instruction, the processor verifies that a special |
| // "landing pad" instruction (which is actually a repurposed NOP instruction and |
| // now called "endbr32" or "endbr64") is at the jump target. If the jump target |
| // does not start with that instruction, the processor raises an exception |
| // instead of continuing executing code. |
| // |
| // If CET is enabled, the compiler emits endbr to all locations where indirect |
| // jumps may jump to. |
| // |
| // This mechanism makes it extremely hard to transfer the control to a middle of |
| // a function that is not supporsed to be a indirect jump target, preventing |
| // certain types of attacks such as ROP or JOP. |
| // |
| // Note that the processors in the market as of 2019 don't actually support the |
| // feature. Only the spec is available at the moment. |
| // |
| // Now, I'll explain why we have this extra PLT section for CET. |
| // |
| // Since you can indirectly jump to a PLT entry, we have to make PLT entries |
| // start with endbr. The problem is there's no extra space for endbr (which is 4 |
| // bytes long), as the PLT entry is only 16 bytes long and all bytes are already |
| // used. |
| // |
| // In order to deal with the issue, we split a PLT entry into two PLT entries. |
| // Remember that each PLT entry contains code to jump to an address read from |
| // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, |
| // the former code is written to .plt.sec, and the latter code is written to |
| // .plt. |
| // |
| // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except |
| // that the regular .plt is now called .plt.sec and .plt is repurposed to |
| // contain only code for lazy symbol resolution. |
| // |
| // In other words, this is how the 2-PLT scheme works. Application code is |
| // supposed to jump to .plt.sec to call an external function. Each .plt.sec |
| // entry contains code to read an address from a corresponding .got.plt entry |
| // and jump to that address. Addresses in .got.plt initially point to .plt, so |
| // when an application calls an external function for the first time, the |
| // control is transferred to a function that resolves a symbol name from |
| // external shared object files. That function then rewrites a .got.plt entry |
| // with a resolved address, so that the subsequent function calls directly jump |
| // to a desired location from .plt.sec. |
| // |
| // There is an open question as to whether the 2-PLT scheme was desirable or |
| // not. We could have simply extended the PLT entry size to 32-bytes to |
| // accommodate endbr, and that scheme would have been much simpler than the |
| // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot |
| // code (.plt.sec) from cold code (.plt). But as far as I know no one proved |
| // that the optimization actually makes a difference. |
| // |
| // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools |
| // depend on it, so we implement the ABI. |
| IBTPltSection::IBTPltSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, |
| 16) {} |
| |
| void IBTPltSection::writeTo(uint8_t *buf) { |
| ctx.target->writeIBTPlt(buf, ctx.in.plt->getNumEntries()); |
| } |
| |
| size_t IBTPltSection::getSize() const { |
| // 16 is the header size of .plt. |
| return 16 + ctx.in.plt->getNumEntries() * ctx.target->pltEntrySize; |
| } |
| |
| bool IBTPltSection::isNeeded() const { return ctx.in.plt->getNumEntries() > 0; } |
| |
| RelroPaddingSection::RelroPaddingSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".relro_padding", SHT_NOBITS, SHF_ALLOC | SHF_WRITE, |
| 1) {} |
| |
| RandomizePaddingSection::RandomizePaddingSection(Ctx &ctx, uint64_t size, |
| OutputSection *parent) |
| : SyntheticSection(ctx, ".randomize_padding", SHT_PROGBITS, SHF_ALLOC, 1), |
| size(size) { |
| this->parent = parent; |
| } |
| |
| void RandomizePaddingSection::writeTo(uint8_t *buf) { |
| std::array<uint8_t, 4> filler = getParent()->getFiller(ctx); |
| uint8_t *end = buf + size; |
| for (; buf + 4 <= end; buf += 4) |
| memcpy(buf, &filler[0], 4); |
| memcpy(buf, &filler[0], end - buf); |
| } |
| |
| // The string hash function for .gdb_index. |
| static uint32_t computeGdbHash(StringRef s) { |
| uint32_t h = 0; |
| for (uint8_t c : s) |
| h = h * 67 + toLower(c) - 113; |
| return h; |
| } |
| |
| // 4-byte alignment ensures that values in the hash lookup table and the name |
| // table are aligned. |
| DebugNamesBaseSection::DebugNamesBaseSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".debug_names", SHT_PROGBITS, 0, 4) {} |
| |
| // Get the size of the .debug_names section header in bytes for DWARF32: |
| static uint32_t getDebugNamesHeaderSize(uint32_t augmentationStringSize) { |
| return /* unit length */ 4 + |
| /* version */ 2 + |
| /* padding */ 2 + |
| /* CU count */ 4 + |
| /* TU count */ 4 + |
| /* Foreign TU count */ 4 + |
| /* Bucket Count */ 4 + |
| /* Name Count */ 4 + |
| /* Abbrev table size */ 4 + |
| /* Augmentation string size */ 4 + |
| /* Augmentation string */ augmentationStringSize; |
| } |
| |
| static Expected<DebugNamesBaseSection::IndexEntry *> |
| readEntry(uint64_t &offset, const DWARFDebugNames::NameIndex &ni, |
| uint64_t entriesBase, DWARFDataExtractor &namesExtractor, |
| const LLDDWARFSection &namesSec) { |
| auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>(); |
| ie->poolOffset = offset; |
| Error err = Error::success(); |
| uint64_t ulebVal = namesExtractor.getULEB128(&offset, &err); |
| if (err) |
| return createStringError(inconvertibleErrorCode(), |
| "invalid abbrev code: %s", |
| llvm::toString(std::move(err)).c_str()); |
| if (!isUInt<32>(ulebVal)) |
| return createStringError(inconvertibleErrorCode(), |
| "abbrev code too large for DWARF32: %" PRIu64, |
| ulebVal); |
| ie->abbrevCode = static_cast<uint32_t>(ulebVal); |
| auto it = ni.getAbbrevs().find_as(ie->abbrevCode); |
| if (it == ni.getAbbrevs().end()) |
| return createStringError(inconvertibleErrorCode(), |
| "abbrev code not found in abbrev table: %" PRIu32, |
| ie->abbrevCode); |
| |
| DebugNamesBaseSection::AttrValue attr, cuAttr = {0, 0}; |
| for (DWARFDebugNames::AttributeEncoding a : it->Attributes) { |
| if (a.Index == dwarf::DW_IDX_parent) { |
| if (a.Form == dwarf::DW_FORM_ref4) { |
| attr.attrValue = namesExtractor.getU32(&offset, &err); |
| attr.attrSize = 4; |
| ie->parentOffset = entriesBase + attr.attrValue; |
| } else if (a.Form != DW_FORM_flag_present) |
| return createStringError(inconvertibleErrorCode(), |
| "invalid form for DW_IDX_parent"); |
| } else { |
| switch (a.Form) { |
| case DW_FORM_data1: |
| case DW_FORM_ref1: { |
| attr.attrValue = namesExtractor.getU8(&offset, &err); |
| attr.attrSize = 1; |
| break; |
| } |
| case DW_FORM_data2: |
| case DW_FORM_ref2: { |
| attr.attrValue = namesExtractor.getU16(&offset, &err); |
| attr.attrSize = 2; |
| break; |
| } |
| case DW_FORM_data4: |
| case DW_FORM_ref4: { |
| attr.attrValue = namesExtractor.getU32(&offset, &err); |
| attr.attrSize = 4; |
| break; |
| } |
| default: |
| return createStringError( |
| inconvertibleErrorCode(), |
| "unrecognized form encoding %d in abbrev table", a.Form); |
| } |
| } |
| if (err) |
| return createStringError(inconvertibleErrorCode(), |
| "error while reading attributes: %s", |
| llvm::toString(std::move(err)).c_str()); |
| if (a.Index == DW_IDX_compile_unit) |
| cuAttr = attr; |
| else if (a.Form != DW_FORM_flag_present) |
| ie->attrValues.push_back(attr); |
| } |
| // Canonicalize abbrev by placing the CU/TU index at the end. |
| ie->attrValues.push_back(cuAttr); |
| return ie; |
| } |
| |
| void DebugNamesBaseSection::parseDebugNames( |
| Ctx &ctx, InputChunk &inputChunk, OutputChunk &chunk, |
| DWARFDataExtractor &namesExtractor, DataExtractor &strExtractor, |
| function_ref<SmallVector<uint32_t, 0>( |
| uint32_t numCus, const DWARFDebugNames::Header &, |
| const DWARFDebugNames::DWARFDebugNamesOffsets &)> |
| readOffsets) { |
| const LLDDWARFSection &namesSec = inputChunk.section; |
| DenseMap<uint32_t, IndexEntry *> offsetMap; |
| // Number of CUs seen in previous NameIndex sections within current chunk. |
| uint32_t numCus = 0; |
| for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) { |
| NameData &nd = inputChunk.nameData.emplace_back(); |
| nd.hdr = ni.getHeader(); |
| if (nd.hdr.Format != DwarfFormat::DWARF32) { |
| Err(ctx) << namesSec.sec |
| << ": found DWARF64, which is currently unsupported"; |
| return; |
| } |
| if (nd.hdr.Version != 5) { |
| Err(ctx) << namesSec.sec << ": unsupported version: " << nd.hdr.Version; |
| return; |
| } |
| uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(DwarfFormat::DWARF32); |
| DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets(); |
| if (locs.EntriesBase > namesExtractor.getData().size()) { |
| Err(ctx) << namesSec.sec << ": entry pool start is beyond end of section"; |
| return; |
| } |
| |
| SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs); |
| |
| // Read the entry pool. |
| offsetMap.clear(); |
| nd.nameEntries.resize(nd.hdr.NameCount); |
| for (auto i : seq(nd.hdr.NameCount)) { |
| NameEntry &ne = nd.nameEntries[i]; |
| uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize; |
| ne.stringOffset = strOffset; |
| uint64_t strp = namesExtractor.getRelocatedValue(dwarfSize, &strOffset); |
| StringRef name = strExtractor.getCStrRef(&strp); |
| ne.name = name.data(); |
| ne.hashValue = caseFoldingDjbHash(name); |
| |
| // Read a series of index entries that end with abbreviation code 0. |
| uint64_t offset = locs.EntriesBase + entryOffsets[i]; |
| while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) { |
| // Read & store all entries (for the same string). |
| Expected<IndexEntry *> ieOrErr = |
| readEntry(offset, ni, locs.EntriesBase, namesExtractor, namesSec); |
| if (!ieOrErr) { |
| Err(ctx) << namesSec.sec << ": " << ieOrErr.takeError(); |
| return; |
| } |
| ne.indexEntries.push_back(std::move(*ieOrErr)); |
| } |
| if (offset >= namesSec.Data.size()) |
| Err(ctx) << namesSec.sec << ": index entry is out of bounds"; |
| |
| for (IndexEntry &ie : ne.entries()) |
| offsetMap[ie.poolOffset] = &ie; |
| } |
| |
| // Assign parent pointers, which will be used to update DW_IDX_parent index |
| // attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will |
| // get parentEntry == null as well. |
| for (NameEntry &ne : nd.nameEntries) |
| for (IndexEntry &ie : ne.entries()) |
| ie.parentEntry = offsetMap.lookup(ie.parentOffset); |
| numCus += nd.hdr.CompUnitCount; |
| } |
| } |
| |
| // Compute the form for output DW_IDX_compile_unit attributes, similar to |
| // DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all |
| // the merged CU indices. |
| std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm( |
| uint32_t compUnitCount) { |
| if (compUnitCount > UINT16_MAX) |
| return {4, DW_FORM_data4}; |
| if (compUnitCount > UINT8_MAX) |
| return {2, DW_FORM_data2}; |
| return {1, DW_FORM_data1}; |
| } |
| |
| void DebugNamesBaseSection::computeHdrAndAbbrevTable( |
| MutableArrayRef<InputChunk> inputChunks) { |
| TimeTraceScope timeScope("Merge .debug_names", "hdr and abbrev table"); |
| size_t numCu = 0; |
| hdr.Format = DwarfFormat::DWARF32; |
| hdr.Version = 5; |
| hdr.CompUnitCount = 0; |
| hdr.LocalTypeUnitCount = 0; |
| hdr.ForeignTypeUnitCount = 0; |
| hdr.AugmentationStringSize = 0; |
| |
| // Compute CU and TU counts. |
| for (auto i : seq(numChunks)) { |
| InputChunk &inputChunk = inputChunks[i]; |
| inputChunk.baseCuIdx = numCu; |
| numCu += chunks[i].compUnits.size(); |
| for (const NameData &nd : inputChunk.nameData) { |
| hdr.CompUnitCount += nd.hdr.CompUnitCount; |
| // TODO: We don't handle type units yet, so LocalTypeUnitCount & |
| // ForeignTypeUnitCount are left as 0. |
| if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount) |
| Warn(ctx) << inputChunk.section.sec |
| << ": type units are not implemented"; |
| // If augmentation strings are not identical, use an empty string. |
| if (i == 0) { |
| hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize; |
| hdr.AugmentationString = nd.hdr.AugmentationString; |
| } else if (hdr.AugmentationString != nd.hdr.AugmentationString) { |
| // There are conflicting augmentation strings, so it's best for the |
| // merged index to not use an augmentation string. |
| hdr.AugmentationStringSize = 0; |
| hdr.AugmentationString.clear(); |
| } |
| } |
| } |
| |
| // Create the merged abbrev table, uniquifyinng the input abbrev tables and |
| // computing mapping from old (per-cu) abbrev codes to new (merged) abbrev |
| // codes. |
| FoldingSet<Abbrev> abbrevSet; |
| // Determine the form for the DW_IDX_compile_unit attributes in the merged |
| // index. The input form may not be big enough for all CU indices. |
| dwarf::Form cuAttrForm = getMergedCuCountForm(hdr.CompUnitCount).second; |
| for (InputChunk &inputChunk : inputChunks) { |
| for (auto [i, ni] : enumerate(*inputChunk.llvmDebugNames)) { |
| for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) { |
| // Canonicalize abbrev by placing the CU/TU index at the end, |
| // similar to 'parseDebugNames'. |
| Abbrev abbrev; |
| DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit, |
| cuAttrForm); |
| abbrev.code = oldAbbrev.Code; |
| abbrev.tag = oldAbbrev.Tag; |
| for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) { |
| if (a.Index == DW_IDX_compile_unit) |
| cuAttr.Index = a.Index; |
| else |
| abbrev.attributes.push_back({a.Index, a.Form}); |
| } |
| // Put the CU/TU index at the end of the attributes list. |
| abbrev.attributes.push_back(cuAttr); |
| |
| // Profile the abbrev, get or assign a new code, then record the abbrev |
| // code mapping. |
| FoldingSetNodeID id; |
| abbrev.Profile(id); |
| uint32_t newCode; |
| void *insertPos; |
| if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(id, insertPos)) { |
| // Found it; we've already seen an identical abbreviation. |
| newCode = existing->code; |
| } else { |
| Abbrev *abbrev2 = |
| new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev)); |
| abbrevSet.InsertNode(abbrev2, insertPos); |
| abbrevTable.push_back(abbrev2); |
| newCode = abbrevTable.size(); |
| abbrev2->code = newCode; |
| } |
| inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode; |
| } |
| } |
| } |
| |
| // Compute the merged abbrev table. |
| raw_svector_ostream os(abbrevTableBuf); |
| for (Abbrev *abbrev : abbrevTable) { |
| encodeULEB128(abbrev->code, os); |
| encodeULEB128(abbrev->tag, os); |
| for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) { |
| encodeULEB128(a.Index, os); |
| encodeULEB128(a.Form, os); |
| } |
| os.write("\0", 2); // attribute specification end |
| } |
| os.write(0); // abbrev table end |
| hdr.AbbrevTableSize = abbrevTableBuf.size(); |
| } |
| |
| void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const { |
| id.AddInteger(tag); |
| for (const DWARFDebugNames::AttributeEncoding &attr : attributes) { |
| id.AddInteger(attr.Index); |
| id.AddInteger(attr.Form); |
| } |
| } |
| |
| std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool( |
| MutableArrayRef<InputChunk> inputChunks) { |
| TimeTraceScope timeScope("Merge .debug_names", "entry pool"); |
| // Collect and de-duplicate all the names (preserving all the entries). |
| // Speed it up using multithreading, as the number of symbols can be in the |
| // order of millions. |
| const size_t concurrency = |
| bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards)); |
| const size_t shift = 32 - countr_zero(numShards); |
| const uint8_t cuAttrSize = getMergedCuCountForm(hdr.CompUnitCount).first; |
| DenseMap<CachedHashStringRef, size_t> maps[numShards]; |
| |
| parallelFor(0, concurrency, [&](size_t threadId) { |
| for (auto i : seq(numChunks)) { |
| InputChunk &inputChunk = inputChunks[i]; |
| for (auto j : seq(inputChunk.nameData.size())) { |
| NameData &nd = inputChunk.nameData[j]; |
| // Deduplicate the NameEntry records (based on the string/name), |
| // appending all IndexEntries from duplicate NameEntry records to |
| // the single preserved copy. |
| for (NameEntry &ne : nd.nameEntries) { |
| auto shardId = ne.hashValue >> shift; |
| if ((shardId & (concurrency - 1)) != threadId) |
| continue; |
| |
| ne.chunkIdx = i; |
| for (IndexEntry &ie : ne.entries()) { |
| // Update the IndexEntry's abbrev code to match the merged |
| // abbreviations. |
| ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode]; |
| // Update the DW_IDX_compile_unit attribute (the last one after |
| // canonicalization) to have correct merged offset value and size. |
| auto &back = ie.attrValues.back(); |
| back.attrValue += inputChunk.baseCuIdx + j; |
| back.attrSize = cuAttrSize; |
| } |
| |
| auto &nameVec = nameVecs[shardId]; |
| auto [it, inserted] = maps[shardId].try_emplace( |
| CachedHashStringRef(ne.name, ne.hashValue), nameVec.size()); |
| if (inserted) |
| nameVec.push_back(std::move(ne)); |
| else |
| nameVec[it->second].indexEntries.append(std::move(ne.indexEntries)); |
| } |
| } |
| } |
| }); |
| |
| // Compute entry offsets in parallel. First, compute offsets relative to the |
| // current shard. |
| uint32_t offsets[numShards]; |
| parallelFor(0, numShards, [&](size_t shard) { |
| uint32_t offset = 0; |
| for (NameEntry &ne : nameVecs[shard]) { |
| ne.entryOffset = offset; |
| for (IndexEntry &ie : ne.entries()) { |
| ie.poolOffset = offset; |
| offset += getULEB128Size(ie.abbrevCode); |
| for (AttrValue value : ie.attrValues) |
| offset += value.attrSize; |
| } |
| ++offset; // index entry sentinel |
| } |
| offsets[shard] = offset; |
| }); |
| // Then add shard offsets. |
| std::partial_sum(offsets, std::end(offsets), offsets); |
| parallelFor(1, numShards, [&](size_t shard) { |
| uint32_t offset = offsets[shard - 1]; |
| for (NameEntry &ne : nameVecs[shard]) { |
| ne.entryOffset += offset; |
| for (IndexEntry &ie : ne.entries()) |
| ie.poolOffset += offset; |
| } |
| }); |
| |
| // Update the DW_IDX_parent entries that refer to real parents (have |
| // DW_FORM_ref4). |
| parallelFor(0, numShards, [&](size_t shard) { |
| for (NameEntry &ne : nameVecs[shard]) { |
| for (IndexEntry &ie : ne.entries()) { |
| if (!ie.parentEntry) |
| continue; |
| // Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode |
| // corresponds to position in the merged table vector). |
| const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1]; |
| for (const auto &[a, v] : zip_equal(abbrev->attributes, ie.attrValues)) |
| if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4) |
| v.attrValue = ie.parentEntry->poolOffset; |
| } |
| } |
| }); |
| |
| // Return (entry pool size, number of entries). |
| uint32_t num = 0; |
| for (auto &map : maps) |
| num += map.size(); |
| return {offsets[numShards - 1], num}; |
| } |
| |
| void DebugNamesBaseSection::init( |
| function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) { |
| TimeTraceScope timeScope("Merge .debug_names"); |
| // Collect and remove input .debug_names sections. Save InputSection pointers |
| // to relocate string offsets in `writeTo`. |
| SetVector<InputFile *> files; |
| for (InputSectionBase *s : ctx.inputSections) { |
| InputSection *isec = dyn_cast<InputSection>(s); |
| if (!isec) |
| continue; |
| if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names") { |
| s->markDead(); |
| inputSections.push_back(isec); |
| files.insert(isec->file); |
| } |
| } |
| |
| // Parse input .debug_names sections and extract InputChunk and OutputChunk |
| // data. OutputChunk contains CU information, which will be needed by |
| // `writeTo`. |
| auto inputChunksPtr = std::make_unique<InputChunk[]>(files.size()); |
| MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size()); |
| numChunks = files.size(); |
| chunks = std::make_unique<OutputChunk[]>(files.size()); |
| { |
| TimeTraceScope timeScope("Merge .debug_names", "parse"); |
| parallelFor(0, files.size(), [&](size_t i) { |
| parseFile(files[i], inputChunks[i], chunks[i]); |
| }); |
| } |
| |
| // Compute section header (except unit_length), abbrev table, and entry pool. |
| computeHdrAndAbbrevTable(inputChunks); |
| uint32_t entryPoolSize; |
| std::tie(entryPoolSize, hdr.NameCount) = computeEntryPool(inputChunks); |
| hdr.BucketCount = dwarf::getDebugNamesBucketCount(hdr.NameCount); |
| |
| // Compute the section size. Subtract 4 to get the unit_length for DWARF32. |
| uint32_t hdrSize = getDebugNamesHeaderSize(hdr.AugmentationStringSize); |
| size = findDebugNamesOffsets(hdrSize, hdr).EntriesBase + entryPoolSize; |
| hdr.UnitLength = size - 4; |
| } |
| |
| template <class ELFT> |
| DebugNamesSection<ELFT>::DebugNamesSection(Ctx &ctx) |
| : DebugNamesBaseSection(ctx) { |
| init([&](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) { |
| auto *file = cast<ObjFile<ELFT>>(f); |
| DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); |
| auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); |
| chunk.infoSec = dobj.getInfoSection(); |
| DWARFDataExtractor namesExtractor(dobj, dobj.getNamesSection(), |
| ELFT::Endianness == endianness::little, |
| ELFT::Is64Bits ? 8 : 4); |
| // .debug_str is needed to get symbol names from string offsets. |
| DataExtractor strExtractor(dobj.getStrSection(), |
| ELFT::Endianness == endianness::little, |
| ELFT::Is64Bits ? 8 : 4); |
| inputChunk.section = dobj.getNamesSection(); |
| |
| inputChunk.llvmDebugNames.emplace(namesExtractor, strExtractor); |
| if (Error e = inputChunk.llvmDebugNames->extract()) { |
| Err(ctx) << dobj.getNamesSection().sec << ": " << std::move(e); |
| } |
| parseDebugNames( |
| ctx, inputChunk, chunk, namesExtractor, strExtractor, |
| [&chunk, namesData = dobj.getNamesSection().Data.data()]( |
| uint32_t numCus, const DWARFDebugNames::Header &hdr, |
| const DWARFDebugNames::DWARFDebugNamesOffsets &locs) { |
| // Read CU offsets, which are relocated by .debug_info + X |
| // relocations. Record the section offset to be relocated by |
| // `finalizeContents`. |
| chunk.compUnits.resize_for_overwrite(numCus + hdr.CompUnitCount); |
| for (auto i : seq(hdr.CompUnitCount)) |
| chunk.compUnits[numCus + i] = locs.CUsBase + i * 4; |
| |
| // Read entry offsets. |
| const char *p = namesData + locs.EntryOffsetsBase; |
| SmallVector<uint32_t, 0> entryOffsets; |
| entryOffsets.resize_for_overwrite(hdr.NameCount); |
| for (uint32_t &offset : entryOffsets) |
| offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p); |
| return entryOffsets; |
| }); |
| }); |
| } |
| |
| template <class ELFT> |
| template <class RelTy> |
| void DebugNamesSection<ELFT>::getNameRelocs( |
| const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs, |
| Relocs<RelTy> rels) { |
| for (const RelTy &rel : rels) { |
| Symbol &sym = file.getRelocTargetSym(rel); |
| relocs[rel.r_offset] = sym.getVA(ctx, getAddend<ELFT>(rel)); |
| } |
| } |
| |
| template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() { |
| // Get relocations of .debug_names sections. |
| auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks); |
| parallelFor(0, numChunks, [&](size_t i) { |
| InputSection *sec = inputSections[i]; |
| invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]); |
| |
| // Relocate CU offsets with .debug_info + X relocations. |
| OutputChunk &chunk = chunks.get()[i]; |
| for (auto [j, cuOffset] : enumerate(chunk.compUnits)) |
| cuOffset = relocs.get()[i].lookup(cuOffset); |
| }); |
| |
| // Relocate string offsets in the name table with .debug_str + X relocations. |
| parallelForEach(nameVecs, [&](auto &nameVec) { |
| for (NameEntry &ne : nameVec) |
| ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset); |
| }); |
| } |
| |
| template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) { |
| [[maybe_unused]] const uint8_t *const beginBuf = buf; |
| // Write the header. |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength); |
| endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version); |
| buf += 2; // padding |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount); |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount); |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount); |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount); |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount); |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize); |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, |
| hdr.AugmentationStringSize); |
| memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size()); |
| buf += hdr.AugmentationStringSize; |
| |
| // Write the CU list. |
| for (auto &chunk : getChunks()) |
| for (uint32_t cuOffset : chunk.compUnits) |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset); |
| |
| // TODO: Write the local TU list, then the foreign TU list.. |
| |
| // Write the hash lookup table. |
| SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount); |
| // Symbols enter into a bucket whose index is the hash modulo bucket_count. |
| for (auto &nameVec : nameVecs) |
| for (NameEntry &ne : nameVec) |
| buckets[ne.hashValue % hdr.BucketCount].push_back(&ne); |
| |
| // Write buckets (accumulated bucket counts). |
| uint32_t bucketIdx = 1; |
| for (const SmallVector<NameEntry *, 0> &bucket : buckets) { |
| if (!bucket.empty()) |
| endian::write32<ELFT::Endianness>(buf, bucketIdx); |
| buf += 4; |
| bucketIdx += bucket.size(); |
| } |
| // Write the hashes. |
| for (const SmallVector<NameEntry *, 0> &bucket : buckets) |
| for (const NameEntry *e : bucket) |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue); |
| |
| // Write the name table. The name entries are ordered by bucket_idx and |
| // correspond one-to-one with the hash lookup table. |
| // |
| // First, write the relocated string offsets. |
| for (const SmallVector<NameEntry *, 0> &bucket : buckets) |
| for (const NameEntry *ne : bucket) |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset); |
| |
| // Then write the entry offsets. |
| for (const SmallVector<NameEntry *, 0> &bucket : buckets) |
| for (const NameEntry *ne : bucket) |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset); |
| |
| // Write the abbrev table. |
| buf = llvm::copy(abbrevTableBuf, buf); |
| |
| // Write the entry pool. Unlike the name table, the name entries follow the |
| // nameVecs order computed by `computeEntryPool`. |
| for (auto &nameVec : nameVecs) { |
| for (NameEntry &ne : nameVec) { |
| // Write all the entries for the string. |
| for (const IndexEntry &ie : ne.entries()) { |
| buf += encodeULEB128(ie.abbrevCode, buf); |
| for (AttrValue value : ie.attrValues) { |
| switch (value.attrSize) { |
| case 1: |
| *buf++ = value.attrValue; |
| break; |
| case 2: |
| endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue); |
| break; |
| case 4: |
| endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue); |
| break; |
| default: |
| llvm_unreachable("invalid attrSize"); |
| } |
| } |
| } |
| ++buf; // index entry sentinel |
| } |
| } |
| assert(uint64_t(buf - beginBuf) == size); |
| } |
| |
| GdbIndexSection::GdbIndexSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".gdb_index", SHT_PROGBITS, 0, 1) {} |
| |
| // Returns the desired size of an on-disk hash table for a .gdb_index section. |
| // There's a tradeoff between size and collision rate. We aim 75% utilization. |
| size_t GdbIndexSection::computeSymtabSize() const { |
| return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); |
| } |
| |
| static SmallVector<GdbIndexSection::CuEntry, 0> |
| readCuList(DWARFContext &dwarf) { |
| SmallVector<GdbIndexSection::CuEntry, 0> ret; |
| for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) |
| ret.push_back({cu->getOffset(), cu->getLength() + 4}); |
| return ret; |
| } |
| |
| static SmallVector<GdbIndexSection::AddressEntry, 0> |
| readAddressAreas(Ctx &ctx, DWARFContext &dwarf, InputSection *sec) { |
| SmallVector<GdbIndexSection::AddressEntry, 0> ret; |
| |
| uint32_t cuIdx = 0; |
| for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { |
| if (Error e = cu->tryExtractDIEsIfNeeded(false)) { |
| Warn(ctx) << sec << ": " << std::move(e); |
| return {}; |
| } |
| Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); |
| if (!ranges) { |
| Warn(ctx) << sec << ": " << ranges.takeError(); |
| return {}; |
| } |
| |
| ArrayRef<InputSectionBase *> sections = sec->file->getSections(); |
| for (DWARFAddressRange &r : *ranges) { |
| if (r.SectionIndex == -1ULL) |
| continue; |
| // Range list with zero size has no effect. |
| InputSectionBase *s = sections[r.SectionIndex]; |
| if (s && s != &InputSection::discarded && s->isLive()) |
| if (r.LowPC != r.HighPC) |
| ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); |
| } |
| ++cuIdx; |
| } |
| |
| return ret; |
| } |
| |
| template <class ELFT> |
| static SmallVector<GdbIndexSection::NameAttrEntry, 0> |
| readPubNamesAndTypes(Ctx &ctx, const LLDDwarfObj<ELFT> &obj, |
| const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { |
| const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); |
| const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); |
| |
| SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; |
| for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { |
| DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little, |
| ELFT::Is64Bits ? 8 : 4); |
| DWARFDebugPubTable table; |
| table.extract(data, /*GnuStyle=*/true, [&](Error e) { |
| Warn(ctx) << pub->sec << ": " << std::move(e); |
| }); |
| for (const DWARFDebugPubTable::Set &set : table.getData()) { |
| // The value written into the constant pool is kind << 24 | cuIndex. As we |
| // don't know how many compilation units precede this object to compute |
| // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add |
| // the number of preceding compilation units later. |
| uint32_t i = llvm::partition_point(cus, |
| [&](GdbIndexSection::CuEntry cu) { |
| return cu.cuOffset < set.Offset; |
| }) - |
| cus.begin(); |
| for (const DWARFDebugPubTable::Entry &ent : set.Entries) |
| ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, |
| (ent.Descriptor.toBits() << 24) | i}); |
| } |
| } |
| return ret; |
| } |
| |
| // Create a list of symbols from a given list of symbol names and types |
| // by uniquifying them by name. |
| static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t> |
| createSymbols( |
| Ctx &ctx, |
| ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, |
| const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { |
| using GdbSymbol = GdbIndexSection::GdbSymbol; |
| using NameAttrEntry = GdbIndexSection::NameAttrEntry; |
| |
| // For each chunk, compute the number of compilation units preceding it. |
| uint32_t cuIdx = 0; |
| std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); |
| for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { |
| cuIdxs[i] = cuIdx; |
| cuIdx += chunks[i].compilationUnits.size(); |
| } |
| |
| // Collect the compilation unitss for each unique name. Speed it up using |
| // multi-threading as the number of symbols can be in the order of millions. |
| // Shard GdbSymbols by hash's high bits. |
| constexpr size_t numShards = 32; |
| const size_t concurrency = |
| llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards)); |
| const size_t shift = 32 - llvm::countr_zero(numShards); |
| auto map = |
| std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); |
| auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); |
| parallelFor(0, concurrency, [&](size_t threadId) { |
| uint32_t i = 0; |
| for (ArrayRef<NameAttrEntry> entries : nameAttrs) { |
| for (const NameAttrEntry &ent : entries) { |
| size_t shardId = ent.name.hash() >> shift; |
| if ((shardId & (concurrency - 1)) != threadId) |
| continue; |
| |
| uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; |
| auto [it, inserted] = |
| map[shardId].try_emplace(ent.name, symbols[shardId].size()); |
| if (inserted) |
| symbols[shardId].push_back({ent.name, {v}, 0, 0}); |
| else |
| symbols[shardId][it->second].cuVector.push_back(v); |
| } |
| ++i; |
| } |
| }); |
| |
| size_t numSymbols = 0; |
| for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards)) |
| numSymbols += v.size(); |
| |
| // The return type is a flattened vector, so we'll copy each vector |
| // contents to Ret. |
| SmallVector<GdbSymbol, 0> ret; |
| ret.reserve(numSymbols); |
| for (SmallVector<GdbSymbol, 0> &vec : |
| MutableArrayRef(symbols.get(), numShards)) |
| for (GdbSymbol &sym : vec) |
| ret.push_back(std::move(sym)); |
| |
| // CU vectors and symbol names are adjacent in the output file. |
| // We can compute their offsets in the output file now. |
| size_t off = 0; |
| for (GdbSymbol &sym : ret) { |
| sym.cuVectorOff = off; |
| off += (sym.cuVector.size() + 1) * 4; |
| } |
| for (GdbSymbol &sym : ret) { |
| sym.nameOff = off; |
| off += sym.name.size() + 1; |
| } |
| // If off overflows, the last symbol's nameOff likely overflows. |
| if (!isUInt<32>(off)) |
| Err(ctx) << "--gdb-index: constant pool size (" << off |
| << ") exceeds UINT32_MAX"; |
| |
| return {ret, off}; |
| } |
| |
| // Returns a newly-created .gdb_index section. |
| template <class ELFT> |
| std::unique_ptr<GdbIndexSection> GdbIndexSection::create(Ctx &ctx) { |
| llvm::TimeTraceScope timeScope("Create gdb index"); |
| |
| // Collect InputFiles with .debug_info. See the comment in |
| // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, |
| // note that isec->data() may uncompress the full content, which should be |
| // parallelized. |
| SetVector<InputFile *> files; |
| for (InputSectionBase *s : ctx.inputSections) { |
| InputSection *isec = dyn_cast<InputSection>(s); |
| if (!isec) |
| continue; |
| // .debug_gnu_pub{names,types} are useless in executables. |
| // They are present in input object files solely for creating |
| // a .gdb_index. So we can remove them from the output. |
| if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") |
| s->markDead(); |
| else if (isec->name == ".debug_info") |
| files.insert(isec->file); |
| } |
| // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. |
| llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { |
| if (auto *isec = dyn_cast<InputSection>(s)) |
| if (InputSectionBase *rel = isec->getRelocatedSection()) |
| return !rel->isLive(); |
| return !s->isLive(); |
| }); |
| |
| SmallVector<GdbChunk, 0> chunks(files.size()); |
| SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); |
| |
| parallelFor(0, files.size(), [&](size_t i) { |
| // To keep memory usage low, we don't want to keep cached DWARFContext, so |
| // avoid getDwarf() here. |
| ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); |
| DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); |
| auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); |
| |
| // If the are multiple compile units .debug_info (very rare ld -r --unique), |
| // this only picks the last one. Other address ranges are lost. |
| chunks[i].sec = dobj.getInfoSection(); |
| chunks[i].compilationUnits = readCuList(dwarf); |
| chunks[i].addressAreas = readAddressAreas(ctx, dwarf, chunks[i].sec); |
| nameAttrs[i] = |
| readPubNamesAndTypes<ELFT>(ctx, dobj, chunks[i].compilationUnits); |
| }); |
| |
| auto ret = std::make_unique<GdbIndexSection>(ctx); |
| ret->chunks = std::move(chunks); |
| std::tie(ret->symbols, ret->size) = |
| createSymbols(ctx, nameAttrs, ret->chunks); |
| |
| // Count the areas other than the constant pool. |
| ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8; |
| for (GdbChunk &chunk : ret->chunks) |
| ret->size += |
| chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; |
| |
| return ret; |
| } |
| |
| void GdbIndexSection::writeTo(uint8_t *buf) { |
| // Write the header. |
| auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); |
| uint8_t *start = buf; |
| hdr->version = 7; |
| buf += sizeof(*hdr); |
| |
| // Write the CU list. |
| hdr->cuListOff = buf - start; |
| for (GdbChunk &chunk : chunks) { |
| for (CuEntry &cu : chunk.compilationUnits) { |
| write64le(buf, chunk.sec->outSecOff + cu.cuOffset); |
| write64le(buf + 8, cu.cuLength); |
| buf += 16; |
| } |
| } |
| |
| // Write the address area. |
| hdr->cuTypesOff = buf - start; |
| hdr->addressAreaOff = buf - start; |
| uint32_t cuOff = 0; |
| for (GdbChunk &chunk : chunks) { |
| for (AddressEntry &e : chunk.addressAreas) { |
| // In the case of ICF there may be duplicate address range entries. |
| const uint64_t baseAddr = e.section->repl->getVA(0); |
| write64le(buf, baseAddr + e.lowAddress); |
| write64le(buf + 8, baseAddr + e.highAddress); |
| write32le(buf + 16, e.cuIndex + cuOff); |
| buf += 20; |
| } |
| cuOff += chunk.compilationUnits.size(); |
| } |
| |
| // Write the on-disk open-addressing hash table containing symbols. |
| hdr->symtabOff = buf - start; |
| size_t symtabSize = computeSymtabSize(); |
| uint32_t mask = symtabSize - 1; |
| |
| for (GdbSymbol &sym : symbols) { |
| uint32_t h = sym.name.hash(); |
| uint32_t i = h & mask; |
| uint32_t step = ((h * 17) & mask) | 1; |
| |
| while (read32le(buf + i * 8)) |
| i = (i + step) & mask; |
| |
| write32le(buf + i * 8, sym.nameOff); |
| write32le(buf + i * 8 + 4, sym.cuVectorOff); |
| } |
| |
| buf += symtabSize * 8; |
| |
| // Write the string pool. |
| hdr->constantPoolOff = buf - start; |
| parallelForEach(symbols, [&](GdbSymbol &sym) { |
| memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); |
| }); |
| |
| // Write the CU vectors. |
| for (GdbSymbol &sym : symbols) { |
| write32le(buf, sym.cuVector.size()); |
| buf += 4; |
| for (uint32_t val : sym.cuVector) { |
| write32le(buf, val); |
| buf += 4; |
| } |
| } |
| } |
| |
| bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } |
| |
| EhFrameHeader::EhFrameHeader(Ctx &ctx) |
| : SyntheticSection(ctx, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, 4) {} |
| |
| void EhFrameHeader::writeTo(uint8_t *buf) { |
| // Unlike most sections, the EhFrameHeader section is written while writing |
| // another section, namely EhFrameSection, which calls the write() function |
| // below from its writeTo() function. This is necessary because the contents |
| // of EhFrameHeader depend on the relocated contents of EhFrameSection and we |
| // don't know which order the sections will be written in. |
| } |
| |
| // .eh_frame_hdr contains a binary search table of pointers to FDEs. |
| // Each entry of the search table consists of two values, |
| // the starting PC from where FDEs covers, and the FDE's address. |
| // It is sorted by PC. |
| void EhFrameHeader::write() { |
| uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; |
| using FdeData = EhFrameSection::FdeData; |
| SmallVector<FdeData, 0> fdes = getPartition(ctx).ehFrame->getFdeData(); |
| |
| buf[0] = 1; |
| buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; |
| buf[2] = DW_EH_PE_udata4; |
| buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; |
| write32(ctx, buf + 4, |
| getPartition(ctx).ehFrame->getParent()->addr - this->getVA() - 4); |
| write32(ctx, buf + 8, fdes.size()); |
| buf += 12; |
| |
| for (FdeData &fde : fdes) { |
| write32(ctx, buf, fde.pcRel); |
| write32(ctx, buf + 4, fde.fdeVARel); |
| buf += 8; |
| } |
| } |
| |
| size_t EhFrameHeader::getSize() const { |
| // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. |
| return 12 + getPartition(ctx).ehFrame->numFdes * 8; |
| } |
| |
| bool EhFrameHeader::isNeeded() const { |
| return isLive() && getPartition(ctx).ehFrame->isNeeded(); |
| } |
| |
| VersionDefinitionSection::VersionDefinitionSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC, |
| sizeof(uint32_t)) {} |
| |
| StringRef VersionDefinitionSection::getFileDefName() { |
| if (!getPartition(ctx).name.empty()) |
| return getPartition(ctx).name; |
| if (!ctx.arg.soName.empty()) |
| return ctx.arg.soName; |
| return ctx.arg.outputFile; |
| } |
| |
| void VersionDefinitionSection::finalizeContents() { |
| fileDefNameOff = getPartition(ctx).dynStrTab->addString(getFileDefName()); |
| for (const VersionDefinition &v : namedVersionDefs(ctx)) |
| verDefNameOffs.push_back(getPartition(ctx).dynStrTab->addString(v.name)); |
| |
| if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| |
| // sh_info should be set to the number of definitions. This fact is missed in |
| // documentation, but confirmed by binutils community: |
| // https://sourceware.org/ml/binutils/2014-11/msg00355.html |
| getParent()->info = getVerDefNum(ctx); |
| } |
| |
| void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, |
| StringRef name, size_t nameOff) { |
| uint16_t flags = index == 1 ? VER_FLG_BASE : 0; |
| |
| // Write a verdef. |
| write16(ctx, buf, 1); // vd_version |
| write16(ctx, buf + 2, flags); // vd_flags |
| write16(ctx, buf + 4, index); // vd_ndx |
| write16(ctx, buf + 6, 1); // vd_cnt |
| write32(ctx, buf + 8, hashSysV(name)); // vd_hash |
| write32(ctx, buf + 12, 20); // vd_aux |
| write32(ctx, buf + 16, 28); // vd_next |
| |
| // Write a veraux. |
| write32(ctx, buf + 20, nameOff); // vda_name |
| write32(ctx, buf + 24, 0); // vda_next |
| } |
| |
| void VersionDefinitionSection::writeTo(uint8_t *buf) { |
| writeOne(buf, 1, getFileDefName(), fileDefNameOff); |
| |
| auto nameOffIt = verDefNameOffs.begin(); |
| for (const VersionDefinition &v : namedVersionDefs(ctx)) { |
| buf += EntrySize; |
| writeOne(buf, v.id, v.name, *nameOffIt++); |
| } |
| |
| // Need to terminate the last version definition. |
| write32(ctx, buf + 16, 0); // vd_next |
| } |
| |
| size_t VersionDefinitionSection::getSize() const { |
| return EntrySize * getVerDefNum(ctx); |
| } |
| |
| // .gnu.version is a table where each entry is 2 byte long. |
| VersionTableSection::VersionTableSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".gnu.version", SHT_GNU_versym, SHF_ALLOC, |
| sizeof(uint16_t)) { |
| this->entsize = 2; |
| } |
| |
| void VersionTableSection::finalizeContents() { |
| if (OutputSection *osec = getPartition(ctx).dynSymTab->getParent()) |
| getParent()->link = osec->sectionIndex; |
| } |
| |
| size_t VersionTableSection::getSize() const { |
| return (getPartition(ctx).dynSymTab->getSymbols().size() + 1) * 2; |
| } |
| |
| void VersionTableSection::writeTo(uint8_t *buf) { |
| buf += 2; |
| for (const SymbolTableEntry &s : getPartition(ctx).dynSymTab->getSymbols()) { |
| // For an unextracted lazy symbol (undefined weak), it must have been |
| // converted to Undefined and have VER_NDX_GLOBAL version here. |
| assert(!s.sym->isLazy()); |
| write16(ctx, buf, s.sym->versionId); |
| buf += 2; |
| } |
| } |
| |
| bool VersionTableSection::isNeeded() const { |
| return isLive() && |
| (getPartition(ctx).verDef || getPartition(ctx).verNeed->isNeeded()); |
| } |
| |
| void elf::addVerneed(Ctx &ctx, Symbol &ss) { |
| auto &file = cast<SharedFile>(*ss.file); |
| if (ss.versionId == VER_NDX_GLOBAL) |
| return; |
| |
| if (file.vernauxs.empty()) |
| file.vernauxs.resize(file.verdefs.size()); |
| |
| // Select a version identifier for the vernaux data structure, if we haven't |
| // already allocated one. The verdef identifiers cover the range |
| // [1..getVerDefNum(ctx)]; this causes the vernaux identifiers to start from |
| // getVerDefNum(ctx)+1. |
| if (file.vernauxs[ss.versionId] == 0) |
| file.vernauxs[ss.versionId] = ++ctx.vernauxNum + getVerDefNum(ctx); |
| |
| ss.versionId = file.vernauxs[ss.versionId]; |
| } |
| |
| template <class ELFT> |
| VersionNeedSection<ELFT>::VersionNeedSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC, |
| sizeof(uint32_t)) {} |
| |
| template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { |
| for (SharedFile *f : ctx.sharedFiles) { |
| if (f->vernauxs.empty()) |
| continue; |
| verneeds.emplace_back(); |
| Verneed &vn = verneeds.back(); |
| vn.nameStrTab = getPartition(ctx).dynStrTab->addString(f->soName); |
| bool isLibc = ctx.arg.relrGlibc && f->soName.starts_with("libc.so."); |
| bool isGlibc2 = false; |
| for (unsigned i = 0; i != f->vernauxs.size(); ++i) { |
| if (f->vernauxs[i] == 0) |
| continue; |
| auto *verdef = |
| reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); |
| StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); |
| if (isLibc && ver.starts_with("GLIBC_2.")) |
| isGlibc2 = true; |
| vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], |
| getPartition(ctx).dynStrTab->addString(ver)}); |
| } |
| if (isGlibc2) { |
| const char *ver = "GLIBC_ABI_DT_RELR"; |
| vn.vernauxs.push_back({hashSysV(ver), |
| ++ctx.vernauxNum + getVerDefNum(ctx), |
| getPartition(ctx).dynStrTab->addString(ver)}); |
| } |
| } |
| |
| if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) |
| getParent()->link = sec->sectionIndex; |
| getParent()->info = verneeds.size(); |
| } |
| |
| template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { |
| // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. |
| auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); |
| auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); |
| |
| for (auto &vn : verneeds) { |
| // Create an Elf_Verneed for this DSO. |
| verneed->vn_version = 1; |
| verneed->vn_cnt = vn.vernauxs.size(); |
| verneed->vn_file = vn.nameStrTab; |
| verneed->vn_aux = |
| reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); |
| verneed->vn_next = sizeof(Elf_Verneed); |
| ++verneed; |
| |
| // Create the Elf_Vernauxs for this Elf_Verneed. |
| for (auto &vna : vn.vernauxs) { |
| vernaux->vna_hash = vna.hash; |
| vernaux->vna_flags = 0; |
| vernaux->vna_other = vna.verneedIndex; |
| vernaux->vna_name = vna.nameStrTab; |
| vernaux->vna_next = sizeof(Elf_Vernaux); |
| ++vernaux; |
| } |
| |
| vernaux[-1].vna_next = 0; |
| } |
| verneed[-1].vn_next = 0; |
| } |
| |
| template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { |
| return verneeds.size() * sizeof(Elf_Verneed) + |
| ctx.vernauxNum * sizeof(Elf_Vernaux); |
| } |
| |
| template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { |
| return isLive() && ctx.vernauxNum != 0; |
| } |
| |
| void MergeSyntheticSection::addSection(MergeInputSection *ms) { |
| ms->parent = this; |
| sections.push_back(ms); |
| assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS)); |
| addralign = std::max(addralign, ms->addralign); |
| } |
| |
| MergeTailSection::MergeTailSection(Ctx &ctx, StringRef name, uint32_t type, |
| uint64_t flags, uint32_t alignment) |
| : MergeSyntheticSection(ctx, name, type, flags, alignment), |
| builder(StringTableBuilder::RAW, llvm::Align(alignment)) {} |
| |
| size_t MergeTailSection::getSize() const { return builder.getSize(); } |
| |
| void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } |
| |
| void MergeTailSection::finalizeContents() { |
| // Add all string pieces to the string table builder to create section |
| // contents. |
| for (MergeInputSection *sec : sections) |
| for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) |
| if (sec->pieces[i].live) |
| builder.add(sec->getData(i)); |
| |
| // Fix the string table content. After this, the contents will never change. |
| builder.finalize(); |
| |
| // finalize() fixed tail-optimized strings, so we can now get |
| // offsets of strings. Get an offset for each string and save it |
| // to a corresponding SectionPiece for easy access. |
| for (MergeInputSection *sec : sections) |
| for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) |
| if (sec->pieces[i].live) |
| sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); |
| } |
| |
| void MergeNoTailSection::writeTo(uint8_t *buf) { |
| parallelFor(0, numShards, |
| [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); |
| } |
| |
| // This function is very hot (i.e. it can take several seconds to finish) |
| // because sometimes the number of inputs is in an order of magnitude of |
| // millions. So, we use multi-threading. |
| // |
| // For any strings S and T, we know S is not mergeable with T if S's hash |
| // value is different from T's. If that's the case, we can safely put S and |
| // T into different string builders without worrying about merge misses. |
| // We do it in parallel. |
| void MergeNoTailSection::finalizeContents() { |
| // Initializes string table builders. |
| for (size_t i = 0; i < numShards; ++i) |
| shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign)); |
| |
| // Concurrency level. Must be a power of 2 to avoid expensive modulo |
| // operations in the following tight loop. |
| const size_t concurrency = |
| llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards)); |
| |
| // Add section pieces to the builders. |
| parallelFor(0, concurrency, [&](size_t threadId) { |
| for (MergeInputSection *sec : sections) { |
| for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { |
| if (!sec->pieces[i].live) |
| continue; |
| size_t shardId = getShardId(sec->pieces[i].hash); |
| if ((shardId & (concurrency - 1)) == threadId) |
| sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); |
| } |
| } |
| }); |
| |
| // Compute an in-section offset for each shard. |
| size_t off = 0; |
| for (size_t i = 0; i < numShards; ++i) { |
| shards[i].finalizeInOrder(); |
| if (shards[i].getSize() > 0) |
| off = alignToPowerOf2(off, addralign); |
| shardOffsets[i] = off; |
| off += shards[i].getSize(); |
| } |
| size = off; |
| |
| // So far, section pieces have offsets from beginning of shards, but |
| // we want offsets from beginning of the whole section. Fix them. |
| parallelForEach(sections, [&](MergeInputSection *sec) { |
| for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) |
| if (sec->pieces[i].live) |
| sec->pieces[i].outputOff += |
| shardOffsets[getShardId(sec->pieces[i].hash)]; |
| }); |
| } |
| |
| template <class ELFT> void elf::splitSections(Ctx &ctx) { |
| llvm::TimeTraceScope timeScope("Split sections"); |
| // splitIntoPieces needs to be called on each MergeInputSection |
| // before calling finalizeContents(). |
| parallelForEach(ctx.objectFiles, [](ELFFileBase *file) { |
| for (InputSectionBase *sec : file->getSections()) { |
| if (!sec) |
| continue; |
| if (auto *s = dyn_cast<MergeInputSection>(sec)) |
| s->splitIntoPieces(); |
| else if (auto *eh = dyn_cast<EhInputSection>(sec)) |
| eh->split<ELFT>(); |
| } |
| }); |
| } |
| |
| void elf::combineEhSections(Ctx &ctx) { |
| llvm::TimeTraceScope timeScope("Combine EH sections"); |
| for (EhInputSection *sec : ctx.ehInputSections) { |
| EhFrameSection &eh = *sec->getPartition(ctx).ehFrame; |
| sec->parent = &eh; |
| eh.addralign = std::max(eh.addralign, sec->addralign); |
| eh.sections.push_back(sec); |
| llvm::append_range(eh.dependentSections, sec->dependentSections); |
| } |
| |
| if (!ctx.mainPart->armExidx) |
| return; |
| llvm::erase_if(ctx.inputSections, [&](InputSectionBase *s) { |
| // Ignore dead sections and the partition end marker (.part.end), |
| // whose partition number is out of bounds. |
| if (!s->isLive() || s->partition == 255) |
| return false; |
| Partition &part = s->getPartition(ctx); |
| return s->kind() == SectionBase::Regular && part.armExidx && |
| part.armExidx->addSection(cast<InputSection>(s)); |
| }); |
| } |
| |
| MipsRldMapSection::MipsRldMapSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, |
| ctx.arg.wordsize) {} |
| |
| ARMExidxSyntheticSection::ARMExidxSyntheticSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".ARM.exidx", SHT_ARM_EXIDX, |
| SHF_ALLOC | SHF_LINK_ORDER, ctx.arg.wordsize) {} |
| |
| static InputSection *findExidxSection(InputSection *isec) { |
| for (InputSection *d : isec->dependentSections) |
| if (d->type == SHT_ARM_EXIDX && d->isLive()) |
| return d; |
| return nullptr; |
| } |
| |
| static bool isValidExidxSectionDep(InputSection *isec) { |
| return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && |
| isec->getSize() > 0; |
| } |
| |
| bool ARMExidxSyntheticSection::addSection(InputSection *isec) { |
| if (isec->type == SHT_ARM_EXIDX) { |
| if (InputSection *dep = isec->getLinkOrderDep()) |
| if (isValidExidxSectionDep(dep)) { |
| exidxSections.push_back(isec); |
| // Every exidxSection is 8 bytes, we need an estimate of |
| // size before assignAddresses can be called. Final size |
| // will only be known after finalize is called. |
| size += 8; |
| } |
| return true; |
| } |
| |
| if (isValidExidxSectionDep(isec)) { |
| executableSections.push_back(isec); |
| return false; |
| } |
| |
| // FIXME: we do not output a relocation section when --emit-relocs is used |
| // as we do not have relocation sections for linker generated table entries |
| // and we would have to erase at a late stage relocations from merged entries. |
| // Given that exception tables are already position independent and a binary |
| // analyzer could derive the relocations we choose to erase the relocations. |
| if (ctx.arg.emitRelocs && isec->type == SHT_REL) |
| if (InputSectionBase *ex = isec->getRelocatedSection()) |
| if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) |
| return true; |
| |
| return false; |
| } |
| |
| // References to .ARM.Extab Sections have bit 31 clear and are not the |
| // special EXIDX_CANTUNWIND bit-pattern. |
| static bool isExtabRef(uint32_t unwind) { |
| return (unwind & 0x80000000) == 0 && unwind != 0x1; |
| } |
| |
| // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx |
| // section Prev, where Cur follows Prev in the table. This can be done if the |
| // unwinding instructions in Cur are identical to Prev. Linker generated |
| // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an |
| // InputSection. |
| static bool isDuplicateArmExidxSec(Ctx &ctx, InputSection *prev, |
| InputSection *cur) { |
| // Get the last table Entry from the previous .ARM.exidx section. If Prev is |
| // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. |
| uint32_t prevUnwind = 1; |
| if (prev) |
| prevUnwind = |
| read32(ctx, prev->content().data() + prev->content().size() - 4); |
| if (isExtabRef(prevUnwind)) |
| return false; |
| |
| // We consider the unwind instructions of an .ARM.exidx table entry |
| // a duplicate if the previous unwind instructions if: |
| // - Both are the special EXIDX_CANTUNWIND. |
| // - Both are the same inline unwind instructions. |
| // We do not attempt to follow and check links into .ARM.extab tables as |
| // consecutive identical entries are rare and the effort to check that they |
| // are identical is high. |
| |
| // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. |
| if (cur == nullptr) |
| return prevUnwind == 1; |
| |
| for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) { |
| uint32_t curUnwind = read32(ctx, cur->content().data() + offset); |
| if (isExtabRef(curUnwind) || curUnwind != prevUnwind) |
| return false; |
| } |
| // All table entries in this .ARM.exidx Section can be merged into the |
| // previous Section. |
| return true; |
| } |
| |
| // The .ARM.exidx table must be sorted in ascending order of the address of the |
| // functions the table describes. std::optionally duplicate adjacent table |
| // entries can be removed. At the end of the function the executableSections |
| // must be sorted in ascending order of address, Sentinel is set to the |
| // InputSection with the highest address and any InputSections that have |
| // mergeable .ARM.exidx table entries are removed from it. |
| void ARMExidxSyntheticSection::finalizeContents() { |
| // Ensure that any fixed-point iterations after the first see the original set |
| // of sections. |
| if (!originalExecutableSections.empty()) |
| executableSections = originalExecutableSections; |
| else if (ctx.arg.enableNonContiguousRegions) |
| originalExecutableSections = executableSections; |
| |
| // The executableSections and exidxSections that we use to derive the final |
| // contents of this SyntheticSection are populated before |
| // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or |
| // ICF may remove executable InputSections and their dependent .ARM.exidx |
| // section that we recorded earlier. |
| auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; |
| llvm::erase_if(exidxSections, isDiscarded); |
| // We need to remove discarded InputSections and InputSections without |
| // .ARM.exidx sections that if we generated the .ARM.exidx it would be out |
| // of range. |
| auto isDiscardedOrOutOfRange = [this](InputSection *isec) { |
| if (!isec->isLive()) |
| return true; |
| if (findExidxSection(isec)) |
| return false; |
| int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); |
| return off != llvm::SignExtend64(off, 31); |
| }; |
| llvm::erase_if(executableSections, isDiscardedOrOutOfRange); |
| |
| // Sort the executable sections that may or may not have associated |
| // .ARM.exidx sections by order of ascending address. This requires the |
| // relative positions of InputSections and OutputSections to be known. |
| auto compareByFilePosition = [](const InputSection *a, |
| const InputSection *b) { |
| OutputSection *aOut = a->getParent(); |
| OutputSection *bOut = b->getParent(); |
| |
| if (aOut != bOut) |
| return aOut->addr < bOut->addr; |
| return a->outSecOff < b->outSecOff; |
| }; |
| llvm::stable_sort(executableSections, compareByFilePosition); |
| sentinel = executableSections.back(); |
| // std::optionally merge adjacent duplicate entries. |
| if (ctx.arg.mergeArmExidx) { |
| SmallVector<InputSection *, 0> selectedSections; |
| selectedSections.reserve(executableSections.size()); |
| selectedSections.push_back(executableSections[0]); |
| size_t prev = 0; |
| for (size_t i = 1; i < executableSections.size(); ++i) { |
| InputSection *ex1 = findExidxSection(executableSections[prev]); |
| InputSection *ex2 = findExidxSection(executableSections[i]); |
| if (!isDuplicateArmExidxSec(ctx, ex1, ex2)) { |
| selectedSections.push_back(executableSections[i]); |
| prev = i; |
| } |
| } |
| executableSections = std::move(selectedSections); |
| } |
| // offset is within the SyntheticSection. |
| size_t offset = 0; |
| size = 0; |
| for (InputSection *isec : executableSections) { |
| if (InputSection *d = findExidxSection(isec)) { |
| d->outSecOff = offset; |
| d->parent = getParent(); |
| offset += d->getSize(); |
| } else { |
| offset += 8; |
| } |
| } |
| // Size includes Sentinel. |
| size = offset + 8; |
| } |
| |
| InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { |
| return executableSections.front(); |
| } |
| |
| // To write the .ARM.exidx table from the ExecutableSections we have three cases |
| // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. |
| // We write the .ARM.exidx section contents and apply its relocations. |
| // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We |
| // must write the contents of an EXIDX_CANTUNWIND directly. We use the |
| // start of the InputSection as the purpose of the linker generated |
| // section is to terminate the address range of the previous entry. |
| // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of |
| // the table to terminate the address range of the final entry. |
| void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { |
| |
| // A linker generated CANTUNWIND entry is made up of two words: |
| // 0x0 with R_ARM_PREL31 relocation to target. |
| // 0x1 with EXIDX_CANTUNWIND. |
| uint64_t offset = 0; |
| for (InputSection *isec : executableSections) { |
| assert(isec->getParent() != nullptr); |
| if (InputSection *d = findExidxSection(isec)) { |
| for (int dataOffset = 0; dataOffset != (int)d->content().size(); |
| dataOffset += 4) |
| write32(ctx, buf + offset + dataOffset, |
| read32(ctx, d->content().data() + dataOffset)); |
| // Recalculate outSecOff as finalizeAddressDependentContent() |
| // may have altered syntheticSection outSecOff. |
| d->outSecOff = offset + outSecOff; |
| ctx.target->relocateAlloc(*d, buf + offset); |
| offset += d->getSize(); |
| } else { |
| // A Linker generated CANTUNWIND section. |
| write32(ctx, buf + offset + 0, 0x0); |
| write32(ctx, buf + offset + 4, 0x1); |
| uint64_t s = isec->getVA(); |
| uint64_t p = getVA() + offset; |
| ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); |
| offset += 8; |
| } |
| } |
| // Write Sentinel CANTUNWIND entry. |
| write32(ctx, buf + offset + 0, 0x0); |
| write32(ctx, buf + offset + 4, 0x1); |
| uint64_t s = sentinel->getVA(sentinel->getSize()); |
| uint64_t p = getVA() + offset; |
| ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); |
| assert(size == offset + 8); |
| } |
| |
| bool ARMExidxSyntheticSection::isNeeded() const { |
| return llvm::any_of(exidxSections, |
| [](InputSection *isec) { return isec->isLive(); }); |
| } |
| |
| ThunkSection::ThunkSection(Ctx &ctx, OutputSection *os, uint64_t off) |
| : SyntheticSection(ctx, ".text.thunk", SHT_PROGBITS, |
| SHF_ALLOC | SHF_EXECINSTR, |
| ctx.arg.emachine == EM_PPC64 ? 16 : 4) { |
| this->parent = os; |
| this->outSecOff = off; |
| } |
| |
| size_t ThunkSection::getSize() const { |
| if (roundUpSizeForErrata) |
| return alignTo(size, 4096); |
| return size; |
| } |
| |
| void ThunkSection::addThunk(Thunk *t) { |
| thunks.push_back(t); |
| t->addSymbols(*this); |
| } |
| |
| void ThunkSection::writeTo(uint8_t *buf) { |
| for (Thunk *t : thunks) |
| t->writeTo(buf + t->offset); |
| } |
| |
| InputSection *ThunkSection::getTargetInputSection() const { |
| if (thunks.empty()) |
| return nullptr; |
| const Thunk *t = thunks.front(); |
| return t->getTargetInputSection(); |
| } |
| |
| bool ThunkSection::assignOffsets() { |
| uint64_t off = 0; |
| bool changed = false; |
| for (Thunk *t : thunks) { |
| if (t->alignment > addralign) { |
| addralign = t->alignment; |
| changed = true; |
| } |
| off = alignToPowerOf2(off, t->alignment); |
| t->setOffset(off); |
| uint32_t size = t->size(); |
| t->getThunkTargetSym()->size = size; |
| off += size; |
| } |
| if (off != size) |
| changed = true; |
| size = off; |
| return changed; |
| } |
| |
| PPC32Got2Section::PPC32Got2Section(Ctx &ctx) |
| : SyntheticSection(ctx, ".got2", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 4) {} |
| |
| bool PPC32Got2Section::isNeeded() const { |
| // See the comment below. This is not needed if there is no other |
| // InputSection. |
| for (SectionCommand *cmd : getParent()->commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) |
| for (InputSection *isec : isd->sections) |
| if (isec != this) |
| return true; |
| return false; |
| } |
| |
| void PPC32Got2Section::finalizeContents() { |
| // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in |
| // .got2 . This function computes outSecOff of each .got2 to be used in |
| // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is |
| // to collect input sections named ".got2". |
| for (SectionCommand *cmd : getParent()->commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { |
| for (InputSection *isec : isd->sections) { |
| // isec->file may be nullptr for MergeSyntheticSection. |
| if (isec != this && isec->file) |
| isec->file->ppc32Got2 = isec; |
| } |
| } |
| } |
| |
| // If linking position-dependent code then the table will store the addresses |
| // directly in the binary so the section has type SHT_PROGBITS. If linking |
| // position-independent code the section has type SHT_NOBITS since it will be |
| // allocated and filled in by the dynamic linker. |
| PPC64LongBranchTargetSection::PPC64LongBranchTargetSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".branch_lt", |
| ctx.arg.isPic ? SHT_NOBITS : SHT_PROGBITS, |
| SHF_ALLOC | SHF_WRITE, 8) {} |
| |
| uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, |
| int64_t addend) { |
| return getVA() + entry_index.find({sym, addend})->second * 8; |
| } |
| |
| std::optional<uint32_t> |
| PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) { |
| auto res = |
| entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); |
| if (!res.second) |
| return std::nullopt; |
| entries.emplace_back(sym, addend); |
| return res.first->second; |
| } |
| |
| size_t PPC64LongBranchTargetSection::getSize() const { |
| return entries.size() * 8; |
| } |
| |
| void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { |
| // If linking non-pic we have the final addresses of the targets and they get |
| // written to the table directly. For pic the dynamic linker will allocate |
| // the section and fill it. |
| if (ctx.arg.isPic) |
| return; |
| |
| for (auto entry : entries) { |
| const Symbol *sym = entry.first; |
| int64_t addend = entry.second; |
| assert(sym->getVA(ctx)); |
| // Need calls to branch to the local entry-point since a long-branch |
| // must be a local-call. |
| write64(ctx, buf, |
| sym->getVA(ctx, addend) + |
| getPPC64GlobalEntryToLocalEntryOffset(ctx, sym->stOther)); |
| buf += 8; |
| } |
| } |
| |
| bool PPC64LongBranchTargetSection::isNeeded() const { |
| // `removeUnusedSyntheticSections()` is called before thunk allocation which |
| // is too early to determine if this section will be empty or not. We need |
| // Finalized to keep the section alive until after thunk creation. Finalized |
| // only gets set to true once `finalizeSections()` is called after thunk |
| // creation. Because of this, if we don't create any long-branch thunks we end |
| // up with an empty .branch_lt section in the binary. |
| return !finalized || !entries.empty(); |
| } |
| |
| static uint8_t getAbiVersion(Ctx &ctx) { |
| // MIPS non-PIC executable gets ABI version 1. |
| if (ctx.arg.emachine == EM_MIPS) { |
| if (!ctx.arg.isPic && !ctx.arg.relocatable && |
| (ctx.arg.eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) |
| return 1; |
| return 0; |
| } |
| |
| if (ctx.arg.emachine == EM_AMDGPU && !ctx.objectFiles.empty()) { |
| uint8_t ver = ctx.objectFiles[0]->abiVersion; |
| for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1)) |
| if (file->abiVersion != ver) |
| Err(ctx) << "incompatible ABI version: " << file; |
| return ver; |
| } |
| |
| return 0; |
| } |
| |
| template <typename ELFT> |
| void elf::writeEhdr(Ctx &ctx, uint8_t *buf, Partition &part) { |
| memcpy(buf, "\177ELF", 4); |
| |
| auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); |
| eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| eHdr->e_ident[EI_DATA] = |
| ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB; |
| eHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| eHdr->e_ident[EI_OSABI] = ctx.arg.osabi; |
| eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(ctx); |
| eHdr->e_machine = ctx.arg.emachine; |
| eHdr->e_version = EV_CURRENT; |
| eHdr->e_flags = ctx.arg.eflags; |
| eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); |
| eHdr->e_phnum = part.phdrs.size(); |
| eHdr->e_shentsize = sizeof(typename ELFT::Shdr); |
| |
| if (!ctx.arg.relocatable) { |
| eHdr->e_phoff = sizeof(typename ELFT::Ehdr); |
| eHdr->e_phentsize = sizeof(typename ELFT::Phdr); |
| } |
| } |
| |
| template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { |
| // Write the program header table. |
| auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); |
| for (std::unique_ptr<PhdrEntry> &p : part.phdrs) { |
| hBuf->p_type = p->p_type; |
| hBuf->p_flags = p->p_flags; |
| hBuf->p_offset = p->p_offset; |
| hBuf->p_vaddr = p->p_vaddr; |
| hBuf->p_paddr = p->p_paddr; |
| hBuf->p_filesz = p->p_filesz; |
| hBuf->p_memsz = p->p_memsz; |
| hBuf->p_align = p->p_align; |
| ++hBuf; |
| } |
| } |
| |
| template <typename ELFT> |
| PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection(Ctx &ctx) |
| : SyntheticSection(ctx, "", SHT_LLVM_PART_EHDR, SHF_ALLOC, 1) {} |
| |
| template <typename ELFT> |
| size_t PartitionElfHeaderSection<ELFT>::getSize() const { |
| return sizeof(typename ELFT::Ehdr); |
| } |
| |
| template <typename ELFT> |
| void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { |
| writeEhdr<ELFT>(ctx, buf, getPartition(ctx)); |
| |
| // Loadable partitions are always ET_DYN. |
| auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); |
| eHdr->e_type = ET_DYN; |
| } |
| |
| template <typename ELFT> |
| PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".phdrs", SHT_LLVM_PART_PHDR, SHF_ALLOC, 1) {} |
| |
| template <typename ELFT> |
| size_t PartitionProgramHeadersSection<ELFT>::getSize() const { |
| return sizeof(typename ELFT::Phdr) * getPartition(ctx).phdrs.size(); |
| } |
| |
| template <typename ELFT> |
| void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { |
| writePhdrs<ELFT>(buf, getPartition(ctx)); |
| } |
| |
| PartitionIndexSection::PartitionIndexSection(Ctx &ctx) |
| : SyntheticSection(ctx, ".rodata", SHT_PROGBITS, SHF_ALLOC, 4) {} |
| |
| size_t PartitionIndexSection::getSize() const { |
| return 12 * (ctx.partitions.size() - 1); |
| } |
| |
| void PartitionIndexSection::finalizeContents() { |
| for (size_t i = 1; i != ctx.partitions.size(); ++i) |
| ctx.partitions[i].nameStrTab = |
| ctx.mainPart->dynStrTab->addString(ctx.partitions[i].name); |
| } |
| |
| void PartitionIndexSection::writeTo(uint8_t *buf) { |
| uint64_t va = getVA(); |
| for (size_t i = 1; i != ctx.partitions.size(); ++i) { |
| write32(ctx, buf, |
| ctx.mainPart->dynStrTab->getVA() + ctx.partitions[i].nameStrTab - |
| va); |
| write32(ctx, buf + 4, ctx.partitions[i].elfHeader->getVA() - (va + 4)); |
| |
| SyntheticSection *next = i == ctx.partitions.size() - 1 |
| ? ctx.in.partEnd.get() |
| : ctx.partitions[i + 1].elfHeader.get(); |
| write32(ctx, buf + 8, next->getVA() - ctx.partitions[i].elfHeader->getVA()); |
| |
| va += 12; |
| buf += 12; |
| } |
| } |
| |
| static bool needsInterpSection(Ctx &ctx) { |
| return !ctx.arg.relocatable && !ctx.arg.shared && |
| !ctx.arg.dynamicLinker.empty() && ctx.script->needsInterpSection(); |
| } |
| |
| bool elf::hasMemtag(Ctx &ctx) { |
| return ctx.arg.emachine == EM_AARCH64 && |
| ctx.arg.androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; |
| } |
| |
| // Fully static executables don't support MTE globals at this point in time, as |
| // we currently rely on: |
| // - A dynamic loader to process relocations, and |
| // - Dynamic entries. |
| // This restriction could be removed in future by re-using some of the ideas |
| // that ifuncs use in fully static executables. |
| bool elf::canHaveMemtagGlobals(Ctx &ctx) { |
| return hasMemtag(ctx) && |
| (ctx.arg.relocatable || ctx.arg.shared || needsInterpSection(ctx)); |
| } |
| |
| constexpr char kMemtagAndroidNoteName[] = "Android"; |
| void MemtagAndroidNote::writeTo(uint8_t *buf) { |
| static_assert( |
| sizeof(kMemtagAndroidNoteName) == 8, |
| "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it " |
| "that way for backwards compatibility."); |
| |
| write32(ctx, buf, sizeof(kMemtagAndroidNoteName)); |
| write32(ctx, buf + 4, sizeof(uint32_t)); |
| write32(ctx, buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG); |
| memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName)); |
| buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4); |
| |
| uint32_t value = 0; |
| value |= ctx.arg.androidMemtagMode; |
| if (ctx.arg.androidMemtagHeap) |
| value |= ELF::NT_MEMTAG_HEAP; |
| // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled |
| // binary on Android 11 or 12 will result in a checkfail in the loader. |
| if (ctx.arg.androidMemtagStack) |
| value |= ELF::NT_MEMTAG_STACK; |
| write32(ctx, buf, value); // note value |
| } |
| |
| size_t MemtagAndroidNote::getSize() const { |
| return sizeof(llvm::ELF::Elf64_Nhdr) + |
| /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) + |
| /*descsz=*/sizeof(uint32_t); |
| } |
| |
| void PackageMetadataNote::writeTo(uint8_t *buf) { |
| write32(ctx, buf, 4); |
| write32(ctx, buf + 4, ctx.arg.packageMetadata.size() + 1); |
| write32(ctx, buf + 8, FDO_PACKAGING_METADATA); |
| memcpy(buf + 12, "FDO", 4); |
| memcpy(buf + 16, ctx.arg.packageMetadata.data(), |
| ctx.arg.packageMetadata.size()); |
| } |
| |
| size_t PackageMetadataNote::getSize() const { |
| return sizeof(llvm::ELF::Elf64_Nhdr) + 4 + |
| alignTo(ctx.arg.packageMetadata.size() + 1, 4); |
| } |
| |
| // Helper function, return the size of the ULEB128 for 'v', optionally writing |
| // it to `*(buf + offset)` if `buf` is non-null. |
| static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) { |
| if (buf) |
| return encodeULEB128(v, buf + offset); |
| return getULEB128Size(v); |
| } |
| |
| // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic |
| constexpr uint64_t kMemtagStepSizeBits = 3; |
| constexpr uint64_t kMemtagGranuleSize = 16; |
| static size_t |
| createMemtagGlobalDescriptors(Ctx &ctx, |
| const SmallVector<const Symbol *, 0> &symbols, |
| uint8_t *buf = nullptr) { |
| size_t sectionSize = 0; |
| uint64_t lastGlobalEnd = 0; |
| |
| for (const Symbol *sym : symbols) { |
| if (!includeInSymtab(ctx, *sym)) |
| continue; |
| const uint64_t addr = sym->getVA(ctx); |
| const uint64_t size = sym->getSize(); |
| |
| if (addr <= kMemtagGranuleSize && buf != nullptr) |
| Err(ctx) << "address of the tagged symbol \"" << sym->getName() |
| << "\" falls in the ELF header. This is indicative of a " |
| "compiler/linker bug"; |
| if (addr % kMemtagGranuleSize != 0) |
| Err(ctx) << "address of the tagged symbol \"" << sym->getName() |
| << "\" at 0x" << Twine::utohexstr(addr) |
| << "\" is not granule (16-byte) aligned"; |
| if (size == 0) |
| Err(ctx) << "size of the tagged symbol \"" << sym->getName() |
| << "\" is not allowed to be zero"; |
| if (size % kMemtagGranuleSize != 0) |
| Err(ctx) << "size of the tagged symbol \"" << sym->getName() |
| << "\" (size 0x" << Twine::utohexstr(size) |
| << ") is not granule (16-byte) aligned"; |
| |
| const uint64_t sizeToEncode = size / kMemtagGranuleSize; |
| const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize) |
| << kMemtagStepSizeBits; |
| if (sizeToEncode < (1 << kMemtagStepSizeBits)) { |
| sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize); |
| } else { |
| sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize); |
| sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize); |
| } |
| lastGlobalEnd = addr + size; |
| } |
| |
| return sectionSize; |
| } |
| |
| bool MemtagGlobalDescriptors::updateAllocSize(Ctx &ctx) { |
| size_t oldSize = getSize(); |
| llvm::stable_sort(symbols, [&ctx = ctx](const Symbol *s1, const Symbol *s2) { |
| return s1->getVA(ctx) < s2->getVA(ctx); |
| }); |
| return oldSize != getSize(); |
| } |
| |
| void MemtagGlobalDescriptors::writeTo(uint8_t *buf) { |
| createMemtagGlobalDescriptors(ctx, symbols, buf); |
| } |
| |
| size_t MemtagGlobalDescriptors::getSize() const { |
| return createMemtagGlobalDescriptors(ctx, symbols); |
| } |
| |
| static OutputSection *findSection(Ctx &ctx, StringRef name) { |
| for (SectionCommand *cmd : ctx.script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) |
| if (osd->osec.name == name) |
| return &osd->osec; |
| return nullptr; |
| } |
| |
| static Defined *addOptionalRegular(Ctx &ctx, StringRef name, SectionBase *sec, |
| uint64_t val, uint8_t stOther = STV_HIDDEN) { |
| Symbol *s = ctx.symtab->find(name); |
| if (!s || s->isDefined() || s->isCommon()) |
| return nullptr; |
| |
| s->resolve(ctx, Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL, |
| stOther, STT_NOTYPE, val, |
| /*size=*/0, sec}); |
| s->isUsedInRegularObj = true; |
| return cast<Defined>(s); |
| } |
| |
| template <class ELFT> void elf::createSyntheticSections(Ctx &ctx) { |
| // Add the .interp section first because it is not a SyntheticSection. |
| // The removeUnusedSyntheticSections() function relies on the |
| // SyntheticSections coming last. |
| if (needsInterpSection(ctx)) { |
| for (size_t i = 1; i <= ctx.partitions.size(); ++i) { |
| InputSection *sec = createInterpSection(ctx); |
| sec->partition = i; |
| ctx.inputSections.push_back(sec); |
| } |
| } |
| |
| auto add = [&](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; |
| |
| if (ctx.arg.zSectionHeader) |
| ctx.in.shStrTab = |
| std::make_unique<StringTableSection>(ctx, ".shstrtab", false); |
| |
| ctx.out.programHeaders = |
| std::make_unique<OutputSection>(ctx, "", 0, SHF_ALLOC); |
| ctx.out.programHeaders->addralign = ctx.arg.wordsize; |
| |
| if (ctx.arg.strip != StripPolicy::All) { |
| ctx.in.strTab = std::make_unique<StringTableSection>(ctx, ".strtab", false); |
| ctx.in.symTab = |
| std::make_unique<SymbolTableSection<ELFT>>(ctx, *ctx.in.strTab); |
| ctx.in.symTabShndx = std::make_unique<SymtabShndxSection>(ctx); |
| } |
| |
| ctx.in.bss = std::make_unique<BssSection>(ctx, ".bss", 0, 1); |
| add(*ctx.in.bss); |
| |
| // If there is a SECTIONS command and a .data.rel.ro section name use name |
| // .data.rel.ro.bss so that we match in the .data.rel.ro output section. |
| // This makes sure our relro is contiguous. |
| bool hasDataRelRo = |
| ctx.script->hasSectionsCommand && findSection(ctx, ".data.rel.ro"); |
| ctx.in.bssRelRo = std::make_unique<BssSection>( |
| ctx, hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); |
| add(*ctx.in.bssRelRo); |
| |
| // Add MIPS-specific sections. |
| if (ctx.arg.emachine == EM_MIPS) { |
| if (!ctx.arg.shared && ctx.hasDynsym) { |
| ctx.in.mipsRldMap = std::make_unique<MipsRldMapSection>(ctx); |
| add(*ctx.in.mipsRldMap); |
| } |
| if ((ctx.in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create(ctx))) |
| add(*ctx.in.mipsAbiFlags); |
| if ((ctx.in.mipsOptions = MipsOptionsSection<ELFT>::create(ctx))) |
| add(*ctx.in.mipsOptions); |
| if ((ctx.in.mipsReginfo = MipsReginfoSection<ELFT>::create(ctx))) |
| add(*ctx.in.mipsReginfo); |
| } |
| |
| StringRef relaDynName = ctx.arg.isRela ? ".rela.dyn" : ".rel.dyn"; |
| |
| const unsigned threadCount = ctx.arg.threadCount; |
| for (Partition &part : ctx.partitions) { |
| auto add = [&](SyntheticSection &sec) { |
| sec.partition = part.getNumber(ctx); |
| ctx.inputSections.push_back(&sec); |
| }; |
| |
| if (!part.name.empty()) { |
| part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(ctx); |
| part.elfHeader->name = part.name; |
| add(*part.elfHeader); |
| |
| part.programHeaders = |
| std::make_unique<PartitionProgramHeadersSection<ELFT>>(ctx); |
| add(*part.programHeaders); |
| } |
| |
| if (ctx.arg.buildId != BuildIdKind::None) { |
| part.buildId = std::make_unique<BuildIdSection>(ctx); |
| add(*part.buildId); |
| } |
| |
| // dynSymTab is always present to simplify several finalizeSections |
| // functions. |
| part.dynStrTab = std::make_unique<StringTableSection>(ctx, ".dynstr", true); |
| part.dynSymTab = |
| std::make_unique<SymbolTableSection<ELFT>>(ctx, *part.dynStrTab); |
| |
| if (ctx.arg.relocatable) |
| continue; |
| part.dynamic = std::make_unique<DynamicSection<ELFT>>(ctx); |
| |
| if (hasMemtag(ctx)) { |
| part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(ctx); |
| add(*part.memtagAndroidNote); |
| if (canHaveMemtagGlobals(ctx)) { |
| part.memtagGlobalDescriptors = |
| std::make_unique<MemtagGlobalDescriptors>(ctx); |
| add(*part.memtagGlobalDescriptors); |
| } |
| } |
| |
| if (ctx.arg.androidPackDynRelocs) |
| part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( |
| ctx, relaDynName, threadCount); |
| else |
| part.relaDyn = std::make_unique<RelocationSection<ELFT>>( |
| ctx, relaDynName, ctx.arg.zCombreloc, threadCount); |
| |
| if (ctx.hasDynsym) { |
| add(*part.dynSymTab); |
| |
| part.verSym = std::make_unique<VersionTableSection>(ctx); |
| add(*part.verSym); |
| |
| if (!namedVersionDefs(ctx).empty()) { |
| part.verDef = std::make_unique<VersionDefinitionSection>(ctx); |
| add(*part.verDef); |
| } |
| |
| part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(ctx); |
| add(*part.verNeed); |
| |
| if (ctx.arg.gnuHash) { |
| part.gnuHashTab = std::make_unique<GnuHashTableSection>(ctx); |
| add(*part.gnuHashTab); |
| } |
| |
| if (ctx.arg.sysvHash) { |
| part.hashTab = std::make_unique<HashTableSection>(ctx); |
| add(*part.hashTab); |
| } |
| |
| add(*part.dynamic); |
| add(*part.dynStrTab); |
| } |
| add(*part.relaDyn); |
| |
| if (ctx.arg.relrPackDynRelocs) { |
| part.relrDyn = std::make_unique<RelrSection<ELFT>>(ctx, threadCount); |
| add(*part.relrDyn); |
| part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>( |
| ctx, threadCount, /*isAArch64Auth=*/true); |
| add(*part.relrAuthDyn); |
| } |
| |
| if (ctx.arg.ehFrameHdr) { |
| part.ehFrameHdr = std::make_unique<EhFrameHeader>(ctx); |
| add(*part.ehFrameHdr); |
| } |
| part.ehFrame = std::make_unique<EhFrameSection>(ctx); |
| add(*part.ehFrame); |
| |
| if (ctx.arg.emachine == EM_ARM) { |
| // This section replaces all the individual .ARM.exidx InputSections. |
| part.armExidx = std::make_unique<ARMExidxSyntheticSection>(ctx); |
| add(*part.armExidx); |
| } |
| |
| if (!ctx.arg.packageMetadata.empty()) { |
| part.packageMetadataNote = std::make_unique<PackageMetadataNote>(ctx); |
| add(*part.packageMetadataNote); |
| } |
| } |
| |
| if (ctx.partitions.size() != 1) { |
| // Create the partition end marker. This needs to be in partition number 255 |
| // so that it is sorted after all other partitions. It also has other |
| // special handling (see createPhdrs() and combineEhSections()). |
| ctx.in.partEnd = |
| std::make_unique<BssSection>(ctx, ".part.end", ctx.arg.maxPageSize, 1); |
| ctx.in.partEnd->partition = 255; |
| add(*ctx.in.partEnd); |
| |
| ctx.in.partIndex = std::make_unique<PartitionIndexSection>(ctx); |
| addOptionalRegular(ctx, "__part_index_begin", ctx.in.partIndex.get(), 0); |
| addOptionalRegular(ctx, "__part_index_end", ctx.in.partIndex.get(), |
| ctx.in.partIndex->getSize()); |
| add(*ctx.in.partIndex); |
| } |
| |
| // Add .got. MIPS' .got is so different from the other archs, |
| // it has its own class. |
| if (ctx.arg.emachine == EM_MIPS) { |
| ctx.in.mipsGot = std::make_unique<MipsGotSection>(ctx); |
| add(*ctx.in.mipsGot); |
| } else { |
| ctx.in.got = std::make_unique<GotSection>(ctx); |
| add(*ctx.in.got); |
| } |
| |
| if (ctx.arg.emachine == EM_PPC) { |
| ctx.in.ppc32Got2 = std::make_unique<PPC32Got2Section>(ctx); |
| add(*ctx.in.ppc32Got2); |
| } |
| |
| if (ctx.arg.emachine == EM_PPC64) { |
| ctx.in.ppc64LongBranchTarget = |
| std::make_unique<PPC64LongBranchTargetSection>(ctx); |
| add(*ctx.in.ppc64LongBranchTarget); |
| } |
| |
| ctx.in.gotPlt = std::make_unique<GotPltSection>(ctx); |
| add(*ctx.in.gotPlt); |
| ctx.in.igotPlt = std::make_unique<IgotPltSection>(ctx); |
| add(*ctx.in.igotPlt); |
| // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the |
| // section in the absence of PHDRS/SECTIONS commands. |
| if (ctx.arg.zRelro && |
| ((ctx.script->phdrsCommands.empty() && !ctx.script->hasSectionsCommand) || |
| ctx.script->seenRelroEnd)) { |
| ctx.in.relroPadding = std::make_unique<RelroPaddingSection>(ctx); |
| add(*ctx.in.relroPadding); |
| } |
| |
| if (ctx.arg.emachine == EM_ARM) { |
| ctx.in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(ctx); |
| add(*ctx.in.armCmseSGSection); |
| } |
| |
| // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat |
| // it as a relocation and ensure the referenced section is created. |
| if (ctx.sym.globalOffsetTable && ctx.arg.emachine != EM_MIPS) { |
| if (ctx.target->gotBaseSymInGotPlt) |
| ctx.in.gotPlt->hasGotPltOffRel = true; |
| else |
| ctx.in.got->hasGotOffRel = true; |
| } |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even for static linking it can contain R_[*]_IRELATIVE relocations. |
| ctx.in.relaPlt = std::make_unique<RelocationSection<ELFT>>( |
| ctx, ctx.arg.isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, |
| /*threadCount=*/1); |
| add(*ctx.in.relaPlt); |
| |
| if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) && |
| (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { |
| ctx.in.ibtPlt = std::make_unique<IBTPltSection>(ctx); |
| add(*ctx.in.ibtPlt); |
| } |
| |
| if (ctx.arg.emachine == EM_PPC) |
| ctx.in.plt = std::make_unique<PPC32GlinkSection>(ctx); |
| else |
| ctx.in.plt = std::make_unique<PltSection>(ctx); |
| add(*ctx.in.plt); |
| ctx.in.iplt = std::make_unique<IpltSection>(ctx); |
| add(*ctx.in.iplt); |
| |
| if (ctx.arg.andFeatures || !ctx.aarch64PauthAbiCoreInfo.empty()) { |
| ctx.in.gnuProperty = std::make_unique<GnuPropertySection>(ctx); |
| add(*ctx.in.gnuProperty); |
| } |
| |
| if (ctx.arg.debugNames) { |
| ctx.in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(ctx); |
| add(*ctx.in.debugNames); |
| } |
| |
| if (ctx.arg.gdbIndex) { |
| ctx.in.gdbIndex = GdbIndexSection::create<ELFT>(ctx); |
| add(*ctx.in.gdbIndex); |
| } |
| |
| // .note.GNU-stack is always added when we are creating a re-linkable |
| // object file. Other linkers are using the presence of this marker |
| // section to control the executable-ness of the stack area, but that |
| // is irrelevant these days. Stack area should always be non-executable |
| // by default. So we emit this section unconditionally. |
| if (ctx.arg.relocatable) { |
| ctx.in.gnuStack = std::make_unique<GnuStackSection>(ctx); |
| add(*ctx.in.gnuStack); |
| } |
| |
| if (ctx.in.symTab) |
| add(*ctx.in.symTab); |
| if (ctx.in.symTabShndx) |
| add(*ctx.in.symTabShndx); |
| if (ctx.in.shStrTab) |
| add(*ctx.in.shStrTab); |
| if (ctx.in.strTab) |
| add(*ctx.in.strTab); |
| } |
| |
| template void elf::splitSections<ELF32LE>(Ctx &); |
| template void elf::splitSections<ELF32BE>(Ctx &); |
| template void elf::splitSections<ELF64LE>(Ctx &); |
| template void elf::splitSections<ELF64BE>(Ctx &); |
| |
| template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( |
| function_ref<void(InputSection &)>); |
| template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( |
| function_ref<void(InputSection &)>); |
| template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( |
| function_ref<void(InputSection &)>); |
| template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( |
| function_ref<void(InputSection &)>); |
| |
| template class elf::SymbolTableSection<ELF32LE>; |
| template class elf::SymbolTableSection<ELF32BE>; |
| template class elf::SymbolTableSection<ELF64LE>; |
| template class elf::SymbolTableSection<ELF64BE>; |
| |
| template void elf::writeEhdr<ELF32LE>(Ctx &, uint8_t *Buf, Partition &Part); |
| template void elf::writeEhdr<ELF32BE>(Ctx &, uint8_t *Buf, Partition &Part); |
| template void elf::writeEhdr<ELF64LE>(Ctx &, uint8_t *Buf, Partition &Part); |
| template void elf::writeEhdr<ELF64BE>(Ctx &, uint8_t *Buf, Partition &Part); |
| |
| template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); |
| template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); |
| template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); |
| template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); |
| |
| template void elf::createSyntheticSections<ELF32LE>(Ctx &); |
| template void elf::createSyntheticSections<ELF32BE>(Ctx &); |
| template void elf::createSyntheticSections<ELF64LE>(Ctx &); |
| template void elf::createSyntheticSections<ELF64BE>(Ctx &); |