| //===- InputSection.cpp ---------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputSection.h" |
| #include "Config.h" |
| #include "InputFiles.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/CommonLinkerContext.h" |
| #include "lld/Common/DWARF.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/xxhash.h" |
| #include <algorithm> |
| #include <mutex> |
| #include <optional> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace llvm::sys; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // Returns a string to construct an error message. |
| std::string elf::toStr(Ctx &ctx, const InputSectionBase *sec) { |
| return (toStr(ctx, sec->file) + ":(" + sec->name + ")").str(); |
| } |
| |
| const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, |
| const InputSectionBase *sec) { |
| return s << toStr(s.ctx, sec); |
| } |
| |
| template <class ELFT> |
| static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, |
| const typename ELFT::Shdr &hdr) { |
| if (hdr.sh_type == SHT_NOBITS) |
| return ArrayRef<uint8_t>(nullptr, hdr.sh_size); |
| return check(file.getObj().getSectionContents(hdr)); |
| } |
| |
| InputSectionBase::InputSectionBase(InputFile *file, StringRef name, |
| uint32_t type, uint64_t flags, uint32_t link, |
| uint32_t info, uint32_t addralign, |
| uint32_t entsize, ArrayRef<uint8_t> data, |
| Kind sectionKind) |
| : SectionBase(sectionKind, file, name, type, flags, link, info, addralign, |
| entsize), |
| bss(0), decodedCrel(0), keepUnique(0), nopFiller(0), |
| content_(data.data()), size(data.size()) { |
| // In order to reduce memory allocation, we assume that mergeable |
| // sections are smaller than 4 GiB, which is not an unreasonable |
| // assumption as of 2017. |
| if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) |
| ErrAlways(getCtx()) << this << ": section too large"; |
| |
| // The ELF spec states that a value of 0 means the section has |
| // no alignment constraints. |
| uint32_t v = std::max<uint32_t>(addralign, 1); |
| if (!isPowerOf2_64(v)) { |
| Err(getCtx()) << this << ": sh_addralign is not a power of 2"; |
| v = 1; |
| } |
| this->addralign = v; |
| |
| // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no |
| // longer supported. |
| if (flags & SHF_COMPRESSED) { |
| Ctx &ctx = file->ctx; |
| invokeELFT(parseCompressedHeader, ctx); |
| } |
| } |
| |
| // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the |
| // output section. However, for relocatable linking without |
| // --force-group-allocation, the SHF_GROUP flag and section groups are retained. |
| static uint64_t getFlags(Ctx &ctx, uint64_t flags) { |
| flags &= ~(uint64_t)SHF_INFO_LINK; |
| if (ctx.arg.resolveGroups) |
| flags &= ~(uint64_t)SHF_GROUP; |
| return flags; |
| } |
| |
| template <class ELFT> |
| InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, |
| const typename ELFT::Shdr &hdr, |
| StringRef name, Kind sectionKind) |
| : InputSectionBase(&file, name, hdr.sh_type, |
| getFlags(file.ctx, hdr.sh_flags), hdr.sh_link, |
| hdr.sh_info, hdr.sh_addralign, hdr.sh_entsize, |
| getSectionContents(file, hdr), sectionKind) { |
| // We reject object files having insanely large alignments even though |
| // they are allowed by the spec. I think 4GB is a reasonable limitation. |
| // We might want to relax this in the future. |
| if (hdr.sh_addralign > UINT32_MAX) { |
| Err(getCtx()) << &file << ": section sh_addralign is too large"; |
| addralign = 1; |
| } |
| } |
| |
| size_t InputSectionBase::getSize() const { |
| if (auto *s = dyn_cast<SyntheticSection>(this)) |
| return s->getSize(); |
| return size - bytesDropped; |
| } |
| |
| template <class ELFT> |
| static void decompressAux(Ctx &ctx, const InputSectionBase &sec, uint8_t *out, |
| size_t size) { |
| auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); |
| auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) |
| .slice(sizeof(typename ELFT::Chdr)); |
| if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB |
| ? compression::zlib::decompress(compressed, out, size) |
| : compression::zstd::decompress(compressed, out, size)) |
| Err(ctx) << &sec << ": decompress failed: " << std::move(e); |
| } |
| |
| void InputSectionBase::decompress() const { |
| Ctx &ctx = getCtx(); |
| uint8_t *buf = makeThreadLocalN<uint8_t>(size); |
| invokeELFT(decompressAux, ctx, *this, buf, size); |
| content_ = buf; |
| compressed = false; |
| } |
| |
| template <class ELFT> |
| RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const { |
| if (relSecIdx == 0) |
| return {}; |
| RelsOrRelas<ELFT> ret; |
| auto *f = cast<ObjFile<ELFT>>(file); |
| typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx]; |
| if (shdr.sh_type == SHT_CREL) { |
| // Return an iterator if supported by caller. |
| if (supportsCrel) { |
| ret.crels = Relocs<typename ELFT::Crel>( |
| (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset); |
| return ret; |
| } |
| InputSectionBase *const &relSec = f->getSections()[relSecIdx]; |
| // Otherwise, allocate a buffer to hold the decoded RELA relocations. When |
| // called for the first time, relSec is null (without --emit-relocs) or an |
| // InputSection with false decodedCrel. |
| if (!relSec || !cast<InputSection>(relSec)->decodedCrel) { |
| auto *sec = makeThreadLocal<InputSection>(*f, shdr, name); |
| f->cacheDecodedCrel(relSecIdx, sec); |
| sec->type = SHT_RELA; |
| sec->decodedCrel = true; |
| |
| RelocsCrel<ELFT::Is64Bits> entries(sec->content_); |
| sec->size = entries.size() * sizeof(typename ELFT::Rela); |
| auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size()); |
| sec->content_ = reinterpret_cast<uint8_t *>(relas); |
| for (auto [i, r] : llvm::enumerate(entries)) { |
| relas[i].r_offset = r.r_offset; |
| relas[i].setSymbolAndType(r.r_symidx, r.r_type, false); |
| relas[i].r_addend = r.r_addend; |
| } |
| } |
| ret.relas = {ArrayRef( |
| reinterpret_cast<const typename ELFT::Rela *>(relSec->content_), |
| relSec->size / sizeof(typename ELFT::Rela))}; |
| return ret; |
| } |
| |
| const void *content = f->mb.getBufferStart() + shdr.sh_offset; |
| size_t size = shdr.sh_size; |
| if (shdr.sh_type == SHT_REL) { |
| ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content), |
| size / sizeof(typename ELFT::Rel))}; |
| } else { |
| assert(shdr.sh_type == SHT_RELA); |
| ret.relas = { |
| ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content), |
| size / sizeof(typename ELFT::Rela))}; |
| } |
| return ret; |
| } |
| |
| Ctx &SectionBase::getCtx() const { return file->ctx; } |
| |
| uint64_t SectionBase::getOffset(uint64_t offset) const { |
| switch (kind()) { |
| case Output: { |
| auto *os = cast<OutputSection>(this); |
| // For output sections we treat offset -1 as the end of the section. |
| return offset == uint64_t(-1) ? os->size : offset; |
| } |
| case Class: |
| llvm_unreachable("section classes do not have offsets"); |
| case Regular: |
| case Synthetic: |
| case Spill: |
| return cast<InputSection>(this)->outSecOff + offset; |
| case EHFrame: { |
| // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC |
| // crtbeginT.o may reference the start of an empty .eh_frame to identify the |
| // start of the output .eh_frame. Just return offset. |
| // |
| // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be |
| // discarded due to GC/ICF. We should compute the output section offset. |
| const EhInputSection *es = cast<EhInputSection>(this); |
| if (!es->content().empty()) |
| if (InputSection *isec = es->getParent()) |
| return isec->outSecOff + es->getParentOffset(offset); |
| return offset; |
| } |
| case Merge: |
| const MergeInputSection *ms = cast<MergeInputSection>(this); |
| if (InputSection *isec = ms->getParent()) |
| return isec->outSecOff + ms->getParentOffset(offset); |
| return ms->getParentOffset(offset); |
| } |
| llvm_unreachable("invalid section kind"); |
| } |
| |
| uint64_t SectionBase::getVA(uint64_t offset) const { |
| const OutputSection *out = getOutputSection(); |
| return (out ? out->addr : 0) + getOffset(offset); |
| } |
| |
| OutputSection *SectionBase::getOutputSection() { |
| InputSection *sec; |
| if (auto *isec = dyn_cast<InputSection>(this)) |
| sec = isec; |
| else if (auto *ms = dyn_cast<MergeInputSection>(this)) |
| sec = ms->getParent(); |
| else if (auto *eh = dyn_cast<EhInputSection>(this)) |
| sec = eh->getParent(); |
| else |
| return cast<OutputSection>(this); |
| return sec ? sec->getParent() : nullptr; |
| } |
| |
| // When a section is compressed, `rawData` consists with a header followed |
| // by zlib-compressed data. This function parses a header to initialize |
| // `uncompressedSize` member and remove the header from `rawData`. |
| template <typename ELFT> |
| void InputSectionBase::parseCompressedHeader(Ctx &ctx) { |
| flags &= ~(uint64_t)SHF_COMPRESSED; |
| |
| // New-style header |
| if (content().size() < sizeof(typename ELFT::Chdr)) { |
| ErrAlways(ctx) << this << ": corrupted compressed section"; |
| return; |
| } |
| |
| auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); |
| if (hdr->ch_type == ELFCOMPRESS_ZLIB) { |
| if (!compression::zlib::isAvailable()) |
| ErrAlways(ctx) << this |
| << " is compressed with ELFCOMPRESS_ZLIB, but lld is " |
| "not built with zlib support"; |
| } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { |
| if (!compression::zstd::isAvailable()) |
| ErrAlways(ctx) << this |
| << " is compressed with ELFCOMPRESS_ZSTD, but lld is " |
| "not built with zstd support"; |
| } else { |
| ErrAlways(ctx) << this << ": unsupported compression type (" |
| << uint32_t(hdr->ch_type) << ")"; |
| return; |
| } |
| |
| compressed = true; |
| compressedSize = size; |
| size = hdr->ch_size; |
| addralign = std::max<uint32_t>(hdr->ch_addralign, 1); |
| } |
| |
| InputSection *InputSectionBase::getLinkOrderDep() const { |
| assert(flags & SHF_LINK_ORDER); |
| if (!link) |
| return nullptr; |
| return cast<InputSection>(file->getSections()[link]); |
| } |
| |
| // Find a symbol that encloses a given location. |
| Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, |
| uint8_t type) const { |
| if (file->isInternal()) |
| return nullptr; |
| for (Symbol *b : file->getSymbols()) |
| if (Defined *d = dyn_cast<Defined>(b)) |
| if (d->section == this && d->value <= offset && |
| offset < d->value + d->size && (type == 0 || type == d->type)) |
| return d; |
| return nullptr; |
| } |
| |
| // Returns an object file location string. Used to construct an error message. |
| std::string InputSectionBase::getLocation(uint64_t offset) const { |
| std::string secAndOffset = |
| (name + "+0x" + Twine::utohexstr(offset) + ")").str(); |
| |
| std::string filename = toStr(getCtx(), file); |
| if (Defined *d = getEnclosingFunction(offset)) |
| return filename + ":(function " + toStr(getCtx(), *d) + ": " + secAndOffset; |
| |
| return filename + ":(" + secAndOffset; |
| } |
| |
| static void printFileLine(const ELFSyncStream &s, StringRef path, |
| unsigned line) { |
| StringRef filename = path::filename(path); |
| s << filename << ':' << line; |
| if (filename != path) |
| s << " (" << path << ':' << line << ')'; |
| } |
| |
| // Print an error message that looks like this: |
| // |
| // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) |
| const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, |
| InputSectionBase::SrcMsg &&msg) { |
| auto &sec = msg.sec; |
| if (sec.file->kind() != InputFile::ObjKind) |
| return s; |
| auto &file = cast<ELFFileBase>(*sec.file); |
| |
| // First, look up the DWARF line table. |
| ArrayRef<InputSectionBase *> sections = file.getSections(); |
| auto it = llvm::find(sections, &sec); |
| uint64_t sectionIndex = it != sections.end() |
| ? it - sections.begin() |
| : object::SectionedAddress::UndefSection; |
| DWARFCache *dwarf = file.getDwarf(); |
| if (auto info = dwarf->getDILineInfo(msg.offset, sectionIndex)) |
| printFileLine(s, info->FileName, info->Line); |
| else if (auto fileLine = dwarf->getVariableLoc(msg.sym.getName())) |
| // If it failed, look up again as a variable. |
| printFileLine(s, fileLine->first, fileLine->second); |
| else |
| // File.sourceFile contains STT_FILE symbol, and that is a last resort. |
| s << file.sourceFile; |
| return s; |
| } |
| |
| // Returns a filename string along with an optional section name. This |
| // function is intended to be used for constructing an error |
| // message. The returned message looks like this: |
| // |
| // path/to/foo.o:(function bar) |
| // |
| // or |
| // |
| // path/to/foo.o:(function bar) in archive path/to/bar.a |
| const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, |
| InputSectionBase::ObjMsg &&msg) { |
| auto *sec = msg.sec; |
| s << sec->file->getName() << ":("; |
| |
| // Find a symbol that encloses a given location. getObjMsg may be called |
| // before ObjFile::initSectionsAndLocalSyms where local symbols are |
| // initialized. |
| if (Defined *d = sec->getEnclosingSymbol(msg.offset)) |
| s << d; |
| else |
| s << sec->name << "+0x" << Twine::utohexstr(msg.offset); |
| s << ')'; |
| if (!sec->file->archiveName.empty()) |
| s << (" in archive " + sec->file->archiveName).str(); |
| return s; |
| } |
| |
| PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source, |
| InputSectionDescription &isd) |
| : InputSection(source.file, source.name, source.type, source.flags, |
| source.addralign, source.addralign, {}, SectionBase::Spill), |
| isd(&isd) {} |
| |
| InputSection InputSection::discarded(nullptr, "", 0, 0, 0, 0, |
| ArrayRef<uint8_t>()); |
| |
| InputSection::InputSection(InputFile *f, StringRef name, uint32_t type, |
| uint64_t flags, uint32_t addralign, uint32_t entsize, |
| ArrayRef<uint8_t> data, Kind k) |
| : InputSectionBase(f, name, type, flags, |
| /*link=*/0, /*info=*/0, addralign, /*entsize=*/entsize, |
| data, k) { |
| assert(f || this == &InputSection::discarded); |
| } |
| |
| template <class ELFT> |
| InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, |
| StringRef name) |
| : InputSectionBase(f, header, name, InputSectionBase::Regular) {} |
| |
| // Copy SHT_GROUP section contents. Used only for the -r option. |
| template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { |
| // ELFT::Word is the 32-bit integral type in the target endianness. |
| using u32 = typename ELFT::Word; |
| ArrayRef<u32> from = getDataAs<u32>(); |
| auto *to = reinterpret_cast<u32 *>(buf); |
| |
| // The first entry is not a section number but a flag. |
| *to++ = from[0]; |
| |
| // Adjust section numbers because section numbers in an input object files are |
| // different in the output. We also need to handle combined or discarded |
| // members. |
| ArrayRef<InputSectionBase *> sections = file->getSections(); |
| DenseSet<uint32_t> seen; |
| for (uint32_t idx : from.slice(1)) { |
| OutputSection *osec = sections[idx]->getOutputSection(); |
| if (osec && seen.insert(osec->sectionIndex).second) |
| *to++ = osec->sectionIndex; |
| } |
| } |
| |
| InputSectionBase *InputSection::getRelocatedSection() const { |
| if (file->isInternal() || !isStaticRelSecType(type)) |
| return nullptr; |
| ArrayRef<InputSectionBase *> sections = file->getSections(); |
| return sections[info]; |
| } |
| |
| template <class ELFT, class RelTy> |
| void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf) { |
| if (ctx.arg.relax && !ctx.arg.relocatable && |
| (ctx.arg.emachine == EM_RISCV || ctx.arg.emachine == EM_LOONGARCH)) { |
| // On LoongArch and RISC-V, relaxation might change relocations: copy |
| // from internal ones that are updated by relaxation. |
| InputSectionBase *sec = getRelocatedSection(); |
| copyRelocations<ELFT, RelTy>( |
| ctx, buf, |
| llvm::make_range(sec->relocations.begin(), sec->relocations.end())); |
| } else { |
| // Convert the raw relocations in the input section into Relocation objects |
| // suitable to be used by copyRelocations below. |
| struct MapRel { |
| Ctx &ctx; |
| const ObjFile<ELFT> &file; |
| Relocation operator()(const RelTy &rel) const { |
| // RelExpr is not used so set to a dummy value. |
| return Relocation{R_NONE, rel.getType(ctx.arg.isMips64EL), rel.r_offset, |
| getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; |
| } |
| }; |
| |
| using RawRels = ArrayRef<RelTy>; |
| using MapRelIter = |
| llvm::mapped_iterator<typename RawRels::iterator, MapRel>; |
| auto mapRel = MapRel{ctx, *getFile<ELFT>()}; |
| RawRels rawRels = getDataAs<RelTy>(); |
| auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), |
| MapRelIter(rawRels.end(), mapRel)); |
| copyRelocations<ELFT, RelTy>(ctx, buf, rels); |
| } |
| } |
| |
| // This is used for -r and --emit-relocs. We can't use memcpy to copy |
| // relocations because we need to update symbol table offset and section index |
| // for each relocation. So we copy relocations one by one. |
| template <class ELFT, class RelTy, class RelIt> |
| void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf, |
| llvm::iterator_range<RelIt> rels) { |
| const TargetInfo &target = *ctx.target; |
| InputSectionBase *sec = getRelocatedSection(); |
| (void)sec->contentMaybeDecompress(); // uncompress if needed |
| |
| for (const Relocation &rel : rels) { |
| RelType type = rel.type; |
| const ObjFile<ELFT> *file = getFile<ELFT>(); |
| Symbol &sym = *rel.sym; |
| |
| auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); |
| buf += sizeof(RelTy); |
| |
| if (RelTy::HasAddend) |
| p->r_addend = rel.addend; |
| |
| // Output section VA is zero for -r, so r_offset is an offset within the |
| // section, but for --emit-relocs it is a virtual address. |
| p->r_offset = sec->getVA(rel.offset); |
| p->setSymbolAndType(ctx.in.symTab->getSymbolIndex(sym), type, |
| ctx.arg.isMips64EL); |
| |
| if (sym.type == STT_SECTION) { |
| // We combine multiple section symbols into only one per |
| // section. This means we have to update the addend. That is |
| // trivial for Elf_Rela, but for Elf_Rel we have to write to the |
| // section data. We do that by adding to the Relocation vector. |
| |
| // .eh_frame is horribly special and can reference discarded sections. To |
| // avoid having to parse and recreate .eh_frame, we just replace any |
| // relocation in it pointing to discarded sections with R_*_NONE, which |
| // hopefully creates a frame that is ignored at runtime. Also, don't warn |
| // on .gcc_except_table and debug sections. |
| // |
| // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc |
| auto *d = dyn_cast<Defined>(&sym); |
| if (!d) { |
| if (!isDebugSection(*sec) && sec->name != ".eh_frame" && |
| sec->name != ".gcc_except_table" && sec->name != ".got2" && |
| sec->name != ".toc") { |
| uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; |
| Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; |
| Warn(ctx) << "relocation refers to a discarded section: " |
| << CHECK2(file->getObj().getSectionName(sec), file) |
| << "\n>>> referenced by " << getObjMsg(p->r_offset); |
| } |
| p->setSymbolAndType(0, 0, false); |
| continue; |
| } |
| SectionBase *section = d->section; |
| assert(section->isLive()); |
| |
| int64_t addend = rel.addend; |
| const uint8_t *bufLoc = sec->content().begin() + rel.offset; |
| if (!RelTy::HasAddend) |
| addend = target.getImplicitAddend(bufLoc, type); |
| |
| if (ctx.arg.emachine == EM_MIPS && |
| target.getRelExpr(type, sym, bufLoc) == RE_MIPS_GOTREL) { |
| // Some MIPS relocations depend on "gp" value. By default, |
| // this value has 0x7ff0 offset from a .got section. But |
| // relocatable files produced by a compiler or a linker |
| // might redefine this default value and we must use it |
| // for a calculation of the relocation result. When we |
| // generate EXE or DSO it's trivial. Generating a relocatable |
| // output is more difficult case because the linker does |
| // not calculate relocations in this mode and loses |
| // individual "gp" values used by each input object file. |
| // As a workaround we add the "gp" value to the relocation |
| // addend and save it back to the file. |
| addend += sec->getFile<ELFT>()->mipsGp0; |
| } |
| |
| if (RelTy::HasAddend) |
| p->r_addend = |
| sym.getVA(ctx, addend) - section->getOutputSection()->addr; |
| // For SHF_ALLOC sections relocated by REL, append a relocation to |
| // sec->relocations so that relocateAlloc transitively called by |
| // writeSections will update the implicit addend. Non-SHF_ALLOC sections |
| // utilize relocateNonAlloc to process raw relocations and do not need |
| // this sec->relocations change. |
| else if (ctx.arg.relocatable && (sec->flags & SHF_ALLOC) && |
| type != target.noneRel) |
| sec->addReloc({R_ABS, type, rel.offset, addend, &sym}); |
| } else if (ctx.arg.emachine == EM_PPC && type == R_PPC_PLTREL24 && |
| p->r_addend >= 0x8000 && sec->file->ppc32Got2) { |
| // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 |
| // indicates that r30 is relative to the input section .got2 |
| // (r_addend>=0x8000), after linking, r30 should be relative to the output |
| // section .got2 . To compensate for the shift, adjust r_addend by |
| // ppc32Got->outSecOff. |
| p->r_addend += sec->file->ppc32Got2->outSecOff; |
| } |
| } |
| } |
| |
| // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak |
| // references specially. The general rule is that the value of the symbol in |
| // this context is the address of the place P. A further special case is that |
| // branch relocations to an undefined weak reference resolve to the next |
| // instruction. |
| static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, |
| uint32_t p) { |
| switch (type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this will be either 2 or 4 bytes on from P. |
| case R_ARM_THM_JUMP8: |
| case R_ARM_THM_JUMP11: |
| return p + 2 + a; |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_PREL31: |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| return p + 4 + a; |
| case R_ARM_THM_CALL: |
| // We don't want an interworking BLX to ARM |
| return p + 5 + a; |
| // Unresolved non branch pc-relative relocations |
| // R_ARM_TARGET2 which can be resolved relatively is not present as it never |
| // targets a weak-reference. |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_REL32: |
| case R_ARM_THM_ALU_PREL_11_0: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| case R_ARM_THM_PC12: |
| return p + a; |
| // p + a is unrepresentable as negative immediates can't be encoded. |
| case R_ARM_THM_PC8: |
| return p; |
| } |
| llvm_unreachable("ARM pc-relative relocation expected\n"); |
| } |
| |
| // The comment above getARMUndefinedRelativeWeakVA applies to this function. |
| static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
| switch (type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this is 4 bytes on from P. |
| case R_AARCH64_CALL26: |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_TSTBR14: |
| return p + 4; |
| // Unresolved non branch pc-relative relocations |
| case R_AARCH64_PREL16: |
| case R_AARCH64_PREL32: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_ADR_PREL_LO21: |
| case R_AARCH64_LD_PREL_LO19: |
| case R_AARCH64_PLT32: |
| return p; |
| } |
| llvm_unreachable("AArch64 pc-relative relocation expected\n"); |
| } |
| |
| static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
| switch (type) { |
| case R_RISCV_BRANCH: |
| case R_RISCV_JAL: |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_JUMP: |
| case R_RISCV_PLT32: |
| return p; |
| default: |
| return 0; |
| } |
| } |
| |
| // ARM SBREL relocations are of the form S + A - B where B is the static base |
| // The ARM ABI defines base to be "addressing origin of the output segment |
| // defining the symbol S". We defined the "addressing origin"/static base to be |
| // the base of the PT_LOAD segment containing the Sym. |
| // The procedure call standard only defines a Read Write Position Independent |
| // RWPI variant so in practice we should expect the static base to be the base |
| // of the RW segment. |
| static uint64_t getARMStaticBase(const Symbol &sym) { |
| OutputSection *os = sym.getOutputSection(); |
| if (!os || !os->ptLoad || !os->ptLoad->firstSec) { |
| Err(os->ctx) << "SBREL relocation to " << sym.getName() |
| << " without static base"; |
| return 0; |
| } |
| return os->ptLoad->firstSec->addr; |
| } |
| |
| // For RE_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually |
| // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA |
| // is calculated using PCREL_HI20's symbol. |
| // |
| // This function returns the R_RISCV_PCREL_HI20 relocation from the |
| // R_RISCV_PCREL_LO12 relocation. |
| static Relocation *getRISCVPCRelHi20(Ctx &ctx, const InputSectionBase *loSec, |
| const Relocation &loReloc) { |
| uint64_t addend = loReloc.addend; |
| Symbol *sym = loReloc.sym; |
| |
| const Defined *d = cast<Defined>(sym); |
| if (!d->section) { |
| Err(ctx) << loSec->getLocation(loReloc.offset) |
| << ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " |
| << sym->getName(); |
| return nullptr; |
| } |
| InputSection *hiSec = cast<InputSection>(d->section); |
| |
| if (hiSec != loSec) |
| Err(ctx) << loSec->getLocation(loReloc.offset) |
| << ": R_RISCV_PCREL_LO12 relocation points to a symbol '" |
| << sym->getName() << "' in a different section '" << hiSec->name |
| << "'"; |
| |
| if (addend != 0) |
| Warn(ctx) << loSec->getLocation(loReloc.offset) |
| << ": non-zero addend in R_RISCV_PCREL_LO12 relocation to " |
| << hiSec->getObjMsg(d->value) << " is ignored"; |
| |
| // Relocations are sorted by offset, so we can use std::equal_range to do |
| // binary search. |
| Relocation hiReloc; |
| hiReloc.offset = d->value; |
| auto range = |
| std::equal_range(hiSec->relocs().begin(), hiSec->relocs().end(), hiReloc, |
| [](const Relocation &lhs, const Relocation &rhs) { |
| return lhs.offset < rhs.offset; |
| }); |
| |
| for (auto it = range.first; it != range.second; ++it) |
| if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || |
| it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) |
| return &*it; |
| |
| Err(ctx) << loSec->getLocation(loReloc.offset) |
| << ": R_RISCV_PCREL_LO12 relocation points to " |
| << hiSec->getObjMsg(d->value) |
| << " without an associated R_RISCV_PCREL_HI20 relocation"; |
| return nullptr; |
| } |
| |
| // A TLS symbol's virtual address is relative to the TLS segment. Add a |
| // target-specific adjustment to produce a thread-pointer-relative offset. |
| static int64_t getTlsTpOffset(Ctx &ctx, const Symbol &s) { |
| // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. |
| if (&s == ctx.sym.tlsModuleBase) |
| return 0; |
| |
| // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 |
| // while most others use Variant 1. At run time TP will be aligned to p_align. |
| |
| // Variant 1. TP will be followed by an optional gap (which is the size of 2 |
| // pointers on ARM/AArch64, 0 on other targets), followed by alignment |
| // padding, then the static TLS blocks. The alignment padding is added so that |
| // (TP + gap + padding) is congruent to p_vaddr modulo p_align. |
| // |
| // Variant 2. Static TLS blocks, followed by alignment padding are placed |
| // before TP. The alignment padding is added so that (TP - padding - |
| // p_memsz) is congruent to p_vaddr modulo p_align. |
| PhdrEntry *tls = ctx.tlsPhdr; |
| if (!tls) // Reported an error in getSymVA |
| return 0; |
| switch (ctx.arg.emachine) { |
| // Variant 1. |
| case EM_ARM: |
| case EM_AARCH64: |
| return s.getVA(ctx, 0) + ctx.arg.wordsize * 2 + |
| ((tls->p_vaddr - ctx.arg.wordsize * 2) & (tls->p_align - 1)); |
| case EM_MIPS: |
| case EM_PPC: |
| case EM_PPC64: |
| // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is |
| // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library |
| // data and 0xf000 of the program's TLS segment. |
| return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; |
| case EM_LOONGARCH: |
| case EM_RISCV: |
| // See the comment in handleTlsRelocation. For TLSDESC=>IE, |
| // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While |
| // `tls` may be null, the return value is ignored. |
| if (s.type != STT_TLS) |
| return 0; |
| return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1)); |
| |
| // Variant 2. |
| case EM_HEXAGON: |
| case EM_S390: |
| case EM_SPARCV9: |
| case EM_386: |
| case EM_X86_64: |
| return s.getVA(ctx, 0) - tls->p_memsz - |
| ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); |
| default: |
| llvm_unreachable("unhandled ctx.arg.emachine"); |
| } |
| } |
| |
| uint64_t InputSectionBase::getRelocTargetVA(Ctx &ctx, const Relocation &r, |
| uint64_t p) const { |
| int64_t a = r.addend; |
| switch (r.expr) { |
| case R_ABS: |
| case R_DTPREL: |
| case R_RELAX_TLS_LD_TO_LE_ABS: |
| case R_RELAX_GOT_PC_NOPIC: |
| case RE_AARCH64_AUTH: |
| case RE_RISCV_ADD: |
| case RE_RISCV_LEB128: |
| return r.sym->getVA(ctx, a); |
| case R_ADDEND: |
| return a; |
| case R_RELAX_HINT: |
| return 0; |
| case RE_ARM_SBREL: |
| return r.sym->getVA(ctx, a) - getARMStaticBase(*r.sym); |
| case R_GOT: |
| case RE_AARCH64_AUTH_GOT: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| return r.sym->getGotVA(ctx) + a; |
| case RE_LOONGARCH_GOT: |
| // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type |
| // for their page offsets. The arithmetics are different in the TLS case |
| // so we have to duplicate some logic here. |
| if (r.sym->hasFlag(NEEDS_TLSGD) && r.type != R_LARCH_TLS_IE_PC_LO12) |
| // Like RE_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. |
| return ctx.in.got->getGlobalDynAddr(*r.sym) + a; |
| return r.sym->getGotVA(ctx) + a; |
| case R_GOTONLY_PC: |
| return ctx.in.got->getVA() + a - p; |
| case R_GOTPLTONLY_PC: |
| return ctx.in.gotPlt->getVA() + a - p; |
| case R_GOTREL: |
| case RE_PPC64_RELAX_TOC: |
| return r.sym->getVA(ctx, a) - ctx.in.got->getVA(); |
| case R_GOTPLTREL: |
| return r.sym->getVA(ctx, a) - ctx.in.gotPlt->getVA(); |
| case R_GOTPLT: |
| case R_RELAX_TLS_GD_TO_IE_GOTPLT: |
| return r.sym->getGotVA(ctx) + a - ctx.in.gotPlt->getVA(); |
| case R_TLSLD_GOT_OFF: |
| case R_GOT_OFF: |
| case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| return r.sym->getGotOffset(ctx) + a; |
| case RE_AARCH64_GOT_PAGE_PC: |
| case RE_AARCH64_AUTH_GOT_PAGE_PC: |
| case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| return getAArch64Page(r.sym->getGotVA(ctx) + a) - getAArch64Page(p); |
| case RE_AARCH64_GOT_PAGE: |
| return r.sym->getGotVA(ctx) + a - getAArch64Page(ctx.in.got->getVA()); |
| case R_GOT_PC: |
| case RE_AARCH64_AUTH_GOT_PC: |
| case R_RELAX_TLS_GD_TO_IE: |
| return r.sym->getGotVA(ctx) + a - p; |
| case R_GOTPLT_GOTREL: |
| return r.sym->getGotPltVA(ctx) + a - ctx.in.got->getVA(); |
| case R_GOTPLT_PC: |
| return r.sym->getGotPltVA(ctx) + a - p; |
| case RE_LOONGARCH_GOT_PAGE_PC: |
| if (r.sym->hasFlag(NEEDS_TLSGD)) |
| return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p, |
| r.type); |
| return getLoongArchPageDelta(r.sym->getGotVA(ctx) + a, p, r.type); |
| case RE_MIPS_GOTREL: |
| return r.sym->getVA(ctx, a) - ctx.in.mipsGot->getGp(file); |
| case RE_MIPS_GOT_GP: |
| return ctx.in.mipsGot->getGp(file) + a; |
| case RE_MIPS_GOT_GP_PC: { |
| // R_MIPS_LO16 expression has RE_MIPS_GOT_GP_PC r.type iif the target |
| // is _gp_disp symbol. In that case we should use the following |
| // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| // microMIPS variants of these relocations use slightly different |
| // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() |
| // to correctly handle less-significant bit of the microMIPS symbol. |
| uint64_t v = ctx.in.mipsGot->getGp(file) + a - p; |
| if (r.type == R_MIPS_LO16 || r.type == R_MICROMIPS_LO16) |
| v += 4; |
| if (r.type == R_MICROMIPS_LO16 || r.type == R_MICROMIPS_HI16) |
| v -= 1; |
| return v; |
| } |
| case RE_MIPS_GOT_LOCAL_PAGE: |
| // If relocation against MIPS local symbol requires GOT entry, this entry |
| // should be initialized by 'page address'. This address is high 16-bits |
| // of sum the symbol's value and the addend. |
| return ctx.in.mipsGot->getVA() + |
| ctx.in.mipsGot->getPageEntryOffset(file, *r.sym, a) - |
| ctx.in.mipsGot->getGp(file); |
| case RE_MIPS_GOT_OFF: |
| case RE_MIPS_GOT_OFF32: |
| // In case of MIPS if a GOT relocation has non-zero addend this addend |
| // should be applied to the GOT entry content not to the GOT entry offset. |
| // That is why we use separate expression r.type. |
| return ctx.in.mipsGot->getVA() + |
| ctx.in.mipsGot->getSymEntryOffset(file, *r.sym, a) - |
| ctx.in.mipsGot->getGp(file); |
| case RE_MIPS_TLSGD: |
| return ctx.in.mipsGot->getVA() + |
| ctx.in.mipsGot->getGlobalDynOffset(file, *r.sym) - |
| ctx.in.mipsGot->getGp(file); |
| case RE_MIPS_TLSLD: |
| return ctx.in.mipsGot->getVA() + ctx.in.mipsGot->getTlsIndexOffset(file) - |
| ctx.in.mipsGot->getGp(file); |
| case RE_AARCH64_PAGE_PC: { |
| uint64_t val = r.sym->isUndefWeak() ? p + a : r.sym->getVA(ctx, a); |
| return getAArch64Page(val) - getAArch64Page(p); |
| } |
| case RE_RISCV_PC_INDIRECT: { |
| if (const Relocation *hiRel = getRISCVPCRelHi20(ctx, this, r)) |
| return getRelocTargetVA(ctx, *hiRel, r.sym->getVA(ctx)); |
| return 0; |
| } |
| case RE_LOONGARCH_PAGE_PC: |
| return getLoongArchPageDelta(r.sym->getVA(ctx, a), p, r.type); |
| case R_PC: |
| case RE_ARM_PCA: { |
| uint64_t dest; |
| if (r.expr == RE_ARM_PCA) |
| // Some PC relative ARM (Thumb) relocations align down the place. |
| p = p & 0xfffffffc; |
| if (r.sym->isUndefined()) { |
| // On ARM and AArch64 a branch to an undefined weak resolves to the next |
| // instruction, otherwise the place. On RISC-V, resolve an undefined weak |
| // to the same instruction to cause an infinite loop (making the user |
| // aware of the issue) while ensuring no overflow. |
| // Note: if the symbol is hidden, its binding has been converted to local, |
| // so we just check isUndefined() here. |
| if (ctx.arg.emachine == EM_ARM) |
| dest = getARMUndefinedRelativeWeakVA(r.type, a, p); |
| else if (ctx.arg.emachine == EM_AARCH64) |
| dest = getAArch64UndefinedRelativeWeakVA(r.type, p) + a; |
| else if (ctx.arg.emachine == EM_PPC) |
| dest = p; |
| else if (ctx.arg.emachine == EM_RISCV) |
| dest = getRISCVUndefinedRelativeWeakVA(r.type, p) + a; |
| else |
| dest = r.sym->getVA(ctx, a); |
| } else { |
| dest = r.sym->getVA(ctx, a); |
| } |
| return dest - p; |
| } |
| case R_PLT: |
| return r.sym->getPltVA(ctx) + a; |
| case R_PLT_PC: |
| case RE_PPC64_CALL_PLT: |
| return r.sym->getPltVA(ctx) + a - p; |
| case RE_LOONGARCH_PLT_PAGE_PC: |
| return getLoongArchPageDelta(r.sym->getPltVA(ctx) + a, p, r.type); |
| case R_PLT_GOTPLT: |
| return r.sym->getPltVA(ctx) + a - ctx.in.gotPlt->getVA(); |
| case R_PLT_GOTREL: |
| return r.sym->getPltVA(ctx) + a - ctx.in.got->getVA(); |
| case RE_PPC32_PLTREL: |
| // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 |
| // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for |
| // target VA computation. |
| return r.sym->getPltVA(ctx) - p; |
| case RE_PPC64_CALL: { |
| uint64_t symVA = r.sym->getVA(ctx, a); |
| // If we have an undefined weak symbol, we might get here with a symbol |
| // address of zero. That could overflow, but the code must be unreachable, |
| // so don't bother doing anything at all. |
| if (!symVA) |
| return 0; |
| |
| // PPC64 V2 ABI describes two entry points to a function. The global entry |
| // point is used for calls where the caller and callee (may) have different |
| // TOC base pointers and r2 needs to be modified to hold the TOC base for |
| // the callee. For local calls the caller and callee share the same |
| // TOC base and so the TOC pointer initialization code should be skipped by |
| // branching to the local entry point. |
| return symVA - p + |
| getPPC64GlobalEntryToLocalEntryOffset(ctx, r.sym->stOther); |
| } |
| case RE_PPC64_TOCBASE: |
| return getPPC64TocBase(ctx) + a; |
| case R_RELAX_GOT_PC: |
| case RE_PPC64_RELAX_GOT_PC: |
| return r.sym->getVA(ctx, a) - p; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_IE_TO_LE: |
| case R_RELAX_TLS_LD_TO_LE: |
| case R_TPREL: |
| // It is not very clear what to return if the symbol is undefined. With |
| // --noinhibit-exec, even a non-weak undefined reference may reach here. |
| // Just return A, which matches R_ABS, and the behavior of some dynamic |
| // loaders. |
| if (r.sym->isUndefined()) |
| return a; |
| return getTlsTpOffset(ctx, *r.sym) + a; |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| case R_TPREL_NEG: |
| if (r.sym->isUndefined()) |
| return a; |
| return -getTlsTpOffset(ctx, *r.sym) + a; |
| case R_SIZE: |
| return r.sym->getSize() + a; |
| case R_TLSDESC: |
| case RE_AARCH64_AUTH_TLSDESC: |
| return ctx.in.got->getTlsDescAddr(*r.sym) + a; |
| case R_TLSDESC_PC: |
| return ctx.in.got->getTlsDescAddr(*r.sym) + a - p; |
| case R_TLSDESC_GOTPLT: |
| return ctx.in.got->getTlsDescAddr(*r.sym) + a - ctx.in.gotPlt->getVA(); |
| case RE_AARCH64_TLSDESC_PAGE: |
| case RE_AARCH64_AUTH_TLSDESC_PAGE: |
| return getAArch64Page(ctx.in.got->getTlsDescAddr(*r.sym) + a) - |
| getAArch64Page(p); |
| case RE_LOONGARCH_TLSDESC_PAGE_PC: |
| return getLoongArchPageDelta(ctx.in.got->getTlsDescAddr(*r.sym) + a, p, |
| r.type); |
| case R_TLSGD_GOT: |
| return ctx.in.got->getGlobalDynOffset(*r.sym) + a; |
| case R_TLSGD_GOTPLT: |
| return ctx.in.got->getGlobalDynAddr(*r.sym) + a - ctx.in.gotPlt->getVA(); |
| case R_TLSGD_PC: |
| return ctx.in.got->getGlobalDynAddr(*r.sym) + a - p; |
| case RE_LOONGARCH_TLSGD_PAGE_PC: |
| return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p, |
| r.type); |
| case R_TLSLD_GOTPLT: |
| return ctx.in.got->getVA() + ctx.in.got->getTlsIndexOff() + a - |
| ctx.in.gotPlt->getVA(); |
| case R_TLSLD_GOT: |
| return ctx.in.got->getTlsIndexOff() + a; |
| case R_TLSLD_PC: |
| return ctx.in.got->getTlsIndexVA() + a - p; |
| default: |
| llvm_unreachable("invalid expression"); |
| } |
| } |
| |
| // This function applies relocations to sections without SHF_ALLOC bit. |
| // Such sections are never mapped to memory at runtime. Debug sections are |
| // an example. Relocations in non-alloc sections are much easier to |
| // handle than in allocated sections because it will never need complex |
| // treatment such as GOT or PLT (because at runtime no one refers them). |
| // So, we handle relocations for non-alloc sections directly in this |
| // function as a performance optimization. |
| template <class ELFT, class RelTy> |
| void InputSection::relocateNonAlloc(Ctx &ctx, uint8_t *buf, |
| Relocs<RelTy> rels) { |
| const unsigned bits = sizeof(typename ELFT::uint) * 8; |
| const TargetInfo &target = *ctx.target; |
| const auto emachine = ctx.arg.emachine; |
| const bool isDebug = isDebugSection(*this); |
| const bool isDebugLine = isDebug && name == ".debug_line"; |
| std::optional<uint64_t> tombstone; |
| if (isDebug) { |
| if (name == ".debug_loc" || name == ".debug_ranges") |
| tombstone = 1; |
| else if (name == ".debug_names") |
| tombstone = UINT64_MAX; // tombstone value |
| else |
| tombstone = 0; |
| } |
| for (const auto &patAndValue : llvm::reverse(ctx.arg.deadRelocInNonAlloc)) |
| if (patAndValue.first.match(this->name)) { |
| tombstone = patAndValue.second; |
| break; |
| } |
| |
| const InputFile *f = this->file; |
| for (auto it = rels.begin(), end = rels.end(); it != end; ++it) { |
| const RelTy &rel = *it; |
| const RelType type = rel.getType(ctx.arg.isMips64EL); |
| const uint64_t offset = rel.r_offset; |
| uint8_t *bufLoc = buf + offset; |
| int64_t addend = getAddend<ELFT>(rel); |
| if (!RelTy::HasAddend) |
| addend += target.getImplicitAddend(bufLoc, type); |
| |
| Symbol &sym = f->getRelocTargetSym(rel); |
| RelExpr expr = target.getRelExpr(type, sym, bufLoc); |
| if (expr == R_NONE) |
| continue; |
| auto *ds = dyn_cast<Defined>(&sym); |
| |
| if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { |
| if (++it != end && |
| it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && |
| it->r_offset == offset) { |
| uint64_t val; |
| if (!ds && tombstone) { |
| val = *tombstone; |
| } else { |
| val = sym.getVA(ctx, addend) - |
| (f->getRelocTargetSym(*it).getVA(ctx) + getAddend<ELFT>(*it)); |
| } |
| if (overwriteULEB128(bufLoc, val) >= 0x80) |
| Err(ctx) << getLocation(offset) << ": ULEB128 value " << val |
| << " exceeds available space; references '" << &sym << "'"; |
| continue; |
| } |
| Err(ctx) << getLocation(offset) |
| << ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128"; |
| return; |
| } |
| |
| if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { |
| // Resolve relocations in .debug_* referencing (discarded symbols or ICF |
| // folded section symbols) to a tombstone value. Resolving to addend is |
| // unsatisfactory because the result address range may collide with a |
| // valid range of low address, or leave multiple CUs claiming ownership of |
| // the same range of code, which may confuse consumers. |
| // |
| // To address the problems, we use -1 as a tombstone value for most |
| // .debug_* sections. We have to ignore the addend because we don't want |
| // to resolve an address attribute (which may have a non-zero addend) to |
| // -1+addend (wrap around to a low address). |
| // |
| // R_DTPREL type relocations represent an offset into the dynamic thread |
| // vector. The computed value is st_value plus a non-negative offset. |
| // Negative values are invalid, so -1 can be used as the tombstone value. |
| // |
| // If the referenced symbol is relative to a discarded section (due to |
| // --gc-sections, COMDAT, etc), it has been converted to a Undefined. |
| // `ds->folded` catches the ICF folded case. However, resolving a |
| // relocation in .debug_line to -1 would stop debugger users from setting |
| // breakpoints on the folded-in function, so exclude .debug_line. |
| // |
| // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value |
| // (base address selection entry), use 1 (which is used by GNU ld for |
| // .debug_ranges). |
| // |
| // TODO To reduce disruption, we use 0 instead of -1 as the tombstone |
| // value. Enable -1 in a future release. |
| if (!ds || (ds->folded && !isDebugLine)) { |
| // If -z dead-reloc-in-nonalloc= is specified, respect it. |
| uint64_t value = SignExtend64<bits>(*tombstone); |
| // For a 32-bit local TU reference in .debug_names, X86_64::relocate |
| // requires that the unsigned value for R_X86_64_32 is truncated to |
| // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit |
| // absolute relocations and do not need this change. |
| if (emachine == EM_X86_64 && type == R_X86_64_32) |
| value = static_cast<uint32_t>(value); |
| target.relocateNoSym(bufLoc, type, value); |
| continue; |
| } |
| } |
| |
| // For a relocatable link, content relocated by relocation types with an |
| // explicit addend, such as RELA, remain unchanged and we can stop here. |
| // While content relocated by relocation types with an implicit addend, such |
| // as REL, needs the implicit addend updated. |
| if (ctx.arg.relocatable && (RelTy::HasAddend || sym.type != STT_SECTION)) |
| continue; |
| |
| // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC |
| // sections. |
| if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || |
| expr == RE_RISCV_ADD || expr == RE_ARM_SBREL) { |
| target.relocateNoSym(bufLoc, type, |
| SignExtend64<bits>(sym.getVA(ctx, addend))); |
| continue; |
| } |
| |
| if (expr == R_SIZE) { |
| target.relocateNoSym(bufLoc, type, |
| SignExtend64<bits>(sym.getSize() + addend)); |
| continue; |
| } |
| |
| // If the control reaches here, we found a PC-relative relocation in a |
| // non-ALLOC section. Since non-ALLOC section is not loaded into memory |
| // at runtime, the notion of PC-relative doesn't make sense here. So, |
| // this is a usage error. However, GNU linkers historically accept such |
| // relocations without any errors and relocate them as if they were at |
| // address 0. For bug-compatibility, we accept them with warnings. We |
| // know Steel Bank Common Lisp as of 2018 have this bug. |
| // |
| // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations |
| // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in |
| // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to |
| // keep this bug-compatible code for a while. |
| bool isErr = expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC); |
| { |
| ELFSyncStream diag(ctx, isErr && !ctx.arg.noinhibitExec |
| ? DiagLevel::Err |
| : DiagLevel::Warn); |
| diag << getLocation(offset) << ": has non-ABS relocation " << type |
| << " against symbol '" << &sym << "'"; |
| } |
| if (!isErr) |
| target.relocateNoSym( |
| bufLoc, type, |
| SignExtend64<bits>(sym.getVA(ctx, addend - offset - outSecOff))); |
| } |
| } |
| |
| template <class ELFT> |
| void InputSectionBase::relocate(Ctx &ctx, uint8_t *buf, uint8_t *bufEnd) { |
| if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) |
| adjustSplitStackFunctionPrologues<ELFT>(ctx, buf, bufEnd); |
| |
| if (flags & SHF_ALLOC) { |
| ctx.target->relocateAlloc(*this, buf); |
| return; |
| } |
| |
| auto *sec = cast<InputSection>(this); |
| // For a relocatable link, also call relocateNonAlloc() to rewrite applicable |
| // locations with tombstone values. |
| invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, ctx, buf); |
| } |
| |
| // For each function-defining prologue, find any calls to __morestack, |
| // and replace them with calls to __morestack_non_split. |
| static void switchMorestackCallsToMorestackNonSplit( |
| Ctx &ctx, DenseSet<Defined *> &prologues, |
| SmallVector<Relocation *, 0> &morestackCalls) { |
| |
| // If the target adjusted a function's prologue, all calls to |
| // __morestack inside that function should be switched to |
| // __morestack_non_split. |
| Symbol *moreStackNonSplit = ctx.symtab->find("__morestack_non_split"); |
| if (!moreStackNonSplit) { |
| ErrAlways(ctx) << "mixing split-stack objects requires a definition of " |
| "__morestack_non_split"; |
| return; |
| } |
| |
| // Sort both collections to compare addresses efficiently. |
| llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { |
| return l->offset < r->offset; |
| }); |
| std::vector<Defined *> functions(prologues.begin(), prologues.end()); |
| llvm::sort(functions, [](const Defined *l, const Defined *r) { |
| return l->value < r->value; |
| }); |
| |
| auto it = morestackCalls.begin(); |
| for (Defined *f : functions) { |
| // Find the first call to __morestack within the function. |
| while (it != morestackCalls.end() && (*it)->offset < f->value) |
| ++it; |
| // Adjust all calls inside the function. |
| while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { |
| (*it)->sym = moreStackNonSplit; |
| ++it; |
| } |
| } |
| } |
| |
| static bool enclosingPrologueAttempted(uint64_t offset, |
| const DenseSet<Defined *> &prologues) { |
| for (Defined *f : prologues) |
| if (f->value <= offset && offset < f->value + f->size) |
| return true; |
| return false; |
| } |
| |
| // If a function compiled for split stack calls a function not |
| // compiled for split stack, then the caller needs its prologue |
| // adjusted to ensure that the called function will have enough stack |
| // available. Find those functions, and adjust their prologues. |
| template <class ELFT> |
| void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx &ctx, uint8_t *buf, |
| uint8_t *end) { |
| DenseSet<Defined *> prologues; |
| SmallVector<Relocation *, 0> morestackCalls; |
| |
| for (Relocation &rel : relocs()) { |
| // Ignore calls into the split-stack api. |
| if (rel.sym->getName().starts_with("__morestack")) { |
| if (rel.sym->getName() == "__morestack") |
| morestackCalls.push_back(&rel); |
| continue; |
| } |
| |
| // A relocation to non-function isn't relevant. Sometimes |
| // __morestack is not marked as a function, so this check comes |
| // after the name check. |
| if (rel.sym->type != STT_FUNC) |
| continue; |
| |
| // If the callee's-file was compiled with split stack, nothing to do. In |
| // this context, a "Defined" symbol is one "defined by the binary currently |
| // being produced". So an "undefined" symbol might be provided by a shared |
| // library. It is not possible to tell how such symbols were compiled, so be |
| // conservative. |
| if (Defined *d = dyn_cast<Defined>(rel.sym)) |
| if (InputSection *isec = cast_or_null<InputSection>(d->section)) |
| if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) |
| continue; |
| |
| if (enclosingPrologueAttempted(rel.offset, prologues)) |
| continue; |
| |
| if (Defined *f = getEnclosingFunction(rel.offset)) { |
| prologues.insert(f); |
| if (ctx.target->adjustPrologueForCrossSplitStack(buf + f->value, end, |
| f->stOther)) |
| continue; |
| if (!getFile<ELFT>()->someNoSplitStack) |
| Err(ctx) |
| << this << ": " << f->getName() << " (with -fsplit-stack) calls " |
| << rel.sym->getName() |
| << " (without -fsplit-stack), but couldn't adjust its prologue"; |
| } |
| } |
| |
| if (ctx.target->needsMoreStackNonSplit) |
| switchMorestackCallsToMorestackNonSplit(ctx, prologues, morestackCalls); |
| } |
| |
| template <class ELFT> void InputSection::writeTo(Ctx &ctx, uint8_t *buf) { |
| if (LLVM_UNLIKELY(type == SHT_NOBITS)) |
| return; |
| // If -r or --emit-relocs is given, then an InputSection |
| // may be a relocation section. |
| if (LLVM_UNLIKELY(type == SHT_RELA)) { |
| copyRelocations<ELFT, typename ELFT::Rela>(ctx, buf); |
| return; |
| } |
| if (LLVM_UNLIKELY(type == SHT_REL)) { |
| copyRelocations<ELFT, typename ELFT::Rel>(ctx, buf); |
| return; |
| } |
| |
| // If -r is given, we may have a SHT_GROUP section. |
| if (LLVM_UNLIKELY(type == SHT_GROUP)) { |
| copyShtGroup<ELFT>(buf); |
| return; |
| } |
| |
| // If this is a compressed section, uncompress section contents directly |
| // to the buffer. |
| if (compressed) { |
| auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); |
| auto compressed = ArrayRef<uint8_t>(content_, compressedSize) |
| .slice(sizeof(typename ELFT::Chdr)); |
| size_t size = this->size; |
| if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB |
| ? compression::zlib::decompress(compressed, buf, size) |
| : compression::zstd::decompress(compressed, buf, size)) |
| Err(ctx) << this << ": decompress failed: " << std::move(e); |
| uint8_t *bufEnd = buf + size; |
| relocate<ELFT>(ctx, buf, bufEnd); |
| return; |
| } |
| |
| // Copy section contents from source object file to output file |
| // and then apply relocations. |
| memcpy(buf, content().data(), content().size()); |
| relocate<ELFT>(ctx, buf, buf + content().size()); |
| } |
| |
| void InputSection::replace(InputSection *other) { |
| addralign = std::max(addralign, other->addralign); |
| |
| // When a section is replaced with another section that was allocated to |
| // another partition, the replacement section (and its associated sections) |
| // need to be placed in the main partition so that both partitions will be |
| // able to access it. |
| if (partition != other->partition) { |
| partition = 1; |
| for (InputSection *isec : dependentSections) |
| isec->partition = 1; |
| } |
| |
| other->repl = repl; |
| other->markDead(); |
| } |
| |
| template <class ELFT> |
| EhInputSection::EhInputSection(ObjFile<ELFT> &f, |
| const typename ELFT::Shdr &header, |
| StringRef name) |
| : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} |
| |
| SyntheticSection *EhInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(parent); |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. |
| // This function splits an input section into records and returns them. |
| template <class ELFT> void EhInputSection::split() { |
| const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| // getReloc expects the relocations to be sorted by r_offset. See the comment |
| // in scanRelocs. |
| if (rels.areRelocsRel()) { |
| SmallVector<typename ELFT::Rel, 0> storage; |
| split<ELFT>(sortRels(rels.rels, storage)); |
| } else { |
| SmallVector<typename ELFT::Rela, 0> storage; |
| split<ELFT>(sortRels(rels.relas, storage)); |
| } |
| } |
| |
| template <class ELFT, class RelTy> |
| void EhInputSection::split(ArrayRef<RelTy> rels) { |
| ArrayRef<uint8_t> d = content(); |
| const char *msg = nullptr; |
| unsigned relI = 0; |
| while (!d.empty()) { |
| if (d.size() < 4) { |
| msg = "CIE/FDE too small"; |
| break; |
| } |
| uint64_t size = endian::read32<ELFT::Endianness>(d.data()); |
| if (size == 0) // ZERO terminator |
| break; |
| uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4); |
| size += 4; |
| if (LLVM_UNLIKELY(size > d.size())) { |
| // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, |
| // but we do not support that format yet. |
| msg = size == UINT32_MAX + uint64_t(4) |
| ? "CIE/FDE too large" |
| : "CIE/FDE ends past the end of the section"; |
| break; |
| } |
| |
| // Find the first relocation that points to [off,off+size). Relocations |
| // have been sorted by r_offset. |
| const uint64_t off = d.data() - content().data(); |
| while (relI != rels.size() && rels[relI].r_offset < off) |
| ++relI; |
| unsigned firstRel = -1; |
| if (relI != rels.size() && rels[relI].r_offset < off + size) |
| firstRel = relI; |
| (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); |
| d = d.slice(size); |
| } |
| if (msg) |
| Err(file->ctx) << "corrupted .eh_frame: " << msg << "\n>>> defined in " |
| << getObjMsg(d.data() - content().data()); |
| } |
| |
| // Return the offset in an output section for a given input offset. |
| uint64_t EhInputSection::getParentOffset(uint64_t offset) const { |
| auto it = partition_point( |
| fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); |
| if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { |
| it = partition_point( |
| cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); |
| if (it == cies.begin()) // invalid piece |
| return offset; |
| } |
| if (it[-1].outputOff == -1) // invalid piece |
| return offset - it[-1].inputOff; |
| return it[-1].outputOff + (offset - it[-1].inputOff); |
| } |
| |
| static size_t findNull(StringRef s, size_t entSize) { |
| for (unsigned i = 0, n = s.size(); i != n; i += entSize) { |
| const char *b = s.begin() + i; |
| if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) |
| return i; |
| } |
| llvm_unreachable(""); |
| } |
| |
| // Split SHF_STRINGS section. Such section is a sequence of |
| // null-terminated strings. |
| void MergeInputSection::splitStrings(StringRef s, size_t entSize) { |
| const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections; |
| const char *p = s.data(), *end = s.data() + s.size(); |
| if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) { |
| Err(getCtx()) << this << ": string is not null terminated"; |
| pieces.emplace_back(entSize, 0, false); |
| return; |
| } |
| if (entSize == 1) { |
| // Optimize the common case. |
| do { |
| size_t size = strlen(p); |
| pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); |
| p += size + 1; |
| } while (p != end); |
| } else { |
| do { |
| size_t size = findNull(StringRef(p, end - p), entSize); |
| pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); |
| p += size + entSize; |
| } while (p != end); |
| } |
| } |
| |
| // Split non-SHF_STRINGS section. Such section is a sequence of |
| // fixed size records. |
| void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, |
| size_t entSize) { |
| size_t size = data.size(); |
| assert((size % entSize) == 0); |
| const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections; |
| |
| pieces.resize_for_overwrite(size / entSize); |
| for (size_t i = 0, j = 0; i != size; i += entSize, j++) |
| pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; |
| } |
| |
| template <class ELFT> |
| MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, |
| const typename ELFT::Shdr &header, |
| StringRef name) |
| : InputSectionBase(f, header, name, InputSectionBase::Merge) {} |
| |
| MergeInputSection::MergeInputSection(Ctx &ctx, StringRef name, uint32_t type, |
| uint64_t flags, uint64_t entsize, |
| ArrayRef<uint8_t> data) |
| : InputSectionBase(ctx.internalFile, name, type, flags, /*link=*/0, |
| /*info=*/0, |
| /*addralign=*/entsize, entsize, data, |
| SectionBase::Merge) {} |
| |
| // This function is called after we obtain a complete list of input sections |
| // that need to be linked. This is responsible to split section contents |
| // into small chunks for further processing. |
| // |
| // Note that this function is called from parallelForEach. This must be |
| // thread-safe (i.e. no memory allocation from the pools). |
| void MergeInputSection::splitIntoPieces() { |
| assert(pieces.empty()); |
| |
| if (flags & SHF_STRINGS) |
| splitStrings(toStringRef(contentMaybeDecompress()), entsize); |
| else |
| splitNonStrings(contentMaybeDecompress(), entsize); |
| } |
| |
| SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { |
| if (content().size() <= offset) { |
| Err(getCtx()) << this << ": offset is outside the section"; |
| return pieces[0]; |
| } |
| return partition_point( |
| pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; |
| } |
| |
| // Return the offset in an output section for a given input offset. |
| uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { |
| const SectionPiece &piece = getSectionPiece(offset); |
| return piece.outputOff + (offset - piece.inputOff); |
| } |
| |
| template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, |
| StringRef); |
| |
| template void InputSection::writeTo<ELF32LE>(Ctx &, uint8_t *); |
| template void InputSection::writeTo<ELF32BE>(Ctx &, uint8_t *); |
| template void InputSection::writeTo<ELF64LE>(Ctx &, uint8_t *); |
| template void InputSection::writeTo<ELF64BE>(Ctx &, uint8_t *); |
| |
| template RelsOrRelas<ELF32LE> |
| InputSectionBase::relsOrRelas<ELF32LE>(bool) const; |
| template RelsOrRelas<ELF32BE> |
| InputSectionBase::relsOrRelas<ELF32BE>(bool) const; |
| template RelsOrRelas<ELF64LE> |
| InputSectionBase::relsOrRelas<ELF64LE>(bool) const; |
| template RelsOrRelas<ELF64BE> |
| InputSectionBase::relsOrRelas<ELF64BE>(bool) const; |
| |
| template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, |
| const ELF32LE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, |
| const ELF32BE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, |
| const ELF64LE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, |
| const ELF64BE::Shdr &, StringRef); |
| |
| template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, |
| const ELF32LE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, |
| const ELF32BE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, |
| const ELF64LE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, |
| const ELF64BE::Shdr &, StringRef); |
| |
| template void EhInputSection::split<ELF32LE>(); |
| template void EhInputSection::split<ELF32BE>(); |
| template void EhInputSection::split<ELF64LE>(); |
| template void EhInputSection::split<ELF64BE>(); |