blob: 822cae99ddae756aeb72ef1d56a1ce90b5d945e2 [file] [log] [blame]
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_SEMA_H
#define LLVM_CLANG_SEMA_SEMA_H
#include "clang/APINotes/APINotesManager.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/AttrSubjectMatchRules.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/Cuda.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/OpenCLOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/StackExhaustionHandler.h"
#include "clang/Basic/TemplateKinds.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/TypeTraits.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/CleanupInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Redeclaration.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/SemaBase.h"
#include "clang/Sema/TypoCorrection.h"
#include "clang/Sema/Weak.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/STLForwardCompat.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <iterator>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
namespace llvm {
struct InlineAsmIdentifierInfo;
} // namespace llvm
namespace clang {
class ADLResult;
class APValue;
struct ASTConstraintSatisfaction;
class ASTConsumer;
class ASTContext;
class ASTDeclReader;
class ASTMutationListener;
class ASTReader;
class ASTWriter;
class CXXBasePath;
class CXXBasePaths;
class CXXFieldCollector;
class CodeCompleteConsumer;
enum class ComparisonCategoryType : unsigned char;
class ConstraintSatisfaction;
class DarwinSDKInfo;
class DeclGroupRef;
class DeducedTemplateArgument;
struct DeductionFailureInfo;
class DependentDiagnostic;
class Designation;
class IdentifierInfo;
class ImplicitConversionSequence;
typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
class InitializationKind;
class InitializationSequence;
class InitializedEntity;
enum class LangAS : unsigned int;
class LocalInstantiationScope;
class LookupResult;
class MangleNumberingContext;
typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
class ModuleLoader;
class MultiLevelTemplateArgumentList;
struct NormalizedConstraint;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
struct OverloadCandidate;
enum class OverloadCandidateParamOrder : char;
enum OverloadCandidateRewriteKind : unsigned;
class OverloadCandidateSet;
class Preprocessor;
class SemaAMDGPU;
class SemaARM;
class SemaAVR;
class SemaBPF;
class SemaCodeCompletion;
class SemaCUDA;
class SemaHLSL;
class SemaHexagon;
class SemaLoongArch;
class SemaM68k;
class SemaMIPS;
class SemaMSP430;
class SemaNVPTX;
class SemaObjC;
class SemaOpenACC;
class SemaOpenCL;
class SemaOpenMP;
class SemaPPC;
class SemaPseudoObject;
class SemaRISCV;
class SemaSPIRV;
class SemaSYCL;
class SemaSwift;
class SemaSystemZ;
class SemaWasm;
class SemaX86;
class StandardConversionSequence;
class TemplateArgument;
class TemplateArgumentLoc;
class TemplateInstantiationCallback;
class TemplatePartialOrderingContext;
class TemplateSpecCandidateSet;
class Token;
class TypeConstraint;
class TypoCorrectionConsumer;
class UnresolvedSetImpl;
class UnresolvedSetIterator;
class VisibleDeclConsumer;
namespace sema {
class BlockScopeInfo;
class Capture;
class CapturedRegionScopeInfo;
class CapturingScopeInfo;
class CompoundScopeInfo;
class DelayedDiagnostic;
class DelayedDiagnosticPool;
class FunctionScopeInfo;
class LambdaScopeInfo;
class SemaPPCallbacks;
class TemplateDeductionInfo;
} // namespace sema
// AssignmentAction - This is used by all the assignment diagnostic functions
// to represent what is actually causing the operation
enum class AssignmentAction {
Assigning,
Passing,
Returning,
Converting,
Initializing,
Sending,
Casting,
Passing_CFAudited
};
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
const AssignmentAction &AA) {
DB << llvm::to_underlying(AA);
return DB;
}
namespace threadSafety {
class BeforeSet;
void threadSafetyCleanup(BeforeSet *Cache);
} // namespace threadSafety
// FIXME: No way to easily map from TemplateTypeParmTypes to
// TemplateTypeParmDecls, so we have this horrible PointerUnion.
typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType *, NamedDecl *>,
SourceLocation>
UnexpandedParameterPack;
/// Describes whether we've seen any nullability information for the given
/// file.
struct FileNullability {
/// The first pointer declarator (of any pointer kind) in the file that does
/// not have a corresponding nullability annotation.
SourceLocation PointerLoc;
/// The end location for the first pointer declarator in the file. Used for
/// placing fix-its.
SourceLocation PointerEndLoc;
/// Which kind of pointer declarator we saw.
uint8_t PointerKind;
/// Whether we saw any type nullability annotations in the given file.
bool SawTypeNullability = false;
};
/// A mapping from file IDs to a record of whether we've seen nullability
/// information in that file.
class FileNullabilityMap {
/// A mapping from file IDs to the nullability information for each file ID.
llvm::DenseMap<FileID, FileNullability> Map;
/// A single-element cache based on the file ID.
struct {
FileID File;
FileNullability Nullability;
} Cache;
public:
FileNullability &operator[](FileID file) {
// Check the single-element cache.
if (file == Cache.File)
return Cache.Nullability;
// It's not in the single-element cache; flush the cache if we have one.
if (!Cache.File.isInvalid()) {
Map[Cache.File] = Cache.Nullability;
}
// Pull this entry into the cache.
Cache.File = file;
Cache.Nullability = Map[file];
return Cache.Nullability;
}
};
/// Tracks expected type during expression parsing, for use in code completion.
/// The type is tied to a particular token, all functions that update or consume
/// the type take a start location of the token they are looking at as a
/// parameter. This avoids updating the type on hot paths in the parser.
class PreferredTypeBuilder {
public:
PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
void enterCondition(Sema &S, SourceLocation Tok);
void enterReturn(Sema &S, SourceLocation Tok);
void enterVariableInit(SourceLocation Tok, Decl *D);
/// Handles e.g. BaseType{ .D = Tok...
void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
const Designation &D);
/// Computing a type for the function argument may require running
/// overloading, so we postpone its computation until it is actually needed.
///
/// Clients should be very careful when using this function, as it stores a
/// function_ref, clients should make sure all calls to get() with the same
/// location happen while function_ref is alive.
///
/// The callback should also emit signature help as a side-effect, but only
/// if the completion point has been reached.
void enterFunctionArgument(SourceLocation Tok,
llvm::function_ref<QualType()> ComputeType);
void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
SourceLocation OpLoc);
void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
/// Handles all type casts, including C-style cast, C++ casts, etc.
void enterTypeCast(SourceLocation Tok, QualType CastType);
/// Get the expected type associated with this location, if any.
///
/// If the location is a function argument, determining the expected type
/// involves considering all function overloads and the arguments so far.
/// In this case, signature help for these function overloads will be reported
/// as a side-effect (only if the completion point has been reached).
QualType get(SourceLocation Tok) const {
if (!Enabled || Tok != ExpectedLoc)
return QualType();
if (!Type.isNull())
return Type;
if (ComputeType)
return ComputeType();
return QualType();
}
private:
bool Enabled;
/// Start position of a token for which we store expected type.
SourceLocation ExpectedLoc;
/// Expected type for a token starting at ExpectedLoc.
QualType Type;
/// A function to compute expected type at ExpectedLoc. It is only considered
/// if Type is null.
llvm::function_ref<QualType()> ComputeType;
};
struct SkipBodyInfo {
SkipBodyInfo() = default;
bool ShouldSkip = false;
bool CheckSameAsPrevious = false;
NamedDecl *Previous = nullptr;
NamedDecl *New = nullptr;
};
/// Describes the result of template argument deduction.
///
/// The TemplateDeductionResult enumeration describes the result of
/// template argument deduction, as returned from
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
/// structure provides additional information about the results of
/// template argument deduction, e.g., the deduced template argument
/// list (if successful) or the specific template parameters or
/// deduced arguments that were involved in the failure.
enum class TemplateDeductionResult {
/// Template argument deduction was successful.
Success = 0,
/// The declaration was invalid; do nothing.
Invalid,
/// Template argument deduction exceeded the maximum template
/// instantiation depth (which has already been diagnosed).
InstantiationDepth,
/// Template argument deduction did not deduce a value
/// for every template parameter.
Incomplete,
/// Template argument deduction did not deduce a value for every
/// expansion of an expanded template parameter pack.
IncompletePack,
/// Template argument deduction produced inconsistent
/// deduced values for the given template parameter.
Inconsistent,
/// Template argument deduction failed due to inconsistent
/// cv-qualifiers on a template parameter type that would
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
/// but were given a non-const "X".
Underqualified,
/// Substitution of the deduced template argument values
/// resulted in an error.
SubstitutionFailure,
/// After substituting deduced template arguments, a dependent
/// parameter type did not match the corresponding argument.
DeducedMismatch,
/// After substituting deduced template arguments, an element of
/// a dependent parameter type did not match the corresponding element
/// of the corresponding argument (when deducing from an initializer list).
DeducedMismatchNested,
/// A non-depnedent component of the parameter did not match the
/// corresponding component of the argument.
NonDeducedMismatch,
/// When performing template argument deduction for a function
/// template, there were too many call arguments.
TooManyArguments,
/// When performing template argument deduction for a function
/// template, there were too few call arguments.
TooFewArguments,
/// The explicitly-specified template arguments were not valid
/// template arguments for the given template.
InvalidExplicitArguments,
/// Checking non-dependent argument conversions failed.
NonDependentConversionFailure,
/// The deduced arguments did not satisfy the constraints associated
/// with the template.
ConstraintsNotSatisfied,
/// Deduction failed; that's all we know.
MiscellaneousDeductionFailure,
/// CUDA Target attributes do not match.
CUDATargetMismatch,
/// Some error which was already diagnosed.
AlreadyDiagnosed
};
/// Kinds of C++ special members.
enum class CXXSpecialMemberKind {
DefaultConstructor,
CopyConstructor,
MoveConstructor,
CopyAssignment,
MoveAssignment,
Destructor,
Invalid
};
/// The kind of conversion being performed.
enum class CheckedConversionKind {
/// An implicit conversion.
Implicit,
/// A C-style cast.
CStyleCast,
/// A functional-style cast.
FunctionalCast,
/// A cast other than a C-style cast.
OtherCast,
/// A conversion for an operand of a builtin overloaded operator.
ForBuiltinOverloadedOp
};
enum class TagUseKind {
Reference, // Reference to a tag: 'struct foo *X;'
Declaration, // Fwd decl of a tag: 'struct foo;'
Definition, // Definition of a tag: 'struct foo { int X; } Y;'
Friend // Friend declaration: 'friend struct foo;'
};
/// Used with attributes/effects with a boolean condition, e.g. `nonblocking`.
enum class FunctionEffectMode : uint8_t {
None, // effect is not present.
False, // effect(false).
True, // effect(true).
Dependent // effect(expr) where expr is dependent.
};
/// Sema - This implements semantic analysis and AST building for C.
/// \nosubgrouping
class Sema final : public SemaBase {
// Table of Contents
// -----------------
// 1. Semantic Analysis (Sema.cpp)
// 2. API Notes (SemaAPINotes.cpp)
// 3. C++ Access Control (SemaAccess.cpp)
// 4. Attributes (SemaAttr.cpp)
// 5. Availability Attribute Handling (SemaAvailability.cpp)
// 6. Bounds Safety (SemaBoundsSafety.cpp)
// 7. Casts (SemaCast.cpp)
// 8. Extra Semantic Checking (SemaChecking.cpp)
// 9. C++ Coroutines (SemaCoroutine.cpp)
// 10. C++ Scope Specifiers (SemaCXXScopeSpec.cpp)
// 11. Declarations (SemaDecl.cpp)
// 12. Declaration Attribute Handling (SemaDeclAttr.cpp)
// 13. C++ Declarations (SemaDeclCXX.cpp)
// 14. C++ Exception Specifications (SemaExceptionSpec.cpp)
// 15. Expressions (SemaExpr.cpp)
// 16. C++ Expressions (SemaExprCXX.cpp)
// 17. Member Access Expressions (SemaExprMember.cpp)
// 18. Initializers (SemaInit.cpp)
// 19. C++ Lambda Expressions (SemaLambda.cpp)
// 20. Name Lookup (SemaLookup.cpp)
// 21. Modules (SemaModule.cpp)
// 22. C++ Overloading (SemaOverload.cpp)
// 23. Statements (SemaStmt.cpp)
// 24. `inline asm` Statement (SemaStmtAsm.cpp)
// 25. Statement Attribute Handling (SemaStmtAttr.cpp)
// 26. C++ Templates (SemaTemplate.cpp)
// 27. C++ Template Argument Deduction (SemaTemplateDeduction.cpp)
// 28. C++ Template Deduction Guide (SemaTemplateDeductionGuide.cpp)
// 29. C++ Template Instantiation (SemaTemplateInstantiate.cpp)
// 30. C++ Template Declaration Instantiation
// (SemaTemplateInstantiateDecl.cpp)
// 31. C++ Variadic Templates (SemaTemplateVariadic.cpp)
// 32. Constraints and Concepts (SemaConcept.cpp)
// 33. Types (SemaType.cpp)
// 34. FixIt Helpers (SemaFixItUtils.cpp)
// 35. Function Effects (SemaFunctionEffects.cpp)
/// \name Semantic Analysis
/// Implementations are in Sema.cpp
///@{
public:
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
TranslationUnitKind TUKind = TU_Complete,
CodeCompleteConsumer *CompletionConsumer = nullptr);
~Sema();
/// Perform initialization that occurs after the parser has been
/// initialized but before it parses anything.
void Initialize();
/// This virtual key function only exists to limit the emission of debug info
/// describing the Sema class. GCC and Clang only emit debug info for a class
/// with a vtable when the vtable is emitted. Sema is final and not
/// polymorphic, but the debug info size savings are so significant that it is
/// worth adding a vtable just to take advantage of this optimization.
virtual void anchor();
const LangOptions &getLangOpts() const { return LangOpts; }
OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
FPOptions &getCurFPFeatures() { return CurFPFeatures; }
DiagnosticsEngine &getDiagnostics() const { return Diags; }
SourceManager &getSourceManager() const { return SourceMgr; }
Preprocessor &getPreprocessor() const { return PP; }
ASTContext &getASTContext() const { return Context; }
ASTConsumer &getASTConsumer() const { return Consumer; }
ASTMutationListener *getASTMutationListener() const;
ExternalSemaSource *getExternalSource() const { return ExternalSource.get(); }
DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
StringRef Platform);
DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking();
/// Registers an external source. If an external source already exists,
/// creates a multiplex external source and appends to it.
///
///\param[in] E - A non-null external sema source.
///
void addExternalSource(ExternalSemaSource *E);
/// Print out statistics about the semantic analysis.
void PrintStats() const;
/// Run some code with "sufficient" stack space. (Currently, at least 256K is
/// guaranteed). Produces a warning if we're low on stack space and allocates
/// more in that case. Use this in code that may recurse deeply (for example,
/// in template instantiation) to avoid stack overflow.
void runWithSufficientStackSpace(SourceLocation Loc,
llvm::function_ref<void()> Fn);
/// Returns default addr space for method qualifiers.
LangAS getDefaultCXXMethodAddrSpace() const;
/// Load weak undeclared identifiers from the external source.
void LoadExternalWeakUndeclaredIdentifiers();
/// Determine if VD, which must be a variable or function, is an external
/// symbol that nonetheless can't be referenced from outside this translation
/// unit because its type has no linkage and it's not extern "C".
bool isExternalWithNoLinkageType(const ValueDecl *VD) const;
/// Obtain a sorted list of functions that are undefined but ODR-used.
void getUndefinedButUsed(
SmallVectorImpl<std::pair<NamedDecl *, SourceLocation>> &Undefined);
typedef std::pair<SourceLocation, bool> DeleteExprLoc;
typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
/// Retrieves list of suspicious delete-expressions that will be checked at
/// the end of translation unit.
const llvm::MapVector<FieldDecl *, DeleteLocs> &
getMismatchingDeleteExpressions() const;
/// Cause the built diagnostic to be emitted on the DiagosticsEngine.
/// This is closely coupled to the SemaDiagnosticBuilder class and
/// should not be used elsewhere.
void EmitDiagnostic(unsigned DiagID, const DiagnosticBuilder &DB);
void addImplicitTypedef(StringRef Name, QualType T);
/// Whether uncompilable error has occurred. This includes error happens
/// in deferred diagnostics.
bool hasUncompilableErrorOccurred() const;
/// Looks through the macro-expansion chain for the given
/// location, looking for a macro expansion with the given name.
/// If one is found, returns true and sets the location to that
/// expansion loc.
bool findMacroSpelling(SourceLocation &loc, StringRef name);
/// Calls \c Lexer::getLocForEndOfToken()
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
/// Retrieve the module loader associated with the preprocessor.
ModuleLoader &getModuleLoader() const;
/// Invent a new identifier for parameters of abbreviated templates.
IdentifierInfo *
InventAbbreviatedTemplateParameterTypeName(const IdentifierInfo *ParamName,
unsigned Index);
void emitAndClearUnusedLocalTypedefWarnings();
// Emit all deferred diagnostics.
void emitDeferredDiags();
enum TUFragmentKind {
/// The global module fragment, between 'module;' and a module-declaration.
Global,
/// A normal translation unit fragment. For a non-module unit, this is the
/// entire translation unit. Otherwise, it runs from the module-declaration
/// to the private-module-fragment (if any) or the end of the TU (if not).
Normal,
/// The private module fragment, between 'module :private;' and the end of
/// the translation unit.
Private
};
/// This is called before the very first declaration in the translation unit
/// is parsed. Note that the ASTContext may have already injected some
/// declarations.
void ActOnStartOfTranslationUnit();
/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
void ActOnEndOfTranslationUnit();
void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
/// Determines the active Scope associated with the given declaration
/// context.
///
/// This routine maps a declaration context to the active Scope object that
/// represents that declaration context in the parser. It is typically used
/// from "scope-less" code (e.g., template instantiation, lazy creation of
/// declarations) that injects a name for name-lookup purposes and, therefore,
/// must update the Scope.
///
/// \returns The scope corresponding to the given declaraion context, or NULL
/// if no such scope is open.
Scope *getScopeForContext(DeclContext *Ctx);
void PushFunctionScope();
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
sema::LambdaScopeInfo *PushLambdaScope();
/// This is used to inform Sema what the current TemplateParameterDepth
/// is during Parsing. Currently it is used to pass on the depth
/// when parsing generic lambda 'auto' parameters.
void RecordParsingTemplateParameterDepth(unsigned Depth);
void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
RecordDecl *RD, CapturedRegionKind K,
unsigned OpenMPCaptureLevel = 0);
/// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
/// time after they've been popped.
class PoppedFunctionScopeDeleter {
Sema *Self;
public:
explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
void operator()(sema::FunctionScopeInfo *Scope) const;
};
using PoppedFunctionScopePtr =
std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
/// Pop a function (or block or lambda or captured region) scope from the
/// stack.
///
/// \param WP The warning policy to use for CFG-based warnings, or null if
/// such warnings should not be produced.
/// \param D The declaration corresponding to this function scope, if
/// producing CFG-based warnings.
/// \param BlockType The type of the block expression, if D is a BlockDecl.
PoppedFunctionScopePtr
PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
const Decl *D = nullptr,
QualType BlockType = QualType());
sema::FunctionScopeInfo *getEnclosingFunction() const;
void setFunctionHasBranchIntoScope();
void setFunctionHasBranchProtectedScope();
void setFunctionHasIndirectGoto();
void setFunctionHasMustTail();
void PushCompoundScope(bool IsStmtExpr);
void PopCompoundScope();
/// Determine whether any errors occurred within this function/method/
/// block.
bool hasAnyUnrecoverableErrorsInThisFunction() const;
/// Retrieve the current block, if any.
sema::BlockScopeInfo *getCurBlock();
/// Get the innermost lambda or block enclosing the current location, if any.
/// This looks through intervening non-lambda, non-block scopes such as local
/// functions.
sema::CapturingScopeInfo *getEnclosingLambdaOrBlock() const;
/// Retrieve the current lambda scope info, if any.
/// \param IgnoreNonLambdaCapturingScope true if should find the top-most
/// lambda scope info ignoring all inner capturing scopes that are not
/// lambda scopes.
sema::LambdaScopeInfo *
getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
/// Retrieve the current generic lambda info, if any.
sema::LambdaScopeInfo *getCurGenericLambda();
/// Retrieve the current captured region, if any.
sema::CapturedRegionScopeInfo *getCurCapturedRegion();
void ActOnComment(SourceRange Comment);
/// Retrieve the parser's current scope.
///
/// This routine must only be used when it is certain that semantic analysis
/// and the parser are in precisely the same context, which is not the case
/// when, e.g., we are performing any kind of template instantiation.
/// Therefore, the only safe places to use this scope are in the parser
/// itself and in routines directly invoked from the parser and *never* from
/// template substitution or instantiation.
Scope *getCurScope() const { return CurScope; }
IdentifierInfo *getSuperIdentifier() const;
DeclContext *getCurLexicalContext() const {
return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
}
SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
const FunctionDecl *FD = nullptr);
SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
const PartialDiagnostic &PD,
const FunctionDecl *FD = nullptr) {
return targetDiag(Loc, PD.getDiagID(), FD) << PD;
}
/// Check if the type is allowed to be used for the current target.
void checkTypeSupport(QualType Ty, SourceLocation Loc,
ValueDecl *D = nullptr);
// /// The kind of conversion being performed.
// enum CheckedConversionKind {
// /// An implicit conversion.
// CCK_ImplicitConversion,
// /// A C-style cast.
// CCK_CStyleCast,
// /// A functional-style cast.
// CCK_FunctionalCast,
// /// A cast other than a C-style cast.
// CCK_OtherCast,
// /// A conversion for an operand of a builtin overloaded operator.
// CCK_ForBuiltinOverloadedOp
// };
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
/// cast. If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
ExprResult ImpCastExprToType(
Expr *E, QualType Type, CastKind CK, ExprValueKind VK = VK_PRValue,
const CXXCastPath *BasePath = nullptr,
CheckedConversionKind CCK = CheckedConversionKind::Implicit);
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
/// to the conversion from scalar type ScalarTy to the Boolean type.
static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
/// If \p AllowLambda is true, treat lambda as function.
DeclContext *getFunctionLevelDeclContext(bool AllowLambda = false) const;
/// Returns a pointer to the innermost enclosing function, or nullptr if the
/// current context is not inside a function. If \p AllowLambda is true,
/// this can return the call operator of an enclosing lambda, otherwise
/// lambdas are skipped when looking for an enclosing function.
FunctionDecl *getCurFunctionDecl(bool AllowLambda = false) const;
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
/// the method decl for the method being parsed. If we're currently
/// in a 'block', this returns the containing context.
ObjCMethodDecl *getCurMethodDecl();
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
/// or C function we're in, otherwise return null. If we're currently
/// in a 'block', this returns the containing context.
NamedDecl *getCurFunctionOrMethodDecl() const;
/// Warn if we're implicitly casting from a _Nullable pointer type to a
/// _Nonnull one.
void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
SourceLocation Loc);
/// Warn when implicitly casting 0 to nullptr.
void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
/// Warn when implicitly changing function effects.
void diagnoseFunctionEffectConversion(QualType DstType, QualType SrcType,
SourceLocation Loc);
/// makeUnavailableInSystemHeader - There is an error in the current
/// context. If we're still in a system header, and we can plausibly
/// make the relevant declaration unavailable instead of erroring, do
/// so and return true.
bool makeUnavailableInSystemHeader(SourceLocation loc,
UnavailableAttr::ImplicitReason reason);
/// Retrieve a suitable printing policy for diagnostics.
PrintingPolicy getPrintingPolicy() const {
return getPrintingPolicy(Context, PP);
}
/// Retrieve a suitable printing policy for diagnostics.
static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
const Preprocessor &PP);
/// Scope actions.
void ActOnTranslationUnitScope(Scope *S);
/// Determine whether \param D is function like (function or function
/// template) for parsing.
bool isDeclaratorFunctionLike(Declarator &D);
/// The maximum alignment, same as in llvm::Value. We duplicate them here
/// because that allows us not to duplicate the constants in clang code,
/// which we must to since we can't directly use the llvm constants.
/// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
///
/// This is the greatest alignment value supported by load, store, and alloca
/// instructions, and global values.
static const unsigned MaxAlignmentExponent = 32;
static const uint64_t MaximumAlignment = 1ull << MaxAlignmentExponent;
/// Flag indicating whether or not to collect detailed statistics.
bool CollectStats;
std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
/// Stack containing information about each of the nested
/// function, block, and method scopes that are currently active.
SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
/// The index of the first FunctionScope that corresponds to the current
/// context.
unsigned FunctionScopesStart = 0;
/// Track the number of currently active capturing scopes.
unsigned CapturingFunctionScopes = 0;
llvm::BumpPtrAllocator BumpAlloc;
/// The kind of translation unit we are processing.
///
/// When we're processing a complete translation unit, Sema will perform
/// end-of-translation-unit semantic tasks (such as creating
/// initializers for tentative definitions in C) once parsing has
/// completed. Modules and precompiled headers perform different kinds of
/// checks.
const TranslationUnitKind TUKind;
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
void incrementMSManglingNumber() const {
return CurScope->incrementMSManglingNumber();
}
/// Try to recover by turning the given expression into a
/// call. Returns true if recovery was attempted or an error was
/// emitted; this may also leave the ExprResult invalid.
bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
bool ForceComplain = false,
bool (*IsPlausibleResult)(QualType) = nullptr);
/// Figure out if an expression could be turned into a call.
///
/// Use this when trying to recover from an error where the programmer may
/// have written just the name of a function instead of actually calling it.
///
/// \param E - The expression to examine.
/// \param ZeroArgCallReturnTy - If the expression can be turned into a call
/// with no arguments, this parameter is set to the type returned by such a
/// call; otherwise, it is set to an empty QualType.
/// \param OverloadSet - If the expression is an overloaded function
/// name, this parameter is populated with the decls of the various
/// overloads.
bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
UnresolvedSetImpl &NonTemplateOverloads);
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
typedef OpaquePtr<TemplateName> TemplateTy;
typedef OpaquePtr<QualType> TypeTy;
OpenCLOptions OpenCLFeatures;
FPOptions CurFPFeatures;
const LangOptions &LangOpts;
Preprocessor &PP;
ASTContext &Context;
ASTConsumer &Consumer;
DiagnosticsEngine &Diags;
SourceManager &SourceMgr;
api_notes::APINotesManager APINotes;
/// A RAII object to enter scope of a compound statement.
class CompoundScopeRAII {
public:
CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
S.ActOnStartOfCompoundStmt(IsStmtExpr);
}
~CompoundScopeRAII() { S.ActOnFinishOfCompoundStmt(); }
private:
Sema &S;
};
/// An RAII helper that pops function a function scope on exit.
struct FunctionScopeRAII {
Sema &S;
bool Active;
FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
~FunctionScopeRAII() {
if (Active)
S.PopFunctionScopeInfo();
}
void disable() { Active = false; }
};
sema::FunctionScopeInfo *getCurFunction() const {
return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
}
/// Worker object for performing CFG-based warnings.
sema::AnalysisBasedWarnings AnalysisWarnings;
threadSafety::BeforeSet *ThreadSafetyDeclCache;
/// Callback to the parser to parse templated functions when needed.
typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
typedef void LateTemplateParserCleanupCB(void *P);
LateTemplateParserCB *LateTemplateParser;
LateTemplateParserCleanupCB *LateTemplateParserCleanup;
void *OpaqueParser;
void SetLateTemplateParser(LateTemplateParserCB *LTP,
LateTemplateParserCleanupCB *LTPCleanup, void *P) {
LateTemplateParser = LTP;
LateTemplateParserCleanup = LTPCleanup;
OpaqueParser = P;
}
/// Callback to the parser to parse a type expressed as a string.
std::function<TypeResult(StringRef, StringRef, SourceLocation)>
ParseTypeFromStringCallback;
/// VAListTagName - The declaration name corresponding to __va_list_tag.
/// This is used as part of a hack to omit that class from ADL results.
DeclarationName VAListTagName;
/// Is the last error level diagnostic immediate. This is used to determined
/// whether the next info diagnostic should be immediate.
bool IsLastErrorImmediate = true;
class DelayedDiagnostics;
class DelayedDiagnosticsState {
sema::DelayedDiagnosticPool *SavedPool = nullptr;
friend class Sema::DelayedDiagnostics;
};
typedef DelayedDiagnosticsState ParsingDeclState;
typedef DelayedDiagnosticsState ProcessingContextState;
/// A class which encapsulates the logic for delaying diagnostics
/// during parsing and other processing.
class DelayedDiagnostics {
/// The current pool of diagnostics into which delayed
/// diagnostics should go.
sema::DelayedDiagnosticPool *CurPool = nullptr;
public:
DelayedDiagnostics() = default;
/// Adds a delayed diagnostic.
void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
/// Determines whether diagnostics should be delayed.
bool shouldDelayDiagnostics() { return CurPool != nullptr; }
/// Returns the current delayed-diagnostics pool.
sema::DelayedDiagnosticPool *getCurrentPool() const { return CurPool; }
/// Enter a new scope. Access and deprecation diagnostics will be
/// collected in this pool.
DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
DelayedDiagnosticsState state;
state.SavedPool = CurPool;
CurPool = &pool;
return state;
}
/// Leave a delayed-diagnostic state that was previously pushed.
/// Do not emit any of the diagnostics. This is performed as part
/// of the bookkeeping of popping a pool "properly".
void popWithoutEmitting(DelayedDiagnosticsState state) {
CurPool = state.SavedPool;
}
/// Enter a new scope where access and deprecation diagnostics are
/// not delayed.
DelayedDiagnosticsState pushUndelayed() {
DelayedDiagnosticsState state;
state.SavedPool = CurPool;
CurPool = nullptr;
return state;
}
/// Undo a previous pushUndelayed().
void popUndelayed(DelayedDiagnosticsState state) {
assert(CurPool == nullptr);
CurPool = state.SavedPool;
}
} DelayedDiagnostics;
ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
return DelayedDiagnostics.push(pool);
}
/// Diagnostics that are emitted only if we discover that the given function
/// must be codegen'ed. Because handling these correctly adds overhead to
/// compilation, this is currently only enabled for CUDA compilations.
SemaDiagnosticBuilder::DeferredDiagnosticsType DeviceDeferredDiags;
/// CurContext - This is the current declaration context of parsing.
DeclContext *CurContext;
SemaAMDGPU &AMDGPU() {
assert(AMDGPUPtr);
return *AMDGPUPtr;
}
SemaARM &ARM() {
assert(ARMPtr);
return *ARMPtr;
}
SemaAVR &AVR() {
assert(AVRPtr);
return *AVRPtr;
}
SemaBPF &BPF() {
assert(BPFPtr);
return *BPFPtr;
}
SemaCodeCompletion &CodeCompletion() {
assert(CodeCompletionPtr);
return *CodeCompletionPtr;
}
SemaCUDA &CUDA() {
assert(CUDAPtr);
return *CUDAPtr;
}
SemaHLSL &HLSL() {
assert(HLSLPtr);
return *HLSLPtr;
}
SemaHexagon &Hexagon() {
assert(HexagonPtr);
return *HexagonPtr;
}
SemaLoongArch &LoongArch() {
assert(LoongArchPtr);
return *LoongArchPtr;
}
SemaM68k &M68k() {
assert(M68kPtr);
return *M68kPtr;
}
SemaMIPS &MIPS() {
assert(MIPSPtr);
return *MIPSPtr;
}
SemaMSP430 &MSP430() {
assert(MSP430Ptr);
return *MSP430Ptr;
}
SemaNVPTX &NVPTX() {
assert(NVPTXPtr);
return *NVPTXPtr;
}
SemaObjC &ObjC() {
assert(ObjCPtr);
return *ObjCPtr;
}
SemaOpenACC &OpenACC() {
assert(OpenACCPtr);
return *OpenACCPtr;
}
SemaOpenCL &OpenCL() {
assert(OpenCLPtr);
return *OpenCLPtr;
}
SemaOpenMP &OpenMP() {
assert(OpenMPPtr && "SemaOpenMP is dead");
return *OpenMPPtr;
}
SemaPPC &PPC() {
assert(PPCPtr);
return *PPCPtr;
}
SemaPseudoObject &PseudoObject() {
assert(PseudoObjectPtr);
return *PseudoObjectPtr;
}
SemaRISCV &RISCV() {
assert(RISCVPtr);
return *RISCVPtr;
}
SemaSPIRV &SPIRV() {
assert(SPIRVPtr);
return *SPIRVPtr;
}
SemaSYCL &SYCL() {
assert(SYCLPtr);
return *SYCLPtr;
}
SemaSwift &Swift() {
assert(SwiftPtr);
return *SwiftPtr;
}
SemaSystemZ &SystemZ() {
assert(SystemZPtr);
return *SystemZPtr;
}
SemaWasm &Wasm() {
assert(WasmPtr);
return *WasmPtr;
}
SemaX86 &X86() {
assert(X86Ptr);
return *X86Ptr;
}
/// Source of additional semantic information.
IntrusiveRefCntPtr<ExternalSemaSource> ExternalSource;
protected:
friend class Parser;
friend class InitializationSequence;
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTWriter;
private:
std::optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
bool WarnedDarwinSDKInfoMissing = false;
StackExhaustionHandler StackHandler;
Sema(const Sema &) = delete;
void operator=(const Sema &) = delete;
/// The handler for the FileChanged preprocessor events.
///
/// Used for diagnostics that implement custom semantic analysis for #include
/// directives, like -Wpragma-pack.
sema::SemaPPCallbacks *SemaPPCallbackHandler;
/// The parser's current scope.
///
/// The parser maintains this state here.
Scope *CurScope;
mutable IdentifierInfo *Ident_super;
std::unique_ptr<SemaAMDGPU> AMDGPUPtr;
std::unique_ptr<SemaARM> ARMPtr;
std::unique_ptr<SemaAVR> AVRPtr;
std::unique_ptr<SemaBPF> BPFPtr;
std::unique_ptr<SemaCodeCompletion> CodeCompletionPtr;
std::unique_ptr<SemaCUDA> CUDAPtr;
std::unique_ptr<SemaHLSL> HLSLPtr;
std::unique_ptr<SemaHexagon> HexagonPtr;
std::unique_ptr<SemaLoongArch> LoongArchPtr;
std::unique_ptr<SemaM68k> M68kPtr;
std::unique_ptr<SemaMIPS> MIPSPtr;
std::unique_ptr<SemaMSP430> MSP430Ptr;
std::unique_ptr<SemaNVPTX> NVPTXPtr;
std::unique_ptr<SemaObjC> ObjCPtr;
std::unique_ptr<SemaOpenACC> OpenACCPtr;
std::unique_ptr<SemaOpenCL> OpenCLPtr;
std::unique_ptr<SemaOpenMP> OpenMPPtr;
std::unique_ptr<SemaPPC> PPCPtr;
std::unique_ptr<SemaPseudoObject> PseudoObjectPtr;
std::unique_ptr<SemaRISCV> RISCVPtr;
std::unique_ptr<SemaSPIRV> SPIRVPtr;
std::unique_ptr<SemaSYCL> SYCLPtr;
std::unique_ptr<SemaSwift> SwiftPtr;
std::unique_ptr<SemaSystemZ> SystemZPtr;
std::unique_ptr<SemaWasm> WasmPtr;
std::unique_ptr<SemaX86> X86Ptr;
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name API Notes
/// Implementations are in SemaAPINotes.cpp
///@{
public:
/// Map any API notes provided for this declaration to attributes on the
/// declaration.
///
/// Triggered by declaration-attribute processing.
void ProcessAPINotes(Decl *D);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Access Control
/// Implementations are in SemaAccess.cpp
///@{
public:
enum AccessResult {
AR_accessible,
AR_inaccessible,
AR_dependent,
AR_delayed
};
/// SetMemberAccessSpecifier - Set the access specifier of a member.
/// Returns true on error (when the previous member decl access specifier
/// is different from the new member decl access specifier).
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
NamedDecl *PrevMemberDecl,
AccessSpecifier LexicalAS);
/// Perform access-control checking on a previously-unresolved member
/// access which has now been resolved to a member.
AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
DeclAccessPair FoundDecl);
/// Checks access to an overloaded operator new or delete.
AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
SourceRange PlacementRange,
CXXRecordDecl *NamingClass,
DeclAccessPair FoundDecl,
bool Diagnose = true);
/// Checks access to a constructor.
AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D,
DeclAccessPair FoundDecl,
const InitializedEntity &Entity,
bool IsCopyBindingRefToTemp = false);
/// Checks access to a constructor.
AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D,
DeclAccessPair FoundDecl,
const InitializedEntity &Entity,
const PartialDiagnostic &PDiag);
AccessResult CheckDestructorAccess(SourceLocation Loc,
CXXDestructorDecl *Dtor,
const PartialDiagnostic &PDiag,
QualType objectType = QualType());
/// Checks access to the target of a friend declaration.
AccessResult CheckFriendAccess(NamedDecl *D);
/// Checks access to a member.
AccessResult CheckMemberAccess(SourceLocation UseLoc,
CXXRecordDecl *NamingClass,
DeclAccessPair Found);
/// Checks implicit access to a member in a structured binding.
AccessResult
CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
CXXRecordDecl *DecomposedClass,
DeclAccessPair Field);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
const SourceRange &,
DeclAccessPair FoundDecl);
/// Checks access to an overloaded member operator, including
/// conversion operators.
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
Expr *ArgExpr,
DeclAccessPair FoundDecl);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
ArrayRef<Expr *> ArgExprs,
DeclAccessPair FoundDecl);
AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
DeclAccessPair FoundDecl);
/// Checks access for a hierarchy conversion.
///
/// \param ForceCheck true if this check should be performed even if access
/// control is disabled; some things rely on this for semantics
/// \param ForceUnprivileged true if this check should proceed as if the
/// context had no special privileges
AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, QualType Base,
QualType Derived, const CXXBasePath &Path,
unsigned DiagID, bool ForceCheck = false,
bool ForceUnprivileged = false);
AccessResult CheckBaseClassAccess(
SourceLocation AccessLoc, CXXRecordDecl *Base, CXXRecordDecl *Derived,
const CXXBasePath &Path, unsigned DiagID,
llvm::function_ref<void(PartialDiagnostic &PD)> SetupPDiag,
bool ForceCheck = false, bool ForceUnprivileged = false);
/// Checks access to all the declarations in the given result set.
void CheckLookupAccess(const LookupResult &R);
/// Checks access to Target from the given class. The check will take access
/// specifiers into account, but no member access expressions and such.
///
/// \param Target the declaration to check if it can be accessed
/// \param NamingClass the class in which the lookup was started.
/// \param BaseType type of the left side of member access expression.
/// \p BaseType and \p NamingClass are used for C++ access control.
/// Depending on the lookup case, they should be set to the following:
/// - lhs.target (member access without a qualifier):
/// \p BaseType and \p NamingClass are both the type of 'lhs'.
/// - lhs.X::target (member access with a qualifier):
/// BaseType is the type of 'lhs', NamingClass is 'X'
/// - X::target (qualified lookup without member access):
/// BaseType is null, NamingClass is 'X'.
/// - target (unqualified lookup).
/// BaseType is null, NamingClass is the parent class of 'target'.
/// \return true if the Target is accessible from the Class, false otherwise.
bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
QualType BaseType);
/// Is the given member accessible for the purposes of deciding whether to
/// define a special member function as deleted?
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
DeclAccessPair Found, QualType ObjectType,
SourceLocation Loc,
const PartialDiagnostic &Diag);
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
DeclAccessPair Found,
QualType ObjectType) {
return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
SourceLocation(), PDiag());
}
void HandleDependentAccessCheck(
const DependentDiagnostic &DD,
const MultiLevelTemplateArgumentList &TemplateArgs);
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Attributes
/// Implementations are in SemaAttr.cpp
///@{
public:
/// Controls member pointer representation format under the MS ABI.
LangOptions::PragmaMSPointersToMembersKind
MSPointerToMemberRepresentationMethod;
bool MSStructPragmaOn; // True when \#pragma ms_struct on
/// Source location for newly created implicit MSInheritanceAttrs
SourceLocation ImplicitMSInheritanceAttrLoc;
/// pragma clang section kind
enum PragmaClangSectionKind {
PCSK_Invalid = 0,
PCSK_BSS = 1,
PCSK_Data = 2,
PCSK_Rodata = 3,
PCSK_Text = 4,
PCSK_Relro = 5
};
enum PragmaClangSectionAction { PCSA_Set = 0, PCSA_Clear = 1 };
struct PragmaClangSection {
std::string SectionName;
bool Valid = false;
SourceLocation PragmaLocation;
};
PragmaClangSection PragmaClangBSSSection;
PragmaClangSection PragmaClangDataSection;
PragmaClangSection PragmaClangRodataSection;
PragmaClangSection PragmaClangRelroSection;
PragmaClangSection PragmaClangTextSection;
enum PragmaMsStackAction {
PSK_Reset = 0x0, // #pragma ()
PSK_Set = 0x1, // #pragma (value)
PSK_Push = 0x2, // #pragma (push[, id])
PSK_Pop = 0x4, // #pragma (pop[, id])
PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
};
struct PragmaPackInfo {
PragmaMsStackAction Action;
StringRef SlotLabel;
Token Alignment;
};
// #pragma pack and align.
class AlignPackInfo {
public:
// `Native` represents default align mode, which may vary based on the
// platform.
enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
// #pragma pack info constructor
AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
: PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
assert(Num == PackNumber && "The pack number has been truncated.");
}
// #pragma align info constructor
AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
: PackAttr(false), AlignMode(M),
PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
AlignPackInfo() : AlignPackInfo(Native, false) {}
// When a AlignPackInfo itself cannot be used, this returns an 32-bit
// integer encoding for it. This should only be passed to
// AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
static uint32_t getRawEncoding(const AlignPackInfo &Info) {
std::uint32_t Encoding{};
if (Info.IsXLStack())
Encoding |= IsXLMask;
Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
if (Info.IsPackAttr())
Encoding |= PackAttrMask;
Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
return Encoding;
}
static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
bool IsXL = static_cast<bool>(Encoding & IsXLMask);
AlignPackInfo::Mode M =
static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
int PackNumber = (Encoding & PackNumMask) >> 4;
if (Encoding & PackAttrMask)
return AlignPackInfo(M, PackNumber, IsXL);
return AlignPackInfo(M, IsXL);
}
bool IsPackAttr() const { return PackAttr; }
bool IsAlignAttr() const { return !PackAttr; }
Mode getAlignMode() const { return AlignMode; }
unsigned getPackNumber() const { return PackNumber; }
bool IsPackSet() const {
// #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
// attriute on a decl.
return PackNumber != UninitPackVal && PackNumber != 0;
}
bool IsXLStack() const { return XLStack; }
bool operator==(const AlignPackInfo &Info) const {
return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
Info.XLStack);
}
bool operator!=(const AlignPackInfo &Info) const {
return !(*this == Info);
}
private:
/// \brief True if this is a pragma pack attribute,
/// not a pragma align attribute.
bool PackAttr;
/// \brief The alignment mode that is in effect.
Mode AlignMode;
/// \brief The pack number of the stack.
unsigned char PackNumber;
/// \brief True if it is a XL #pragma align/pack stack.
bool XLStack;
/// \brief Uninitialized pack value.
static constexpr unsigned char UninitPackVal = -1;
// Masks to encode and decode an AlignPackInfo.
static constexpr uint32_t IsXLMask{0x0000'0001};
static constexpr uint32_t AlignModeMask{0x0000'0006};
static constexpr uint32_t PackAttrMask{0x00000'0008};
static constexpr uint32_t PackNumMask{0x0000'01F0};
};
template <typename ValueType> struct PragmaStack {
struct Slot {
llvm::StringRef StackSlotLabel;
ValueType Value;
SourceLocation PragmaLocation;
SourceLocation PragmaPushLocation;
Slot(llvm::StringRef StackSlotLabel, ValueType Value,
SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
: StackSlotLabel(StackSlotLabel), Value(Value),
PragmaLocation(PragmaLocation),
PragmaPushLocation(PragmaPushLocation) {}
};
void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel, ValueType Value) {
if (Action == PSK_Reset) {
CurrentValue = DefaultValue;
CurrentPragmaLocation = PragmaLocation;
return;
}
if (Action & PSK_Push)
Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
PragmaLocation);
else if (Action & PSK_Pop) {
if (!StackSlotLabel.empty()) {
// If we've got a label, try to find it and jump there.
auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
return x.StackSlotLabel == StackSlotLabel;
});
// If we found the label so pop from there.
if (I != Stack.rend()) {
CurrentValue = I->Value;
CurrentPragmaLocation = I->PragmaLocation;
Stack.erase(std::prev(I.base()), Stack.end());
}
} else if (!Stack.empty()) {
// We do not have a label, just pop the last entry.
CurrentValue = Stack.back().Value;
CurrentPragmaLocation = Stack.back().PragmaLocation;
Stack.pop_back();
}
}
if (Action & PSK_Set) {
CurrentValue = Value;
CurrentPragmaLocation = PragmaLocation;
}
}
// MSVC seems to add artificial slots to #pragma stacks on entering a C++
// method body to restore the stacks on exit, so it works like this:
//
// struct S {
// #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
// void Method {}
// #pragma <name>(pop, InternalPragmaSlot)
// };
//
// It works even with #pragma vtordisp, although MSVC doesn't support
// #pragma vtordisp(push [, id], n)
// syntax.
//
// Push / pop a named sentinel slot.
void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
assert((Action == PSK_Push || Action == PSK_Pop) &&
"Can only push / pop #pragma stack sentinels!");
Act(CurrentPragmaLocation, Action, Label, CurrentValue);
}
// Constructors.
explicit PragmaStack(const ValueType &Default)
: DefaultValue(Default), CurrentValue(Default) {}
bool hasValue() const { return CurrentValue != DefaultValue; }
SmallVector<Slot, 2> Stack;
ValueType DefaultValue; // Value used for PSK_Reset action.
ValueType CurrentValue;
SourceLocation CurrentPragmaLocation;
};
// FIXME: We should serialize / deserialize these if they occur in a PCH (but
// we shouldn't do so if they're in a module).
/// Whether to insert vtordisps prior to virtual bases in the Microsoft
/// C++ ABI. Possible values are 0, 1, and 2, which mean:
///
/// 0: Suppress all vtordisps
/// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
/// structors
/// 2: Always insert vtordisps to support RTTI on partially constructed
/// objects
PragmaStack<MSVtorDispMode> VtorDispStack;
PragmaStack<AlignPackInfo> AlignPackStack;
// The current #pragma align/pack values and locations at each #include.
struct AlignPackIncludeState {
AlignPackInfo CurrentValue;
SourceLocation CurrentPragmaLocation;
bool HasNonDefaultValue, ShouldWarnOnInclude;
};
SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
// Segment #pragmas.
PragmaStack<StringLiteral *> DataSegStack;
PragmaStack<StringLiteral *> BSSSegStack;
PragmaStack<StringLiteral *> ConstSegStack;
PragmaStack<StringLiteral *> CodeSegStack;
// #pragma strict_gs_check.
PragmaStack<bool> StrictGuardStackCheckStack;
// This stack tracks the current state of Sema.CurFPFeatures.
PragmaStack<FPOptionsOverride> FpPragmaStack;
FPOptionsOverride CurFPFeatureOverrides() {
FPOptionsOverride result;
if (!FpPragmaStack.hasValue()) {
result = FPOptionsOverride();
} else {
result = FpPragmaStack.CurrentValue;
}
return result;
}
enum PragmaSectionKind {
PSK_DataSeg,
PSK_BSSSeg,
PSK_ConstSeg,
PSK_CodeSeg,
};
// RAII object to push / pop sentinel slots for all MS #pragma stacks.
// Actions should be performed only if we enter / exit a C++ method body.
class PragmaStackSentinelRAII {
public:
PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
~PragmaStackSentinelRAII();
private:
Sema &S;
StringRef SlotLabel;
bool ShouldAct;
};
/// Last section used with #pragma init_seg.
StringLiteral *CurInitSeg;
SourceLocation CurInitSegLoc;
/// Sections used with #pragma alloc_text.
llvm::StringMap<std::tuple<StringRef, SourceLocation>> FunctionToSectionMap;
/// VisContext - Manages the stack for \#pragma GCC visibility.
void *VisContext; // Really a "PragmaVisStack*"
/// This an attribute introduced by \#pragma clang attribute.
struct PragmaAttributeEntry {
SourceLocation Loc;
ParsedAttr *Attribute;
SmallVector<attr::SubjectMatchRule, 4> MatchRules;
bool IsUsed;
};
/// A push'd group of PragmaAttributeEntries.
struct PragmaAttributeGroup {
/// The location of the push attribute.
SourceLocation Loc;
/// The namespace of this push group.
const IdentifierInfo *Namespace;
SmallVector<PragmaAttributeEntry, 2> Entries;
};
SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
/// The declaration that is currently receiving an attribute from the
/// #pragma attribute stack.
const Decl *PragmaAttributeCurrentTargetDecl;
/// This represents the last location of a "#pragma clang optimize off"
/// directive if such a directive has not been closed by an "on" yet. If
/// optimizations are currently "on", this is set to an invalid location.
SourceLocation OptimizeOffPragmaLocation;
/// Get the location for the currently active "\#pragma clang optimize
/// off". If this location is invalid, then the state of the pragma is "on".
SourceLocation getOptimizeOffPragmaLocation() const {
return OptimizeOffPragmaLocation;
}
/// The "on" or "off" argument passed by \#pragma optimize, that denotes
/// whether the optimizations in the list passed to the pragma should be
/// turned off or on. This boolean is true by default because command line
/// options are honored when `#pragma optimize("", on)`.
/// (i.e. `ModifyFnAttributeMSPragmaOptimze()` does nothing)
bool MSPragmaOptimizeIsOn = true;
/// Set of no-builtin functions listed by \#pragma function.
llvm::SmallSetVector<StringRef, 4> MSFunctionNoBuiltins;
/// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
/// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
void AddAlignmentAttributesForRecord(RecordDecl *RD);
/// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
void AddMsStructLayoutForRecord(RecordDecl *RD);
/// Add gsl::Pointer attribute to std::container::iterator
/// \param ND The declaration that introduces the name
/// std::container::iterator. \param UnderlyingRecord The record named by ND.
void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
/// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
/// Add [[clang:::lifetimebound]] attr for std:: functions and methods.
void inferLifetimeBoundAttribute(FunctionDecl *FD);
/// Add [[clang:::lifetime_capture_by(this)]] to STL container methods.
void inferLifetimeCaptureByAttribute(FunctionDecl *FD);
/// Add [[gsl::Pointer]] attributes for std:: types.
void inferGslPointerAttribute(TypedefNameDecl *TD);
LifetimeCaptureByAttr *ParseLifetimeCaptureByAttr(const ParsedAttr &AL,
StringRef ParamName);
// Processes the argument 'X' in [[clang::lifetime_capture_by(X)]]. Since 'X'
// can be the name of a function parameter, we need to parse the function
// declaration and rest of the parameters before processesing 'X'. Therefore
// do this lazily instead of processing while parsing the annotation itself.
void LazyProcessLifetimeCaptureByParams(FunctionDecl *FD);
/// Add _Nullable attributes for std:: types.
void inferNullableClassAttribute(CXXRecordDecl *CRD);
enum PragmaOptionsAlignKind {
POAK_Native, // #pragma options align=native
POAK_Natural, // #pragma options align=natural
POAK_Packed, // #pragma options align=packed
POAK_Power, // #pragma options align=power
POAK_Mac68k, // #pragma options align=mac68k
POAK_Reset // #pragma options align=reset
};
/// ActOnPragmaClangSection - Called on well formed \#pragma clang section
void ActOnPragmaClangSection(SourceLocation PragmaLoc,
PragmaClangSectionAction Action,
PragmaClangSectionKind SecKind,
StringRef SecName);
/// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
SourceLocation PragmaLoc);
/// ActOnPragmaPack - Called on well formed \#pragma pack(...).
void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
StringRef SlotLabel, Expr *Alignment);
/// ConstantFoldAttrArgs - Folds attribute arguments into ConstantExprs
/// (unless they are value dependent or type dependent). Returns false
/// and emits a diagnostic if one or more of the arguments could not be
/// folded into a constant.
bool ConstantFoldAttrArgs(const AttributeCommonInfo &CI,
MutableArrayRef<Expr *> Args);
enum class PragmaAlignPackDiagnoseKind {
NonDefaultStateAtInclude,
ChangedStateAtExit
};
void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
SourceLocation IncludeLoc);
void DiagnoseUnterminatedPragmaAlignPack();
/// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
/// ActOnPragmaMSComment - Called on well formed
/// \#pragma comment(kind, "arg").
void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
StringRef Arg);
/// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
StringRef Value);
/// Are precise floating point semantics currently enabled?
bool isPreciseFPEnabled() {
return !CurFPFeatures.getAllowFPReassociate() &&
!CurFPFeatures.getNoSignedZero() &&
!CurFPFeatures.getAllowReciprocal() &&
!CurFPFeatures.getAllowApproxFunc();
}
void ActOnPragmaFPEvalMethod(SourceLocation Loc,
LangOptions::FPEvalMethodKind Value);
/// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
PragmaFloatControlKind Value);
/// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
/// pointers_to_members(representation method[, general purpose
/// representation]).
void ActOnPragmaMSPointersToMembers(
LangOptions::PragmaMSPointersToMembersKind Kind,
SourceLocation PragmaLoc);
/// Called on well formed \#pragma vtordisp().
void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
SourceLocation PragmaLoc, MSVtorDispMode Value);
bool UnifySection(StringRef SectionName, int SectionFlags,
NamedDecl *TheDecl);
bool UnifySection(StringRef SectionName, int SectionFlags,
SourceLocation PragmaSectionLocation);
/// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel,
StringLiteral *SegmentName, llvm::StringRef PragmaName);
/// Called on well formed \#pragma section().
void ActOnPragmaMSSection(SourceLocation PragmaLocation, int SectionFlags,
StringLiteral *SegmentName);
/// Called on well-formed \#pragma init_seg().
void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
StringLiteral *SegmentName);
/// Called on well-formed \#pragma alloc_text().
void ActOnPragmaMSAllocText(
SourceLocation PragmaLocation, StringRef Section,
const SmallVector<std::tuple<IdentifierInfo *, SourceLocation>>
&Functions);
/// ActOnPragmaMSStrictGuardStackCheck - Called on well formed \#pragma
/// strict_gs_check.
void ActOnPragmaMSStrictGuardStackCheck(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
bool Value);
/// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
void ActOnPragmaUnused(const Token &Identifier, Scope *curScope,
SourceLocation PragmaLoc);
void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
SourceLocation PragmaLoc,
attr::ParsedSubjectMatchRuleSet Rules);
void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
const IdentifierInfo *Namespace);
/// Called on well-formed '\#pragma clang attribute pop'.
void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
const IdentifierInfo *Namespace);
/// Adds the attributes that have been specified using the
/// '\#pragma clang attribute push' directives to the given declaration.
void AddPragmaAttributes(Scope *S, Decl *D);
using InstantiationContextDiagFuncRef =
llvm::function_ref<void(SourceLocation, PartialDiagnostic)>;
auto getDefaultDiagFunc() {
return [this](SourceLocation Loc, PartialDiagnostic PD) {
// This bypasses a lot of the filters in the diag engine, as it's
// to be used to attach notes to diagnostics which have already
// been filtered through.
DiagnosticBuilder Builder(Diags.Report(Loc, PD.getDiagID()));
PD.Emit(Builder);
};
}
void PrintPragmaAttributeInstantiationPoint(
InstantiationContextDiagFuncRef DiagFunc);
void PrintPragmaAttributeInstantiationPoint() {
PrintPragmaAttributeInstantiationPoint(getDefaultDiagFunc());
}
void DiagnoseUnterminatedPragmaAttribute();
/// Called on well formed \#pragma clang optimize.
void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
/// #pragma optimize("[optimization-list]", on | off).
void ActOnPragmaMSOptimize(SourceLocation Loc, bool IsOn);
/// Call on well formed \#pragma function.
void
ActOnPragmaMSFunction(SourceLocation Loc,
const llvm::SmallVectorImpl<StringRef> &NoBuiltins);
/// Only called on function definitions; if there is a pragma in scope
/// with the effect of a range-based optnone, consider marking the function
/// with attribute optnone.
void AddRangeBasedOptnone(FunctionDecl *FD);
/// Only called on function definitions; if there is a `#pragma alloc_text`
/// that decides which code section the function should be in, add
/// attribute section to the function.
void AddSectionMSAllocText(FunctionDecl *FD);
/// Adds the 'optnone' attribute to the function declaration if there
/// are no conflicts; Loc represents the location causing the 'optnone'
/// attribute to be added (usually because of a pragma).
void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
/// Only called on function definitions; if there is a MSVC #pragma optimize
/// in scope, consider changing the function's attributes based on the
/// optimization list passed to the pragma.
void ModifyFnAttributesMSPragmaOptimize(FunctionDecl *FD);
/// Only called on function definitions; if there is a pragma in scope
/// with the effect of a range-based no_builtin, consider marking the function
/// with attribute no_builtin.
void AddImplicitMSFunctionNoBuiltinAttr(FunctionDecl *FD);
/// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
/// add an appropriate visibility attribute.
void AddPushedVisibilityAttribute(Decl *RD);
/// FreeVisContext - Deallocate and null out VisContext.
void FreeVisContext();
/// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
void ActOnPragmaVisibility(const IdentifierInfo *VisType,
SourceLocation PragmaLoc);
/// ActOnPragmaFPContract - Called on well formed
/// \#pragma {STDC,OPENCL} FP_CONTRACT and
/// \#pragma clang fp contract
void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
/// Called on well formed
/// \#pragma clang fp reassociate
/// or
/// \#pragma clang fp reciprocal
void ActOnPragmaFPValueChangingOption(SourceLocation Loc, PragmaFPKind Kind,
bool IsEnabled);
/// ActOnPragmaFenvAccess - Called on well formed
/// \#pragma STDC FENV_ACCESS
void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
/// ActOnPragmaCXLimitedRange - Called on well formed
/// \#pragma STDC CX_LIMITED_RANGE
void ActOnPragmaCXLimitedRange(SourceLocation Loc,
LangOptions::ComplexRangeKind Range);
/// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
void ActOnPragmaFPExceptions(SourceLocation Loc,
LangOptions::FPExceptionModeKind);
/// Called to set constant rounding mode for floating point operations.
void ActOnPragmaFEnvRound(SourceLocation Loc, llvm::RoundingMode);
/// Called to set exception behavior for floating point operations.
void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
/// PushNamespaceVisibilityAttr - Note that we've entered a
/// namespace with a visibility attribute.
void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
SourceLocation Loc);
/// PopPragmaVisibility - Pop the top element of the visibility stack; used
/// for '\#pragma GCC visibility' and visibility attributes on namespaces.
void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
/// Handles semantic checking for features that are common to all attributes,
/// such as checking whether a parameter was properly specified, or the
/// correct number of arguments were passed, etc. Returns true if the
/// attribute has been diagnosed.
bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A,
bool SkipArgCountCheck = false);
bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A,
bool SkipArgCountCheck = false);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Availability Attribute Handling
/// Implementations are in SemaAvailability.cpp
///@{
public:
/// Issue any -Wunguarded-availability warnings in \c FD
void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
/// Retrieve the current function, if any, that should be analyzed for
/// potential availability violations.
sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
const ObjCInterfaceDecl *UnknownObjCClass,
bool ObjCPropertyAccess,
bool AvoidPartialAvailabilityChecks = false,
ObjCInterfaceDecl *ClassReceiver = nullptr);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Bounds Safety
/// Implementations are in SemaBoundsSafety.cpp
///@{
public:
/// Check if applying the specified attribute variant from the "counted by"
/// family of attributes to FieldDecl \p FD is semantically valid. If
/// semantically invalid diagnostics will be emitted explaining the problems.
///
/// \param FD The FieldDecl to apply the attribute to
/// \param E The count expression on the attribute
/// \param CountInBytes If true the attribute is from the "sized_by" family of
/// attributes. If the false the attribute is from
/// "counted_by" family of attributes.
/// \param OrNull If true the attribute is from the "_or_null" suffixed family
/// of attributes. If false the attribute does not have the
/// suffix.
///
/// Together \p CountInBytes and \p OrNull decide the attribute variant. E.g.
/// \p CountInBytes and \p OrNull both being true indicates the
/// `counted_by_or_null` attribute.
///
/// \returns false iff semantically valid.
bool CheckCountedByAttrOnField(FieldDecl *FD, Expr *E, bool CountInBytes,
bool OrNull);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Casts
/// Implementations are in SemaCast.cpp
///@{
public:
static bool isCast(CheckedConversionKind CCK) {
return CCK == CheckedConversionKind::CStyleCast ||
CCK == CheckedConversionKind::FunctionalCast ||
CCK == CheckedConversionKind::OtherCast;
}
/// ActOnCXXNamedCast - Parse
/// {dynamic,static,reinterpret,const,addrspace}_cast's.
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
SourceLocation LAngleBracketLoc, Declarator &D,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc, Expr *E,
SourceLocation RParenLoc);
ExprResult BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
TypeSourceInfo *Ty, Expr *E,
SourceRange AngleBrackets, SourceRange Parens);
ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
ExprResult Operand,
SourceLocation RParenLoc);
ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
Expr *Operand, SourceLocation RParenLoc);
// Checks that reinterpret casts don't have undefined behavior.
void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
bool IsDereference, SourceRange Range);
// Checks that the vector type should be initialized from a scalar
// by splatting the value rather than populating a single element.
// This is the case for AltiVecVector types as well as with
// AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
// Checks if the -faltivec-src-compat=gcc option is specified.
// If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
// treated the same way as they are when trying to initialize
// these vectors on gcc (an error is emitted).
bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
QualType SrcTy);
ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
SourceLocation RParenLoc, Expr *Op);
ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
SourceLocation LParenLoc,
Expr *CastExpr,
SourceLocation RParenLoc);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Extra Semantic Checking
/// Implementations are in SemaChecking.cpp
///@{
public:
/// Used to change context to isConstantEvaluated without pushing a heavy
/// ExpressionEvaluationContextRecord object.
bool isConstantEvaluatedOverride = false;
bool isConstantEvaluatedContext() const {
return currentEvaluationContext().isConstantEvaluated() ||
isConstantEvaluatedOverride;
}
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const;
enum FormatArgumentPassingKind {
FAPK_Fixed, // values to format are fixed (no C-style variadic arguments)
FAPK_Variadic, // values to format are passed as variadic arguments
FAPK_VAList, // values to format are passed in a va_list
FAPK_Elsewhere, // values to format are not passed to this function
};
// Used to grab the relevant information from a FormatAttr and a
// FunctionDeclaration.
struct FormatStringInfo {
unsigned FormatIdx;
unsigned FirstDataArg;
FormatArgumentPassingKind ArgPassingKind;
};
/// Given a function and its FormatAttr or FormatMatchesAttr info, attempts to
/// populate the FomatStringInfo parameter with the attribute's correct
/// format_idx and firstDataArg. Returns true when the format fits the
/// function and the FormatStringInfo has been populated.
static bool getFormatStringInfo(const Decl *Function, unsigned FormatIdx,
unsigned FirstArg, FormatStringInfo *FSI);
static bool getFormatStringInfo(unsigned FormatIdx, unsigned FirstArg,
bool IsCXXMember, bool IsVariadic,
FormatStringInfo *FSI);
// Used by C++ template instantiation.
ExprResult BuiltinShuffleVector(CallExpr *TheCall);
/// ConvertVectorExpr - Handle __builtin_convertvector
ExprResult ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
enum FormatStringType {
FST_Scanf,
FST_Printf,
FST_NSString,
FST_Strftime,
FST_Strfmon,
FST_Kprintf,
FST_FreeBSDKPrintf,
FST_OSTrace,
FST_OSLog,
FST_Syslog,
FST_Unknown
};
static StringRef GetFormatStringTypeName(FormatStringType FST);
static FormatStringType GetFormatStringType(StringRef FormatFlavor);
static FormatStringType GetFormatStringType(const FormatAttr *Format);
static FormatStringType GetFormatStringType(const FormatMatchesAttr *Format);
bool FormatStringHasSArg(const StringLiteral *FExpr);
/// Check for comparisons of floating-point values using == and !=. Issue a
/// warning if the comparison is not likely to do what the programmer
/// intended.
void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
BinaryOperatorKind Opcode);
/// Register a magic integral constant to be used as a type tag.
void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
uint64_t MagicValue, QualType Type,
bool LayoutCompatible, bool MustBeNull);
struct TypeTagData {
TypeTagData() {}
TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull)
: Type(Type), LayoutCompatible(LayoutCompatible),
MustBeNull(MustBeNull) {}
QualType Type;
/// If true, \c Type should be compared with other expression's types for
/// layout-compatibility.
LLVM_PREFERRED_TYPE(bool)
unsigned LayoutCompatible : 1;
LLVM_PREFERRED_TYPE(bool)
unsigned MustBeNull : 1;
};
/// A pair of ArgumentKind identifier and magic value. This uniquely
/// identifies the magic value.
typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
/// Diagnoses the current set of gathered accesses. This typically
/// happens at full expression level. The set is cleared after emitting the
/// diagnostics.
void DiagnoseMisalignedMembers();
/// This function checks if the expression is in the sef of potentially
/// misaligned members and it is converted to some pointer type T with lower
/// or equal alignment requirements. If so it removes it. This is used when
/// we do not want to diagnose such misaligned access (e.g. in conversions to
/// void*).
void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
/// This function calls Action when it determines that E designates a
/// misaligned member due to the packed attribute. This is used to emit
/// local diagnostics like in reference binding.
void RefersToMemberWithReducedAlignment(
Expr *E,
llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
Action);
enum class AtomicArgumentOrder { API, AST };
ExprResult
BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
SourceLocation RParenLoc, MultiExprArg Args,
AtomicExpr::AtomicOp Op,
AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
/// Check to see if a given expression could have '.c_str()' called on it.
bool hasCStrMethod(const Expr *E);
/// Diagnose pointers that are always non-null.
/// \param E the expression containing the pointer
/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
/// compared to a null pointer
/// \param IsEqual True when the comparison is equal to a null pointer
/// \param Range Extra SourceRange to highlight in the diagnostic
void DiagnoseAlwaysNonNullPointer(Expr *E,
Expr::NullPointerConstantKind NullType,
bool IsEqual, SourceRange Range);
/// CheckParmsForFunctionDef - Check that the parameters of the given
/// function are appropriate for the definition of a function. This
/// takes care of any checks that cannot be performed on the
/// declaration itself, e.g., that the types of each of the function
/// parameters are complete.
bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
bool CheckParameterNames);
/// CheckCastAlign - Implements -Wcast-align, which warns when a
/// pointer cast increases the alignment requirements.
void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
/// checkUnsafeAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained type.
bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
/// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained expression.
void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
/// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
/// statement as a \p Body, and it is located on the same line.
///
/// This helps prevent bugs due to typos, such as:
/// if (condition);
/// do_stuff();
void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body,
unsigned DiagID);
/// Warn if a for/while loop statement \p S, which is followed by
/// \p PossibleBody, has a suspicious null statement as a body.
void DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody);
/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
SourceLocation OpLoc);
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
enum VariadicCallType {
VariadicFunction,
VariadicBlock,
VariadicMethod,
VariadicConstructor,
VariadicDoesNotApply
};
bool IsLayoutCompatible(QualType T1, QualType T2) const;
bool IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
const TypeSourceInfo *Derived);
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
enum class EltwiseBuiltinArgTyRestriction {
None,
FloatTy,
IntegerTy,
SignedIntOrFloatTy,
};
/// \param FPOnly restricts the arguments to floating-point types.
std::optional<QualType>
BuiltinVectorMath(CallExpr *TheCall,
EltwiseBuiltinArgTyRestriction ArgTyRestr =
EltwiseBuiltinArgTyRestriction::None);
bool BuiltinVectorToScalarMath(CallExpr *TheCall);
void checkLifetimeCaptureBy(FunctionDecl *FDecl, bool IsMemberFunction,
const Expr *ThisArg, ArrayRef<const Expr *> Args);
/// Handles the checks for format strings, non-POD arguments to vararg
/// functions, NULL arguments passed to non-NULL parameters, diagnose_if
/// attributes and AArch64 SME attributes.
void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
const Expr *ThisArg, ArrayRef<const Expr *> Args,
bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
VariadicCallType CallType);
/// Verify that two format strings (as understood by attribute(format) and
/// attribute(format_matches) are compatible. If they are incompatible,
/// diagnostics are emitted with the assumption that \c
/// AuthoritativeFormatString is correct and
/// \c TestedFormatString is wrong. If \c FunctionCallArg is provided,
/// diagnostics will point to it and a note will refer to \c
/// TestedFormatString or \c AuthoritativeFormatString as appropriate.
bool
CheckFormatStringsCompatible(FormatStringType FST,
const StringLiteral *AuthoritativeFormatString,
const StringLiteral *TestedFormatString,
const Expr *FunctionCallArg = nullptr);
/// Verify that one format string (as understood by attribute(format)) is
/// self-consistent; for instance, that it doesn't have multiple positional
/// arguments referring to the same argument in incompatible ways. Diagnose
/// if it isn't.
bool ValidateFormatString(FormatStringType FST, const StringLiteral *Str);
/// \brief Enforce the bounds of a TCB
/// CheckTCBEnforcement - Enforces that every function in a named TCB only
/// directly calls other functions in the same TCB as marked by the
/// enforce_tcb and enforce_tcb_leaf attributes.
void CheckTCBEnforcement(const SourceLocation CallExprLoc,
const NamedDecl *Callee);
void CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc);
/// BuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
/// TheCall is a constant expression.
bool BuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result);
/// BuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
/// TheCall is a constant expression in the range [Low, High].
bool BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High,
bool RangeIsError = true);
/// BuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
/// TheCall is a constant expression is a multiple of Num..
bool BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
unsigned Multiple);
/// BuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
/// constant expression representing a power of 2.
bool BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
/// BuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
/// a constant expression representing an arbitrary byte value shifted left by
/// a multiple of 8 bits.
bool BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
unsigned ArgBits);
/// BuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
/// TheCall is a constant expression representing either a shifted byte value,
/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
/// Arm MVE intrinsics.
bool BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
unsigned ArgBits);
/// Checks that a call expression's argument count is at least the desired
/// number. This is useful when doing custom type-checking on a variadic
/// function. Returns true on error.
bool checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount);
/// Checks that a call expression's argument count is at most the desired
/// number. This is useful when doing custom type-checking on a variadic
/// function. Returns true on error.
bool checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount);
/// Checks that a call expression's argument count is in the desired range.
/// This is useful when doing custom type-checking on a variadic function.
/// Returns true on error.
bool checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
unsigned MaxArgCount);
/// Checks that a call expression's argument count is the desired number.
/// This is useful when doing custom type-checking. Returns true on error.
bool checkArgCount(CallExpr *Call, unsigned DesiredArgCount);
/// Returns true if the argument consists of one contiguous run of 1s with any
/// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB,
/// so 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
/// since all 1s are not contiguous.
bool ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
void CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
bool *ICContext = nullptr,
bool IsListInit = false);
bool
BuiltinElementwiseTernaryMath(CallExpr *TheCall,
EltwiseBuiltinArgTyRestriction ArgTyRestr =
EltwiseBuiltinArgTyRestriction::FloatTy);
bool PrepareBuiltinElementwiseMathOneArgCall(
CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr =
EltwiseBuiltinArgTyRestriction::None);
private:
void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
const ArraySubscriptExpr *ASE = nullptr,
bool AllowOnePastEnd = true, bool IndexNegated = false);
void CheckArrayAccess(const Expr *E);
bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
/// such as function pointers returned from functions.
bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
/// CheckConstructorCall - Check a constructor call for correctness and safety
/// properties not enforced by the C type system.
void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
ArrayRef<const Expr *> Args,
const FunctionProtoType *Proto, SourceLocation Loc);
/// Warn if a pointer or reference argument passed to a function points to an
/// object that is less aligned than the parameter. This can happen when
/// creating a typedef with a lower alignment than the original type and then
/// calling functions defined in terms of the original type.
void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
StringRef ParamName, QualType ArgTy, QualType ParamTy);
ExprResult CheckOSLogFormatStringArg(Expr *Arg);
ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
/// Check the arguments to '__builtin_va_start', '__builtin_ms_va_start',
/// or '__builtin_c23_va_start' for validity. Emit an error and return true
/// on failure; return false on success.
bool BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
bool BuiltinVAStartARMMicrosoft(CallExpr *Call);
/// BuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
/// friends. This is declared to take (...), so we have to check everything.
bool BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID);
/// BuiltinSemaBuiltinFPClassification - Handle functions like
/// __builtin_isnan and friends. This is declared to take (...), so we have
/// to check everything.
bool BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
unsigned BuiltinID);
/// Perform semantic analysis for a call to __builtin_complex.
bool BuiltinComplex(CallExpr *TheCall);
bool BuiltinOSLogFormat(CallExpr *TheCall);
/// BuiltinPrefetch - Handle __builtin_prefetch.
/// This is declared to take (const void*, ...) and can take two
/// optional constant int args.
bool BuiltinPrefetch(CallExpr *TheCall);
/// Handle __builtin_alloca_with_align. This is declared
/// as (size_t, size_t) where the second size_t must be a power of 2 greater
/// than 8.
bool BuiltinAllocaWithAlign(CallExpr *TheCall);
/// BuiltinArithmeticFence - Handle __arithmetic_fence.
bool BuiltinArithmeticFence(CallExpr *TheCall);
/// BuiltinAssume - Handle __assume (MS Extension).
/// __assume does not evaluate its arguments, and should warn if its argument
/// has side effects.
bool BuiltinAssume(CallExpr *TheCall);
/// Handle __builtin_assume_aligned. This is declared
/// as (const void*, size_t, ...) and can take one optional constant int arg.
bool BuiltinAssumeAligned(CallExpr *TheCall);
/// BuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
/// This checks that the target supports __builtin_longjmp and
/// that val is a constant 1.
bool BuiltinLongjmp(CallExpr *TheCall);
/// BuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
/// This checks that the target supports __builtin_setjmp.
bool BuiltinSetjmp(CallExpr *TheCall);
/// We have a call to a function like __sync_fetch_and_add, which is an
/// overloaded function based on the pointer type of its first argument.
/// The main BuildCallExpr routines have already promoted the types of
/// arguments because all of these calls are prototyped as void(...).
///
/// This function goes through and does final semantic checking for these
/// builtins, as well as generating any warnings.
ExprResult BuiltinAtomicOverloaded(ExprResult TheCallResult);
/// BuiltinNontemporalOverloaded - We have a call to
/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
/// overloaded function based on the pointer type of its last argument.
///
/// This function goes through and does final semantic checking for these
/// builtins.
ExprResult BuiltinNontemporalOverloaded(ExprResult TheCallResult);
ExprResult AtomicOpsOverloaded(ExprResult TheCallResult,
AtomicExpr::AtomicOp Op);
/// \param FPOnly restricts the arguments to floating-point types.
bool BuiltinElementwiseMath(CallExpr *TheCall,
EltwiseBuiltinArgTyRestriction ArgTyRestr =
EltwiseBuiltinArgTyRestriction::None);
bool PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall);
bool BuiltinNonDeterministicValue(CallExpr *TheCall);
enum BuiltinCountedByRefKind {
AssignmentKind,
InitializerKind,
FunctionArgKind,
ReturnArgKind,
ArraySubscriptKind,
BinaryExprKind,
};
bool CheckInvalidBuiltinCountedByRef(const Expr *E,
BuiltinCountedByRefKind K);
bool BuiltinCountedByRef(CallExpr *TheCall);
// Matrix builtin handling.
ExprResult BuiltinMatrixTranspose(CallExpr *TheCall, ExprResult CallResult);
ExprResult BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
ExprResult CallResult);
ExprResult BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
ExprResult CallResult);
/// CheckFormatArguments - Check calls to printf and scanf (and similar
/// functions) for correct use of format strings.
/// Returns true if a format string has been fully checked.
bool CheckFormatArguments(const FormatAttr *Format,
ArrayRef<const Expr *> Args, bool IsCXXMember,
VariadicCallType CallType, SourceLocation Loc,
SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs);
bool CheckFormatString(const FormatMatchesAttr *Format,
ArrayRef<const Expr *> Args, bool IsCXXMember,
VariadicCallType CallType, SourceLocation Loc,
SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs);
bool CheckFormatArguments(ArrayRef<const Expr *> Args,
FormatArgumentPassingKind FAPK,
const StringLiteral *ReferenceFormatString,
unsigned format_idx, unsigned firstDataArg,
FormatStringType Type, VariadicCallType CallType,
SourceLocation Loc, SourceRange range,
llvm::SmallBitVector &CheckedVarArgs);
void CheckInfNaNFunction(const CallExpr *Call, const FunctionDecl *FDecl);
/// Warn when using the wrong abs() function.
void CheckAbsoluteValueFunction(const CallExpr *Call,
const FunctionDecl *FDecl);
void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
/// Check for dangerous or invalid arguments to memset().
///
/// This issues warnings on known problematic, dangerous or unspecified
/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
/// function calls.
///
/// \param Call The call expression to diagnose.
void CheckMemaccessArguments(const CallExpr *Call, unsigned BId,
IdentifierInfo *FnName);
// Warn if the user has made the 'size' argument to strlcpy or strlcat
// be the size of the source, instead of the destination.
void CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName);
// Warn on anti-patterns as the 'size' argument to strncat.
// The correct size argument should look like following:
// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
void CheckStrncatArguments(const CallExpr *Call, IdentifierInfo *FnName);
/// Alerts the user that they are attempting to free a non-malloc'd object.
void CheckFreeArguments(const CallExpr *E);
void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc, bool isObjCMethod = false,
const AttrVec *Attrs = nullptr,
const FunctionDecl *FD = nullptr);
/// Diagnoses "dangerous" implicit conversions within the given
/// expression (which is a full expression). Implements -Wconversion
/// and -Wsign-compare.
///
/// \param CC the "context" location of the implicit conversion, i.e.
/// the most location of the syntactic entity requiring the implicit
/// conversion
void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
/// Input argument E is a logical expression.
void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
/// Diagnose when expression is an integer constant expression and its
/// evaluation results in integer overflow
void CheckForIntOverflow(const Expr *E);
void CheckUnsequencedOperations(const Expr *E);
/// Perform semantic checks on a completed expression. This will either
/// be a full-expression or a default argument expression.
void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
bool IsConstexpr = false);
void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
Expr *Init);
/// A map from magic value to type information.
std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
TypeTagForDatatypeMagicValues;
/// Peform checks on a call of a function with argument_with_type_tag
/// or pointer_with_type_tag attributes.
void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
const ArrayRef<const Expr *> ExprArgs,
SourceLocation CallSiteLoc);
/// Check if we are taking the address of a packed field
/// as this may be a problem if the pointer value is dereferenced.
void CheckAddressOfPackedMember(Expr *rhs);
/// Helper class that collects misaligned member designations and
/// their location info for delayed diagnostics.
struct MisalignedMember {
Expr *E;
RecordDecl *RD;
ValueDecl *MD;
CharUnits Alignment;
MisalignedMember() : E(), RD(), MD() {}
MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment)
: E(E), RD(RD), MD(MD), Alignment(Alignment) {}
explicit MisalignedMember(Expr *E)
: MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
bool operator==(const MisalignedMember &m) { return this->E == m.E; }
};
/// Small set of gathered accesses to potentially misaligned members
/// due to the packed attribute.
SmallVector<MisalignedMember, 4> MisalignedMembers;
/// Adds an expression to the set of gathered misaligned members.
void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Coroutines
/// Implementations are in SemaCoroutine.cpp
///@{
public:
/// The C++ "std::coroutine_traits" template, which is defined in
/// \<coroutine_traits>
ClassTemplateDecl *StdCoroutineTraitsCache;
bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
StringRef Keyword);
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
ExprResult BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc);
ExprResult BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
UnresolvedLookupExpr *Lookup);
ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand,
Expr *Awaiter, bool IsImplicit = false);
ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand,
UnresolvedLookupExpr *Lookup);
ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
bool IsImplicit = false);
StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
bool buildCoroutineParameterMoves(SourceLocation Loc);
VarDecl *buildCoroutinePromise(SourceLocation Loc);
void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
// As a clang extension, enforces that a non-coroutine function must be marked
// with [[clang::coro_wrapper]] if it returns a type marked with
// [[clang::coro_return_type]].
// Expects that FD is not a coroutine.
void CheckCoroutineWrapper(FunctionDecl *FD);
/// Lookup 'coroutine_traits' in std namespace and std::experimental
/// namespace. The namespace found is recorded in Namespace.
ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
SourceLocation FuncLoc);
/// Check that the expression co_await promise.final_suspend() shall not be
/// potentially-throwing.
bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Scope Specifiers
/// Implementations are in SemaCXXScopeSpec.cpp
///@{
public:
// Marks SS invalid if it represents an incomplete type.
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
// Complete an enum decl, maybe without a scope spec.
bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
CXXScopeSpec *SS = nullptr);
/// Compute the DeclContext that is associated with the given type.
///
/// \param T the type for which we are attempting to find a DeclContext.
///
/// \returns the declaration context represented by the type T,
/// or NULL if the declaration context cannot be computed (e.g., because it is
/// dependent and not the current instantiation).
DeclContext *computeDeclContext(QualType T);
/// Compute the DeclContext that is associated with the given
/// scope specifier.
///
/// \param SS the C++ scope specifier as it appears in the source
///
/// \param EnteringContext when true, we will be entering the context of
/// this scope specifier, so we can retrieve the declaration context of a
/// class template or class template partial specialization even if it is
/// not the current instantiation.
///
/// \returns the declaration context represented by the scope specifier @p SS,
/// or NULL if the declaration context cannot be computed (e.g., because it is
/// dependent and not the current instantiation).
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext = false);
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
/// If the given nested name specifier refers to the current
/// instantiation, return the declaration that corresponds to that
/// current instantiation (C++0x [temp.dep.type]p1).
///
/// \param NNS a dependent nested name specifier.
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
/// The parser has parsed a global nested-name-specifier '::'.
///
/// \param CCLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
/// The parser has parsed a '__super' nested-name-specifier.
///
/// \param SuperLoc The location of the '__super' keyword.
///
/// \param ColonColonLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
SourceLocation ColonColonLoc, CXXScopeSpec &SS);
/// Determines whether the given declaration is an valid acceptable
/// result for name lookup of a nested-name-specifier.
/// \param SD Declaration checked for nested-name-specifier.
/// \param IsExtension If not null and the declaration is accepted as an
/// extension, the pointed variable is assigned true.
bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
bool *CanCorrect = nullptr);
/// If the given nested-name-specifier begins with a bare identifier
/// (e.g., Base::), perform name lookup for that identifier as a
/// nested-name-specifier within the given scope, and return the result of
/// that name lookup.
NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
/// Keeps information about an identifier in a nested-name-spec.
///
struct NestedNameSpecInfo {
/// The type of the object, if we're parsing nested-name-specifier in
/// a member access expression.
ParsedType ObjectType;
/// The identifier preceding the '::'.
IdentifierInfo *Identifier;
/// The location of the identifier.
SourceLocation IdentifierLoc;
/// The location of the '::'.
SourceLocation CCLoc;
/// Creates info object for the most typical case.
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
SourceLocation ColonColonLoc,
ParsedType ObjectType = ParsedType())
: ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
CCLoc(ColonColonLoc) {}
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
SourceLocation ColonColonLoc, QualType ObjectType)
: ObjectType(ParsedType::make(ObjectType)), Identifier(II),
IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {}
};
/// Build a new nested-name-specifier for "identifier::", as described
/// by ActOnCXXNestedNameSpecifier.
///
/// \param S Scope in which the nested-name-specifier occurs.
/// \param IdInfo Parser information about an identifier in the
/// nested-name-spec.
/// \param EnteringContext If true, enter the context specified by the
/// nested-name-specifier.
/// \param SS Optional nested name specifier preceding the identifier.
/// \param ScopeLookupResult Provides the result of name lookup within the
/// scope of the nested-name-specifier that was computed at template
/// definition time.
/// \param ErrorRecoveryLookup Specifies if the method is called to improve
/// error recovery and what kind of recovery is performed.
/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
/// are allowed. The bool value pointed by this parameter is set to
/// 'true' if the identifier is treated as if it was followed by ':',
/// not '::'.
/// \param OnlyNamespace If true, only considers namespaces in lookup.
///
/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
/// that it contains an extra parameter \p ScopeLookupResult, which provides
/// the result of name lookup within the scope of the nested-name-specifier
/// that was computed at template definition time.
///
/// If ErrorRecoveryLookup is true, then this call is used to improve error
/// recovery. This means that it should not emit diagnostics, it should
/// just return true on failure. It also means it should only return a valid
/// scope if it *knows* that the result is correct. It should not return in a
/// dependent context, for example. Nor will it extend \p SS with the scope
/// specifier.
bool BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
bool EnteringContext, CXXScopeSpec &SS,
NamedDecl *ScopeLookupResult,
bool ErrorRecoveryLookup,
bool *IsCorrectedToColon = nullptr,
bool OnlyNamespace = false);
/// The parser has parsed a nested-name-specifier 'identifier::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param IdInfo Parser information about an identifier in the
/// nested-name-spec.
///
/// \param EnteringContext Whether we're entering the context nominated by
/// this nested-name-specifier.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
/// are allowed. The bool value pointed by this parameter is set to 'true'
/// if the identifier is treated as if it was followed by ':', not '::'.
///
/// \param OnlyNamespace If true, only considers namespaces in lookup.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
bool EnteringContext, CXXScopeSpec &SS,
bool *IsCorrectedToColon = nullptr,
bool OnlyNamespace = false);
/// The parser has parsed a nested-name-specifier
/// 'template[opt] template-name < template-args >::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param TemplateKWLoc the location of the 'template' keyword, if any.
/// \param TemplateName the template name.
/// \param TemplateNameLoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
/// \param CCLoc The location of the '::'.
///
/// \param EnteringContext Whether we're entering the context of the
/// nested-name-specifier.
///
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
TemplateTy TemplateName, SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc, SourceLocation CCLoc, bool EnteringContext);
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS,
SourceLocation ColonColonLoc);
bool ActOnCXXNestedNameSpecifierIndexedPack(CXXScopeSpec &SS,
const DeclSpec &DS,
SourceLocation ColonColonLoc,
QualType Type);
/// IsInvalidUnlessNestedName - This method is used for error recovery
/// purposes to determine whether the specified identifier is only valid as
/// a nested name specifier, for example a namespace name. It is
/// conservatively correct to always return false from this method.
///
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
NestedNameSpecInfo &IdInfo,
bool EnteringContext);
/// Given a C++ nested-name-specifier, produce an annotation value
/// that the parser can use later to reconstruct the given
/// nested-name-specifier.
///
/// \param SS A nested-name-specifier.
///
/// \returns A pointer containing all of the information in the
/// nested-name-specifier \p SS.
void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
/// Given an annotation pointer for a nested-name-specifier, restore
/// the nested-name-specifier structure.
///
/// \param Annotation The annotation pointer, produced by
/// \c SaveNestedNameSpecifierAnnotation().
///
/// \param AnnotationRange The source range corresponding to the annotation.
///
/// \param SS The nested-name-specifier that will be updated with the contents
/// of the annotation pointer.
void RestoreNestedNameSpecifierAnnotation(void *Annotation,
SourceRange AnnotationRange,
CXXScopeSpec &SS);
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Declarations
/// Implementations are in SemaDecl.cpp
///@{
public:
IdentifierResolver IdResolver;
/// The index of the first InventedParameterInfo that refers to the current
/// context.
unsigned InventedParameterInfosStart = 0;
/// A RAII object to temporarily push a declaration context.
class ContextRAII {
private:
Sema &S;
DeclContext *SavedContext;
ProcessingContextState SavedContextState;
QualType SavedCXXThisTypeOverride;
unsigned SavedFunctionScopesStart;
unsigned SavedInventedParameterInfosStart;
public:
ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
: S(S), SavedContext(S.CurContext),
SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
SavedFunctionScopesStart(S.FunctionScopesStart),
SavedInventedParameterInfosStart(S.InventedParameterInfosStart) {
assert(ContextToPush && "pushing null context");
S.CurContext = ContextToPush;
if (NewThisContext)
S.CXXThisTypeOverride = QualType();
// Any saved FunctionScopes do not refer to this context.
S.FunctionScopesStart = S.FunctionScopes.size();
S.InventedParameterInfosStart = S.InventedParameterInfos.size();
}
void pop() {
if (!SavedContext)
return;
S.CurContext = SavedContext;
S.DelayedDiagnostics.popUndelayed(SavedContextState);
S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
S.FunctionScopesStart = SavedFunctionScopesStart;
S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
SavedContext = nullptr;
}
~ContextRAII() { pop(); }
};
void DiagnoseInvalidJumps(Stmt *Body);
/// The function definitions which were renamed as part of typo-correction
/// to match their respective declarations. We want to keep track of them
/// to ensure that we don't emit a "redefinition" error if we encounter a
/// correctly named definition after the renamed definition.
llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
/// A cache of the flags available in enumerations with the flag_bits
/// attribute.
mutable llvm::DenseMap<const EnumDecl *, llvm::APInt> FlagBitsCache;
/// WeakUndeclaredIdentifiers - Identifiers contained in \#pragma weak before
/// declared. Rare. May alias another identifier, declared or undeclared.
///
/// For aliases, the target identifier is used as a key for eventual
/// processing when the target is declared. For the single-identifier form,
/// the sole identifier is used as the key. Each entry is a `SetVector`
/// (ordered by parse order) of aliases (identified by the alias name) in case
/// of multiple aliases to the same undeclared identifier.
llvm::MapVector<
IdentifierInfo *,
llvm::SetVector<
WeakInfo, llvm::SmallVector<WeakInfo, 1u>,
llvm::SmallDenseSet<WeakInfo, 2u, WeakInfo::DenseMapInfoByAliasOnly>>>
WeakUndeclaredIdentifiers;
/// ExtnameUndeclaredIdentifiers - Identifiers contained in
/// \#pragma redefine_extname before declared. Used in Solaris system headers
/// to define functions that occur in multiple standards to call the version
/// in the currently selected standard.
llvm::DenseMap<IdentifierInfo *, AsmLabelAttr *> ExtnameUndeclaredIdentifiers;
/// Set containing all typedefs that are likely unused.
llvm::SmallSetVector<const TypedefNameDecl *, 4>
UnusedLocalTypedefNameCandidates;
typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
UnusedFileScopedDeclsType;
/// The set of file scoped decls seen so far that have not been used
/// and must warn if not used. Only contains the first declaration.
UnusedFileScopedDeclsType UnusedFileScopedDecls;
typedef LazyVector<VarDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
TentativeDefinitionsType;
/// All the tentative definitions encountered in the TU.
TentativeDefinitionsType TentativeDefinitions;
/// All the external declarations encoutered and used in the TU.
SmallVector<DeclaratorDecl *, 4> ExternalDeclarations;
/// Generally null except when we temporarily switch decl contexts,
/// like in \see SemaObjC::ActOnObjCTemporaryExitContainerContext.
DeclContext *OriginalLexicalContext;
/// Is the module scope we are in a C++ Header Unit?
bool currentModuleIsHeaderUnit() const {
return ModuleScopes.empty() ? false
: ModuleScopes.back().Module->isHeaderUnit();
}
/// Get the module owning an entity.
Module *getOwningModule(const Decl *Entity) {
return Entity->getOwningModule();
}
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
enum class DiagCtorKind { None, Implicit, Typename };
/// Returns the TypeDeclType for the given type declaration,
/// as ASTContext::getTypeDeclType would, but
/// performs the required semantic checks for name lookup of said entity.
QualType getTypeDeclType(DeclContext *LookupCtx, DiagCtorKind DCK,
TypeDecl *TD, SourceLocation NameLoc);
/// If the identifier refers to a type name within this scope,
/// return the declaration of that type.
///
/// This routine performs ordinary name lookup of the identifier II
/// within the given scope, with optional C++ scope specifier SS, to
/// determine whether the name refers to a type. If so, returns an
/// opaque pointer (actually a QualType) corresponding to that
/// type. Otherwise, returns NULL.
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec *SS = nullptr,
bool isClassName = false, bool HasTrailingDot = false,
ParsedType ObjectType = nullptr,
bool IsCtorOrDtorName = false,
bool WantNontrivialTypeSourceInfo = false,
bool IsClassTemplateDeductionContext = true,
ImplicitTypenameContext AllowImplicitTypename =
ImplicitTypenameContext::No,
IdentifierInfo **CorrectedII = nullptr);
/// isTagName() - This method is called *for error recovery purposes only*
/// to determine if the specified name is a valid tag name ("struct foo"). If
/// so, this returns the TST for the tag corresponding to it (TST_enum,
/// TST_union, TST_struct, TST_interface, TST_class). This is used to
/// diagnose cases in C where the user forgot to specify the tag.
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
/// if a CXXScopeSpec's type is equal to the type of one of the base classes
/// then downgrade the missing typename error to a warning.
/// This is needed for MSVC compatibility; Example:
/// @code
/// template<class T> class A {
/// public:
/// typedef int TYPE;
/// };
/// template<class T> class B : public A<T> {
/// public:
/// A<T>::TYPE a; // no typename required because A<T> is a base class.
/// };
/// @endcode
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc,
Scope *S, CXXScopeSpec *SS,
ParsedType &SuggestedType,
bool IsTemplateName = false);
/// Attempt to behave like MSVC in situations where lookup of an unqualified
/// type name has failed in a dependent context. In these situations, we
/// automatically form a DependentTypeName that will retry lookup in a related
/// scope during instantiation.
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
SourceLocation NameLoc,
bool IsTemplateTypeArg);
/// Describes the result of the name lookup and resolution performed
/// by \c ClassifyName().
enum NameClassificationKind {
/// This name is not a type or template in this context, but might be
/// something else.
NC_Unknown,
/// Classification failed; an error has been produced.
NC_Error,
/// The name has been typo-corrected to a keyword.
NC_Keyword,
/// The name was classified as a type.
NC_Type,
/// The name was classified as a specific non-type, non-template
/// declaration. ActOnNameClassifiedAsNonType should be called to
/// convert the declaration to an expression.
NC_NonType,
/// The name was classified as an ADL-only function name.
/// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
/// result to an expression.
NC_UndeclaredNonType,
/// The name denotes a member of a dependent type that could not be
/// resolved. ActOnNameClassifiedAsDependentNonType should be called to
/// convert the result to an expression.
NC_DependentNonType,
/// The name was classified as an overload set, and an expression
/// representing that overload set has been formed.
/// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
/// expression referencing the overload set.
NC_OverloadSet,
/// The name was classified as a template whose specializations are types.
NC_TypeTemplate,
/// The name was classified as a variable template name.
NC_VarTemplate,
/// The name was classified as a function template name.
NC_FunctionTemplate,
/// The name was classified as an ADL-only function template name.
NC_UndeclaredTemplate,
/// The name was classified as a concept name.
NC_Concept,
};
class NameClassification {
NameClassificationKind Kind;
union {
ExprResult Expr;
NamedDecl *NonTypeDecl;
TemplateName Template;
ParsedType Type;
};
explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
public:
NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
static NameClassification Error() { return NameClassification(NC_Error); }
static NameClassification Unknown() {
return NameClassification(NC_Unknown);
}
static NameClassification OverloadSet(ExprResult E) {
NameClassification Result(NC_OverloadSet);
Result.Expr = E;
return Result;
}
static NameClassification NonType(NamedDecl *D) {
NameClassification Result(NC_NonType);
Result.NonTypeDecl = D;
return Result;
}
static NameClassification UndeclaredNonType() {
return NameClassification(NC_UndeclaredNonType);
}
static NameClassification DependentNonType() {
return NameClassification(NC_DependentNonType);
}
static NameClassification TypeTemplate(TemplateName Name) {
NameClassification Result(NC_TypeTemplate);
Result.Template = Name;
return Result;
}
static NameClassification VarTemplate(TemplateName Name) {
NameClassification Result(NC_VarTemplate);
Result.Template = Name;
return Result;
}
static NameClassification FunctionTemplate(TemplateName Name) {
NameClassification Result(NC_FunctionTemplate);
Result.Template = Name;
return Result;
}
static NameClassification Concept(TemplateName Name) {
NameClassification Result(NC_Concept);
Result.Template = Name;
return Result;
}
static NameClassification UndeclaredTemplate(TemplateName Name) {
NameClassification Result(NC_UndeclaredTemplate);
Result.Template = Name;
return Result;
}
NameClassificationKind getKind() const { return Kind; }
ExprResult getExpression() const {
assert(Kind == NC_OverloadSet);
return Expr;
}
ParsedType getType() const {
assert(Kind == NC_Type);
return Type;
}
NamedDecl *getNonTypeDecl() const {
assert(Kind == NC_NonType);
return NonTypeDecl;
}
TemplateName getTemplateName() const {
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||
Kind == NC_VarTemplate || Kind == NC_Concept ||
Kind == NC_UndeclaredTemplate);
return Template;
}
TemplateNameKind getTemplateNameKind() const {
switch (Kind) {
case NC_TypeTemplate:
return TNK_Type_template;
case NC_FunctionTemplate:
return TNK_Function_template;
case NC_VarTemplate:
return TNK_Var_template;
case NC_Concept:
return TNK_Concept_template;
case NC_UndeclaredTemplate:
return TNK_Undeclared_template;
default:
llvm_unreachable("unsupported name classification.");
}
}
};
/// Perform name lookup on the given name, classifying it based on
/// the results of name lookup and the following token.
///
/// This routine is used by the parser to resolve identifiers and help direct
/// parsing. When the identifier cannot be found, this routine will attempt
/// to correct the typo and classify based on the resulting name.
///
/// \param S The scope in which we're performing name lookup.
///
/// \param SS The nested-name-specifier that precedes the name.
///
/// \param Name The identifier. If typo correction finds an alternative name,
/// this pointer parameter will be updated accordingly.
///
/// \param NameLoc The location of the identifier.
///
/// \param NextToken The token following the identifier. Used to help
/// disambiguate the name.
///
/// \param CCC The correction callback, if typo correction is desired.
NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
IdentifierInfo *&Name, SourceLocation NameLoc,
const Token &NextToken,
CorrectionCandidateCallback *CCC = nullptr);
/// Act on the result of classifying a name as an undeclared (ADL-only)
/// non-type declaration.
ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
SourceLocation NameLoc);
/// Act on the result of classifying a name as an undeclared member of a
/// dependent base class.
ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsAddressOfOperand);
/// Act on the result of classifying a name as a specific non-type
/// declaration.
ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
NamedDecl *Found,
SourceLocation NameLoc,
const Token &NextToken);
/// Act on the result of classifying a name as an overload set.
ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
/// Describes the detailed kind of a template name. Used in diagnostics.
enum class TemplateNameKindForDiagnostics {
ClassTemplate,
FunctionTemplate,
VarTemplate,
AliasTemplate,
TemplateTemplateParam,
Concept,
DependentTemplate
};
TemplateNameKindForDiagnostics
getTemplateNameKindForDiagnostics(TemplateName Name);
/// Determine whether it's plausible that E was intended to be a
/// template-name.
bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
if (!getLangOpts().CPlusPlus || E.isInvalid())
return false;
Dependent = false;
if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
return !DRE->hasExplicitTemplateArgs();
if (auto *ME = dyn_cast<MemberExpr>(E.get()))
return !ME->hasExplicitTemplateArgs();
Dependent = true;
if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
return !DSDRE->hasExplicitTemplateArgs();
if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
return !DSME->hasExplicitTemplateArgs();
// Any additional cases recognized here should also be handled by
// diagnoseExprIntendedAsTemplateName.
return false;
}
void warnOnReservedIdentifier(const NamedDecl *D);
Decl *ActOnDeclarator(Scope *S, Declarator &D);
NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists);
/// Attempt to fold a variable-sized type to a constant-sized type, returning
/// true if we were successful.
bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, QualType &T,
SourceLocation Loc,
unsigned FailedFoldDiagID);
/// Register the given locally-scoped extern "C" declaration so
/// that it can be found later for redeclarations. We include any extern "C"
/// declaration that is not visible in the translation unit here, not just
/// function-scope declarations.
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
/// If T is the name of a class, then each of the following shall have a
/// name different from T:
/// - every static data member of class T;
/// - every member function of class T
/// - every member of class T that is itself a type;
/// \returns true if the declaration name violates these rules.
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
/// Diagnose a declaration whose declarator-id has the given
/// nested-name-specifier.
///
/// \param SS The nested-name-specifier of the declarator-id.
///
/// \param DC The declaration context to which the nested-name-specifier
/// resolves.
///
/// \param Name The name of the entity being declared.
///
/// \param Loc The location of the name of the entity being declared.
///
/// \param IsMemberSpecialization Whether we are declaring a member
/// specialization.
///
/// \param TemplateId The template-id, if any.
///
/// \returns true if we cannot safely recover from this error, false
/// otherwise.
bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
DeclarationName Name, SourceLocation Loc,
TemplateIdAnnotation *TemplateId,
bool IsMemberSpecialization);
bool checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range);
bool checkConstantPointerAuthKey(Expr *keyExpr, unsigned &key);
/// Diagnose function specifiers on a declaration of an identifier that
/// does not identify a function.
void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
/// Return the declaration shadowed by the given typedef \p D, or null
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
const LookupResult &R);
/// Return the declaration shadowed by the given variable \p D, or null
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
/// Return the declaration shadowed by the given variable \p D, or null
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
NamedDecl *getShadowedDeclaration(const BindingDecl *D,
const LookupResult &R);
/// Diagnose variable or built-in function shadowing. Implements
/// -Wshadow.
///
/// This method is called whenever a VarDecl is added to a "useful"
/// scope.
///
/// \param ShadowedDecl the declaration that is shadowed by the given variable
/// \param R the lookup of the name
void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
const LookupResult &R);
/// Check -Wshadow without the advantage of a previous lookup.
void CheckShadow(Scope *S, VarDecl *D);
/// Warn if 'E', which is an expression that is about to be modified, refers
/// to a shadowing declaration.
void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
/// when these variables are captured by the lambda.
void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
TypedefNameDecl *NewTD);
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
NamedDecl *ActOnTypedefDeclarator(Scope *S, Declarator &D, DeclContext *DC,
TypeSourceInfo *TInfo,
LookupResult &Previous);
/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
/// declares a typedef-name, either using the 'typedef' type specifier or via
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
NamedDecl *ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *D,
LookupResult &Previous, bool &Redeclaration);
NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope,
ArrayRef<BindingDecl *> Bindings = {});
/// Perform semantic checking on a newly-created variable
/// declaration.
///
/// This routine performs all of the type-checking required for a
/// variable declaration once it has been built. It is used both to
/// check variables after they have been parsed and their declarators
/// have been translated into a declaration, and to check variables
/// that have been instantiated from a template.
///
/// Sets NewVD->isInvalidDecl() if an error was encountered.
///
/// Returns true if the variable declaration is a redeclaration.
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
void CheckVariableDeclarationType(VarDecl *NewVD);
void CheckCompleteVariableDeclaration(VarDecl *VD);
NamedDecl *ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope);
/// AddOverriddenMethods - See if a method overrides any in the base classes,
/// and if so, check that it's a valid override and remember it.
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
/// Perform semantic checking of a new function declaration.
///
/// Performs semantic analysis of the new function declaration
/// NewFD. This routine performs all semantic checking that does not
/// require the actual declarator involved in the declaration, and is
/// used both for the declaration of functions as they are parsed
/// (called via ActOnDeclarator) and for the declaration of functions
/// that have been instantiated via C++ template instantiation (called
/// via InstantiateDecl).
///
/// \param IsMemberSpecialization whether this new function declaration is
/// a member specialization (that replaces any definition provided by the
/// previous declaration).
///
/// This sets NewFD->isInvalidDecl() to true if there was an error.
///
/// \returns true if the function declaration is a redeclaration.
bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
LookupResult &Previous,
bool IsMemberSpecialization, bool DeclIsDefn);
/// Checks if the new declaration declared in dependent context must be
/// put in the same redeclaration chain as the specified declaration.
///
/// \param D Declaration that is checked.
/// \param PrevDecl Previous declaration found with proper lookup method for
/// the same declaration name.
/// \returns True if D must be added to the redeclaration chain which PrevDecl
/// belongs to.
bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
/// Determines if we can perform a correct type check for \p D as a
/// redeclaration of \p PrevDecl. If not, we can generally still perform a
/// best-effort check.
///
/// \param NewD The new declaration.
/// \param OldD The old declaration.
/// \param NewT The portion of the type of the new declaration to check.
/// \param OldT The portion of the type of the old declaration to check.
bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
QualType NewT, QualType OldT);
void CheckMain(FunctionDecl *FD, const DeclSpec &D);
void CheckMSVCRTEntryPoint(FunctionDecl *FD);
/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
/// containing class. Otherwise it will return implicit SectionAttr if the
/// function is a definition and there is an active value on CodeSegStack
/// (from the current #pragma code-seg value).
///
/// \param FD Function being declared.
/// \param IsDefinition Whether it is a definition or just a declaration.
/// \returns A CodeSegAttr or SectionAttr to apply to the function or
/// nullptr if no attribute should be added.
Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
bool IsDefinition);
/// Common checks for a parameter-declaration that should apply to both
/// function parameters and non-type template parameters.
void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
/// to introduce parameters into function prototype scope.
Decl *ActOnParamDeclarator(Scope *S, Declarator &D,
SourceLocation ExplicitThisLoc = {});
/// Synthesizes a variable for a parameter arising from a
/// typedef.
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc,
QualType T);
ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
SourceLocation NameLoc,
const IdentifierInfo *Name, QualType T,
TypeSourceInfo *TSInfo, StorageClass SC);
// Contexts where using non-trivial C union types can be disallowed. This is
// passed to err_non_trivial_c_union_in_invalid_context.
enum NonTrivialCUnionContext {
// Function parameter.
NTCUC_FunctionParam,
// Function return.
NTCUC_FunctionReturn,
// Default-initialized object.
NTCUC_DefaultInitializedObject,
// Variable with automatic storage duration.
NTCUC_AutoVar,
// Initializer expression that might copy from another object.
NTCUC_CopyInit,
// Assignment.
NTCUC_Assignment,
// Compound literal.
NTCUC_CompoundLiteral,
// Block capture.
NTCUC_BlockCapture,
// lvalue-to-rvalue conversion of volatile type.
NTCUC_LValueToRValueVolatile,
};
/// Emit diagnostics if the initializer or any of its explicit or
/// implicitly-generated subexpressions require copying or
/// default-initializing a type that is or contains a C union type that is
/// non-trivial to copy or default-initialize.
void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
// These flags are passed to checkNonTrivialCUnion.
enum NonTrivialCUnionKind {
NTCUK_Init = 0x1,
NTCUK_Destruct = 0x2,
NTCUK_Copy = 0x4,
};
/// Emit diagnostics if a non-trivial C union type or a struct that contains
/// a non-trivial C union is used in an invalid context.
void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
NonTrivialCUnionContext UseContext,
unsigned NonTrivialKind);
/// Certain globally-unique variables might be accidentally duplicated if
/// built into multiple shared libraries with hidden visibility. This can
/// cause problems if the variable is mutable, its initialization is
/// effectful, or its address is taken.
bool GloballyUniqueObjectMightBeAccidentallyDuplicated(const VarDecl *Dcl);
void DiagnoseUniqueObjectDuplication(const VarDecl *Dcl);
/// AddInitializerToDecl - Adds the initializer Init to the
/// declaration dcl. If DirectInit is true, this is C++ direct
/// initialization rather than copy initialization.
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
void ActOnUninitializedDecl(Decl *dcl);
/// ActOnInitializerError - Given that there was an error parsing an
/// initializer for the given declaration, try to at least re-establish
/// invariants such as whether a variable's type is either dependent or
/// complete.
void ActOnInitializerError(Decl *Dcl);
void ActOnCXXForRangeDecl(Decl *D);
StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
IdentifierInfo *Ident,
ParsedAttributes &Attrs);
/// Check if VD needs to be dllexport/dllimport due to being in a
/// dllexport/import function.
void CheckStaticLocalForDllExport(VarDecl *VD);
void CheckThreadLocalForLargeAlignment(VarDecl *VD);
/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
/// any semantic actions necessary after any initializer has been attached.
void FinalizeDeclaration(Decl *D);
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
ArrayRef<Decl *> Group);
/// BuildDeclaratorGroup - convert a list of declarations into a declaration
/// group, performing any necessary semantic checking.
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
/// Should be called on all declarations that might have attached
/// documentation comments.
void ActOnDocumentableDecl(Decl *D);
void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
enum class FnBodyKind {
/// C++26 [dcl.fct.def.general]p1
/// function-body:
/// ctor-initializer[opt] compound-statement
/// function-try-block
Other,
/// = default ;
Default,
/// deleted-function-body
///
/// deleted-function-body:
/// = delete ;
/// = delete ( unevaluated-string ) ;
Delete
};
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
SourceLocation LocAfterDecls);
void CheckForFunctionRedefinition(
FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
SkipBodyInfo *SkipBody = nullptr);
Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParamLists,
SkipBodyInfo *SkipBody = nullptr,
FnBodyKind BodyKind = FnBodyKind::Other);
Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
SkipBodyInfo *SkipBody = nullptr,
FnBodyKind BodyKind = FnBodyKind::Other);
void applyFunctionAttributesBeforeParsingBody(Decl *FD);
/// Determine whether we can delay parsing the body of a function or
/// function template until it is used, assuming we don't care about emitting
/// code for that function.
///
/// This will be \c false if we may need the body of the function in the
/// middle of parsing an expression (where it's impractical to switch to
/// parsing a different function), for instance, if it's constexpr in C++11
/// or has an 'auto' return type in C++14. These cases are essentially bugs.
bool canDelayFunctionBody(const Declarator &D);
/// Determine whether we can skip parsing the body of a function
/// definition, assuming we don't care about analyzing its body or emitting
/// code for that function.
///
/// This will be \c false only if we may need the body of the function in
/// order to parse the rest of the program (for instance, if it is
/// \c constexpr in C++11 or has an 'auto' return type in C++14).
bool canSkipFunctionBody(Decl *D);
/// Given the set of return statements within a function body,
/// compute the variables that are subject to the named return value
/// optimization.
///
/// Each of the variables that is subject to the named return value
/// optimization will be marked as NRVO variables in the AST, and any
/// return statement that has a marked NRVO variable as its NRVO candidate can
/// use the named return value optimization.
///
/// This function applies a very simplistic algorithm for NRVO: if every
/// return statement in the scope of a variable has the same NRVO candidate,
/// that candidate is an NRVO variable.
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
Decl *ActOnSkippedFunctionBody(Decl *Decl);
void ActOnFinishInlineFunctionDef(FunctionDecl *D);
/// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
/// attribute for which parsing is delayed.
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
/// Diagnose any unused parameters in the given sequence of
/// ParmVarDecl pointers.
void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
/// Diagnose whether the size of parameters or return value of a
/// function or obj-c method definition is pass-by-value and larger than a
/// specified threshold.
void
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
QualType ReturnTy, NamedDecl *D);
Decl *ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc,
SourceLocation RParenLoc);
TopLevelStmtDecl *ActOnStartTopLevelStmtDecl(Scope *S);
void ActOnFinishTopLevelStmtDecl(TopLevelStmtDecl *D, Stmt *Statement);
void ActOnPopScope(SourceLocation Loc, Scope *S);
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
const ParsedAttributesView &DeclAttrs,
RecordDecl *&AnonRecord);
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
/// parameters to cope with template friend declarations.
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
const ParsedAttributesView &DeclAttrs,
MultiTemplateParamsArg TemplateParams,
bool IsExplicitInstantiation,
RecordDecl *&AnonRecord,
SourceLocation EllipsisLoc = {});
/// BuildAnonymousStructOrUnion - Handle the declaration of an
/// anonymous structure or union. Anonymous unions are a C++ feature
/// (C++ [class.union]) and a C11 feature; anonymous structures
/// are a C11 feature and GNU C++ extension.
Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS,
RecordDecl *Record,
const PrintingPolicy &Policy);
/// Called once it is known whether
/// a tag declaration is an anonymous union or struct.
void ActOnDefinedDeclarationSpecifier(Decl *D);
/// Emit diagnostic warnings for placeholder members.
/// We can only do that after the class is fully constructed,
/// as anonymous union/structs can insert placeholders
/// in their parent scope (which might be a Record).
void DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record);
/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
/// Microsoft C anonymous structure.
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
/// Example:
///
/// struct A { int a; };
/// struct B { struct A; int b; };
///
/// void foo() {
/// B var;
/// var.a = 3;
/// }
Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
RecordDecl *Record);
/// Common ways to introduce type names without a tag for use in diagnostics.
/// Keep in sync with err_tag_reference_non_tag.
enum NonTagKind {
NTK_NonStruct,
NTK_NonClass,
NTK_NonUnion,
NTK_NonEnum,
NTK_Typedef,
NTK_TypeAlias,
NTK_Template,
NTK_TypeAliasTemplate,
NTK_TemplateTemplateArgument,
};
/// Given a non-tag type declaration, returns an enum useful for indicating
/// what kind of non-tag type this is.
NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
/// Determine whether a tag with a given kind is acceptable
/// as a redeclaration of the given tag declaration.
///
/// \returns true if the new tag kind is acceptable, false otherwise.
bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag,
bool isDefinition, SourceLocation NewTagLoc,
const IdentifierInfo *Name);
enum OffsetOfKind {
// Not parsing a type within __builtin_offsetof.
OOK_Outside,
// Parsing a type within __builtin_offsetof.
OOK_Builtin,
// Parsing a type within macro "offsetof", defined in __buitin_offsetof
// To improve our diagnostic message.
OOK_Macro,
};
/// This is invoked when we see 'struct foo' or 'struct {'. In the
/// former case, Name will be non-null. In the later case, Name will be null.
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is
/// a reference/declaration/definition of a tag.
///
/// \param IsTypeSpecifier \c true if this is a type-specifier (or
/// trailing-type-specifier) other than one in an alias-declaration.
///
/// \param SkipBody If non-null, will be set to indicate if the caller should
/// skip the definition of this tag and treat it as if it were a declaration.
DeclResult ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
const ParsedAttributesView &Attr, AccessSpecifier AS,
SourceLocation ModulePrivateLoc,
MultiTemplateParamsArg TemplateParameterLists,
bool &OwnedDecl, bool &IsDependent,
SourceLocation ScopedEnumKWLoc,
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
bool IsTypeSpecifier, bool IsTemplateParamOrArg,
OffsetOfKind OOK, SkipBodyInfo *SkipBody = nullptr);
/// ActOnField - Each field of a C struct/union is passed into this in order
/// to create a FieldDecl object for it.
Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth);
/// HandleField - Analyze a field of a C struct or a C++ data member.
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
InClassInitStyle InitStyle, AccessSpecifier AS);
/// Build a new FieldDecl and check its well-formedness.
///
/// This routine builds a new FieldDecl given the fields name, type,
/// record, etc. \p PrevDecl should refer to any previous declaration
/// with the same name and in the same scope as the field to be
/// created.
///
/// \returns a new FieldDecl.
///
/// \todo The Declarator argument is a hack. It will be removed once
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
TypeSourceInfo *TInfo, RecordDecl *Record,
SourceLocation Loc, bool Mutable,
Expr *BitfieldWidth, InClassInitStyle InitStyle,
SourceLocation TSSL, AccessSpecifier AS,
NamedDecl *PrevDecl, Declarator *D = nullptr);
bool CheckNontrivialField(FieldDecl *FD);
/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
/// class and class extensions. For every class \@interface and class
/// extension \@interface, if the last ivar is a bitfield of any type,
/// then add an implicit `char :0` ivar to the end of that interface.
void ActOnLastBitfield(SourceLocation DeclStart,
SmallVectorImpl<Decl *> &AllIvarDecls);
// This is used for both record definitions and ObjC interface declarations.
void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
ArrayRef<Decl *> Fields, SourceLocation LBrac,
SourceLocation RBrac, const ParsedAttributesView &AttrList);
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
/// Perform ODR-like check for C/ObjC when merging tag types from modules.
/// Differently from C++, actually parse the body and reject / error out
/// in case of a structural mismatch.
bool ActOnDuplicateDefinition(Scope *S, Decl *Prev, SkipBodyInfo &SkipBody);
typedef void *SkippedDefinitionContext;
/// Invoked when we enter a tag definition that we're skipping.
SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
/// C++ record definition's base-specifiers clause and are starting its
/// member declarations.
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
SourceLocation FinalLoc,
bool IsFinalSpelledSealed,
bool IsAbstract,
SourceLocation LBraceLoc);
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
SourceRange BraceRange);
void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
/// ActOnTagDefinitionError - Invoked when there was an unrecoverable
/// error parsing the definition of a tag.
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
EnumConstantDecl *LastEnumConst,
SourceLocation IdLoc, IdentifierInfo *Id,
Expr *val);
/// Check that this is a valid underlying type for an enum declaration.
bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
/// Check whether this is a valid redeclaration of a previous enumeration.
/// \return true if the redeclaration was invalid.
bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
QualType EnumUnderlyingTy, bool IsFixed,
const EnumDecl *Prev);
/// Determine whether the body of an anonymous enumeration should be skipped.
/// \param II The name of the first enumerator.
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
SourceLocation IILoc);
Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
const ParsedAttributesView &Attrs,
SourceLocation EqualLoc, Expr *Val);
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
const ParsedAttributesView &Attr);
/// Set the current declaration context until it gets popped.
void PushDeclContext(Scope *S, DeclContext *DC);
void PopDeclContext();
/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
void ExitDeclaratorContext(Scope *S);
/// Enter a template parameter scope, after it's been associated with a
/// particular DeclContext. Causes lookup within the scope to chain through
/// enclosing contexts in the correct order.
void EnterTemplatedContext(Scope *S, DeclContext *DC);
/// Push the parameters of D, which must be a function, into scope.
void ActOnReenterFunctionContext(Scope *S, Decl *D);
void ActOnExitFunctionContext();
/// Add this decl to the scope shadowed decl chains.
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
/// true if 'D' belongs to the given declaration context.
///
/// \param AllowInlineNamespace If \c true, allow the declaration to be in the
/// enclosing namespace set of the context, rather than contained
/// directly within it.
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
bool AllowInlineNamespace = false) const;
/// Finds the scope corresponding to the given decl context, if it
/// happens to be an enclosing scope. Otherwise return NULL.
static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
/// Subroutines of ActOnDeclarator().
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
TypeSourceInfo *TInfo);
bool isIncompatibleTypedef(const TypeDecl *Old, TypedefNameDecl *New);
/// Describes the kind of merge to perform for availability
/// attributes (including "deprecated", "unavailable", and "availability").
enum AvailabilityMergeKind {
/// Don't merge availability attributes at all.
AMK_None,
/// Merge availability attributes for a redeclaration, which requires
/// an exact match.
AMK_Redeclaration,
/// Merge availability attributes for an override, which requires
/// an exact match or a weakening of constraints.
AMK_Override,
/// Merge availability attributes for an implementation of
/// a protocol requirement.
AMK_ProtocolImplementation,
/// Merge availability attributes for an implementation of
/// an optional protocol requirement.
AMK_OptionalProtocolImplementation
};
/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
void mergeDeclAttributes(NamedDecl *New, Decl *Old,
AvailabilityMergeKind AMK = AMK_Redeclaration);
/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
/// same name and scope as a previous declaration 'Old'. Figure out
/// how to resolve this situation, merging decls or emitting
/// diagnostics as appropriate. If there was an error, set New to be invalid.
void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
LookupResult &OldDecls);
/// CleanupMergedEnum - We have just merged the decl 'New' by making another
/// definition visible.
/// This method performs any necessary cleanup on the parser state to discard
/// child nodes from newly parsed decl we are retiring.
void CleanupMergedEnum(Scope *S, Decl *New);
/// MergeFunctionDecl - We just parsed a function 'New' from
/// declarator D which has the same name and scope as a previous
/// declaration 'Old'. Figure out how to resolve this situation,
/// merging decls or emitting diagnostics as appropriate.
///
/// In C++, New and Old must be declarations that are not
/// overloaded. Use IsOverload to determine whether New and Old are
/// overloaded, and to select the Old declaration that New should be
/// merged with.
///
/// Returns true if there was an error, false otherwise.
bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
bool MergeTypeWithOld, bool NewDeclIsDefn);
/// Completes the merge of two function declarations that are
/// known to be compatible.
///
/// This routine handles the merging of attributes and other
/// properties of function declarations from the old declaration to
/// the new declaration, once we know that New is in fact a
/// redeclaration of Old.
///
/// \returns false
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
Scope *S, bool MergeTypeWithOld);
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
/// situation, merging decls or emitting diagnostics as appropriate.
///
/// Tentative definition rules (C99 6.9.2p2) are checked by
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
/// definitions here, since the initializer hasn't been attached.
void MergeVarDecl(VarDecl *New, LookupResult &Previous);
/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
/// scope as a previous declaration 'Old'. Figure out how to merge their
/// types, emitting diagnostics as appropriate.
///
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call
/// back to here in AddInitializerToDecl. We can't check them before the
/// initializer is attached.
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
/// We've just determined that \p Old and \p New both appear to be definitions
/// of the same variable. Either diagnose or fix the problem.
bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
/// Filters out lookup results that don't fall within the given scope
/// as determined by isDeclInScope.
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
bool ConsiderLinkage, bool AllowInlineNamespace);
/// We've determined that \p New is a redeclaration of \p Old. Check that they
/// have compatible owning modules.
bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
/// [module.interface]p6:
/// A redeclaration of an entity X is implicitly exported if X was introduced
/// by an exported declaration; otherwise it shall not be exported.
bool CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old);
/// A wrapper function for checking the semantic restrictions of
/// a redeclaration within a module.
bool CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old);
/// Check the redefinition in C++20 Modules.
///
/// [basic.def.odr]p14:
/// For any definable item D with definitions in multiple translation units,
/// - if D is a non-inline non-templated function or variable, or
/// - if the definitions in different translation units do not satisfy the
/// following requirements,
/// the program is ill-formed; a diagnostic is required only if the
/// definable item is attached to a named module and a prior definition is
/// reachable at the point where a later definition occurs.
/// - Each such definition shall not be attached to a named module
/// ([module.unit]).
/// - Each such definition shall consist of the same sequence of tokens, ...
/// ...
///
/// Return true if the redefinition is not allowed. Return false otherwise.
bool IsRedefinitionInModule(const NamedDecl *New, const NamedDecl *Old) const;
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
/// If it's a file scoped decl that must warn if not used, keep track
/// of it.
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
typedef llvm::function_ref<void(SourceLocation Loc, PartialDiagnostic PD)>
DiagReceiverTy;
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
DiagReceiverTy DiagReceiver);
void DiagnoseUnusedDecl(const NamedDecl *ND);
/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
/// unless they are marked attr(unused).
void DiagnoseUnusedDecl(const NamedDecl *ND, DiagReceiverTy DiagReceiver);
/// If VD is set but not otherwise used, diagnose, for a parameter or a
/// variable.
void DiagnoseUnusedButSetDecl(const VarDecl *VD, DiagReceiverTy DiagReceiver);
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
/// from S, where a non-field would be declared. This routine copes
/// with the difference between C and C++ scoping rules in structs and
/// unions. For example, the following code is well-formed in C but
/// ill-formed in C++:
/// @code
/// struct S6 {
/// enum { BAR } e;
/// };
///
/// void test_S6() {
/// struct S6 a;
/// a.e = BAR;
/// }
/// @endcode
/// For the declaration of BAR, this routine will return a different
/// scope. The scope S will be the scope of the unnamed enumeration
/// within S6. In C++, this routine will return the scope associated
/// with S6, because the enumeration's scope is a transparent
/// context but structures can contain non-field names. In C, this
/// routine will return the translation unit scope, since the
/// enumeration's scope is a transparent context and structures cannot
/// contain non-field names.
Scope *getNonFieldDeclScope(Scope *S);
FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
SourceLocation Loc);
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
/// file scope. lazily create a decl for it. ForRedeclaration is true
/// if we're creating this built-in in anticipation of redeclaring the
/// built-in.
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S,
bool ForRedeclaration, SourceLocation Loc);
/// Get the outermost AttributedType node that sets a calling convention.
/// Valid types should not have multiple attributes with different CCs.
const AttributedType *getCallingConvAttributedType(QualType T) const;
/// GetNameForDeclarator - Determine the full declaration name for the
/// given Declarator.
DeclarationNameInfo GetNameForDeclarator(Declarator &D);
/// Retrieves the declaration name from a parsed unqualified-id.
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
/// ParsingInitForAutoVars - a set of declarations with auto types for which
/// we are currently parsing the initializer.
llvm::SmallPtrSet<const Decl *, 4> ParsingInitForAutoVars;
/// Look for a locally scoped extern "C" declaration by the given name.
NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
void deduceOpenCLAddressSpace(ValueDecl *decl);
/// Adjust the \c DeclContext for a function or variable that might be a
/// function-local external declaration.
static bool adjustContextForLocalExternDecl(DeclContext *&DC);
void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
/// Checks if the variant/multiversion functions are compatible.
bool areMultiversionVariantFunctionsCompatible(
const FunctionDecl *OldFD, const FunctionDecl *NewFD,
const PartialDiagnostic &NoProtoDiagID,
const PartialDiagnosticAt &NoteCausedDiagIDAt,
const PartialDiagnosticAt &NoSupportDiagIDAt,
const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
bool ConstexprSupported, bool CLinkageMayDiffer);
/// type checking declaration initializers (C99 6.7.8)
bool CheckForConstantInitializer(
Expr *Init, unsigned DiagID = diag::err_init_element_not_constant);
QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
QualType Type, TypeSourceInfo *TSI,
SourceRange Range, bool DirectInit,
Expr *Init);
bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
Expr *Init);
sema::LambdaScopeInfo *RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator);
// Heuristically tells if the function is `get_return_object` member of a
// coroutine promise_type by matching the function name.
static bool CanBeGetReturnObject(const FunctionDecl *FD);
static bool CanBeGetReturnTypeOnAllocFailure(const FunctionDecl *FD);
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
/// If this function is a C++ replaceable global allocation function
/// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
/// adds any function attributes that we know a priori based on the standard.
///
/// We need to check for duplicate attributes both here and where user-written
/// attributes are applied to declarations.
void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
FunctionDecl *FD);
/// Adds any function attributes that we know a priori based on
/// the declaration of this function.
///
/// These attributes can apply both to implicitly-declared builtins
/// (like __builtin___printf_chk) or to library-declared functions
/// like NSLog or printf.
///
/// We need to check for duplicate attributes both here and where user-written
/// attributes are applied to declarations.
void AddKnownFunctionAttributes(FunctionDecl *FD);
/// VerifyBitField - verifies that a bit field expression is an ICE and has
/// the correct width, and that the field type is valid.
/// Returns false on success.
ExprResult VerifyBitField(SourceLocation FieldLoc,
const IdentifierInfo *FieldName, QualType FieldTy,
bool IsMsStruct, Expr *BitWidth);
/// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
/// enum. If AllowMask is true, then we also allow the complement of a valid
/// value, to be used as a mask.
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
bool AllowMask) const;
/// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
void ActOnPragmaWeakID(IdentifierInfo *WeakName, SourceLocation PragmaLoc,
SourceLocation WeakNameLoc);
/// ActOnPragmaRedefineExtname - Called on well formed
/// \#pragma redefine_extname oldname newname.
void ActOnPragmaRedefineExtname(IdentifierInfo *WeakName,
IdentifierInfo *AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
void ActOnPragmaWeakAlias(IdentifierInfo *WeakName, IdentifierInfo *AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
enum class FunctionEmissionStatus {
Emitted,
CUDADiscarded, // Discarded due to CUDA/HIP hostness
OMPDiscarded, // Discarded due to OpenMP hostness
TemplateDiscarded, // Discarded due to uninstantiated templates
Unknown,
};
FunctionEmissionStatus getEmissionStatus(const FunctionDecl *Decl,
bool Final = false);
// Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
/// Function or variable declarations to be checked for whether the deferred
/// diagnostics should be emitted.
llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
private:
/// Map of current shadowing declarations to shadowed declarations. Warn if
/// it looks like the user is trying to modify the shadowing declaration.
llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
// We need this to handle
//
// typedef struct {
// void *foo() { return 0; }
// } A;
//
// When we see foo we don't know if after the typedef we will get 'A' or '*A'
// for example. If 'A', foo will have external linkage. If we have '*A',
// foo will have no linkage. Since we can't know until we get to the end
// of the typedef, this function finds out if D might have non-external
// linkage. Callers should verify at the end of the TU if it D has external
// linkage or not.
static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Declaration Attribute Handling
/// Implementations are in SemaDeclAttr.cpp
///@{
public:
/// Describes the kind of priority given to an availability attribute.
///
/// The sum of priorities deteremines the final priority of the attribute.
/// The final priority determines how the attribute will be merged.
/// An attribute with a lower priority will always remove higher priority
/// attributes for the specified platform when it is being applied. An
/// attribute with a higher priority will not be applied if the declaration
/// already has an availability attribute with a lower priority for the
/// specified platform. The final prirority values are not expected to match
/// the values in this enumeration, but instead should be treated as a plain
/// integer value. This enumeration just names the priority weights that are
/// used to calculate that final vaue.
enum AvailabilityPriority : int {
/// The availability attribute was specified explicitly next to the
/// declaration.
AP_Explicit = 0,
/// The availability attribute was applied using '#pragma clang attribute'.
AP_PragmaClangAttribute = 1,
/// The availability attribute for a specific platform was inferred from
/// an availability attribute for another platform.
AP_InferredFromOtherPlatform = 2
};
/// Describes the reason a calling convention specification was ignored, used
/// for diagnostics.
enum class CallingConventionIgnoredReason {
ForThisTarget = 0,
VariadicFunction,
ConstructorDestructor,
BuiltinFunction
};
/// A helper function to provide Attribute Location for the Attr types
/// AND the ParsedAttr.
template <typename AttrInfo>
static std::enable_if_t<std::is_base_of_v<Attr, AttrInfo>, SourceLocation>
getAttrLoc(const AttrInfo &AL) {
return AL.getLocation();
}
SourceLocation getAttrLoc(const ParsedAttr &AL);
/// If Expr is a valid integer constant, get the value of the integer
/// expression and return success or failure. May output an error.
///
/// Negative argument is implicitly converted to unsigned, unless
/// \p StrictlyUnsigned is true.
template <typename AttrInfo>
bool checkUInt32Argument(const AttrInfo &AI, const Expr *Expr, uint32_t &Val,
unsigned Idx = UINT_MAX,
bool StrictlyUnsigned = false) {
std::optional<llvm::APSInt> I = llvm::APSInt(32);
if (Expr->isTypeDependent() ||
!(I = Expr->getIntegerConstantExpr(Context))) {
if (Idx != UINT_MAX)
Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
<< &AI << Idx << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
else
Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
<< &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
return false;
}
if (!I->isIntN(32)) {
Diag(Expr->getExprLoc(), diag::err_ice_too_large)
<< toString(*I, 10, false) << 32 << /* Unsigned */ 1;
return false;
}
if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
<< &AI << /*non-negative*/ 1;
return false;
}
Val = (uint32_t)I->getZExtValue();
return true;
}
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
/// \#pragma weak during processing of other Decls.
/// I couldn't figure out a clean way to generate these in-line, so
/// we store them here and handle separately -- which is a hack.
/// It would be best to refactor this.
SmallVector<Decl *, 2> WeakTopLevelDecl;
/// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadExtVectorDecls, 2, 2>
ExtVectorDeclsType;
/// ExtVectorDecls - This is a list all the extended vector types. This allows
/// us to associate a raw vector type with one of the ext_vector type names.
/// This is only necessary for issuing pretty diagnostics.
ExtVectorDeclsType ExtVectorDecls;
/// Check if the argument \p E is a ASCII string literal. If not emit an error
/// and return false, otherwise set \p Str to the value of the string literal
/// and return true.
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI,
const Expr *E, StringRef &Str,
SourceLocation *ArgLocation = nullptr);
/// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
/// If not emit an error and return false. If the argument is an identifier it
/// will emit an error with a fixit hint and treat it as if it was a string
/// literal.
bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
StringRef &Str,
SourceLocation *ArgLocation = nullptr);
/// Determine if type T is a valid subject for a nonnull and similar
/// attributes. Dependent types are considered valid so they can be checked
/// during instantiation time. By default, we look through references (the
/// behavior used by nonnull), but if the second parameter is true, then we
/// treat a reference type as valid.
bool isValidPointerAttrType(QualType T, bool RefOkay = false);
/// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
/// declaration.
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
Expr *OE);
/// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
/// declaration.
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *ParamExpr);
bool CheckAttrTarget(const ParsedAttr &CurrAttr);
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
AvailabilityAttr *mergeAvailabilityAttr(
NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
int Priority, IdentifierInfo *IIEnvironment);
TypeVisibilityAttr *
mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
TypeVisibilityAttr::VisibilityType Vis);
VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
VisibilityAttr::VisibilityType Vis);
SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Name);
/// Used to implement to perform semantic checking on
/// attribute((section("foo"))) specifiers.
///
/// In this case, "foo" is passed in to be checked. If the section
/// specifier is invalid, return an Error that indicates the problem.
///
/// This is a simple quality of implementation feature to catch errors
/// and give good diagnostics in cases when the assembler or code generator
/// would otherwise reject the section specifier.
llvm::Error isValidSectionSpecifier(StringRef Str);
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Name);
// Check for things we'd like to warn about. Multiversioning issues are
// handled later in the process, once we know how many exist.
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
/// Check Target Version attrs
bool checkTargetVersionAttr(SourceLocation Loc, Decl *D, StringRef Str);
bool checkTargetClonesAttrString(
SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal,
Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault,
SmallVectorImpl<SmallString<64>> &StringsBuffer);
ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef NewUserDiagnostic);
FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
IdentifierInfo *Format, int FormatIdx,
int FirstArg);
FormatMatchesAttr *mergeFormatMatchesAttr(Decl *D,
const AttributeCommonInfo &CI,
IdentifierInfo *Format,
int FormatIdx,
StringLiteral *FormatStr);
/// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
bool IsPackExpansion);
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
bool IsPackExpansion);
/// AddAlignValueAttr - Adds an align_value attribute to a particular
/// declaration.
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
/// CreateAnnotationAttr - Creates an annotation Annot with Args arguments.
Attr *CreateAnnotationAttr(const AttributeCommonInfo &CI, StringRef Annot,
MutableArrayRef<Expr *> Args);
Attr *CreateAnnotationAttr(const ParsedAttr &AL);
bool checkMSInheritanceAttrOnDefinition(CXXRecordDecl *RD, SourceRange Range,
bool BestCase,
MSInheritanceModel SemanticSpelling);
void CheckAlignasUnderalignment(Decl *D);
/// AddModeAttr - Adds a mode attribute to a particular declaration.
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
bool InInstantiation = false);
AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
const AttributeCommonInfo &CI,
const IdentifierInfo *Ident);
MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
const AttributeCommonInfo &CI);
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
const InternalLinkageAttr &AL);
/// Check validaty of calling convention attribute \p attr. If \p FD
/// is not null pointer, use \p FD to determine the CUDA/HIP host/device
/// target. Otherwise, it is specified by \p CFT.
bool CheckCallingConvAttr(
const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD = nullptr,
CUDAFunctionTarget CFT = CUDAFunctionTarget::InvalidTarget);
/// Checks a regparm attribute, returning true if it is ill-formed and
/// otherwise setting numParams to the appropriate value.
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
/// Create an CUDALaunchBoundsAttr attribute.
CUDALaunchBoundsAttr *CreateLaunchBoundsAttr(const AttributeCommonInfo &CI,
Expr *MaxThreads,
Expr *MinBlocks,
Expr *MaxBlocks);
/// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
/// declaration.
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks);
enum class RetainOwnershipKind { NS, CF, OS };
UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
BTFDeclTagAttr *mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL);
DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
const AttributeCommonInfo &CI,
bool BestCase,
MSInheritanceModel Model);
EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
const EnforceTCBLeafAttr &AL);
/// Helper for delayed processing TransparentUnion or
/// BPFPreserveAccessIndexAttr attribute.
void ProcessDeclAttributeDelayed(Decl *D,
const ParsedAttributesView &AttrList);
// Options for ProcessDeclAttributeList().
struct ProcessDeclAttributeOptions {
ProcessDeclAttributeOptions()
: IncludeCXX11Attributes(true), IgnoreTypeAttributes(false) {}
ProcessDeclAttributeOptions WithIncludeCXX11Attributes(bool Val) {
ProcessDeclAttributeOptions Result = *this;
Result.IncludeCXX11Attributes = Val;
return Result;
}
ProcessDeclAttributeOptions WithIgnoreTypeAttributes(bool Val) {
ProcessDeclAttributeOptions Result = *this;
Result.IgnoreTypeAttributes = Val;
return Result;
}
// Should C++11 attributes be processed?
bool IncludeCXX11Attributes;
// Should any type attributes encountered be ignored?
// If this option is false, a diagnostic will be emitted for any type
// attributes of a kind that does not "slide" from the declaration to
// the decl-specifier-seq.
bool IgnoreTypeAttributes;
};
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void ProcessDeclAttributeList(Scope *S, Decl *D,
const ParsedAttributesView &AttrList,
const ProcessDeclAttributeOptions &Options =
ProcessDeclAttributeOptions());
/// Annotation attributes are the only attributes allowed after an access
/// specifier.
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const ParsedAttributesView &AttrList);
/// checkUnusedDeclAttributes - Given a declarator which is not being
/// used to build a declaration, complain about any decl attributes
/// which might be lying around on it.
void checkUnusedDeclAttributes(Declarator &D);
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// \#pragma weak needs a non-definition decl and source may not have one.
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II,
SourceLocation Loc);
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
/// applied to it, possibly with an alias.
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W);
void ProcessPragmaWeak(Scope *S, Decl *D);
// Decl attributes - this routine is the top level dispatcher.
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
/// Given a set of delayed diagnostics, re-emit them as if they had
/// been delayed in the current context instead of in the given pool.
/// Essentially, this just moves them to the current pool.
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
/// Check if IdxExpr is a valid parameter index for a function or
/// instance method D. May output an error.
///
/// \returns true if IdxExpr is a valid index.
template <typename AttrInfo>
bool checkFunctionOrMethodParameterIndex(
const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false,
bool CanIndexVariadicArguments = false) {
assert(isFunctionOrMethodOrBlockForAttrSubject(D));
// In C++ the implicit 'this' function parameter also counts.
// Parameters are counted from one.
bool HP = hasFunctionProto(D);
bool HasImplicitThisParam = isInstanceMethod(D);
bool IV = HP && isFunctionOrMethodVariadic(D);
unsigned NumParams =
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
std::optional<llvm::APSInt> IdxInt;
if (IdxExpr->isTypeDependent() ||
!(IdxInt = IdxExpr->getIntegerConstantExpr(Context))) {
Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
<< &AI << AttrArgNum << AANT_ArgumentIntegerConstant
<< IdxExpr->getSourceRange();
return false;
}
unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
if (IdxSource < 1 ||
((!IV || !CanIndexVariadicArguments) && IdxSource > NumParams)) {
Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
<< &AI << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
if (HasImplicitThisParam && !CanIndexImplicitThis) {
if (IdxSource == 1) {
Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
<< &AI << IdxExpr->getSourceRange();
return false;
}
}
Idx = ParamIdx(IdxSource, D);
return true;
}
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Declarations
/// Implementations are in SemaDeclCXX.cpp
///@{
public:
void CheckDelegatingCtorCycles();
/// Called before parsing a function declarator belonging to a function
/// declaration.
void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
unsigned TemplateParameterDepth);
/// Called after parsing a function declarator belonging to a function
/// declaration.
void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
// Act on C++ namespaces
Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
SourceLocation NamespaceLoc,
SourceLocation IdentLoc, IdentifierInfo *Ident,
SourceLocation LBrace,
const ParsedAttributesView &AttrList,
UsingDirectiveDecl *&UsingDecl, bool IsNested);
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
NamespaceDecl *getStdNamespace() const;
/// Retrieve the special "std" namespace, which may require us to
/// implicitly define the namespace.
NamespaceDecl *getOrCreateStdNamespace();
CXXRecordDecl *getStdBadAlloc() const;
EnumDecl *getStdAlignValT() const;
ValueDecl *tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl,
const IdentifierInfo *MemberOrBase);
enum class ComparisonCategoryUsage {
/// The '<=>' operator was used in an expression and a builtin operator
/// was selected.
OperatorInExpression,
/// A defaulted 'operator<=>' needed the comparison category. This
/// typically only applies to 'std::strong_ordering', due to the implicit
/// fallback return value.
DefaultedOperator,
};
/// Lookup the specified comparison category types in the standard
/// library, an check the VarDecls possibly returned by the operator<=>
/// builtins for that type.
///
/// \return The type of the comparison category type corresponding to the
/// specified Kind, or a null type if an error occurs
QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
SourceLocation Loc,
ComparisonCategoryUsage Usage);
/// Tests whether Ty is an instance of std::initializer_list and, if
/// it is and Element is not NULL, assigns the element type to Element.
bool isStdInitializerList(QualType Ty, QualType *Element);
/// Looks for the std::initializer_list template and instantiates it
/// with Element, or emits an error if it's not found.
///
/// \returns The instantiated template, or null on error.
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
/// Determine whether Ctor is an initializer-list constructor, as
/// defined in [dcl.init.list]p2.
bool isInitListConstructor(const FunctionDecl *Ctor);
Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
SourceLocation NamespcLoc, CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
const ParsedAttributesView &AttrList);
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
Decl *ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc,
SourceLocation AliasLoc, IdentifierInfo *Alias,
CXXScopeSpec &SS, SourceLocation IdentLoc,
IdentifierInfo *Ident);
/// Remove decls we can't actually see from a lookup being used to declare
/// shadow using decls.
///
/// \param S - The scope of the potential shadow decl
/// \param Previous - The lookup of a potential shadow decl's name.
void FilterUsingLookup(Scope *S, LookupResult &lookup);
/// Hides a using shadow declaration. This is required by the current
/// using-decl implementation when a resolvable using declaration in a
/// class is followed by a declaration which would hide or override
/// one or more of the using decl's targets; for example:
///
/// struct Base { void foo(int); };
/// struct Derived : Base {
/// using Base::foo;
/// void foo(int);
/// };
///
/// The governing language is C++03 [namespace.udecl]p12:
///
/// When a using-declaration brings names from a base class into a
/// derived class scope, member functions in the derived class
/// override and/or hide member functions with the same name and
/// parameter types in a base class (rather than conflicting).
///
/// There are two ways to implement this:
/// (1) optimistically create shadow decls when they're not hidden
/// by existing declarations, or
/// (2) don't create any shadow decls (or at least don't make them
/// visible) until we've fully parsed/instantiated the class.
/// The problem with (1) is that we might have to retroactively remove
/// a shadow decl, which requires several O(n) operations because the
/// decl structures are (very reasonably) not designed for removal.
/// (2) avoids this but is very fiddly and phase-dependent.
void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
/// Determines whether to create a using shadow decl for a particular
/// decl, given the set of decls existing prior to this using lookup.
bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
const LookupResult &PreviousDecls,
UsingShadowDecl *&PrevShadow);
/// Builds a shadow declaration corresponding to a 'using' declaration.
UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
NamedDecl *Target,
UsingShadowDecl *PrevDecl);
/// Checks that the given using declaration is not an invalid
/// redeclaration. Note that this is checking only for the using decl
/// itself, not for any ill-formedness among the UsingShadowDecls.
bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
bool HasTypenameKeyword,
const CXXScopeSpec &SS,
SourceLocation NameLoc,
const LookupResult &Previous);
/// Checks that the given nested-name qualifier used in a using decl
/// in the current context is appropriately related to the current
/// scope. If an error is found, diagnoses it and returns true.
/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's
/// the result of that lookup. UD is likewise nullptr, except when we have an
/// already-populated UsingDecl whose shadow decls contain the same
/// information (i.e. we're instantiating a UsingDecl with non-dependent
/// scope).
bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
SourceLocation NameLoc,
const LookupResult *R = nullptr,
const UsingDecl *UD = nullptr);
/// Builds a using declaration.
///
/// \param IsInstantiation - Whether this call arises from an
/// instantiation of an unresolved using declaration. We treat
/// the lookup differently for these declarations.
NamedDecl *BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
SourceLocation UsingLoc,
bool HasTypenameKeyword,
SourceLocation TypenameLoc, CXXScopeSpec &SS,
DeclarationNameInfo NameInfo,
SourceLocation EllipsisLoc,
const ParsedAttributesView &AttrList,
bool IsInstantiation, bool IsUsingIfExists);
NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
SourceLocation UsingLoc,
SourceLocation EnumLoc,
SourceLocation NameLoc,
TypeSourceInfo *EnumType, EnumDecl *ED);
NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> Expansions);
/// Additional checks for a using declaration referring to a constructor name.
bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
/// Given a derived-class using shadow declaration for a constructor and the
/// correspnding base class constructor, find or create the implicit
/// synthesized derived class constructor to use for this initialization.
CXXConstructorDecl *
findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
ConstructorUsingShadowDecl *DerivedShadow);
Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
SourceLocation UsingLoc,
SourceLocation TypenameLoc, CXXScopeSpec &SS,
UnqualifiedId &Name, SourceLocation EllipsisLoc,
const ParsedAttributesView &AttrList);
Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
SourceLocation UsingLoc,
SourceLocation EnumLoc, SourceRange TyLoc,
const IdentifierInfo &II, ParsedType Ty,
CXXScopeSpec *SS = nullptr);
Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
MultiTemplateParamsArg TemplateParams,
SourceLocation UsingLoc, UnqualifiedId &Name,
const ParsedAttributesView &AttrList,
TypeResult Type, Decl *DeclFromDeclSpec);
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
///
/// \param ConstructKind - a CXXConstructExpr::ConstructionKind
ExprResult BuildCXXConstructExpr(
SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl,
CXXConstructorDecl *Constructor, MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization, bool RequiresZeroInit,
CXXConstructionKind ConstructKind, SourceRange ParenRange);
/// Build a CXXConstructExpr whose constructor has already been resolved if
/// it denotes an inherited constructor.
ExprResult BuildCXXConstructExpr(
SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization, bool RequiresZeroInit,
CXXConstructionKind ConstructKind, SourceRange ParenRange);
// FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
// the constructor can be elidable?
ExprResult BuildCXXConstructExpr(
SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl,
CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization, bool RequiresZeroInit,
CXXConstructionKind ConstructKind, SourceRange ParenRange);
ExprResult ConvertMemberDefaultInitExpression(FieldDecl *FD, Expr *InitExpr,
SourceLocation InitLoc);
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
/// constructed variable.
void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
/// Helper class that collects exception specifications for
/// implicitly-declared special member functions.
class ImplicitExceptionSpecification {
// Pointer to allow copying
Sema *Self;
// We order exception specifications thus:
// noexcept is the most restrictive, but is only used in C++11.
// throw() comes next.
// Then a throw(collected exceptions)
// Finally no specification, which is expressed as noexcept(false).
// throw(...) is used instead if any called function uses it.
ExceptionSpecificationType ComputedEST;
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
SmallVector<QualType, 4> Exceptions;
void ClearExceptions() {
ExceptionsSeen.clear();
Exceptions.clear();
}
public:
explicit ImplicitExceptionSpecification(Sema &Self)
: Self(&Self), ComputedEST(EST_BasicNoexcept) {
if (!Self.getLangOpts().CPlusPlus11)
ComputedEST = EST_DynamicNone;
}
/// Get the computed exception specification type.
ExceptionSpecificationType getExceptionSpecType() const {
assert(!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result");
return ComputedEST;
}
/// The number of exceptions in the exception specification.
unsigned size() const { return Exceptions.size(); }
/// The set of exceptions in the exception specification.
const QualType *data() const { return Exceptions.data(); }
/// Integrate another called method into the collected data.
void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
/// Integrate an invoked expression into the collected data.
void CalledExpr(Expr *E) { CalledStmt(E); }
/// Integrate an invoked statement into the collected data.
void CalledStmt(Stmt *S);
/// Overwrite an EPI's exception specification with this
/// computed exception specification.
FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
FunctionProtoType::ExceptionSpecInfo ESI;
ESI.Type = getExceptionSpecType();
if (ESI.Type == EST_Dynamic) {
ESI.Exceptions = Exceptions;
} else if (ESI.Type == EST_None) {
/// C++11 [except.spec]p14:
/// The exception-specification is noexcept(false) if the set of
/// potential exceptions of the special member function contains "any"
ESI.Type = EST_NoexceptFalse;
ESI.NoexceptExpr =
Self->ActOnCXXBoolLiteral(SourceLocation(), tok::kw_false).get();
}
return ESI;
}
};
/// Evaluate the implicit exception specification for a defaulted
/// special member function.
void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
/// Check the given exception-specification and update the
/// exception specification information with the results.
void checkExceptionSpecification(bool IsTopLevel,
ExceptionSpecificationType EST,
ArrayRef<ParsedType> DynamicExceptions,
ArrayRef<SourceRange> DynamicExceptionRanges,
Expr *NoexceptExpr,
SmallVectorImpl<QualType> &Exceptions,
FunctionProtoType::ExceptionSpecInfo &ESI);
/// Add an exception-specification to the given member or friend function
/// (or function template). The exception-specification was parsed
/// after the function itself was declared.
void actOnDelayedExceptionSpecification(
Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange,
ArrayRef<ParsedType> DynamicExceptions,
ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr);
class InheritedConstructorInfo;
/// Determine if a special member function should have a deleted
/// definition when it is defaulted.
bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
InheritedConstructorInfo *ICI = nullptr,
bool Diagnose = false);
/// Produce notes explaining why a defaulted function was defined as deleted.
void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
/// Declare the implicit default constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// default constructor will be added.
///
/// \returns The implicitly-declared default constructor.
CXXConstructorDecl *
DeclareImplicitDefaultConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitDefaultConstructor - Checks for feasibility of
/// defining this constructor as the default constructor.
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// Declare the implicit destructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// destructor will be added.
///
/// \returns The implicitly-declared destructor.
CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitDestructor - Checks for feasibility of
/// defining this destructor as the default destructor.
void DefineImplicitDestructor(SourceLocation CurrentLocation,
CXXDestructorDecl *Destructor);
/// Build an exception spec for destructors that don't have one.
///
/// C++11 says that user-defined destructors with no exception spec get one
/// that looks as if the destructor was implicitly declared.
void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
/// Define the specified inheriting constructor.
void DefineInheritingConstructor(SourceLocation UseLoc,
CXXConstructorDecl *Constructor);
/// Declare the implicit copy constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy constructor will be added.
///
/// \returns The implicitly-declared copy constructor.
CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitCopyConstructor - Checks for feasibility of
/// defining this constructor as the copy constructor.
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// Declare the implicit move constructor for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move constructor will be added.
///
/// \returns The implicitly-declared move constructor, or NULL if it wasn't
/// declared.
CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitMoveConstructor - Checks for feasibility of
/// defining this constructor as the move constructor.
void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// Declare the implicit copy assignment operator for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy assignment operator will be added.
///
/// \returns The implicitly-declared copy assignment operator.
CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
/// Defines an implicitly-declared copy assignment operator.
void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// Declare the implicit move assignment operator for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move assignment operator will be added.
///
/// \returns The implicitly-declared move assignment operator, or NULL if it
/// wasn't declared.
CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
/// Defines an implicitly-declared move assignment operator.
void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// Check a completed declaration of an implicit special member.
void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
/// Determine whether the given function is an implicitly-deleted
/// special member function.
bool isImplicitlyDeleted(FunctionDecl *FD);
/// Check whether 'this' shows up in the type of a static member
/// function after the (naturally empty) cv-qualifier-seq would be.
///
/// \returns true if an error occurred.
bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
/// Whether this' shows up in the exception specification of a static
/// member function.
bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
/// Check whether 'this' shows up in the attributes of the given
/// static member function.
///
/// \returns true if an error occurred.
bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
bool CheckImmediateEscalatingFunctionDefinition(
FunctionDecl *FD, const sema::FunctionScopeInfo *FSI);
void DiagnoseImmediateEscalatingReason(FunctionDecl *FD);
/// Given a constructor and the set of arguments provided for the
/// constructor, convert the arguments and add any required default arguments
/// to form a proper call to this constructor.
///
/// \returns true if an error occurred, false otherwise.
bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
QualType DeclInitType, MultiExprArg ArgsPtr,
SourceLocation Loc,
SmallVectorImpl<Expr *> &ConvertedArgs,
bool AllowExplicit = false,
bool IsListInitialization = false);
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
/// initializer for the declaration 'Dcl'.
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the declaration 'Dcl'.
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
/// Define the "body" of the conversion from a lambda object to a
/// function pointer.
///
/// This routine doesn't actually define a sensible body; rather, it fills
/// in the initialization expression needed to copy the lambda object into
/// the block, and IR generation actually generates the real body of the
/// block pointer conversion.
void
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLoc,
CXXConversionDecl *Conv);
/// Define the "body" of the conversion from a lambda object to a
/// block pointer.
///
/// This routine doesn't actually define a sensible body; rather, it fills
/// in the initialization expression needed to copy the lambda object into
/// the block, and IR generation actually generates the real body of the
/// block pointer conversion.
void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
CXXConversionDecl *Conv);
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
/// linkage specification, including the language and (if present)
/// the '{'. ExternLoc is the location of the 'extern', Lang is the
/// language string literal. LBraceLoc, if valid, provides the location of
/// the '{' brace. Otherwise, this linkage specification does not
/// have any braces.
Decl *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
Expr *LangStr, SourceLocation LBraceLoc);
/// ActOnFinishLinkageSpecification - Complete the definition of
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
/// valid, it's the position of the closing '}' brace in a linkage
/// specification that uses braces.
Decl *ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec,
SourceLocation RBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Classes
//
/// Get the class that is directly named by the current context. This is the
/// class for which an unqualified-id in this scope could name a constructor
/// or destructor.
///
/// If the scope specifier denotes a class, this will be that class.
/// If the scope specifier is empty, this will be the class whose
/// member-specification we are currently within. Otherwise, there
/// is no such class.
CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
/// isCurrentClassName - Determine whether the identifier II is the
/// name of the class type currently being defined. In the case of
/// nested classes, this will only return true if II is the name of
/// the innermost class.
bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS = nullptr);
/// Determine whether the identifier II is a typo for the name of
/// the class type currently being defined. If so, update it to the identifier
/// that should have been used.
bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
SourceLocation ColonLoc,
const ParsedAttributesView &Attrs);
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
/// bitfield width if there is one, 'InitExpr' specifies the initializer if
/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
/// present (but parsing it has been deferred).
NamedDecl *
ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
Expr *BitfieldWidth, const VirtSpecifiers &VS,
InClassInitStyle InitStyle);
/// Enter a new C++ default initializer scope. After calling this, the
/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
/// parsing or instantiating the initializer failed.
void ActOnStartCXXInClassMemberInitializer();
/// This is invoked after parsing an in-class initializer for a
/// non-static C++ class member, and after instantiating an in-class
/// initializer in a class template. Such actions are deferred until the class
/// is complete.
void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
SourceLocation EqualLoc,
ExprResult Init);
/// Handle a C++ member initializer using parentheses syntax.
MemInitResult
ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy,
const DeclSpec &DS, SourceLocation IdLoc,
SourceLocation LParenLoc, ArrayRef<Expr *> Args,
SourceLocation RParenLoc, SourceLocation EllipsisLoc);
/// Handle a C++ member initializer using braced-init-list syntax.
MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS, SourceLocation IdLoc,
Expr *InitList, SourceLocation EllipsisLoc);
/// Handle a C++ member initializer.
MemInitResult BuildMemInitializer(Decl *ConstructorD, Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS, SourceLocation IdLoc,
Expr *Init, SourceLocation EllipsisLoc);
MemInitResult BuildMemberInitializer(ValueDecl *Member, Expr *Init,
SourceLocation IdLoc);
MemInitResult BuildBaseInitializer(QualType BaseType,
TypeSourceInfo *BaseTInfo, Expr *Init,
CXXRecordDecl *ClassDecl,
SourceLocation EllipsisLoc);
MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
CXXRecordDecl *ClassDecl);
bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
CXXCtorInitializer *Initializer);
bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
ArrayRef<CXXCtorInitializer *> Initializers = {});
/// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
/// mark all the non-trivial destructors of its members and bases as
/// referenced.
void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
CXXRecordDecl *Record);
/// Mark destructors of virtual bases of this class referenced. In the Itanium
/// C++ ABI, this is done when emitting a destructor for any non-abstract
/// class. In the Microsoft C++ ABI, this is done any time a class's
/// destructor is referenced.
void MarkVirtualBaseDestructorsReferenced(
SourceLocation Location, CXXRecordDecl *ClassDecl,
llvm::SmallPtrSetImpl<const CXXRecordDecl *> *DirectVirtualBases =
nullptr);
/// Do semantic checks to allow the complete destructor variant to be emitted
/// when the destructor is defined in another translation unit. In the Itanium
/// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
/// can be emitted in separate TUs. To emit the complete variant, run a subset
/// of the checks performed when emitting a regular destructor.
void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
CXXDestructorDecl *Dtor);
/// The list of classes whose vtables have been used within
/// this translation unit, and the source locations at which the
/// first use occurred.
typedef std::pair<CXXRecordDecl *, SourceLocation> VTableUse;
/// The list of vtables that are required but have not yet been
/// materialized.
SmallVector<VTableUse, 16> VTableUses;
/// The set of classes whose vtables have been used within
/// this translation unit, and a bit that will be true if the vtable is
/// required to be emitted (otherwise, it should be emitted only if needed
/// by code generation).
llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
/// Load any externally-stored vtable uses.
void LoadExternalVTableUses();
/// Note that the vtable for the given class was used at the
/// given location.
void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
bool DefinitionRequired = false);
/// Mark the exception specifications of all virtual member functions
/// in the given class as needed.
void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
const CXXRecordDecl *RD);
/// MarkVirtualMembersReferenced - Will mark all members of the given
/// CXXRecordDecl referenced.
void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
bool ConstexprOnly = false);
/// Define all of the vtables that have been used in this
/// translation unit and reference any virtual members used by those
/// vtables.
///
/// \returns true if any work was done, false otherwise.
bool DefineUsedVTables();
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
/// special functions, such as the default constructor, copy
/// constructor, or destructor, to the given C++ class (C++
/// [special]p1). This routine can only be executed just before the
/// definition of the class is complete.
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
/// ActOnMemInitializers - Handle the member initializers for a constructor.
void ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc,
ArrayRef<CXXCtorInitializer *> MemInits,
bool AnyErrors);
/// Check class-level dllimport/dllexport attribute. The caller must
/// ensure that referenceDLLExportedClassMethods is called some point later
/// when all outer classes of Class are complete.
void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
void referenceDLLExportedClassMethods();
/// Perform propagation of DLL attributes from a derived class to a
/// templated base class for MS compatibility.
void propagateDLLAttrToBaseClassTemplate(
CXXRecordDecl *Class, Attr *ClassAttr,
ClassTemplateSpecializationDecl *BaseTemplateSpec,
SourceLocation BaseLoc);
/// Perform semantic checks on a class definition that has been
/// completing, introducing implicitly-declared members, checking for
/// abstract types, etc.
///
/// \param S The scope in which the class was parsed. Null if we didn't just
/// parse a class definition.
/// \param Record The completed class.
void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
/// Check that the C++ class annoated with "trivial_abi" satisfies all the
/// conditions that are needed for the attribute to have an effect.
void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
/// Check that VTable Pointer authentication is only being set on the first
/// first instantiation of the vtable
void checkIncorrectVTablePointerAuthenticationAttribute(CXXRecordDecl &RD);
void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
Decl *TagDecl, SourceLocation LBrac,
SourceLocation RBrac,
const ParsedAttributesView &AttrList);
/// Perform any semantic analysis which needs to be delayed until all
/// pending class member declarations have been parsed.
void ActOnFinishCXXMemberDecls();
void ActOnFinishCXXNonNestedClass();
/// This is used to implement the constant expression evaluation part of the
/// attribute enable_if extension. There is nothing in standard C++ which
/// would require reentering parameters.
void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
unsigned ActOnReenterTemplateScope(Decl *Template,
llvm::function_ref<Scope *()> EnterScope);
void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
/// parsing a top-level (non-nested) C++ class, and we are now
/// parsing those parts of the given Method declaration that could
/// not be parsed earlier (C++ [class.mem]p2), such as default
/// arguments. This action should enter the scope of the given
/// Method declaration as if we had just parsed the qualified method
/// name. However, it should not bring the parameters into scope;
/// that will be performed by ActOnDelayedCXXMethodParameter.
void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
/// processing the delayed method declaration for Method. The method
/// declaration is now considered finished. There may be a separate
/// ActOnStartOfFunctionDef action later (not necessarily
/// immediately!) for this method, if it was also defined inside the
/// class body.
void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnFinishDelayedMemberInitializers(Decl *Record);
enum class StringEvaluationContext { StaticAssert = 0, Asm = 1 };
bool EvaluateAsString(Expr *Message, APValue &Result, ASTContext &Ctx,
StringEvaluationContext EvalContext,
bool ErrorOnInvalidMessage);
bool EvaluateAsString(Expr *Message, std::string &Result, ASTContext &Ctx,
StringEvaluationContext EvalContext,
bool ErrorOnInvalidMessage);
Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr, Expr *AssertMessageExpr,
SourceLocation RParenLoc);
Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr, Expr *AssertMessageExpr,
SourceLocation RParenLoc, bool Failed);
/// Try to print more useful information about a failed static_assert
/// with expression \E
void DiagnoseStaticAssertDetails(const Expr *E);
/// Handle a friend type declaration. This works in tandem with
/// ActOnTag.
///
/// Notes on friend class templates:
///
/// We generally treat friend class declarations as if they were
/// declaring a class. So, for example, the elaborated type specifier
/// in a friend declaration is required to obey the restrictions of a
/// class-head (i.e. no typedefs in the scope chain), template
/// parameters are required to match up with simple template-ids, &c.
/// However, unlike when declaring a template specialization, it's
/// okay to refer to a template specialization without an empty
/// template parameter declaration, e.g.
/// friend class A<T>::B<unsigned>;
/// We permit this as a special case; if there are any template
/// parameters present at all, require proper matching, i.e.
/// template <> template \<class T> friend class A<int>::B;
Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
MultiTemplateParamsArg TemplateParams,
SourceLocation EllipsisLoc);
NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParams);
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
/// the well-formedness of the constructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and set the invalid bit to true. In any case, the type
/// will be updated to reflect a well-formed type for the constructor and
/// returned.
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
StorageClass &SC);
/// CheckConstructor - Checks a fully-formed constructor for
/// well-formedness, issuing any diagnostics required. Returns true if
/// the constructor declarator is invalid.
void CheckConstructor(CXXConstructorDecl *Constructor);
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
/// the well-formednes of the destructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and set the declarator to invalid. Even if this happens,
/// will be updated to reflect a well-formed type for the destructor and
/// returned.
QualType CheckDestructorDeclarator(Declarator &D, QualType R,
StorageClass &SC);
/// CheckDestructor - Checks a fully-formed destructor definition for
/// well-formedness, issuing any diagnostics required. Returns true
/// on error.
bool CheckDestructor(CXXDestructorDecl *Destructor);
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
/// well-formednes of the conversion function declarator @p D with
/// type @p R. If there are any errors in the declarator, this routine
/// will emit diagnostics and return true. Otherwise, it will return
/// false. Either way, the type @p R will be updated to reflect a
/// well-formed type for the conversion operator.
void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass &SC);
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
/// the declaration of the given C++ conversion function. This routine
/// is responsible for recording the conversion function in the C++
/// class, if possible.
Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
/// Check the validity of a declarator that we parsed for a deduction-guide.
/// These aren't actually declarators in the grammar, so we need to check that
/// the user didn't specify any pieces that are not part of the
/// deduction-guide grammar. Return true on invalid deduction-guide.
bool CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
StorageClass &SC);
void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
CXXSpecialMemberKind CSM,
SourceLocation DefaultLoc);
void CheckDelayedMemberExceptionSpecs();
/// Kinds of defaulted comparison operator functions.
enum class DefaultedComparisonKind : unsigned char {
/// This is not a defaultable comparison operator.
None,
/// This is an operator== that should be implemented as a series of
/// subobject comparisons.
Equal,
/// This is an operator<=> that should be implemented as a series of
/// subobject comparisons.
ThreeWay,
/// This is an operator!= that should be implemented as a rewrite in terms
/// of a == comparison.
NotEqual,
/// This is an <, <=, >, or >= that should be implemented as a rewrite in
/// terms of a <=> comparison.
Relational,
};
bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
DefaultedComparisonKind DCK);
void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
FunctionDecl *Spaceship);
void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
DefaultedComparisonKind DCK);
void CheckExplicitObjectMemberFunction(Declarator &D, DeclarationName Name,
QualType R, bool IsLambda,
DeclContext *DC = nullptr);
void CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D,
DeclarationName Name, QualType R);
void CheckExplicitObjectLambda(Declarator &D);
//===--------------------------------------------------------------------===//
// C++ Derived Classes
//
/// Check the validity of a C++ base class specifier.
///
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
/// and returns NULL otherwise.
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
SourceRange SpecifierRange, bool Virtual,
AccessSpecifier Access,
TypeSourceInfo *TInfo,
SourceLocation EllipsisLoc);
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
/// one entry in the base class list of a class specifier, for
/// example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
const ParsedAttributesView &Attrs, bool Virtual,
AccessSpecifier Access, ParsedType basetype,
SourceLocation BaseLoc,
SourceLocation EllipsisLoc);
/// Performs the actual work of attaching the given base class
/// specifiers to a C++ class.
bool AttachBaseSpecifiers(CXXRecordDecl *Class,
MutableArrayRef<CXXBaseSpecifier *> Bases);
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
/// class, after checking whether there are any duplicate base
/// classes.
void ActOnBaseSpecifiers(Decl *ClassDecl,
MutableArrayRef<CXXBaseSpecifier *> Bases);
/// Determine whether the type \p Derived is a C++ class that is
/// derived from the type \p Base.
bool IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived,
CXXRecordDecl *Base, CXXBasePaths &Paths);
bool IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived,
CXXRecordDecl *Base);
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
CXXBasePaths &Paths);
// FIXME: I don't like this name.
void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range,
CXXCastPath *BasePath = nullptr,
bool IgnoreAccess = false);
/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
/// conversion (where Derived and Base are class types) is
/// well-formed, meaning that the conversion is unambiguous (and
/// that all of the base classes are accessible). Returns true
/// and emits a diagnostic if the code is ill-formed, returns false
/// otherwise. Loc is the location where this routine should point to
/// if there is an error, and Range is the source range to highlight
/// if there is an error.
///
/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
/// diagnostic for the respective type of error will be suppressed, but the
/// check for ill-formed code will still be performed.
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
unsigned AmbiguousBaseConvID,
SourceLocation Loc, SourceRange Range,
DeclarationName Name, CXXCastPath *BasePath,
bool IgnoreAccess = false);
/// Builds a string representing ambiguous paths from a
/// specific derived class to different subobjects of the same base
/// class.
///
/// This function builds a string that can be used in error messages
/// to show the different paths that one can take through the
/// inheritance hierarchy to go from the derived class to different
/// subobjects of a base class. The result looks something like this:
/// @code
/// struct D -> struct B -> struct A
/// struct D -> struct C -> struct A
/// @endcode
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
bool CheckOverridingFunctionAttributes(CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionReturnType - Checks whether the return types are
/// covariant, according to C++ [class.virtual]p5.
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
// Check that the overriding method has no explicit object parameter.
bool CheckExplicitObjectOverride(CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// Mark the given method pure.
///
/// \param Method the method to be marked pure.
///
/// \param InitRange the source range that covers the "0" initializer.
bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
/// CheckOverrideControl - Check C++11 override control semantics.
void CheckOverrideControl(NamedDecl *D);
/// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
/// not used in the declaration of an overriding method.
void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
/// function overrides a virtual member function marked 'final', according to
/// C++11 [class.virtual]p4.
bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
enum AbstractDiagSelID {
AbstractNone = -1,
AbstractReturnType,
AbstractParamType,
AbstractVariableType,
AbstractFieldType,
AbstractIvarType,
AbstractSynthesizedIvarType,
AbstractArrayType
};
struct TypeDiagnoser;
bool isAbstractType(SourceLocation Loc, QualType T);
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
template <typename... Ts>
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireNonAbstractType(Loc, T, Diagnoser);
}
void DiagnoseAbstractType(const CXXRecordDecl *RD);
//===--------------------------------------------------------------------===//
// C++ Overloaded Operators [C++ 13.5]
//
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
/// of this overloaded operator is well-formed. If so, returns false;
/// otherwise, emits appropriate diagnostics and returns true.
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
/// CheckLiteralOperatorDeclaration - Check whether the declaration
/// of this literal operator function is well-formed. If so, returns
/// false; otherwise, emits appropriate diagnostics and returns true.
bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
/// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
/// found in an explicit(bool) specifier.
ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
/// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
/// Returns true if the explicit specifier is now resolved.
bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
// Emitting members of dllexported classes is delayed until the class
// (including field initializers) is fully parsed.
SmallVector<CXXRecordDecl *, 4> DelayedDllExportClasses;
SmallVector<CXXMethodDecl *, 4> DelayedDllExportMemberFunctions;
/// Merge the exception specifications of two variable declarations.
///
/// This is called when there's a redeclaration of a VarDecl. The function
/// checks if the redeclaration might have an exception specification and
/// validates compatibility and merges the specs if necessary.
void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
/// MergeCXXFunctionDecl - Merge two declarations of the same C++
/// function, once we already know that they have the same
/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
/// error, false otherwise.
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
/// Helpers for dealing with blocks and functions.
void CheckCXXDefaultArguments(FunctionDecl *FD);
/// CheckExtraCXXDefaultArguments - Check for any extra default
/// arguments in the declarator, which is not a function declaration
/// or definition and therefore is not permitted to have default
/// arguments. This routine should be invoked for every declarator
/// that is not a function declaration or definition.
void CheckExtraCXXDefaultArguments(Declarator &D);
CXXSpecialMemberKind getSpecialMember(const CXXMethodDecl *MD) {
return getDefaultedFunctionKind(MD).asSpecialMember();
}
/// Perform semantic analysis for the variable declaration that
/// occurs within a C++ catch clause, returning the newly-created
/// variable.
VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
SourceLocation StartLoc,
SourceLocation IdLoc,
const IdentifierInfo *Id);
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
/// handler.
Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
/// Handle a friend tag declaration where the scope specifier was
/// templated.
DeclResult ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
unsigned TagSpec, SourceLocation TagLoc,
CXXScopeSpec &SS, IdentifierInfo *Name,
SourceLocation NameLoc,
SourceLocation EllipsisLoc,
const ParsedAttributesView &Attr,
MultiTemplateParamsArg TempParamLists);
MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
SourceLocation DeclStart, Declarator &D,
Expr *BitfieldWidth,
InClassInitStyle InitStyle,
AccessSpecifier AS,
const ParsedAttr &MSPropertyAttr);
/// Diagnose why the specified class does not have a trivial special member of
/// the given kind.
void DiagnoseNontrivial(const CXXRecordDecl *Record,
CXXSpecialMemberKind CSM);
enum TrivialABIHandling {
/// The triviality of a method unaffected by "trivial_abi".
TAH_IgnoreTrivialABI,
/// The triviality of a method affected by "trivial_abi".
TAH_ConsiderTrivialABI
};
/// Determine whether a defaulted or deleted special member function is
/// trivial, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
bool Diagnose = false);
/// For a defaulted function, the kind of defaulted function that it is.
class DefaultedFunctionKind {
LLVM_PREFERRED_TYPE(CXXSpecialMemberKind)
unsigned SpecialMember : 8;
unsigned Comparison : 8;
public:
DefaultedFunctionKind()
: SpecialMember(llvm::to_underlying(CXXSpecialMemberKind::Invalid)),
Comparison(llvm::to_underlying(DefaultedComparisonKind::None)) {}
DefaultedFunctionKind(CXXSpecialMemberKind CSM)
: SpecialMember(llvm::to_underlying(CSM)),
Comparison(llvm::to_underlying(DefaultedComparisonKind::None)) {}
DefaultedFunctionKind(DefaultedComparisonKind Comp)
: SpecialMember(llvm::to_underlying(CXXSpecialMemberKind::Invalid)),
Comparison(llvm::to_underlying(Comp)) {}
bool isSpecialMember() const {
return static_cast<CXXSpecialMemberKind>(SpecialMember) !=
CXXSpecialMemberKind::Invalid;
}
bool isComparison() const {
return static_cast<DefaultedComparisonKind>(Comparison) !=
DefaultedComparisonKind::None;
}
explicit operator bool() const {
return isSpecialMember() || isComparison();
}
CXXSpecialMemberKind asSpecialMember() const {
return static_cast<CXXSpecialMemberKind>(SpecialMember);
}
DefaultedComparisonKind asComparison() const {
return static_cast<DefaultedComparisonKind>(Comparison);
}
/// Get the index of this function kind for use in diagnostics.
unsigned getDiagnosticIndex() const {
static_assert(llvm::to_underlying(CXXSpecialMemberKind::Invalid) >
llvm::to_underlying(CXXSpecialMemberKind::Destructor),
"invalid should have highest index");
static_assert((unsigned)DefaultedComparisonKind::None == 0,
"none should be equal to zero");
return SpecialMember + Comparison;
}
};
/// Determine the kind of defaulting that would be done for a given function.
///
/// If the function is both a default constructor and a copy / move
/// constructor (due to having a default argument for the first parameter),
/// this picks CXXSpecialMemberKind::DefaultConstructor.
///
/// FIXME: Check that case is properly handled by all callers.
DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
/// Handle a C++11 empty-declaration and attribute-declaration.
Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
SourceLocation SemiLoc);
enum class CheckConstexprKind {
/// Diagnose issues that are non-constant or that are extensions.
Diagnose,
/// Identify whether this function satisfies the formal rules for constexpr
/// functions in the current lanugage mode (with no extensions).
CheckValid
};
// Check whether a function declaration satisfies the requirements of a
// constexpr function definition or a constexpr constructor definition. If so,
// return true. If not, produce appropriate diagnostics (unless asked not to
// by Kind) and return false.
//
// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
CheckConstexprKind Kind);
/// Diagnose methods which overload virtual methods in a base class
/// without overriding any.
void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
/// Check if a method overloads virtual methods in a base class without
/// overriding any.
void
FindHiddenVirtualMethods(CXXMethodDecl *MD,
SmallVectorImpl<CXXMethodDecl *> &OverloadedMethods);
void
NoteHiddenVirtualMethods(CXXMethodDecl *MD,
SmallVectorImpl<CXXMethodDecl *> &OverloadedMethods);
/// ActOnParamDefaultArgument - Check whether the default argument
/// provided for a function parameter is well-formed. If so, attach it
/// to the parameter declaration.
void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
Expr *defarg);
/// ActOnParamUnparsedDefaultArgument - We've seen a default
/// argument for a function parameter, but we can't parse it yet
/// because we're inside a class definition. Note that this default
/// argument will be parsed later.
void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
SourceLocation ArgLoc);
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
/// the default argument for the parameter param failed.
void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc,
Expr *DefaultArg);
ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
SourceLocation EqualLoc);
void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
SourceLocation EqualLoc);
void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc,
StringLiteral *Message = nullptr);
void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
void SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind,
StringLiteral *DeletedMessage = nullptr);
void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
NamedDecl *
ActOnDecompositionDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParamLists);
void DiagPlaceholderVariableDefinition(SourceLocation Loc);
bool DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc,
RecordDecl *ClassDecl,
const IdentifierInfo *Name);
std::optional<unsigned int> GetDecompositionElementCount(QualType DecompType,
SourceLocation Loc);
void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
/// Stack containing information needed when in C++2a an 'auto' is encountered
/// in a function declaration parameter type specifier in order to invent a
/// corresponding template parameter in the enclosing abbreviated function
/// template. This information is also present in LambdaScopeInfo, stored in
/// the FunctionScopes stack.
SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
std::unique_ptr<CXXFieldCollector> FieldCollector;
typedef llvm::SmallSetVector<const NamedDecl *, 16> NamedDeclSetType;
/// Set containing all declared private fields that are not used.
NamedDeclSetType UnusedPrivateFields;
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 8> RecordDeclSetTy;
/// PureVirtualClassDiagSet - a set of class declarations which we have
/// emitted a list of pure virtual functions. Used to prevent emitting the
/// same list more than once.
std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
DelegatingCtorDeclsType;
/// All the delegating constructors seen so far in the file, used for
/// cycle detection at the end of the TU.
DelegatingCtorDeclsType DelegatingCtorDecls;
/// The C++ "std" namespace, where the standard library resides.
LazyDeclPtr StdNamespace;
/// The C++ "std::initializer_list" template, which is defined in
/// \<initializer_list>.
ClassTemplateDecl *StdInitializerList;
// Contains the locations of the beginning of unparsed default
// argument locations.
llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
/// UndefinedInternals - all the used, undefined objects which require a
/// definition in this translation unit.
llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMemberKind>
SpecialMemberDecl;
/// The C++ special members which we are currently in the process of
/// declaring. If this process recursively triggers the declaration of the
/// same special member, we should act as if it is not yet declared.
llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
typedef ProcessingContextState ParsingClassState;
ParsingClassState PushParsingClass() {
ParsingClassDepth++;
return DelayedDiagnostics.pushUndelayed();
}
void PopParsingClass(ParsingClassState state) {
ParsingClassDepth--;
DelayedDiagnostics.popUndelayed(state);
}
ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
CXXScopeSpec &SS,
ParsedType TemplateTypeTy,
IdentifierInfo *MemberOrBase);
private:
void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
QualType ResultTy,
ArrayRef<QualType> Args);
// A cache representing if we've fully checked the various comparison category
// types stored in ASTContext. The bit-index corresponds to the integer value
// of a ComparisonCategoryType enumerator.
llvm::SmallBitVector FullyCheckedComparisonCategories;
/// Check if there is a field shadowing.
void CheckShadowInheritedFields(const SourceLocation &Loc,
DeclarationName FieldName,
const CXXRecordDecl *RD,
bool DeclIsField = true);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Exception Specifications
/// Implementations are in SemaExceptionSpec.cpp
///@{
public:
/// All the overriding functions seen during a class definition
/// that had their exception spec checks delayed, plus the overridden
/// function.
SmallVector<std::pair<const CXXMethodDecl *, const CXXMethodDecl *>, 2>
DelayedOverridingExceptionSpecChecks;
/// All the function redeclarations seen during a class definition that had
/// their exception spec checks delayed, plus the prior declaration they
/// should be checked against. Except during error recovery, the new decl
/// should always be a friend declaration, as that's the only valid way to
/// redeclare a special member before its class is complete.
SmallVector<std::pair<FunctionDecl *, FunctionDecl *>, 2>
DelayedEquivalentExceptionSpecChecks;
/// Determine if we're in a case where we need to (incorrectly) eagerly
/// parse an exception specification to work around a libstdc++ bug.
bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
/// Check the given noexcept-specifier, convert its expression, and compute
/// the appropriate ExceptionSpecificationType.
ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
ExceptionSpecificationType &EST);
CanThrowResult canThrow(const Stmt *E);
/// Determine whether the callee of a particular function call can throw.
/// E, D and Loc are all optional.
static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
SourceLocation Loc = SourceLocation());
const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
const FunctionProtoType *FPT);
void UpdateExceptionSpec(FunctionDecl *FD,
const FunctionProtoType::ExceptionSpecInfo &ESI);
/// CheckSpecifiedExceptionType - Check if the given type is valid in an
/// exception specification. Incomplete types, or pointers to incomplete types
/// other than void are not allowed.
///
/// \param[in,out] T The exception type. This will be decayed to a pointer
/// type
/// when the input is an array or a function type.
bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
/// CheckDistantExceptionSpec - Check if the given type is a pointer or
/// pointer to member to a function with an exception specification. This
/// means that it is invalid to add another level of indirection.
bool CheckDistantExceptionSpec(QualType T);
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
/// exception specifications. Exception specifications are equivalent if
/// they allow exactly the same set of exception types. It does not matter how
/// that is achieved. See C++ [except.spec]p2.
bool CheckEquivalentExceptionSpec(const FunctionProtoType *Old,
SourceLocation OldLoc,
const FunctionProtoType *New,
SourceLocation NewLoc);
bool CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
const PartialDiagnostic &NoteID,
const FunctionProtoType *Old,
SourceLocation OldLoc,
const FunctionProtoType *New,
SourceLocation NewLoc);
bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
/// CheckExceptionSpecSubset - Check whether the second function type's
/// exception specification is a subset (or equivalent) of the first function
/// type. This is used by override and pointer assignment checks.
bool CheckExceptionSpecSubset(
const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID,
const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID,
const FunctionProtoType *Superset, bool SkipSupersetFirstParameter,
SourceLocation SuperLoc, const FunctionProtoType *Subset,
bool SkipSubsetFirstParameter, SourceLocation SubLoc);
/// CheckParamExceptionSpec - Check if the parameter and return types of the
/// two functions have equivalent exception specs. This is part of the
/// assignment and override compatibility check. We do not check the
/// parameters of parameter function pointers recursively, as no sane
/// programmer would even be able to write such a function type.
bool CheckParamExceptionSpec(
const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID,
const FunctionProtoType *Target, bool SkipTargetFirstParameter,
SourceLocation TargetLoc, const FunctionProtoType *Source,
bool SkipSourceFirstParameter, SourceLocation SourceLoc);
bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
/// spec is a subset of base spec.
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Expressions
/// Implementations are in SemaExpr.cpp
///@{
public:
/// Describes how the expressions currently being parsed are
/// evaluated at run-time, if at all.
enum class ExpressionEvaluationContext {
/// The current expression and its subexpressions occur within an
/// unevaluated operand (C++11 [expr]p7), such as the subexpression of
/// \c sizeof, where the type of the expression may be significant but
/// no code will be generated to evaluate the value of the expression at
/// run time.
Unevaluated,
/// The current expression occurs within a braced-init-list within
/// an unevaluated operand. This is mostly like a regular unevaluated
/// context, except that we still instantiate constexpr functions that are
/// referenced here so that we can perform narrowing checks correctly.
UnevaluatedList,
/// The current expression occurs within a discarded statement.
/// This behaves largely similarly to an unevaluated operand in preventing
/// definitions from being required, but not in other ways.
DiscardedStatement,
/// The current expression occurs within an unevaluated
/// operand that unconditionally permits abstract references to
/// fields, such as a SIZE operator in MS-style inline assembly.
UnevaluatedAbstract,
/// The current context is "potentially evaluated" in C++11 terms,
/// but the expression is evaluated at compile-time (like the values of
/// cases in a switch statement).
ConstantEvaluated,
/// In addition of being constant evaluated, the current expression
/// occurs in an immediate function context - either a consteval function
/// or a consteval if statement.
ImmediateFunctionContext,
/// The current expression is potentially evaluated at run time,
/// which means that code may be generated to evaluate the value of the
/// expression at run time.
PotentiallyEvaluated,
/// The current expression is potentially evaluated, but any
/// declarations referenced inside that expression are only used if
/// in fact the current expression is used.
///
/// This value is used when parsing default function arguments, for which
/// we would like to provide diagnostics (e.g., passing non-POD arguments
/// through varargs) but do not want to mark declarations as "referenced"
/// until the default argument is used.
PotentiallyEvaluatedIfUsed
};
/// Store a set of either DeclRefExprs or MemberExprs that contain a reference
/// to a variable (constant) that may or may not be odr-used in this Expr, and
/// we won't know until all lvalue-to-rvalue and discarded value conversions
/// have been applied to all subexpressions of the enclosing full expression.
/// This is cleared at the end of each full expression.
using MaybeODRUseExprSet = llvm::SmallSetVector<Expr *, 4>;
MaybeODRUseExprSet MaybeODRUseExprs;
using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
/// Data structure used to record current or nested
/// expression evaluation contexts.
struct ExpressionEvaluationContextRecord {
/// The expression evaluation context.
ExpressionEvaluationContext Context;
/// Whether the enclosing context needed a cleanup.
CleanupInfo ParentCleanup;
/// The number of active cleanup objects when we entered
/// this expression evaluation context.
unsigned NumCleanupObjects;
/// The number of typos encountered during this expression evaluation
/// context (i.e. the number of TypoExprs created).
unsigned NumTypos;
MaybeODRUseExprSet SavedMaybeODRUseExprs;
/// The lambdas that are present within this context, if it
/// is indeed an unevaluated context.
SmallVector<LambdaExpr *, 2> Lambdas;
/// The declaration that provides context for lambda expressions
/// and block literals if the normal declaration context does not
/// suffice, e.g., in a default function argument.
Decl *ManglingContextDecl;
/// If we are processing a decltype type, a set of call expressions
/// for which we have deferred checking the completeness of the return type.
SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
/// If we are processing a decltype type, a set of temporary binding
/// expressions for which we have deferred checking the destructor.
SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
/// Expressions appearing as the LHS of a volatile assignment in this
/// context. We produce a warning for these when popping the context if
/// they are not discarded-value expressions nor unevaluated operands.
SmallVector<Expr *, 2> VolatileAssignmentLHSs;
/// Set of candidates for starting an immediate invocation.
llvm::SmallVector<ImmediateInvocationCandidate, 4>
ImmediateInvocationCandidates;
/// Set of DeclRefExprs referencing a consteval function when used in a
/// context not already known to be immediately invoked.
llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
/// P2718R0 - Lifetime extension in range-based for loops.
/// MaterializeTemporaryExprs in for-range-init expressions which need to
/// extend lifetime. Add MaterializeTemporaryExpr* if the value of
/// InLifetimeExtendingContext is true.
SmallVector<MaterializeTemporaryExpr *, 8> ForRangeLifetimeExtendTemps;
/// \brief Describes whether we are in an expression constext which we have
/// to handle differently.
enum ExpressionKind {
EK_Decltype,
EK_TemplateArgument,
EK_AttrArgument,
EK_Other
} ExprContext;
// A context can be nested in both a discarded statement context and
// an immediate function context, so they need to be tracked independently.
bool InDiscardedStatement;
bool InImmediateFunctionContext;
bool InImmediateEscalatingFunctionContext;
bool IsCurrentlyCheckingDefaultArgumentOrInitializer = false;
// We are in a constant context, but we also allow
// non constant expressions, for example for array bounds (which may be
// VLAs).
bool InConditionallyConstantEvaluateContext = false;
/// Whether we are currently in a context in which all temporaries must be
/// lifetime-extended, even if they're not bound to a reference (for
/// example, in a for-range initializer).
bool InLifetimeExtendingContext = false;
/// Whether we should rebuild CXXDefaultArgExpr and CXXDefaultInitExpr.
bool RebuildDefaultArgOrDefaultInit = false;
// When evaluating immediate functions in the initializer of a default
// argument or default member initializer, this is the declaration whose
// default initializer is being evaluated and the location of the call
// or constructor definition.
struct InitializationContext {
InitializationContext(SourceLocation Loc, ValueDecl *Decl,
DeclContext *Context)
: Loc(Loc), Decl(Decl), Context(Context) {
assert(Decl && Context && "invalid initialization context");
}
SourceLocation Loc;
ValueDecl *Decl = nullptr;
DeclContext *Context = nullptr;
};
std::optional<InitializationContext> DelayedDefaultInitializationContext;
ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
unsigned NumCleanupObjects,
CleanupInfo ParentCleanup,
Decl *ManglingContextDecl,
ExpressionKind ExprContext)
: Context(Context), ParentCleanup(ParentCleanup),
NumCleanupObjects(NumCleanupObjects), NumTypos(0),
ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext),
InDiscardedStatement(false), InImmediateFunctionContext(false),
InImmediateEscalatingFunctionContext(false) {}
bool isUnevaluated() const {
return Context == ExpressionEvaluationContext::Unevaluated ||
Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
Context == ExpressionEvaluationContext::UnevaluatedList;
}
bool isPotentiallyEvaluated() const {
return Context == ExpressionEvaluationContext::PotentiallyEvaluated ||
Context ==
ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed ||
Context == ExpressionEvaluationContext::ConstantEvaluated;
}
bool isConstantEvaluated() const {
return Context == ExpressionEvaluationContext::ConstantEvaluated ||
Context == ExpressionEvaluationContext::ImmediateFunctionContext;
}
bool isImmediateFunctionContext() const {
return Context == ExpressionEvaluationContext::ImmediateFunctionContext ||
(Context == ExpressionEvaluationContext::DiscardedStatement &&
InImmediateFunctionContext) ||
// C++23 [expr.const]p14:
// An expression or conversion is in an immediate function
// context if it is potentially evaluated and either:
// * its innermost enclosing non-block scope is a function
// parameter scope of an immediate function, or
// * its enclosing statement is enclosed by the compound-
// statement of a consteval if statement.
(Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
InImmediateFunctionContext);
}
bool isDiscardedStatementContext() const {
return Context == ExpressionEvaluationContext::DiscardedStatement ||
(Context ==
ExpressionEvaluationContext::ImmediateFunctionContext &&
InDiscardedStatement);
}
};
const ExpressionEvaluationContextRecord &currentEvaluationContext() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
return ExprEvalContexts.back();
};
ExpressionEvaluationContextRecord &currentEvaluationContext() {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
return ExprEvalContexts.back();
};
ExpressionEvaluationContextRecord &parentEvaluationContext() {
assert(ExprEvalContexts.size() >= 2 &&
"Must be in an expression evaluation context");
return ExprEvalContexts[ExprEvalContexts.size() - 2];
};
const ExpressionEvaluationContextRecord &parentEvaluationContext() const {
return const_cast<Sema *>(this)->parentEvaluationContext();
};
bool isAttrContext() const {
return ExprEvalContexts.back().ExprContext ==
ExpressionEvaluationContextRecord::ExpressionKind::EK_AttrArgument;
}
/// Increment when we find a reference; decrement when we find an ignored
/// assignment. Ultimately the value is 0 if every reference is an ignored
/// assignment.
llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
/// Used to control the generation of ExprWithCleanups.
CleanupInfo Cleanup;
/// ExprCleanupObjects - This is the stack of objects requiring
/// cleanup that are created by the current full expression.
SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
/// Determine whether the use of this declaration is valid, without
/// emitting diagnostics.
bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
// A version of DiagnoseUseOfDecl that should be used if overload resolution
// has been used to find this declaration, which means we don't have to bother
// checking the trailing requires clause.
bool DiagnoseUseOfOverloadedDecl(NamedDecl *D, SourceLocation Loc) {
return DiagnoseUseOfDecl(
D, Loc, /*UnknownObjCClass=*/nullptr, /*ObjCPropertyAccess=*/false,
/*AvoidPartialAvailabilityChecks=*/false, /*ClassReceiver=*/nullptr,
/*SkipTrailingRequiresClause=*/true);
}
/// Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
bool ObjCPropertyAccess = false,
bool AvoidPartialAvailabilityChecks = false,
ObjCInterfaceDecl *ClassReciever = nullptr,
bool SkipTrailingRequiresClause = false);
/// Emit a note explaining that this function is deleted.
void NoteDeletedFunction(FunctionDecl *FD);
/// DiagnoseSentinelCalls - This routine checks whether a call or
/// message-send is to a declaration with the sentinel attribute, and
/// if so, it checks that the requirements of the sentinel are
/// satisfied.
void DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
ArrayRef<Expr *> Args);
void PushExpressionEvaluationContext(
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
ExpressionEvaluationContextRecord::ExpressionKind Type =
ExpressionEvaluationContextRecord::EK_Other);
enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
void PushExpressionEvaluationContext(
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
ExpressionEvaluationContextRecord::ExpressionKind Type =
ExpressionEvaluationContextRecord::EK_Other);
void PopExpressionEvaluationContext();
void DiscardCleanupsInEvaluationContext();
ExprResult TransformToPotentiallyEvaluated(Expr *E);
TypeSourceInfo *TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo);
ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
/// Check whether E, which is either a discarded-value expression or an
/// unevaluated operand, is a simple-assignment to a volatlie-qualified
/// lvalue, and if so, remove it from the list of volatile-qualified
/// assignments that we are going to warn are deprecated.
void CheckUnusedVolatileAssignment(Expr *E);
ExprResult ActOnConstantExpression(ExprResult Res);
// Functions for marking a declaration referenced. These functions also
// contain the relevant logic for marking if a reference to a function or
// variable is an odr-use (in the C++11 sense). There are separate variants
// for expressions referring to a decl; these exist because odr-use marking
// needs to be delayed for some constant variables when we build one of the
// named expressions.
//
// MightBeOdrUse indicates whether the use could possibly be an odr-use, and
// should usually be true. This only needs to be set to false if the lack of
// odr-use cannot be determined from the current context (for instance,
// because the name denotes a virtual function and was written without an
// explicit nested-name-specifier).
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
/// Mark a function referenced, and check whether it is odr-used
/// (C++ [basic.def.odr]p2, C99 6.9p3)
void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
bool MightBeOdrUse = true);
/// Mark a variable referenced, and check whether it is odr-used
/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
/// used directly for normal expressions referring to VarDecl.
void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
/// Perform reference-marking and odr-use handling for a DeclRefExpr.
///
/// Note, this may change the dependence of the DeclRefExpr, and so needs to
/// be handled with care if the DeclRefExpr is not newly-created.
void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
/// Perform reference-marking and odr-use handling for a MemberExpr.
void MarkMemberReferenced(MemberExpr *E);
/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
void MarkCaptureUsedInEnclosingContext(ValueDecl *Capture, SourceLocation Loc,
unsigned CapturingScopeIndex);
ExprResult CheckLValueToRValueConversionOperand(Expr *E);
void CleanupVarDeclMarking();
enum TryCaptureKind {
TryCapture_Implicit,
TryCapture_ExplicitByVal,
TryCapture_ExplicitByRef
};
/// Try to capture the given variable.
///
/// \param Var The variable to capture.
///
/// \param Loc The location at which the capture occurs.
///
/// \param Kind The kind of capture, which may be implicit (for either a
/// block or a lambda), or explicit by-value or by-reference (for a lambda).
///
/// \param EllipsisLoc The location of the ellipsis, if one is provided in
/// an explicit lambda capture.
///
/// \param BuildAndDiagnose Whether we are actually supposed to add the
/// captures or diagnose errors. If false, this routine merely check whether
/// the capture can occur without performing the capture itself or complaining
/// if the variable cannot be captured.
///
/// \param CaptureType Will be set to the type of the field used to capture
/// this variable in the innermost block or lambda. Only valid when the
/// variable can be captured.
///
/// \param DeclRefType Will be set to the type of a reference to the capture
/// from within the current scope. Only valid when the variable can be
/// captured.
///
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
/// This is useful when enclosing lambdas must speculatively capture
/// variables that may or may not be used in certain specializations of
/// a nested generic lambda.
///
/// \returns true if an error occurred (i.e., the variable cannot be
/// captured) and false if the capture succeeded.
bool tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
TryCaptureKind Kind, SourceLocation EllipsisLoc,
bool BuildAndDiagnose, QualType &CaptureType,
QualType &DeclRefType,
const unsigned *const FunctionScopeIndexToStopAt);
/// Try to capture the given variable.
bool tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
TryCaptureKind Kind = TryCapture_Implicit,
SourceLocation EllipsisLoc = SourceLocation());
/// Checks if the variable must be captured.
bool NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc);
/// Given a variable, determine the type that a reference to that
/// variable will have in the given scope.
QualType getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc);
/// Mark all of the declarations referenced within a particular AST node as
/// referenced. Used when template instantiation instantiates a non-dependent
/// type -- entities referenced by the type are now referenced.
void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
/// Mark any declarations that appear within this expression or any
/// potentially-evaluated subexpressions as "referenced".
///
/// \param SkipLocalVariables If true, don't mark local variables as
/// 'referenced'.
/// \param StopAt Subexpressions that we shouldn't recurse into.
void MarkDeclarationsReferencedInExpr(Expr *E,
bool SkipLocalVariables = false,
ArrayRef<const Expr *> StopAt = {});
/// Try to convert an expression \p E to type \p Ty. Returns the result of the
/// conversion.
ExprResult tryConvertExprToType(Expr *E, QualType Ty);
/// Conditionally issue a diagnostic based on the statements's reachability
/// analysis.
///
/// \param Stmts If Stmts is non-empty, delay reporting the diagnostic until
/// the function body is parsed, and then do a basic reachability analysis to
/// determine if the statement is reachable. If it is unreachable, the
/// diagnostic will not be emitted.
bool DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
const PartialDiagnostic &PD);
/// Conditionally issue a diagnostic based on the current
/// evaluation context.
///
/// \param Statement If Statement is non-null, delay reporting the
/// diagnostic until the function body is parsed, and then do a basic
/// reachability analysis to determine if the statement is reachable.
/// If it is unreachable, the diagnostic will not be emitted.
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
const PartialDiagnostic &PD);
/// Similar, but diagnostic is only produced if all the specified statements
/// are reachable.
bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
const PartialDiagnostic &PD);
// Primary Expressions.
SourceRange getExprRange(Expr *E) const;
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
SourceLocation TemplateKWLoc, UnqualifiedId &Id,
bool HasTrailingLParen, bool IsAddressOfOperand,
CorrectionCandidateCallback *CCC = nullptr,
bool IsInlineAsmIdentifier = false,
Token *KeywordReplacement = nullptr);
/// Decomposes the given name into a DeclarationNameInfo, its location, and
/// possibly a list of template arguments.
///
/// If this produces template arguments, it is permitted to call
/// DecomposeTemplateName.
///
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
void DecomposeUnqualifiedId(const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs);
/// Diagnose a lookup that found results in an enclosing class during error
/// recovery. This usually indicates that the results were found in a
/// dependent base class that could not be searched as part of a template
/// definition. Always issues a diagnostic (though this may be only a warning
/// in MS compatibility mode).
///
/// Return \c true if the error is unrecoverable, or \c false if the caller
/// should attempt to recover using these lookup results.
bool DiagnoseDependentMemberLookup(const LookupResult &R);
/// Diagnose an empty lookup.
///
/// \return false if new lookup candidates were found
bool
DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CorrectionCandidateCallback &CCC,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
ArrayRef<Expr *> Args = {},
DeclContext *LookupCtx = nullptr,
TypoExpr **Out = nullptr);
/// If \p D cannot be odr-used in the current expression evaluation context,
/// return a reason explaining why. Otherwise, return NOUR_None.
NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
SourceLocation Loc,
const CXXScopeSpec *SS = nullptr);
DeclRefExpr *
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS = nullptr,
NamedDecl *FoundD = nullptr,
SourceLocation TemplateKWLoc = SourceLocation(),
const TemplateArgumentListInfo *TemplateArgs = nullptr);
/// BuildDeclRefExpr - Build an expression that references a
/// declaration that does not require a closure capture.
DeclRefExpr *
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
NestedNameSpecifierLoc NNS, NamedDecl *FoundD = nullptr,
SourceLocation TemplateKWLoc = SourceLocation(),
const TemplateArgumentListInfo *TemplateArgs = nullptr);
bool UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R,
bool HasTrailingLParen);
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
/// declaration name, generally during template instantiation.
/// There's a large number of things which don't need to be done along
/// this path.
ExprResult BuildQualifiedDeclarationNameExpr(
CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI = nullptr);
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R,
bool NeedsADL,
bool AcceptInvalidDecl = false);
/// Complete semantic analysis for a reference to the given declaration.
ExprResult BuildDeclarationNameExpr(
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
bool AcceptInvalidDecl = false);
// ExpandFunctionLocalPredefinedMacros - Returns a new vector of Tokens,
// where Tokens representing function local predefined macros (such as
// __FUNCTION__) are replaced (expanded) with string-literal Tokens.
std::vector<Token> ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks);
ExprResult BuildPredefinedExpr(SourceLocation Loc, PredefinedIdentKind IK);
ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
ExprResult ActOnIntegerConstant(SourceLocation Loc, int64_t Val);
bool CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero);
ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
ExprResult ActOnCharacterConstant(const Token &Tok,
Scope *UDLScope = nullptr);
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R,
MultiExprArg Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle
/// string concatenation ([C99 5.1.1.2, translation phase #6]), so it may come
/// from multiple tokens. However, the common case is that StringToks points
/// to one string.
ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
Scope *UDLScope = nullptr);
ExprResult ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks);
/// ControllingExprOrType is either an opaque pointer coming out of a
/// ParsedType or an Expr *. FIXME: it'd be better to split this interface
/// into two so we don't take a void *, but that's awkward because one of
/// the operands is either a ParsedType or an Expr *, which doesn't lend
/// itself to generic code very well.
ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool PredicateIsExpr,
void *ControllingExprOrType,
ArrayRef<ParsedType> ArgTypes,
ArrayRef<Expr *> ArgExprs);
/// ControllingExprOrType is either a TypeSourceInfo * or an Expr *. FIXME:
/// it'd be better to split this interface into two so we don't take a
/// void *, but see the FIXME on ActOnGenericSelectionExpr as to why that
/// isn't a trivial change.
ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool PredicateIsExpr,
void *ControllingExprOrType,
ArrayRef<TypeSourceInfo *> Types,
ArrayRef<Expr *> Exprs);
// Binary/Unary Operators. 'Tok' is the token for the operator.
ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
Expr *InputExpr, bool IsAfterAmp = false);
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc,
Expr *Input, bool IsAfterAmp = false);
/// Unary Operators. 'Tok' is the token for the operator.
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
Expr *Input, bool IsAfterAmp = false);
/// Determine whether the given expression is a qualified member
/// access expression, of a form that could be turned into a pointer to member
/// with the address-of operator.
bool isQualifiedMemberAccess(Expr *E);
bool CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
const Expr *Op,
const CXXMethodDecl *MD);
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
/// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
/// _Alignas(type-name) .
/// [dcl.align] An alignment-specifier of the form
/// alignas(type-id) has the same effect as alignas(alignof(type-id)).
///
/// [N1570 6.7.5] _Alignas(type-name) is equivalent to
/// _Alignas(_Alignof(type-name)).
bool ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
SourceLocation OpLoc, SourceRange R);
bool CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
SourceLocation OpLoc, SourceRange R);
/// Build a sizeof or alignof expression given a type operand.
ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R);
/// Build a sizeof or alignof expression given an expression
/// operand.
ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind);
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
/// expr and the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
ExprResult ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
bool IsType, void *TyOrEx,
SourceRange ArgRange);
/// Check for operands with placeholder types and complain if found.
/// Returns ExprError() if there was an error and no recovery was possible.
ExprResult CheckPlaceholderExpr(Expr *E);
bool CheckVecStepExpr(Expr *E);
/// Check the constraints on expression operands to unary type expression
/// and type traits.
///
/// Completes any types necessary and validates the constraints on the operand
/// expression. The logic mostly mirrors the type-based overload, but may
/// modify the expression as it completes the type for that expression through
/// template instantiation, etc.
bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
/// Check the constraints on operands to unary expression and type
/// traits.
///
/// This will complete any types necessary, and validate the various
/// constraints on those operands.
///
/// The UsualUnaryConversions() function is *not* called by this routine.
/// C99 6.3.2.1p[2-4] all state:
/// Except when it is the operand of the sizeof operator ...
///
/// C++ [expr.sizeof]p4
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
/// standard conversions are not applied to the operand of sizeof.
///
/// This policy is followed for all of the unary trait expressions.
bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind,
StringRef KWName);
ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input);
ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
MultiExprArg ArgExprs,
SourceLocation RLoc);
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc);
ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
Expr *ColumnIdx,
SourceLocation RBLoc);
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl,
const FunctionProtoType *Proto,
ArrayRef<Expr *> Args, SourceLocation RParenLoc,
bool ExecConfig = false);
/// CheckStaticArrayArgument - If the given argument corresponds to a static
/// array parameter, check that it is non-null, and that if it is formed by
/// array-to-pointer decay, the underlying array is sufficiently large.
///
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of
/// the array type derivation, then for each call to the function, the value
/// of the corresponding actual argument shall provide access to the first
/// element of an array with at least as many elements as specified by the
/// size expression.
void CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param,
const Expr *ArgExpr);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig = nullptr);
/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig = nullptr,
bool IsExecConfig = false,
bool AllowRecovery = false);
/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
// with the specified CallArgs
Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
MultiExprArg CallArgs);
using ADLCallKind = CallExpr::ADLCallKind;
/// BuildResolvedCallExpr - Build a call to a resolved expression,
/// i.e. an expression not of \p OverloadTy. The expression should
/// unary-convert to an expression of function-pointer or
/// block-pointer type.
///
/// \param NDecl the declaration being called, if available
ExprResult
BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
Expr *Config = nullptr, bool IsExecConfig = false,
ADLCallKind UsesADL = ADLCallKind::NotADL);
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D,
ParsedType &Ty, SourceLocation RParenLoc,
Expr *CastExpr);
/// Prepares for a scalar cast, performing all the necessary stages
/// except the final cast and returning the kind required.
CastKind PrepareScalarCast(ExprResult &src, QualType destType);
/// Build an altivec or OpenCL literal.
ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *E,
TypeSourceInfo *TInfo);
/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
/// the ParenListExpr into a sequence of comma binary operators.
ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
SourceLocation RParenLoc, Expr *InitExpr);
ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *LiteralExpr);
ExprResult ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
SourceLocation RBraceLoc);
ExprResult BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
SourceLocation RBraceLoc);
/// Binary Operators. 'Tok' is the token for the operator.
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind,
Expr *LHSExpr, Expr *RHSExpr);
ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr);
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr);
void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
UnresolvedSetImpl &Functions);
/// Look for instances where it is likely the comma operator is confused with
/// another operator. There is an explicit list of acceptable expressions for
/// the left hand side of the comma operator, otherwise emit a warning.
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc, Expr *CondExpr,
Expr *LHSExpr, Expr *RHSExpr);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
LabelDecl *TheDecl);
void ActOnStartStmtExpr();
ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc);
ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc, unsigned TemplateDepth);
// Handle the final expression in a statement expression.
ExprResult ActOnStmtExprResult(ExprResult E);
void ActOnStmtExprError();
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
struct OffsetOfComponent {
SourceLocation LocStart, LocEnd;
bool isBrackets; // true if [expr], false if .ident
union {
IdentifierInfo *IdentInfo;
Expr *E;
} U;
};
/// __builtin_offsetof(type, a.b[123][456].c)
ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc);
ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType ParsedArgTy,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr,
Expr *LHSExpr, Expr *RHSExpr,
SourceLocation RPLoc);
// __builtin_va_arg(expr, type)
ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
SourceLocation RPLoc);
ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
TypeSourceInfo *TInfo, SourceLocation RPLoc);
// __builtin_LINE(), __builtin_FUNCTION(), __builtin_FUNCSIG(),
// __builtin_FILE(), __builtin_COLUMN(), __builtin_source_location()
ExprResult ActOnSourceLocExpr(SourceLocIdentKind Kind,
SourceLocation BuiltinLoc,
SourceLocation RPLoc);
// #embed
ExprResult ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
StringLiteral *BinaryData);
// Build a potentially resolved SourceLocExpr.
ExprResult BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
SourceLocation BuiltinLoc, SourceLocation RPLoc,
DeclContext *ParentContext);
// __null
ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
bool CheckCaseExpression(Expr *E);
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started.
void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
Scope *CurScope);
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
Scope *CurScope);
//===---------------------------- Clang Extensions ----------------------===//
/// ActOnConvertVectorExpr - create a new convert-vector expression from the
/// provided arguments.
///
/// __builtin_convertvector( value, dst type )
///
ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
//===---------------------------- OpenCL Features -----------------------===//
/// Parse a __builtin_astype expression.
///
/// __builtin_astype( value, dst type )
///
ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
/// Create a new AsTypeExpr node (bitcast) from the arguments.
ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
/// Attempts to produce a RecoveryExpr after some AST node cannot be created.
ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
ArrayRef<Expr *> SubExprs,
QualType T = QualType());
/// Cast a base object to a member's actual type.
///
/// There are two relevant checks:
///
/// C++ [class.access.base]p7:
///
/// If a class member access operator [...] is used to access a non-static
/// data member or non-static member function, the reference is ill-formed
/// if the left operand [...] cannot be implicitly converted to a pointer to
/// the naming class of the right operand.
///
/// C++ [expr.ref]p7:
///
/// If E2 is a non-static data member or a non-static member function, the
/// program is ill-formed if the class of which E2 is directly a member is
/// an ambiguous base (11.8) of the naming class (11.9.3) of E2.
///
/// Note that the latter check does not consider access; the access of the
/// "real" base class is checked as appropriate when checking the access of
/// the member name.
ExprResult PerformObjectMemberConversion(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member);
/// CheckCallReturnType - Checks that a call expression's return type is
/// complete. Returns true on failure. The location passed in is the location
/// that best represents the call.
bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD);
/// Emit a warning for all pending noderef expressions that we recorded.
void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
/// Instantiate or parse a C++ default argument expression as necessary.
/// Return true on error.
bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param, Expr *Init = nullptr,
bool SkipImmediateInvocations = true);
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
/// the default expr if needed.
ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param, Expr *Init = nullptr);
/// Wrap the expression in a ConstantExpr if it is a potential immediate
/// invocation.
ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
void MarkExpressionAsImmediateEscalating(Expr *E);
// Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
bool IsInvalidSMECallConversion(QualType FromType, QualType ToType);
/// Abstract base class used for diagnosing integer constant
/// expression violations.
class VerifyICEDiagnoser {
public:
bool Suppress;
VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) {}
virtual SemaDiagnosticBuilder
diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
SourceLocation Loc) = 0;
virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
virtual ~VerifyICEDiagnoser() {}
};
enum AllowFoldKind {
NoFold,
AllowFold,
};
/// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
/// and reports the appropriate diagnostics. Returns false on success.
/// Can optionally return the value of the expression.
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
VerifyICEDiagnoser &Diagnoser,
AllowFoldKind CanFold = NoFold);
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
unsigned DiagID,
AllowFoldKind CanFold = NoFold);
ExprResult VerifyIntegerConstantExpression(Expr *E,
llvm::APSInt *Result = nullptr,
AllowFoldKind CanFold = NoFold);
ExprResult VerifyIntegerConstantExpression(Expr *E,
AllowFoldKind CanFold = NoFold) {
return VerifyIntegerConstantExpression(E, nullptr, CanFold);
}
/// DiagnoseAssignmentAsCondition - Given that an expression is
/// being used as a boolean condition, warn if it's an assignment.
void DiagnoseAssignmentAsCondition(Expr *E);
/// Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
class FullExprArg {
public:
FullExprArg() : E(nullptr) {}
FullExprArg(Sema &actions) : E(nullptr) {}
ExprResult release() { return E; }
Expr *get() const { return E; }
Expr *operator->() { return E; }
private:
// FIXME: No need to make the entire Sema class a friend when it's just
// Sema::MakeFullExpr that needs access to the constructor below.
friend class Sema;
explicit FullExprArg(Expr *expr) : E(expr) {}
Expr *E;
};
FullExprArg MakeFullExpr(Expr *Arg) {
return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
}
FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
return FullExprArg(
ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
}
FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
ExprResult FE =
ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
/*DiscardedValue*/ true);
return FullExprArg(FE.get());
}
class ConditionResult {
Decl *ConditionVar;
FullExprArg Condition;
bool Invalid;
std::optional<bool> KnownValue;
friend class Sema;
ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
bool IsConstexpr)
: ConditionVar(ConditionVar), Condition(Condition), Invalid(false) {
if (IsConstexpr && Condition.get()) {
if (std::optional<llvm::APSInt> Val =
Condition.get()->getIntegerConstantExpr(S.Context)) {
KnownValue = !!(*Val);
}
}
}
explicit ConditionResult(bool Invalid)
: ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
KnownValue(std::nullopt) {}
public:
ConditionResult() : ConditionResult(false) {}
bool isInvalid() const { return Invalid; }
std::pair<VarDecl *, Expr *> get() const {
return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
Condition.get());
}
std::optional<bool> getKnownValue() const { return KnownValue; }
};
static ConditionResult ConditionError() { return ConditionResult(true); }
/// CheckBooleanCondition - Diagnose problems involving the use of
/// the given expression as a boolean condition (e.g. in an if
/// statement). Also performs the standard function and array
/// decays, possibly changing the input variable.
///
/// \param Loc - A location associated with the condition, e.g. the
/// 'if' keyword.
/// \return true iff there were any errors
ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
bool IsConstexpr = false);
enum class ConditionKind {
Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
Switch ///< An integral condition for a 'switch' statement.
};
ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr,
ConditionKind CK, bool MissingOK = false);
QualType CheckConditionalOperands( // C99 6.5.15
ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
ExprObjectKind &OK, SourceLocation QuestionLoc);
/// Emit a specialized diagnostic when one expression is a null pointer
/// constant and the other is not a pointer. Returns true if a diagnostic is
/// emitted.
bool DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
SourceLocation QuestionLoc);
/// type checking for vector binary operators.
QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign,
bool AllowBothBool, bool AllowBoolConversion,
bool AllowBoolOperation, bool ReportInvalid);
/// Return a signed ext_vector_type that is of identical size and number of
/// elements. For floating point vectors, return an integer type of identical
/// size and number of elements. In the non ext_vector_type case, search from
/// the largest type to the smallest type to avoid cases where long long ==
/// long, where long gets picked over long long.
QualType GetSignedVectorType(QualType V);
QualType GetSignedSizelessVectorType(QualType V);
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckSizelessVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc);
/// Context in which we're performing a usual arithmetic conversion.
enum ArithConvKind {
/// An arithmetic operation.
ACK_Arithmetic,
/// A bitwise operation.
ACK_BitwiseOp,
/// A comparison.
ACK_Comparison,
/// A conditional (?:) operator.
ACK_Conditional,
/// A compound assignment expression.
ACK_CompAssign,
};
// type checking for sizeless vector binary operators.
QualType CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign,
ArithConvKind OperationKind);
/// Type checking for matrix binary operators.
QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
bool IsCompAssign);
QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign);
/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from
/// the first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE
/// VLST) allowed?
///
/// This will also return false if the two given types do not make sense from
/// the perspective of SVE bitcasts.
bool isValidSveBitcast(QualType srcType, QualType destType);
/// Are the two types matrix types and do they have the same dimensions i.e.
/// do they have the same number of rows and the same number of columns?
bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
bool areVectorTypesSameSize(QualType srcType, QualType destType);
/// Are the two types lax-compatible vector types? That is, given
/// that one of them is a vector, do they have equal storage sizes,
/// where the storage size is the number of elements times the element
/// size?
///
/// This will also return false if either of the types is neither a
/// vector nor a real type.
bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
/// Is this a legal conversion between two types, one of which is
/// known to be a vector type?
bool isLaxVectorConversion(QualType srcType, QualType destType);
// This returns true if at least one of the types is an altivec vector.
bool anyAltivecTypes(QualType srcType, QualType destType);
// type checking C++ declaration initializers (C++ [dcl.init]).
/// Check a cast of an unknown-any type. We intentionally only
/// trigger this for C-style casts.
ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
Expr *CastExpr, CastKind &CastKind,
ExprValueKind &VK, CXXCastPath &Path);
/// Force an expression with unknown-type to an expression of the
/// given type.
ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
/// Type-check an expression that's being passed to an
/// __unknown_anytype parameter.
ExprResult checkUnknownAnyArg(SourceLocation callLoc, Expr *result,
QualType &paramType);
// CheckMatrixCast - Check type constraints for matrix casts.
// We allow casting between matrixes of the same dimensions i.e. when they
// have the same number of rows and column. Returns true if the cast is
// invalid.
bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
CastKind &Kind);
// CheckVectorCast - check type constraints for vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size.
// returns true if the cast is invalid
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind);
/// Prepare `SplattedExpr` for a vector splat operation, adding
/// implicit casts if necessary.
ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
// CheckExtVectorCast - check type constraints for extended vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size,
// or vectors and the element type of that vector.
// returns the cast expr
ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
CastKind &Kind);
QualType PreferredConditionType(ConditionKind K) const {
return K == ConditionKind::Switch ? Context.IntTy : Context.BoolTy;
}
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2), converts
// functions and arrays to their respective pointers (C99 6.3.2.1), and
// promotes floating-piont types according to the language semantics.
ExprResult UsualUnaryConversions(Expr *E);
// UsualUnaryFPConversions - promotes floating-point types according to the
// current language semantics.
ExprResult UsualUnaryFPConversions(Expr *E);
/// CallExprUnaryConversions - a special case of an unary conversion
/// performed on a function designator of a call expression.
ExprResult CallExprUnaryConversions(Expr *E);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
// DefaultFunctionArrayLvalueConversion - converts functions and
// arrays to their respective pointers and performs the
// lvalue-to-rvalue conversion.
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
bool Diagnose = true);
// DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
// the operand. This function is a no-op if the operand has a function type
// or an array type.
ExprResult DefaultLvalueConversion(Expr *E);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
ExprResult DefaultArgumentPromotion(Expr *E);
VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr *Fn);
// Used for determining in which context a type is allowed to be passed to a
// vararg function.
enum VarArgKind {
VAK_Valid,
VAK_ValidInCXX11,
VAK_Undefined,
VAK_MSVCUndefined,
VAK_Invalid
};
/// Determine the degree of POD-ness for an expression.
/// Incomplete types are considered POD, since this check can be performed
/// when we're in an unevaluated context.
VarArgKind isValidVarArgType(const QualType &Ty);
/// Check to see if the given expression is a valid argument to a variadic
/// function, issuing a diagnostic if not.
void checkVariadicArgument(const Expr *E, VariadicCallType CT);
/// GatherArgumentsForCall - Collector argument expressions for various
/// form of call prototypes.
bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstParam, ArrayRef<Expr *> Args,
SmallVectorImpl<Expr *> &AllArgs,
VariadicCallType CallType = VariadicDoesNotApply,
bool AllowExplicit = false,
bool IsListInitialization = false);
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will create a runtime trap if the resulting type is not a POD type.
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl);
// Check that the usual arithmetic conversions can be performed on this pair
// of expressions that might be of enumeration type.
void checkEnumArithmeticConversions(Expr *LHS, Expr *RHS, SourceLocation Loc,
Sema::ArithConvKind ACK);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, ArithConvKind ACK);
/// AssignConvertType - All of the 'assignment' semantic checks return this
/// enum to indicate whether the assignment was allowed. These checks are
/// done for simple assignments, as well as initialization, return from
/// function, argument passing, etc. The query is phrased in terms of a
/// source and destination type.
enum AssignConvertType {
/// Compatible - the types are compatible according to the standard.
Compatible,
/// PointerToInt - The assignment converts a pointer to an int, which we
/// accept as an extension.
PointerToInt,
/// IntToPointer - The assignment converts an int to a pointer, which we
/// accept as an extension.
IntToPointer,
/// FunctionVoidPointer - The assignment is between a function pointer and
/// void*, which the standard doesn't allow, but we accept as an extension.
FunctionVoidPointer,
/// IncompatiblePointer - The assignment is between two pointers types that
/// are not compatible, but we accept them as an extension.
IncompatiblePointer,
/// IncompatibleFunctionPointer - The assignment is between two function
/// pointers types that are not compatible, but we accept them as an
/// extension.
IncompatibleFunctionPointer,
/// IncompatibleFunctionPointerStrict - The assignment is between two
/// function pointer types that are not identical, but are compatible,
/// unless compiled with -fsanitize=cfi, in which case the type mismatch
/// may trip an indirect call runtime check.
IncompatibleFunctionPointerStrict,
/// IncompatiblePointerSign - The assignment is between two pointers types
/// which point to integers which have a different sign, but are otherwise
/// identical. This is a subset of the above, but broken out because it's by
/// far the most common case of incompatible pointers.
IncompatiblePointerSign,
/// CompatiblePointerDiscardsQualifiers - The assignment discards
/// c/v/r qualifiers, which we accept as an extension.
CompatiblePointerDiscardsQualifiers,
/// IncompatiblePointerDiscardsQualifiers - The assignment
/// discards qualifiers that we don't permit to be discarded,
/// like address spaces.
IncompatiblePointerDiscardsQualifiers,
/// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
/// changes address spaces in nested pointer types which is not allowed.
/// For instance, converting __private int ** to __generic int ** is
/// illegal even though __private could be converted to __generic.
IncompatibleNestedPointerAddressSpaceMismatch,
/// IncompatibleNestedPointerQualifiers - The assignment is between two
/// nested pointer types, and the qualifiers other than the first two
/// levels differ e.g. char ** -> const char **, but we accept them as an
/// extension.
IncompatibleNestedPointerQualifiers,
/// IncompatibleVectors - The assignment is between two vector types that
/// have the same size, which we accept as an extension.
IncompatibleVectors,
/// IntToBlockPointer - The assignment converts an int to a block
/// pointer. We disallow this.
IntToBlockPointer,
/// IncompatibleBlockPointer - The assignment is between two block
/// pointers types that are not compatible.
IncompatibleBlockPointer,
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
/// id type and something else (that is incompatible with it). For example,
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
IncompatibleObjCQualifiedId,
/// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
/// object with __weak qualifier.
IncompatibleObjCWeakRef,
/// Incompatible - We reject this conversion outright, it is invalid to
/// represent it in the AST.
Incompatible
};
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
/// assignment conversion type specified by ConvTy. This returns true if the
/// conversion was invalid or false if the conversion was accepted.
bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained = nullptr);
/// CheckAssignmentConstraints - Perform type checking for assignment,
/// argument passing, variable initialization, and function return values.
/// C99 6.5.16.
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
QualType LHSType,
QualType RHSType);
/// Check assignment constraints and optionally prepare for a conversion of
/// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
/// is true.
AssignConvertType CheckAssignmentConstraints(QualType LHSType,
ExprResult &RHS, CastKind &Kind,
bool ConvertRHS = true);
/// Check assignment constraints for an assignment of RHS to LHSType.
///
/// \param LHSType The destination type for the assignment.
/// \param RHS The source expression for the assignment.
/// \param Diagnose If \c true, diagnostics may be produced when checking
/// for assignability. If a diagnostic is produced, \p RHS will be
/// set to ExprError(). Note that this function may still return
/// without producing a diagnostic, even for an invalid assignment.
/// \param DiagnoseCFAudited If \c true, the target is a function parameter
/// in an audited Core Foundation API and does not need to be checked
/// for ARC retain issues.
/// \param ConvertRHS If \c true, \p RHS will be updated to model the
/// conversions necessary to perform the assignment. If \c false,
/// \p Diagnose must also be \c false.
AssignConvertType CheckSingleAssignmentConstraints(
QualType LHSType, ExprResult &RHS, bool Diagnose = true,
bool DiagnoseCFAudited = false, bool ConvertRHS = true);
// If the lhs type is a transparent union, check whether we
// can initialize the transparent union with the given expression.
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
ExprResult &RHS);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS);
/// Diagnose cases where a scalar was implicitly converted to a vector and
/// diagnose the underlying types. Otherwise, diagnose the error
/// as invalid vector logical operands for non-C++ cases.
QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS);
QualType CheckMultiplyDivideOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
bool IsDivide);
QualType CheckRemainderOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
bool IsCompAssign = false);
QualType CheckAdditionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, QualType *CompLHSTy = nullptr);
QualType CheckSubtractionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
QualType *CompLHSTy = nullptr);
QualType CheckShiftOperands( // C99 6.5.7
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, bool IsCompAssign = false);
void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
QualType CheckCompareOperands( // C99 6.5.8/9
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckLogicalOperands( // C99 6.5.[13,14]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType,
BinaryOperatorKind Opc);
/// To be used for checking whether the arguments being passed to
/// function exceeds the number of parameters expected for it.
static bool TooManyArguments(size_t NumParams, size_t NumArgs,
bool PartialOverloading = false) {
// We check whether we're just after a comma in code-completion.
if (NumArgs > 0 && PartialOverloading)
return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
return NumArgs > NumParams;
}
/// Whether the AST is currently being rebuilt to correct immediate
/// invocations. Immediate invocation candidates and references to consteval
/// functions aren't tracked when this is set.
bool RebuildingImmediateInvocation = false;
bool isAlwaysConstantEvaluatedContext() const {
const ExpressionEvaluationContextRecord &Ctx = currentEvaluationContext();
return (Ctx.isConstantEvaluated() || isConstantEvaluatedOverride) &&
!Ctx.InConditionallyConstantEvaluateContext;
}
/// Determines whether we are currently in a context that
/// is not evaluated as per C++ [expr] p5.
bool isUnevaluatedContext() const {
return currentEvaluationContext().isUnevaluated();
}
bool isImmediateFunctionContext() const {
return currentEvaluationContext().isImmediateFunctionContext();
}
bool isInLifetimeExtendingContext() const {
return currentEvaluationContext().InLifetimeExtendingContext;
}
bool needsRebuildOfDefaultArgOrInit() const {
return currentEvaluationContext().RebuildDefaultArgOrDefaultInit;
}
bool isCheckingDefaultArgumentOrInitializer() const {
const ExpressionEvaluationContextRecord &Ctx = currentEvaluationContext();
return (Ctx.Context ==
ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed) ||
Ctx.IsCurrentlyCheckingDefaultArgumentOrInitializer;
}
std::optional<ExpressionEvaluationContextRecord::InitializationContext>
InnermostDeclarationWithDelayedImmediateInvocations() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
for (const auto &Ctx : llvm::reverse(ExprEvalContexts)) {
if (Ctx.Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
Ctx.DelayedDefaultInitializationContext)
return Ctx.DelayedDefaultInitializationContext;
if (Ctx.isConstantEvaluated() || Ctx.isImmediateFunctionContext() ||
Ctx.isUnevaluated())
break;
}
return std::nullopt;
}
std::optional<ExpressionEvaluationContextRecord::InitializationContext>
OutermostDeclarationWithDelayedImmediateInvocations() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
std::optional<ExpressionEvaluationContextRecord::InitializationContext> Res;
for (auto &Ctx : llvm::reverse(ExprEvalContexts)) {
if (Ctx.Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
!Ctx.DelayedDefaultInitializationContext && Res)
break;
if (Ctx.isConstantEvaluated() || Ctx.isImmediateFunctionContext() ||
Ctx.isUnevaluated())
break;
Res = Ctx.DelayedDefaultInitializationContext;
}
return Res;
}
DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
return getDefaultedFunctionKind(FD).asComparison();
}
/// Returns a field in a CXXRecordDecl that has the same name as the decl \p
/// SelfAssigned when inside a CXXMethodDecl.
const FieldDecl *
getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned);
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
template <typename... Ts>
bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
}
template <typename... Ts>
bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
const Ts &...Args) {
SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
}
/// Abstract class used to diagnose incomplete types.
struct TypeDiagnoser {
TypeDiagnoser() {}
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
virtual ~TypeDiagnoser() {}
};
template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
protected:
unsigned DiagID;
std::tuple<const Ts &...> Args;
template <std::size_t... Is>
void emit(const SemaDiagnosticBuilder &DB,
std::index_sequence<Is...>) const {
// Apply all tuple elements to the builder in order.
bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
(void)Dummy;
}
public:
BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
: TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
assert(DiagID != 0 && "no diagnostic for type diagnoser");
}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
emit(DB, std::index_sequence_for<Ts...>());
DB << T;
}
};
/// A derivative of BoundTypeDiagnoser for which the diagnostic's type
/// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
/// For example, a diagnostic with no other parameters would generally have
/// the form "...%select{incomplete|sizeless}0 type %1...".
template <typename... Ts>
class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
public:
SizelessTypeDiagnoser(unsigned DiagID, const Ts &...Args)
: BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
this->emit(DB, std::index_sequence_for<Ts...>());
DB << T->isSizelessType() << T;
}
};
/// Check an argument list for placeholders that we won't try to
/// handle later.
bool CheckArgsForPlaceholders(MultiExprArg args);
/// The C++ "std::source_location::__impl" struct, defined in
/// \<source_location>.
RecordDecl *StdSourceLocationImplDecl;
/// A stack of expression evaluation contexts.
SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
// Set of failed immediate invocations to avoid double diagnosing.
llvm::SmallPtrSet<ConstantExpr *, 4> FailedImmediateInvocations;
/// List of SourceLocations where 'self' is implicitly retained inside a
/// block.
llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
ImplicitlyRetainedSelfLocs;
/// Do an explicit extend of the given block pointer if we're in ARC.
void maybeExtendBlockObject(ExprResult &E);
std::vector<std::pair<QualType, unsigned>> ExcessPrecisionNotSatisfied;
SourceLocation LocationOfExcessPrecisionNotSatisfied;
void DiagnosePrecisionLossInComplexDivision();
private:
static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
/// Methods for marking which expressions involve dereferencing a pointer
/// marked with the 'noderef' attribute. Expressions are checked bottom up as
/// they are parsed, meaning that a noderef pointer may not be accessed. For
/// example, in `&*p` where `p` is a noderef pointer, we will first parse the
/// `*p`, but need to check that `address of` is called on it. This requires
/// keeping a container of all pending expressions and checking if the address
/// of them are eventually taken.
void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
void CheckAddressOfNoDeref(const Expr *E);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Expressions
/// Implementations are in SemaExprCXX.cpp
///@{
public:
/// The C++ "std::bad_alloc" class, which is defined by the C++
/// standard library.
LazyDeclPtr StdBadAlloc;
/// The C++ "std::align_val_t" enum class, which is defined by the C++
/// standard library.
LazyDeclPtr StdAlignValT;
/// The C++ "type_info" declaration, which is defined in \<typeinfo>.
RecordDecl *CXXTypeInfoDecl;
/// A flag to remember whether the implicit forms of operator new and delete
/// have been declared.
bool GlobalNewDeleteDeclared;
/// Delete-expressions to be analyzed at the end of translation unit
///
/// This list contains class members, and locations of delete-expressions
/// that could not be proven as to whether they mismatch with new-expression
/// used in initializer of the field.
llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
/// Handle the result of the special case name lookup for inheriting
/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
/// constructor names in member using declarations, even if 'X' is not the
/// name of the corresponding type.
ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
SourceLocation NameLoc,
const IdentifierInfo &Name);
ParsedType getConstructorName(const IdentifierInfo &II,
SourceLocation NameLoc, Scope *S,
CXXScopeSpec &SS, bool EnteringContext);
ParsedType getDestructorName(const IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectType, bool EnteringContext);
ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
ParsedType ObjectType);
/// Build a C++ typeid expression with a type operand.
ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc,
TypeSourceInfo *Operand, SourceLocation RParenLoc);
/// Build a C++ typeid expression with an expression operand.
ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc,
Expr *Operand, SourceLocation RParenLoc);
/// ActOnCXXTypeid - Parse typeid( something ).
ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr,
SourceLocation RParenLoc);
/// Build a Microsoft __uuidof expression with a type operand.
ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc,
TypeSourceInfo *Operand, SourceLocation RParenLoc);
/// Build a Microsoft __uuidof expression with an expression operand.
ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc,
Expr *Operand, SourceLocation RParenLoc);
/// ActOnCXXUuidof - Parse __uuidof( something ).
ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr,
SourceLocation RParenLoc);
//// ActOnCXXThis - Parse 'this' pointer.
ExprResult ActOnCXXThis(SourceLocation Loc);
/// Check whether the type of 'this' is valid in the current context.
bool CheckCXXThisType(SourceLocation Loc, QualType Type);
/// Build a CXXThisExpr and mark it referenced in the current context.
Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
void MarkThisReferenced(CXXThisExpr *This);
/// Try to retrieve the type of the 'this' pointer.
///
/// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
QualType getCurrentThisType();
/// When non-NULL, the C++ 'this' expression is allowed despite the
/// current context not being a non-static member function. In such cases,
/// this provides the type used for 'this'.
QualType CXXThisTypeOverride;
/// RAII object used to temporarily allow the C++ 'this' expression
/// to be used, with the given qualifiers on the current class type.
class CXXThisScopeRAII {
Sema &S;
QualType OldCXXThisTypeOverride;
bool Enabled;
public:
/// Introduce a new scope where 'this' may be allowed (when enabled),
/// using the given declaration (which is either a class template or a
/// class) along with the given qualifiers.
/// along with the qualifiers placed on '*this'.
CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
bool Enabled = true);
~CXXThisScopeRAII();
};
/// Make sure the value of 'this' is actually available in the current
/// context, if it is a potentially evaluated context.
///
/// \param Loc The location at which the capture of 'this' occurs.
///
/// \param Explicit Whether 'this' is explicitly captured in a lambda
/// capture list.
///
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
/// This is useful when enclosing lambdas must speculatively capture
/// 'this' that may or may not be used in certain specializations of
/// a nested generic lambda (depending on whether the name resolves to
/// a non-static member function or a static function).
/// \return returns 'true' if failed, 'false' if success.
bool CheckCXXThisCapture(
SourceLocation Loc, bool Explicit = false, bool BuildAndDiagnose = true,
const unsigned *const FunctionScopeIndexToStopAt = nullptr,
bool ByCopy = false);
/// Determine whether the given type is the type of *this that is used
/// outside of the body of a member function for a type that is currently
/// being defined.
bool isThisOutsideMemberFunctionBody(QualType BaseType);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
//// ActOnCXXThrow - Parse throw expressions.
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
bool IsThrownVarInScope);
/// CheckCXXThrowOperand - Validate the operand of a throw.
bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenOrBraceLoc,
MultiExprArg Exprs,
SourceLocation RParenOrBraceLoc,
bool ListInitialization);
ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc,
bool ListInitialization);
/// Parsed a C++ 'new' expression (C++ 5.3.4).
///
/// E.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
///
/// \param StartLoc The first location of the expression.
/// \param UseGlobal True if 'new' was prefixed with '::'.
/// \param PlacementLParen Opening paren of the placement arguments.
/// \param PlacementArgs Placement new arguments.
/// \param PlacementRParen Closing paren of the placement arguments.
/// \param TypeIdParens If the type is in parens, the source range.
/// \param D The type to be allocated, as well as array dimensions.
/// \param Initializer The initializing expression or initializer-list, or
/// null if there is none.
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens, Declarator &D,
Expr *Initializer);
ExprResult
BuildCXXNew(SourceRange Range, bool UseGlobal, SourceLocation PlacementLParen,
MultiExprArg PlacementArgs, SourceLocation PlacementRParen,
SourceRange TypeIdParens, QualType AllocType,
TypeSourceInfo *AllocTypeInfo, std::optional<Expr *> ArraySize,
SourceRange DirectInitRange, Expr *Initializer);
/// Determine whether \p FD is an aligned allocation or deallocation
/// function that is unavailable.
bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
/// Produce diagnostics if \p FD is an aligned allocation or deallocation
/// function that is unavailable.
void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
SourceLocation Loc);
/// Checks that a type is suitable as the allocated type
/// in a new-expression.
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R);
/// The scope in which to find allocation functions.
enum AllocationFunctionScope {
/// Only look for allocation functions in the global scope.
AFS_Global,
/// Only look for allocation functions in the scope of the
/// allocated class.
AFS_Class,
/// Look for allocation functions in both the global scope
/// and in the scope of the allocated class.
AFS_Both
};
/// Finds the overloads of operator new and delete that are appropriate
/// for the allocation.
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
AllocationFunctionScope NewScope,
AllocationFunctionScope DeleteScope,
QualType AllocType, bool IsArray,
bool &PassAlignment, MultiExprArg PlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete,
bool Diagnose = true);
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
/// // C++03:
/// void* operator new(std::size_t) throw(std::bad_alloc);
/// void* operator new[](std::size_t) throw(std::bad_alloc);
/// void operator delete(void *) throw();
/// void operator delete[](void *) throw();
/// // C++11:
/// void* operator new(std::size_t);
/// void* operator new[](std::size_t);
/// void operator delete(void *) noexcept;
/// void operator delete[](void *) noexcept;
/// // C++1y:
/// void* operator new(std::size_t);
/// void* operator new[](std::size_t);
/// void operator delete(void *) noexcept;
/// void operator delete[](void *) noexcept;
/// void operator delete(void *, std::size_t) noexcept;
/// void operator delete[](void *, std::size_t) noexcept;
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void DeclareGlobalNewDelete();
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
ArrayRef<QualType> Params);
bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name, FunctionDecl *&Operator,
bool Diagnose = true, bool WantSize = false,
bool WantAligned = false);
FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
bool CanProvideSize,
bool Overaligned,
DeclarationName Name);
FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
CXXRecordDecl *RD);
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
bool ArrayForm, Expr *Operand);
void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
bool IsDelete, bool CallCanBeVirtual,
bool WarnOnNonAbstractTypes,
SourceLocation DtorLoc);
ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
Expr *Operand, SourceLocation RParen);
ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
SourceLocation RParen);
ExprResult ActOnStartCXXMemberReference(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
ParsedType &ObjectType,
bool &MayBePseudoDestructor);
ExprResult BuildPseudoDestructorExpr(
Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind,
const CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc,
SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType);
ExprResult ActOnPseudoDestructorExpr(
Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind,
CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc,
SourceLocation TildeLoc, UnqualifiedId &SecondTypeName);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation TildeLoc,
const DeclSpec &DS);
/// MaybeCreateExprWithCleanups - If the current full-expression
/// requires any cleanups, surround it with a ExprWithCleanups node.
/// Otherwise, just returns the passed-in expression.
Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
return ActOnFinishFullExpr(
Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
}
ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
bool DiscardedValue, bool IsConstexpr = false,
bool IsTemplateArgument = false);
StmtResult ActOnFinishFullStmt(Stmt *Stmt);
/// Process the expression contained within a decltype. For such expressions,
/// certain semantic checks on temporaries are delayed until this point, and
/// are omitted for the 'topmost' call in the decltype expression. If the
/// topmost call bound a temporary, strip that temporary off the expression.
ExprResult ActOnDecltypeExpression(Expr *E);
bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
bool IsUDSuffix);
bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
ConditionResult ActOnConditionVariable(Decl *ConditionVar,
SourceLocation StmtLoc,
ConditionKind CK);
/// Check the use of the given variable as a C++ condition in an if,
/// while, do-while, or switch statement.
ExprResult CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc, ConditionKind CK);
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns the converted
/// expression. Action is the kind of conversion we're performing,
/// used in the error message.
ExprResult PerformImplicitConversion(
Expr *From, QualType ToType, const ImplicitConversionSequence &ICS,
AssignmentAction Action,
CheckedConversionKind CCK = CheckedConversionKind::Implicit);
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns the converted
/// expression. Flavor is the context in which we're performing this
/// conversion, for use in error messages.
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const StandardConversionSequence &SCS,
AssignmentAction Action,
CheckedConversionKind CCK);
bool CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N);
/// Parsed one of the type trait support pseudo-functions.
ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
ArrayRef<ParsedType> Args,
SourceLocation RParenLoc);
ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc);
/// ActOnArrayTypeTrait - Parsed one of the binary type trait support
/// pseudo-functions.
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc,
ParsedType LhsTy, Expr *DimExpr,
SourceLocation RParen);
ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc,
TypeSourceInfo *TSInfo, Expr *DimExpr,
SourceLocation RParen);
/// ActOnExpressionTrait - Parsed one of the unary type trait support
/// pseudo-functions.
ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc,
Expr *Queried, SourceLocation RParen);
ExprResult BuildExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc,
Expr *Queried, SourceLocation RParen);
QualType CheckPointerToMemberOperands( // C++ 5.5
ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation OpLoc,
bool isIndirect);
QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
ExprResult &RHS,
SourceLocation QuestionLoc);
QualType CheckSizelessVectorConditionalTypes(ExprResult &Cond,
ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc);
/// Check the operands of ?: under C++ semantics.
///
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
/// extension. In this case, LHS == Cond. (But they're not aliases.)
///
/// This function also implements GCC's vector extension and the
/// OpenCL/ext_vector_type extension for conditionals. The vector extensions
/// permit the use of a?b:c where the type of a is that of a integer vector
/// with the same number of elements and size as the vectors of b and c. If
/// one of either b or c is a scalar it is implicitly converted to match the
/// type of the vector. Otherwise the expression is ill-formed. If both b and
/// c are scalars, then b and c are checked and converted to the type of a if
/// possible.
///
/// The expressions are evaluated differently for GCC's and OpenCL's
/// extensions. For the GCC extension, the ?: operator is evaluated as
/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
/// For the OpenCL extensions, the ?: operator is evaluated as
/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
/// most-significant-bit-set(a[n]) ? b[n] : c[n]).
QualType CXXCheckConditionalOperands( // C++ 5.16
ExprResult &cond, ExprResult &lhs, ExprResult &rhs, ExprValueKind &VK,
ExprObjectKind &OK, SourceLocation questionLoc);
/// Find a merged pointer type and convert the two expressions to it.
///
/// This finds the composite pointer type for \p E1 and \p E2 according to
/// C++2a [expr.type]p3. It converts both expressions to this type and returns
/// it. It does not emit diagnostics (FIXME: that's not true if \p
/// ConvertArgs is \c true).
///
/// \param Loc The location of the operator requiring these two expressions to
/// be converted to the composite pointer type.
///
/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target
/// type.
QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
bool ConvertArgs = true);
QualType FindCompositePointerType(SourceLocation Loc, ExprResult &E1,
ExprResult &E2, bool ConvertArgs = true) {
Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
QualType Composite =
FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
E1 = E1Tmp;
E2 = E2Tmp;
return Composite;
}
/// MaybeBindToTemporary - If the passed in expression has a record type with
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
/// it simply returns the passed in expression.
ExprResult MaybeBindToTemporary(Expr *E);
/// IgnoredValueConversions - Given that an expression's result is
/// syntactically ignored, perform any conversions that are
/// required.
ExprResult IgnoredValueConversions(Expr *E);
ExprResult CheckUnevaluatedOperand(Expr *E);
/// Process any TypoExprs in the given Expr and its children,
/// generating diagnostics as appropriate and returning a new Expr if there
/// were typos that were all successfully corrected and ExprError if one or
/// more typos could not be corrected.
///
/// \param E The Expr to check for TypoExprs.
///
/// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
/// initializer.
///
/// \param RecoverUncorrectedTypos If true, when typo correction fails, it
/// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
///
/// \param Filter A function applied to a newly rebuilt Expr to determine if
/// it is an acceptable/usable result from a single combination of typo
/// corrections. As long as the filter returns ExprError, different
/// combinations of corrections will be tried until all are exhausted.
ExprResult CorrectDelayedTyposInExpr(
Expr *E, VarDecl *InitDecl = nullptr,
bool RecoverUncorrectedTypos = false,
llvm::function_ref<ExprResult(Expr *)> Filter =
[](Expr *E) -> ExprResult { return E; });
ExprResult CorrectDelayedTyposInExpr(
ExprResult ER, VarDecl *InitDecl = nullptr,
bool RecoverUncorrectedTypos = false,
llvm::function_ref<ExprResult(Expr *)> Filter =
[](Expr *E) -> ExprResult { return E; }) {
return ER.isInvalid()
? ER
: CorrectDelayedTyposInExpr(ER.get(), InitDecl,
RecoverUncorrectedTypos, Filter);
}
/// Describes the result of an "if-exists" condition check.
enum IfExistsResult {
/// The symbol exists.
IER_Exists,
/// The symbol does not exist.
IER_DoesNotExist,
/// The name is a dependent name, so the results will differ
/// from one instantiation to the next.
IER_Dependent,
/// An error occurred.
IER_Error
};
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
const DeclarationNameInfo &TargetNameInfo);
IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S,
SourceLocation KeywordLoc,
bool IsIfExists, CXXScopeSpec &SS,
UnqualifiedId &Name);
RequiresExprBodyDecl *
ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
ArrayRef<ParmVarDecl *> LocalParameters,
Scope *BodyScope);
void ActOnFinishRequiresExpr();
concepts::Requirement *ActOnSimpleRequirement(Expr *E);
concepts::Requirement *ActOnTypeRequirement(SourceLocation TypenameKWLoc,
CXXScopeSpec &SS,
SourceLocation NameLoc,
const IdentifierInfo *TypeName,
TemplateIdAnnotation *TemplateId);
concepts::Requirement *ActOnCompoundRequirement(Expr *E,
SourceLocation NoexceptLoc);
concepts::Requirement *ActOnCompoundRequirement(
Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
TemplateIdAnnotation *TypeConstraint, unsigned Depth);
concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
concepts::ExprRequirement *BuildExprRequirement(
Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
concepts::ExprRequirement *BuildExprRequirement(
concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
bool IsSatisfied, SourceLocation NoexceptLoc,
concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
concepts::TypeRequirement *BuildTypeRequirement(
concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
concepts::NestedRequirement *
BuildNestedRequirement(StringRef InvalidConstraintEntity,
const ASTConstraintSatisfaction &Satisfaction);
ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
RequiresExprBodyDecl *Body,
SourceLocation LParenLoc,
ArrayRef<ParmVarDecl *> LocalParameters,
SourceLocation RParenLoc,
ArrayRef<concepts::Requirement *> Requirements,
SourceLocation ClosingBraceLoc);
private:
ExprResult BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
bool IsDelete);
void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
bool DeleteWasArrayForm);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Member Access Expressions
/// Implementations are in SemaExprMember.cpp
///@{
public:
/// Check whether an expression might be an implicit class member access.
bool isPotentialImplicitMemberAccess(const CXXScopeSpec &SS, LookupResult &R,
bool IsAddressOfOperand);
/// Builds an expression which might be an implicit member expression.
ExprResult BuildPossibleImplicitMemberExpr(
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs, const Scope *S);
/// Builds an implicit member access expression. The current context
/// is known to be an instance method, and the given unqualified lookup
/// set is known to contain only instance members, at least one of which
/// is from an appropriate type.
ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool IsDefiniteInstance, const Scope *S);
ExprResult ActOnDependentMemberExpr(
Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OpLoc,
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
/// The main callback when the parser finds something like
/// expression . [nested-name-specifier] identifier
/// expression -> [nested-name-specifier] identifier
/// where 'identifier' encompasses a fairly broad spectrum of
/// possibilities, including destructor and operator references.
///
/// \param OpKind either tok::arrow or tok::period
/// \param ObjCImpDecl the current Objective-C \@implementation
/// decl; this is an ugly hack around the fact that Objective-C
/// \@implementations aren't properly put in the context chain
ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
tok::TokenKind OpKind, CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Member, Decl *ObjCImpDecl);
MemberExpr *
BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
ValueDecl *Member, DeclAccessPair FoundDecl,
bool HadMultipleCandidates,
const DeclarationNameInfo &MemberNameInfo, QualType Ty,
ExprValueKind VK, ExprObjectKind OK,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
// Check whether the declarations we found through a nested-name
// specifier in a member expression are actually members of the base
// type. The restriction here is:
//
// C++ [expr.ref]p2:
// ... In these cases, the id-expression shall name a
// member of the class or of one of its base classes.
//
// So it's perfectly legitimate for the nested-name specifier to name
// an unrelated class, and for us to find an overload set including
// decls from classes which are not superclasses, as long as the decl
// we actually pick through overload resolution is from a superclass.
bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
const CXXScopeSpec &SS,
const LookupResult &R);
// This struct is for use by ActOnMemberAccess to allow
// BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
// changing the access operator from a '.' to a '->' (to see if that is the
// change needed to fix an error about an unknown member, e.g. when the class
// defines a custom operator->).
struct ActOnMemberAccessExtraArgs {
Scope *S;
UnqualifiedId &Id;
Decl *ObjCImpDecl;
};
ExprResult BuildMemberReferenceExpr(
Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
ExprResult
BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
bool IsArrow, const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
const Scope *S, bool SuppressQualifierCheck = false,
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
SourceLocation OpLoc,
const CXXScopeSpec &SS, FieldDecl *Field,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo);
/// Perform conversions on the LHS of a member access expression.
ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
ExprResult BuildAnonymousStructUnionMemberReference(
const CXXScopeSpec &SS, SourceLocation nameLoc,
IndirectFieldDecl *indirectField,
DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
Expr *baseObjectExpr = nullptr, SourceLocation opLoc = SourceLocation());
private:
void CheckMemberAccessOfNoDeref(const MemberExpr *E);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Initializers
/// Implementations are in SemaInit.cpp
///@{
public:
/// Stack of types that correspond to the parameter entities that are
/// currently being copy-initialized. Can be empty.
llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
llvm::DenseMap<unsigned, CXXDeductionGuideDecl *>
AggregateDeductionCandidates;
bool IsStringInit(Expr *Init, const ArrayType *AT);
/// Determine whether we can perform aggregate initialization for the purposes
/// of overload resolution.
bool CanPerformAggregateInitializationForOverloadResolution(
const InitializedEntity &Entity, InitListExpr *From);
ExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation EqualOrColonLoc,
bool GNUSyntax, ExprResult Init);
/// Check that the lifetime of the initializer (and its subobjects) is
/// sufficient for initializing the entity, and perform lifetime extension
/// (when permitted) if not.
void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
bool BoundToLvalueReference);
/// If \p E is a prvalue denoting an unmaterialized temporary, materialize
/// it as an xvalue. In C++98, the result will still be a prvalue, because
/// we don't have xvalues there.
ExprResult TemporaryMaterializationConversion(Expr *E);
ExprResult PerformQualificationConversion(
Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
CheckedConversionKind CCK = CheckedConversionKind::Implicit);
bool CanPerformCopyInitialization(const InitializedEntity &Entity,
ExprResult Init);
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
SourceLocation EqualLoc, ExprResult Init,
bool TopLevelOfInitList = false,
bool AllowExplicit = false);
QualType DeduceTemplateSpecializationFromInitializer(
TypeSourceInfo *TInfo, const InitializedEntity &Entity,
const InitializationKind &Kind, MultiExprArg Init);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Lambda Expressions
/// Implementations are in SemaLambda.cpp
///@{
public:
/// Create a new lambda closure type.
CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
TypeSourceInfo *Info,
unsigned LambdaDependencyKind,
LambdaCaptureDefault CaptureDefault);
/// Number lambda for linkage purposes if necessary.
void handleLambdaNumbering(CXXRecordDecl *Class, CXXMethodDecl *Method,
std::optional<CXXRecordDecl::LambdaNumbering>
NumberingOverride = std::nullopt);
/// Endow the lambda scope info with the relevant properties.
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc, bool ExplicitParams,
bool Mutable);
CXXMethodDecl *CreateLambdaCallOperator(SourceRange IntroducerRange,
CXXRecordDecl *Class);
void AddTemplateParametersToLambdaCallOperator(
CXXMethodDecl *CallOperator, CXXRecordDecl *Class,
TemplateParameterList *TemplateParams);
void CompleteLambdaCallOperator(
CXXMethodDecl *Method, SourceLocation LambdaLoc,
SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause,
TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind,
StorageClass SC, ArrayRef<ParmVarDecl *> Params,
bool HasExplicitResultType);
/// Returns true if the explicit object parameter was invalid.
bool DiagnoseInvalidExplicitObjectParameterInLambda(CXXMethodDecl *Method,
SourceLocation CallLoc);
/// Perform initialization analysis of the init-capture and perform
/// any implicit conversions such as an lvalue-to-rvalue conversion if
/// not being used to initialize a reference.
ParsedType actOnLambdaInitCaptureInitialization(
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
return ParsedType::make(buildLambdaInitCaptureInitialization(
Loc, ByRef, EllipsisLoc, std::nullopt, Id,
InitKind != LambdaCaptureInitKind::CopyInit, Init));
}
QualType buildLambdaInitCaptureInitialization(
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
bool DirectInit, Expr *&Init);
/// Create a dummy variable within the declcontext of the lambda's
/// call operator, for name lookup purposes for a lambda init capture.
///
/// CodeGen handles emission of lambda captures, ignoring these dummy
/// variables appropriately.
VarDecl *createLambdaInitCaptureVarDecl(
SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc,
IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx);
/// Add an init-capture to a lambda scope.
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef);
/// Note that we have finished the explicit captures for the
/// given lambda.
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
/// Deduce a block or lambda's return type based on the return
/// statements present in the body.
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
/// Once the Lambdas capture are known, we can start to create the closure,
/// call operator method, and keep track of the captures.
/// We do the capture lookup here, but they are not actually captured until
/// after we know what the qualifiers of the call operator are.
void ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro,
Scope *CurContext);
/// This is called after parsing the explicit template parameter list
/// on a lambda (if it exists) in C++2a.
void ActOnLambdaExplicitTemplateParameterList(LambdaIntroducer &Intro,
SourceLocation LAngleLoc,
ArrayRef<NamedDecl *> TParams,
SourceLocation RAngleLoc,
ExprResult RequiresClause);
void ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro,
SourceLocation MutableLoc);
void ActOnLambdaClosureParameters(
Scope *LambdaScope,
MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo);
/// ActOnStartOfLambdaDefinition - This is called just before we start
/// parsing the body of a lambda; it analyzes the explicit captures and
/// arguments, and sets up various data-structures for the body of the
/// lambda.
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
Declarator &ParamInfo, const DeclSpec &DS);
/// ActOnLambdaError - If there is an error parsing a lambda, this callback
/// is invoked to pop the information about the lambda.
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
bool IsInstantiation = false);
/// ActOnLambdaExpr - This is called when the body of a lambda expression
/// was successfully completed.
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body);
/// Does copying/destroying the captured variable have side effects?
bool CaptureHasSideEffects(const sema::Capture &From);
/// Diagnose if an explicit lambda capture is unused. Returns true if a
/// diagnostic is emitted.
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
const sema::Capture &From);
/// Build a FieldDecl suitable to hold the given capture.
FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
/// Initialize the given capture with a suitable expression.
ExprResult BuildCaptureInit(const sema::Capture &Capture,
SourceLocation ImplicitCaptureLoc,
bool IsOpenMPMapping = false);
/// Complete a lambda-expression having processed and attached the
/// lambda body.
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
sema::LambdaScopeInfo *LSI);
/// Get the return type to use for a lambda's conversion function(s) to
/// function pointer type, given the type of the call operator.
QualType
getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
CallingConv CC);
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
SourceLocation ConvLocation,
CXXConversionDecl *Conv, Expr *Src);
class LambdaScopeForCallOperatorInstantiationRAII
: private FunctionScopeRAII {
public:
LambdaScopeForCallOperatorInstantiationRAII(
Sema &SemasRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL,
LocalInstantiationScope &Scope,
bool ShouldAddDeclsFromParentScope = true);
};
/// Compute the mangling number context for a lambda expression or
/// block literal. Also return the extra mangling decl if any.
///
/// \param DC - The DeclContext containing the lambda expression or
/// block literal.
std::tuple<MangleNumberingContext *, Decl *>
getCurrentMangleNumberContext(const DeclContext *DC);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Name Lookup
///
/// These routines provide name lookup that is used during semantic
/// analysis to resolve the various kinds of names (identifiers,
/// overloaded operator names, constructor names, etc.) into zero or
/// more declarations within a particular scope. The major entry
/// points are LookupName, which performs unqualified name lookup,
/// and LookupQualifiedName, which performs qualified name lookup.
///
/// All name lookup is performed based on some specific criteria,
/// which specify what names will be visible to name lookup and how
/// far name lookup should work. These criteria are important both
/// for capturing language semantics (certain lookups will ignore
/// certain names, for example) and for performance, since name
/// lookup is often a bottleneck in the compilation of C++. Name
/// lookup criteria is specified via the LookupCriteria enumeration.
///
/// The results of name lookup can vary based on the kind of name
/// lookup performed, the current language, and the translation
/// unit. In C, for example, name lookup will either return nothing
/// (no entity found) or a single declaration. In C++, name lookup
/// can additionally refer to a set of overloaded functions or
/// result in an ambiguity. All of the possible results of name
/// lookup are captured by the LookupResult class, which provides
/// the ability to distinguish among them.
///
/// Implementations are in SemaLookup.cpp
///@{
public:
/// Tracks whether we are in a context where typo correction is
/// disabled.
bool DisableTypoCorrection;
/// The number of typos corrected by CorrectTypo.
unsigned TyposCorrected;
typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
/// A cache containing identifiers for which typo correction failed and
/// their locations, so that repeated attempts to correct an identifier in a
/// given location are ignored if typo correction already failed for it.
IdentifierSourceLocations TypoCorrectionFailures;
/// SpecialMemberOverloadResult - The overloading result for a special member
/// function.
///
/// This is basically a wrapper around PointerIntPair. The lowest bits of the
/// integer are used to determine whether overload resolution succeeded.
class SpecialMemberOverloadResult {
public:
enum Kind { NoMemberOrDeleted, Ambiguous, Success };
private:
llvm::PointerIntPair<CXXMethodDecl *, 2> Pair;
public:
SpecialMemberOverloadResult() {}
SpecialMemberOverloadResult(CXXMethodDecl *MD)
: Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
void setKind(Kind K) { Pair.setInt(K); }
};
class SpecialMemberOverloadResultEntry : public llvm::FastFoldingSetNode,
public SpecialMemberOverloadResult {
public:
SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
: FastFoldingSetNode(ID) {}
};
/// A cache of special member function overload resolution results
/// for C++ records.
llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
/// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
/// `TransformTypos` in order to keep track of any TypoExprs that are created
/// recursively during typo correction and wipe them away if the correction
/// fails.
llvm::SmallVector<TypoExpr *, 2> TypoExprs;
enum class AcceptableKind { Visible, Reachable };
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
// TODO: make this is a typesafe union.
typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
/// Describes the kind of name lookup to perform.
enum LookupNameKind {
/// Ordinary name lookup, which finds ordinary names (functions,
/// variables, typedefs, etc.) in C and most kinds of names
/// (functions, variables, members, types, etc.) in C++.
LookupOrdinaryName = 0,
/// Tag name lookup, which finds the names of enums, classes,
/// structs, and unions.
LookupTagName,
/// Label name lookup.
LookupLabel,
/// Member name lookup, which finds the names of
/// class/struct/union members.
LookupMemberName,
/// Look up of an operator name (e.g., operator+) for use with
/// operator overloading. This lookup is similar to ordinary name
/// lookup, but will ignore any declarations that are class members.
LookupOperatorName,
/// Look up a name following ~ in a destructor name. This is an ordinary
/// lookup, but prefers tags to typedefs.
LookupDestructorName,
/// Look up of a name that precedes the '::' scope resolution
/// operator in C++. This lookup completely ignores operator, object,
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
LookupNestedNameSpecifierName,
/// Look up a namespace name within a C++ using directive or
/// namespace alias definition, ignoring non-namespace names (C++
/// [basic.lookup.udir]p1).
LookupNamespaceName,
/// Look up all declarations in a scope with the given name,
/// including resolved using declarations. This is appropriate
/// for checking redeclarations for a using declaration.
LookupUsingDeclName,
/// Look up an ordinary name that is going to be redeclared as a
/// name with linkage. This lookup ignores any declarations that
/// are outside of the current scope unless they have linkage. See
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
LookupRedeclarationWithLinkage,
/// Look up a friend of a local class. This lookup does not look
/// outside the innermost non-class scope. See C++11 [class.friend]p11.
LookupLocalFriendName,
/// Look up the name of an Objective-C protocol.
LookupObjCProtocolName,
/// Look up implicit 'self' parameter of an objective-c method.
LookupObjCImplicitSelfParam,
/// Look up the name of an OpenMP user-defined reduction operation.
LookupOMPReductionName,
/// Look up the name of an OpenMP user-defined mapper.
LookupOMPMapperName,
/// Look up any declaration with any name.
LookupAnyName
};
/// The possible outcomes of name lookup for a literal operator.
enum LiteralOperatorLookupResult {
/// The lookup resulted in an error.
LOLR_Error,
/// The lookup found no match but no diagnostic was issued.
LOLR_ErrorNoDiagnostic,
/// The lookup found a single 'cooked' literal operator, which
/// expects a normal literal to be built and passed to it.
LOLR_Cooked,
/// The lookup found a single 'raw' literal operator, which expects
/// a string literal containing the spelling of the literal token.
LOLR_Raw,
/// The lookup found an overload set of literal operator templates,
/// which expect the characters of the spelling of the literal token to be
/// passed as a non-type template argument pack.
LOLR_Template,
/// The lookup found an overload set of literal operator templates,
/// which expect the character type and characters of the spelling of the
/// string literal token to be passed as template arguments.
LOLR_StringTemplatePack,
};
SpecialMemberOverloadResult
LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMemberKind SM, bool ConstArg,
bool VolatileArg, bool RValueThis, bool ConstThis,
bool VolatileThis);
typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
TypoRecoveryCallback;
RedeclarationKind forRedeclarationInCurContext() const;
/// Look up a name, looking for a single declaration. Return
/// null if the results were absent, ambiguous, or overloaded.
///
/// It is preferable to use the elaborated form and explicitly handle
/// ambiguity and overloaded.
NamedDecl *LookupSingleName(
Scope *S, DeclarationName Name, SourceLocation Loc,
LookupNameKind NameKind,
RedeclarationKind Redecl = RedeclarationKind::NotForRedeclaration);
/// Lookup a builtin function, when name lookup would otherwise
/// fail.
bool LookupBuiltin(LookupResult &R);
void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
/// Perform unqualified name lookup starting from a given
/// scope.
///
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
/// used to find names within the current scope. For example, 'x' in
/// @code
/// int x;
/// int f() {
/// return x; // unqualified name look finds 'x' in the global scope
/// }
/// @endcode
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// @param S The scope from which unqualified name lookup will
/// begin. If the lookup criteria permits, name lookup may also search
/// in the parent scopes.
///
/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
/// look up and the lookup kind), and is updated with the results of lookup
/// including zero or more declarations and possibly additional information
/// used to diagnose ambiguities.
///
/// @returns \c true if lookup succeeded and false otherwise.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false,
bool ForceNoCPlusPlus = false);
/// Perform qualified name lookup into a given context.
///
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
/// names when the context of those names is explicit specified, e.g.,
/// "std::vector" or "x->member", or as part of unqualified name lookup.
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param LookupCtx The context in which qualified name lookup will
/// search. If the lookup criteria permits, name lookup may also search
/// in the parent contexts or (for C++ classes) base classes.
///
/// \param InUnqualifiedLookup true if this is qualified name lookup that
/// occurs as part of unqualified name lookup.
///
/// \returns true if lookup succeeded, false if it failed.
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
bool InUnqualifiedLookup = false);
/// Performs qualified name lookup or special type of lookup for
/// "__super::" scope specifier.
///
/// This routine is a convenience overload meant to be called from contexts
/// that need to perform a qualified name lookup with an optional C++ scope
/// specifier that might require special kind of lookup.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param LookupCtx The context in which qualified name lookup will
/// search.
///
/// \param SS An optional C++ scope-specifier.
///
/// \returns true if lookup succeeded, false if it failed.
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
CXXScopeSpec &SS);
/// Performs name lookup for a name that was parsed in the
/// source code, and may contain a C++ scope specifier.
///
/// This routine is a convenience routine meant to be called from
/// contexts that receive a name and an optional C++ scope specifier
/// (e.g., "N::M::x"). It will then perform either qualified or
/// unqualified name lookup (with LookupQualifiedName or LookupName,
/// respectively) on the given name and return those results. It will
/// perform a special type of lookup for "__super::" scope specifier.
///
/// @param S The scope from which unqualified name lookup will
/// begin.
///
/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
///
/// @param EnteringContext Indicates whether we are going to enter the
/// context of the scope-specifier SS (if present).
///
/// @returns True if any decls were found (but possibly ambiguous)
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
QualType ObjectType, bool AllowBuiltinCreation = false,
bool EnteringContext = false);
/// Perform qualified name lookup into all base classes of the given
/// class.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param Class The context in which qualified name lookup will
/// search. Name lookup will search in all base classes merging the results.
///
/// @returns True if any decls were found (but possibly ambiguous)
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
UnresolvedSetImpl &Functions);
/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
/// If GnuLabelLoc is a valid source location, then this is a definition
/// of an __label__ label name, otherwise it is a normal label definition
/// or use.
LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
SourceLocation GnuLabelLoc = SourceLocation());
/// Look up the constructors for the given class.
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
/// Look up the default constructor for the given class.
CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
/// Look up the copying constructor for the given class.
CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
unsigned Quals);
/// Look up the copying assignment operator for the given class.
CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals);
/// Look up the moving constructor for the given class.
CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
unsigned Quals);
/// Look up the moving assignment operator for the given class.
CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals);
/// Look for the destructor of the given class.
///
/// During semantic analysis, this routine should be used in lieu of
/// CXXRecordDecl::getDestructor().
///
/// \returns The destructor for this class.
CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
/// Force the declaration of any implicitly-declared members of this
/// class.
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
/// Make a merged definition of an existing hidden definition \p ND
/// visible at the specified location.
void makeMergedDefinitionVisible(NamedDecl *ND);
/// Check ODR hashes for C/ObjC when merging types from modules.
/// Differently from C++, actually parse the body and reject in case
/// of a mismatch.
template <typename T,
typename = std::enable_if_t<std::is_base_of<NamedDecl, T>::value>>
bool ActOnDuplicateODRHashDefinition(T *Duplicate, T *Previous) {
if (Duplicate->getODRHash() != Previous->getODRHash())
return false;
// Make the previous decl visible.
makeMergedDefinitionVisible(Previous);
return true;
}
/// Get the set of additional modules that should be checked during
/// name lookup. A module and its imports become visible when instanting a
/// template defined within it.
llvm::DenseSet<Module *> &getLookupModules();
bool hasVisibleMergedDefinition(const NamedDecl *Def);
bool hasMergedDefinitionInCurrentModule(const NamedDecl *Def);
/// Determine if the template parameter \p D has a visible default argument.
bool
hasVisibleDefaultArgument(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if the template parameter \p D has a reachable default argument.
bool hasReachableDefaultArgument(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if the template parameter \p D has a reachable default argument.
bool hasAcceptableDefaultArgument(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules,
Sema::AcceptableKind Kind);
/// Determine if there is a visible declaration of \p D that is an explicit
/// specialization declaration for a specialization of a template. (For a
/// member specialization, use hasVisibleMemberSpecialization.)
bool hasVisibleExplicitSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a reachable declaration of \p D that is an explicit
/// specialization declaration for a specialization of a template. (For a
/// member specialization, use hasReachableMemberSpecialization.)
bool hasReachableExplicitSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a visible declaration of \p D that is a member
/// specialization declaration (as opposed to an instantiated declaration).
bool hasVisibleMemberSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a reachable declaration of \p D that is a member
/// specialization declaration (as opposed to an instantiated declaration).
bool hasReachableMemberSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
bool isModuleVisible(const Module *M, bool ModulePrivate = false);
/// Determine whether any declaration of an entity is visible.
bool
hasVisibleDeclaration(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
}
bool hasVisibleDeclarationSlow(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules);
/// Determine whether any declaration of an entity is reachable.
bool
hasReachableDeclaration(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
return isReachable(D) || hasReachableDeclarationSlow(D, Modules);
}
bool hasReachableDeclarationSlow(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
void diagnoseTypo(const TypoCorrection &Correction,
const PartialDiagnostic &TypoDiag,
bool ErrorRecovery = true);
/// Diagnose a successfully-corrected typo. Separated from the correction
/// itself to allow external validation of the result, etc.
///
/// \param Correction The result of performing typo correction.
/// \param TypoDiag The diagnostic to produce. This will have the corrected
/// string added to it (and usually also a fixit).
/// \param PrevNote A note to use when indicating the location of the entity
/// to which we are correcting. Will have the correction string added
/// to it.
/// \param ErrorRecovery If \c true (the default), the caller is going to
/// recover from the typo as if the corrected string had been typed.
/// In this case, \c PDiag must be an error, and we will attach a fixit
/// to it.
void diagnoseTypo(const TypoCorrection &Correction,
const PartialDiagnostic &TypoDiag,
const PartialDiagnostic &PrevNote,
bool ErrorRecovery = true);
/// Find the associated classes and namespaces for
/// argument-dependent lookup for a call with the given set of
/// arguments.
///
/// This routine computes the sets of associated classes and associated
/// namespaces searched by argument-dependent lookup
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
void FindAssociatedClassesAndNamespaces(
SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
AssociatedNamespaceSet &AssociatedNamespaces,
AssociatedClassSet &AssociatedClasses);
/// Produce a diagnostic describing the ambiguity that resulted
/// from name lookup.
///
/// \param Result The result of the ambiguous lookup to be diagnosed.
void DiagnoseAmbiguousLookup(LookupResult &Result);
/// LookupLiteralOperator - Determine which literal operator should be used
/// for a user-defined literal, per C++11 [lex.ext].
///
/// Normal overload resolution is not used to select which literal operator to
/// call for a user-defined literal. Look up the provided literal operator
/// name, and filter the results to the appropriate set for the given argument
/// types.
LiteralOperatorLookupResult
LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
bool AllowRaw, bool AllowTemplate,
bool AllowStringTemplate, bool DiagnoseMissing,
StringLiteral *StringLit = nullptr);
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
ArrayRef<Expr *> Args, ADLResult &Functions);
void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true,
bool LoadExternal = true);
void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true,
bool IncludeDependentBases = false,
bool LoadExternal = true);
enum CorrectTypoKind {
CTK_NonError, // CorrectTypo used in a non error recovery situation.
CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
};
/// Try to "correct" a typo in the source code by finding
/// visible declarations whose names are similar to the name that was
/// present in the source code.
///
/// \param TypoName the \c DeclarationNameInfo structure that contains
/// the name that was present in the source code along with its location.
///
/// \param LookupKind the name-lookup criteria used to search for the name.
///
/// \param S the scope in which name lookup occurs.
///
/// \param SS the nested-name-specifier that precedes the name we're
/// looking for, if present.
///
/// \param CCC A CorrectionCandidateCallback object that provides further
/// validation of typo correction candidates. It also provides flags for
/// determining the set of keywords permitted.
///
/// \param MemberContext if non-NULL, the context in which to look for
/// a member access expression.
///
/// \param EnteringContext whether we're entering the context described by
/// the nested-name-specifier SS.
///
/// \param OPT when non-NULL, the search for visible declarations will
/// also walk the protocols in the qualified interfaces of \p OPT.
///
/// \returns a \c TypoCorrection containing the corrected name if the typo
/// along with information such as the \c NamedDecl where the corrected name
/// was declared, and any additional \c NestedNameSpecifier needed to access
/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind, Scope *S,
CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
CorrectTypoKind Mode,
DeclContext *MemberContext = nullptr,
bool EnteringContext = false,
const ObjCObjectPointerType *OPT = nullptr,
bool RecordFailure = true);
/// Try to "correct" a typo in the source code by finding
/// visible declarations whose names are similar to the name that was
/// present in the source code.
///
/// \param TypoName the \c DeclarationNameInfo structure that contains
/// the name that was present in the source code along with its location.
///
/// \param LookupKind the name-lookup criteria used to search for the name.
///
/// \param S the scope in which name lookup occurs.
///
/// \param SS the nested-name-specifier that precedes the name we're
/// looking for, if present.
///
/// \param CCC A CorrectionCandidateCallback object that provides further
/// validation of typo correction candidates. It also provides flags for
/// determining the set of keywords permitted.
///
/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
/// diagnostics when the actual typo correction is attempted.
///
/// \param TRC A TypoRecoveryCallback functor that will be used to build an
/// Expr from a typo correction candidate.
///
/// \param MemberContext if non-NULL, the context in which to look for
/// a member access expression.
///
/// \param EnteringContext whether we're entering the context described by
/// the nested-name-specifier SS.
///
/// \param OPT when non-NULL, the search for visible declarations will
/// also walk the protocols in the qualified interfaces of \p OPT.
///
/// \returns a new \c TypoExpr that will later be replaced in the AST with an
/// Expr representing the result of performing typo correction, or nullptr if
/// typo correction is not possible. If nullptr is returned, no diagnostics
/// will be emitted and it is the responsibility of the caller to emit any
/// that are needed.
TypoExpr *CorrectTypoDelayed(
const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind,
Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC,
CorrectTypoKind Mode, DeclContext *MemberContext = nullptr,
bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr);
/// Kinds of missing import. Note, the values of these enumerators correspond
/// to %select values in diagnostics.
enum class MissingImportKind {
Declaration,
Definition,
DefaultArgument,
ExplicitSpecialization,
PartialSpecialization
};
/// Diagnose that the specified declaration needs to be visible but
/// isn't, and suggest a module import that would resolve the problem.
void diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
MissingImportKind MIK, bool Recover = true);
void diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
SourceLocation DeclLoc, ArrayRef<Module *> Modules,
MissingImportKind MIK, bool Recover);
struct TypoExprState {
std::unique_ptr<TypoCorrectionConsumer> Consumer;
TypoDiagnosticGenerator DiagHandler;
TypoRecoveryCallback RecoveryHandler;
TypoExprState();
TypoExprState(TypoExprState &&other) noexcept;
TypoExprState &operator=(TypoExprState &&other) noexcept;
};
const TypoExprState &getTypoExprState(TypoExpr *TE) const;
/// Clears the state of the given TypoExpr.
void clearDelayedTypo(TypoExpr *TE);
/// Called on #pragma clang __debug dump II
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
/// Called on #pragma clang __debug dump E
void ActOnPragmaDump(Expr *E);
private:
// The set of known/encountered (unique, canonicalized) NamespaceDecls.
//
// The boolean value will be true to indicate that the namespace was loaded
// from an AST/PCH file, or false otherwise.
llvm::MapVector<NamespaceDecl *, bool> KnownNamespaces;
/// Whether we have already loaded known namespaces from an extenal
/// source.
bool LoadedExternalKnownNamespaces;
bool CppLookupName(LookupResult &R, Scope *S);
/// Determine if we could use all the declarations in the module.
bool isUsableModule(const Module *M);
/// Helper for CorrectTypo and CorrectTypoDelayed used to create and
/// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
/// should be skipped entirely.
std::unique_ptr<TypoCorrectionConsumer> makeTypoCorrectionConsumer(
const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind,
Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
DeclContext *MemberContext, bool EnteringContext,
const ObjCObjectPointerType *OPT, bool ErrorRecovery);
/// The set of unhandled TypoExprs and their associated state.
llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
/// Creates a new TypoExpr AST node.
TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
TypoDiagnosticGenerator TDG,
TypoRecoveryCallback TRC, SourceLocation TypoLoc);
/// Cache for module units which is usable for current module.
llvm::DenseSet<const Module *> UsableModuleUnitsCache;
/// Record the typo correction failure and return an empty correction.
TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
bool RecordFailure = true) {
if (RecordFailure)
TypoCorrectionFailures[Typo].insert(TypoLoc);
return TypoCorrection();
}
bool isAcceptableSlow(const NamedDecl *D, AcceptableKind Kind);
/// Determine whether two declarations should be linked together, given that
/// the old declaration might not be visible and the new declaration might
/// not have external linkage.
bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
const NamedDecl *New) {
if (isVisible(Old))
return true;
// See comment in below overload for why it's safe to compute the linkage
// of the new declaration here.
if (New->isExternallyDeclarable()) {
assert(Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl");
return true;
}
return false;
}
bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Modules
/// Implementations are in SemaModule.cpp
///@{
public:
/// Get the module unit whose scope we are currently within.
Module *getCurrentModule() const {
return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
}
/// Is the module scope we are an implementation unit?
bool currentModuleIsImplementation() const {
return ModuleScopes.empty()
? false
: ModuleScopes.back().Module->isModuleImplementation();
}
// When loading a non-modular PCH files, this is used to restore module
// visibility.
void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
VisibleModules.setVisible(Mod, ImportLoc);
}
enum class ModuleDeclKind {
Interface, ///< 'export module X;'
Implementation, ///< 'module X;'
PartitionInterface, ///< 'export module X:Y;'
PartitionImplementation, ///< 'module X:Y;'
};
/// An enumeration to represent the transition of states in parsing module
/// fragments and imports. If we are not parsing a C++20 TU, or we find
/// an error in state transition, the state is set to NotACXX20Module.
enum class ModuleImportState {
FirstDecl, ///< Parsing the first decl in a TU.
GlobalFragment, ///< after 'module;' but before 'module X;'
ImportAllowed, ///< after 'module X;' but before any non-import decl.
ImportFinished, ///< after any non-import decl.
PrivateFragmentImportAllowed, ///< after 'module :private;' but before any
///< non-import decl.
PrivateFragmentImportFinished, ///< after 'module :private;' but a
///< non-import decl has already been seen.
NotACXX20Module ///< Not a C++20 TU, or an invalid state was found.
};
/// The parser has processed a module-declaration that begins the definition
/// of a module interface or implementation.
DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
SourceLocation ModuleLoc, ModuleDeclKind MDK,
ModuleIdPath Path, ModuleIdPath Partition,
ModuleImportState &ImportState);
/// The parser has processed a global-module-fragment declaration that begins
/// the definition of the global module fragment of the current module unit.
/// \param ModuleLoc The location of the 'module' keyword.
DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
/// The parser has processed a private-module-fragment declaration that begins
/// the definition of the private module fragment of the current module unit.
/// \param ModuleLoc The location of the 'module' keyword.
/// \param PrivateLoc The location of the 'private' keyword.
DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
SourceLocation PrivateLoc);
/// The parser has processed a module import declaration.
///
/// \param StartLoc The location of the first token in the declaration. This
/// could be the location of an '@', 'export', or 'import'.
/// \param ExportLoc The location of the 'export' keyword, if any.
/// \param ImportLoc The location of the 'import' keyword.
/// \param Path The module toplevel name as an access path.
/// \param IsPartition If the name is for a partition.
DeclResult ActOnModuleImport(SourceLocation StartLoc,
SourceLocation ExportLoc,
SourceLocation ImportLoc, ModuleIdPath Path,
bool IsPartition = false);
DeclResult ActOnModuleImport(SourceLocation StartLoc,
SourceLocation ExportLoc,
SourceLocation ImportLoc, Module *M,
ModuleIdPath Path = {});
/// The parser has processed a module import translated from a
/// #include or similar preprocessing directive.
void ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
/// The parsed has entered a submodule.
void ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
/// The parser has left a submodule.
void ActOnAnnotModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
/// Create an implicit import of the given module at the given
/// source location, for error recovery, if possible.
///
/// This routine is typically used when an entity found by name lookup
/// is actually hidden within a module that we know about but the user
/// has forgotten to import.
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
Module *Mod);
/// We have parsed the start of an export declaration, including the '{'
/// (if present).
Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
SourceLocation LBraceLoc);
/// Complete the definition of an export declaration.
Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
SourceLocation RBraceLoc);
private:
/// The parser has begun a translation unit to be compiled as a C++20
/// Header Unit, helper for ActOnStartOfTranslationUnit() only.
void HandleStartOfHeaderUnit();
struct ModuleScope {
SourceLocation BeginLoc;
clang::Module *Module = nullptr;
VisibleModuleSet OuterVisibleModules;
};
/// The modules we're currently parsing.
llvm::SmallVector<ModuleScope, 16> ModuleScopes;
/// For an interface unit, this is the implicitly imported interface unit.
clang::Module *ThePrimaryInterface = nullptr;
/// The explicit global module fragment of the current translation unit.
/// The explicit Global Module Fragment, as specified in C++
/// [module.global.frag].
clang::Module *TheGlobalModuleFragment = nullptr;
/// The implicit global module fragments of the current translation unit.
///
/// The contents in the implicit global module fragment can't be discarded.
clang::Module *TheImplicitGlobalModuleFragment = nullptr;
/// Namespace definitions that we will export when they finish.
llvm::SmallPtrSet<const NamespaceDecl *, 8> DeferredExportedNamespaces;
/// In a C++ standard module, inline declarations require a definition to be
/// present at the end of a definition domain. This set holds the decls to
/// be checked at the end of the TU.
llvm::SmallPtrSet<const FunctionDecl *, 8> PendingInlineFuncDecls;
/// Helper function to judge if we are in module purview.
/// Return false if we are not in a module.
bool isCurrentModulePurview() const;
/// Enter the scope of the explicit global module fragment.
Module *PushGlobalModuleFragment(SourceLocation BeginLoc);
/// Leave the scope of the explicit global module fragment.
void PopGlobalModuleFragment();
/// Enter the scope of an implicit global module fragment.
Module *PushImplicitGlobalModuleFragment(SourceLocation BeginLoc);
/// Leave the scope of an implicit global module fragment.
void PopImplicitGlobalModuleFragment();
VisibleModuleSet VisibleModules;
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Overloading
/// Implementations are in SemaOverload.cpp
///@{
public:
/// Whether deferrable diagnostics should be deferred.
bool DeferDiags = false;
/// RAII class to control scope of DeferDiags.
class DeferDiagsRAII {
Sema &S;
bool SavedDeferDiags = false;
public:
DeferDiagsRAII(Sema &S, bool DeferDiags)
: S(S), SavedDeferDiags(S.DeferDiags) {
S.DeferDiags = DeferDiags;
}
~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
};
/// Flag indicating if Sema is building a recovery call expression.
///
/// This flag is used to avoid building recovery call expressions
/// if Sema is already doing so, which would cause infinite recursions.
bool IsBuildingRecoveryCallExpr;
enum OverloadKind {
/// This is a legitimate overload: the existing declarations are
/// functions or function templates with different signatures.
Ovl_Overload,
/// This is not an overload because the signature exactly matches
/// an existing declaration.
Ovl_Match,
/// This is not an overload because the lookup results contain a
/// non-function.
Ovl_NonFunction
};
/// Determine whether the given New declaration is an overload of the
/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
/// New and Old cannot be overloaded, e.g., if New has the same signature as
/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
/// functions (or function templates) at all. When it does return Ovl_Match or
/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
/// overloaded with. This decl may be a UsingShadowDecl on top of the
/// underlying declaration.
///
/// Example: Given the following input:
///
/// void f(int, float); // #1
/// void f(int, int); // #2
/// int f(int, int); // #3
///
/// When we process #1, there is no previous declaration of "f", so IsOverload
/// will not be used.
///
/// When we process #2, Old contains only the FunctionDecl for #1. By
/// comparing the parameter types, we see that #1 and #2 are overloaded (since
/// they have different signatures), so this routine returns Ovl_Overload;
/// MatchedDecl is unchanged.
///
/// When we process #3, Old is an overload set containing #1 and #2. We
/// compare the signatures of #3 to #1 (they're overloaded, so we do nothing)
/// and then #3 to #2. Since the signatures of #3 and #2 are identical (return
/// types of functions are not part of the signature), IsOverload returns
/// Ovl_Match and MatchedDecl will be set to point to the FunctionDecl for #2.
///
/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a
/// class by a using declaration. The rules for whether to hide shadow
/// declarations ignore some properties which otherwise figure into a function
/// template's signature.
OverloadKind CheckOverload(Scope *S, FunctionDecl *New,
const LookupResult &OldDecls, NamedDecl *&OldDecl,
bool UseMemberUsingDeclRules);
bool IsOverload(FunctionDecl *New, FunctionDecl *Old,
bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs = true);
// Checks whether MD constitutes an override the base class method BaseMD.
// When checking for overrides, the object object members are ignored.
bool IsOverride(FunctionDecl *MD, FunctionDecl *BaseMD,
bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs = true);
enum class AllowedExplicit {
/// Allow no explicit functions to be used.
None,
/// Allow explicit conversion functions but not explicit constructors.
Conversions,
/// Allow both explicit conversion functions and explicit constructors.
All
};
ImplicitConversionSequence TryImplicitConversion(
Expr *From, QualType ToType, bool SuppressUserConversions,
AllowedExplicit AllowExplicit, bool InOverloadResolution, bool CStyle,
bool AllowObjCWritebackConversion);
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType. Returns the
/// converted expression. Flavor is the kind of conversion we're
/// performing, used in the error message. If @p AllowExplicit,
/// explicit user-defined conversions are permitted.
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action,
bool AllowExplicit = false);
/// IsIntegralPromotion - Determines whether the conversion from the
/// expression From (whose potentially-adjusted type is FromType) to
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
/// sets PromotedType to the promoted type.
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
/// IsFloatingPointPromotion - Determines whether the conversion from
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
/// returns true and sets PromotedType to the promoted type.
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
/// Determine if a conversion is a complex promotion.
///
/// A complex promotion is defined as a complex -> complex conversion
/// where the conversion between the underlying real types is a
/// floating-point or integral promotion.
bool IsComplexPromotion(QualType FromType, QualType ToType);
/// IsPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType,
/// can be converted to the type ToType via a pointer conversion (C++
/// 4.10). If so, returns true and places the converted type (that
/// might differ from ToType in its cv-qualifiers at some level) into
/// ConvertedType.
///
/// This routine also supports conversions to and from block pointers
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
/// pointers to interfaces. FIXME: Once we've determined the
/// appropriate overloading rules for Objective-C, we may want to
/// split the Objective-C checks into a different routine; however,
/// GCC seems to consider all of these conversions to be pointer
/// conversions, so for now they live here. IncompatibleObjC will be
/// set if the conversion is an allowed Objective-C conversion that
/// should result in a warning.
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution, QualType &ConvertedType,
bool &IncompatibleObjC);
/// isObjCPointerConversion - Determines whether this is an
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
/// with the same arguments and return values.
bool isObjCPointerConversion(QualType FromType, QualType ToType,
QualType &ConvertedType, bool &IncompatibleObjC);
bool IsBlockPointerConversion(QualType FromType, QualType ToType,
QualType &ConvertedType);
/// FunctionParamTypesAreEqual - This routine checks two function proto types
/// for equality of their parameter types. Caller has already checked that
/// they have same number of parameters. If the parameters are different,
/// ArgPos will have the parameter index of the first different parameter.
/// If `Reversed` is true, the parameters of `NewType` will be compared in
/// reverse order. That's useful if one of the functions is being used as a
/// C++20 synthesized operator overload with a reversed parameter order.
bool FunctionParamTypesAreEqual(ArrayRef<QualType> Old,
ArrayRef<QualType> New,
unsigned *ArgPos = nullptr,
bool Reversed = false);
bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
const FunctionProtoType *NewType,
unsigned *ArgPos = nullptr,
bool Reversed = false);
bool FunctionNonObjectParamTypesAreEqual(const FunctionDecl *OldFunction,
const FunctionDecl *NewFunction,
unsigned *ArgPos = nullptr,
bool Reversed = false);
/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
/// function types. Catches different number of parameter, mismatch in
/// parameter types, and different return types.
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType,
QualType ToType);
/// CheckPointerConversion - Check the pointer conversion from the
/// expression From to the type ToType. This routine checks for
/// ambiguous or inaccessible derived-to-base pointer
/// conversions for which IsPointerConversion has already returned
/// true. It returns true and produces a diagnostic if there was an
/// error, or returns false otherwise.
bool CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind,
CXXCastPath &BasePath, bool IgnoreBaseAccess,
bool Diagnose = true);
/// IsMemberPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType, can be
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
/// If so, returns true and places the converted type (that might differ from
/// ToType in its cv-qualifiers at some level) into ConvertedType.
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType &ConvertedType);
enum class MemberPointerConversionResult {
Success,
DifferentPointee,
NotDerived,
Ambiguous,
Virtual,
Inaccessible
};
enum class MemberPointerConversionDirection : bool { Downcast, Upcast };
/// CheckMemberPointerConversion - Check the member pointer conversion from
/// the expression From to the type ToType. This routine checks for ambiguous
/// or virtual or inaccessible base-to-derived member pointer conversions for
/// which IsMemberPointerConversion has already returned true. It produces a
// diagnostic if there was an error.
MemberPointerConversionResult CheckMemberPointerConversion(
QualType FromType, const MemberPointerType *ToPtrType, CastKind &Kind,
CXXCastPath &BasePath, SourceLocation CheckLoc, SourceRange OpRange,
bool IgnoreBaseAccess, MemberPointerConversionDirection Direction);
/// IsQualificationConversion - Determines whether the conversion from
/// an rvalue of type FromType to ToType is a qualification conversion
/// (C++ 4.4).
///
/// \param ObjCLifetimeConversion Output parameter that will be set to
/// indicate when the qualification conversion involves a change in the
/// Objective-C object lifetime.
bool IsQualificationConversion(QualType FromType, QualType ToType,
bool CStyle, bool &ObjCLifetimeConversion);
/// Determine whether the conversion from FromType to ToType is a valid
/// conversion that strips "noexcept" or "noreturn" off the nested function
/// type.
bool IsFunctionConversion(QualType FromType, QualType ToType,
QualType &ResultTy);
bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
void DiagnoseUseOfDeletedFunction(SourceLocation Loc, SourceRange Range,
DeclarationName Name,
OverloadCandidateSet &CandidateSet,
FunctionDecl *Fn, MultiExprArg Args,
bool IsMember = false);
ExprResult InitializeExplicitObjectArgument(Sema &S, Expr *Obj,
FunctionDecl *Fun);
ExprResult PerformImplicitObjectArgumentInitialization(
Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl,
CXXMethodDecl *Method);
/// PerformContextuallyConvertToBool - Perform a contextual conversion
/// of the expression From to bool (C++0x [conv]p3).
ExprResult PerformContextuallyConvertToBool(Expr *From);
/// PerformContextuallyConvertToObjCPointer - Perform a contextual
/// conversion of the expression From to an Objective-C pointer type.
/// Returns a valid but null ExprResult if no conversion sequence exists.
ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
/// Contexts in which a converted constant expression is required.
enum CCEKind {
CCEK_CaseValue, ///< Expression in a case label.
CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
CCEK_TemplateArg, ///< Value of a non-type template parameter.
CCEK_InjectedTTP, ///< Injected parameter of a template template parameter.
CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
CCEK_Noexcept, ///< Condition in a noexcept(bool) specifier.
CCEK_StaticAssertMessageSize, ///< Call to size() in a static assert
///< message.
CCEK_StaticAssertMessageData, ///< Call to data() in a static assert
///< message.
};
ExprResult BuildConvertedConstantExpression(Expr *From, QualType T,
CCEKind CCE,
NamedDecl *Dest = nullptr);
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
llvm::APSInt &Value, CCEKind CCE);
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
APValue &Value, CCEKind CCE,
NamedDecl *Dest = nullptr);
/// EvaluateConvertedConstantExpression - Evaluate an Expression
/// That is a converted constant expression
/// (which was built with BuildConvertedConstantExpression)
ExprResult
EvaluateConvertedConstantExpression(Expr *E, QualType T, APValue &Value,
CCEKind CCE, bool RequireInt,
const APValue &PreNarrowingValue);
/// Abstract base class used to perform a contextual implicit
/// conversion from an expression to any type passing a filter.
class ContextualImplicitConverter {
public:
bool Suppress;
bool SuppressConversion;
ContextualImplicitConverter(bool Suppress = false,
bool SuppressConversion = false)
: Suppress(Suppress), SuppressConversion(SuppressConversion) {}
/// Determine whether the specified type is a valid destination type
/// for this conversion.
virtual bool match(QualType T) = 0;
/// Emits a diagnostic complaining that the expression does not have
/// integral or enumeration type.
virtual SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
QualType T) = 0;
/// Emits a diagnostic when the expression has incomplete class type.
virtual SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
/// Emits a diagnostic when the only matching conversion function
/// is explicit.
virtual SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S,
SourceLocation Loc,
QualType T,
QualType ConvTy) = 0;
/// Emits a note for the explicit conversion function.
virtual SemaDiagnosticBuilder
noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
/// Emits a diagnostic when there are multiple possible conversion
/// functions.
virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
QualType T) = 0;
/// Emits a note for one of the candidate conversions.
virtual SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
/// Emits a diagnostic when we picked a conversion function
/// (for cases when we are not allowed to pick a conversion function).
virtual SemaDiagnosticBuilder diagnoseConversion(Sema &S,
SourceLocation Loc,
QualType T,
QualType ConvTy) = 0;
virtual ~ContextualImplicitConverter() {}
};
class ICEConvertDiagnoser : public ContextualImplicitConverter {
bool AllowScopedEnumerations;
public:
ICEConvertDiagnoser(bool AllowScopedEnumerations, bool Suppress,
bool SuppressConversion)
: ContextualImplicitConverter(Suppress, SuppressConversion),
AllowScopedEnumerations(AllowScopedEnumerations) {}
/// Match an integral or (possibly scoped) enumeration type.
bool match(QualType T) override;
SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
QualType T) override {
return diagnoseNotInt(S, Loc, T);
}
/// Emits a diagnostic complaining that the expression does not have
/// integral or enumeration type.
virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) = 0;
};
/// Perform a contextual implicit conversion.
ExprResult
PerformContextualImplicitConversion(SourceLocation Loc, Expr *FromE,
ContextualImplicitConverter &Converter);
/// ReferenceCompareResult - Expresses the result of comparing two
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
enum ReferenceCompareResult {
/// Ref_Incompatible - The two types are incompatible, so direct
/// reference binding is not possible.
Ref_Incompatible = 0,
/// Ref_Related - The two types are reference-related, which means
/// that their unqualified forms (T1 and T2) are either the same
/// or T1 is a base class of T2.
Ref_Related,
/// Ref_Compatible - The two types are reference-compatible.
Ref_Compatible
};
// Fake up a scoped enumeration that still contextually converts to bool.
struct ReferenceConversionsScope {
/// The conversions that would be performed on an lvalue of type T2 when
/// binding a reference of type T1 to it, as determined when evaluating
/// whether T1 is reference-compatible with T2.
enum ReferenceConversions {
Qualification = 0x1,
NestedQualification = 0x2,
Function = 0x4,
DerivedToBase = 0x8,
ObjC = 0x10,
ObjCLifetime = 0x20,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)
};
};
using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
/// determine whether they are reference-compatible,
/// reference-related, or incompatible, for use in C++ initialization by
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
/// type, and the first type (T1) is the pointee type of the reference
/// type being initialized.
ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
ReferenceConversions *Conv = nullptr);
/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments. If
/// @p SuppressUserConversions, then don't allow user-defined
/// conversions via constructors or conversion operators.
///
/// \param PartialOverloading true if we are performing "partial" overloading
/// based on an incomplete set of function arguments. This feature is used by
/// code completion.
void AddOverloadCandidate(
FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
bool PartialOverloading = false, bool AllowExplicit = true,
bool AllowExplicitConversion = false,
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
ConversionSequenceList EarlyConversions = {},
OverloadCandidateParamOrder PO = {},
bool AggregateCandidateDeduction = false, bool StrictPackMatch = false);
/// Add all of the function declarations in the given function set to
/// the overload candidate set.
void AddFunctionCandidates(
const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
bool SuppressUserConversions = false, bool PartialOverloading = false,
bool FirstArgumentIsBase = false);
/// AddMethodCandidate - Adds a named decl (which is some kind of
/// method) as a method candidate to the given overload set.
void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool SuppressUserConversion = false,
OverloadCandidateParamOrder PO = {});
/// AddMethodCandidate - Adds the given C++ member function to the set
/// of candidate functions, using the given function call arguments
/// and the object argument (@c Object). For example, in a call
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
/// allow user-defined conversions via constructors or conversion
/// operators.
void AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false,
ConversionSequenceList EarlyConversions = {},
OverloadCandidateParamOrder PO = {},
bool StrictPackMatch = false);
/// Add a C++ member function template as a candidate to the candidate
/// set, using template argument deduction to produce an appropriate member
/// function template specialization.
void AddMethodTemplateCandidate(
FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
bool PartialOverloading = false, OverloadCandidateParamOrder PO = {});
/// Add a C++ function template specialization as a candidate
/// in the candidate set, using template argument deduction to produce
/// an appropriate function template specialization.
void AddTemplateOverloadCandidate(
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
bool PartialOverloading = false, bool AllowExplicit = true,
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
OverloadCandidateParamOrder PO = {},
bool AggregateCandidateDeduction = false);
/// Check that implicit conversion sequences can be formed for each argument
/// whose corresponding parameter has a non-dependent type, per DR1391's
/// [temp.deduct.call]p10.
bool CheckNonDependentConversions(
FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
ConversionSequenceList &Conversions, bool SuppressUserConversions,
CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
Expr::Classification ObjectClassification = {},
OverloadCandidateParamOrder PO = {});
/// AddConversionCandidate - Add a C++ conversion function as a
/// candidate in the candidate set (C++ [over.match.conv],
/// C++ [over.match.copy]). From is the expression we're converting from,
/// and ToType is the type that we're eventually trying to convert to
/// (which may or may not be the same type as the type that the
/// conversion function produces).
void AddConversionCandidate(
CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
bool AllowExplicit, bool AllowResultConversion = true,
bool StrictPackMatch = false);
/// Adds a conversion function template specialization
/// candidate to the overload set, using template argument deduction
/// to deduce the template arguments of the conversion function
/// template from the type that we are converting to (C++
/// [temp.deduct.conv]).
void AddTemplateConversionCandidate(
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
bool AllowExplicit, bool AllowResultConversion = true);
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
/// converts the given @c Object to a function pointer via the
/// conversion function @c Conversion, and then attempts to call it
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
/// the type of function that we'll eventually be calling.
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
const FunctionProtoType *Proto, Expr *Object,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet);
/// Add all of the non-member operator function declarations in the given
/// function set to the overload candidate set.
void AddNonMemberOperatorCandidates(
const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
/// Add overload candidates for overloaded operators that are
/// member functions.
///
/// Add the overloaded operator candidates that are member functions
/// for the operator Op that was used in an operator expression such
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
/// CandidateSet will store the added overload candidates. (C++
/// [over.match.oper]).
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
OverloadCandidateParamOrder PO = {});
/// AddBuiltinCandidate - Add a candidate for a built-in
/// operator. ResultTy and ParamTys are the result and parameter types
/// of the built-in candidate, respectively. Args and NumArgs are the
/// arguments being passed to the candidate. IsAssignmentOperator
/// should be true when this built-in candidate is an assignment
/// operator. NumContextualBoolArguments is the number of arguments
/// (at the beginning of the argument list) that will be contextually
/// converted to bool.
void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool IsAssignmentOperator = false,
unsigned NumContextualBoolArguments = 0);
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
/// operator overloads to the candidate set (C++ [over.built]), based
/// on the operator @p Op and the arguments given. For example, if the
/// operator is a binary '+', this routine might add "int
/// operator+(int, int)" to cover integer addition.
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet);
/// Add function candidates found via argument-dependent lookup
/// to the set of overloading candidates.
///
/// This routine performs argument-dependent name lookup based on the
/// given function name (which may also be an operator name) and adds
/// all of the overload candidates found by ADL to the overload
/// candidate set (C++ [basic.lookup.argdep]).
void AddArgumentDependentLookupCandidates(
DeclarationName Name, SourceLocation Loc, ArrayRef<Expr *> Args,
TemplateArgumentListInfo *ExplicitTemplateArgs,
OverloadCandidateSet &CandidateSet, bool PartialOverloading = false);
/// Check the enable_if expressions on the given function. Returns the first
/// failing attribute, or NULL if they were all successful.
EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
ArrayRef<Expr *> Args,
bool MissingImplicitThis = false);
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
/// non-ArgDependent DiagnoseIfAttrs.
///
/// Argument-dependent diagnose_if attributes should be checked each time a
/// function is used as a direct callee of a function call.
///
/// Returns true if any errors were emitted.
bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
const Expr *ThisArg,
ArrayRef<const Expr *> Args,
SourceLocation Loc);
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
/// ArgDependent DiagnoseIfAttrs.
///
/// Argument-independent diagnose_if attributes should be checked on every use
/// of a function.
///
/// Returns true if any errors were emitted.
bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
SourceLocation Loc);
/// Determine if \p A and \p B are equivalent internal linkage declarations
/// from different modules, and thus an ambiguity error can be downgraded to
/// an extension warning.
bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
const NamedDecl *B);
void diagnoseEquivalentInternalLinkageDeclarations(
SourceLocation Loc, const NamedDecl *D,
ArrayRef<const NamedDecl *> Equiv);
// Emit as a 'note' the specific overload candidate
void NoteOverloadCandidate(
const NamedDecl *Found, const FunctionDecl *Fn,
OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
QualType DestType = QualType(), bool TakingAddress = false);
// Emit as a series of 'note's all template and non-templates identified by
// the expression Expr
void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
bool TakingAddress = false);
/// Returns whether the given function's address can be taken or not,
/// optionally emitting a diagnostic if the address can't be taken.
///
/// Returns false if taking the address of the function is illegal.
bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
bool Complain = false,
SourceLocation Loc = SourceLocation());
// [PossiblyAFunctionType] --> [Return]
// NonFunctionType --> NonFunctionType
// R (A) --> R(A)
// R (*)(A) --> R (A)
// R (&)(A) --> R (A)
// R (S::*)(A) --> R (A)
QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
/// an overloaded function (C++ [over.over]), where @p From is an
/// expression with overloaded function type and @p ToType is the type
/// we're trying to resolve to. For example:
///
/// @code
/// int f(double);
/// int f(int);
///
/// int (*pfd)(double) = f; // selects f(double)
/// @endcode
///
/// This routine returns the resulting FunctionDecl if it could be
/// resolved, and NULL otherwise. When @p Complain is true, this
/// routine will emit diagnostics if there is an error.
FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
bool Complain, DeclAccessPair &Found,
bool *pHadMultipleCandidates = nullptr);
/// Given an expression that refers to an overloaded function, try to
/// resolve that function to a single function that can have its address
/// taken. This will modify `Pair` iff it returns non-null.
///
/// This routine can only succeed if from all of the candidates in the
/// overload set for SrcExpr that can have their addresses taken, there is one
/// candidate that is more constrained than the rest.
FunctionDecl *
resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
/// Given an overloaded function, tries to turn it into a non-overloaded
/// function reference using resolveAddressOfSingleOverloadCandidate. This
/// will perform access checks, diagnose the use of the resultant decl, and,
/// if requested, potentially perform a function-to-pointer decay.
///
/// Returns false if resolveAddressOfSingleOverloadCandidate fails.
/// Otherwise, returns true. This may emit diagnostics and return true.
bool resolveAndFixAddressOfSingleOverloadCandidate(
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
/// Given an expression that refers to an overloaded function, try to
/// resolve that overloaded function expression down to a single function.
///
/// This routine can only resolve template-ids that refer to a single function
/// template, where that template-id refers to a single template whose
/// template arguments are either provided by the template-id or have
/// defaults, as described in C++0x [temp.arg.explicit]p3.
///
/// If no template-ids are found, no diagnostics are emitted and NULL is
/// returned.
FunctionDecl *ResolveSingleFunctionTemplateSpecialization(
OverloadExpr *ovl, bool Complain = false, DeclAccessPair *Found = nullptr,
TemplateSpecCandidateSet *FailedTSC = nullptr,
bool ForTypeDeduction = false);
// Resolve and fix an overloaded expression that can be resolved
// because it identifies a single function template specialization.
//
// Last three arguments should only be supplied if Complain = true
//
// Return true if it was logically possible to so resolve the
// expression, regardless of whether or not it succeeded. Always
// returns true if 'complain' is set.
bool ResolveAndFixSingleFunctionTemplateSpecialization(
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false,
bool Complain = false, SourceRange OpRangeForComplaining = SourceRange(),
QualType DestTypeForComplaining = QualType(),
unsigned DiagIDForComplaining = 0);
/// Add the overload candidates named by callee and/or found by argument
/// dependent lookup to the given overload set.
void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool PartialOverloading = false);
/// Add the call candidates from the given set of lookup results to the given
/// overload set. Non-function lookup results are ignored.
void AddOverloadedCallCandidates(
LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
// An enum used to represent the different possible results of building a
// range-based for loop.
enum ForRangeStatus {
FRS_Success,
FRS_NoViableFunction,
FRS_DiagnosticIssued
};
/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
/// given LookupResult is non-empty, it is assumed to describe a member which
/// will be invoked. Otherwise, the function will be found via argument
/// dependent lookup.
/// CallExpr is set to a valid expression and FRS_Success returned on success,
/// otherwise CallExpr is set to ExprError() and some non-success value
/// is returned.
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
SourceLocation RangeLoc,
const DeclarationNameInfo &NameInfo,
LookupResult &MemberLookup,
OverloadCandidateSet *CandidateSet,
Expr *Range, ExprResult *CallExpr);
/// BuildOverloadedCallExpr - Given the call expression that calls Fn
/// (which eventually refers to the declaration Func) and the call
/// arguments Args/NumArgs, attempt to resolve the function call down
/// to a specific function. If overload resolution succeeds, returns
/// the call expression produced by overload resolution.
/// Otherwise, emits diagnostics and returns ExprError.
ExprResult BuildOverloadedCallExpr(
Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc,
MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig,
bool AllowTypoCorrection = true, bool CalleesAddressIsTaken = false);
/// Constructs and populates an OverloadedCandidateSet from
/// the given function.
/// \returns true when an the ExprResult output parameter has been set.
bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
MultiExprArg Args, SourceLocation RParenLoc,
OverloadCandidateSet *CandidateSet,
ExprResult *Result);
ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc NNSLoc,
DeclarationNameInfo DNI,
const UnresolvedSetImpl &Fns,
bool PerformADL = true);
/// Create a unary operation that may resolve to an overloaded
/// operator.
///
/// \param OpLoc The location of the operator itself (e.g., '*').
///
/// \param Opc The UnaryOperatorKind that describes this operator.
///
/// \param Fns The set of non-member functions that will be
/// considered by overload resolution. The caller needs to build this
/// set based on the context using, e.g.,
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
/// set should not contain any member functions; those will be added
/// by CreateOverloadedUnaryOp().
///
/// \param Input The input argument.
ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
UnaryOperatorKind Opc,
const UnresolvedSetImpl &Fns, Expr *input,
bool RequiresADL = true);
/// Perform lookup for an overloaded binary operator.
void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
OverloadedOperatorKind Op,
const UnresolvedSetImpl &Fns,
ArrayRef<Expr *> Args, bool RequiresADL = true);
/// Create a binary operation that may resolve to an overloaded
/// operator.
///
/// \param OpLoc The location of the operator itself (e.g., '+').
///
/// \param Opc The BinaryOperatorKind that describes this operator.
///
/// \param Fns The set of non-member functions that will be
/// considered by overload resolution. The caller needs to build this
/// set based on the context using, e.g.,
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
/// set should not contain any member functions; those will be added
/// by CreateOverloadedBinOp().
///
/// \param LHS Left-hand argument.
/// \param RHS Right-hand argument.
/// \param PerformADL Whether to consider operator candidates found by ADL.
/// \param AllowRewrittenCandidates Whether to consider candidates found by
/// C++20 operator rewrites.
/// \param DefaultedFn If we are synthesizing a defaulted operator function,
/// the function in question. Such a function is never a candidate in
/// our overload resolution. This also enables synthesizing a three-way
/// comparison from < and == as described in C++20 [class.spaceship]p1.
ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
const UnresolvedSetImpl &Fns, Expr *LHS,
Expr *RHS, bool RequiresADL = true,
bool AllowRewrittenCandidates = true,
FunctionDecl *DefaultedFn = nullptr);
ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
const UnresolvedSetImpl &Fns,
Expr *LHS, Expr *RHS,
FunctionDecl *DefaultedFn);
ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
SourceLocation RLoc, Expr *Base,
MultiExprArg Args);
/// BuildCallToMemberFunction - Build a call to a member
/// function. MemExpr is the expression that refers to the member
/// function (and includes the object parameter), Args/NumArgs are the
/// arguments to the function call (not including the object
/// parameter). The caller needs to validate that the member
/// expression refers to a non-static member function or an overloaded
/// member function.
ExprResult BuildCallToMemberFunction(
Scope *S, Expr *MemExpr, SourceLocation LParenLoc, MultiExprArg Args,
SourceLocation RParenLoc, Expr *ExecConfig = nullptr,
bool IsExecConfig = false, bool AllowRecovery = false);
/// BuildCallToObjectOfClassType - Build a call to an object of class
/// type (C++ [over.call.object]), which can end up invoking an
/// overloaded function call operator (@c operator()) or performing a
/// user-defined conversion on the object argument.
ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc);
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
/// (if one exists), where @c Base is an expression of class type and
/// @c Member is the name of the member we're trying to find.
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
bool *NoArrowOperatorFound = nullptr);
ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
CXXConversionDecl *Method,
bool HadMultipleCandidates);
/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call
/// to a literal operator described by the provided lookup results.
ExprResult BuildLiteralOperatorCall(
LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef<Expr *> Args,
SourceLocation LitEndLoc,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
/// FixOverloadedFunctionReference - E is an expression that refers to
/// a C++ overloaded function (possibly with some parentheses and
/// perhaps a '&' around it). We have resolved the overloaded function
/// to the function declaration Fn, so patch up the expression E to
/// refer (possibly indirectly) to Fn. Returns the new expr.
ExprResult FixOverloadedFunctionReference(Expr *E, DeclAccessPair FoundDecl,
FunctionDecl *Fn);
ExprResult FixOverloadedFunctionReference(ExprResult,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
/// - Returns a selector which best matches given argument list or
/// nullptr if none could be found
ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
bool IsInstance,
SmallVectorImpl<ObjCMethodDecl *> &Methods);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Statements
/// Implementations are in SemaStmt.cpp
///@{
public:
/// Stack of active SEH __finally scopes. Can be empty.
SmallVector<Scope *, 2> CurrentSEHFinally;
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
StmtResult ActOnExprStmtError();
StmtResult ActOnNullStmt(SourceLocation SemiLoc,
bool HasLeadingEmptyMacro = false);
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc,
SourceLocation EndLoc);
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
/// whose result is unused, warn.
void DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID);
void ActOnStartOfCompoundStmt(bool IsStmtExpr);
void ActOnAfterCompoundStatementLeadingPragmas();
void ActOnFinishOfCompoundStmt();
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
ArrayRef<Stmt *> Elts, bool isStmtExpr);
sema::CompoundScopeInfo &getCurCompoundScope() const;
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
SourceLocation DotDotDotLoc, ExprResult RHS,
SourceLocation ColonLoc);
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc, Stmt *SubStmt,
Scope *CurScope);
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
SourceLocation ColonLoc, Stmt *SubStmt);
StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
StmtResult ActOnAttributedStmt(const ParsedAttributes &AttrList,
Stmt *SubStmt);
/// Check whether the given statement can have musttail applied to it,
/// issuing a diagnostic and returning false if not. In the success case,
/// the statement is rewritten to remove implicit nodes from the return
/// value.
bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
StmtResult ActOnIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
StmtResult BuildIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond,
SourceLocation RParenLoc);
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
Stmt *Body);
/// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
/// integer not in the range of enum values.
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
Expr *SrcExpr);
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *Body);
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc, SourceLocation CondLParen,
Expr *Cond, SourceLocation CondRParen);
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
Stmt *First, ConditionResult Second,
FullExprArg Third, SourceLocation RParenLoc,
Stmt *Body);
/// In an Objective C collection iteration statement:
/// for (x in y)
/// x can be an arbitrary l-value expression. Bind it up as a
/// full-expression.
StmtResult ActOnForEachLValueExpr(Expr *E);
enum BuildForRangeKind {
/// Initial building of a for-range statement.
BFRK_Build,
/// Instantiation or recovery rebuild of a for-range statement. Don't
/// attempt any typo-correction.
BFRK_Rebuild,
/// Determining whether a for-range statement could be built. Avoid any
/// unnecessary or irreversible actions.
BFRK_Check
};
/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
///
/// C++11 [stmt.ranged]:
/// A range-based for statement is equivalent to
///
/// {
/// auto && __range = range-init;
/// for ( auto __begin = begin-expr,
/// __end = end-expr;
/// __begin != __end;
/// ++__begin ) {
/// for-range-declaration = *__begin;
/// statement
/// }
/// }
///
/// The body of the loop is not available yet, since it cannot be analysed
/// until we have determined the type of the for-range-declaration.
StmtResult ActOnCXXForRangeStmt(
Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc,
Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection,
SourceLocation RParenLoc, BuildForRangeKind Kind,
ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps = {});
/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
StmtResult BuildCXXForRangeStmt(
SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt,
SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End,
Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc,
BuildForRangeKind Kind,
ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps = {});
/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
/// body cannot be performed until after the type of the range variable is
/// determined.
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
LabelDecl *TheDecl);
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc, Expr *DestExp);
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
struct NamedReturnInfo {
const VarDecl *Candidate;
enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
Status S;
bool isMoveEligible() const { return S != None; };
bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
};
enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
/// Determine whether the given expression might be move-eligible or
/// copy-elidable in either a (co_)return statement or throw expression,
/// without considering function return type, if applicable.
///
/// \param E The expression being returned from the function or block,
/// being thrown, or being co_returned from a coroutine. This expression
/// might be modified by the implementation.
///
/// \param Mode Overrides detection of current language mode
/// and uses the rules for C++23.
///
/// \returns An aggregate which contains the Candidate and isMoveEligible
/// and isCopyElidable methods. If Candidate is non-null, it means
/// isMoveEligible() would be true under the most permissive language
/// standard.
NamedReturnInfo getNamedReturnInfo(
Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
/// Determine whether the given NRVO candidate variable is move-eligible or
/// copy-elidable, without considering function return type.
///
/// \param VD The NRVO candidate variable.
///
/// \returns An aggregate which contains the Candidate and isMoveEligible
/// and isCopyElidable methods. If Candidate is non-null, it means
/// isMoveEligible() would be true under the most permissive language
/// standard.
NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
/// Updates given NamedReturnInfo's move-eligible and
/// copy-elidable statuses, considering the function
/// return type criteria as applicable to return statements.
///
/// \param Info The NamedReturnInfo object to update.
///
/// \param ReturnType This is the return type of the function.
/// \returns The copy elision candidate, in case the initial return expression
/// was copy elidable, or nullptr otherwise.
const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
QualType ReturnType);
/// Perform the initialization of a potentially-movable value, which
/// is the result of return value.
///
/// This routine implements C++20 [class.copy.elision]p3, which attempts to
/// treat returned lvalues as rvalues in certain cases (to prefer move
/// construction), then falls back to treating them as lvalues if that failed.
ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
const NamedReturnInfo &NRInfo, Expr *Value,
bool SupressSimplerImplicitMoves = false);
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
/// Deduce the return type for a function from a returned expression, per
/// C++1y [dcl.spec.auto]p6.
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
SourceLocation ReturnLoc, Expr *RetExpr,
const AutoType *AT);
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
Scope *CurScope);
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
bool AllowRecovery = false);
/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
/// for capturing scopes.
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
NamedReturnInfo &NRInfo,
bool SupressSimplerImplicitMoves);
/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
/// and creates a proper catch handler from them.
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
Stmt *HandlerBlock);
/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
/// handlers and creates a try statement from them.
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
ArrayRef<Stmt *> Handlers);
StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
SourceLocation TryLoc, Stmt *TryBlock,
Stmt *Handler);
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
Stmt *Block);
void ActOnStartSEHFinallyBlock();
void ActOnAbortSEHFinallyBlock();
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested);
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists, CXXScopeSpec &SS,
UnqualifiedId &Name, Stmt *Nested);
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind, unsigned NumParams);
typedef std::pair<StringRef, QualType> CapturedParamNameType;
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind,
ArrayRef<CapturedParamNameType> Params,
unsigned OpenMPCaptureLevel = 0);
StmtResult ActOnCapturedRegionEnd(Stmt *S);
void ActOnCapturedRegionError();
RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
SourceLocation Loc,
unsigned NumParams);
private:
/// Check whether the given statement can have musttail applied to it,
/// issuing a diagnostic and returning false if not.
bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
/// Check if the given expression contains 'break' or 'continue'
/// statement that produces control flow different from GCC.
void CheckBreakContinueBinding(Expr *E);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name `inline asm` Statement
/// Implementations are in SemaStmtAsm.cpp
///@{
public:
ExprResult ActOnGCCAsmStmtString(Expr *Stm, bool ForAsmLabel);
StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg Constraints, MultiExprArg Exprs,
Expr *AsmString, MultiExprArg Clobbers,
unsigned NumLabels, SourceLocation RParenLoc);
void FillInlineAsmIdentifierInfo(Expr *Res,
llvm::InlineAsmIdentifierInfo &Info);
ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Id,
bool IsUnevaluatedContext);
bool LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset,
SourceLocation AsmLoc);
ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
SourceLocation AsmLoc);
StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks, StringRef AsmString,
unsigned NumOutputs, unsigned NumInputs,
ArrayRef<StringRef> Constraints,
ArrayRef<StringRef> Clobbers,
ArrayRef<Expr *> Exprs, SourceLocation EndLoc);
LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
SourceLocation Location, bool AlwaysCreate);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Statement Attribute Handling
/// Implementations are in SemaStmtAttr.cpp
///@{
public:
bool CheckNoInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
const AttributeCommonInfo &A);
bool CheckAlwaysInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
const AttributeCommonInfo &A);
CodeAlignAttr *BuildCodeAlignAttr(const AttributeCommonInfo &CI, Expr *E);
bool CheckRebuiltStmtAttributes(ArrayRef<const Attr *> Attrs);
/// Process the attributes before creating an attributed statement. Returns
/// the semantic attributes that have been processed.
void ProcessStmtAttributes(Stmt *Stmt, const ParsedAttributes &InAttrs,
SmallVectorImpl<const Attr *> &OutAttrs);
ExprResult ActOnCXXAssumeAttr(Stmt *St, const ParsedAttr &A,
SourceRange Range);
ExprResult BuildCXXAssumeExpr(Expr *Assumption,
const IdentifierInfo *AttrName,
SourceRange Range);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Templates
/// Implementations are in SemaTemplate.cpp
///@{
public:
// Saves the current floating-point pragma stack and clear it in this Sema.
class FpPragmaStackSaveRAII {
public:
FpPragmaStackSaveRAII(Sema &S)
: S(S), SavedStack(std::move(S.FpPragmaStack)) {
S.FpPragmaStack.Stack.clear();
}
~FpPragmaStackSaveRAII() { S.FpPragmaStack = std::move(SavedStack); }
private:
Sema &S;
PragmaStack<FPOptionsOverride> SavedStack;
};
void resetFPOptions(FPOptions FPO) {
CurFPFeatures = FPO;
FpPragmaStack.CurrentValue = FPO.getChangesFrom(FPOptions(LangOpts));
}
ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
return llvm::ArrayRef(InventedParameterInfos.begin() +
InventedParameterInfosStart,
InventedParameterInfos.end());
}
/// The number of SFINAE diagnostics that have been trapped.
unsigned NumSFINAEErrors;
ArrayRef<sema::FunctionScopeInfo *> getFunctionScopes() const {
return llvm::ArrayRef(FunctionScopes.begin() + FunctionScopesStart,
FunctionScopes.end());
}
typedef llvm::MapVector<const FunctionDecl *,
std::unique_ptr<LateParsedTemplate>>
LateParsedTemplateMapT;
LateParsedTemplateMapT LateParsedTemplateMap;
/// Determine the number of levels of enclosing template parameters. This is
/// only usable while parsing. Note that this does not include dependent
/// contexts in which no template parameters have yet been declared, such as
/// in a terse function template or generic lambda before the first 'auto' is
/// encountered.
unsigned getTemplateDepth(Scope *S) const;
void FilterAcceptableTemplateNames(LookupResult &R,
bool AllowFunctionTemplates = true,
bool AllowDependent = true);
bool hasAnyAcceptableTemplateNames(LookupResult &R,
bool AllowFunctionTemplates = true,
bool AllowDependent = true,
bool AllowNonTemplateFunctions = false);
/// Try to interpret the lookup result D as a template-name.
///
/// \param D A declaration found by name lookup.
/// \param AllowFunctionTemplates Whether function templates should be
/// considered valid results.
/// \param AllowDependent Whether unresolved using declarations (that might
/// name templates) should be considered valid results.
static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
bool AllowFunctionTemplates = true,
bool AllowDependent = true);
enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
/// Whether and why a template name is required in this lookup.
class RequiredTemplateKind {
public:
/// Template name is required if TemplateKWLoc is valid.
RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
: TemplateKW(TemplateKWLoc) {}
/// Template name is unconditionally required.
RequiredTemplateKind(TemplateNameIsRequiredTag) {}
SourceLocation getTemplateKeywordLoc() const {
return TemplateKW.value_or(SourceLocation());
}
bool hasTemplateKeyword() const {
return getTemplateKeywordLoc().isValid();
}
bool isRequired() const { return TemplateKW != SourceLocation(); }
explicit operator bool() const { return isRequired(); }
private:
std::optional<SourceLocation> TemplateKW;
};
enum class AssumedTemplateKind {
/// This is not assumed to be a template name.
None,
/// This is assumed to be a template name because lookup found nothing.
FoundNothing,
/// This is assumed to be a template name because lookup found one or more
/// functions (but no function templates).
FoundFunctions,
};
bool
LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS,
QualType ObjectType, bool EnteringContext,
RequiredTemplateKind RequiredTemplate = SourceLocation(),
AssumedTemplateKind *ATK = nullptr,
bool AllowTypoCorrection = true);
TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS,
bool hasTemplateKeyword,
const UnqualifiedId &Name,
ParsedType ObjectType, bool EnteringContext,
TemplateTy &Template,
bool &MemberOfUnknownSpecialization,
bool Disambiguation = false);
/// Try to resolve an undeclared template name as a type template.
///
/// Sets II to the identifier corresponding to the template name, and updates
/// Name to a corresponding (typo-corrected) type template name and TNK to
/// the corresponding kind, if possible.
void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
TemplateNameKind &TNK,
SourceLocation NameLoc,
IdentifierInfo *&II);
bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
SourceLocation NameLoc,
bool Diagnose = true);
/// Determine whether a particular identifier might be the name in a C++1z
/// deduction-guide declaration.
bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
SourceLocation NameLoc, CXXScopeSpec &SS,
ParsedTemplateTy *Template = nullptr);
bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
SourceLocation IILoc, Scope *S,
const CXXScopeSpec *SS,
TemplateTy &SuggestedTemplate,
TemplateNameKind &SuggestedKind);
/// Determine whether we would be unable to instantiate this template (because
/// it either has no definition, or is in the process of being instantiated).
bool DiagnoseUninstantiableTemplate(
SourceLocation PointOfInstantiation, NamedDecl *Instantiation,
bool InstantiatedFromMember, const NamedDecl *Pattern,
const NamedDecl *PatternDef, TemplateSpecializationKind TSK,
bool Complain = true, bool *Unreachable = nullptr);
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
/// that the template parameter 'PrevDecl' is being shadowed by a new
/// declaration at location Loc. Returns true to indicate that this is
/// an error, and false otherwise.
///
/// \param Loc The location of the declaration that shadows a template
/// parameter.
///
/// \param PrevDecl The template parameter that the declaration shadows.
///
/// \param SupportedForCompatibility Whether to issue the diagnostic as
/// a warning for compatibility with older versions of clang.
/// Ignored when MSVC compatibility is enabled.
void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl,
bool SupportedForCompatibility = false);
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
/// the parameter D to reference the templated declaration and return a
/// pointer to the template declaration. Otherwise, do nothing to D and return
/// null.
TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
/// ActOnTypeParameter - Called when a C++ template type parameter
/// (e.g., "typename T") has been parsed. Typename specifies whether
/// the keyword "typename" was used to declare the type parameter
/// (otherwise, "class" was used), and KeyLoc is the location of the
/// "class" or "typename" keyword. ParamName is the name of the
/// parameter (NULL indicates an unnamed template parameter) and
/// ParamNameLoc is the location of the parameter name (if any).
/// If the type parameter has a default argument, it will be added
/// later via ActOnTypeParameterDefault.
NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc, unsigned Depth,
unsigned Position, SourceLocation EqualLoc,
ParsedType DefaultArg, bool HasTypeConstraint);
bool CheckTypeConstraint(TemplateIdAnnotation *TypeConstraint);
bool ActOnTypeConstraint(const CXXScopeSpec &SS,
TemplateIdAnnotation *TypeConstraint,
TemplateTypeParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc);
bool BuildTypeConstraint(const CXXScopeSpec &SS,
TemplateIdAnnotation *TypeConstraint,
TemplateTypeParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc,
bool AllowUnexpandedPack);
/// Attach a type-constraint to a template parameter.
/// \returns true if an error occurred. This can happen if the
/// immediately-declared constraint could not be formed (e.g. incorrect number
/// of arguments for the named concept).
bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
DeclarationNameInfo NameInfo,
ConceptDecl *NamedConcept, NamedDecl *FoundDecl,
const TemplateArgumentListInfo *TemplateArgs,
TemplateTypeParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc);
bool AttachTypeConstraint(AutoTypeLoc TL,
NonTypeTemplateParmDecl *NewConstrainedParm,
NonTypeTemplateParmDecl *OrigConstrainedParm,
SourceLocation EllipsisLoc);
/// Require the given type to be a structural type, and diagnose if it is not.
///
/// \return \c true if an error was produced.
bool RequireStructuralType(QualType T, SourceLocation Loc);
/// Check that the type of a non-type template parameter is
/// well-formed.
///
/// \returns the (possibly-promoted) parameter type if valid;
/// otherwise, produces a diagnostic and returns a NULL type.
QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
SourceLocation Loc);
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth, unsigned Position,
SourceLocation EqualLoc,
Expr *DefaultArg);
/// ActOnTemplateTemplateParameter - Called when a C++ template template
/// parameter (e.g. T in template <template \<typename> class T> class array)
/// has been parsed. S is the current scope.
NamedDecl *ActOnTemplateTemplateParameter(
Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params,
bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *ParamName,
SourceLocation ParamNameLoc, unsigned Depth, unsigned Position,
SourceLocation EqualLoc, ParsedTemplateArgument DefaultArg);
/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
/// constrained by RequiresClause, that contains the template parameters in
/// Params.
TemplateParameterList *ActOnTemplateParameterList(
unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc,
SourceLocation LAngleLoc, ArrayRef<NamedDecl *> Params,
SourceLocation RAngleLoc, Expr *RequiresClause);
/// The context in which we are checking a template parameter list.
enum TemplateParamListContext {
// For this context, Class, Variable, TypeAlias, and non-pack Template
// Template Parameters are treated uniformly.
TPC_Other,
TPC_FunctionTemplate,
TPC_ClassTemplateMember,
TPC_FriendClassTemplate,
TPC_FriendFunctionTemplate,
TPC_FriendFunctionTemplateDefinition,
TPC_TemplateTemplateParameterPack,
};
/// Checks the validity of a template parameter list, possibly
/// considering the template parameter list from a previous
/// declaration.
///
/// If an "old" template parameter list is provided, it must be
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
/// template parameter list.
///
/// \param NewParams Template parameter list for a new template
/// declaration. This template parameter list will be updated with any
/// default arguments that are carried through from the previous
/// template parameter list.
///
/// \param OldParams If provided, template parameter list from a
/// previous declaration of the same template. Default template
/// arguments will be merged from the old template parameter list to
/// the new template parameter list.
///
/// \param TPC Describes the context in which we are checking the given
/// template parameter list.
///
/// \param SkipBody If we might have already made a prior merged definition
/// of this template visible, the corresponding body-skipping information.
/// Default argument redefinition is not an error when skipping such a body,
/// because (under the ODR) we can assume the default arguments are the same
/// as the prior merged definition.
///
/// \returns true if an error occurred, false otherwise.
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams,
TemplateParamListContext TPC,
SkipBodyInfo *SkipBody = nullptr);
/// Match the given template parameter lists to the given scope
/// specifier, returning the template parameter list that applies to the
/// name.
///
/// \param DeclStartLoc the start of the declaration that has a scope
/// specifier or a template parameter list.
///
/// \param DeclLoc The location of the declaration itself.
///
/// \param SS the scope specifier that will be matched to the given template
/// parameter lists. This scope specifier precedes a qualified name that is
/// being declared.
///
/// \param TemplateId The template-id following the scope specifier, if there
/// is one. Used to check for a missing 'template<>'.
///
/// \param ParamLists the template parameter lists, from the outermost to the
/// innermost template parameter lists.
///
/// \param IsFriend Whether to apply the slightly different rules for
/// matching template parameters to scope specifiers in friend
/// declarations.
///
/// \param IsMemberSpecialization will be set true if the scope specifier
/// denotes a fully-specialized type, and therefore this is a declaration of
/// a member specialization.
///
/// \returns the template parameter list, if any, that corresponds to the
/// name that is preceded by the scope specifier @p SS. This template
/// parameter list may have template parameters (if we're declaring a
/// template) or may have no template parameters (if we're declaring a
/// template specialization), or may be NULL (if what we're declaring isn't
/// itself a template).
TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
SourceLocation DeclStartLoc, SourceLocation DeclLoc,
const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
bool &IsMemberSpecialization, bool &Invalid,
bool SuppressDiagnostic = false);
/// Returns the template parameter list with all default template argument
/// information.
TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD);
DeclResult CheckClassTemplate(
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
TemplateParameterList **OuterTemplateParamLists,
SkipBodyInfo *SkipBody = nullptr);
/// Translates template arguments as provided by the parser
/// into template arguments used by semantic analysis.
void translateTemplateArguments(const ASTTemplateArgsPtr &In,
TemplateArgumentListInfo &Out);
/// Convert a parsed type into a parsed template argument. This is mostly
/// trivial, except that we may have parsed a C++17 deduced class template
/// specialization type, in which case we should form a template template
/// argument instead of a type template argument.
ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
void NoteAllFoundTemplates(TemplateName Name);
QualType CheckTemplateIdType(TemplateName Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs);
TypeResult
ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
TemplateTy Template, const IdentifierInfo *TemplateII,
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
bool IsCtorOrDtorName = false, bool IsClassName = false,
ImplicitTypenameContext AllowImplicitTypename =
ImplicitTypenameContext::No);
/// Parsed an elaborated-type-specifier that refers to a template-id,
/// such as \c class T::template apply<U>.
TypeResult ActOnTagTemplateIdType(
TagUseKind TUK, TypeSpecifierType TagSpec, SourceLocation TagLoc,
CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateD,
SourceLocation TemplateLoc, SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc);
DeclResult ActOnVarTemplateSpecialization(
Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous,
SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
StorageClass SC, bool IsPartialSpecialization);
/// Get the specialization of the given variable template corresponding to
/// the specified argument list, or a null-but-valid result if the arguments
/// are dependent.
DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation TemplateNameLoc,
const TemplateArgumentListInfo &TemplateArgs);
/// Form a reference to the specialization of the given variable template
/// corresponding to the specified argument list, or a null-but-valid result
/// if the arguments are dependent.
ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
VarTemplateDecl *Template, NamedDecl *FoundD,
SourceLocation TemplateLoc,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult
CheckConceptTemplateId(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &ConceptNameInfo,
NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
const TemplateArgumentListInfo *TemplateArgs);
void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
void diagnoseMissingTemplateArguments(const CXXScopeSpec &SS,
bool TemplateKeyword, TemplateDecl *TD,
SourceLocation Loc);
ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc, LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo *TemplateArgs);
// We actually only call this from template instantiation.
ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
bool IsAddressOfOperand);
/// Form a template name from a name that is syntactically required to name a
/// template, either due to use of the 'template' keyword or because a name in
/// this syntactic context is assumed to name a template (C++
/// [temp.names]p2-4).
///
/// This action forms a template name given the name of the template and its
/// optional scope specifier. This is used when the 'template' keyword is used
/// or when the parsing context unambiguously treats a following '<' as
/// introducing a template argument list. Note that this may produce a
/// non-dependent template name if we can perform the lookup now and identify
/// the named template.
///
/// For example, given "x.MetaFun::template apply", the scope specifier
/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
/// of the "template" keyword, and "apply" is the \p Name.
TemplateNameKind ActOnTemplateName(Scope *S, CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext, TemplateTy &Template,
bool AllowInjectedClassName = false);
DeclResult ActOnClassTemplateSpecialization(
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
MultiTemplateParamsArg TemplateParameterLists,
SkipBodyInfo *SkipBody = nullptr);
/// Check the non-type template arguments of a class template
/// partial specialization according to C++ [temp.class.spec]p9.
///
/// \param TemplateNameLoc the location of the template name.
/// \param PrimaryTemplate the template parameters of the primary class
/// template.
/// \param NumExplicit the number of explicitly-specified template arguments.
/// \param TemplateArgs the template arguments of the class template
/// partial specialization.
///
/// \returns \c true if there was an error, \c false otherwise.
bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
TemplateDecl *PrimaryTemplate,
unsigned NumExplicitArgs,
ArrayRef<TemplateArgument> Args);
void CheckTemplatePartialSpecialization(
ClassTemplatePartialSpecializationDecl *Partial);
void CheckTemplatePartialSpecialization(
VarTemplatePartialSpecializationDecl *Partial);
Decl *ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
/// Diagnose cases where we have an explicit template specialization
/// before/after an explicit template instantiation, producing diagnostics
/// for those cases where they are required and determining whether the
/// new specialization/instantiation will have any effect.
///
/// \param NewLoc the location of the new explicit specialization or
/// instantiation.
///
/// \param NewTSK the kind of the new explicit specialization or
/// instantiation.
///
/// \param PrevDecl the previous declaration of the entity.
///
/// \param PrevTSK the kind of the old explicit specialization or
/// instantiatin.
///
/// \param PrevPointOfInstantiation if valid, indicates where the previous
/// declaration was instantiated (either implicitly or explicitly).
///
/// \param HasNoEffect will be set to true to indicate that the new
/// specialization or instantiation has no effect and should be ignored.
///
/// \returns true if there was an error that should prevent the introduction
/// of the new declaration into the AST, false otherwise.
bool CheckSpecializationInstantiationRedecl(
SourceLocation NewLoc,
TemplateSpecializationKind ActOnExplicitInstantiationNewTSK,
NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK,
SourceLocation PrevPtOfInstantiation, bool &SuppressNew);
/// Perform semantic analysis for the given dependent function
/// template specialization.
///
/// The only possible way to get a dependent function template specialization
/// is with a friend declaration, like so:
///
/// \code
/// template \<class T> void foo(T);
/// template \<class T> class A {
/// friend void foo<>(T);
/// };
/// \endcode
///
/// There really isn't any useful analysis we can do here, so we
/// just store the information.
bool CheckDependentFunctionTemplateSpecialization(
FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
LookupResult &Previous);
/// Perform semantic analysis for the given function template
/// specialization.
///
/// This routine performs all of the semantic analysis required for an
/// explicit function template specialization. On successful completion,
/// the function declaration \p FD will become a function template
/// specialization.
///
/// \param FD the function declaration, which will be updated to become a
/// function template specialization.
///
/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
/// if any. Note that this may be valid info even when 0 arguments are
/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
/// as it anyway contains info on the angle brackets locations.
///
/// \param Previous the set of declarations that may be specialized by
/// this function specialization.
///
/// \param QualifiedFriend whether this is a lookup for a qualified friend
/// declaration with no explicit template argument list that might be
/// befriending a function template specialization.
bool CheckFunctionTemplateSpecialization(
FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
LookupResult &Previous, bool QualifiedFriend = false);
/// Perform semantic analysis for the given non-template member
/// specialization.
///
/// This routine performs all of the semantic analysis required for an
/// explicit member function specialization. On successful completion,
/// the function declaration \p FD will become a member function
/// specialization.
///
/// \param Member the member declaration, which will be updated to become a
/// specialization.
///
/// \param Previous the set of declarations, one of which may be specialized
/// by this function specialization; the set will be modified to contain the
/// redeclared member.
bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
// Explicit instantiation of a class template specialization
DeclResult ActOnExplicitInstantiation(
Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
TemplateTy Template, SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
// Explicit instantiation of a member class of a class template.
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec, SourceLocation KWLoc,
CXXScopeSpec &SS, IdentifierInfo *Name,
SourceLocation NameLoc,
const ParsedAttributesView &Attr);
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
SourceLocation TemplateLoc,
Declarator &D);
/// If the given template parameter has a default template
/// argument, substitute into that default template argument and
/// return the corresponding template argument.
TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(
TemplateDecl *Template, SourceLocation TemplateLoc,
SourceLocation RAngleLoc, Decl *Param,
ArrayRef<TemplateArgument> SugaredConverted,
ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg);
/// Returns the top most location responsible for the definition of \p N.
/// If \p N is a a template specialization, this is the location
/// of the top of the instantiation stack.
/// Otherwise, the location of \p N is returned.
SourceLocation getTopMostPointOfInstantiation(const NamedDecl *) const;
/// Specifies the context in which a particular template
/// argument is being checked.
enum CheckTemplateArgumentKind {
/// The template argument was specified in the code or was
/// instantiated with some deduced template arguments.
CTAK_Specified,
/// The template argument was deduced via template argument
/// deduction.
CTAK_Deduced,
/// The template argument was deduced from an array bound
/// via template argument deduction.
CTAK_DeducedFromArrayBound
};
struct CheckTemplateArgumentInfo {
explicit CheckTemplateArgumentInfo(bool PartialOrdering = false,
bool MatchingTTP = false)
: PartialOrdering(PartialOrdering), MatchingTTP(MatchingTTP) {}
CheckTemplateArgumentInfo(const CheckTemplateArgumentInfo &) = delete;
CheckTemplateArgumentInfo &
operator=(const CheckTemplateArgumentInfo &) = delete;
/// The checked, converted argument will be added to the
/// end of these vectors.
SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
/// The check is being performed in the context of partial ordering.
bool PartialOrdering;
/// If true, assume these template arguments are
/// the injected template arguments for a template template parameter.
/// This will relax the requirement that all its possible uses are valid:
/// TTP checking is loose, and assumes that invalid uses will be diagnosed
/// during instantiation.
bool MatchingTTP;
/// Is set to true when, in the context of TTP matching, a pack parameter
/// matches non-pack arguments.
bool StrictPackMatch = false;
};
/// Check that the given template argument corresponds to the given
/// template parameter.
///
/// \param Param The template parameter against which the argument will be
/// checked.
///
/// \param Arg The template argument, which may be updated due to conversions.
///
/// \param Template The template in which the template argument resides.
///
/// \param TemplateLoc The location of the template name for the template
/// whose argument list we're matching.
///
/// \param RAngleLoc The location of the right angle bracket ('>') that closes
/// the template argument list.
///
/// \param ArgumentPackIndex The index into the argument pack where this
/// argument will be placed. Only valid if the parameter is a parameter pack.
///
/// \param CTAK Describes how we arrived at this particular template argument:
/// explicitly written, deduced, etc.
///
/// \returns true on error, false otherwise.
bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg,
NamedDecl *Template, SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
unsigned ArgumentPackIndex,
CheckTemplateArgumentInfo &CTAI,
CheckTemplateArgumentKind CTAK);
/// Check that the given template arguments can be provided to
/// the given template, converting the arguments along the way.
///
/// \param Template The template to which the template arguments are being
/// provided.
///
/// \param TemplateLoc The location of the template name in the source.
///
/// \param TemplateArgs The list of template arguments. If the template is
/// a template template parameter, this function may extend the set of
/// template arguments to also include substituted, defaulted template
/// arguments.
///
/// \param PartialTemplateArgs True if the list of template arguments is
/// intentionally partial, e.g., because we're checking just the initial
/// set of template arguments.
///
/// \param Converted Will receive the converted, canonicalized template
/// arguments.
///
/// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
/// contain the converted forms of the template arguments as written.
/// Otherwise, \p TemplateArgs will not be modified.
///
/// \param ConstraintsNotSatisfied If provided, and an error occurred, will
/// receive true if the cause for the error is the associated constraints of
/// the template not being satisfied by the template arguments.
///
/// \param DefaultArgs any default arguments from template specialization
/// deduction.
///
/// \returns true if an error occurred, false otherwise.
bool CheckTemplateArgumentList(TemplateDecl *Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs,
const DefaultArguments &DefaultArgs,
bool PartialTemplateArgs,
CheckTemplateArgumentInfo &CTAI,
bool UpdateArgsWithConversions = true,
bool *ConstraintsNotSatisfied = nullptr);
bool CheckTemplateTypeArgument(
TemplateTypeParmDecl *Param, TemplateArgumentLoc &Arg,
SmallVectorImpl<TemplateArgument> &SugaredConverted,
SmallVectorImpl<TemplateArgument> &CanonicalConverted);
/// Check a template argument against its corresponding
/// template type parameter.
///
/// This routine implements the semantics of C++ [temp.arg.type]. It
/// returns true if an error occurred, and false otherwise.
bool CheckTemplateArgument(TypeSourceInfo *Arg);
/// Check a template argument against its corresponding
/// non-type template parameter.
///
/// This routine implements the semantics of C++ [temp.arg.nontype].
/// If an error occurred, it returns ExprError(); otherwise, it
/// returns the converted template argument. \p ParamType is the
/// type of the non-type template parameter after it has been instantiated.
ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
QualType InstantiatedParamType, Expr *Arg,
TemplateArgument &SugaredConverted,
TemplateArgument &CanonicalConverted,
bool MatchingTTP,
CheckTemplateArgumentKind CTAK);
/// Check a template argument against its corresponding
/// template template parameter.
///
/// This routine implements the semantics of C++ [temp.arg.template].
/// It returns true if an error occurred, and false otherwise.
bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
TemplateParameterList *Params,
TemplateArgumentLoc &Arg,
bool PartialOrdering,
bool *StrictPackMatch);
void NoteTemplateLocation(const NamedDecl &Decl,
std::optional<SourceRange> ParamRange = {});
void NoteTemplateParameterLocation(const NamedDecl &Decl);
/// Given a non-type template argument that refers to a
/// declaration and the type of its corresponding non-type template
/// parameter, produce an expression that properly refers to that
/// declaration.
/// FIXME: This is used in some contexts where the resulting expression
/// doesn't need to live too long. It would be useful if this function
/// could return a temporary expression.
ExprResult BuildExpressionFromDeclTemplateArgument(
const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc,
NamedDecl *TemplateParam = nullptr);
ExprResult
BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg,
SourceLocation Loc);
/// Enumeration describing how template parameter lists are compared
/// for equality.
enum TemplateParameterListEqualKind {
/// We are matching the template parameter lists of two templates
/// that might be redeclarations.
///
/// \code
/// template<typename T> struct X;
/// template<typename T> struct X;
/// \endcode
TPL_TemplateMatch,
/// We are matching the template parameter lists of two template
/// template parameters as part of matching the template parameter lists
/// of two templates that might be redeclarations.
///
/// \code
/// template<template<int I> class TT> struct X;
/// template<template<int Value> class Other> struct X;
/// \endcode
TPL_TemplateTemplateParmMatch,
/// We are determining whether the template-parameters are equivalent
/// according to C++ [temp.over.link]/6. This comparison does not consider
/// constraints.
///
/// \code
/// template<C1 T> void f(T);
/// template<C2 T> void f(T);
/// \endcode
TPL_TemplateParamsEquivalent,
};
// A struct to represent the 'new' declaration, which is either itself just
// the named decl, or the important information we need about it in order to
// do constraint comparisons.
class TemplateCompareNewDeclInfo {
const NamedDecl *ND = nullptr;
const DeclContext *DC = nullptr;
const DeclContext *LexicalDC = nullptr;
SourceLocation Loc;
public:
TemplateCompareNewDeclInfo(const NamedDecl *ND) : ND(ND) {}
TemplateCompareNewDeclInfo(const DeclContext *DeclCtx,
const DeclContext *LexicalDeclCtx,
SourceLocation Loc)
: DC(DeclCtx), LexicalDC(LexicalDeclCtx), Loc(Loc) {
assert(DC && LexicalDC &&
"Constructor only for cases where we have the information to put "
"in here");
}
// If this was constructed with no information, we cannot do substitution
// for constraint comparison, so make sure we can check that.
bool isInvalid() const { return !ND && !DC; }
const NamedDecl *getDecl() const { return ND; }
bool ContainsDecl(const NamedDecl *ND) const { return this->ND == ND; }
const DeclContext *getLexicalDeclContext() const {
return ND ? ND->getLexicalDeclContext() : LexicalDC;
}
const DeclContext *getDeclContext() const {
return ND ? ND->getDeclContext() : DC;
}
SourceLocation getLocation() const { return ND ? ND->getLocation() : Loc; }
};
/// Determine whether the given template parameter lists are
/// equivalent.
///
/// \param New The new template parameter list, typically written in the
/// source code as part of a new template declaration.
///
/// \param Old The old template parameter list, typically found via
/// name lookup of the template declared with this template parameter
/// list.
///
/// \param Complain If true, this routine will produce a diagnostic if
/// the template parameter lists are not equivalent.
///
/// \param Kind describes how we are to match the template parameter lists.
///
/// \param TemplateArgLoc If this source location is valid, then we
/// are actually checking the template parameter list of a template
/// argument (New) against the template parameter list of its
/// corresponding template template parameter (Old). We produce
/// slightly different diagnostics in this scenario.
///
/// \returns True if the template parameter lists are equal, false
/// otherwise.
bool TemplateParameterListsAreEqual(
const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc = SourceLocation());
bool TemplateParameterListsAreEqual(
TemplateParameterList *New, TemplateParameterList *Old, bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc = SourceLocation()) {
return TemplateParameterListsAreEqual(nullptr, New, nullptr, Old, Complain,
Kind, TemplateArgLoc);
}
/// Check whether a template can be declared within this scope.
///
/// If the template declaration is valid in this scope, returns
/// false. Otherwise, issues a diagnostic and returns true.
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
/// Called when the parser has parsed a C++ typename
/// specifier, e.g., "typename T::type".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
/// \param IdLoc the location of the identifier.
/// \param IsImplicitTypename context where T::type refers to a type.
TypeResult ActOnTypenameType(
Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS,
const IdentifierInfo &II, SourceLocation IdLoc,
ImplicitTypenameContext IsImplicitTypename = ImplicitTypenameContext::No);
/// Called when the parser has parsed a C++ typename
/// specifier that ends in a template-id, e.g.,
/// "typename MetaFun::template apply<T1, T2>".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param TemplateName The template name.
/// \param TemplateII The identifier used to name the template.
/// \param TemplateIILoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
TypeResult
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS, SourceLocation TemplateLoc,
TemplateTy TemplateName, const IdentifierInfo *TemplateII,
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc);
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo &II, SourceLocation IILoc,
TypeSourceInfo **TSI, bool DeducedTSTContext);
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo &II, SourceLocation IILoc,
bool DeducedTSTContext = true);
/// Rebuilds a type within the context of the current instantiation.
///
/// The type \p T is part of the type of an out-of-line member definition of
/// a class template (or class template partial specialization) that was
/// parsed and constructed before we entered the scope of the class template
/// (or partial specialization thereof). This routine will rebuild that type
/// now that we have entered the declarator's scope, which may produce
/// different canonical types, e.g.,
///
/// \code
/// template<typename T>
/// struct X {
/// typedef T* pointer;
/// pointer data();
/// };
///
/// template<typename T>
/// typename X<T>::pointer X<T>::data() { ... }
/// \endcode
///
/// Here, the type "typename X<T>::pointer" will be created as a
/// DependentNameType, since we do not know that we can look into X<T> when we
/// parsed the type. This function will rebuild the type, performing the
/// lookup of "pointer" in X<T> and returning an ElaboratedType whose
/// canonical type is the same as the canonical type of T*, allowing the
/// return types of the out-of-line definition and the declaration to match.
TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
SourceLocation Loc,
DeclarationName Name);
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
ExprResult RebuildExprInCurrentInstantiation(Expr *E);
/// Rebuild the template parameters now that we know we're in a current
/// instantiation.
bool
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList *Params);
/// Produces a formatted string that describes the binding of
/// template parameters to template arguments.
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgumentList &Args);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgument *Args,
unsigned NumArgs);
void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
SourceLocation Less,
SourceLocation Greater);
/// ActOnDependentIdExpression - Handle a dependent id-expression that
/// was just parsed. This is only possible with an explicit scope
/// specifier naming a dependent type.
ExprResult ActOnDependentIdExpression(
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo, bool isAddressOfOperand,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
// Calculates whether the expression Constraint depends on an enclosing
// template, for the purposes of [temp.friend] p9.
// TemplateDepth is the 'depth' of the friend function, which is used to
// compare whether a declaration reference is referring to a containing
// template, or just the current friend function. A 'lower' TemplateDepth in
// the AST refers to a 'containing' template. As the constraint is
// uninstantiated, this is relative to the 'top' of the TU.
bool
ConstraintExpressionDependsOnEnclosingTemplate(const FunctionDecl *Friend,
unsigned TemplateDepth,
const Expr *Constraint);
/// Find the failed Boolean condition within a given Boolean
/// constant expression, and describe it with a string.
std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
ConceptDecl *ActOnStartConceptDefinition(
Scope *S, MultiTemplateParamsArg TemplateParameterLists,
const IdentifierInfo *Name, SourceLocation NameLoc);
ConceptDecl *ActOnFinishConceptDefinition(Scope *S, ConceptDecl *C,
Expr *ConstraintExpr,
const ParsedAttributesView &Attrs);
void CheckConceptRedefinition(ConceptDecl *NewDecl, LookupResult &Previous,
bool &AddToScope);
bool CheckConceptUseInDefinition(ConceptDecl *Concept, SourceLocation Loc);
TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
const CXXScopeSpec &SS,
const IdentifierInfo *Name,
SourceLocation TagLoc, SourceLocation NameLoc);
void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
CachedTokens &Toks);
void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
bool IsInsideALocalClassWithinATemplateFunction();
/// We've found a use of a templated declaration that would trigger an
/// implicit instantiation. Check that any relevant explicit specializations
/// and partial specializations are visible/reachable, and diagnose if not.
void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
void checkSpecializationReachability(SourceLocation Loc, NamedDecl *Spec);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Template Argument Deduction
/// Implementations are in SemaTemplateDeduction.cpp
///@{
public:
/// When true, access checking violations are treated as SFINAE
/// failures rather than hard errors.
bool AccessCheckingSFINAE;
/// RAII class used to determine whether SFINAE has
/// trapped any errors that occur during template argument
/// deduction.
class SFINAETrap {
Sema &SemaRef;
unsigned PrevSFINAEErrors;
bool PrevInNonInstantiationSFINAEContext;
bool PrevAccessCheckingSFINAE;
bool PrevLastDiagnosticIgnored;
public:
explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
PrevInNonInstantiationSFINAEContext(
SemaRef.InNonInstantiationSFINAEContext),
PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
PrevLastDiagnosticIgnored(
SemaRef.getDiagnostics().isLastDiagnosticIgnored()) {
if (!SemaRef.isSFINAEContext())
SemaRef.InNonInstantiationSFINAEContext = true;
SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
}
~SFINAETrap() {
SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
SemaRef.InNonInstantiationSFINAEContext =
PrevInNonInstantiationSFINAEContext;
SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
SemaRef.getDiagnostics().setLastDiagnosticIgnored(
PrevLastDiagnosticIgnored);
}
/// Determine whether any SFINAE errors have been trapped.
bool hasErrorOccurred() const {
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
}
};
/// RAII class used to indicate that we are performing provisional
/// semantic analysis to determine the validity of a construct, so
/// typo-correction and diagnostics in the immediate context (not within
/// implicitly-instantiated templates) should be suppressed.
class TentativeAnalysisScope {
Sema &SemaRef;
// FIXME: Using a SFINAETrap for this is a hack.
SFINAETrap Trap;
bool PrevDisableTypoCorrection;
public:
explicit TentativeAnalysisScope(Sema &SemaRef)
: SemaRef(SemaRef), Trap(SemaRef, true),
PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
SemaRef.DisableTypoCorrection = true;
}
~TentativeAnalysisScope() {
SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
}
};
/// For each declaration that involved template argument deduction, the
/// set of diagnostics that were suppressed during that template argument
/// deduction.
///
/// FIXME: Serialize this structure to the AST file.
typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1>>
SuppressedDiagnosticsMap;
SuppressedDiagnosticsMap SuppressedDiagnostics;
/// Compare types for equality with respect to possibly compatible
/// function types (noreturn adjustment, implicit calling conventions). If any
/// of parameter and argument is not a function, just perform type comparison.
///
/// \param P the template parameter type.
///
/// \param A the argument type.
bool isSameOrCompatibleFunctionType(QualType Param, QualType Arg);
/// Allocate a TemplateArgumentLoc where all locations have
/// been initialized to the given location.
///
/// \param Arg The template argument we are producing template argument
/// location information for.
///
/// \param NTTPType For a declaration template argument, the type of
/// the non-type template parameter that corresponds to this template
/// argument. Can be null if no type sugar is available to add to the
/// type from the template argument.
///
/// \param Loc The source location to use for the resulting template
/// argument.
TemplateArgumentLoc
getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType,
SourceLocation Loc,
NamedDecl *TemplateParam = nullptr);
/// Get a template argument mapping the given template parameter to itself,
/// e.g. for X in \c template<int X>, this would return an expression template
/// argument referencing X.
TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
SourceLocation Location);
/// Adjust the type \p ArgFunctionType to match the calling convention,
/// noreturn, and optionally the exception specification of \p FunctionType.
/// Deduction often wants to ignore these properties when matching function
/// types.
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
bool AdjustExceptionSpec = false);
TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &Info);
/// Deduce the template arguments of the given template from \p FromType.
/// Used to implement the IsDeducible constraint for alias CTAD per C++
/// [over.match.class.deduct]p4.
///
/// It only supports class or type alias templates.
TemplateDeductionResult
DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult DeduceTemplateArguments(
TemplateParameterList *TemplateParams, ArrayRef<TemplateArgument> Ps,
ArrayRef<TemplateArgument> As, sema::TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
bool NumberOfArgumentsMustMatch);
/// Substitute the explicitly-provided template arguments into the
/// given function template according to C++ [temp.arg.explicit].
///
/// \param FunctionTemplate the function template into which the explicit
/// template arguments will be substituted.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param Deduced the deduced template arguments, which will be populated
/// with the converted and checked explicit template arguments.
///
/// \param ParamTypes will be populated with the instantiated function
/// parameters.
///
/// \param FunctionType if non-NULL, the result type of the function template
/// will also be instantiated and the pointed-to value will be updated with
/// the instantiated function type.
///
/// \param Info if substitution fails for any reason, this object will be
/// populated with more information about the failure.
///
/// \returns TemplateDeductionResult::Success if substitution was successful,
/// or some failure condition.
TemplateDeductionResult SubstituteExplicitTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo &ExplicitTemplateArgs,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
sema::TemplateDeductionInfo &Info);
/// brief A function argument from which we performed template argument
// deduction for a call.
struct OriginalCallArg {
OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
unsigned ArgIdx, QualType OriginalArgType)
: OriginalParamType(OriginalParamType),
DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
OriginalArgType(OriginalArgType) {}
QualType OriginalParamType;
bool DecomposedParam;
unsigned ArgIdx;
QualType OriginalArgType;
};
/// Finish template argument deduction for a function template,
/// checking the deduced template arguments for completeness and forming
/// the function template specialization.
///
/// \param OriginalCallArgs If non-NULL, the original call arguments against
/// which the deduced argument types should be compared.
TemplateDeductionResult FinishTemplateArgumentDeduction(
FunctionTemplateDecl *FunctionTemplate,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
bool PartialOverloading, bool PartialOrdering,
llvm::function_ref<bool()> CheckNonDependent = [] { return false; });
/// Perform template argument deduction from a function call
/// (C++ [temp.deduct.call]).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicit template arguments provided
/// for this call.
///
/// \param Args the function call arguments
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \param CheckNonDependent A callback to invoke to check conversions for
/// non-dependent parameters, between deduction and substitution, per DR1391.
/// If this returns true, substitution will be skipped and we return
/// TemplateDeductionResult::NonDependentConversionFailure. The callback is
/// passed the parameter types (after substituting explicit template
/// arguments).
///
/// \returns the result of template argument deduction.
TemplateDeductionResult DeduceTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
bool PartialOverloading, bool AggregateDeductionCandidate,
bool PartialOrdering, QualType ObjectType,
Expr::Classification ObjectClassification,
llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
/// Deduce template arguments when taking the address of a function
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
/// a template.
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param ArgFunctionType the function type that will be used as the
/// "argument" type (A) when performing template argument deduction from the
/// function template's function type. This type may be NULL, if there is no
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
/// the address of a function template per [temp.deduct.funcaddr] and
/// [over.over]. If \c false, we are looking up a function template
/// specialization based on its signature, per [temp.deduct.decl].
///
/// \returns the result of template argument deduction.
TemplateDeductionResult DeduceTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
bool IsAddressOfFunction = false);
/// Deduce template arguments for a templated conversion
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
/// conversion function template specialization.
TemplateDeductionResult DeduceTemplateArguments(
FunctionTemplateDecl *FunctionTemplate, QualType ObjectType,
Expr::Classification ObjectClassification, QualType ToType,
CXXConversionDecl *&Specialization, sema::TemplateDeductionInfo &Info);
/// Deduce template arguments for a function template when there is
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
/// the address of a function template in a context where we do not have a
/// target type, per [over.over]. If \c false, we are looking up a function
/// template specialization based on its signature, which only happens when
/// deducing a function parameter type from an argument that is a template-id
/// naming a function template specialization.
///
/// \returns the result of template argument deduction.
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
bool IsAddressOfFunction = false);
/// Substitute Replacement for \p auto in \p TypeWithAuto
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
/// Substitute Replacement for auto in TypeWithAuto
TypeSourceInfo *SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType Replacement);
// Substitute auto in TypeWithAuto for a Dependent auto type
QualType SubstAutoTypeDependent(QualType TypeWithAuto);
// Substitute auto in TypeWithAuto for a Dependent auto type
TypeSourceInfo *
SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto);
/// Completely replace the \c auto in \p TypeWithAuto by
/// \p Replacement. This does not retain any \c auto type sugar.
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType Replacement);
/// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
///
/// Note that this is done even if the initializer is dependent. (This is
/// necessary to support partial ordering of templates using 'auto'.)
/// A dependent type will be produced when deducing from a dependent type.
///
/// \param Type the type pattern using the auto type-specifier.
/// \param Init the initializer for the variable whose type is to be deduced.
/// \param Result if type deduction was successful, this will be set to the
/// deduced type.
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
/// \param DependentDeduction Set if we should permit deduction in
/// dependent cases. This is necessary for template partial ordering
/// with 'auto' template parameters. The template parameter depth to be
/// used should be specified in the 'Info' parameter.
/// \param IgnoreConstraints Set if we should not fail if the deduced type
/// does not satisfy the type-constraint in the auto
/// type.
TemplateDeductionResult
DeduceAutoType(TypeLoc AutoTypeLoc, Expr *Initializer, QualType &Result,
sema::TemplateDeductionInfo &Info,
bool DependentDeduction = false,
bool IgnoreConstraints = false,
TemplateSpecCandidateSet *FailedTSC = nullptr);
void DiagnoseAutoDeductionFailure(const VarDecl *VDecl, const Expr *Init);
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
bool Diagnose = true);
bool CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD,
SourceLocation Loc);
/// Returns the more specialized class template partial specialization
/// according to the rules of partial ordering of class template partial
/// specializations (C++ [temp.class.order]).
///
/// \param PS1 the first class template partial specialization
///
/// \param PS2 the second class template partial specialization
///
/// \returns the more specialized class template partial specialization. If
/// neither partial specialization is more specialized, returns NULL.
ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(
ClassTemplatePartialSpecializationDecl *PS1,
ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
sema::TemplateDeductionInfo &Info);
VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
VarTemplatePartialSpecializationDecl *PS1,
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
sema::TemplateDeductionInfo &Info);
bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
TemplateParameterList *PParam, TemplateDecl *PArg, TemplateDecl *AArg,
const DefaultArguments &DefaultArgs, SourceLocation ArgLoc,
bool PartialOrdering, bool *StrictPackMatch);
/// Mark which template parameters are used in a given expression.
///
/// \param E the expression from which template parameters will be deduced.
///
/// \param Used a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
unsigned Depth, llvm::SmallBitVector &Used);
/// Mark which template parameters can be deduced from a given
/// template argument list.
///
/// \param TemplateArgs the template argument list from which template
/// parameters will be deduced.
///
/// \param Used a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
bool OnlyDeduced, unsigned Depth,
llvm::SmallBitVector &Used);
void MarkUsedTemplateParameters(ArrayRef<TemplateArgument> TemplateArgs,
unsigned Depth, llvm::SmallBitVector &Used);
void
MarkDeducedTemplateParameters(const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced) {
return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
}
/// Marks all of the template parameters that will be deduced by a
/// call to the given function template.
static void
MarkDeducedTemplateParameters(ASTContext &Ctx,
const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced);
/// Returns the more specialized function template according
/// to the rules of function template partial ordering (C++
/// [temp.func.order]).
///
/// \param FT1 the first function template
///
/// \param FT2 the second function template
///
/// \param TPOC the context in which we are performing partial ordering of
/// function templates.
///
/// \param NumCallArguments1 The number of arguments in the call to FT1, used
/// only when \c TPOC is \c TPOC_Call. Does not include the object argument
/// when calling a member function.
///
/// \param RawObj1Ty The type of the object parameter of FT1 if a member
/// function only used if \c TPOC is \c TPOC_Call and FT1 is a Function
/// template from a member function
///
/// \param RawObj2Ty The type of the object parameter of FT2 if a member
/// function only used if \c TPOC is \c TPOC_Call and FT2 is a Function
/// template from a member function
///
/// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload
/// candidate with a reversed parameter order. In this case, the corresponding
/// P/A pairs between FT1 and FT2 are reversed.
///
/// \returns the more specialized function template. If neither
/// template is more specialized, returns NULL.
FunctionTemplateDecl *getMoreSpecializedTemplate(
FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
QualType RawObj1Ty = {}, QualType RawObj2Ty = {}, bool Reversed = false,
bool PartialOverloading = false);
/// Retrieve the most specialized of the given function template
/// specializations.
///
/// \param SpecBegin the start iterator of the function template
/// specializations that we will be comparing.
///
/// \param SpecEnd the end iterator of the function template
/// specializations, paired with \p SpecBegin.
///
/// \param Loc the location where the ambiguity or no-specializations
/// diagnostic should occur.
///
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
/// no matching candidates.
///
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
/// occurs.
///
/// \param CandidateDiag partial diagnostic used for each function template
/// specialization that is a candidate in the ambiguous ordering. One
/// parameter in this diagnostic should be unbound, which will correspond to
/// the string describing the template arguments for the function template
/// specialization.
///
/// \returns the most specialized function template specialization, if
/// found. Otherwise, returns SpecEnd.
UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
TemplateSpecCandidateSet &FailedCandidates,
SourceLocation Loc, const PartialDiagnostic &NoneDiag,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &CandidateDiag,
bool Complain = true, QualType TargetType = QualType());
/// Returns the more constrained function according to the rules of
/// partial ordering by constraints (C++ [temp.constr.order]).
///
/// \param FD1 the first function
///
/// \param FD2 the second function
///
/// \returns the more constrained function. If neither function is
/// more constrained, returns NULL.
FunctionDecl *getMoreConstrainedFunction(FunctionDecl *FD1,
FunctionDecl *FD2);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Template Deduction Guide
/// Implementations are in SemaTemplateDeductionGuide.cpp
///@{
/// Declare implicit deduction guides for a class template if we've
/// not already done so.
void DeclareImplicitDeductionGuides(TemplateDecl *Template,
SourceLocation Loc);
FunctionTemplateDecl *DeclareAggregateDeductionGuideFromInitList(
TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Template Instantiation
/// Implementations are in SemaTemplateInstantiate.cpp
///@{
public:
/// A helper class for building up ExtParameterInfos.
class ExtParameterInfoBuilder {
SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
bool HasInteresting = false;
public:
/// Set the ExtParameterInfo for the parameter at the given index,
///
void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
assert(Infos.size() <= index);
Infos.resize(index);
Infos.push_back(info);
if (!HasInteresting)
HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
}
/// Return a pointer (suitable for setting in an ExtProtoInfo) to the
/// ExtParameterInfo array we've built up.
const FunctionProtoType::ExtParameterInfo *
getPointerOrNull(unsigned numParams) {
if (!HasInteresting)
return nullptr;
Infos.resize(numParams);
return Infos.data();
}
};
/// The current instantiation scope used to store local
/// variables.
LocalInstantiationScope *CurrentInstantiationScope;
typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
UnparsedDefaultArgInstantiationsMap;
/// A mapping from parameters with unparsed default arguments to the
/// set of instantiations of each parameter.
///
/// This mapping is a temporary data structure used when parsing
/// nested class templates or nested classes of class templates,
/// where we might end up instantiating an inner class before the
/// default arguments of its methods have been parsed.
UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
/// A context in which code is being synthesized (where a source location
/// alone is not sufficient to identify the context). This covers template
/// instantiation and various forms of implicitly-generated functions.
struct CodeSynthesisContext {
/// The kind of template instantiation we are performing
enum SynthesisKind {
/// We are instantiating a template declaration. The entity is
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
TemplateInstantiation,
/// We are instantiating a default argument for a template
/// parameter. The Entity is the template parameter whose argument is
/// being instantiated, the Template is the template, and the
/// TemplateArgs/NumTemplateArguments provide the template arguments as
/// specified.
DefaultTemplateArgumentInstantiation,
/// We are instantiating a default argument for a function.
/// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
/// provides the template arguments as specified.
DefaultFunctionArgumentInstantiation,
/// We are substituting explicit template arguments provided for
/// a function template. The entity is a FunctionTemplateDecl.
ExplicitTemplateArgumentSubstitution,
/// We are substituting template argument determined as part of
/// template argument deduction for either a class template
/// partial specialization or a function template. The
/// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
/// a TemplateDecl.
DeducedTemplateArgumentSubstitution,
/// We are substituting into a lambda expression.
LambdaExpressionSubstitution,
/// We are substituting prior template arguments into a new
/// template parameter. The template parameter itself is either a
/// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
PriorTemplateArgumentSubstitution,
/// We are checking the validity of a default template argument that
/// has been used when naming a template-id.
DefaultTemplateArgumentChecking,
/// We are computing the exception specification for a defaulted special
/// member function.
ExceptionSpecEvaluation,
/// We are instantiating the exception specification for a function
/// template which was deferred until it was needed.
ExceptionSpecInstantiation,
/// We are instantiating a requirement of a requires expression.
RequirementInstantiation,
/// We are checking the satisfaction of a nested requirement of a requires
/// expression.
NestedRequirementConstraintsCheck,
/// We are declaring an implicit special member function.
DeclaringSpecialMember,
/// We are declaring an implicit 'operator==' for a defaulted
/// 'operator<=>'.
DeclaringImplicitEqualityComparison,
/// We are defining a synthesized function (such as a defaulted special
/// member).
DefiningSynthesizedFunction,
// We are checking the constraints associated with a constrained entity or
// the constraint expression of a concept. This includes the checks that
// atomic constraints have the type 'bool' and that they can be constant
// evaluated.
ConstraintsCheck,
// We are substituting template arguments into a constraint expression.
ConstraintSubstitution,
// We are normalizing a constraint expression.
ConstraintNormalization,
// Instantiating a Requires Expression parameter clause.
RequirementParameterInstantiation,
// We are substituting into the parameter mapping of an atomic constraint
// during normalization.
ParameterMappingSubstitution,
/// We are rewriting a comparison operator in terms of an operator<=>.
RewritingOperatorAsSpaceship,
/// We are initializing a structured binding.
InitializingStructuredBinding,
/// We are marking a class as __dllexport.
MarkingClassDllexported,
/// We are building an implied call from __builtin_dump_struct. The
/// arguments are in CallArgs.
BuildingBuiltinDumpStructCall,
/// Added for Template instantiation observation.
/// Memoization means we are _not_ instantiating a template because
/// it is already instantiated (but we entered a context where we
/// would have had to if it was not already instantiated).
Memoization,
/// We are building deduction guides for a class.
BuildingDeductionGuides,
/// We are instantiating a type alias template declaration.
TypeAliasTemplateInstantiation,
/// We are performing partial ordering for template template parameters.
PartialOrderingTTP,
} Kind;
/// Was the enclosing context a non-instantiation SFINAE context?
bool SavedInNonInstantiationSFINAEContext;
/// The point of instantiation or synthesis within the source code.
SourceLocation PointOfInstantiation;
/// The entity that is being synthesized.
Decl *Entity;
/// The template (or partial specialization) in which we are
/// performing the instantiation, for substitutions of prior template
/// arguments.
NamedDecl *Template;
union {
/// The list of template arguments we are substituting, if they
/// are not part of the entity.
const TemplateArgument *TemplateArgs;
/// The list of argument expressions in a synthesized call.
const Expr *const *CallArgs;
};
// FIXME: Wrap this union around more members, or perhaps store the
// kind-specific members in the RAII object owning the context.
union {
/// The number of template arguments in TemplateArgs.
unsigned NumTemplateArgs;
/// The number of expressions in CallArgs.
unsigned NumCallArgs;
/// The special member being declared or defined.
CXXSpecialMemberKind SpecialMember;
};
ArrayRef<TemplateArgument> template_arguments() const {
assert(Kind != DeclaringSpecialMember);
return {TemplateArgs, NumTemplateArgs};
}
/// The template deduction info object associated with the
/// substitution or checking of explicit or deduced template arguments.
sema::TemplateDeductionInfo *DeductionInfo;
/// The source range that covers the construct that cause
/// the instantiation, e.g., the template-id that causes a class
/// template instantiation.
SourceRange InstantiationRange;
CodeSynthesisContext()
: Kind(TemplateInstantiation),
SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
DeductionInfo(nullptr) {}
/// Determines whether this template is an actual instantiation
/// that should be counted toward the maximum instantiation depth.
bool isInstantiationRecord() const;
};
/// A stack object to be created when performing template
/// instantiation.
///
/// Construction of an object of type \c InstantiatingTemplate
/// pushes the current instantiation onto the stack of active
/// instantiations. If the size of this stack exceeds the maximum
/// number of recursive template instantiations, construction
/// produces an error and evaluates true.
///
/// Destruction of this object will pop the named instantiation off
/// the stack.
struct InstantiatingTemplate {
/// Note that we are instantiating a class template,
/// function template, variable template, alias template,
/// or a member thereof.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange = SourceRange());
struct ExceptionSpecification {};
/// Note that we are instantiating an exception specification
/// of a function template.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionDecl *Entity, ExceptionSpecification,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating a type alias template declaration.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TypeAliasTemplateDecl *Entity,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateParameter Param, TemplateDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// Note that we are substituting either explicitly-specified or
/// deduced template arguments during function template argument deduction.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
ArrayRef<TemplateArgument> TemplateArgs,
CodeSynthesisContext::SynthesisKind Kind,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating as part of template
/// argument deduction for a class template declaration.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating as part of template
/// argument deduction for a class template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating as part of template
/// argument deduction for a variable template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
VarTemplatePartialSpecializationDecl *PartialSpec,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating a default argument for a function
/// parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ParmVarDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// Note that we are substituting prior template arguments into a
/// non-type parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template, NonTypeTemplateParmDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// Note that we are substituting prior template arguments into a
/// template template parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template, TemplateTemplateParmDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// Note that we are checking the default template argument
/// against the template parameter for a given template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template, NamedDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
struct ConstraintsCheck {};
/// \brief Note that we are checking the constraints associated with some
/// constrained entity (a concept declaration or a template with associated
/// constraints).
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ConstraintsCheck, NamedDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
struct ConstraintSubstitution {};
/// \brief Note that we are checking a constraint expression associated
/// with a template declaration or as part of the satisfaction check of a
/// concept.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ConstraintSubstitution, NamedDecl *Template,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange);
struct ConstraintNormalization {};
/// \brief Note that we are normalizing a constraint expression.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ConstraintNormalization, NamedDecl *Template,
SourceRange InstantiationRange);
struct ParameterMappingSubstitution {};
/// \brief Note that we are subtituting into the parameter mapping of an
/// atomic constraint during constraint normalization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ParameterMappingSubstitution, NamedDecl *Template,
SourceRange InstantiationRange);
/// \brief Note that we are substituting template arguments into a part of
/// a requirement of a requires expression.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
concepts::Requirement *Req,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are checking the satisfaction of the constraint
/// expression inside of a nested requirement.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
concepts::NestedRequirement *Req, ConstraintsCheck,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are checking a requires clause.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
const RequiresExpr *E,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange);
struct BuildingDeductionGuidesTag {};
/// \brief Note that we are building deduction guides.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Entity, BuildingDeductionGuidesTag,
SourceRange InstantiationRange = SourceRange());
struct PartialOrderingTTP {};
/// \brief Note that we are partial ordering template template parameters.
InstantiatingTemplate(Sema &SemaRef, SourceLocation ArgLoc,
PartialOrderingTTP, TemplateDecl *PArg,
SourceRange InstantiationRange = SourceRange());
/// Note that we have finished instantiating this template.
void Clear();
~InstantiatingTemplate() { Clear(); }
/// Determines whether we have exceeded the maximum
/// recursive template instantiations.
bool isInvalid() const { return Invalid; }
/// Determine whether we are already instantiating this
/// specialization in some surrounding active instantiation.
bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
private:
Sema &SemaRef;
bool Invalid;
bool AlreadyInstantiating;
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
SourceRange InstantiationRange);
InstantiatingTemplate(Sema &SemaRef,
CodeSynthesisContext::SynthesisKind Kind,
SourceLocation PointOfInstantiation,
SourceRange InstantiationRange, Decl *Entity,
NamedDecl *Template = nullptr,
ArrayRef<TemplateArgument> TemplateArgs = {},
sema::TemplateDeductionInfo *DeductionInfo = nullptr);
InstantiatingTemplate(const InstantiatingTemplate &) = delete;
InstantiatingTemplate &operator=(const InstantiatingTemplate &) = delete;
};
bool SubstTemplateArgument(const TemplateArgumentLoc &Input,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateArgumentLoc &Output,
SourceLocation Loc = {},
const DeclarationName &Entity = {});
bool
SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateArgumentListInfo &Outputs);
/// Retrieve the template argument list(s) that should be used to
/// instantiate the definition of the given declaration.
///
/// \param ND the declaration for which we are computing template
/// instantiation arguments.
///
/// \param DC In the event we don't HAVE a declaration yet, we instead provide
/// the decl context where it will be created. In this case, the `Innermost`
/// should likely be provided. If ND is non-null, this is ignored.
///
/// \param Innermost if non-NULL, specifies a template argument list for the
/// template declaration passed as ND.
///
/// \param RelativeToPrimary true if we should get the template
/// arguments relative to the primary template, even when we're
/// dealing with a specialization. This is only relevant for function
/// template specializations.
///
/// \param Pattern If non-NULL, indicates the pattern from which we will be
/// instantiating the definition of the given declaration, \p ND. This is
/// used to determine the proper set of template instantiation arguments for
/// friend function template specializations.
///
/// \param ForConstraintInstantiation when collecting arguments,
/// ForConstraintInstantiation indicates we should continue looking when
/// encountering a lambda generic call operator, and continue looking for
/// arguments on an enclosing class template.
///
/// \param SkipForSpecialization when specified, any template specializations
/// in a traversal would be ignored.
/// \param ForDefaultArgumentSubstitution indicates we should continue looking
/// when encountering a specialized member function template, rather than
/// returning immediately.
MultiLevelTemplateArgumentList getTemplateInstantiationArgs(
const NamedDecl *D, const DeclContext *DC = nullptr, bool Final = false,
std::optional<ArrayRef<TemplateArgument>> Innermost = std::nullopt,
bool RelativeToPrimary = false, const FunctionDecl *Pattern = nullptr,
bool ForConstraintInstantiation = false,
bool SkipForSpecialization = false,
bool ForDefaultArgumentSubstitution = false);
/// RAII object to handle the state changes required to synthesize
/// a function body.
class SynthesizedFunctionScope {
Sema &S;
Sema::ContextRAII SavedContext;
bool PushedCodeSynthesisContext = false;
public:
SynthesizedFunctionScope(Sema &S, DeclContext *DC)
: S(S), SavedContext(S, DC) {
auto *FD = dyn_cast<FunctionDecl>(DC);
S.PushFunctionScope();
S.PushExpressionEvaluationContext(
(FD && FD->isImmediateFunction())
? ExpressionEvaluationContext::ImmediateFunctionContext
: ExpressionEvaluationContext::PotentiallyEvaluated);
if (FD) {
auto &Current = S.currentEvaluationContext();
const auto &Parent = S.parentEvaluationContext();
FD->setWillHaveBody(true);
Current.InImmediateFunctionContext =
FD->isImmediateFunction() ||
(isLambdaMethod(FD) && (Parent.isConstantEvaluated() ||
Parent.isImmediateFunctionContext()));
Current.InImmediateEscalatingFunctionContext =
S.getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
} else
assert(isa<ObjCMethodDecl>(DC));
}
void addContextNote(SourceLocation UseLoc) {
assert(!PushedCodeSynthesisContext);
Sema::CodeSynthesisContext Ctx;
Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
Ctx.PointOfInstantiation = UseLoc;
Ctx.Entity = cast<Decl>(S.CurContext);
S.pushCodeSynthesisContext(Ctx);
PushedCodeSynthesisContext = true;
}
~SynthesizedFunctionScope() {
if (PushedCodeSynthesisContext)
S.popCodeSynthesisContext();
if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext)) {
FD->setWillHaveBody(false);
S.CheckImmediateEscalatingFunctionDefinition(FD, S.getCurFunction());
}
S.PopExpressionEvaluationContext();
S.PopFunctionScopeInfo();
}
};
/// List of active code synthesis contexts.
///
/// This vector is treated as a stack. As synthesis of one entity requires
/// synthesis of another, additional contexts are pushed onto the stack.
SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
/// Specializations whose definitions are currently being instantiated.
llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
/// Non-dependent types used in templates that have already been instantiated
/// by some template instantiation.
llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
/// Extra modules inspected when performing a lookup during a template
/// instantiation. Computed lazily.
SmallVector<Module *, 16> CodeSynthesisContextLookupModules;
/// Cache of additional modules that should be used for name lookup
/// within the current template instantiation. Computed lazily; use
/// getLookupModules() to get a complete set.
llvm::DenseSet<Module *> LookupModulesCache;
/// Map from the most recent declaration of a namespace to the most
/// recent visible declaration of that namespace.
llvm::DenseMap<NamedDecl *, NamedDecl *> VisibleNamespaceCache;
/// Whether we are in a SFINAE context that is not associated with
/// template instantiation.
///
/// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
/// of a template instantiation or template argument deduction.
bool InNonInstantiationSFINAEContext;
/// The number of \p CodeSynthesisContexts that are not template
/// instantiations and, therefore, should not be counted as part of the
/// instantiation depth.
///
/// When the instantiation depth reaches the user-configurable limit
/// \p LangOptions::InstantiationDepth we will abort instantiation.
// FIXME: Should we have a similar limit for other forms of synthesis?
unsigned NonInstantiationEntries;
/// The depth of the context stack at the point when the most recent
/// error or warning was produced.
///
/// This value is used to suppress printing of redundant context stacks
/// when there are multiple errors or warnings in the same instantiation.
// FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
unsigned LastEmittedCodeSynthesisContextDepth = 0;
/// The template instantiation callbacks to trace or track
/// instantiations (objects can be chained).
///
/// This callbacks is used to print, trace or track template
/// instantiations as they are being constructed.
std::vector<std::unique_ptr<TemplateInstantiationCallback>>
TemplateInstCallbacks;
/// The current index into pack expansion arguments that will be
/// used for substitution of parameter packs.
///
/// The pack expansion index will be -1 to indicate that parameter packs
/// should be instantiated as themselves. Otherwise, the index specifies
/// which argument within the parameter pack will be used for substitution.
int ArgumentPackSubstitutionIndex;
/// RAII object used to change the argument pack substitution index
/// within a \c Sema object.
///
/// See \c ArgumentPackSubstitutionIndex for more information.
class ArgumentPackSubstitutionIndexRAII {
Sema &Self;
int OldSubstitutionIndex;
public:
ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
: Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
}
~ArgumentPackSubstitutionIndexRAII() {
Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
}
};
friend class ArgumentPackSubstitutionRAII;
void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
void popCodeSynthesisContext();
void PrintContextStack(InstantiationContextDiagFuncRef DiagFunc) {
if (!CodeSynthesisContexts.empty() &&
CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
PrintInstantiationStack(DiagFunc);
LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
}
if (PragmaAttributeCurrentTargetDecl)
PrintPragmaAttributeInstantiationPoint(DiagFunc);
}
void PrintContextStack() { PrintContextStack(getDefaultDiagFunc()); }
/// Prints the current instantiation stack through a series of
/// notes.
void PrintInstantiationStack(InstantiationContextDiagFuncRef DiagFunc);
void PrintInstantiationStack() {
PrintInstantiationStack(getDefaultDiagFunc());
}
/// Determines whether we are currently in a context where
/// template argument substitution failures are not considered
/// errors.
///
/// \returns An empty \c Optional if we're not in a SFINAE context.
/// Otherwise, contains a pointer that, if non-NULL, contains the nearest
/// template-deduction context object, which can be used to capture
/// diagnostics that will be suppressed.
std::optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
/// Perform substitution on the type T with a given set of template
/// arguments.
///
/// This routine substitutes the given template arguments into the
/// type T and produces the instantiated type.
///
/// \param T the type into which the template arguments will be
/// substituted. If this type is not dependent, it will be returned
/// immediately.
///
/// \param Args the template arguments that will be
/// substituted for the top-level template parameters within T.
///
/// \param Loc the location in the source code where this substitution
/// is being performed. It will typically be the location of the
/// declarator (if we're instantiating the type of some declaration)
/// or the location of the type in the source code (if, e.g., we're
/// instantiating the type of a cast expression).
///
/// \param Entity the name of the entity associated with a declaration
/// being instantiated (if any). May be empty to indicate that there
/// is no such entity (if, e.g., this is a type that occurs as part of
/// a cast expression) or that the entity has no name (e.g., an
/// unnamed function parameter).
///
/// \param AllowDeducedTST Whether a DeducedTemplateSpecializationType is
/// acceptable as the top level type of the result.
///
/// \param IsIncompleteSubstitution If provided, the pointee will be set
/// whenever substitution would perform a replacement with a null or
/// non-existent template argument.
///
/// \returns If the instantiation succeeds, the instantiated
/// type. Otherwise, produces diagnostics and returns a NULL type.
TypeSourceInfo *SubstType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity,
bool AllowDeducedTST = false);
QualType SubstType(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity,
bool *IsIncompleteSubstitution = nullptr);
TypeSourceInfo *SubstType(TypeLoc TL,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
/// A form of SubstType intended specifically for instantiating the
/// type of a FunctionDecl. Its purpose is solely to force the
/// instantiation of default-argument expressions and to avoid
/// instantiating an exception-specification.
TypeSourceInfo *SubstFunctionDeclType(
TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext,
Qualifiers ThisTypeQuals, bool EvaluateConstraints = true);
void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
const MultiLevelTemplateArgumentList &Args);
bool SubstExceptionSpec(SourceLocation Loc,
FunctionProtoType::ExceptionSpecInfo &ESI,
SmallVectorImpl<QualType> &ExceptionStorage,
const MultiLevelTemplateArgumentList &Args);
ParmVarDecl *
SubstParmVarDecl(ParmVarDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs,
int indexAdjustment, std::optional<unsigned> NumExpansions,
bool ExpectParameterPack, bool EvaluateConstraints = true);
/// Substitute the given template arguments into the given set of
/// parameters, producing the set of parameter types that would be generated
/// from such a substitution.
bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<QualType> &ParamTypes,
SmallVectorImpl<ParmVarDecl *> *OutParams,
ExtParameterInfoBuilder &ParamInfos);
/// Substitute the given template arguments into the default argument.
bool SubstDefaultArgument(SourceLocation Loc, ParmVarDecl *Param,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool ForCallExpr = false);
ExprResult SubstExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Substitute an expression as if it is a address-of-operand, which makes it
/// act like a CXXIdExpression rather than an attempt to call.
ExprResult SubstCXXIdExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
// A RAII type used by the TemplateDeclInstantiator and TemplateInstantiator
// to disable constraint evaluation, then restore the state.
template <typename InstTy> struct ConstraintEvalRAII {
InstTy &TI;
bool OldValue;
ConstraintEvalRAII(InstTy &TI)
: TI(TI), OldValue(TI.getEvaluateConstraints()) {
TI.setEvaluateConstraints(false);
}
~ConstraintEvalRAII() { TI.setEvaluateConstraints(OldValue); }
};
// Must be used instead of SubstExpr at 'constraint checking' time.
ExprResult
SubstConstraintExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
// Unlike the above, this does not evaluates constraints.
ExprResult SubstConstraintExprWithoutSatisfaction(
Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs);
/// Substitute the given template arguments into a list of
/// expressions, expanding pack expansions if required.
///
/// \param Exprs The list of expressions to substitute into.
///
/// \param IsCall Whether this is some form of call, in which case
/// default arguments will be dropped.
///
/// \param TemplateArgs The set of template arguments to substitute.
///
/// \param Outputs Will receive all of the substituted arguments.
///
/// \returns true if an error occurred, false otherwise.
bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<Expr *> &Outputs);
StmtResult SubstStmt(Stmt *S,
const MultiLevelTemplateArgumentList &TemplateArgs);
ExprResult
SubstInitializer(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs,
bool CXXDirectInit);
/// Perform substitution on the base class specifiers of the
/// given class template specialization.
///
/// Produces a diagnostic and returns true on error, returns false and
/// attaches the instantiated base classes to the class template
/// specialization if successful.
bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Instantiate the definition of a class from a given pattern.
///
/// \param PointOfInstantiation The point of instantiation within the
/// source code.
///
/// \param Instantiation is the declaration whose definition is being
/// instantiated. This will be either a class template specialization
/// or a member class of a class template specialization.
///
/// \param Pattern is the pattern from which the instantiation
/// occurs. This will be either the declaration of a class template or
/// the declaration of a member class of a class template.
///
/// \param TemplateArgs The template arguments to be substituted into
/// the pattern.
///
/// \param TSK the kind of implicit or explicit instantiation to perform.
///
/// \param Complain whether to complain if the class cannot be instantiated
/// due to the lack of a definition.
///
/// \returns true if an error occurred, false otherwise.
bool InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK, bool Complain = true);
/// Instantiate the definition of an enum from a given pattern.
///
/// \param PointOfInstantiation The point of instantiation within the
/// source code.
/// \param Instantiation is the declaration whose definition is being
/// instantiated. This will be a member enumeration of a class
/// temploid specialization, or a local enumeration within a
/// function temploid specialization.
/// \param Pattern The templated declaration from which the instantiation
/// occurs.
/// \param TemplateArgs The template arguments to be substituted into
/// the pattern.
/// \param TSK The kind of implicit or explicit instantiation to perform.
///
/// \return \c true if an error occurred, \c false otherwise.
bool InstantiateEnum(SourceLocation PointOfInstantiation,
EnumDecl *Instantiation, EnumDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
/// Instantiate the definition of a field from the given pattern.
///
/// \param PointOfInstantiation The point of instantiation within the
/// source code.
/// \param Instantiation is the declaration whose definition is being
/// instantiated. This will be a class of a class temploid
/// specialization, or a local enumeration within a function temploid
/// specialization.
/// \param Pattern The templated declaration from which the instantiation
/// occurs.
/// \param TemplateArgs The template arguments to be substituted into
/// the pattern.
///
/// \return \c true if an error occurred, \c false otherwise.
bool InstantiateInClassInitializer(
SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
bool usesPartialOrExplicitSpecialization(
SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
bool InstantiateClassTemplateSpecialization(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK, bool Complain,
bool PrimaryStrictPackMatch);
/// Instantiates the definitions of all of the member
/// of the given class, which is an instantiation of a class template
/// or a member class of a template.
void
InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
/// Instantiate the definitions of all of the members of the
/// given class template specialization, which was named as part of an
/// explicit instantiation.
void InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK);
NestedNameSpecifierLoc SubstNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Do template substitution on declaration name info.
DeclarationNameInfo
SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
const MultiLevelTemplateArgumentList &TemplateArgs);
TemplateName
SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
SourceLocation Loc,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool SubstTypeConstraint(TemplateTypeParmDecl *Inst, const TypeConstraint *TC,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool EvaluateConstraint);
/// Determine whether we are currently performing template instantiation.
bool inTemplateInstantiation() const {
return CodeSynthesisContexts.size() > NonInstantiationEntries;
}
using EntityPrinter = llvm::function_ref<void(llvm::raw_ostream &)>;
/// \brief create a Requirement::SubstitutionDiagnostic with only a
/// SubstitutedEntity and DiagLoc using ASTContext's allocator.
concepts::Requirement::SubstitutionDiagnostic *
createSubstDiagAt(SourceLocation Location, EntityPrinter Printer);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Template Declaration Instantiation
/// Implementations are in SemaTemplateInstantiateDecl.cpp
///@{
public:
/// An entity for which implicit template instantiation is required.
///
/// The source location associated with the declaration is the first place in
/// the source code where the declaration was "used". It is not necessarily
/// the point of instantiation (which will be either before or after the
/// namespace-scope declaration that triggered this implicit instantiation),
/// However, it is the location that diagnostics should generally refer to,
/// because users will need to know what code triggered the instantiation.
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
/// The queue of implicit template instantiations that are required
/// but have not yet been performed.
std::deque<PendingImplicitInstantiation> PendingInstantiations;
/// Queue of implicit template instantiations that cannot be performed
/// eagerly.
SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
SmallVector<SmallVector<VTableUse, 16>, 8> SavedVTableUses;
SmallVector<std::deque<PendingImplicitInstantiation>, 8>
SavedPendingInstantiations;
/// The queue of implicit template instantiations that are required
/// and must be performed within the current local scope.
///
/// This queue is only used for member functions of local classes in
/// templates, which must be instantiated in the same scope as their
/// enclosing function, so that they can reference function-local
/// types, static variables, enumerators, etc.
std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
class LocalEagerInstantiationScope {
public:
LocalEagerInstantiationScope(Sema &S, bool AtEndOfTU)
: S(S), AtEndOfTU(AtEndOfTU) {
SavedPendingLocalImplicitInstantiations.swap(
S.PendingLocalImplicitInstantiations);
}
void perform() {
S.PerformPendingInstantiations(/*LocalOnly=*/true,
/*AtEndOfTU=*/AtEndOfTU);
}
~LocalEagerInstantiationScope() {
assert(S.PendingLocalImplicitInstantiations.empty() &&
"there shouldn't be any pending local implicit instantiations");
SavedPendingLocalImplicitInstantiations.swap(
S.PendingLocalImplicitInstantiations);
}
private:
Sema &S;
bool AtEndOfTU;
std::deque<PendingImplicitInstantiation>
SavedPendingLocalImplicitInstantiations;
};
/// Records and restores the CurFPFeatures state on entry/exit of compound
/// statements.
class FPFeaturesStateRAII {
public:
FPFeaturesStateRAII(Sema &S);
~FPFeaturesStateRAII();
FPOptionsOverride getOverrides() { return OldOverrides; }
private:
Sema &S;
FPOptions OldFPFeaturesState;
FPOptionsOverride OldOverrides;
LangOptions::FPEvalMethodKind OldEvalMethod;
SourceLocation OldFPPragmaLocation;
};
class GlobalEagerInstantiationScope {
public:
GlobalEagerInstantiationScope(Sema &S, bool Enabled, bool AtEndOfTU)
: S(S), Enabled(Enabled), AtEndOfTU(AtEndOfTU) {
if (!Enabled)
return;
S.SavedPendingInstantiations.emplace_back();
S.SavedPendingInstantiations.back().swap(S.PendingInstantiations);
S.SavedVTableUses.emplace_back();
S.SavedVTableUses.back().swap(S.VTableUses);
}
void perform() {
if (Enabled) {
S.DefineUsedVTables();
S.PerformPendingInstantiations(/*LocalOnly=*/false,
/*AtEndOfTU=*/AtEndOfTU);
}
}
~GlobalEagerInstantiationScope() {
if (!Enabled)
return;
// Restore the set of pending vtables.
assert(S.VTableUses.empty() &&
"VTableUses should be empty before it is discarded.");
S.VTableUses.swap(S.SavedVTableUses.back());
S.SavedVTableUses.pop_back();
// Restore the set of pending implicit instantiations.
if ((S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) &&
AtEndOfTU) {
assert(S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded.");
S.PendingInstantiations.swap(S.SavedPendingInstantiations.back());
S.SavedPendingInstantiations.pop_back();
} else {
// Template instantiations in the PCH may be delayed until the TU.
S.PendingInstantiations.swap(S.SavedPendingInstantiations.back());
S.PendingInstantiations.insert(
S.PendingInstantiations.end(),
S.SavedPendingInstantiations.back().begin(),
S.SavedPendingInstantiations.back().end());
S.SavedPendingInstantiations.pop_back();
}
}
private:
Sema &S;
bool Enabled;
bool AtEndOfTU;
};
ExplicitSpecifier instantiateExplicitSpecifier(
const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES);
struct LateInstantiatedAttribute {
const Attr *TmplAttr;
LocalInstantiationScope *Scope;
Decl *NewDecl;
LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
Decl *D)
: TmplAttr(A), Scope(S), NewDecl(D) {}
};
typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
const Decl *Pattern, Decl *Inst,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *OuterMostScope = nullptr);
/// Update instantiation attributes after template was late parsed.
///
/// Some attributes are evaluated based on the body of template. If it is
/// late parsed, such attributes cannot be evaluated when declaration is
/// instantiated. This function is used to update instantiation attributes
/// when template definition is ready.
void updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst);
void
InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
const Decl *Pattern, Decl *Inst,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *OuterMostScope = nullptr);
/// In the MS ABI, we need to instantiate default arguments of dllexported
/// default constructors along with the constructor definition. This allows IR
/// gen to emit a constructor closure which calls the default constructor with
/// its default arguments.
void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param);
void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
FunctionDecl *Function);
/// Instantiate (or find existing instantiation of) a function template with a
/// given set of template arguments.
///
/// Usually this should not be used, and template argument deduction should be
/// used in its place.
FunctionDecl *InstantiateFunctionDeclaration(
FunctionTemplateDecl *FTD, const TemplateArgumentList *Args,
SourceLocation Loc,
CodeSynthesisContext::SynthesisKind CSC =
CodeSynthesisContext::ExplicitTemplateArgumentSubstitution);
/// Instantiate the definition of the given function from its
/// template.
///
/// \param PointOfInstantiation the point at which the instantiation was
/// required. Note that this is not precisely a "point of instantiation"
/// for the function, but it's close.
///
/// \param Function the already-instantiated declaration of a
/// function template specialization or member function of a class template
/// specialization.
///
/// \param Recursive if true, recursively instantiates any functions that
/// are required by this instantiation.
///
/// \param DefinitionRequired if true, then we are performing an explicit
/// instantiation where the body of the function is required. Complain if
/// there is no such body.
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
FunctionDecl *Function,
bool Recursive = false,
bool DefinitionRequired = false,
bool AtEndOfTU = false);
VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
VarTemplateDecl *VarTemplate, VarDecl *FromVar,
const TemplateArgumentList *PartialSpecArgs,
const TemplateArgumentListInfo &TemplateArgsInfo,
SmallVectorImpl<TemplateArgument> &Converted,
SourceLocation PointOfInstantiation,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *StartingScope = nullptr);
/// Instantiates a variable template specialization by completing it
/// with appropriate type information and initializer.
VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// BuildVariableInstantiation - Used after a new variable has been created.
/// Sets basic variable data and decides whether to postpone the
/// variable instantiation.
void
BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
const MultiLevelTemplateArgumentList &TemplateArgs,
LateInstantiatedAttrVec *LateAttrs,
DeclContext *Owner,
LocalInstantiationScope *StartingScope,
bool InstantiatingVarTemplate = false,
VarTemplateSpecializationDecl *PrevVTSD = nullptr);
/// Instantiate the initializer of a variable.
void InstantiateVariableInitializer(
VarDecl *Var, VarDecl *OldVar,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Instantiate the definition of the given variable from its
/// template.
///
/// \param PointOfInstantiation the point at which the instantiation was
/// required. Note that this is not precisely a "point of instantiation"
/// for the variable, but it's close.
///
/// \param Var the already-instantiated declaration of a templated variable.
///
/// \param Recursive if true, recursively instantiates any functions that
/// are required by this instantiation.
///
/// \param DefinitionRequired if true, then we are performing an explicit
/// instantiation where a definition of the variable is required. Complain
/// if there is no such definition.
void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
VarDecl *Var, bool Recursive = false,
bool DefinitionRequired = false,
bool AtEndOfTU = false);
void InstantiateMemInitializers(
CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Find the instantiation of the given declaration within the
/// current instantiation.
///
/// This routine is intended to be used when \p D is a declaration
/// referenced from within a template, that needs to mapped into the
/// corresponding declaration within an instantiation. For example,
/// given:
///
/// \code
/// template<typename T>
/// struct X {
/// enum Kind {
/// KnownValue = sizeof(T)
/// };
///
/// bool getKind() const { return KnownValue; }
/// };
///
/// template struct X<int>;
/// \endcode
///
/// In the instantiation of X<int>::getKind(), we need to map the \p
/// EnumConstantDecl for \p KnownValue (which refers to
/// X<T>::<Kind>::KnownValue) to its instantiation
/// (X<int>::<Kind>::KnownValue).
/// \p FindInstantiatedDecl performs this mapping from within the
/// instantiation of X<int>.
NamedDecl *
FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool FindingInstantiatedContext = false);
/// Finds the instantiation of the given declaration context
/// within the current instantiation.
///
/// \returns NULL if there was an error
DeclContext *
FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
const MultiLevelTemplateArgumentList &TemplateArgs);
Decl *SubstDecl(Decl *D, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Substitute the name and return type of a defaulted 'operator<=>' to form
/// an implicit 'operator=='.
FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
FunctionDecl *Spaceship);
/// Performs template instantiation for all implicit template
/// instantiations we have seen until this point.
void PerformPendingInstantiations(bool LocalOnly = false,
bool AtEndOfTU = true);
TemplateParameterList *
SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool EvaluateConstraints = true);
void PerformDependentDiagnostics(
const DeclContext *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
private:
/// Introduce the instantiated local variables into the local
/// instantiation scope.
void addInstantiatedLocalVarsToScope(FunctionDecl *Function,
const FunctionDecl *PatternDecl,
LocalInstantiationScope &Scope);
/// Introduce the instantiated function parameters into the local
/// instantiation scope, and set the parameter names to those used
/// in the template.
bool addInstantiatedParametersToScope(
FunctionDecl *Function, const FunctionDecl *PatternDecl,
LocalInstantiationScope &Scope,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Introduce the instantiated captures of the lambda into the local
/// instantiation scope.
bool addInstantiatedCapturesToScope(
FunctionDecl *Function, const FunctionDecl *PatternDecl,
LocalInstantiationScope &Scope,
const MultiLevelTemplateArgumentList &TemplateArgs);
int ParsingClassDepth = 0;
class SavePendingParsedClassStateRAII {
public:
SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
~SavePendingParsedClassStateRAII() {
assert(S.DelayedOverridingExceptionSpecChecks.empty() &&
"there shouldn't be any pending delayed exception spec checks");
assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&
"there shouldn't be any pending delayed exception spec checks");
swapSavedState();
}
private:
Sema &S;
decltype(DelayedOverridingExceptionSpecChecks)
SavedOverridingExceptionSpecChecks;
decltype(DelayedEquivalentExceptionSpecChecks)
SavedEquivalentExceptionSpecChecks;
void swapSavedState() {
SavedOverridingExceptionSpecChecks.swap(
S.DelayedOverridingExceptionSpecChecks);
SavedEquivalentExceptionSpecChecks.swap(
S.DelayedEquivalentExceptionSpecChecks);
}
};
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name C++ Variadic Templates
/// Implementations are in SemaTemplateVariadic.cpp
///@{
public:
/// Determine whether an unexpanded parameter pack might be permitted in this
/// location. Useful for error recovery.
bool isUnexpandedParameterPackPermitted();
/// The context in which an unexpanded parameter pack is
/// being diagnosed.
///
/// Note that the values of this enumeration line up with the first
/// argument to the \c err_unexpanded_parameter_pack diagnostic.
enum UnexpandedParameterPackContext {
/// An arbitrary expression.
UPPC_Expression = 0,
/// The base type of a class type.
UPPC_BaseType,
/// The type of an arbitrary declaration.
UPPC_DeclarationType,
/// The type of a data member.
UPPC_DataMemberType,
/// The size of a bit-field.
UPPC_BitFieldWidth,
/// The expression in a static assertion.
UPPC_StaticAssertExpression,
/// The fixed underlying type of an enumeration.
UPPC_FixedUnderlyingType,
/// The enumerator value.
UPPC_EnumeratorValue,
/// A using declaration.
UPPC_UsingDeclaration,
/// A friend declaration.
UPPC_FriendDeclaration,
/// A declaration qualifier.
UPPC_DeclarationQualifier,
/// An initializer.
UPPC_Initializer,
/// A default argument.
UPPC_DefaultArgument,
/// The type of a non-type template parameter.
UPPC_NonTypeTemplateParameterType,
/// The type of an exception.
UPPC_ExceptionType,
/// Explicit specialization.
UPPC_ExplicitSpecialization,
/// Partial specialization.
UPPC_PartialSpecialization,
/// Microsoft __if_exists.
UPPC_IfExists,
/// Microsoft __if_not_exists.
UPPC_IfNotExists,
/// Lambda expression.
UPPC_Lambda,
/// Block expression.
UPPC_Block,
/// A type constraint.
UPPC_TypeConstraint,
// A requirement in a requires-expression.
UPPC_Requirement,
// A requires-clause.
UPPC_RequiresClause,
};
/// Diagnose unexpanded parameter packs.
///
/// \param Loc The location at which we should emit the diagnostic.
///
/// \param UPPC The context in which we are diagnosing unexpanded
/// parameter packs.
///
/// \param Unexpanded the set of unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPacks(
SourceLocation Loc, UnexpandedParameterPackContext UPPC,
ArrayRef<UnexpandedParameterPack> Unexpanded);
/// If the given type contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The source location where a diagnostc should be emitted.
///
/// \param T The type that is being checked for unexpanded parameter
/// packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
UnexpandedParameterPackContext UPPC);
/// If the given expression contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param E The expression that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(
Expr *E, UnexpandedParameterPackContext UPPC = UPPC_Expression);
/// If the given requirees-expression contains an unexpanded reference to one
/// of its own parameter packs, diagnose the error.
///
/// \param RE The requiress-expression that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
/// If the given nested-name-specifier contains an unexpanded
/// parameter pack, diagnose the error.
///
/// \param SS The nested-name-specifier that is being checked for
/// unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
UnexpandedParameterPackContext UPPC);
/// If the given name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param NameInfo The name (with source location information) that
/// is being checked for unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
UnexpandedParameterPackContext UPPC);
/// If the given template name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The location of the template name.
///
/// \param Template The template name that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TemplateName Template,
UnexpandedParameterPackContext UPPC);
/// If the given template argument contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param Arg The template argument that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
UnexpandedParameterPackContext UPPC);
/// Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(
TemplateArgument Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(
TemplateArgumentLoc Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param T The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(
QualType T, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param TL The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(
TypeLoc TL, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// nested-name-specifier.
///
/// \param NNS The nested-name-specifier that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(
NestedNameSpecifierLoc NNS,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// name.
///
/// \param NameInfo The name that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(
const DeclarationNameInfo &NameInfo,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// expression.
static void collectUnexpandedParameterPacks(
Expr *E, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Invoked when parsing a template argument followed by an
/// ellipsis, which creates a pack expansion.
///
/// \param Arg The template argument preceding the ellipsis, which
/// may already be invalid.
///
/// \param EllipsisLoc The location of the ellipsis.
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
SourceLocation EllipsisLoc);
/// Invoked when parsing a type followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Type The type preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
/// Construct a pack expansion type from the pattern of the pack
/// expansion.
TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions);
/// Construct a pack expansion type from the pattern of the pack
/// expansion.
QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions);
/// Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
/// Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions);
/// Determine whether we could expand a pack expansion with the
/// given set of parameter packs into separate arguments by repeatedly
/// transforming the pattern.
///
/// \param EllipsisLoc The location of the ellipsis that identifies the
/// pack expansion.
///
/// \param PatternRange The source range that covers the entire pattern of
/// the pack expansion.
///
/// \param Unexpanded The set of unexpanded parameter packs within the
/// pattern.
///
/// \param ShouldExpand Will be set to \c true if the transformer should
/// expand the corresponding pack expansions into separate arguments. When
/// set, \c NumExpansions must also be set.
///
/// \param RetainExpansion Whether the caller should add an unexpanded
/// pack expansion after all of the expanded arguments. This is used
/// when extending explicitly-specified template argument packs per
/// C++0x [temp.arg.explicit]p9.
///
/// \param NumExpansions The number of separate arguments that will be in
/// the expanded form of the corresponding pack expansion. This is both an
/// input and an output parameter, which can be set by the caller if the
/// number of expansions is known a priori (e.g., due to a prior substitution)
/// and will be set by the callee when the number of expansions is known.
/// The callee must set this value when \c ShouldExpand is \c true; it may
/// set this value in other cases.
///
/// \returns true if an error occurred (e.g., because the parameter packs
/// are to be instantiated with arguments of different lengths), false
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
/// must be set.
bool CheckParameterPacksForExpansion(
SourceLocation EllipsisLoc, SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
bool &RetainExpansion, std::optional<unsigned> &NumExpansions);
/// Determine the number of arguments in the given pack expansion
/// type.
///
/// This routine assumes that the number of arguments in the expansion is
/// consistent across all of the unexpanded parameter packs in its pattern.
///
/// Returns an empty Optional if the type can't be expanded.
std::optional<unsigned> getNumArgumentsInExpansion(
QualType T, const MultiLevelTemplateArgumentList &TemplateArgs);
std::optional<unsigned> getNumArgumentsInExpansionFromUnexpanded(
llvm::ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Determine whether the given declarator contains any unexpanded
/// parameter packs.
///
/// This routine is used by the parser to disambiguate function declarators
/// with an ellipsis prior to the ')', e.g.,
///
/// \code
/// void f(T...);
/// \endcode
///
/// To determine whether we have an (unnamed) function parameter pack or
/// a variadic function.
///
/// \returns true if the declarator contains any unexpanded parameter packs,
/// false otherwise.
bool containsUnexpandedParameterPacks(Declarator &D);
/// Returns the pattern of the pack expansion for a template argument.
///
/// \param OrigLoc The template argument to expand.
///
/// \param Ellipsis Will be set to the location of the ellipsis.
///
/// \param NumExpansions Will be set to the number of expansions that will
/// be generated from this pack expansion, if known a priori.
TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis,
std::optional<unsigned> &NumExpansions) const;
/// Given a template argument that contains an unexpanded parameter pack, but
/// which has already been substituted, attempt to determine the number of
/// elements that will be produced once this argument is fully-expanded.
///
/// This is intended for use when transforming 'sizeof...(Arg)' in order to
/// avoid actually expanding the pack where possible.
std::optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
/// Called when an expression computing the size of a parameter pack
/// is parsed.
///
/// \code
/// template<typename ...Types> struct count {
/// static const unsigned value = sizeof...(Types);
/// };
/// \endcode
///
//
/// \param OpLoc The location of the "sizeof" keyword.
/// \param Name The name of the parameter pack whose size will be determined.
/// \param NameLoc The source location of the name of the parameter pack.
/// \param RParenLoc The location of the closing parentheses.
ExprResult ActOnSizeofParameterPackExpr(Scope *S, SourceLocation OpLoc,
IdentifierInfo &Name,
SourceLocation NameLoc,
SourceLocation RParenLoc);
ExprResult ActOnPackIndexingExpr(Scope *S, Expr *PackExpression,
SourceLocation EllipsisLoc,
SourceLocation LSquareLoc, Expr *IndexExpr,
SourceLocation RSquareLoc);
ExprResult BuildPackIndexingExpr(Expr *PackExpression,
SourceLocation EllipsisLoc, Expr *IndexExpr,
SourceLocation RSquareLoc,
ArrayRef<Expr *> ExpandedExprs = {},
bool FullySubstituted = false);
/// Handle a C++1z fold-expression: ( expr op ... op expr ).
ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
tok::TokenKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc);
ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
SourceLocation LParenLoc, Expr *LHS,
BinaryOperatorKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc,
std::optional<unsigned> NumExpansions);
ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
BinaryOperatorKind Operator);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Constraints and Concepts
/// Implementations are in SemaConcept.cpp
///@{
public:
void PushSatisfactionStackEntry(const NamedDecl *D,
const llvm::FoldingSetNodeID &ID) {
const NamedDecl *Can = cast<NamedDecl>(D->getCanonicalDecl());
SatisfactionStack.emplace_back(Can, ID);
}
void PopSatisfactionStackEntry() { SatisfactionStack.pop_back(); }
bool SatisfactionStackContains(const NamedDecl *D,
const llvm::FoldingSetNodeID &ID) const {
const NamedDecl *Can = cast<NamedDecl>(D->getCanonicalDecl());
return llvm::find(SatisfactionStack, SatisfactionStackEntryTy{Can, ID}) !=
SatisfactionStack.end();
}
using SatisfactionStackEntryTy =
std::pair<const NamedDecl *, llvm::FoldingSetNodeID>;
// Resets the current SatisfactionStack for cases where we are instantiating
// constraints as a 'side effect' of normal instantiation in a way that is not
// indicative of recursive definition.
class SatisfactionStackResetRAII {
llvm::SmallVector<SatisfactionStackEntryTy, 10> BackupSatisfactionStack;
Sema &SemaRef;
public:
SatisfactionStackResetRAII(Sema &S) : SemaRef(S) {
SemaRef.SwapSatisfactionStack(BackupSatisfactionStack);
}
~SatisfactionStackResetRAII() {
SemaRef.SwapSatisfactionStack(BackupSatisfactionStack);
}
};
void SwapSatisfactionStack(
llvm::SmallVectorImpl<SatisfactionStackEntryTy> &NewSS) {
SatisfactionStack.swap(NewSS);
}
/// Check whether the given expression is a valid constraint expression.
/// A diagnostic is emitted if it is not, false is returned, and
/// PossibleNonPrimary will be set to true if the failure might be due to a
/// non-primary expression being used as an atomic constraint.
bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
bool *PossibleNonPrimary = nullptr,
bool IsTrailingRequiresClause = false);
/// \brief Check whether the given list of constraint expressions are
/// satisfied (as if in a 'conjunction') given template arguments.
/// \param Template the template-like entity that triggered the constraints
/// check (either a concept or a constrained entity).
/// \param ConstraintExprs a list of constraint expressions, treated as if
/// they were 'AND'ed together.
/// \param TemplateArgLists the list of template arguments to substitute into
/// the constraint expression.
/// \param TemplateIDRange The source range of the template id that
/// caused the constraints check.
/// \param Satisfaction if true is returned, will contain details of the
/// satisfaction, with enough information to diagnose an unsatisfied
/// expression.
/// \returns true if an error occurred and satisfaction could not be checked,
/// false otherwise.
bool CheckConstraintSatisfaction(
const NamedDecl *Template,
ArrayRef<AssociatedConstraint> AssociatedConstraints,
const MultiLevelTemplateArgumentList &TemplateArgLists,
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
llvm::SmallVector<Expr *, 4> Converted;
return CheckConstraintSatisfaction(Template, AssociatedConstraints,
Converted, TemplateArgLists,
TemplateIDRange, Satisfaction);
}
/// \brief Check whether the given list of constraint expressions are
/// satisfied (as if in a 'conjunction') given template arguments.
/// Additionally, takes an empty list of Expressions which is populated with
/// the instantiated versions of the ConstraintExprs.
/// \param Template the template-like entity that triggered the constraints
/// check (either a concept or a constrained entity).
/// \param ConstraintExprs a list of constraint expressions, treated as if
/// they were 'AND'ed together.
/// \param ConvertedConstraints a out parameter that will get populated with
/// the instantiated version of the ConstraintExprs if we successfully checked
/// satisfaction.
/// \param TemplateArgList the multi-level list of template arguments to
/// substitute into the constraint expression. This should be relative to the
/// top-level (hence multi-level), since we need to instantiate fully at the
/// time of checking.
/// \param TemplateIDRange The source range of the template id that
/// caused the constraints check.
/// \param Satisfaction if true is returned, will contain details of the
/// satisfaction, with enough information to diagnose an unsatisfied
/// expression.
/// \returns true if an error occurred and satisfaction could not be checked,
/// false otherwise.
bool CheckConstraintSatisfaction(
const NamedDecl *Template,
ArrayRef<AssociatedConstraint> AssociatedConstraints,
llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
const MultiLevelTemplateArgumentList &TemplateArgList,
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
/// \brief Check whether the given non-dependent constraint expression is
/// satisfied. Returns false and updates Satisfaction with the satisfaction
/// verdict if successful, emits a diagnostic and returns true if an error
/// occurred and satisfaction could not be determined.
///
/// \returns true if an error occurred, false otherwise.
bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction);
/// Check whether the given function decl's trailing requires clause is
/// satisfied, if any. Returns false and updates Satisfaction with the
/// satisfaction verdict if successful, emits a diagnostic and returns true if
/// an error occurred and satisfaction could not be determined.
///
/// \returns true if an error occurred, false otherwise.
bool CheckFunctionConstraints(const FunctionDecl *FD,
ConstraintSatisfaction &Satisfaction,
SourceLocation UsageLoc = SourceLocation(),
bool ForOverloadResolution = false);
// Calculates whether two constraint expressions are equal irrespective of a
// difference in 'depth'. This takes a pair of optional 'NamedDecl's 'Old' and
// 'New', which are the "source" of the constraint, since this is necessary
// for figuring out the relative 'depth' of the constraint. The depth of the
// 'primary template' and the 'instantiated from' templates aren't necessarily
// the same, such as a case when one is a 'friend' defined in a class.
bool AreConstraintExpressionsEqual(const NamedDecl *Old,
const Expr *OldConstr,
const TemplateCompareNewDeclInfo &New,
const Expr *NewConstr);
// Calculates whether the friend function depends on an enclosing template for
// the purposes of [temp.friend] p9.
bool FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD);
/// \brief Ensure that the given template arguments satisfy the constraints
/// associated with the given template, emitting a diagnostic if they do not.
///
/// \param Template The template to which the template arguments are being
/// provided.
///
/// \param TemplateArgs The converted, canonicalized template arguments.
///
/// \param TemplateIDRange The source range of the template id that
/// caused the constraints check.
///
/// \returns true if the constrains are not satisfied or could not be checked
/// for satisfaction, false if the constraints are satisfied.
bool EnsureTemplateArgumentListConstraints(
TemplateDecl *Template,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceRange TemplateIDRange);
bool CheckInstantiatedFunctionTemplateConstraints(
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
ArrayRef<TemplateArgument> TemplateArgs,
ConstraintSatisfaction &Satisfaction);
/// \brief Emit diagnostics explaining why a constraint expression was deemed
/// unsatisfied.
/// \param First whether this is the first time an unsatisfied constraint is
/// diagnosed for this error.
void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
bool First = true);
/// \brief Emit diagnostics explaining why a constraint expression was deemed
/// unsatisfied.
void
DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
bool First = true);
const NormalizedConstraint *getNormalizedAssociatedConstraints(
const NamedDecl *ConstrainedDecl,
ArrayRef<AssociatedConstraint> AssociatedConstraints);
/// \brief Check whether the given declaration's associated constraints are
/// at least as constrained than another declaration's according to the
/// partial ordering of constraints.
///
/// \param Result If no error occurred, receives the result of true if D1 is
/// at least constrained than D2, and false otherwise.
///
/// \returns true if an error occurred, false otherwise.
bool IsAtLeastAsConstrained(const NamedDecl *D1,
MutableArrayRef<AssociatedConstraint> AC1,
const NamedDecl *D2,
MutableArrayRef<AssociatedConstraint> AC2,
bool &Result);
/// If D1 was not at least as constrained as D2, but would've been if a pair
/// of atomic constraints involved had been declared in a concept and not
/// repeated in two separate places in code.
/// \returns true if such a diagnostic was emitted, false otherwise.
bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(
const NamedDecl *D1, ArrayRef<AssociatedConstraint> AC1,
const NamedDecl *D2, ArrayRef<AssociatedConstraint> AC2);
private:
/// Caches pairs of template-like decls whose associated constraints were
/// checked for subsumption and whether or not the first's constraints did in
/// fact subsume the second's.
llvm::DenseMap<std::pair<const NamedDecl *, const NamedDecl *>, bool>
SubsumptionCache;
/// Caches the normalized associated constraints of declarations (concepts or
/// constrained declarations). If an error occurred while normalizing the
/// associated constraints of the template or concept, nullptr will be cached
/// here.
llvm::DenseMap<const NamedDecl *, NormalizedConstraint *> NormalizationCache;
llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
SatisfactionCache;
// The current stack of constraint satisfactions, so we can exit-early.
llvm::SmallVector<SatisfactionStackEntryTy, 10> SatisfactionStack;
/// Used by SetupConstraintCheckingTemplateArgumentsAndScope to set up the
/// LocalInstantiationScope of the current non-lambda function. For lambdas,
/// use LambdaScopeForCallOperatorInstantiationRAII.
bool
SetupConstraintScope(FunctionDecl *FD,
std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
const MultiLevelTemplateArgumentList &MLTAL,
LocalInstantiationScope &Scope);
/// Used during constraint checking, sets up the constraint template argument
/// lists, and calls SetupConstraintScope to set up the
/// LocalInstantiationScope to have the proper set of ParVarDecls configured.
std::optional<MultiLevelTemplateArgumentList>
SetupConstraintCheckingTemplateArgumentsAndScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
LocalInstantiationScope &Scope);
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Types
/// Implementations are in SemaType.cpp
///@{
public:
/// A mapping that describes the nullability we've seen in each header file.
FileNullabilityMap NullabilityMap;
static int getPrintable(int I) { return I; }
static unsigned getPrintable(unsigned I) { return I; }
static bool getPrintable(bool B) { return B; }
static const char *getPrintable(const char *S) { return S; }
static StringRef getPrintable(StringRef S) { return S; }
static const std::string &getPrintable(const std::string &S) { return S; }
static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
return II;
}
static DeclarationName getPrintable(DeclarationName N) { return N; }
static QualType getPrintable(QualType T) { return T; }
static SourceRange getPrintable(SourceRange R) { return R; }
static SourceRange getPrintable(SourceLocation L) { return L; }
static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange(); }
enum class CompleteTypeKind {
/// Apply the normal rules for complete types. In particular,
/// treat all sizeless types as incomplete.
Normal,
/// Relax the normal rules for complete types so that they include
/// sizeless built-in types.
AcceptSizeless,
// FIXME: Eventually we should flip the default to Normal and opt in
// to AcceptSizeless rather than opt out of it.
Default = AcceptSizeless
};
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
const DeclSpec *DS = nullptr);
QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
const DeclSpec *DS = nullptr);
/// Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType BuildPointerType(QualType T, SourceLocation Loc,
DeclarationName Entity);
/// Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc,
DeclarationName Entity);
/// Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType BuildArrayType(QualType T, ArraySizeModifier ASM, Expr *ArraySize,
unsigned Quals, SourceRange Brackets,
DeclarationName Entity);
QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
/// Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc);
QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
SourceLocation AttrLoc);
QualType BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
Expr *CountExpr,
bool CountInBytes,
bool OrNull);
/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an
/// expression is uninstantiated. If instantiated it will apply the
/// appropriate address space to the type. This function allows dependent
/// template variables to be used in conjunction with the address_space
/// attribute
QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
SourceLocation AttrLoc);
/// Same as above, but constructs the AddressSpace index if not provided.
QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
SourceLocation AttrLoc);
bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
/// Build a function type.
///
/// This routine checks the function type according to C++ rules and
/// under the assumption that the result type and parameter types have
/// just been instantiated from a template. It therefore duplicates
/// some of the behavior of GetTypeForDeclarator, but in a much
/// simpler form that is only suitable for this narrow use case.
///
/// \param T The return type of the function.
///
/// \param ParamTypes The parameter types of the function. This array
/// will be modified to account for adjustments to the types of the
/// function parameters.
///
/// \param Loc The location of the entity whose type involves this
/// function type or, if there is no such entity, the location of the
/// type that will have function type.
///
/// \param Entity The name of the entity that involves the function
/// type, if known.
///
/// \param EPI Extra information about the function type. Usually this will
/// be taken from an existing function with the same prototype.
///
/// \returns A suitable function type, if there are no errors. The
/// unqualified type will always be a FunctionProtoType.
/// Otherwise, returns a NULL type.
QualType BuildFunctionType(QualType T, MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI);
/// Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer
/// type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType BuildMemberPointerType(QualType T, const CXXScopeSpec &SS,
CXXRecordDecl *Cls, SourceLocation Loc,
DeclarationName Entity);
/// Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType BuildBlockPointerType(QualType T, SourceLocation Loc,
DeclarationName Entity);
/// Build a paren type including \p T.
QualType BuildParenType(QualType T);
QualType BuildAtomicType(QualType T, SourceLocation Loc);
/// Build a Read-only Pipe type.
///
/// \param T The type to which we'll be building a Pipe.
///
/// \param Loc We do not use it for now.
///
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns
/// a NULL type.
QualType BuildReadPipeType(QualType T, SourceLocation Loc);
/// Build a Write-only Pipe type.
///
/// \param T The type to which we'll be building a Pipe.
///
/// \param Loc We do not use it for now.
///
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns
/// a NULL type.
QualType BuildWritePipeType(QualType T, SourceLocation Loc);
/// Build a bit-precise integer type.
///
/// \param IsUnsigned Boolean representing the signedness of the type.
///
/// \param BitWidth Size of this int type in bits, or an expression
/// representing that.
///
/// \param Loc Location of the keyword.
QualType BuildBitIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *GetTypeForDeclarator(Declarator &D);
TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
/// Package the given type and TSI into a ParsedType.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
static QualType GetTypeFromParser(ParsedType Ty,
TypeSourceInfo **TInfo = nullptr);
TypeResult ActOnTypeName(Declarator &D);
// Check whether the size of array element of type \p EltTy is a multiple of
// its alignment and return false if it isn't.
bool checkArrayElementAlignment(QualType EltTy, SourceLocation Loc);
void
diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc = SourceLocation(),
SourceLocation VolatileQualLoc = SourceLocation(),
SourceLocation RestrictQualLoc = SourceLocation(),
SourceLocation AtomicQualLoc = SourceLocation(),
SourceLocation UnalignedQualLoc = SourceLocation());
/// Retrieve the keyword associated
IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
/// Adjust the calling convention of a method to be the ABI default if it
/// wasn't specified explicitly. This handles method types formed from
/// function type typedefs and typename template arguments.
void adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
bool IsCtorOrDtor, SourceLocation Loc);
// Check if there is an explicit attribute, but only look through parens.
// The intent is to look for an attribute on the current declarator, but not
// one that came from a typedef.
bool hasExplicitCallingConv(QualType T);
/// Check whether a nullability type specifier can be added to the given
/// type through some means not written in source (e.g. API notes).
///
/// \param Type The type to which the nullability specifier will be
/// added. On success, this type will be updated appropriately.
///
/// \param Nullability The nullability specifier to add.
///
/// \param DiagLoc The location to use for diagnostics.
///
/// \param AllowArrayTypes Whether to accept nullability specifiers on an
/// array type (e.g., because it will decay to a pointer).
///
/// \param OverrideExisting Whether to override an existing, locally-specified
/// nullability specifier rather than complaining about the conflict.
///
/// \returns true if nullability cannot be applied, false otherwise.
bool CheckImplicitNullabilityTypeSpecifier(QualType &Type,
NullabilityKind Nullability,
SourceLocation DiagLoc,
bool AllowArrayTypes,
bool OverrideExisting);
/// Get the type of expression E, triggering instantiation to complete the
/// type if necessary -- that is, if the expression refers to a templated
/// static data member of incomplete array type.
///
/// May still return an incomplete type if instantiation was not possible or
/// if the type is incomplete for a different reason. Use
/// RequireCompleteExprType instead if a diagnostic is expected for an
/// incomplete expression type.
QualType getCompletedType(Expr *E);
void completeExprArrayBound(Expr *E);
/// Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If
/// the expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Kind Selects which completeness rules should be applied.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
TypeDiagnoser &Diagnoser);
bool RequireCompleteExprType(Expr *E, unsigned DiagID);
template <typename... Ts>
bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
}
/// Retrieve a version of the type 'T' that is elaborated by Keyword,
/// qualified by the nested-name-specifier contained in SS, and that is
/// (re)declared by OwnedTagDecl, which is nullptr if this is not a
/// (re)declaration.
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T,
TagDecl *OwnedTagDecl = nullptr);
// Returns the underlying type of a decltype with the given expression.
QualType getDecltypeForExpr(Expr *E);
QualType BuildTypeofExprType(Expr *E, TypeOfKind Kind);
/// If AsUnevaluated is false, E is treated as though it were an evaluated
/// context, such as when building a type for decltype(auto).
QualType BuildDecltypeType(Expr *E, bool AsUnevaluated = true);
QualType ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
SourceLocation Loc,
SourceLocation EllipsisLoc);
QualType BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
SourceLocation Loc, SourceLocation EllipsisLoc,
bool FullySubstituted = false,
ArrayRef<QualType> Expansions = {});
using UTTKind = UnaryTransformType::UTTKind;
QualType BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinEnumUnderlyingType(QualType BaseType, SourceLocation Loc);
QualType BuiltinAddPointer(QualType BaseType, SourceLocation Loc);
QualType BuiltinRemovePointer(QualType BaseType, SourceLocation Loc);
QualType BuiltinDecay(QualType BaseType, SourceLocation Loc);
QualType BuiltinAddReference(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
/// Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was
/// emitted, @c false otherwise.
bool RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
template <typename... Ts>
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireLiteralType(Loc, T, Diagnoser);
}
bool isCompleteType(SourceLocation Loc, QualType T,
CompleteTypeKind Kind = CompleteTypeKind::Default) {
return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
}
/// Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for completeness.
///
/// @param Kind Selects which completeness rules should be applied.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool RequireCompleteType(SourceLocation Loc, QualType T,
CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
bool RequireCompleteType(SourceLocation Loc, QualType T,
CompleteTypeKind Kind, unsigned DiagID);
bool RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
}
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
}
template <typename... Ts>
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteType(Loc, T, Diagnoser);
}
/// Determine whether a declaration is visible to name lookup.
bool isVisible(const NamedDecl *D) {
return D->isUnconditionallyVisible() ||
isAcceptableSlow(D, AcceptableKind::Visible);
}
/// Determine whether a declaration is reachable.
bool isReachable(const NamedDecl *D) {
// All visible declarations are reachable.
return D->isUnconditionallyVisible() ||
isAcceptableSlow(D, AcceptableKind::Reachable);
}
/// Determine whether a declaration is acceptable (visible/reachable).
bool isAcceptable(const NamedDecl *D, AcceptableKind Kind) {
return Kind == AcceptableKind::Visible ? isVisible(D) : isReachable(D);
}
/// Determine if \p D and \p Suggested have a structurally compatible
/// layout as described in C11 6.2.7/1.
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
/// Determine if \p D has a visible definition. If not, suggest a declaration
/// that should be made visible to expose the definition.
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete = false);
bool hasVisibleDefinition(const NamedDecl *D) {
NamedDecl *Hidden;
return hasVisibleDefinition(const_cast<NamedDecl *>(D), &Hidden);
}
/// Determine if \p D has a reachable definition. If not, suggest a
/// declaration that should be made reachable to expose the definition.
bool hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete = false);
bool hasReachableDefinition(NamedDecl *D) {
NamedDecl *Hidden;
return hasReachableDefinition(D, &Hidden);
}
bool hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
AcceptableKind Kind,
bool OnlyNeedComplete = false);
bool hasAcceptableDefinition(NamedDecl *D, AcceptableKind Kind) {
NamedDecl *Hidden;
return hasAcceptableDefinition(D, &Hidden, Kind);
}
/// Try to parse the conditional expression attached to an effect attribute
/// (e.g. 'nonblocking'). (c.f. Sema::ActOnNoexceptSpec). Return an empty
/// optional on error.
std::optional<FunctionEffectMode>
ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName);
private:
/// The implementation of RequireCompleteType
bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
/// Nullability type specifiers.
IdentifierInfo *Ident__Nonnull = nullptr;
IdentifierInfo *Ident__Nullable = nullptr;
IdentifierInfo *Ident__Nullable_result = nullptr;
IdentifierInfo *Ident__Null_unspecified = nullptr;
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name FixIt Helpers
/// Implementations are in SemaFixItUtils.cpp
///@{
public:
/// Get a string to suggest for zero-initialization of a type.
std::string getFixItZeroInitializerForType(QualType T,
SourceLocation Loc) const;
std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
///@}
//
//
// -------------------------------------------------------------------------
//
//
/// \name Function Effects
/// Implementations are in SemaFunctionEffects.cpp
///@{
public:
struct FunctionEffectDiff {
enum class Kind { Added, Removed, ConditionMismatch };
FunctionEffect::Kind EffectKind;
Kind DiffKind;
std::optional<FunctionEffectWithCondition>
Old; // Invalid when 'Kind' is 'Added'.
std::optional<FunctionEffectWithCondition>
New; // Invalid when 'Kind' is 'Removed'.
StringRef effectName() const {
if (Old)
return Old.value().Effect.name();
return New.value().Effect.name();
}
/// Describes the result of effects differing between a base class's virtual
/// method and an overriding method in a subclass.
enum class OverrideResult {
NoAction,
Warn,
Merge // Merge missing effect from base to derived.
};
/// Return true if adding or removing the effect as part of a type
/// conversion should generate a diagnostic.
bool shouldDiagnoseConversion(QualType SrcType,
const FunctionEffectsRef &SrcFX,
QualType DstType,
const FunctionEffectsRef &DstFX) const;
/// Return true if adding or removing the effect in a redeclaration should
/// generate a diagnostic.
bool shouldDiagnoseRedeclaration(const FunctionDecl &OldFunction,
const FunctionEffectsRef &OldFX,
const FunctionDecl &NewFunction,
const FunctionEffectsRef &NewFX) const;
/// Return true if adding or removing the effect in a C++ virtual method
/// override should generate a diagnostic.
OverrideResult shouldDiagnoseMethodOverride(
const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const;
};
struct FunctionEffectDiffVector : public SmallVector<FunctionEffectDiff> {
/// Caller should short-circuit by checking for equality first.
FunctionEffectDiffVector(const FunctionEffectsRef &Old,
const FunctionEffectsRef &New);
};
/// All functions/lambdas/blocks which have bodies and which have a non-empty
/// FunctionEffectsRef to be verified.
SmallVector<const Decl *> DeclsWithEffectsToVerify;
/// The union of all effects present on DeclsWithEffectsToVerify. Conditions
/// are all null.
FunctionEffectKindSet AllEffectsToVerify;
public:
/// Warn and return true if adding a function effect to a set would create a
/// conflict.
bool diagnoseConflictingFunctionEffect(const FunctionEffectsRef &FX,
const FunctionEffectWithCondition &EC,
SourceLocation NewAttrLoc);
// Report a failure to merge function effects between declarations due to a
// conflict.
void
diagnoseFunctionEffectMergeConflicts(const FunctionEffectSet::Conflicts &Errs,
SourceLocation NewLoc,
SourceLocation OldLoc);
/// Inline checks from the start of maybeAddDeclWithEffects, to
/// minimize performance impact on code not using effects.
template <class FuncOrBlockDecl>
void maybeAddDeclWithEffects(FuncOrBlockDecl *D) {
if (Context.hasAnyFunctionEffects())
if (FunctionEffectsRef FX = D->getFunctionEffects(); !FX.empty())
maybeAddDeclWithEffects(D, FX);
}
/// Potentially add a FunctionDecl or BlockDecl to DeclsWithEffectsToVerify.
void maybeAddDeclWithEffects(const Decl *D, const FunctionEffectsRef &FX);
/// Unconditionally add a Decl to DeclsWithEfffectsToVerify.
void addDeclWithEffects(const Decl *D, const FunctionEffectsRef &FX);
void performFunctionEffectAnalysis(TranslationUnitDecl *TU);
///@}
};
DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext &Context, TemplateDeductionResult TDK,
sema::TemplateDeductionInfo &Info);
/// Contains a late templated function.
/// Will be parsed at the end of the translation unit, used by Sema & Parser.
struct LateParsedTemplate {
CachedTokens Toks;
/// The template function declaration to be late parsed.
Decl *D;
/// Floating-point options in the point of definition.
FPOptions FPO;
};
template <>
void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel,
AlignPackInfo Value);
inline const StreamingDiagnostic &
operator<<(const StreamingDiagnostic &DB, Sema::StringEvaluationContext Ctx) {
DB << llvm::to_underlying(Ctx);
return DB;
}
} // end namespace clang
#endif