| //===- CIRGenModule.cpp - Per-Module state for CIR generation -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is the internal per-translation-unit state used for CIR translation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CIRGenModule.h" |
| #include "CIRGenCXXABI.h" |
| #include "CIRGenConstantEmitter.h" |
| #include "CIRGenFunction.h" |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclOpenACC.h" |
| #include "clang/AST/GlobalDecl.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/CIR/Dialect/IR/CIRDialect.h" |
| #include "clang/CIR/Interfaces/CIROpInterfaces.h" |
| #include "clang/CIR/MissingFeatures.h" |
| |
| #include "CIRGenFunctionInfo.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/Verifier.h" |
| |
| using namespace clang; |
| using namespace clang::CIRGen; |
| |
| static CIRGenCXXABI *createCXXABI(CIRGenModule &cgm) { |
| switch (cgm.getASTContext().getCXXABIKind()) { |
| case TargetCXXABI::GenericItanium: |
| case TargetCXXABI::GenericAArch64: |
| case TargetCXXABI::AppleARM64: |
| return CreateCIRGenItaniumCXXABI(cgm); |
| |
| case TargetCXXABI::Fuchsia: |
| case TargetCXXABI::GenericARM: |
| case TargetCXXABI::iOS: |
| case TargetCXXABI::WatchOS: |
| case TargetCXXABI::GenericMIPS: |
| case TargetCXXABI::WebAssembly: |
| case TargetCXXABI::XL: |
| case TargetCXXABI::Microsoft: |
| cgm.errorNYI("C++ ABI kind not yet implemented"); |
| return nullptr; |
| } |
| |
| llvm_unreachable("invalid C++ ABI kind"); |
| } |
| |
| CIRGenModule::CIRGenModule(mlir::MLIRContext &mlirContext, |
| clang::ASTContext &astContext, |
| const clang::CodeGenOptions &cgo, |
| DiagnosticsEngine &diags) |
| : builder(mlirContext, *this), astContext(astContext), |
| langOpts(astContext.getLangOpts()), codeGenOpts(cgo), |
| theModule{mlir::ModuleOp::create(mlir::UnknownLoc::get(&mlirContext))}, |
| diags(diags), target(astContext.getTargetInfo()), |
| abi(createCXXABI(*this)), genTypes(*this), vtables(*this) { |
| |
| // Initialize cached types |
| voidTy = cir::VoidType::get(&getMLIRContext()); |
| voidPtrTy = cir::PointerType::get(voidTy); |
| sInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/true); |
| sInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/true); |
| sInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/true); |
| sInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/true); |
| sInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/true); |
| uInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/false); |
| uInt8PtrTy = cir::PointerType::get(uInt8Ty); |
| cirAllocaAddressSpace = getTargetCIRGenInfo().getCIRAllocaAddressSpace(); |
| uInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/false); |
| uInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/false); |
| uInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/false); |
| uInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/false); |
| fP16Ty = cir::FP16Type::get(&getMLIRContext()); |
| bFloat16Ty = cir::BF16Type::get(&getMLIRContext()); |
| floatTy = cir::SingleType::get(&getMLIRContext()); |
| doubleTy = cir::DoubleType::get(&getMLIRContext()); |
| fP80Ty = cir::FP80Type::get(&getMLIRContext()); |
| fP128Ty = cir::FP128Type::get(&getMLIRContext()); |
| |
| allocaInt8PtrTy = cir::PointerType::get(uInt8Ty, cirAllocaAddressSpace); |
| |
| PointerAlignInBytes = |
| astContext |
| .toCharUnitsFromBits( |
| astContext.getTargetInfo().getPointerAlign(LangAS::Default)) |
| .getQuantity(); |
| |
| const unsigned charSize = astContext.getTargetInfo().getCharWidth(); |
| uCharTy = cir::IntType::get(&getMLIRContext(), charSize, /*isSigned=*/false); |
| |
| // TODO(CIR): Should be updated once TypeSizeInfoAttr is upstreamed |
| const unsigned sizeTypeSize = |
| astContext.getTypeSize(astContext.getSignedSizeType()); |
| SizeSizeInBytes = astContext.toCharUnitsFromBits(sizeTypeSize).getQuantity(); |
| // In CIRGenTypeCache, UIntPtrTy and SizeType are fields of the same union |
| uIntPtrTy = |
| cir::IntType::get(&getMLIRContext(), sizeTypeSize, /*isSigned=*/false); |
| ptrDiffTy = |
| cir::IntType::get(&getMLIRContext(), sizeTypeSize, /*isSigned=*/true); |
| |
| std::optional<cir::SourceLanguage> sourceLanguage = getCIRSourceLanguage(); |
| if (sourceLanguage) |
| theModule->setAttr( |
| cir::CIRDialect::getSourceLanguageAttrName(), |
| cir::SourceLanguageAttr::get(&mlirContext, *sourceLanguage)); |
| theModule->setAttr(cir::CIRDialect::getTripleAttrName(), |
| builder.getStringAttr(getTriple().str())); |
| |
| if (cgo.OptimizationLevel > 0 || cgo.OptimizeSize > 0) |
| theModule->setAttr(cir::CIRDialect::getOptInfoAttrName(), |
| cir::OptInfoAttr::get(&mlirContext, |
| cgo.OptimizationLevel, |
| cgo.OptimizeSize)); |
| // Set the module name to be the name of the main file. TranslationUnitDecl |
| // often contains invalid source locations and isn't a reliable source for the |
| // module location. |
| FileID mainFileId = astContext.getSourceManager().getMainFileID(); |
| const FileEntry &mainFile = |
| *astContext.getSourceManager().getFileEntryForID(mainFileId); |
| StringRef path = mainFile.tryGetRealPathName(); |
| if (!path.empty()) { |
| theModule.setSymName(path); |
| theModule->setLoc(mlir::FileLineColLoc::get(&mlirContext, path, |
| /*line=*/0, |
| /*column=*/0)); |
| } |
| } |
| |
| CIRGenModule::~CIRGenModule() = default; |
| |
| /// FIXME: this could likely be a common helper and not necessarily related |
| /// with codegen. |
| /// Return the best known alignment for an unknown pointer to a |
| /// particular class. |
| CharUnits CIRGenModule::getClassPointerAlignment(const CXXRecordDecl *rd) { |
| if (!rd->hasDefinition()) |
| return CharUnits::One(); // Hopefully won't be used anywhere. |
| |
| auto &layout = astContext.getASTRecordLayout(rd); |
| |
| // If the class is final, then we know that the pointer points to an |
| // object of that type and can use the full alignment. |
| if (rd->isEffectivelyFinal()) |
| return layout.getAlignment(); |
| |
| // Otherwise, we have to assume it could be a subclass. |
| return layout.getNonVirtualAlignment(); |
| } |
| |
| CharUnits CIRGenModule::getNaturalTypeAlignment(QualType t, |
| LValueBaseInfo *baseInfo) { |
| assert(!cir::MissingFeatures::opTBAA()); |
| |
| // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown, but |
| // that doesn't return the information we need to compute baseInfo. |
| |
| // Honor alignment typedef attributes even on incomplete types. |
| // We also honor them straight for C++ class types, even as pointees; |
| // there's an expressivity gap here. |
| if (const auto *tt = t->getAs<TypedefType>()) { |
| if (unsigned align = tt->getDecl()->getMaxAlignment()) { |
| if (baseInfo) |
| *baseInfo = LValueBaseInfo(AlignmentSource::AttributedType); |
| return astContext.toCharUnitsFromBits(align); |
| } |
| } |
| |
| // Analyze the base element type, so we don't get confused by incomplete |
| // array types. |
| t = astContext.getBaseElementType(t); |
| |
| if (t->isIncompleteType()) { |
| // We could try to replicate the logic from |
| // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the |
| // type is incomplete, so it's impossible to test. We could try to reuse |
| // getTypeAlignIfKnown, but that doesn't return the information we need |
| // to set baseInfo. So just ignore the possibility that the alignment is |
| // greater than one. |
| if (baseInfo) |
| *baseInfo = LValueBaseInfo(AlignmentSource::Type); |
| return CharUnits::One(); |
| } |
| |
| if (baseInfo) |
| *baseInfo = LValueBaseInfo(AlignmentSource::Type); |
| |
| CharUnits alignment; |
| if (t.getQualifiers().hasUnaligned()) { |
| alignment = CharUnits::One(); |
| } else { |
| assert(!cir::MissingFeatures::alignCXXRecordDecl()); |
| alignment = astContext.getTypeAlignInChars(t); |
| } |
| |
| // Cap to the global maximum type alignment unless the alignment |
| // was somehow explicit on the type. |
| if (unsigned maxAlign = astContext.getLangOpts().MaxTypeAlign) { |
| if (alignment.getQuantity() > maxAlign && |
| !astContext.isAlignmentRequired(t)) |
| alignment = CharUnits::fromQuantity(maxAlign); |
| } |
| return alignment; |
| } |
| |
| const TargetCIRGenInfo &CIRGenModule::getTargetCIRGenInfo() { |
| if (theTargetCIRGenInfo) |
| return *theTargetCIRGenInfo; |
| |
| const llvm::Triple &triple = getTarget().getTriple(); |
| switch (triple.getArch()) { |
| default: |
| assert(!cir::MissingFeatures::targetCIRGenInfoArch()); |
| |
| // Currently we just fall through to x86_64. |
| [[fallthrough]]; |
| |
| case llvm::Triple::x86_64: { |
| switch (triple.getOS()) { |
| default: |
| assert(!cir::MissingFeatures::targetCIRGenInfoOS()); |
| |
| // Currently we just fall through to x86_64. |
| [[fallthrough]]; |
| |
| case llvm::Triple::Linux: |
| theTargetCIRGenInfo = createX8664TargetCIRGenInfo(genTypes); |
| return *theTargetCIRGenInfo; |
| } |
| } |
| } |
| } |
| |
| mlir::Location CIRGenModule::getLoc(SourceLocation cLoc) { |
| assert(cLoc.isValid() && "expected valid source location"); |
| const SourceManager &sm = astContext.getSourceManager(); |
| PresumedLoc pLoc = sm.getPresumedLoc(cLoc); |
| StringRef filename = pLoc.getFilename(); |
| return mlir::FileLineColLoc::get(builder.getStringAttr(filename), |
| pLoc.getLine(), pLoc.getColumn()); |
| } |
| |
| mlir::Location CIRGenModule::getLoc(SourceRange cRange) { |
| assert(cRange.isValid() && "expected a valid source range"); |
| mlir::Location begin = getLoc(cRange.getBegin()); |
| mlir::Location end = getLoc(cRange.getEnd()); |
| mlir::Attribute metadata; |
| return mlir::FusedLoc::get({begin, end}, metadata, builder.getContext()); |
| } |
| |
| mlir::Operation * |
| CIRGenModule::getAddrOfGlobal(GlobalDecl gd, ForDefinition_t isForDefinition) { |
| const Decl *d = gd.getDecl(); |
| |
| if (isa<CXXConstructorDecl>(d) || isa<CXXDestructorDecl>(d)) |
| return getAddrOfCXXStructor(gd, /*FnInfo=*/nullptr, /*FnType=*/nullptr, |
| /*DontDefer=*/false, isForDefinition); |
| |
| if (isa<CXXMethodDecl>(d)) { |
| const CIRGenFunctionInfo &fi = |
| getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(d)); |
| cir::FuncType ty = getTypes().getFunctionType(fi); |
| return getAddrOfFunction(gd, ty, /*ForVTable=*/false, /*DontDefer=*/false, |
| isForDefinition); |
| } |
| |
| if (isa<FunctionDecl>(d)) { |
| const CIRGenFunctionInfo &fi = getTypes().arrangeGlobalDeclaration(gd); |
| cir::FuncType ty = getTypes().getFunctionType(fi); |
| return getAddrOfFunction(gd, ty, /*ForVTable=*/false, /*DontDefer=*/false, |
| isForDefinition); |
| } |
| |
| return getAddrOfGlobalVar(cast<VarDecl>(d), /*ty=*/nullptr, isForDefinition) |
| .getDefiningOp(); |
| } |
| |
| void CIRGenModule::emitGlobalDecl(const clang::GlobalDecl &d) { |
| // We call getAddrOfGlobal with isForDefinition set to ForDefinition in |
| // order to get a Value with exactly the type we need, not something that |
| // might have been created for another decl with the same mangled name but |
| // different type. |
| mlir::Operation *op = getAddrOfGlobal(d, ForDefinition); |
| |
| // In case of different address spaces, we may still get a cast, even with |
| // IsForDefinition equal to ForDefinition. Query mangled names table to get |
| // GlobalValue. |
| if (!op) |
| op = getGlobalValue(getMangledName(d)); |
| |
| assert(op && "expected a valid global op"); |
| |
| // Check to see if we've already emitted this. This is necessary for a |
| // couple of reasons: first, decls can end up in deferred-decls queue |
| // multiple times, and second, decls can end up with definitions in unusual |
| // ways (e.g. by an extern inline function acquiring a strong function |
| // redefinition). Just ignore those cases. |
| // TODO: Not sure what to map this to for MLIR |
| mlir::Operation *globalValueOp = op; |
| if (auto gv = dyn_cast<cir::GetGlobalOp>(op)) |
| globalValueOp = |
| mlir::SymbolTable::lookupSymbolIn(getModule(), gv.getNameAttr()); |
| |
| if (auto cirGlobalValue = |
| dyn_cast<cir::CIRGlobalValueInterface>(globalValueOp)) |
| if (!cirGlobalValue.isDeclaration()) |
| return; |
| |
| // If this is OpenMP, check if it is legal to emit this global normally. |
| assert(!cir::MissingFeatures::openMP()); |
| |
| // Otherwise, emit the definition and move on to the next one. |
| emitGlobalDefinition(d, op); |
| } |
| |
| void CIRGenModule::emitDeferred() { |
| // Emit code for any potentially referenced deferred decls. Since a previously |
| // unused static decl may become used during the generation of code for a |
| // static function, iterate until no changes are made. |
| |
| assert(!cir::MissingFeatures::openMP()); |
| assert(!cir::MissingFeatures::deferredVtables()); |
| assert(!cir::MissingFeatures::cudaSupport()); |
| |
| // Stop if we're out of both deferred vtables and deferred declarations. |
| if (deferredDeclsToEmit.empty()) |
| return; |
| |
| // Grab the list of decls to emit. If emitGlobalDefinition schedules more |
| // work, it will not interfere with this. |
| std::vector<GlobalDecl> curDeclsToEmit; |
| curDeclsToEmit.swap(deferredDeclsToEmit); |
| |
| for (const GlobalDecl &d : curDeclsToEmit) { |
| emitGlobalDecl(d); |
| |
| // If we found out that we need to emit more decls, do that recursively. |
| // This has the advantage that the decls are emitted in a DFS and related |
| // ones are close together, which is convenient for testing. |
| if (!deferredDeclsToEmit.empty()) { |
| emitDeferred(); |
| assert(deferredDeclsToEmit.empty()); |
| } |
| } |
| } |
| |
| void CIRGenModule::emitGlobal(clang::GlobalDecl gd) { |
| if (const auto *cd = dyn_cast<clang::OpenACCConstructDecl>(gd.getDecl())) { |
| emitGlobalOpenACCDecl(cd); |
| return; |
| } |
| |
| const auto *global = cast<ValueDecl>(gd.getDecl()); |
| |
| if (const auto *fd = dyn_cast<FunctionDecl>(global)) { |
| // Update deferred annotations with the latest declaration if the function |
| // was already used or defined. |
| if (fd->hasAttr<AnnotateAttr>()) |
| errorNYI(fd->getSourceRange(), "deferredAnnotations"); |
| if (!fd->doesThisDeclarationHaveABody()) { |
| if (!fd->doesDeclarationForceExternallyVisibleDefinition()) |
| return; |
| |
| errorNYI(fd->getSourceRange(), |
| "function declaration that forces code gen"); |
| return; |
| } |
| } else { |
| const auto *vd = cast<VarDecl>(global); |
| assert(vd->isFileVarDecl() && "Cannot emit local var decl as global."); |
| if (vd->isThisDeclarationADefinition() != VarDecl::Definition && |
| !astContext.isMSStaticDataMemberInlineDefinition(vd)) { |
| assert(!cir::MissingFeatures::openMP()); |
| // If this declaration may have caused an inline variable definition to |
| // change linkage, make sure that it's emitted. |
| if (astContext.getInlineVariableDefinitionKind(vd) == |
| ASTContext::InlineVariableDefinitionKind::Strong) |
| getAddrOfGlobalVar(vd); |
| // Otherwise, we can ignore this declaration. The variable will be emitted |
| // on its first use. |
| return; |
| } |
| } |
| |
| // Defer code generation to first use when possible, e.g. if this is an inline |
| // function. If the global must always be emitted, do it eagerly if possible |
| // to benefit from cache locality. Deferring code generation is necessary to |
| // avoid adding initializers to external declarations. |
| if (mustBeEmitted(global) && mayBeEmittedEagerly(global)) { |
| // Emit the definition if it can't be deferred. |
| emitGlobalDefinition(gd); |
| return; |
| } |
| |
| // If we're deferring emission of a C++ variable with an initializer, remember |
| // the order in which it appeared on the file. |
| assert(!cir::MissingFeatures::deferredCXXGlobalInit()); |
| |
| llvm::StringRef mangledName = getMangledName(gd); |
| if (getGlobalValue(mangledName) != nullptr) { |
| // The value has already been used and should therefore be emitted. |
| addDeferredDeclToEmit(gd); |
| } else if (mustBeEmitted(global)) { |
| // The value must be emitted, but cannot be emitted eagerly. |
| assert(!mayBeEmittedEagerly(global)); |
| addDeferredDeclToEmit(gd); |
| } else { |
| // Otherwise, remember that we saw a deferred decl with this name. The first |
| // use of the mangled name will cause it to move into deferredDeclsToEmit. |
| deferredDecls[mangledName] = gd; |
| } |
| } |
| |
| void CIRGenModule::emitGlobalFunctionDefinition(clang::GlobalDecl gd, |
| mlir::Operation *op) { |
| auto const *funcDecl = cast<FunctionDecl>(gd.getDecl()); |
| const CIRGenFunctionInfo &fi = getTypes().arrangeGlobalDeclaration(gd); |
| cir::FuncType funcType = getTypes().getFunctionType(fi); |
| cir::FuncOp funcOp = dyn_cast_if_present<cir::FuncOp>(op); |
| if (!funcOp || funcOp.getFunctionType() != funcType) { |
| funcOp = getAddrOfFunction(gd, funcType, /*ForVTable=*/false, |
| /*DontDefer=*/true, ForDefinition); |
| } |
| |
| // Already emitted. |
| if (!funcOp.isDeclaration()) |
| return; |
| |
| setFunctionLinkage(gd, funcOp); |
| setGVProperties(funcOp, funcDecl); |
| assert(!cir::MissingFeatures::opFuncMaybeHandleStaticInExternC()); |
| maybeSetTrivialComdat(*funcDecl, funcOp); |
| assert(!cir::MissingFeatures::setLLVMFunctionFEnvAttributes()); |
| |
| CIRGenFunction cgf(*this, builder); |
| curCGF = &cgf; |
| { |
| mlir::OpBuilder::InsertionGuard guard(builder); |
| cgf.generateCode(gd, funcOp, funcType); |
| } |
| curCGF = nullptr; |
| |
| setNonAliasAttributes(gd, funcOp); |
| setCIRFunctionAttributesForDefinition(funcDecl, funcOp); |
| |
| auto getPriority = [this](const auto *attr) -> int { |
| Expr *e = attr->getPriority(); |
| if (e) |
| return e->EvaluateKnownConstInt(this->getASTContext()).getExtValue(); |
| return attr->DefaultPriority; |
| }; |
| |
| if (const ConstructorAttr *ca = funcDecl->getAttr<ConstructorAttr>()) |
| addGlobalCtor(funcOp, getPriority(ca)); |
| if (const DestructorAttr *da = funcDecl->getAttr<DestructorAttr>()) |
| addGlobalDtor(funcOp, getPriority(da)); |
| |
| if (funcDecl->getAttr<AnnotateAttr>()) |
| errorNYI(funcDecl->getSourceRange(), "deferredAnnotations"); |
| } |
| |
| /// Track functions to be called before main() runs. |
| void CIRGenModule::addGlobalCtor(cir::FuncOp ctor, |
| std::optional<int> priority) { |
| assert(!cir::MissingFeatures::globalCtorLexOrder()); |
| assert(!cir::MissingFeatures::globalCtorAssociatedData()); |
| |
| // Traditional LLVM codegen directly adds the function to the list of global |
| // ctors. In CIR we just add a global_ctor attribute to the function. The |
| // global list is created in LoweringPrepare. |
| // |
| // FIXME(from traditional LLVM): Type coercion of void()* types. |
| ctor.setGlobalCtorPriority(priority); |
| } |
| |
| /// Add a function to the list that will be called when the module is unloaded. |
| void CIRGenModule::addGlobalDtor(cir::FuncOp dtor, |
| std::optional<int> priority) { |
| if (codeGenOpts.RegisterGlobalDtorsWithAtExit && |
| (!getASTContext().getTargetInfo().getTriple().isOSAIX())) |
| errorNYI(dtor.getLoc(), "registerGlobalDtorsWithAtExit"); |
| |
| // FIXME(from traditional LLVM): Type coercion of void()* types. |
| dtor.setGlobalDtorPriority(priority); |
| } |
| |
| void CIRGenModule::handleCXXStaticMemberVarInstantiation(VarDecl *vd) { |
| VarDecl::DefinitionKind dk = vd->isThisDeclarationADefinition(); |
| if (dk == VarDecl::Definition && vd->hasAttr<DLLImportAttr>()) |
| return; |
| |
| TemplateSpecializationKind tsk = vd->getTemplateSpecializationKind(); |
| // If we have a definition, this might be a deferred decl. If the |
| // instantiation is explicit, make sure we emit it at the end. |
| if (vd->getDefinition() && tsk == TSK_ExplicitInstantiationDefinition) |
| getAddrOfGlobalVar(vd); |
| |
| emitTopLevelDecl(vd); |
| } |
| |
| mlir::Operation *CIRGenModule::getGlobalValue(StringRef name) { |
| return mlir::SymbolTable::lookupSymbolIn(theModule, name); |
| } |
| |
| cir::GlobalOp CIRGenModule::createGlobalOp(CIRGenModule &cgm, |
| mlir::Location loc, StringRef name, |
| mlir::Type t, bool isConstant, |
| mlir::Operation *insertPoint) { |
| cir::GlobalOp g; |
| CIRGenBuilderTy &builder = cgm.getBuilder(); |
| |
| { |
| mlir::OpBuilder::InsertionGuard guard(builder); |
| |
| // If an insertion point is provided, we're replacing an existing global, |
| // otherwise, create the new global immediately after the last gloabl we |
| // emitted. |
| if (insertPoint) { |
| builder.setInsertionPoint(insertPoint); |
| } else { |
| // Group global operations together at the top of the module. |
| if (cgm.lastGlobalOp) |
| builder.setInsertionPointAfter(cgm.lastGlobalOp); |
| else |
| builder.setInsertionPointToStart(cgm.getModule().getBody()); |
| } |
| |
| g = cir::GlobalOp::create(builder, loc, name, t, isConstant); |
| if (!insertPoint) |
| cgm.lastGlobalOp = g; |
| |
| // Default to private until we can judge based on the initializer, |
| // since MLIR doesn't allow public declarations. |
| mlir::SymbolTable::setSymbolVisibility( |
| g, mlir::SymbolTable::Visibility::Private); |
| } |
| return g; |
| } |
| |
| void CIRGenModule::setCommonAttributes(GlobalDecl gd, mlir::Operation *gv) { |
| const Decl *d = gd.getDecl(); |
| if (isa_and_nonnull<NamedDecl>(d)) |
| setGVProperties(gv, dyn_cast<NamedDecl>(d)); |
| assert(!cir::MissingFeatures::defaultVisibility()); |
| assert(!cir::MissingFeatures::opGlobalUsedOrCompilerUsed()); |
| } |
| |
| void CIRGenModule::setNonAliasAttributes(GlobalDecl gd, mlir::Operation *op) { |
| setCommonAttributes(gd, op); |
| |
| assert(!cir::MissingFeatures::opGlobalUsedOrCompilerUsed()); |
| assert(!cir::MissingFeatures::opGlobalSection()); |
| assert(!cir::MissingFeatures::opFuncCPUAndFeaturesAttributes()); |
| assert(!cir::MissingFeatures::opFuncSection()); |
| |
| assert(!cir::MissingFeatures::setTargetAttributes()); |
| } |
| |
| std::optional<cir::SourceLanguage> CIRGenModule::getCIRSourceLanguage() const { |
| using ClangStd = clang::LangStandard; |
| using CIRLang = cir::SourceLanguage; |
| auto opts = getLangOpts(); |
| |
| if (opts.CPlusPlus) |
| return CIRLang::CXX; |
| if (opts.C99 || opts.C11 || opts.C17 || opts.C23 || opts.C2y || |
| opts.LangStd == ClangStd::lang_c89 || |
| opts.LangStd == ClangStd::lang_gnu89) |
| return CIRLang::C; |
| |
| // TODO(cir): support remaining source languages. |
| assert(!cir::MissingFeatures::sourceLanguageCases()); |
| errorNYI("CIR does not yet support the given source language"); |
| return std::nullopt; |
| } |
| |
| static void setLinkageForGV(cir::GlobalOp &gv, const NamedDecl *nd) { |
| // Set linkage and visibility in case we never see a definition. |
| LinkageInfo lv = nd->getLinkageAndVisibility(); |
| // Don't set internal linkage on declarations. |
| // "extern_weak" is overloaded in LLVM; we probably should have |
| // separate linkage types for this. |
| if (isExternallyVisible(lv.getLinkage()) && |
| (nd->hasAttr<WeakAttr>() || nd->isWeakImported())) |
| gv.setLinkage(cir::GlobalLinkageKind::ExternalWeakLinkage); |
| } |
| |
| /// If the specified mangled name is not in the module, |
| /// create and return an mlir GlobalOp with the specified type (TODO(cir): |
| /// address space). |
| /// |
| /// TODO(cir): |
| /// 1. If there is something in the module with the specified name, return |
| /// it potentially bitcasted to the right type. |
| /// |
| /// 2. If \p d is non-null, it specifies a decl that correspond to this. This |
| /// is used to set the attributes on the global when it is first created. |
| /// |
| /// 3. If \p isForDefinition is true, it is guaranteed that an actual global |
| /// with type \p ty will be returned, not conversion of a variable with the same |
| /// mangled name but some other type. |
| cir::GlobalOp |
| CIRGenModule::getOrCreateCIRGlobal(StringRef mangledName, mlir::Type ty, |
| LangAS langAS, const VarDecl *d, |
| ForDefinition_t isForDefinition) { |
| // Lookup the entry, lazily creating it if necessary. |
| cir::GlobalOp entry; |
| if (mlir::Operation *v = getGlobalValue(mangledName)) { |
| if (!isa<cir::GlobalOp>(v)) |
| errorNYI(d->getSourceRange(), "global with non-GlobalOp type"); |
| entry = cast<cir::GlobalOp>(v); |
| } |
| |
| if (entry) { |
| assert(!cir::MissingFeatures::addressSpace()); |
| assert(!cir::MissingFeatures::opGlobalWeakRef()); |
| |
| assert(!cir::MissingFeatures::setDLLStorageClass()); |
| assert(!cir::MissingFeatures::openMP()); |
| |
| if (entry.getSymType() == ty) |
| return entry; |
| |
| // If there are two attempts to define the same mangled name, issue an |
| // error. |
| // |
| // TODO(cir): look at mlir::GlobalValue::isDeclaration for all aspects of |
| // recognizing the global as a declaration, for now only check if |
| // initializer is present. |
| if (isForDefinition && !entry.isDeclaration()) { |
| errorNYI(d->getSourceRange(), "global with conflicting type"); |
| } |
| |
| // Address space check removed because it is unnecessary because CIR records |
| // address space info in types. |
| |
| // (If global is requested for a definition, we always need to create a new |
| // global, not just return a bitcast.) |
| if (!isForDefinition) |
| return entry; |
| } |
| |
| mlir::Location loc = getLoc(d->getSourceRange()); |
| |
| // mlir::SymbolTable::Visibility::Public is the default, no need to explicitly |
| // mark it as such. |
| cir::GlobalOp gv = |
| CIRGenModule::createGlobalOp(*this, loc, mangledName, ty, false, |
| /*insertPoint=*/entry.getOperation()); |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| auto ddi = deferredDecls.find(mangledName); |
| if (ddi != deferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
| // list, and remove it from DeferredDecls (since we don't need it anymore). |
| addDeferredDeclToEmit(ddi->second); |
| deferredDecls.erase(ddi); |
| } |
| |
| // Handle things which are present even on external declarations. |
| if (d) { |
| if (langOpts.OpenMP && !langOpts.OpenMPSimd) |
| errorNYI(d->getSourceRange(), "OpenMP target global variable"); |
| |
| gv.setAlignmentAttr(getSize(astContext.getDeclAlign(d))); |
| // FIXME: This code is overly simple and should be merged with other global |
| // handling. |
| gv.setConstant(d->getType().isConstantStorage( |
| astContext, /*ExcludeCtor=*/false, /*ExcludeDtor=*/false)); |
| |
| setLinkageForGV(gv, d); |
| |
| if (d->getTLSKind()) |
| errorNYI(d->getSourceRange(), "thread local global variable"); |
| |
| setGVProperties(gv, d); |
| |
| // If required by the ABI, treat declarations of static data members with |
| // inline initializers as definitions. |
| if (astContext.isMSStaticDataMemberInlineDefinition(d)) |
| errorNYI(d->getSourceRange(), "MS static data member inline definition"); |
| |
| assert(!cir::MissingFeatures::opGlobalSection()); |
| gv.setGlobalVisibilityAttr(getGlobalVisibilityAttrFromDecl(d)); |
| |
| // Handle XCore specific ABI requirements. |
| if (getTriple().getArch() == llvm::Triple::xcore) |
| errorNYI(d->getSourceRange(), "XCore specific ABI requirements"); |
| |
| // Check if we a have a const declaration with an initializer, we may be |
| // able to emit it as available_externally to expose it's value to the |
| // optimizer. |
| if (getLangOpts().CPlusPlus && gv.isPublic() && |
| d->getType().isConstQualified() && gv.isDeclaration() && |
| !d->hasDefinition() && d->hasInit() && !d->hasAttr<DLLImportAttr>()) |
| errorNYI(d->getSourceRange(), |
| "external const declaration with initializer"); |
| } |
| |
| return gv; |
| } |
| |
| cir::GlobalOp |
| CIRGenModule::getOrCreateCIRGlobal(const VarDecl *d, mlir::Type ty, |
| ForDefinition_t isForDefinition) { |
| assert(d->hasGlobalStorage() && "Not a global variable"); |
| QualType astTy = d->getType(); |
| if (!ty) |
| ty = getTypes().convertTypeForMem(astTy); |
| |
| StringRef mangledName = getMangledName(d); |
| return getOrCreateCIRGlobal(mangledName, ty, astTy.getAddressSpace(), d, |
| isForDefinition); |
| } |
| |
| /// Return the mlir::Value for the address of the given global variable. If |
| /// \p ty is non-null and if the global doesn't exist, then it will be created |
| /// with the specified type instead of whatever the normal requested type would |
| /// be. If \p isForDefinition is true, it is guaranteed that an actual global |
| /// with type \p ty will be returned, not conversion of a variable with the same |
| /// mangled name but some other type. |
| mlir::Value CIRGenModule::getAddrOfGlobalVar(const VarDecl *d, mlir::Type ty, |
| ForDefinition_t isForDefinition) { |
| assert(d->hasGlobalStorage() && "Not a global variable"); |
| QualType astTy = d->getType(); |
| if (!ty) |
| ty = getTypes().convertTypeForMem(astTy); |
| |
| assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| |
| cir::GlobalOp g = getOrCreateCIRGlobal(d, ty, isForDefinition); |
| mlir::Type ptrTy = builder.getPointerTo(g.getSymType()); |
| return cir::GetGlobalOp::create(builder, getLoc(d->getSourceRange()), ptrTy, |
| g.getSymName()); |
| } |
| |
| cir::GlobalViewAttr CIRGenModule::getAddrOfGlobalVarAttr(const VarDecl *d) { |
| assert(d->hasGlobalStorage() && "Not a global variable"); |
| mlir::Type ty = getTypes().convertTypeForMem(d->getType()); |
| |
| cir::GlobalOp globalOp = getOrCreateCIRGlobal(d, ty, NotForDefinition); |
| assert(!cir::MissingFeatures::addressSpace()); |
| cir::PointerType ptrTy = builder.getPointerTo(globalOp.getSymType()); |
| return builder.getGlobalViewAttr(ptrTy, globalOp); |
| } |
| |
| void CIRGenModule::emitGlobalVarDefinition(const clang::VarDecl *vd, |
| bool isTentative) { |
| if (getLangOpts().OpenCL || getLangOpts().OpenMPIsTargetDevice) { |
| errorNYI(vd->getSourceRange(), "emit OpenCL/OpenMP global variable"); |
| return; |
| } |
| |
| // Whether the definition of the variable is available externally. |
| // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable |
| // since this is the job for its original source. |
| bool isDefinitionAvailableExternally = |
| astContext.GetGVALinkageForVariable(vd) == GVA_AvailableExternally; |
| |
| // It is useless to emit the definition for an available_externally variable |
| // which can't be marked as const. |
| if (isDefinitionAvailableExternally && |
| (!vd->hasConstantInitialization() || |
| // TODO: Update this when we have interface to check constexpr |
| // destructor. |
| vd->needsDestruction(astContext) || |
| !vd->getType().isConstantStorage(astContext, true, true))) |
| return; |
| |
| mlir::Attribute init; |
| bool needsGlobalCtor = false; |
| bool needsGlobalDtor = |
| !isDefinitionAvailableExternally && |
| vd->needsDestruction(astContext) == QualType::DK_cxx_destructor; |
| const VarDecl *initDecl; |
| const Expr *initExpr = vd->getAnyInitializer(initDecl); |
| |
| std::optional<ConstantEmitter> emitter; |
| |
| assert(!cir::MissingFeatures::cudaSupport()); |
| |
| if (vd->hasAttr<LoaderUninitializedAttr>()) { |
| errorNYI(vd->getSourceRange(), "loader uninitialized attribute"); |
| return; |
| } else if (!initExpr) { |
| // This is a tentative definition; tentative definitions are |
| // implicitly initialized with { 0 }. |
| // |
| // Note that tentative definitions are only emitted at the end of |
| // a translation unit, so they should never have incomplete |
| // type. In addition, EmitTentativeDefinition makes sure that we |
| // never attempt to emit a tentative definition if a real one |
| // exists. A use may still exists, however, so we still may need |
| // to do a RAUW. |
| assert(!vd->getType()->isIncompleteType() && "Unexpected incomplete type"); |
| init = builder.getZeroInitAttr(convertType(vd->getType())); |
| } else { |
| emitter.emplace(*this); |
| mlir::Attribute initializer = emitter->tryEmitForInitializer(*initDecl); |
| if (!initializer) { |
| QualType qt = initExpr->getType(); |
| if (vd->getType()->isReferenceType()) |
| qt = vd->getType(); |
| |
| if (getLangOpts().CPlusPlus) { |
| if (initDecl->hasFlexibleArrayInit(astContext)) |
| errorNYI(vd->getSourceRange(), "flexible array initializer"); |
| init = builder.getZeroInitAttr(convertType(qt)); |
| if (!isDefinitionAvailableExternally) |
| needsGlobalCtor = true; |
| } else { |
| errorNYI(vd->getSourceRange(), "static initializer"); |
| } |
| } else { |
| init = initializer; |
| // We don't need an initializer, so remove the entry for the delayed |
| // initializer position (just in case this entry was delayed) if we |
| // also don't need to register a destructor. |
| assert(!cir::MissingFeatures::deferredCXXGlobalInit()); |
| } |
| } |
| |
| mlir::Type initType; |
| if (mlir::isa<mlir::SymbolRefAttr>(init)) { |
| errorNYI(vd->getSourceRange(), "global initializer is a symbol reference"); |
| return; |
| } else { |
| assert(mlir::isa<mlir::TypedAttr>(init) && "This should have a type"); |
| auto typedInitAttr = mlir::cast<mlir::TypedAttr>(init); |
| initType = typedInitAttr.getType(); |
| } |
| assert(!mlir::isa<mlir::NoneType>(initType) && "Should have a type by now"); |
| |
| cir::GlobalOp gv = |
| getOrCreateCIRGlobal(vd, initType, ForDefinition_t(!isTentative)); |
| // TODO(cir): Strip off pointer casts from Entry if we get them? |
| |
| if (!gv || gv.getSymType() != initType) { |
| errorNYI(vd->getSourceRange(), "global initializer with type mismatch"); |
| return; |
| } |
| |
| assert(!cir::MissingFeatures::maybeHandleStaticInExternC()); |
| |
| if (vd->hasAttr<AnnotateAttr>()) { |
| errorNYI(vd->getSourceRange(), "annotate global variable"); |
| } |
| |
| if (langOpts.CUDA) { |
| errorNYI(vd->getSourceRange(), "CUDA global variable"); |
| } |
| |
| // Set initializer and finalize emission |
| CIRGenModule::setInitializer(gv, init); |
| if (emitter) |
| emitter->finalize(gv); |
| |
| // If it is safe to mark the global 'constant', do so now. |
| gv.setConstant((vd->hasAttr<CUDAConstantAttr>() && langOpts.CUDAIsDevice) || |
| (!needsGlobalCtor && !needsGlobalDtor && |
| vd->getType().isConstantStorage( |
| astContext, /*ExcludeCtor=*/true, /*ExcludeDtor=*/true))); |
| assert(!cir::MissingFeatures::opGlobalSection()); |
| |
| // Set CIR's linkage type as appropriate. |
| cir::GlobalLinkageKind linkage = |
| getCIRLinkageVarDefinition(vd, /*IsConstant=*/false); |
| |
| // Set CIR linkage and DLL storage class. |
| gv.setLinkage(linkage); |
| // FIXME(cir): setLinkage should likely set MLIR's visibility automatically. |
| gv.setVisibility(getMLIRVisibilityFromCIRLinkage(linkage)); |
| assert(!cir::MissingFeatures::opGlobalDLLImportExport()); |
| if (linkage == cir::GlobalLinkageKind::CommonLinkage) { |
| // common vars aren't constant even if declared const. |
| gv.setConstant(false); |
| // Tentative definition of global variables may be initialized with |
| // non-zero null pointers. In this case they should have weak linkage |
| // since common linkage must have zero initializer and must not have |
| // explicit section therefore cannot have non-zero initial value. |
| std::optional<mlir::Attribute> initializer = gv.getInitialValue(); |
| if (initializer && !getBuilder().isNullValue(*initializer)) |
| gv.setLinkage(cir::GlobalLinkageKind::WeakAnyLinkage); |
| } |
| |
| setNonAliasAttributes(vd, gv); |
| |
| assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| |
| maybeSetTrivialComdat(*vd, gv); |
| |
| // Emit the initializer function if necessary. |
| if (needsGlobalCtor || needsGlobalDtor) |
| emitCXXGlobalVarDeclInitFunc(vd, gv, needsGlobalCtor); |
| } |
| |
| void CIRGenModule::emitGlobalDefinition(clang::GlobalDecl gd, |
| mlir::Operation *op) { |
| const auto *decl = cast<ValueDecl>(gd.getDecl()); |
| if (const auto *fd = dyn_cast<FunctionDecl>(decl)) { |
| // TODO(CIR): Skip generation of CIR for functions with available_externally |
| // linkage at -O0. |
| |
| if (const auto *method = dyn_cast<CXXMethodDecl>(decl)) { |
| // Make sure to emit the definition(s) before we emit the thunks. This is |
| // necessary for the generation of certain thunks. |
| if (isa<CXXConstructorDecl>(method) || isa<CXXDestructorDecl>(method)) |
| abi->emitCXXStructor(gd); |
| else if (fd->isMultiVersion()) |
| errorNYI(method->getSourceRange(), "multiversion functions"); |
| else |
| emitGlobalFunctionDefinition(gd, op); |
| |
| if (method->isVirtual()) |
| getVTables().emitThunks(gd); |
| |
| return; |
| } |
| |
| if (fd->isMultiVersion()) |
| errorNYI(fd->getSourceRange(), "multiversion functions"); |
| emitGlobalFunctionDefinition(gd, op); |
| return; |
| } |
| |
| if (const auto *vd = dyn_cast<VarDecl>(decl)) |
| return emitGlobalVarDefinition(vd, !vd->hasDefinition()); |
| |
| llvm_unreachable("Invalid argument to CIRGenModule::emitGlobalDefinition"); |
| } |
| |
| mlir::Attribute |
| CIRGenModule::getConstantArrayFromStringLiteral(const StringLiteral *e) { |
| assert(!e->getType()->isPointerType() && "Strings are always arrays"); |
| |
| // Don't emit it as the address of the string, emit the string data itself |
| // as an inline array. |
| if (e->getCharByteWidth() == 1) { |
| SmallString<64> str(e->getString()); |
| |
| // Resize the string to the right size, which is indicated by its type. |
| const ConstantArrayType *cat = |
| astContext.getAsConstantArrayType(e->getType()); |
| uint64_t finalSize = cat->getZExtSize(); |
| str.resize(finalSize); |
| |
| mlir::Type eltTy = convertType(cat->getElementType()); |
| return builder.getString(str, eltTy, finalSize); |
| } |
| |
| errorNYI(e->getSourceRange(), |
| "getConstantArrayFromStringLiteral: wide characters"); |
| return mlir::Attribute(); |
| } |
| |
| bool CIRGenModule::supportsCOMDAT() const { |
| return getTriple().supportsCOMDAT(); |
| } |
| |
| static bool shouldBeInCOMDAT(CIRGenModule &cgm, const Decl &d) { |
| if (!cgm.supportsCOMDAT()) |
| return false; |
| |
| if (d.hasAttr<SelectAnyAttr>()) |
| return true; |
| |
| GVALinkage linkage; |
| if (auto *vd = dyn_cast<VarDecl>(&d)) |
| linkage = cgm.getASTContext().GetGVALinkageForVariable(vd); |
| else |
| linkage = |
| cgm.getASTContext().GetGVALinkageForFunction(cast<FunctionDecl>(&d)); |
| |
| switch (linkage) { |
| case clang::GVA_Internal: |
| case clang::GVA_AvailableExternally: |
| case clang::GVA_StrongExternal: |
| return false; |
| case clang::GVA_DiscardableODR: |
| case clang::GVA_StrongODR: |
| return true; |
| } |
| llvm_unreachable("No such linkage"); |
| } |
| |
| void CIRGenModule::maybeSetTrivialComdat(const Decl &d, mlir::Operation *op) { |
| if (!shouldBeInCOMDAT(*this, d)) |
| return; |
| if (auto globalOp = dyn_cast_or_null<cir::GlobalOp>(op)) { |
| globalOp.setComdat(true); |
| } else { |
| auto funcOp = cast<cir::FuncOp>(op); |
| funcOp.setComdat(true); |
| } |
| } |
| |
| void CIRGenModule::updateCompletedType(const TagDecl *td) { |
| // Make sure that this type is translated. |
| genTypes.updateCompletedType(td); |
| } |
| |
| void CIRGenModule::addReplacement(StringRef name, mlir::Operation *op) { |
| replacements[name] = op; |
| } |
| |
| void CIRGenModule::replacePointerTypeArgs(cir::FuncOp oldF, cir::FuncOp newF) { |
| std::optional<mlir::SymbolTable::UseRange> optionalUseRange = |
| oldF.getSymbolUses(theModule); |
| if (!optionalUseRange) |
| return; |
| |
| for (const mlir::SymbolTable::SymbolUse &u : *optionalUseRange) { |
| // CallTryOp only shows up after FlattenCFG. |
| auto call = mlir::dyn_cast<cir::CallOp>(u.getUser()); |
| if (!call) |
| continue; |
| |
| for (const auto [argOp, fnArgType] : |
| llvm::zip(call.getArgs(), newF.getFunctionType().getInputs())) { |
| if (argOp.getType() == fnArgType) |
| continue; |
| |
| // The purpose of this entire function is to insert bitcasts in the case |
| // where these types don't match, but I haven't seen a case where that |
| // happens. |
| errorNYI(call.getLoc(), "replace call with mismatched types"); |
| } |
| } |
| } |
| |
| void CIRGenModule::applyReplacements() { |
| for (auto &i : replacements) { |
| StringRef mangledName = i.first(); |
| mlir::Operation *replacement = i.second; |
| mlir::Operation *entry = getGlobalValue(mangledName); |
| if (!entry) |
| continue; |
| assert(isa<cir::FuncOp>(entry) && "expected function"); |
| auto oldF = cast<cir::FuncOp>(entry); |
| auto newF = dyn_cast<cir::FuncOp>(replacement); |
| if (!newF) { |
| // In classic codegen, this can be a global alias, a bitcast, or a GEP. |
| errorNYI(replacement->getLoc(), "replacement is not a function"); |
| continue; |
| } |
| |
| // LLVM has opaque pointer but CIR not. So we may have to handle these |
| // different pointer types when performing replacement. |
| replacePointerTypeArgs(oldF, newF); |
| |
| // Replace old with new, but keep the old order. |
| if (oldF.replaceAllSymbolUses(newF.getSymNameAttr(), theModule).failed()) |
| llvm_unreachable("internal error, cannot RAUW symbol"); |
| if (newF) { |
| newF->moveBefore(oldF); |
| oldF->erase(); |
| } |
| } |
| } |
| |
| cir::GlobalOp CIRGenModule::createOrReplaceCXXRuntimeVariable( |
| mlir::Location loc, StringRef name, mlir::Type ty, |
| cir::GlobalLinkageKind linkage, clang::CharUnits alignment) { |
| auto gv = mlir::dyn_cast_or_null<cir::GlobalOp>( |
| mlir::SymbolTable::lookupSymbolIn(theModule, name)); |
| |
| if (gv) { |
| // Check if the variable has the right type. |
| if (gv.getSymType() == ty) |
| return gv; |
| |
| // Because of C++ name mangling, the only way we can end up with an already |
| // existing global with the same name is if it has been declared extern |
| // "C". |
| assert(gv.isDeclaration() && "Declaration has wrong type!"); |
| |
| errorNYI(loc, "createOrReplaceCXXRuntimeVariable: declaration exists with " |
| "wrong type"); |
| return gv; |
| } |
| |
| // Create a new variable. |
| gv = createGlobalOp(*this, loc, name, ty); |
| |
| // Set up extra information and add to the module |
| gv.setLinkageAttr( |
| cir::GlobalLinkageKindAttr::get(&getMLIRContext(), linkage)); |
| mlir::SymbolTable::setSymbolVisibility(gv, |
| CIRGenModule::getMLIRVisibility(gv)); |
| |
| if (supportsCOMDAT() && cir::isWeakForLinker(linkage) && |
| !gv.hasAvailableExternallyLinkage()) { |
| gv.setComdat(true); |
| } |
| |
| gv.setAlignmentAttr(getSize(alignment)); |
| setDSOLocal(static_cast<mlir::Operation *>(gv)); |
| return gv; |
| } |
| |
| // TODO(CIR): this could be a common method between LLVM codegen. |
| static bool isVarDeclStrongDefinition(const ASTContext &astContext, |
| CIRGenModule &cgm, const VarDecl *vd, |
| bool noCommon) { |
| // Don't give variables common linkage if -fno-common was specified unless it |
| // was overridden by a NoCommon attribute. |
| if ((noCommon || vd->hasAttr<NoCommonAttr>()) && !vd->hasAttr<CommonAttr>()) |
| return true; |
| |
| // C11 6.9.2/2: |
| // A declaration of an identifier for an object that has file scope without |
| // an initializer, and without a storage-class specifier or with the |
| // storage-class specifier static, constitutes a tentative definition. |
| if (vd->getInit() || vd->hasExternalStorage()) |
| return true; |
| |
| // A variable cannot be both common and exist in a section. |
| if (vd->hasAttr<SectionAttr>()) |
| return true; |
| |
| // A variable cannot be both common and exist in a section. |
| // We don't try to determine which is the right section in the front-end. |
| // If no specialized section name is applicable, it will resort to default. |
| if (vd->hasAttr<PragmaClangBSSSectionAttr>() || |
| vd->hasAttr<PragmaClangDataSectionAttr>() || |
| vd->hasAttr<PragmaClangRelroSectionAttr>() || |
| vd->hasAttr<PragmaClangRodataSectionAttr>()) |
| return true; |
| |
| // Thread local vars aren't considered common linkage. |
| if (vd->getTLSKind()) |
| return true; |
| |
| // Tentative definitions marked with WeakImportAttr are true definitions. |
| if (vd->hasAttr<WeakImportAttr>()) |
| return true; |
| |
| // A variable cannot be both common and exist in a comdat. |
| if (shouldBeInCOMDAT(cgm, *vd)) |
| return true; |
| |
| // Declarations with a required alignment do not have common linkage in MSVC |
| // mode. |
| if (astContext.getTargetInfo().getCXXABI().isMicrosoft()) { |
| if (vd->hasAttr<AlignedAttr>()) |
| return true; |
| QualType varType = vd->getType(); |
| if (astContext.isAlignmentRequired(varType)) |
| return true; |
| |
| if (const auto *rd = varType->getAsRecordDecl()) { |
| for (const FieldDecl *fd : rd->fields()) { |
| if (fd->isBitField()) |
| continue; |
| if (fd->hasAttr<AlignedAttr>()) |
| return true; |
| if (astContext.isAlignmentRequired(fd->getType())) |
| return true; |
| } |
| } |
| } |
| |
| // Microsoft's link.exe doesn't support alignments greater than 32 bytes for |
| // common symbols, so symbols with greater alignment requirements cannot be |
| // common. |
| // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two |
| // alignments for common symbols via the aligncomm directive, so this |
| // restriction only applies to MSVC environments. |
| if (astContext.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && |
| astContext.getTypeAlignIfKnown(vd->getType()) > |
| astContext.toBits(CharUnits::fromQuantity(32))) |
| return true; |
| |
| return false; |
| } |
| |
| cir::GlobalLinkageKind CIRGenModule::getCIRLinkageForDeclarator( |
| const DeclaratorDecl *dd, GVALinkage linkage, bool isConstantVariable) { |
| if (linkage == GVA_Internal) |
| return cir::GlobalLinkageKind::InternalLinkage; |
| |
| if (dd->hasAttr<WeakAttr>()) { |
| if (isConstantVariable) |
| return cir::GlobalLinkageKind::WeakODRLinkage; |
| return cir::GlobalLinkageKind::WeakAnyLinkage; |
| } |
| |
| if (const auto *fd = dd->getAsFunction()) |
| if (fd->isMultiVersion() && linkage == GVA_AvailableExternally) |
| return cir::GlobalLinkageKind::LinkOnceAnyLinkage; |
| |
| // We are guaranteed to have a strong definition somewhere else, |
| // so we can use available_externally linkage. |
| if (linkage == GVA_AvailableExternally) |
| return cir::GlobalLinkageKind::AvailableExternallyLinkage; |
| |
| // Note that Apple's kernel linker doesn't support symbol |
| // coalescing, so we need to avoid linkonce and weak linkages there. |
| // Normally, this means we just map to internal, but for explicit |
| // instantiations we'll map to external. |
| |
| // In C++, the compiler has to emit a definition in every translation unit |
| // that references the function. We should use linkonce_odr because |
| // a) if all references in this translation unit are optimized away, we |
| // don't need to codegen it. b) if the function persists, it needs to be |
| // merged with other definitions. c) C++ has the ODR, so we know the |
| // definition is dependable. |
| if (linkage == GVA_DiscardableODR) |
| return !astContext.getLangOpts().AppleKext |
| ? cir::GlobalLinkageKind::LinkOnceODRLinkage |
| : cir::GlobalLinkageKind::InternalLinkage; |
| |
| // An explicit instantiation of a template has weak linkage, since |
| // explicit instantiations can occur in multiple translation units |
| // and must all be equivalent. However, we are not allowed to |
| // throw away these explicit instantiations. |
| // |
| // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, |
| // so say that CUDA templates are either external (for kernels) or internal. |
| // This lets llvm perform aggressive inter-procedural optimizations. For |
| // -fgpu-rdc case, device function calls across multiple TU's are allowed, |
| // therefore we need to follow the normal linkage paradigm. |
| if (linkage == GVA_StrongODR) { |
| if (getLangOpts().AppleKext) |
| return cir::GlobalLinkageKind::ExternalLinkage; |
| if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && |
| !getLangOpts().GPURelocatableDeviceCode) |
| return dd->hasAttr<CUDAGlobalAttr>() |
| ? cir::GlobalLinkageKind::ExternalLinkage |
| : cir::GlobalLinkageKind::InternalLinkage; |
| return cir::GlobalLinkageKind::WeakODRLinkage; |
| } |
| |
| // C++ doesn't have tentative definitions and thus cannot have common |
| // linkage. |
| if (!getLangOpts().CPlusPlus && isa<VarDecl>(dd) && |
| !isVarDeclStrongDefinition(astContext, *this, cast<VarDecl>(dd), |
| getCodeGenOpts().NoCommon)) |
| return cir::GlobalLinkageKind::CommonLinkage; |
| |
| // selectany symbols are externally visible, so use weak instead of |
| // linkonce. MSVC optimizes away references to const selectany globals, so |
| // all definitions should be the same and ODR linkage should be used. |
| // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx |
| if (dd->hasAttr<SelectAnyAttr>()) |
| return cir::GlobalLinkageKind::WeakODRLinkage; |
| |
| // Otherwise, we have strong external linkage. |
| assert(linkage == GVA_StrongExternal); |
| return cir::GlobalLinkageKind::ExternalLinkage; |
| } |
| |
| /// This function is called when we implement a function with no prototype, e.g. |
| /// "int foo() {}". If there are existing call uses of the old function in the |
| /// module, this adjusts them to call the new function directly. |
| /// |
| /// This is not just a cleanup: the always_inline pass requires direct calls to |
| /// functions to be able to inline them. If there is a bitcast in the way, it |
| /// won't inline them. Instcombine normally deletes these calls, but it isn't |
| /// run at -O0. |
| void CIRGenModule::replaceUsesOfNonProtoTypeWithRealFunction( |
| mlir::Operation *old, cir::FuncOp newFn) { |
| // If we're redefining a global as a function, don't transform it. |
| auto oldFn = mlir::dyn_cast<cir::FuncOp>(old); |
| if (!oldFn) |
| return; |
| |
| // TODO(cir): this RAUW ignores the features below. |
| assert(!cir::MissingFeatures::opFuncExceptions()); |
| assert(!cir::MissingFeatures::opFuncParameterAttributes()); |
| assert(!cir::MissingFeatures::opFuncOperandBundles()); |
| if (oldFn->getAttrs().size() <= 1) |
| errorNYI(old->getLoc(), |
| "replaceUsesOfNonProtoTypeWithRealFunction: Attribute forwarding"); |
| |
| // Mark new function as originated from a no-proto declaration. |
| newFn.setNoProto(oldFn.getNoProto()); |
| |
| // Iterate through all calls of the no-proto function. |
| std::optional<mlir::SymbolTable::UseRange> symUses = |
| oldFn.getSymbolUses(oldFn->getParentOp()); |
| for (const mlir::SymbolTable::SymbolUse &use : symUses.value()) { |
| mlir::OpBuilder::InsertionGuard guard(builder); |
| |
| if (auto noProtoCallOp = mlir::dyn_cast<cir::CallOp>(use.getUser())) { |
| builder.setInsertionPoint(noProtoCallOp); |
| |
| // Patch call type with the real function type. |
| cir::CallOp realCallOp = builder.createCallOp( |
| noProtoCallOp.getLoc(), newFn, noProtoCallOp.getOperands()); |
| |
| // Replace old no proto call with fixed call. |
| noProtoCallOp.replaceAllUsesWith(realCallOp); |
| noProtoCallOp.erase(); |
| } else if (auto getGlobalOp = |
| mlir::dyn_cast<cir::GetGlobalOp>(use.getUser())) { |
| // Replace type |
| getGlobalOp.getAddr().setType( |
| cir::PointerType::get(newFn.getFunctionType())); |
| } else { |
| errorNYI(use.getUser()->getLoc(), |
| "replaceUsesOfNonProtoTypeWithRealFunction: unexpected use"); |
| } |
| } |
| } |
| |
| cir::GlobalLinkageKind |
| CIRGenModule::getCIRLinkageVarDefinition(const VarDecl *vd, bool isConstant) { |
| assert(!isConstant && "constant variables NYI"); |
| GVALinkage linkage = astContext.GetGVALinkageForVariable(vd); |
| return getCIRLinkageForDeclarator(vd, linkage, isConstant); |
| } |
| |
| cir::GlobalLinkageKind CIRGenModule::getFunctionLinkage(GlobalDecl gd) { |
| const auto *d = cast<FunctionDecl>(gd.getDecl()); |
| |
| GVALinkage linkage = astContext.GetGVALinkageForFunction(d); |
| |
| if (const auto *dtor = dyn_cast<CXXDestructorDecl>(d)) |
| return getCXXABI().getCXXDestructorLinkage(linkage, dtor, gd.getDtorType()); |
| |
| return getCIRLinkageForDeclarator(d, linkage, /*isConstantVariable=*/false); |
| } |
| |
| static cir::GlobalOp |
| generateStringLiteral(mlir::Location loc, mlir::TypedAttr c, |
| cir::GlobalLinkageKind lt, CIRGenModule &cgm, |
| StringRef globalName, CharUnits alignment) { |
| assert(!cir::MissingFeatures::addressSpace()); |
| |
| // Create a global variable for this string |
| // FIXME(cir): check for insertion point in module level. |
| cir::GlobalOp gv = CIRGenModule::createGlobalOp( |
| cgm, loc, globalName, c.getType(), !cgm.getLangOpts().WritableStrings); |
| |
| // Set up extra information and add to the module |
| gv.setAlignmentAttr(cgm.getSize(alignment)); |
| gv.setLinkageAttr( |
| cir::GlobalLinkageKindAttr::get(cgm.getBuilder().getContext(), lt)); |
| assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| assert(!cir::MissingFeatures::opGlobalUnnamedAddr()); |
| CIRGenModule::setInitializer(gv, c); |
| if (gv.isWeakForLinker()) { |
| assert(cgm.supportsCOMDAT() && "Only COFF uses weak string literals"); |
| gv.setComdat(true); |
| } |
| cgm.setDSOLocal(static_cast<mlir::Operation *>(gv)); |
| return gv; |
| } |
| |
| // LLVM IR automatically uniques names when new llvm::GlobalVariables are |
| // created. This is handy, for example, when creating globals for string |
| // literals. Since we don't do that when creating cir::GlobalOp's, we need |
| // a mechanism to generate a unique name in advance. |
| // |
| // For now, this mechanism is only used in cases where we know that the |
| // name is compiler-generated, so we don't use the MLIR symbol table for |
| // the lookup. |
| std::string CIRGenModule::getUniqueGlobalName(const std::string &baseName) { |
| // If this is the first time we've generated a name for this basename, use |
| // it as is and start a counter for this base name. |
| auto it = cgGlobalNames.find(baseName); |
| if (it == cgGlobalNames.end()) { |
| cgGlobalNames[baseName] = 1; |
| return baseName; |
| } |
| |
| std::string result = |
| baseName + "." + std::to_string(cgGlobalNames[baseName]++); |
| // There should not be any symbol with this name in the module. |
| assert(!mlir::SymbolTable::lookupSymbolIn(theModule, result)); |
| return result; |
| } |
| |
| /// Return a pointer to a constant array for the given string literal. |
| cir::GlobalOp CIRGenModule::getGlobalForStringLiteral(const StringLiteral *s, |
| StringRef name) { |
| CharUnits alignment = |
| astContext.getAlignOfGlobalVarInChars(s->getType(), /*VD=*/nullptr); |
| |
| mlir::Attribute c = getConstantArrayFromStringLiteral(s); |
| |
| cir::GlobalOp gv; |
| if (!getLangOpts().WritableStrings && constantStringMap.count(c)) { |
| gv = constantStringMap[c]; |
| // The bigger alignment always wins. |
| if (!gv.getAlignment() || |
| uint64_t(alignment.getQuantity()) > *gv.getAlignment()) |
| gv.setAlignmentAttr(getSize(alignment)); |
| } else { |
| // Mangle the string literal if that's how the ABI merges duplicate strings. |
| // Don't do it if they are writable, since we don't want writes in one TU to |
| // affect strings in another. |
| if (getCXXABI().getMangleContext().shouldMangleStringLiteral(s) && |
| !getLangOpts().WritableStrings) { |
| errorNYI(s->getSourceRange(), |
| "getGlobalForStringLiteral: mangle string literals"); |
| } |
| |
| // Unlike LLVM IR, CIR doesn't automatically unique names for globals, so |
| // we need to do that explicitly. |
| std::string uniqueName = getUniqueGlobalName(name.str()); |
| mlir::Location loc = getLoc(s->getSourceRange()); |
| auto typedC = llvm::cast<mlir::TypedAttr>(c); |
| gv = generateStringLiteral(loc, typedC, |
| cir::GlobalLinkageKind::PrivateLinkage, *this, |
| uniqueName, alignment); |
| setDSOLocal(static_cast<mlir::Operation *>(gv)); |
| constantStringMap[c] = gv; |
| |
| assert(!cir::MissingFeatures::sanitizers()); |
| } |
| return gv; |
| } |
| |
| /// Return a pointer to a constant array for the given string literal. |
| cir::GlobalViewAttr |
| CIRGenModule::getAddrOfConstantStringFromLiteral(const StringLiteral *s, |
| StringRef name) { |
| cir::GlobalOp gv = getGlobalForStringLiteral(s, name); |
| auto arrayTy = mlir::dyn_cast<cir::ArrayType>(gv.getSymType()); |
| assert(arrayTy && "String literal must be array"); |
| assert(!cir::MissingFeatures::addressSpace()); |
| cir::PointerType ptrTy = getBuilder().getPointerTo(arrayTy.getElementType()); |
| |
| return builder.getGlobalViewAttr(ptrTy, gv); |
| } |
| |
| // TODO(cir): this could be a common AST helper for both CIR and LLVM codegen. |
| LangAS CIRGenModule::getLangTempAllocaAddressSpace() const { |
| if (getLangOpts().OpenCL) |
| return LangAS::opencl_private; |
| |
| // For temporaries inside functions, CUDA treats them as normal variables. |
| // LangAS::cuda_device, on the other hand, is reserved for those variables |
| // explicitly marked with __device__. |
| if (getLangOpts().CUDAIsDevice) |
| return LangAS::Default; |
| |
| if (getLangOpts().SYCLIsDevice || |
| (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)) |
| errorNYI("SYCL or OpenMP temp address space"); |
| return LangAS::Default; |
| } |
| |
| void CIRGenModule::emitExplicitCastExprType(const ExplicitCastExpr *e, |
| CIRGenFunction *cgf) { |
| if (cgf && e->getType()->isVariablyModifiedType()) |
| cgf->emitVariablyModifiedType(e->getType()); |
| |
| assert(!cir::MissingFeatures::generateDebugInfo() && |
| "emitExplicitCastExprType"); |
| } |
| |
| void CIRGenModule::emitDeclContext(const DeclContext *dc) { |
| for (Decl *decl : dc->decls()) { |
| // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope |
| // are themselves considered "top-level", so EmitTopLevelDecl on an |
| // ObjCImplDecl does not recursively visit them. We need to do that in |
| // case they're nested inside another construct (LinkageSpecDecl / |
| // ExportDecl) that does stop them from being considered "top-level". |
| if (auto *oid = dyn_cast<ObjCImplDecl>(decl)) |
| errorNYI(oid->getSourceRange(), "emitDeclConext: ObjCImplDecl"); |
| |
| emitTopLevelDecl(decl); |
| } |
| } |
| |
| // Emit code for a single top level declaration. |
| void CIRGenModule::emitTopLevelDecl(Decl *decl) { |
| |
| // Ignore dependent declarations. |
| if (decl->isTemplated()) |
| return; |
| |
| switch (decl->getKind()) { |
| default: |
| errorNYI(decl->getBeginLoc(), "declaration of kind", |
| decl->getDeclKindName()); |
| break; |
| |
| case Decl::CXXConversion: |
| case Decl::CXXMethod: |
| case Decl::Function: { |
| auto *fd = cast<FunctionDecl>(decl); |
| // Consteval functions shouldn't be emitted. |
| if (!fd->isConsteval()) |
| emitGlobal(fd); |
| break; |
| } |
| |
| case Decl::Var: |
| case Decl::Decomposition: |
| case Decl::VarTemplateSpecialization: { |
| auto *vd = cast<VarDecl>(decl); |
| if (isa<DecompositionDecl>(decl)) { |
| errorNYI(decl->getSourceRange(), "global variable decompositions"); |
| break; |
| } |
| emitGlobal(vd); |
| break; |
| } |
| case Decl::OpenACCRoutine: |
| emitGlobalOpenACCDecl(cast<OpenACCRoutineDecl>(decl)); |
| break; |
| case Decl::OpenACCDeclare: |
| emitGlobalOpenACCDecl(cast<OpenACCDeclareDecl>(decl)); |
| break; |
| case Decl::Enum: |
| case Decl::Using: // using X; [C++] |
| case Decl::UsingDirective: // using namespace X; [C++] |
| case Decl::UsingEnum: // using enum X; [C++] |
| case Decl::NamespaceAlias: |
| case Decl::Typedef: |
| case Decl::TypeAlias: // using foo = bar; [C++11] |
| case Decl::Record: |
| assert(!cir::MissingFeatures::generateDebugInfo()); |
| break; |
| |
| // No code generation needed. |
| case Decl::ClassTemplate: |
| case Decl::Concept: |
| case Decl::CXXDeductionGuide: |
| case Decl::Empty: |
| case Decl::FunctionTemplate: |
| case Decl::StaticAssert: |
| case Decl::TypeAliasTemplate: |
| case Decl::UsingShadow: |
| case Decl::VarTemplate: |
| case Decl::VarTemplatePartialSpecialization: |
| break; |
| |
| case Decl::CXXConstructor: |
| getCXXABI().emitCXXConstructors(cast<CXXConstructorDecl>(decl)); |
| break; |
| case Decl::CXXDestructor: |
| getCXXABI().emitCXXDestructors(cast<CXXDestructorDecl>(decl)); |
| break; |
| |
| // C++ Decls |
| case Decl::LinkageSpec: |
| case Decl::Namespace: |
| emitDeclContext(Decl::castToDeclContext(decl)); |
| break; |
| |
| case Decl::ClassTemplateSpecialization: |
| case Decl::CXXRecord: { |
| CXXRecordDecl *crd = cast<CXXRecordDecl>(decl); |
| assert(!cir::MissingFeatures::generateDebugInfo()); |
| for (auto *childDecl : crd->decls()) |
| if (isa<VarDecl, CXXRecordDecl, EnumDecl>(childDecl)) |
| emitTopLevelDecl(childDecl); |
| break; |
| } |
| |
| case Decl::FileScopeAsm: |
| // File-scope asm is ignored during device-side CUDA compilation. |
| if (langOpts.CUDA && langOpts.CUDAIsDevice) |
| break; |
| // File-scope asm is ignored during device-side OpenMP compilation. |
| if (langOpts.OpenMPIsTargetDevice) |
| break; |
| // File-scope asm is ignored during device-side SYCL compilation. |
| if (langOpts.SYCLIsDevice) |
| break; |
| auto *file_asm = cast<FileScopeAsmDecl>(decl); |
| std::string line = file_asm->getAsmString(); |
| globalScopeAsm.push_back(builder.getStringAttr(line)); |
| break; |
| } |
| } |
| |
| void CIRGenModule::setInitializer(cir::GlobalOp &op, mlir::Attribute value) { |
| // Recompute visibility when updating initializer. |
| op.setInitialValueAttr(value); |
| assert(!cir::MissingFeatures::opGlobalVisibility()); |
| } |
| |
| std::pair<cir::FuncType, cir::FuncOp> CIRGenModule::getAddrAndTypeOfCXXStructor( |
| GlobalDecl gd, const CIRGenFunctionInfo *fnInfo, cir::FuncType fnType, |
| bool dontDefer, ForDefinition_t isForDefinition) { |
| auto *md = cast<CXXMethodDecl>(gd.getDecl()); |
| |
| if (isa<CXXDestructorDecl>(md)) { |
| // Always alias equivalent complete destructors to base destructors in the |
| // MS ABI. |
| if (getTarget().getCXXABI().isMicrosoft() && |
| gd.getDtorType() == Dtor_Complete && |
| md->getParent()->getNumVBases() == 0) |
| errorNYI(md->getSourceRange(), |
| "getAddrAndTypeOfCXXStructor: MS ABI complete destructor"); |
| } |
| |
| if (!fnType) { |
| if (!fnInfo) |
| fnInfo = &getTypes().arrangeCXXStructorDeclaration(gd); |
| fnType = getTypes().getFunctionType(*fnInfo); |
| } |
| |
| auto fn = getOrCreateCIRFunction(getMangledName(gd), fnType, gd, |
| /*ForVtable=*/false, dontDefer, |
| /*IsThunk=*/false, isForDefinition); |
| |
| return {fnType, fn}; |
| } |
| |
| cir::FuncOp CIRGenModule::getAddrOfFunction(clang::GlobalDecl gd, |
| mlir::Type funcType, bool forVTable, |
| bool dontDefer, |
| ForDefinition_t isForDefinition) { |
| assert(!cast<FunctionDecl>(gd.getDecl())->isConsteval() && |
| "consteval function should never be emitted"); |
| |
| if (!funcType) { |
| const auto *fd = cast<FunctionDecl>(gd.getDecl()); |
| funcType = convertType(fd->getType()); |
| } |
| |
| // Devirtualized destructor calls may come through here instead of via |
| // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead |
| // of the complete destructor when necessary. |
| if (const auto *dd = dyn_cast<CXXDestructorDecl>(gd.getDecl())) { |
| if (getTarget().getCXXABI().isMicrosoft() && |
| gd.getDtorType() == Dtor_Complete && |
| dd->getParent()->getNumVBases() == 0) |
| errorNYI(dd->getSourceRange(), |
| "getAddrOfFunction: MS ABI complete destructor"); |
| } |
| |
| StringRef mangledName = getMangledName(gd); |
| cir::FuncOp func = |
| getOrCreateCIRFunction(mangledName, funcType, gd, forVTable, dontDefer, |
| /*isThunk=*/false, isForDefinition); |
| return func; |
| } |
| |
| static std::string getMangledNameImpl(CIRGenModule &cgm, GlobalDecl gd, |
| const NamedDecl *nd) { |
| SmallString<256> buffer; |
| |
| llvm::raw_svector_ostream out(buffer); |
| MangleContext &mc = cgm.getCXXABI().getMangleContext(); |
| |
| assert(!cir::MissingFeatures::moduleNameHash()); |
| |
| if (mc.shouldMangleDeclName(nd)) { |
| mc.mangleName(gd.getWithDecl(nd), out); |
| } else { |
| IdentifierInfo *ii = nd->getIdentifier(); |
| assert(ii && "Attempt to mangle unnamed decl."); |
| |
| const auto *fd = dyn_cast<FunctionDecl>(nd); |
| if (fd && |
| fd->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { |
| cgm.errorNYI(nd->getSourceRange(), "getMangledName: X86RegCall"); |
| } else if (fd && fd->hasAttr<CUDAGlobalAttr>() && |
| gd.getKernelReferenceKind() == KernelReferenceKind::Stub) { |
| cgm.errorNYI(nd->getSourceRange(), "getMangledName: CUDA device stub"); |
| } |
| out << ii->getName(); |
| } |
| |
| // Check if the module name hash should be appended for internal linkage |
| // symbols. This should come before multi-version target suffixes are |
| // appendded. This is to keep the name and module hash suffix of the internal |
| // linkage function together. The unique suffix should only be added when name |
| // mangling is done to make sure that the final name can be properly |
| // demangled. For example, for C functions without prototypes, name mangling |
| // is not done and the unique suffix should not be appended then. |
| assert(!cir::MissingFeatures::moduleNameHash()); |
| |
| if (const auto *fd = dyn_cast<FunctionDecl>(nd)) { |
| if (fd->isMultiVersion()) { |
| cgm.errorNYI(nd->getSourceRange(), |
| "getMangledName: multi-version functions"); |
| } |
| } |
| if (cgm.getLangOpts().GPURelocatableDeviceCode) { |
| cgm.errorNYI(nd->getSourceRange(), |
| "getMangledName: GPU relocatable device code"); |
| } |
| |
| return std::string(out.str()); |
| } |
| |
| StringRef CIRGenModule::getMangledName(GlobalDecl gd) { |
| GlobalDecl canonicalGd = gd.getCanonicalDecl(); |
| |
| // Some ABIs don't have constructor variants. Make sure that base and complete |
| // constructors get mangled the same. |
| if (const auto *cd = dyn_cast<CXXConstructorDecl>(canonicalGd.getDecl())) { |
| if (!getTarget().getCXXABI().hasConstructorVariants()) { |
| errorNYI(cd->getSourceRange(), |
| "getMangledName: C++ constructor without variants"); |
| return cast<NamedDecl>(gd.getDecl())->getIdentifier()->getName(); |
| } |
| } |
| |
| // Keep the first result in the case of a mangling collision. |
| const auto *nd = cast<NamedDecl>(gd.getDecl()); |
| std::string mangledName = getMangledNameImpl(*this, gd, nd); |
| |
| auto result = manglings.insert(std::make_pair(mangledName, gd)); |
| return mangledDeclNames[canonicalGd] = result.first->first(); |
| } |
| |
| void CIRGenModule::emitTentativeDefinition(const VarDecl *d) { |
| assert(!d->getInit() && "Cannot emit definite definitions here!"); |
| |
| StringRef mangledName = getMangledName(d); |
| mlir::Operation *gv = getGlobalValue(mangledName); |
| |
| // If we already have a definition, not declaration, with the same mangled |
| // name, emitting of declaration is not required (and would actually overwrite |
| // the emitted definition). |
| if (gv && !mlir::cast<cir::GlobalOp>(gv).isDeclaration()) |
| return; |
| |
| // If we have not seen a reference to this variable yet, place it into the |
| // deferred declarations table to be emitted if needed later. |
| if (!mustBeEmitted(d) && !gv) { |
| deferredDecls[mangledName] = d; |
| return; |
| } |
| |
| // The tentative definition is the only definition. |
| emitGlobalVarDefinition(d); |
| } |
| |
| bool CIRGenModule::mustBeEmitted(const ValueDecl *global) { |
| // Never defer when EmitAllDecls is specified. |
| if (langOpts.EmitAllDecls) |
| return true; |
| |
| const auto *vd = dyn_cast<VarDecl>(global); |
| if (vd && |
| ((codeGenOpts.KeepPersistentStorageVariables && |
| (vd->getStorageDuration() == SD_Static || |
| vd->getStorageDuration() == SD_Thread)) || |
| (codeGenOpts.KeepStaticConsts && vd->getStorageDuration() == SD_Static && |
| vd->getType().isConstQualified()))) |
| return true; |
| |
| return getASTContext().DeclMustBeEmitted(global); |
| } |
| |
| bool CIRGenModule::mayBeEmittedEagerly(const ValueDecl *global) { |
| // In OpenMP 5.0 variables and function may be marked as |
| // device_type(host/nohost) and we should not emit them eagerly unless we sure |
| // that they must be emitted on the host/device. To be sure we need to have |
| // seen a declare target with an explicit mentioning of the function, we know |
| // we have if the level of the declare target attribute is -1. Note that we |
| // check somewhere else if we should emit this at all. |
| if (langOpts.OpenMP >= 50 && !langOpts.OpenMPSimd) { |
| std::optional<OMPDeclareTargetDeclAttr *> activeAttr = |
| OMPDeclareTargetDeclAttr::getActiveAttr(global); |
| if (!activeAttr || (*activeAttr)->getLevel() != (unsigned)-1) |
| return false; |
| } |
| |
| const auto *fd = dyn_cast<FunctionDecl>(global); |
| if (fd) { |
| // Implicit template instantiations may change linkage if they are later |
| // explicitly instantiated, so they should not be emitted eagerly. |
| if (fd->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return false; |
| // Defer until all versions have been semantically checked. |
| if (fd->hasAttr<TargetVersionAttr>() && !fd->isMultiVersion()) |
| return false; |
| if (langOpts.SYCLIsDevice) { |
| errorNYI(fd->getSourceRange(), "mayBeEmittedEagerly: SYCL"); |
| return false; |
| } |
| } |
| const auto *vd = dyn_cast<VarDecl>(global); |
| if (vd) |
| if (astContext.getInlineVariableDefinitionKind(vd) == |
| ASTContext::InlineVariableDefinitionKind::WeakUnknown) |
| // A definition of an inline constexpr static data member may change |
| // linkage later if it's redeclared outside the class. |
| return false; |
| |
| // If OpenMP is enabled and threadprivates must be generated like TLS, delay |
| // codegen for global variables, because they may be marked as threadprivate. |
| if (langOpts.OpenMP && langOpts.OpenMPUseTLS && |
| astContext.getTargetInfo().isTLSSupported() && isa<VarDecl>(global) && |
| !global->getType().isConstantStorage(astContext, false, false) && |
| !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(global)) |
| return false; |
| |
| assert((fd || vd) && |
| "Only FunctionDecl and VarDecl should hit this path so far."); |
| return true; |
| } |
| |
| static bool shouldAssumeDSOLocal(const CIRGenModule &cgm, |
| cir::CIRGlobalValueInterface gv) { |
| if (gv.hasLocalLinkage()) |
| return true; |
| |
| if (!gv.hasDefaultVisibility() && !gv.hasExternalWeakLinkage()) |
| return true; |
| |
| // DLLImport explicitly marks the GV as external. |
| // so it shouldn't be dso_local |
| // But we don't have the info set now |
| assert(!cir::MissingFeatures::opGlobalDLLImportExport()); |
| |
| const llvm::Triple &tt = cgm.getTriple(); |
| const CodeGenOptions &cgOpts = cgm.getCodeGenOpts(); |
| if (tt.isOSCygMing()) { |
| // In MinGW and Cygwin, variables without DLLImport can still be |
| // automatically imported from a DLL by the linker; don't mark variables |
| // that potentially could come from another DLL as DSO local. |
| |
| // With EmulatedTLS, TLS variables can be autoimported from other DLLs |
| // (and this actually happens in the public interface of libstdc++), so |
| // such variables can't be marked as DSO local. (Native TLS variables |
| // can't be dllimported at all, though.) |
| cgm.errorNYI("shouldAssumeDSOLocal: MinGW"); |
| } |
| |
| // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols |
| // remain unresolved in the link, they can be resolved to zero, which is |
| // outside the current DSO. |
| if (tt.isOSBinFormatCOFF() && gv.hasExternalWeakLinkage()) |
| return false; |
| |
| // Every other GV is local on COFF. |
| // Make an exception for windows OS in the triple: Some firmware builds use |
| // *-win32-macho triples. This (accidentally?) produced windows relocations |
| // without GOT tables in older clang versions; Keep this behaviour. |
| // FIXME: even thread local variables? |
| if (tt.isOSBinFormatCOFF() || (tt.isOSWindows() && tt.isOSBinFormatMachO())) |
| return true; |
| |
| // Only handle COFF and ELF for now. |
| if (!tt.isOSBinFormatELF()) |
| return false; |
| |
| llvm::Reloc::Model rm = cgOpts.RelocationModel; |
| const LangOptions &lOpts = cgm.getLangOpts(); |
| if (rm != llvm::Reloc::Static && !lOpts.PIE) { |
| // On ELF, if -fno-semantic-interposition is specified and the target |
| // supports local aliases, there will be neither CC1 |
| // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set |
| // dso_local on the function if using a local alias is preferable (can avoid |
| // PLT indirection). |
| if (!(isa<cir::FuncOp>(gv) && gv.canBenefitFromLocalAlias())) |
| return false; |
| return !(lOpts.SemanticInterposition || lOpts.HalfNoSemanticInterposition); |
| } |
| |
| // A definition cannot be preempted from an executable. |
| if (!gv.isDeclarationForLinker()) |
| return true; |
| |
| // Most PIC code sequences that assume that a symbol is local cannot produce a |
| // 0 if it turns out the symbol is undefined. While this is ABI and relocation |
| // depended, it seems worth it to handle it here. |
| if (rm == llvm::Reloc::PIC_ && gv.hasExternalWeakLinkage()) |
| return false; |
| |
| // PowerPC64 prefers TOC indirection to avoid copy relocations. |
| if (tt.isPPC64()) |
| return false; |
| |
| if (cgOpts.DirectAccessExternalData) { |
| // If -fdirect-access-external-data (default for -fno-pic), set dso_local |
| // for non-thread-local variables. If the symbol is not defined in the |
| // executable, a copy relocation will be needed at link time. dso_local is |
| // excluded for thread-local variables because they generally don't support |
| // copy relocations. |
| if (auto globalOp = dyn_cast<cir::GlobalOp>(gv.getOperation())) { |
| // Assume variables are not thread-local until that support is added. |
| assert(!cir::MissingFeatures::opGlobalThreadLocal()); |
| return true; |
| } |
| |
| // -fno-pic sets dso_local on a function declaration to allow direct |
| // accesses when taking its address (similar to a data symbol). If the |
| // function is not defined in the executable, a canonical PLT entry will be |
| // needed at link time. -fno-direct-access-external-data can avoid the |
| // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as |
| // it could just cause trouble without providing perceptible benefits. |
| if (isa<cir::FuncOp>(gv) && !cgOpts.NoPLT && rm == llvm::Reloc::Static) |
| return true; |
| } |
| |
| // If we can use copy relocations we can assume it is local. |
| |
| // Otherwise don't assume it is local. |
| |
| return false; |
| } |
| |
| void CIRGenModule::setGlobalVisibility(mlir::Operation *gv, |
| const NamedDecl *d) const { |
| assert(!cir::MissingFeatures::opGlobalVisibility()); |
| } |
| |
| void CIRGenModule::setDSOLocal(cir::CIRGlobalValueInterface gv) const { |
| gv.setDSOLocal(shouldAssumeDSOLocal(*this, gv)); |
| } |
| |
| void CIRGenModule::setDSOLocal(mlir::Operation *op) const { |
| if (auto globalValue = dyn_cast<cir::CIRGlobalValueInterface>(op)) |
| setDSOLocal(globalValue); |
| } |
| |
| void CIRGenModule::setGVProperties(mlir::Operation *op, |
| const NamedDecl *d) const { |
| assert(!cir::MissingFeatures::opGlobalDLLImportExport()); |
| setGVPropertiesAux(op, d); |
| } |
| |
| void CIRGenModule::setGVPropertiesAux(mlir::Operation *op, |
| const NamedDecl *d) const { |
| setGlobalVisibility(op, d); |
| setDSOLocal(op); |
| assert(!cir::MissingFeatures::opGlobalPartition()); |
| } |
| |
| void CIRGenModule::setFunctionAttributes(GlobalDecl globalDecl, |
| cir::FuncOp func, |
| bool isIncompleteFunction, |
| bool isThunk) { |
| // NOTE(cir): Original CodeGen checks if this is an intrinsic. In CIR we |
| // represent them in dedicated ops. The correct attributes are ensured during |
| // translation to LLVM. Thus, we don't need to check for them here. |
| |
| assert(!cir::MissingFeatures::setFunctionAttributes()); |
| assert(!cir::MissingFeatures::setTargetAttributes()); |
| |
| // TODO(cir): This needs a lot of work to better match CodeGen. That |
| // ultimately ends up in setGlobalVisibility, which already has the linkage of |
| // the LLVM GV (corresponding to our FuncOp) computed, so it doesn't have to |
| // recompute it here. This is a minimal fix for now. |
| if (!isLocalLinkage(getFunctionLinkage(globalDecl))) { |
| const Decl *decl = globalDecl.getDecl(); |
| func.setGlobalVisibilityAttr(getGlobalVisibilityAttrFromDecl(decl)); |
| } |
| |
| // If we plan on emitting this inline builtin, we can't treat it as a builtin. |
| const auto *fd = cast<FunctionDecl>(globalDecl.getDecl()); |
| if (fd->isInlineBuiltinDeclaration()) { |
| const FunctionDecl *fdBody; |
| bool hasBody = fd->hasBody(fdBody); |
| (void)hasBody; |
| assert(hasBody && "Inline builtin declarations should always have an " |
| "available body!"); |
| assert(!cir::MissingFeatures::attributeNoBuiltin()); |
| } |
| } |
| |
| void CIRGenModule::setCIRFunctionAttributesForDefinition( |
| const clang::FunctionDecl *decl, cir::FuncOp f) { |
| assert(!cir::MissingFeatures::opFuncUnwindTablesAttr()); |
| assert(!cir::MissingFeatures::stackProtector()); |
| |
| std::optional<cir::InlineKind> existingInlineKind = f.getInlineKind(); |
| bool isNoInline = |
| existingInlineKind && *existingInlineKind == cir::InlineKind::NoInline; |
| bool isAlwaysInline = existingInlineKind && |
| *existingInlineKind == cir::InlineKind::AlwaysInline; |
| |
| if (!decl) { |
| assert(!cir::MissingFeatures::hlsl()); |
| |
| if (!isAlwaysInline && |
| codeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { |
| // If inlining is disabled and we don't have a declaration to control |
| // inlining, mark the function as 'noinline' unless it is explicitly |
| // marked as 'alwaysinline'. |
| f.setInlineKindAttr( |
| cir::InlineAttr::get(&getMLIRContext(), cir::InlineKind::NoInline)); |
| } |
| |
| return; |
| } |
| |
| assert(!cir::MissingFeatures::opFuncArmStreamingAttr()); |
| assert(!cir::MissingFeatures::opFuncArmNewAttr()); |
| assert(!cir::MissingFeatures::opFuncOptNoneAttr()); |
| assert(!cir::MissingFeatures::opFuncMinSizeAttr()); |
| assert(!cir::MissingFeatures::opFuncNakedAttr()); |
| assert(!cir::MissingFeatures::opFuncNoDuplicateAttr()); |
| assert(!cir::MissingFeatures::hlsl()); |
| |
| // Handle inline attributes |
| if (decl->hasAttr<NoInlineAttr>() && !isAlwaysInline) { |
| // Add noinline if the function isn't always_inline. |
| f.setInlineKindAttr( |
| cir::InlineAttr::get(&getMLIRContext(), cir::InlineKind::NoInline)); |
| } else if (decl->hasAttr<AlwaysInlineAttr>() && !isNoInline) { |
| // Don't override AlwaysInline with NoInline, or vice versa, since we can't |
| // specify both in IR. |
| f.setInlineKindAttr( |
| cir::InlineAttr::get(&getMLIRContext(), cir::InlineKind::AlwaysInline)); |
| } else if (codeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { |
| // If inlining is disabled, force everything that isn't always_inline |
| // to carry an explicit noinline attribute. |
| if (!isAlwaysInline) { |
| f.setInlineKindAttr( |
| cir::InlineAttr::get(&getMLIRContext(), cir::InlineKind::NoInline)); |
| } |
| } else { |
| // Otherwise, propagate the inline hint attribute and potentially use its |
| // absence to mark things as noinline. |
| // Search function and template pattern redeclarations for inline. |
| if (auto *fd = dyn_cast<FunctionDecl>(decl)) { |
| // TODO: Share this checkForInline implementation with classic codegen. |
| // This logic is likely to change over time, so sharing would help ensure |
| // consistency. |
| auto checkForInline = [](const FunctionDecl *decl) { |
| auto checkRedeclForInline = [](const FunctionDecl *redecl) { |
| return redecl->isInlineSpecified(); |
| }; |
| if (any_of(decl->redecls(), checkRedeclForInline)) |
| return true; |
| const FunctionDecl *pattern = decl->getTemplateInstantiationPattern(); |
| if (!pattern) |
| return false; |
| return any_of(pattern->redecls(), checkRedeclForInline); |
| }; |
| if (checkForInline(fd)) { |
| f.setInlineKindAttr(cir::InlineAttr::get(&getMLIRContext(), |
| cir::InlineKind::InlineHint)); |
| } else if (codeGenOpts.getInlining() == |
| CodeGenOptions::OnlyHintInlining && |
| !fd->isInlined() && !isAlwaysInline) { |
| f.setInlineKindAttr( |
| cir::InlineAttr::get(&getMLIRContext(), cir::InlineKind::NoInline)); |
| } |
| } |
| } |
| |
| assert(!cir::MissingFeatures::opFuncColdHotAttr()); |
| } |
| |
| cir::FuncOp CIRGenModule::getOrCreateCIRFunction( |
| StringRef mangledName, mlir::Type funcType, GlobalDecl gd, bool forVTable, |
| bool dontDefer, bool isThunk, ForDefinition_t isForDefinition, |
| mlir::ArrayAttr extraAttrs) { |
| const Decl *d = gd.getDecl(); |
| |
| if (isThunk) |
| errorNYI(d->getSourceRange(), "getOrCreateCIRFunction: thunk"); |
| |
| // In what follows, we continue past 'errorNYI' as if nothing happened because |
| // the rest of the implementation is better than doing nothing. |
| |
| if (const auto *fd = cast_or_null<FunctionDecl>(d)) { |
| // For the device mark the function as one that should be emitted. |
| if (getLangOpts().OpenMPIsTargetDevice && fd->isDefined() && !dontDefer && |
| !isForDefinition) |
| errorNYI(fd->getSourceRange(), |
| "getOrCreateCIRFunction: OpenMP target function"); |
| |
| // Any attempts to use a MultiVersion function should result in retrieving |
| // the iFunc instead. Name mangling will handle the rest of the changes. |
| if (fd->isMultiVersion()) |
| errorNYI(fd->getSourceRange(), "getOrCreateCIRFunction: multi-version"); |
| } |
| |
| // Lookup the entry, lazily creating it if necessary. |
| mlir::Operation *entry = getGlobalValue(mangledName); |
| if (entry) { |
| assert(mlir::isa<cir::FuncOp>(entry)); |
| |
| assert(!cir::MissingFeatures::weakRefReference()); |
| |
| // Handle dropped DLL attributes. |
| if (d && !d->hasAttr<DLLImportAttr>() && !d->hasAttr<DLLExportAttr>()) { |
| assert(!cir::MissingFeatures::setDLLStorageClass()); |
| setDSOLocal(entry); |
| } |
| |
| // If there are two attempts to define the same mangled name, issue an |
| // error. |
| auto fn = cast<cir::FuncOp>(entry); |
| if (isForDefinition && fn && !fn.isDeclaration()) { |
| errorNYI(d->getSourceRange(), "Duplicate function definition"); |
| } |
| if (fn && fn.getFunctionType() == funcType) { |
| return fn; |
| } |
| |
| if (!isForDefinition) { |
| return fn; |
| } |
| |
| // TODO(cir): classic codegen checks here if this is a llvm::GlobalAlias. |
| // How will we support this? |
| } |
| |
| auto *funcDecl = llvm::cast_or_null<FunctionDecl>(gd.getDecl()); |
| bool invalidLoc = !funcDecl || |
| funcDecl->getSourceRange().getBegin().isInvalid() || |
| funcDecl->getSourceRange().getEnd().isInvalid(); |
| cir::FuncOp funcOp = createCIRFunction( |
| invalidLoc ? theModule->getLoc() : getLoc(funcDecl->getSourceRange()), |
| mangledName, mlir::cast<cir::FuncType>(funcType), funcDecl); |
| |
| // If we already created a function with the same mangled name (but different |
| // type) before, take its name and add it to the list of functions to be |
| // replaced with F at the end of CodeGen. |
| // |
| // This happens if there is a prototype for a function (e.g. "int f()") and |
| // then a definition of a different type (e.g. "int f(int x)"). |
| if (entry) { |
| |
| // Fetch a generic symbol-defining operation and its uses. |
| auto symbolOp = mlir::cast<mlir::SymbolOpInterface>(entry); |
| |
| // This might be an implementation of a function without a prototype, in |
| // which case, try to do special replacement of calls which match the new |
| // prototype. The really key thing here is that we also potentially drop |
| // arguments from the call site so as to make a direct call, which makes the |
| // inliner happier and suppresses a number of optimizer warnings (!) about |
| // dropping arguments. |
| if (symbolOp.getSymbolUses(symbolOp->getParentOp())) |
| replaceUsesOfNonProtoTypeWithRealFunction(entry, funcOp); |
| |
| // Obliterate no-proto declaration. |
| entry->erase(); |
| } |
| |
| if (d) |
| setFunctionAttributes(gd, funcOp, /*isIncompleteFunction=*/false, isThunk); |
| |
| // 'dontDefer' actually means don't move this to the deferredDeclsToEmit list. |
| if (dontDefer) { |
| // TODO(cir): This assertion will need an additional condition when we |
| // support incomplete functions. |
| assert(funcOp.getFunctionType() == funcType); |
| return funcOp; |
| } |
| |
| // All MSVC dtors other than the base dtor are linkonce_odr and delegate to |
| // each other bottoming out wiht the base dtor. Therefore we emit non-base |
| // dtors on usage, even if there is no dtor definition in the TU. |
| if (isa_and_nonnull<CXXDestructorDecl>(d) && |
| getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(d), |
| gd.getDtorType())) |
| errorNYI(d->getSourceRange(), "getOrCreateCIRFunction: dtor"); |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| auto ddi = deferredDecls.find(mangledName); |
| if (ddi != deferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the |
| // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we |
| // don't need it anymore). |
| addDeferredDeclToEmit(ddi->second); |
| deferredDecls.erase(ddi); |
| |
| // Otherwise, there are cases we have to worry about where we're using a |
| // declaration for which we must emit a definition but where we might not |
| // find a top-level definition. |
| // - member functions defined inline in their classes |
| // - friend functions defined inline in some class |
| // - special member functions with implicit definitions |
| // If we ever change our AST traversal to walk into class methods, this |
| // will be unnecessary. |
| // |
| // We also don't emit a definition for a function if it's going to be an |
| // entry in a vtable, unless it's already marked as used. |
| } else if (getLangOpts().CPlusPlus && d) { |
| // Look for a declaration that's lexically in a record. |
| for (const auto *fd = cast<FunctionDecl>(d)->getMostRecentDecl(); fd; |
| fd = fd->getPreviousDecl()) { |
| if (isa<CXXRecordDecl>(fd->getLexicalDeclContext())) { |
| if (fd->doesThisDeclarationHaveABody()) { |
| addDeferredDeclToEmit(gd.getWithDecl(fd)); |
| break; |
| } |
| } |
| } |
| } |
| |
| return funcOp; |
| } |
| |
| cir::FuncOp |
| CIRGenModule::createCIRFunction(mlir::Location loc, StringRef name, |
| cir::FuncType funcType, |
| const clang::FunctionDecl *funcDecl) { |
| cir::FuncOp func; |
| { |
| mlir::OpBuilder::InsertionGuard guard(builder); |
| |
| // Some global emissions are triggered while emitting a function, e.g. |
| // void s() { x.method() } |
| // |
| // Be sure to insert a new function before a current one. |
| CIRGenFunction *cgf = this->curCGF; |
| if (cgf) |
| builder.setInsertionPoint(cgf->curFn); |
| |
| func = cir::FuncOp::create(builder, loc, name, funcType); |
| |
| assert(!cir::MissingFeatures::opFuncAstDeclAttr()); |
| |
| if (funcDecl && !funcDecl->hasPrototype()) |
| func.setNoProto(true); |
| |
| assert(func.isDeclaration() && "expected empty body"); |
| |
| // A declaration gets private visibility by default, but external linkage |
| // as the default linkage. |
| func.setLinkageAttr(cir::GlobalLinkageKindAttr::get( |
| &getMLIRContext(), cir::GlobalLinkageKind::ExternalLinkage)); |
| mlir::SymbolTable::setSymbolVisibility( |
| func, mlir::SymbolTable::Visibility::Private); |
| |
| assert(!cir::MissingFeatures::opFuncExtraAttrs()); |
| |
| // Mark C++ special member functions (Constructor, Destructor etc.) |
| setCXXSpecialMemberAttr(func, funcDecl); |
| |
| if (!cgf) |
| theModule.push_back(func); |
| } |
| return func; |
| } |
| |
| cir::FuncOp |
| CIRGenModule::createCIRBuiltinFunction(mlir::Location loc, StringRef name, |
| cir::FuncType ty, |
| const clang::FunctionDecl *fd) { |
| cir::FuncOp fnOp = createCIRFunction(loc, name, ty, fd); |
| fnOp.setBuiltin(true); |
| return fnOp; |
| } |
| |
| static cir::CtorKind getCtorKindFromDecl(const CXXConstructorDecl *ctor) { |
| if (ctor->isDefaultConstructor()) |
| return cir::CtorKind::Default; |
| if (ctor->isCopyConstructor()) |
| return cir::CtorKind::Copy; |
| if (ctor->isMoveConstructor()) |
| return cir::CtorKind::Move; |
| return cir::CtorKind::Custom; |
| } |
| |
| static cir::AssignKind getAssignKindFromDecl(const CXXMethodDecl *method) { |
| if (method->isCopyAssignmentOperator()) |
| return cir::AssignKind::Copy; |
| if (method->isMoveAssignmentOperator()) |
| return cir::AssignKind::Move; |
| llvm_unreachable("not a copy or move assignment operator"); |
| } |
| |
| void CIRGenModule::setCXXSpecialMemberAttr( |
| cir::FuncOp funcOp, const clang::FunctionDecl *funcDecl) { |
| if (!funcDecl) |
| return; |
| |
| if (const auto *dtor = dyn_cast<CXXDestructorDecl>(funcDecl)) { |
| auto cxxDtor = cir::CXXDtorAttr::get( |
| convertType(getASTContext().getCanonicalTagType(dtor->getParent())), |
| dtor->isTrivial()); |
| funcOp.setCxxSpecialMemberAttr(cxxDtor); |
| return; |
| } |
| |
| if (const auto *ctor = dyn_cast<CXXConstructorDecl>(funcDecl)) { |
| cir::CtorKind kind = getCtorKindFromDecl(ctor); |
| auto cxxCtor = cir::CXXCtorAttr::get( |
| convertType(getASTContext().getCanonicalTagType(ctor->getParent())), |
| kind, ctor->isTrivial()); |
| funcOp.setCxxSpecialMemberAttr(cxxCtor); |
| return; |
| } |
| |
| const auto *method = dyn_cast<CXXMethodDecl>(funcDecl); |
| if (method && (method->isCopyAssignmentOperator() || |
| method->isMoveAssignmentOperator())) { |
| cir::AssignKind assignKind = getAssignKindFromDecl(method); |
| auto cxxAssign = cir::CXXAssignAttr::get( |
| convertType(getASTContext().getCanonicalTagType(method->getParent())), |
| assignKind, method->isTrivial()); |
| funcOp.setCxxSpecialMemberAttr(cxxAssign); |
| return; |
| } |
| } |
| |
| cir::FuncOp CIRGenModule::createRuntimeFunction(cir::FuncType ty, |
| StringRef name, mlir::ArrayAttr, |
| [[maybe_unused]] bool isLocal, |
| bool assumeConvergent) { |
| if (assumeConvergent) |
| errorNYI("createRuntimeFunction: assumeConvergent"); |
| if (isLocal) |
| errorNYI("createRuntimeFunction: local"); |
| |
| cir::FuncOp entry = getOrCreateCIRFunction(name, ty, GlobalDecl(), |
| /*forVtable=*/false); |
| |
| if (entry) { |
| // TODO(cir): set the attributes of the function. |
| assert(!cir::MissingFeatures::setLLVMFunctionFEnvAttributes()); |
| assert(!cir::MissingFeatures::opFuncCallingConv()); |
| assert(!cir::MissingFeatures::opGlobalDLLImportExport()); |
| entry.setDSOLocal(true); |
| } |
| |
| return entry; |
| } |
| |
| mlir::SymbolTable::Visibility |
| CIRGenModule::getMLIRVisibility(cir::GlobalOp op) { |
| // MLIR doesn't accept public symbols declarations (only |
| // definitions). |
| if (op.isDeclaration()) |
| return mlir::SymbolTable::Visibility::Private; |
| return getMLIRVisibilityFromCIRLinkage(op.getLinkage()); |
| } |
| |
| mlir::SymbolTable::Visibility |
| CIRGenModule::getMLIRVisibilityFromCIRLinkage(cir::GlobalLinkageKind glk) { |
| switch (glk) { |
| case cir::GlobalLinkageKind::InternalLinkage: |
| case cir::GlobalLinkageKind::PrivateLinkage: |
| return mlir::SymbolTable::Visibility::Private; |
| case cir::GlobalLinkageKind::ExternalLinkage: |
| case cir::GlobalLinkageKind::ExternalWeakLinkage: |
| case cir::GlobalLinkageKind::LinkOnceODRLinkage: |
| case cir::GlobalLinkageKind::AvailableExternallyLinkage: |
| case cir::GlobalLinkageKind::CommonLinkage: |
| case cir::GlobalLinkageKind::WeakAnyLinkage: |
| case cir::GlobalLinkageKind::WeakODRLinkage: |
| return mlir::SymbolTable::Visibility::Public; |
| default: { |
| llvm::errs() << "visibility not implemented for '" |
| << stringifyGlobalLinkageKind(glk) << "'\n"; |
| assert(0 && "not implemented"); |
| } |
| } |
| llvm_unreachable("linkage should be handled above!"); |
| } |
| |
| cir::VisibilityKind CIRGenModule::getGlobalVisibilityKindFromClangVisibility( |
| clang::VisibilityAttr::VisibilityType visibility) { |
| switch (visibility) { |
| case clang::VisibilityAttr::VisibilityType::Default: |
| return cir::VisibilityKind::Default; |
| case clang::VisibilityAttr::VisibilityType::Hidden: |
| return cir::VisibilityKind::Hidden; |
| case clang::VisibilityAttr::VisibilityType::Protected: |
| return cir::VisibilityKind::Protected; |
| } |
| llvm_unreachable("unexpected visibility value"); |
| } |
| |
| cir::VisibilityAttr |
| CIRGenModule::getGlobalVisibilityAttrFromDecl(const Decl *decl) { |
| const clang::VisibilityAttr *va = decl->getAttr<clang::VisibilityAttr>(); |
| cir::VisibilityAttr cirVisibility = |
| cir::VisibilityAttr::get(&getMLIRContext()); |
| if (va) { |
| cirVisibility = cir::VisibilityAttr::get( |
| &getMLIRContext(), |
| getGlobalVisibilityKindFromClangVisibility(va->getVisibility())); |
| } |
| return cirVisibility; |
| } |
| |
| void CIRGenModule::release() { |
| emitDeferred(); |
| applyReplacements(); |
| |
| theModule->setAttr(cir::CIRDialect::getModuleLevelAsmAttrName(), |
| builder.getArrayAttr(globalScopeAsm)); |
| |
| // There's a lot of code that is not implemented yet. |
| assert(!cir::MissingFeatures::cgmRelease()); |
| } |
| |
| void CIRGenModule::emitAliasForGlobal(StringRef mangledName, |
| mlir::Operation *op, GlobalDecl aliasGD, |
| cir::FuncOp aliasee, |
| cir::GlobalLinkageKind linkage) { |
| |
| auto *aliasFD = dyn_cast<FunctionDecl>(aliasGD.getDecl()); |
| assert(aliasFD && "expected FunctionDecl"); |
| |
| // The aliasee function type is different from the alias one, this difference |
| // is specific to CIR because in LLVM the ptr types are already erased at this |
| // point. |
| const CIRGenFunctionInfo &fnInfo = |
| getTypes().arrangeCXXStructorDeclaration(aliasGD); |
| cir::FuncType fnType = getTypes().getFunctionType(fnInfo); |
| |
| cir::FuncOp alias = |
| createCIRFunction(getLoc(aliasGD.getDecl()->getSourceRange()), |
| mangledName, fnType, aliasFD); |
| alias.setAliasee(aliasee.getName()); |
| alias.setLinkage(linkage); |
| // Declarations cannot have public MLIR visibility, just mark them private |
| // but this really should have no meaning since CIR should not be using |
| // this information to derive linkage information. |
| mlir::SymbolTable::setSymbolVisibility( |
| alias, mlir::SymbolTable::Visibility::Private); |
| |
| // Alias constructors and destructors are always unnamed_addr. |
| assert(!cir::MissingFeatures::opGlobalUnnamedAddr()); |
| |
| // Switch any previous uses to the alias. |
| if (op) { |
| errorNYI(aliasFD->getSourceRange(), "emitAliasForGlobal: previous uses"); |
| } else { |
| // Name already set by createCIRFunction |
| } |
| |
| // Finally, set up the alias with its proper name and attributes. |
| setCommonAttributes(aliasGD, alias); |
| } |
| |
| mlir::Type CIRGenModule::convertType(QualType type) { |
| return genTypes.convertType(type); |
| } |
| |
| bool CIRGenModule::verifyModule() const { |
| // Verify the module after we have finished constructing it, this will |
| // check the structural properties of the IR and invoke any specific |
| // verifiers we have on the CIR operations. |
| return mlir::verify(theModule).succeeded(); |
| } |
| |
| mlir::Attribute CIRGenModule::getAddrOfRTTIDescriptor(mlir::Location loc, |
| QualType ty, bool forEh) { |
| // Return a bogus pointer if RTTI is disabled, unless it's for EH. |
| // FIXME: should we even be calling this method if RTTI is disabled |
| // and it's not for EH? |
| if (!shouldEmitRTTI(forEh)) |
| return builder.getConstNullPtrAttr(builder.getUInt8PtrTy()); |
| |
| if (forEh && ty->isObjCObjectPointerType() && |
| langOpts.ObjCRuntime.isGNUFamily()) { |
| errorNYI(loc, "getAddrOfRTTIDescriptor: Objc PtrType & Objc RT GUN"); |
| return {}; |
| } |
| |
| return getCXXABI().getAddrOfRTTIDescriptor(loc, ty); |
| } |
| |
| // TODO(cir): this can be shared with LLVM codegen. |
| CharUnits CIRGenModule::computeNonVirtualBaseClassOffset( |
| const CXXRecordDecl *derivedClass, |
| llvm::iterator_range<CastExpr::path_const_iterator> path) { |
| CharUnits offset = CharUnits::Zero(); |
| |
| const ASTContext &astContext = getASTContext(); |
| const CXXRecordDecl *rd = derivedClass; |
| |
| for (const CXXBaseSpecifier *base : path) { |
| assert(!base->isVirtual() && "Should not see virtual bases here!"); |
| |
| // Get the layout. |
| const ASTRecordLayout &layout = astContext.getASTRecordLayout(rd); |
| |
| const auto *baseDecl = base->getType()->castAsCXXRecordDecl(); |
| |
| // Add the offset. |
| offset += layout.getBaseClassOffset(baseDecl); |
| |
| rd = baseDecl; |
| } |
| |
| return offset; |
| } |
| |
| DiagnosticBuilder CIRGenModule::errorNYI(SourceLocation loc, |
| llvm::StringRef feature) { |
| unsigned diagID = diags.getCustomDiagID( |
| DiagnosticsEngine::Error, "ClangIR code gen Not Yet Implemented: %0"); |
| return diags.Report(loc, diagID) << feature; |
| } |
| |
| DiagnosticBuilder CIRGenModule::errorNYI(SourceRange loc, |
| llvm::StringRef feature) { |
| return errorNYI(loc.getBegin(), feature) << loc; |
| } |