| //===- LoongArch.cpp ------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "OutputSections.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Support/LEB128.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| class LoongArch final : public TargetInfo { |
| public: |
| LoongArch(Ctx &); |
| uint32_t calcEFlags() const override; |
| int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| RelType getDynRel(RelType type) const override; |
| RelExpr getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const override; |
| bool usesOnlyLowPageBits(RelType type) const override; |
| void relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| bool relaxOnce(int pass) const override; |
| void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| void finalizeRelax(int passes) const override; |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| enum Op { |
| SUB_W = 0x00110000, |
| SUB_D = 0x00118000, |
| BREAK = 0x002a0000, |
| SRLI_W = 0x00448000, |
| SRLI_D = 0x00450000, |
| ADDI_W = 0x02800000, |
| ADDI_D = 0x02c00000, |
| ANDI = 0x03400000, |
| ORI = 0x03800000, |
| LU12I_W = 0x14000000, |
| PCADDI = 0x18000000, |
| PCADDU12I = 0x1c000000, |
| LD_W = 0x28800000, |
| LD_D = 0x28c00000, |
| JIRL = 0x4c000000, |
| B = 0x50000000, |
| BL = 0x54000000, |
| }; |
| |
| enum Reg { |
| R_ZERO = 0, |
| R_RA = 1, |
| R_TP = 2, |
| R_T0 = 12, |
| R_T1 = 13, |
| R_T2 = 14, |
| R_T3 = 15, |
| }; |
| } // namespace |
| |
| // Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences |
| // like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i` |
| // produces a PC-relative intermediate value with the lowest 12 bits zeroed (the |
| // "page") for the next instruction to add in the "page offset". (`pcalau12i` |
| // stands for something like "PC ALigned Add Upper that starts from the 12th |
| // bit, Immediate".) |
| // |
| // Here a "page" is in fact just another way to refer to the 12-bit range |
| // allowed by the immediate field of the addi/ld/st instructions, and not |
| // related to the system or the kernel's actual page size. The semantics happen |
| // to match the AArch64 `adrp`, so the concept of "page" is borrowed here. |
| static uint64_t getLoongArchPage(uint64_t p) { |
| return p & ~static_cast<uint64_t>(0xfff); |
| } |
| |
| static uint32_t lo12(uint32_t val) { return val & 0xfff; } |
| |
| // Calculate the adjusted page delta between dest and PC. |
| uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) { |
| // Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d |
| // + lu52i.d`, they must be adjacent so that we can infer the PC of |
| // `pcalau12i` when calculating the page delta for the other two instructions |
| // (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit |
| // complicated. Just use psABI recommended algorithm. |
| uint64_t pcalau12i_pc; |
| switch (type) { |
| case R_LARCH_PCALA64_LO20: |
| case R_LARCH_GOT64_PC_LO20: |
| case R_LARCH_TLS_IE64_PC_LO20: |
| case R_LARCH_TLS_DESC64_PC_LO20: |
| pcalau12i_pc = pc - 8; |
| break; |
| case R_LARCH_PCALA64_HI12: |
| case R_LARCH_GOT64_PC_HI12: |
| case R_LARCH_TLS_IE64_PC_HI12: |
| case R_LARCH_TLS_DESC64_PC_HI12: |
| pcalau12i_pc = pc - 12; |
| break; |
| default: |
| pcalau12i_pc = pc; |
| break; |
| } |
| uint64_t result = getLoongArchPage(dest) - getLoongArchPage(pcalau12i_pc); |
| if (dest & 0x800) |
| result += 0x1000 - 0x1'0000'0000; |
| if (result & 0x8000'0000) |
| result += 0x1'0000'0000; |
| return result; |
| } |
| |
| static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; } |
| |
| static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) { |
| return op | d | (j << 5) | (k << 10); |
| } |
| |
| // Extract bits v[begin:end], where range is inclusive. |
| static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) { |
| return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end; |
| } |
| |
| static uint32_t getD5(uint64_t v) { return extractBits(v, 4, 0); } |
| |
| static uint32_t getJ5(uint64_t v) { return extractBits(v, 9, 5); } |
| |
| static uint32_t setD5k16(uint32_t insn, uint32_t imm) { |
| uint32_t immLo = extractBits(imm, 15, 0); |
| uint32_t immHi = extractBits(imm, 20, 16); |
| return (insn & 0xfc0003e0) | (immLo << 10) | immHi; |
| } |
| |
| static uint32_t setD10k16(uint32_t insn, uint32_t imm) { |
| uint32_t immLo = extractBits(imm, 15, 0); |
| uint32_t immHi = extractBits(imm, 25, 16); |
| return (insn & 0xfc000000) | (immLo << 10) | immHi; |
| } |
| |
| static uint32_t setJ20(uint32_t insn, uint32_t imm) { |
| return (insn & 0xfe00001f) | (extractBits(imm, 19, 0) << 5); |
| } |
| |
| static uint32_t setJ5(uint32_t insn, uint32_t imm) { |
| return (insn & 0xfffffc1f) | (extractBits(imm, 4, 0) << 5); |
| } |
| |
| static uint32_t setK12(uint32_t insn, uint32_t imm) { |
| return (insn & 0xffc003ff) | (extractBits(imm, 11, 0) << 10); |
| } |
| |
| static uint32_t setK16(uint32_t insn, uint32_t imm) { |
| return (insn & 0xfc0003ff) | (extractBits(imm, 15, 0) << 10); |
| } |
| |
| static bool isJirl(uint32_t insn) { |
| return (insn & 0xfc000000) == JIRL; |
| } |
| |
| static void handleUleb128(Ctx &ctx, uint8_t *loc, uint64_t val) { |
| const uint32_t maxcount = 1 + 64 / 7; |
| uint32_t count; |
| const char *error = nullptr; |
| uint64_t orig = decodeULEB128(loc, &count, nullptr, &error); |
| if (count > maxcount || (count == maxcount && error)) |
| Err(ctx) << getErrorLoc(ctx, loc) << "extra space for uleb128"; |
| uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL; |
| encodeULEB128((orig + val) & mask, loc, count); |
| } |
| |
| LoongArch::LoongArch(Ctx &ctx) : TargetInfo(ctx) { |
| // The LoongArch ISA itself does not have a limit on page sizes. According to |
| // the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is |
| // 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to |
| // "unlimited". |
| // However, practically the maximum usable page size is constrained by the |
| // kernel implementation, and 64KiB is the biggest non-huge page size |
| // supported by Linux as of v6.4. The most widespread page size in use, |
| // though, is 16KiB. |
| defaultCommonPageSize = 16384; |
| defaultMaxPageSize = 65536; |
| write32le(trapInstr.data(), BREAK); // break 0 |
| |
| copyRel = R_LARCH_COPY; |
| pltRel = R_LARCH_JUMP_SLOT; |
| relativeRel = R_LARCH_RELATIVE; |
| iRelativeRel = R_LARCH_IRELATIVE; |
| |
| if (ctx.arg.is64) { |
| symbolicRel = R_LARCH_64; |
| tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64; |
| tlsOffsetRel = R_LARCH_TLS_DTPREL64; |
| tlsGotRel = R_LARCH_TLS_TPREL64; |
| tlsDescRel = R_LARCH_TLS_DESC64; |
| } else { |
| symbolicRel = R_LARCH_32; |
| tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32; |
| tlsOffsetRel = R_LARCH_TLS_DTPREL32; |
| tlsGotRel = R_LARCH_TLS_TPREL32; |
| tlsDescRel = R_LARCH_TLS_DESC32; |
| } |
| |
| gotRel = symbolicRel; |
| |
| // .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map |
| gotPltHeaderEntriesNum = 2; |
| |
| pltHeaderSize = 32; |
| pltEntrySize = 16; |
| ipltEntrySize = 16; |
| } |
| |
| static uint32_t getEFlags(Ctx &ctx, const InputFile *f) { |
| if (ctx.arg.is64) |
| return cast<ObjFile<ELF64LE>>(f)->getObj().getHeader().e_flags; |
| return cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags; |
| } |
| |
| static bool inputFileHasCode(const InputFile *f) { |
| for (const auto *sec : f->getSections()) |
| if (sec && sec->flags & SHF_EXECINSTR) |
| return true; |
| |
| return false; |
| } |
| |
| uint32_t LoongArch::calcEFlags() const { |
| // If there are only binary input files (from -b binary), use a |
| // value of 0 for the ELF header flags. |
| if (ctx.objectFiles.empty()) |
| return 0; |
| |
| uint32_t target = 0; |
| const InputFile *targetFile; |
| for (const InputFile *f : ctx.objectFiles) { |
| // Do not enforce ABI compatibility if the input file does not contain code. |
| // This is useful for allowing linkage with data-only object files produced |
| // with tools like objcopy, that have zero e_flags. |
| if (!inputFileHasCode(f)) |
| continue; |
| |
| // Take the first non-zero e_flags as the reference. |
| uint32_t flags = getEFlags(ctx, f); |
| if (target == 0 && flags != 0) { |
| target = flags; |
| targetFile = f; |
| } |
| |
| if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) != |
| (target & EF_LOONGARCH_ABI_MODIFIER_MASK)) |
| ErrAlways(ctx) << f |
| << ": cannot link object files with different ABI from " |
| << targetFile; |
| |
| // We cannot process psABI v1.x / object ABI v0 files (containing stack |
| // relocations), unlike ld.bfd. |
| // |
| // Instead of blindly accepting every v0 object and only failing at |
| // relocation processing time, just disallow interlink altogether. We |
| // don't expect significant usage of object ABI v0 in the wild (the old |
| // world may continue using object ABI v0 for a while, but as it's not |
| // binary-compatible with the upstream i.e. new-world ecosystem, it's not |
| // being considered here). |
| // |
| // There are briefly some new-world systems with object ABI v0 binaries too. |
| // It is because these systems were built before the new ABI was finalized. |
| // These are not supported either due to the extremely small number of them, |
| // and the few impacted users are advised to simply rebuild world or |
| // reinstall a recent system. |
| if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1) |
| ErrAlways(ctx) << f << ": unsupported object file ABI version"; |
| } |
| |
| return target; |
| } |
| |
| int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| switch (type) { |
| default: |
| InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
| return 0; |
| case R_LARCH_32: |
| case R_LARCH_TLS_DTPMOD32: |
| case R_LARCH_TLS_DTPREL32: |
| case R_LARCH_TLS_TPREL32: |
| return SignExtend64<32>(read32le(buf)); |
| case R_LARCH_64: |
| case R_LARCH_TLS_DTPMOD64: |
| case R_LARCH_TLS_DTPREL64: |
| case R_LARCH_TLS_TPREL64: |
| return read64le(buf); |
| case R_LARCH_RELATIVE: |
| case R_LARCH_IRELATIVE: |
| return ctx.arg.is64 ? read64le(buf) : read32le(buf); |
| case R_LARCH_NONE: |
| case R_LARCH_JUMP_SLOT: |
| // These relocations are defined as not having an implicit addend. |
| return 0; |
| case R_LARCH_TLS_DESC32: |
| return read32le(buf + 4); |
| case R_LARCH_TLS_DESC64: |
| return read64le(buf + 8); |
| } |
| } |
| |
| void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| if (ctx.arg.is64) |
| write64le(buf, ctx.in.plt->getVA()); |
| else |
| write32le(buf, ctx.in.plt->getVA()); |
| } |
| |
| void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| if (ctx.arg.writeAddends) { |
| if (ctx.arg.is64) |
| write64le(buf, s.getVA(ctx)); |
| else |
| write32le(buf, s.getVA(ctx)); |
| } |
| } |
| |
| void LoongArch::writePltHeader(uint8_t *buf) const { |
| // The LoongArch PLT is currently structured just like that of RISCV. |
| // Annoyingly, this means the PLT is still using `pcaddu12i` to perform |
| // PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`), |
| // in contrast to the AArch64-like page-offset scheme with `pcalau12i` that |
| // is used everywhere else involving PC-relative operations in the LoongArch |
| // ELF psABI v2.00. |
| // |
| // The `pcrel_{hi20,lo12}` operators are illustrative only and not really |
| // supported by LoongArch assemblers. |
| // |
| // pcaddu12i $t2, %pcrel_hi20(.got.plt) |
| // sub.[wd] $t1, $t1, $t3 |
| // ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve |
| // addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0] |
| // addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt) |
| // srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0] |
| // ld.[wd] $t0, $t0, Wordsize ; t0 = link_map |
| // jr $t3 |
| uint32_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA(); |
| uint32_t sub = ctx.arg.is64 ? SUB_D : SUB_W; |
| uint32_t ld = ctx.arg.is64 ? LD_D : LD_W; |
| uint32_t addi = ctx.arg.is64 ? ADDI_D : ADDI_W; |
| uint32_t srli = ctx.arg.is64 ? SRLI_D : SRLI_W; |
| write32le(buf + 0, insn(PCADDU12I, R_T2, hi20(offset), 0)); |
| write32le(buf + 4, insn(sub, R_T1, R_T1, R_T3)); |
| write32le(buf + 8, insn(ld, R_T3, R_T2, lo12(offset))); |
| write32le(buf + 12, |
| insn(addi, R_T1, R_T1, lo12(-ctx.target->pltHeaderSize - 12))); |
| write32le(buf + 16, insn(addi, R_T0, R_T2, lo12(offset))); |
| write32le(buf + 20, insn(srli, R_T1, R_T1, ctx.arg.is64 ? 1 : 2)); |
| write32le(buf + 24, insn(ld, R_T0, R_T0, ctx.arg.wordsize)); |
| write32le(buf + 28, insn(JIRL, R_ZERO, R_T3, 0)); |
| } |
| |
| void LoongArch::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| // See the comment in writePltHeader for reason why pcaddu12i is used instead |
| // of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days. |
| // |
| // pcaddu12i $t3, %pcrel_hi20(f@.got.plt) |
| // ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt) |
| // jirl $t1, $t3, 0 |
| // nop |
| uint32_t offset = sym.getGotPltVA(ctx) - pltEntryAddr; |
| write32le(buf + 0, insn(PCADDU12I, R_T3, hi20(offset), 0)); |
| write32le(buf + 4, |
| insn(ctx.arg.is64 ? LD_D : LD_W, R_T3, R_T3, lo12(offset))); |
| write32le(buf + 8, insn(JIRL, R_T1, R_T3, 0)); |
| write32le(buf + 12, insn(ANDI, R_ZERO, R_ZERO, 0)); |
| } |
| |
| RelType LoongArch::getDynRel(RelType type) const { |
| return type == ctx.target->symbolicRel ? type |
| : static_cast<RelType>(R_LARCH_NONE); |
| } |
| |
| RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s, |
| const uint8_t *loc) const { |
| switch (type) { |
| case R_LARCH_NONE: |
| case R_LARCH_MARK_LA: |
| case R_LARCH_MARK_PCREL: |
| return R_NONE; |
| case R_LARCH_32: |
| case R_LARCH_64: |
| case R_LARCH_ABS_HI20: |
| case R_LARCH_ABS_LO12: |
| case R_LARCH_ABS64_LO20: |
| case R_LARCH_ABS64_HI12: |
| return R_ABS; |
| case R_LARCH_PCALA_LO12: |
| // We could just R_ABS, but the JIRL instruction reuses the relocation type |
| // for a different purpose. The questionable usage is part of glibc 2.37 |
| // libc_nonshared.a [1], which is linked into user programs, so we have to |
| // work around it for a while, even if a new relocation type may be |
| // introduced in the future [2]. |
| // |
| // [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a |
| // [2]: https://github.com/loongson/la-abi-specs/pull/3 |
| return isJirl(read32le(loc)) ? R_PLT : R_ABS; |
| case R_LARCH_TLS_DTPREL32: |
| case R_LARCH_TLS_DTPREL64: |
| return R_DTPREL; |
| case R_LARCH_TLS_TPREL32: |
| case R_LARCH_TLS_TPREL64: |
| case R_LARCH_TLS_LE_HI20: |
| case R_LARCH_TLS_LE_HI20_R: |
| case R_LARCH_TLS_LE_LO12: |
| case R_LARCH_TLS_LE_LO12_R: |
| case R_LARCH_TLS_LE64_LO20: |
| case R_LARCH_TLS_LE64_HI12: |
| return R_TPREL; |
| case R_LARCH_ADD6: |
| case R_LARCH_ADD8: |
| case R_LARCH_ADD16: |
| case R_LARCH_ADD32: |
| case R_LARCH_ADD64: |
| case R_LARCH_ADD_ULEB128: |
| case R_LARCH_SUB6: |
| case R_LARCH_SUB8: |
| case R_LARCH_SUB16: |
| case R_LARCH_SUB32: |
| case R_LARCH_SUB64: |
| case R_LARCH_SUB_ULEB128: |
| // The LoongArch add/sub relocs behave like the RISCV counterparts; reuse |
| // the RelExpr to avoid code duplication. |
| return RE_RISCV_ADD; |
| case R_LARCH_32_PCREL: |
| case R_LARCH_64_PCREL: |
| case R_LARCH_PCREL20_S2: |
| return R_PC; |
| case R_LARCH_B16: |
| case R_LARCH_B21: |
| case R_LARCH_B26: |
| case R_LARCH_CALL36: |
| return R_PLT_PC; |
| case R_LARCH_GOT_PC_HI20: |
| case R_LARCH_GOT64_PC_LO20: |
| case R_LARCH_GOT64_PC_HI12: |
| case R_LARCH_TLS_IE_PC_HI20: |
| case R_LARCH_TLS_IE64_PC_LO20: |
| case R_LARCH_TLS_IE64_PC_HI12: |
| return RE_LOONGARCH_GOT_PAGE_PC; |
| case R_LARCH_GOT_PC_LO12: |
| case R_LARCH_TLS_IE_PC_LO12: |
| return RE_LOONGARCH_GOT; |
| case R_LARCH_TLS_LD_PC_HI20: |
| case R_LARCH_TLS_GD_PC_HI20: |
| return RE_LOONGARCH_TLSGD_PAGE_PC; |
| case R_LARCH_PCALA_HI20: |
| // Why not RE_LOONGARCH_PAGE_PC, majority of references don't go through |
| // PLT anyway so why waste time checking only to get everything relaxed back |
| // to it? |
| // |
| // This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want |
| // both the HI20 and LO12 to potentially refer to the PLT. But in reality |
| // the HI20 reloc appears earlier, and the relocs don't contain enough |
| // information to let us properly resolve semantics per symbol. |
| // Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20 |
| // relocs, hence it is nearly impossible to 100% accurately determine each |
| // HI20's "flavor" without taking big performance hits, in the presence of |
| // edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far |
| // apart that relationship is not certain anymore), and programmer mistakes |
| // (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3). |
| // |
| // Ideally we would scan in an extra pass for all LO12s on JIRL, then mark |
| // every HI20 reloc referring to the same symbol differently; this is not |
| // feasible with the current function signature of getRelExpr that doesn't |
| // allow for such inter-pass state. |
| // |
| // So, unfortunately we have to again workaround this quirk the same way as |
| // BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only |
| // relaxing back to RE_LOONGARCH_PAGE_PC if it's known not so at a later |
| // stage. |
| return RE_LOONGARCH_PLT_PAGE_PC; |
| case R_LARCH_PCALA64_LO20: |
| case R_LARCH_PCALA64_HI12: |
| return RE_LOONGARCH_PAGE_PC; |
| case R_LARCH_GOT_HI20: |
| case R_LARCH_GOT_LO12: |
| case R_LARCH_GOT64_LO20: |
| case R_LARCH_GOT64_HI12: |
| case R_LARCH_TLS_IE_HI20: |
| case R_LARCH_TLS_IE_LO12: |
| case R_LARCH_TLS_IE64_LO20: |
| case R_LARCH_TLS_IE64_HI12: |
| return R_GOT; |
| case R_LARCH_TLS_LD_HI20: |
| return R_TLSLD_GOT; |
| case R_LARCH_TLS_GD_HI20: |
| return R_TLSGD_GOT; |
| case R_LARCH_TLS_LE_ADD_R: |
| case R_LARCH_RELAX: |
| return ctx.arg.relax ? R_RELAX_HINT : R_NONE; |
| case R_LARCH_ALIGN: |
| return R_RELAX_HINT; |
| case R_LARCH_TLS_DESC_PC_HI20: |
| case R_LARCH_TLS_DESC64_PC_LO20: |
| case R_LARCH_TLS_DESC64_PC_HI12: |
| return RE_LOONGARCH_TLSDESC_PAGE_PC; |
| case R_LARCH_TLS_DESC_PC_LO12: |
| case R_LARCH_TLS_DESC_LD: |
| case R_LARCH_TLS_DESC_HI20: |
| case R_LARCH_TLS_DESC_LO12: |
| case R_LARCH_TLS_DESC64_LO20: |
| case R_LARCH_TLS_DESC64_HI12: |
| return R_TLSDESC; |
| case R_LARCH_TLS_DESC_CALL: |
| return R_TLSDESC_CALL; |
| case R_LARCH_TLS_LD_PCREL20_S2: |
| return R_TLSLD_PC; |
| case R_LARCH_TLS_GD_PCREL20_S2: |
| return R_TLSGD_PC; |
| case R_LARCH_TLS_DESC_PCREL20_S2: |
| return R_TLSDESC_PC; |
| |
| // Other known relocs that are explicitly unimplemented: |
| // |
| // - psABI v1 relocs that need a stateful stack machine to work, and not |
| // required when implementing psABI v2; |
| // - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the |
| // two GNU vtable-related relocs). |
| // |
| // [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51 |
| default: |
| Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
| << ") against symbol " << &s; |
| return R_NONE; |
| } |
| } |
| |
| bool LoongArch::usesOnlyLowPageBits(RelType type) const { |
| switch (type) { |
| default: |
| return false; |
| case R_LARCH_PCALA_LO12: |
| case R_LARCH_GOT_LO12: |
| case R_LARCH_GOT_PC_LO12: |
| case R_LARCH_TLS_IE_PC_LO12: |
| case R_LARCH_TLS_DESC_LO12: |
| case R_LARCH_TLS_DESC_PC_LO12: |
| return true; |
| } |
| } |
| |
| void LoongArch::relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| switch (rel.type) { |
| case R_LARCH_32_PCREL: |
| checkInt(ctx, loc, val, 32, rel); |
| [[fallthrough]]; |
| case R_LARCH_32: |
| case R_LARCH_TLS_DTPREL32: |
| write32le(loc, val); |
| return; |
| case R_LARCH_64: |
| case R_LARCH_TLS_DTPREL64: |
| case R_LARCH_64_PCREL: |
| write64le(loc, val); |
| return; |
| |
| // Relocs intended for `pcaddi`. |
| case R_LARCH_PCREL20_S2: |
| case R_LARCH_TLS_LD_PCREL20_S2: |
| case R_LARCH_TLS_GD_PCREL20_S2: |
| case R_LARCH_TLS_DESC_PCREL20_S2: |
| checkInt(ctx, loc, val, 22, rel); |
| checkAlignment(ctx, loc, val, 4, rel); |
| write32le(loc, setJ20(read32le(loc), val >> 2)); |
| return; |
| |
| case R_LARCH_B16: |
| checkInt(ctx, loc, val, 18, rel); |
| checkAlignment(ctx, loc, val, 4, rel); |
| write32le(loc, setK16(read32le(loc), val >> 2)); |
| return; |
| |
| case R_LARCH_B21: |
| checkInt(ctx, loc, val, 23, rel); |
| checkAlignment(ctx, loc, val, 4, rel); |
| write32le(loc, setD5k16(read32le(loc), val >> 2)); |
| return; |
| |
| case R_LARCH_B26: |
| checkInt(ctx, loc, val, 28, rel); |
| checkAlignment(ctx, loc, val, 4, rel); |
| write32le(loc, setD10k16(read32le(loc), val >> 2)); |
| return; |
| |
| case R_LARCH_CALL36: { |
| // This relocation is designed for adjacent pcaddu18i+jirl pairs that |
| // are patched in one time. Because of sign extension of these insns' |
| // immediate fields, the relocation range is [-128G - 0x20000, +128G - |
| // 0x20000) (of course must be 4-byte aligned). |
| if (((int64_t)val + 0x20000) != llvm::SignExtend64(val + 0x20000, 38)) |
| reportRangeError(ctx, loc, rel, Twine(val), llvm::minIntN(38) - 0x20000, |
| llvm::maxIntN(38) - 0x20000); |
| checkAlignment(ctx, loc, val, 4, rel); |
| // Since jirl performs sign extension on the offset immediate, adds (1<<17) |
| // to original val to get the correct hi20. |
| uint32_t hi20 = extractBits(val + (1 << 17), 37, 18); |
| // Despite the name, the lower part is actually 18 bits with 4-byte aligned. |
| uint32_t lo16 = extractBits(val, 17, 2); |
| write32le(loc, setJ20(read32le(loc), hi20)); |
| write32le(loc + 4, setK16(read32le(loc + 4), lo16)); |
| return; |
| } |
| |
| // Relocs intended for `addi`, `ld` or `st`. |
| case R_LARCH_PCALA_LO12: |
| // We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12 |
| // on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes |
| // removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly |
| // its immediate slot width is different too (16, not 12). |
| // In this case, process like an R_LARCH_B16, but without overflow checking |
| // and only taking the value's lowest 12 bits. |
| if (isJirl(read32le(loc))) { |
| checkAlignment(ctx, loc, val, 4, rel); |
| val = SignExtend64<12>(val); |
| write32le(loc, setK16(read32le(loc), val >> 2)); |
| return; |
| } |
| [[fallthrough]]; |
| case R_LARCH_ABS_LO12: |
| case R_LARCH_GOT_PC_LO12: |
| case R_LARCH_GOT_LO12: |
| case R_LARCH_TLS_LE_LO12: |
| case R_LARCH_TLS_IE_PC_LO12: |
| case R_LARCH_TLS_IE_LO12: |
| case R_LARCH_TLS_LE_LO12_R: |
| case R_LARCH_TLS_DESC_PC_LO12: |
| case R_LARCH_TLS_DESC_LO12: |
| write32le(loc, setK12(read32le(loc), extractBits(val, 11, 0))); |
| return; |
| |
| // Relocs intended for `lu12i.w` or `pcalau12i`. |
| case R_LARCH_ABS_HI20: |
| case R_LARCH_PCALA_HI20: |
| case R_LARCH_GOT_PC_HI20: |
| case R_LARCH_GOT_HI20: |
| case R_LARCH_TLS_LE_HI20: |
| case R_LARCH_TLS_IE_PC_HI20: |
| case R_LARCH_TLS_IE_HI20: |
| case R_LARCH_TLS_LD_PC_HI20: |
| case R_LARCH_TLS_LD_HI20: |
| case R_LARCH_TLS_GD_PC_HI20: |
| case R_LARCH_TLS_GD_HI20: |
| case R_LARCH_TLS_DESC_PC_HI20: |
| case R_LARCH_TLS_DESC_HI20: |
| write32le(loc, setJ20(read32le(loc), extractBits(val, 31, 12))); |
| return; |
| case R_LARCH_TLS_LE_HI20_R: |
| write32le(loc, setJ20(read32le(loc), extractBits(val + 0x800, 31, 12))); |
| return; |
| |
| // Relocs intended for `lu32i.d`. |
| case R_LARCH_ABS64_LO20: |
| case R_LARCH_PCALA64_LO20: |
| case R_LARCH_GOT64_PC_LO20: |
| case R_LARCH_GOT64_LO20: |
| case R_LARCH_TLS_LE64_LO20: |
| case R_LARCH_TLS_IE64_PC_LO20: |
| case R_LARCH_TLS_IE64_LO20: |
| case R_LARCH_TLS_DESC64_PC_LO20: |
| case R_LARCH_TLS_DESC64_LO20: |
| write32le(loc, setJ20(read32le(loc), extractBits(val, 51, 32))); |
| return; |
| |
| // Relocs intended for `lu52i.d`. |
| case R_LARCH_ABS64_HI12: |
| case R_LARCH_PCALA64_HI12: |
| case R_LARCH_GOT64_PC_HI12: |
| case R_LARCH_GOT64_HI12: |
| case R_LARCH_TLS_LE64_HI12: |
| case R_LARCH_TLS_IE64_PC_HI12: |
| case R_LARCH_TLS_IE64_HI12: |
| case R_LARCH_TLS_DESC64_PC_HI12: |
| case R_LARCH_TLS_DESC64_HI12: |
| write32le(loc, setK12(read32le(loc), extractBits(val, 63, 52))); |
| return; |
| |
| case R_LARCH_ADD6: |
| *loc = (*loc & 0xc0) | ((*loc + val) & 0x3f); |
| return; |
| case R_LARCH_ADD8: |
| *loc += val; |
| return; |
| case R_LARCH_ADD16: |
| write16le(loc, read16le(loc) + val); |
| return; |
| case R_LARCH_ADD32: |
| write32le(loc, read32le(loc) + val); |
| return; |
| case R_LARCH_ADD64: |
| write64le(loc, read64le(loc) + val); |
| return; |
| case R_LARCH_ADD_ULEB128: |
| handleUleb128(ctx, loc, val); |
| return; |
| case R_LARCH_SUB6: |
| *loc = (*loc & 0xc0) | ((*loc - val) & 0x3f); |
| return; |
| case R_LARCH_SUB8: |
| *loc -= val; |
| return; |
| case R_LARCH_SUB16: |
| write16le(loc, read16le(loc) - val); |
| return; |
| case R_LARCH_SUB32: |
| write32le(loc, read32le(loc) - val); |
| return; |
| case R_LARCH_SUB64: |
| write64le(loc, read64le(loc) - val); |
| return; |
| case R_LARCH_SUB_ULEB128: |
| handleUleb128(ctx, loc, -val); |
| return; |
| |
| case R_LARCH_MARK_LA: |
| case R_LARCH_MARK_PCREL: |
| // no-op |
| return; |
| |
| case R_LARCH_TLS_LE_ADD_R: |
| case R_LARCH_RELAX: |
| return; // Ignored (for now) |
| |
| case R_LARCH_TLS_DESC_LD: |
| return; // nothing to do. |
| case R_LARCH_TLS_DESC32: |
| write32le(loc + 4, val); |
| return; |
| case R_LARCH_TLS_DESC64: |
| write64le(loc + 8, val); |
| return; |
| |
| default: |
| llvm_unreachable("unknown relocation"); |
| } |
| } |
| |
| static bool relaxable(ArrayRef<Relocation> relocs, size_t i) { |
| return i + 1 < relocs.size() && relocs[i + 1].type == R_LARCH_RELAX; |
| } |
| |
| static bool isPairRelaxable(ArrayRef<Relocation> relocs, size_t i) { |
| return relaxable(relocs, i) && relaxable(relocs, i + 2) && |
| relocs[i].offset + 4 == relocs[i + 2].offset; |
| } |
| |
| // Relax code sequence. |
| // From: |
| // pcalau12i $a0, %pc_hi20(sym) | %ld_pc_hi20(sym) | %gd_pc_hi20(sym) |
| // | %desc_pc_hi20(sym) |
| // addi.w/d $a0, $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym) |
| // | %desc_pc_lo12(sym) |
| // To: |
| // pcaddi $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym) |
| // | %desc_pcrel_20(sym) |
| // |
| // From: |
| // pcalau12i $a0, %got_pc_hi20(sym_got) |
| // ld.w/d $a0, $a0, %got_pc_lo12(sym_got) |
| // To: |
| // pcaddi $a0, %got_pc_hi20(sym_got) |
| static void relaxPCHi20Lo12(Ctx &ctx, const InputSection &sec, size_t i, |
| uint64_t loc, Relocation &rHi20, Relocation &rLo12, |
| uint32_t &remove) { |
| // check if the relocations are relaxable sequences. |
| if (!((rHi20.type == R_LARCH_PCALA_HI20 && |
| rLo12.type == R_LARCH_PCALA_LO12) || |
| (rHi20.type == R_LARCH_GOT_PC_HI20 && |
| rLo12.type == R_LARCH_GOT_PC_LO12) || |
| (rHi20.type == R_LARCH_TLS_GD_PC_HI20 && |
| rLo12.type == R_LARCH_GOT_PC_LO12) || |
| (rHi20.type == R_LARCH_TLS_LD_PC_HI20 && |
| rLo12.type == R_LARCH_GOT_PC_LO12) || |
| (rHi20.type == R_LARCH_TLS_DESC_PC_HI20 && |
| rLo12.type == R_LARCH_TLS_DESC_PC_LO12))) |
| return; |
| |
| // GOT references to absolute symbols can't be relaxed to use pcaddi in |
| // position-independent code, because these instructions produce a relative |
| // address. |
| // Meanwhile skip undefined, preemptible and STT_GNU_IFUNC symbols, because |
| // these symbols may be resolve in runtime. |
| if (rHi20.type == R_LARCH_GOT_PC_HI20 && |
| (!rHi20.sym->isDefined() || rHi20.sym->isPreemptible || |
| rHi20.sym->isGnuIFunc() || |
| (ctx.arg.isPic && !cast<Defined>(*rHi20.sym).section))) |
| return; |
| |
| uint64_t dest = 0; |
| if (rHi20.expr == RE_LOONGARCH_PLT_PAGE_PC) |
| dest = rHi20.sym->getPltVA(ctx); |
| else if (rHi20.expr == RE_LOONGARCH_PAGE_PC || |
| rHi20.expr == RE_LOONGARCH_GOT_PAGE_PC) |
| dest = rHi20.sym->getVA(ctx); |
| else if (rHi20.expr == RE_LOONGARCH_TLSGD_PAGE_PC) |
| dest = ctx.in.got->getGlobalDynAddr(*rHi20.sym); |
| else if (rHi20.expr == RE_LOONGARCH_TLSDESC_PAGE_PC) |
| dest = ctx.in.got->getTlsDescAddr(*rHi20.sym); |
| else { |
| Err(ctx) << getErrorLoc(ctx, (const uint8_t *)loc) << "unknown expr (" |
| << rHi20.expr << ") against symbol " << rHi20.sym |
| << "in relaxPCHi20Lo12"; |
| return; |
| } |
| dest += rHi20.addend; |
| |
| const int64_t displace = dest - loc; |
| // Check if the displace aligns 4 bytes or exceeds the range of pcaddi. |
| if ((displace & 0x3) != 0 || !isInt<22>(displace)) |
| return; |
| |
| // Note: If we can ensure that the .o files generated by LLVM only contain |
| // relaxable instruction sequences with R_LARCH_RELAX, then we do not need to |
| // decode instructions. The relaxable instruction sequences imply the |
| // following constraints: |
| // * For relocation pairs related to got_pc, the opcodes of instructions |
| // must be pcalau12i + ld.w/d. In other cases, the opcodes must be pcalau12i + |
| // addi.w/d. |
| // * The destination register of pcalau12i is guaranteed to be used only by |
| // the immediately following instruction. |
| const uint32_t currInsn = read32le(sec.content().data() + rHi20.offset); |
| const uint32_t nextInsn = read32le(sec.content().data() + rLo12.offset); |
| // Check if use the same register. |
| if (getD5(currInsn) != getJ5(nextInsn) || getJ5(nextInsn) != getD5(nextInsn)) |
| return; |
| |
| sec.relaxAux->relocTypes[i] = R_LARCH_RELAX; |
| if (rHi20.type == R_LARCH_TLS_GD_PC_HI20) |
| sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_GD_PCREL20_S2; |
| else if (rHi20.type == R_LARCH_TLS_LD_PC_HI20) |
| sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_LD_PCREL20_S2; |
| else if (rHi20.type == R_LARCH_TLS_DESC_PC_HI20) |
| sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_DESC_PCREL20_S2; |
| else |
| sec.relaxAux->relocTypes[i + 2] = R_LARCH_PCREL20_S2; |
| sec.relaxAux->writes.push_back(insn(PCADDI, getD5(nextInsn), 0, 0)); |
| remove = 4; |
| } |
| |
| // Relax code sequence. |
| // From: |
| // pcaddu18i $ra, %call36(foo) |
| // jirl $ra, $ra, 0 |
| // To: |
| // b/bl foo |
| static void relaxCall36(Ctx &ctx, const InputSection &sec, size_t i, |
| uint64_t loc, Relocation &r, uint32_t &remove) { |
| const uint64_t dest = |
| (r.expr == R_PLT_PC ? r.sym->getPltVA(ctx) : r.sym->getVA(ctx)) + |
| r.addend; |
| |
| const int64_t displace = dest - loc; |
| // Check if the displace aligns 4 bytes or exceeds the range of b[l]. |
| if ((displace & 0x3) != 0 || !isInt<28>(displace)) |
| return; |
| |
| const uint32_t nextInsn = read32le(sec.content().data() + r.offset + 4); |
| if (getD5(nextInsn) == R_RA) { |
| // convert jirl to bl |
| sec.relaxAux->relocTypes[i] = R_LARCH_B26; |
| sec.relaxAux->writes.push_back(insn(BL, 0, 0, 0)); |
| remove = 4; |
| } else if (getD5(nextInsn) == R_ZERO) { |
| // convert jirl to b |
| sec.relaxAux->relocTypes[i] = R_LARCH_B26; |
| sec.relaxAux->writes.push_back(insn(B, 0, 0, 0)); |
| remove = 4; |
| } |
| } |
| |
| // Relax code sequence. |
| // From: |
| // lu12i.w $rd, %le_hi20_r(sym) |
| // add.w/d $rd, $rd, $tp, %le_add_r(sym) |
| // addi/ld/st.w/d $rd, $rd, %le_lo12_r(sym) |
| // To: |
| // addi/ld/st.w/d $rd, $tp, %le_lo12_r(sym) |
| static void relaxTlsLe(Ctx &ctx, const InputSection &sec, size_t i, |
| uint64_t loc, Relocation &r, uint32_t &remove) { |
| uint64_t val = r.sym->getVA(ctx, r.addend); |
| // Check if the val exceeds the range of addi/ld/st. |
| if (!isInt<12>(val)) |
| return; |
| uint32_t currInsn = read32le(sec.content().data() + r.offset); |
| switch (r.type) { |
| case R_LARCH_TLS_LE_HI20_R: |
| case R_LARCH_TLS_LE_ADD_R: |
| sec.relaxAux->relocTypes[i] = R_LARCH_RELAX; |
| remove = 4; |
| break; |
| case R_LARCH_TLS_LE_LO12_R: |
| sec.relaxAux->writes.push_back(setJ5(currInsn, R_TP)); |
| sec.relaxAux->relocTypes[i] = R_LARCH_TLS_LE_LO12_R; |
| break; |
| } |
| } |
| |
| static bool relax(Ctx &ctx, InputSection &sec) { |
| const uint64_t secAddr = sec.getVA(); |
| const MutableArrayRef<Relocation> relocs = sec.relocs(); |
| auto &aux = *sec.relaxAux; |
| bool changed = false; |
| ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors); |
| uint64_t delta = 0; |
| |
| std::fill_n(aux.relocTypes.get(), relocs.size(), R_LARCH_NONE); |
| aux.writes.clear(); |
| for (auto [i, r] : llvm::enumerate(relocs)) { |
| const uint64_t loc = secAddr + r.offset - delta; |
| uint32_t &cur = aux.relocDeltas[i], remove = 0; |
| switch (r.type) { |
| case R_LARCH_ALIGN: { |
| const uint64_t addend = |
| r.sym->isUndefined() ? Log2_64(r.addend) + 1 : r.addend; |
| const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4; |
| const uint64_t align = 1ULL << (addend & 0xff); |
| const uint64_t maxBytes = addend >> 8; |
| const uint64_t off = loc & (align - 1); |
| const uint64_t curBytes = off == 0 ? 0 : align - off; |
| // All bytes beyond the alignment boundary should be removed. |
| // If emit bytes more than max bytes to emit, remove all. |
| if (maxBytes != 0 && curBytes > maxBytes) |
| remove = allBytes; |
| else |
| remove = allBytes - curBytes; |
| // If we can't satisfy this alignment, we've found a bad input. |
| if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) { |
| Err(ctx) << getErrorLoc(ctx, (const uint8_t *)loc) |
| << "insufficient padding bytes for " << r.type << ": " |
| << allBytes << " bytes available for " |
| << "requested alignment of " << align << " bytes"; |
| remove = 0; |
| } |
| break; |
| } |
| case R_LARCH_PCALA_HI20: |
| case R_LARCH_GOT_PC_HI20: |
| case R_LARCH_TLS_GD_PC_HI20: |
| case R_LARCH_TLS_LD_PC_HI20: |
| case R_LARCH_TLS_DESC_PC_HI20: |
| // The overflow check for i+2 will be carried out in isPairRelaxable. |
| if (isPairRelaxable(relocs, i)) |
| relaxPCHi20Lo12(ctx, sec, i, loc, r, relocs[i + 2], remove); |
| break; |
| case R_LARCH_CALL36: |
| if (relaxable(relocs, i)) |
| relaxCall36(ctx, sec, i, loc, r, remove); |
| break; |
| case R_LARCH_TLS_LE_HI20_R: |
| case R_LARCH_TLS_LE_ADD_R: |
| case R_LARCH_TLS_LE_LO12_R: |
| if (relaxable(relocs, i)) |
| relaxTlsLe(ctx, sec, i, loc, r, remove); |
| break; |
| case R_LARCH_TLS_IE_PC_HI20: |
| if (relaxable(relocs, i) && r.expr == R_RELAX_TLS_IE_TO_LE && |
| isUInt<12>(r.sym->getVA(ctx, r.addend))) |
| remove = 4; |
| break; |
| } |
| |
| // For all anchors whose offsets are <= r.offset, they are preceded by |
| // the previous relocation whose `relocDeltas` value equals `delta`. |
| // Decrease their st_value and update their st_size. |
| for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(1)) { |
| if (sa[0].end) |
| sa[0].d->size = sa[0].offset - delta - sa[0].d->value; |
| else |
| sa[0].d->value = sa[0].offset - delta; |
| } |
| delta += remove; |
| if (delta != cur) { |
| cur = delta; |
| changed = true; |
| } |
| } |
| |
| for (const SymbolAnchor &a : sa) { |
| if (a.end) |
| a.d->size = a.offset - delta - a.d->value; |
| else |
| a.d->value = a.offset - delta; |
| } |
| // Inform assignAddresses that the size has changed. |
| if (!isUInt<32>(delta)) |
| Fatal(ctx) << "section size decrease is too large: " << delta; |
| sec.bytesDropped = delta; |
| return changed; |
| } |
| |
| // Convert TLS IE to LE in the normal or medium code model. |
| // Original code sequence: |
| // * pcalau12i $a0, %ie_pc_hi20(sym) |
| // * ld.d $a0, $a0, %ie_pc_lo12(sym) |
| // |
| // The code sequence converted is as follows: |
| // * lu12i.w $a0, %le_hi20(sym) # le_hi20 != 0, otherwise NOP |
| // * ori $a0, src, %le_lo12(sym) # le_hi20 != 0, src = $a0, |
| // # otherwise, src = $zero |
| // |
| // When relaxation enables, redundant NOPs can be removed. |
| static void tlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { |
| assert(isInt<32>(val) && |
| "val exceeds the range of medium code model in tlsIeToLe"); |
| |
| bool isUInt12 = isUInt<12>(val); |
| const uint32_t currInsn = read32le(loc); |
| switch (rel.type) { |
| case R_LARCH_TLS_IE_PC_HI20: |
| if (isUInt12) |
| write32le(loc, insn(ANDI, R_ZERO, R_ZERO, 0)); // nop |
| else |
| write32le(loc, insn(LU12I_W, getD5(currInsn), extractBits(val, 31, 12), |
| 0)); // lu12i.w $a0, %le_hi20 |
| break; |
| case R_LARCH_TLS_IE_PC_LO12: |
| if (isUInt12) |
| write32le(loc, insn(ORI, getD5(currInsn), R_ZERO, |
| val)); // ori $a0, $zero, %le_lo12 |
| else |
| write32le(loc, insn(ORI, getD5(currInsn), getJ5(currInsn), |
| lo12(val))); // ori $a0, $a0, %le_lo12 |
| break; |
| } |
| } |
| |
| void LoongArch::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| const unsigned bits = ctx.arg.is64 ? 64 : 32; |
| uint64_t secAddr = sec.getOutputSection()->addr; |
| if (auto *s = dyn_cast<InputSection>(&sec)) |
| secAddr += s->outSecOff; |
| else if (auto *ehIn = dyn_cast<EhInputSection>(&sec)) |
| secAddr += ehIn->getParent()->outSecOff; |
| bool isExtreme = false, isRelax = false; |
| const MutableArrayRef<Relocation> relocs = sec.relocs(); |
| for (size_t i = 0, size = relocs.size(); i != size; ++i) { |
| Relocation &rel = relocs[i]; |
| uint8_t *loc = buf + rel.offset; |
| uint64_t val = SignExtend64( |
| sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset), bits); |
| |
| switch (rel.expr) { |
| case R_RELAX_HINT: |
| continue; |
| case R_RELAX_TLS_IE_TO_LE: |
| if (rel.type == R_LARCH_TLS_IE_PC_HI20) { |
| // LoongArch does not support IE to LE optimization in the extreme code |
| // model. In this case, the relocs are as follows: |
| // |
| // * i -- R_LARCH_TLS_IE_PC_HI20 |
| // * i+1 -- R_LARCH_TLS_IE_PC_LO12 |
| // * i+2 -- R_LARCH_TLS_IE64_PC_LO20 |
| // * i+3 -- R_LARCH_TLS_IE64_PC_HI12 |
| isExtreme = |
| (i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_IE64_PC_LO20); |
| } |
| if (isExtreme) { |
| rel.expr = getRelExpr(rel.type, *rel.sym, loc); |
| val = SignExtend64(sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset), |
| bits); |
| relocateNoSym(loc, rel.type, val); |
| } else { |
| isRelax = relaxable(relocs, i); |
| if (isRelax && rel.type == R_LARCH_TLS_IE_PC_HI20 && isUInt<12>(val)) |
| continue; |
| tlsIeToLe(loc, rel, val); |
| } |
| continue; |
| default: |
| break; |
| } |
| relocate(loc, rel, val); |
| } |
| } |
| |
| // When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in |
| // the absence of a linker script. For call and load/store R_LARCH_RELAX, code |
| // shrinkage may reduce displacement and make more relocations eligible for |
| // relaxation. Code shrinkage may increase displacement to a call/load/store |
| // target at a higher fixed address, invalidating an earlier relaxation. Any |
| // change in section sizes can have cascading effect and require another |
| // relaxation pass. |
| bool LoongArch::relaxOnce(int pass) const { |
| if (ctx.arg.relocatable) |
| return false; |
| |
| if (pass == 0) |
| initSymbolAnchors(ctx); |
| |
| SmallVector<InputSection *, 0> storage; |
| bool changed = false; |
| for (OutputSection *osec : ctx.outputSections) { |
| if (!(osec->flags & SHF_EXECINSTR)) |
| continue; |
| for (InputSection *sec : getInputSections(*osec, storage)) |
| changed |= relax(ctx, *sec); |
| } |
| return changed; |
| } |
| |
| void LoongArch::finalizeRelax(int passes) const { |
| Log(ctx) << "relaxation passes: " << passes; |
| SmallVector<InputSection *, 0> storage; |
| for (OutputSection *osec : ctx.outputSections) { |
| if (!(osec->flags & SHF_EXECINSTR)) |
| continue; |
| for (InputSection *sec : getInputSections(*osec, storage)) { |
| RelaxAux &aux = *sec->relaxAux; |
| if (!aux.relocDeltas) |
| continue; |
| |
| MutableArrayRef<Relocation> rels = sec->relocs(); |
| ArrayRef<uint8_t> old = sec->content(); |
| size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1]; |
| size_t writesIdx = 0; |
| uint8_t *p = ctx.bAlloc.Allocate<uint8_t>(newSize); |
| uint64_t offset = 0; |
| int64_t delta = 0; |
| sec->content_ = p; |
| sec->size = newSize; |
| sec->bytesDropped = 0; |
| |
| // Update section content: remove NOPs for R_LARCH_ALIGN and rewrite |
| // instructions for relaxed relocations. |
| for (size_t i = 0, e = rels.size(); i != e; ++i) { |
| uint32_t remove = aux.relocDeltas[i] - delta; |
| delta = aux.relocDeltas[i]; |
| if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE) |
| continue; |
| |
| // Copy from last location to the current relocated location. |
| Relocation &r = rels[i]; |
| uint64_t size = r.offset - offset; |
| memcpy(p, old.data() + offset, size); |
| p += size; |
| |
| int64_t skip = 0; |
| if (RelType newType = aux.relocTypes[i]) { |
| switch (newType) { |
| case R_LARCH_RELAX: |
| break; |
| case R_LARCH_PCREL20_S2: |
| skip = 4; |
| write32le(p, aux.writes[writesIdx++]); |
| // RelExpr is needed for relocating. |
| r.expr = r.sym->hasFlag(NEEDS_PLT) ? R_PLT_PC : R_PC; |
| break; |
| case R_LARCH_B26: |
| case R_LARCH_TLS_LE_LO12_R: |
| skip = 4; |
| write32le(p, aux.writes[writesIdx++]); |
| break; |
| case R_LARCH_TLS_GD_PCREL20_S2: |
| // Note: R_LARCH_TLS_LD_PCREL20_S2 must also use R_TLSGD_PC instead |
| // of R_TLSLD_PC due to historical reasons. In fact, right now TLSLD |
| // behaves exactly like TLSGD on LoongArch. |
| // |
| // This reason has also been mentioned in mold commit: |
| // https://github.com/rui314/mold/commit/5dfa1cf07c03bd57cb3d493b652ef22441bcd71c |
| case R_LARCH_TLS_LD_PCREL20_S2: |
| skip = 4; |
| write32le(p, aux.writes[writesIdx++]); |
| r.expr = R_TLSGD_PC; |
| break; |
| case R_LARCH_TLS_DESC_PCREL20_S2: |
| skip = 4; |
| write32le(p, aux.writes[writesIdx++]); |
| r.expr = R_TLSDESC_PC; |
| break; |
| default: |
| llvm_unreachable("unsupported type"); |
| } |
| } |
| |
| p += skip; |
| offset = r.offset + skip + remove; |
| } |
| memcpy(p, old.data() + offset, old.size() - offset); |
| |
| // Subtract the previous relocDeltas value from the relocation offset. |
| // For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease |
| // their r_offset by the same delta. |
| delta = 0; |
| for (size_t i = 0, e = rels.size(); i != e;) { |
| uint64_t cur = rels[i].offset; |
| do { |
| rels[i].offset -= delta; |
| if (aux.relocTypes[i] != R_LARCH_NONE) |
| rels[i].type = aux.relocTypes[i]; |
| } while (++i != e && rels[i].offset == cur); |
| delta = aux.relocDeltas[i - 1]; |
| } |
| } |
| } |
| } |
| |
| void elf::setLoongArchTargetInfo(Ctx &ctx) { |
| ctx.target.reset(new LoongArch(ctx)); |
| } |