blob: 60b67a4f5ec5eb2f8998a964c28996892deae1c3 [file] [log] [blame]
//===--- SPIRVUtils.cpp ---- SPIR-V Utility Functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//
#include "SPIRVUtils.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVInstrInfo.h"
#include "SPIRVSubtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include <queue>
#include <vector>
namespace llvm {
// The following functions are used to add these string literals as a series of
// 32-bit integer operands with the correct format, and unpack them if necessary
// when making string comparisons in compiler passes.
// SPIR-V requires null-terminated UTF-8 strings padded to 32-bit alignment.
static uint32_t convertCharsToWord(const StringRef &Str, unsigned i) {
uint32_t Word = 0u; // Build up this 32-bit word from 4 8-bit chars.
for (unsigned WordIndex = 0; WordIndex < 4; ++WordIndex) {
unsigned StrIndex = i + WordIndex;
uint8_t CharToAdd = 0; // Initilize char as padding/null.
if (StrIndex < Str.size()) { // If it's within the string, get a real char.
CharToAdd = Str[StrIndex];
}
Word |= (CharToAdd << (WordIndex * 8));
}
return Word;
}
// Get length including padding and null terminator.
static size_t getPaddedLen(const StringRef &Str) {
return (Str.size() + 4) & ~3;
}
void addStringImm(const StringRef &Str, MCInst &Inst) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
Inst.addOperand(MCOperand::createImm(convertCharsToWord(Str, i)));
}
}
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
MIB.addImm(convertCharsToWord(Str, i));
}
}
void addStringImm(const StringRef &Str, IRBuilder<> &B,
std::vector<Value *> &Args) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add a vector element for the 32-bits of chars or padding.
Args.push_back(B.getInt32(convertCharsToWord(Str, i)));
}
}
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex) {
return getSPIRVStringOperand(MI, StartIndex);
}
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB) {
const auto Bitwidth = Imm.getBitWidth();
if (Bitwidth == 1)
return; // Already handled
else if (Bitwidth <= 32) {
MIB.addImm(Imm.getZExtValue());
// Asm Printer needs this info to print floating-type correctly
if (Bitwidth == 16)
MIB.getInstr()->setAsmPrinterFlag(SPIRV::ASM_PRINTER_WIDTH16);
return;
} else if (Bitwidth <= 64) {
uint64_t FullImm = Imm.getZExtValue();
uint32_t LowBits = FullImm & 0xffffffff;
uint32_t HighBits = (FullImm >> 32) & 0xffffffff;
MIB.addImm(LowBits).addImm(HighBits);
return;
}
report_fatal_error("Unsupported constant bitwidth");
}
void buildOpName(Register Target, const StringRef &Name,
MachineIRBuilder &MIRBuilder) {
if (!Name.empty()) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpName).addUse(Target);
addStringImm(Name, MIB);
}
}
void buildOpName(Register Target, const StringRef &Name, MachineInstr &I,
const SPIRVInstrInfo &TII) {
if (!Name.empty()) {
auto MIB =
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpName))
.addUse(Target);
addStringImm(Name, MIB);
}
}
static void finishBuildOpDecorate(MachineInstrBuilder &MIB,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm) {
if (!StrImm.empty())
addStringImm(StrImm, MIB);
for (const auto &DecArg : DecArgs)
MIB.addImm(DecArg);
}
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
MachineBasicBlock &MBB = *I.getParent();
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpDecorate))
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
const MDNode *GVarMD) {
for (unsigned I = 0, E = GVarMD->getNumOperands(); I != E; ++I) {
auto *OpMD = dyn_cast<MDNode>(GVarMD->getOperand(I));
if (!OpMD)
report_fatal_error("Invalid decoration");
if (OpMD->getNumOperands() == 0)
report_fatal_error("Expect operand(s) of the decoration");
ConstantInt *DecorationId =
mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(0));
if (!DecorationId)
report_fatal_error("Expect SPIR-V <Decoration> operand to be the first "
"element of the decoration");
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(DecorationId->getZExtValue()));
for (unsigned OpI = 1, OpE = OpMD->getNumOperands(); OpI != OpE; ++OpI) {
if (ConstantInt *OpV =
mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(OpI)))
MIB.addImm(static_cast<uint32_t>(OpV->getZExtValue()));
else if (MDString *OpV = dyn_cast<MDString>(OpMD->getOperand(OpI)))
addStringImm(OpV->getString(), MIB);
else
report_fatal_error("Unexpected operand of the decoration");
}
}
}
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I) {
MachineFunction *MF = I.getParent()->getParent();
MachineBasicBlock *MBB = &MF->front();
MachineBasicBlock::iterator It = MBB->SkipPHIsAndLabels(MBB->begin()),
E = MBB->end();
bool IsHeader = false;
unsigned Opcode;
for (; It != E && It != I; ++It) {
Opcode = It->getOpcode();
if (Opcode == SPIRV::OpFunction || Opcode == SPIRV::OpFunctionParameter) {
IsHeader = true;
} else if (IsHeader &&
!(Opcode == SPIRV::ASSIGN_TYPE || Opcode == SPIRV::OpLabel)) {
++It;
break;
}
}
return It;
}
MachineBasicBlock::iterator getInsertPtValidEnd(MachineBasicBlock *MBB) {
MachineBasicBlock::iterator I = MBB->end();
if (I == MBB->begin())
return I;
--I;
while (I->isTerminator() || I->isDebugValue()) {
if (I == MBB->begin())
break;
--I;
}
return I;
}
SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI) {
switch (AddrSpace) {
case 0:
return SPIRV::StorageClass::Function;
case 1:
return SPIRV::StorageClass::CrossWorkgroup;
case 2:
return SPIRV::StorageClass::UniformConstant;
case 3:
return SPIRV::StorageClass::Workgroup;
case 4:
return SPIRV::StorageClass::Generic;
case 5:
return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
? SPIRV::StorageClass::DeviceOnlyINTEL
: SPIRV::StorageClass::CrossWorkgroup;
case 6:
return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
? SPIRV::StorageClass::HostOnlyINTEL
: SPIRV::StorageClass::CrossWorkgroup;
case 7:
return SPIRV::StorageClass::Input;
case 8:
return SPIRV::StorageClass::Output;
case 9:
return SPIRV::StorageClass::CodeSectionINTEL;
case 10:
return SPIRV::StorageClass::Private;
default:
report_fatal_error("Unknown address space");
}
}
SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::StorageBuffer:
case SPIRV::StorageClass::Uniform:
return SPIRV::MemorySemantics::UniformMemory;
case SPIRV::StorageClass::Workgroup:
return SPIRV::MemorySemantics::WorkgroupMemory;
case SPIRV::StorageClass::CrossWorkgroup:
return SPIRV::MemorySemantics::CrossWorkgroupMemory;
case SPIRV::StorageClass::AtomicCounter:
return SPIRV::MemorySemantics::AtomicCounterMemory;
case SPIRV::StorageClass::Image:
return SPIRV::MemorySemantics::ImageMemory;
default:
return SPIRV::MemorySemantics::None;
}
}
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord) {
switch (Ord) {
case AtomicOrdering::Acquire:
return SPIRV::MemorySemantics::Acquire;
case AtomicOrdering::Release:
return SPIRV::MemorySemantics::Release;
case AtomicOrdering::AcquireRelease:
return SPIRV::MemorySemantics::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return SPIRV::MemorySemantics::SequentiallyConsistent;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::NotAtomic:
return SPIRV::MemorySemantics::None;
}
llvm_unreachable(nullptr);
}
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id) {
// Named by
// https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_scope_id.
// We don't need aliases for Invocation and CrossDevice, as we already have
// them covered by "singlethread" and "" strings respectively (see
// implementation of LLVMContext::LLVMContext()).
static const llvm::SyncScope::ID SubGroup =
Ctx.getOrInsertSyncScopeID("subgroup");
static const llvm::SyncScope::ID WorkGroup =
Ctx.getOrInsertSyncScopeID("workgroup");
static const llvm::SyncScope::ID Device =
Ctx.getOrInsertSyncScopeID("device");
if (Id == llvm::SyncScope::SingleThread)
return SPIRV::Scope::Invocation;
else if (Id == llvm::SyncScope::System)
return SPIRV::Scope::CrossDevice;
else if (Id == SubGroup)
return SPIRV::Scope::Subgroup;
else if (Id == WorkGroup)
return SPIRV::Scope::Workgroup;
else if (Id == Device)
return SPIRV::Scope::Device;
return SPIRV::Scope::CrossDevice;
}
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
const MachineRegisterInfo *MRI) {
MachineInstr *MI = MRI->getVRegDef(ConstReg);
MachineInstr *ConstInstr =
MI->getOpcode() == SPIRV::G_TRUNC || MI->getOpcode() == SPIRV::G_ZEXT
? MRI->getVRegDef(MI->getOperand(1).getReg())
: MI;
if (auto *GI = dyn_cast<GIntrinsic>(ConstInstr)) {
if (GI->is(Intrinsic::spv_track_constant)) {
ConstReg = ConstInstr->getOperand(2).getReg();
return MRI->getVRegDef(ConstReg);
}
} else if (ConstInstr->getOpcode() == SPIRV::ASSIGN_TYPE) {
ConstReg = ConstInstr->getOperand(1).getReg();
return MRI->getVRegDef(ConstReg);
} else if (ConstInstr->getOpcode() == TargetOpcode::G_CONSTANT ||
ConstInstr->getOpcode() == TargetOpcode::G_FCONSTANT) {
ConstReg = ConstInstr->getOperand(0).getReg();
return ConstInstr;
}
return MRI->getVRegDef(ConstReg);
}
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI) {
const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI);
assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT);
return MI->getOperand(1).getCImm()->getValue().getZExtValue();
}
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID) {
if (const auto *GI = dyn_cast<GIntrinsic>(&MI))
return GI->is(IntrinsicID);
return false;
}
Type *getMDOperandAsType(const MDNode *N, unsigned I) {
Type *ElementTy = cast<ValueAsMetadata>(N->getOperand(I))->getType();
return toTypedPointer(ElementTy);
}
// The set of names is borrowed from the SPIR-V translator.
// TODO: may be implemented in SPIRVBuiltins.td.
static bool isPipeOrAddressSpaceCastBI(const StringRef MangledName) {
return MangledName == "write_pipe_2" || MangledName == "read_pipe_2" ||
MangledName == "write_pipe_2_bl" || MangledName == "read_pipe_2_bl" ||
MangledName == "write_pipe_4" || MangledName == "read_pipe_4" ||
MangledName == "reserve_write_pipe" ||
MangledName == "reserve_read_pipe" ||
MangledName == "commit_write_pipe" ||
MangledName == "commit_read_pipe" ||
MangledName == "work_group_reserve_write_pipe" ||
MangledName == "work_group_reserve_read_pipe" ||
MangledName == "work_group_commit_write_pipe" ||
MangledName == "work_group_commit_read_pipe" ||
MangledName == "get_pipe_num_packets_ro" ||
MangledName == "get_pipe_max_packets_ro" ||
MangledName == "get_pipe_num_packets_wo" ||
MangledName == "get_pipe_max_packets_wo" ||
MangledName == "sub_group_reserve_write_pipe" ||
MangledName == "sub_group_reserve_read_pipe" ||
MangledName == "sub_group_commit_write_pipe" ||
MangledName == "sub_group_commit_read_pipe" ||
MangledName == "to_global" || MangledName == "to_local" ||
MangledName == "to_private";
}
static bool isEnqueueKernelBI(const StringRef MangledName) {
return MangledName == "__enqueue_kernel_basic" ||
MangledName == "__enqueue_kernel_basic_events" ||
MangledName == "__enqueue_kernel_varargs" ||
MangledName == "__enqueue_kernel_events_varargs";
}
static bool isKernelQueryBI(const StringRef MangledName) {
return MangledName == "__get_kernel_work_group_size_impl" ||
MangledName == "__get_kernel_sub_group_count_for_ndrange_impl" ||
MangledName == "__get_kernel_max_sub_group_size_for_ndrange_impl" ||
MangledName == "__get_kernel_preferred_work_group_size_multiple_impl";
}
static bool isNonMangledOCLBuiltin(StringRef Name) {
if (!Name.starts_with("__"))
return false;
return isEnqueueKernelBI(Name) || isKernelQueryBI(Name) ||
isPipeOrAddressSpaceCastBI(Name.drop_front(2)) ||
Name == "__translate_sampler_initializer";
}
std::string getOclOrSpirvBuiltinDemangledName(StringRef Name) {
bool IsNonMangledOCL = isNonMangledOCLBuiltin(Name);
bool IsNonMangledSPIRV = Name.starts_with("__spirv_");
bool IsNonMangledHLSL = Name.starts_with("__hlsl_");
bool IsMangled = Name.starts_with("_Z");
// Otherwise use simple demangling to return the function name.
if (IsNonMangledOCL || IsNonMangledSPIRV || IsNonMangledHLSL || !IsMangled)
return Name.str();
// Try to use the itanium demangler.
if (char *DemangledName = itaniumDemangle(Name.data())) {
std::string Result = DemangledName;
free(DemangledName);
return Result;
}
// Autocheck C++, maybe need to do explicit check of the source language.
// OpenCL C++ built-ins are declared in cl namespace.
// TODO: consider using 'St' abbriviation for cl namespace mangling.
// Similar to ::std:: in C++.
size_t Start, Len = 0;
size_t DemangledNameLenStart = 2;
if (Name.starts_with("_ZN")) {
// Skip CV and ref qualifiers.
size_t NameSpaceStart = Name.find_first_not_of("rVKRO", 3);
// All built-ins are in the ::cl:: namespace.
if (Name.substr(NameSpaceStart, 11) != "2cl7__spirv")
return std::string();
DemangledNameLenStart = NameSpaceStart + 11;
}
Start = Name.find_first_not_of("0123456789", DemangledNameLenStart);
Name.substr(DemangledNameLenStart, Start - DemangledNameLenStart)
.getAsInteger(10, Len);
return Name.substr(Start, Len).str();
}
bool hasBuiltinTypePrefix(StringRef Name) {
if (Name.starts_with("opencl.") || Name.starts_with("ocl_") ||
Name.starts_with("spirv."))
return true;
return false;
}
bool isSpecialOpaqueType(const Type *Ty) {
if (const TargetExtType *ExtTy = dyn_cast<TargetExtType>(Ty))
return isTypedPointerWrapper(ExtTy)
? false
: hasBuiltinTypePrefix(ExtTy->getName());
return false;
}
bool isEntryPoint(const Function &F) {
// OpenCL handling: any function with the SPIR_KERNEL
// calling convention will be a potential entry point.
if (F.getCallingConv() == CallingConv::SPIR_KERNEL)
return true;
// HLSL handling: special attribute are emitted from the
// front-end.
if (F.getFnAttribute("hlsl.shader").isValid())
return true;
return false;
}
Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx) {
TypeName.consume_front("atomic_");
if (TypeName.consume_front("void"))
return Type::getVoidTy(Ctx);
else if (TypeName.consume_front("bool") || TypeName.consume_front("_Bool"))
return Type::getIntNTy(Ctx, 1);
else if (TypeName.consume_front("char") ||
TypeName.consume_front("signed char") ||
TypeName.consume_front("unsigned char") ||
TypeName.consume_front("uchar"))
return Type::getInt8Ty(Ctx);
else if (TypeName.consume_front("short") ||
TypeName.consume_front("signed short") ||
TypeName.consume_front("unsigned short") ||
TypeName.consume_front("ushort"))
return Type::getInt16Ty(Ctx);
else if (TypeName.consume_front("int") ||
TypeName.consume_front("signed int") ||
TypeName.consume_front("unsigned int") ||
TypeName.consume_front("uint"))
return Type::getInt32Ty(Ctx);
else if (TypeName.consume_front("long") ||
TypeName.consume_front("signed long") ||
TypeName.consume_front("unsigned long") ||
TypeName.consume_front("ulong"))
return Type::getInt64Ty(Ctx);
else if (TypeName.consume_front("half") ||
TypeName.consume_front("_Float16") ||
TypeName.consume_front("__fp16"))
return Type::getHalfTy(Ctx);
else if (TypeName.consume_front("float"))
return Type::getFloatTy(Ctx);
else if (TypeName.consume_front("double"))
return Type::getDoubleTy(Ctx);
// Unable to recognize SPIRV type name
return nullptr;
}
std::unordered_set<BasicBlock *>
PartialOrderingVisitor::getReachableFrom(BasicBlock *Start) {
std::queue<BasicBlock *> ToVisit;
ToVisit.push(Start);
std::unordered_set<BasicBlock *> Output;
while (ToVisit.size() != 0) {
BasicBlock *BB = ToVisit.front();
ToVisit.pop();
if (Output.count(BB) != 0)
continue;
Output.insert(BB);
for (BasicBlock *Successor : successors(BB)) {
if (DT.dominates(Successor, BB))
continue;
ToVisit.push(Successor);
}
}
return Output;
}
bool PartialOrderingVisitor::CanBeVisited(BasicBlock *BB) const {
for (BasicBlock *P : predecessors(BB)) {
// Ignore back-edges.
if (DT.dominates(BB, P))
continue;
// One of the predecessor hasn't been visited. Not ready yet.
if (BlockToOrder.count(P) == 0)
return false;
// If the block is a loop exit, the loop must be finished before
// we can continue.
Loop *L = LI.getLoopFor(P);
if (L == nullptr || L->contains(BB))
continue;
// SPIR-V requires a single back-edge. And the backend first
// step transforms loops into the simplified format. If we have
// more than 1 back-edge, something is wrong.
assert(L->getNumBackEdges() <= 1);
// If the loop has no latch, loop's rank won't matter, so we can
// proceed.
BasicBlock *Latch = L->getLoopLatch();
assert(Latch);
if (Latch == nullptr)
continue;
// The latch is not ready yet, let's wait.
if (BlockToOrder.count(Latch) == 0)
return false;
}
return true;
}
size_t PartialOrderingVisitor::GetNodeRank(BasicBlock *BB) const {
auto It = BlockToOrder.find(BB);
if (It != BlockToOrder.end())
return It->second.Rank;
size_t result = 0;
for (BasicBlock *P : predecessors(BB)) {
// Ignore back-edges.
if (DT.dominates(BB, P))
continue;
auto Iterator = BlockToOrder.end();
Loop *L = LI.getLoopFor(P);
BasicBlock *Latch = L ? L->getLoopLatch() : nullptr;
// If the predecessor is either outside a loop, or part of
// the same loop, simply take its rank + 1.
if (L == nullptr || L->contains(BB) || Latch == nullptr) {
Iterator = BlockToOrder.find(P);
} else {
// Otherwise, take the loop's rank (highest rank in the loop) as base.
// Since loops have a single latch, highest rank is easy to find.
// If the loop has no latch, then it doesn't matter.
Iterator = BlockToOrder.find(Latch);
}
assert(Iterator != BlockToOrder.end());
result = std::max(result, Iterator->second.Rank + 1);
}
return result;
}
size_t PartialOrderingVisitor::visit(BasicBlock *BB, size_t Unused) {
ToVisit.push(BB);
Queued.insert(BB);
size_t QueueIndex = 0;
while (ToVisit.size() != 0) {
BasicBlock *BB = ToVisit.front();
ToVisit.pop();
if (!CanBeVisited(BB)) {
ToVisit.push(BB);
if (QueueIndex >= ToVisit.size())
llvm::report_fatal_error(
"No valid candidate in the queue. Is the graph reducible?");
QueueIndex++;
continue;
}
QueueIndex = 0;
size_t Rank = GetNodeRank(BB);
OrderInfo Info = {Rank, BlockToOrder.size()};
BlockToOrder.emplace(BB, Info);
for (BasicBlock *S : successors(BB)) {
if (Queued.count(S) != 0)
continue;
ToVisit.push(S);
Queued.insert(S);
}
}
return 0;
}
PartialOrderingVisitor::PartialOrderingVisitor(Function &F) {
DT.recalculate(F);
LI = LoopInfo(DT);
visit(&*F.begin(), 0);
Order.reserve(F.size());
for (auto &[BB, Info] : BlockToOrder)
Order.emplace_back(BB);
std::sort(Order.begin(), Order.end(), [&](const auto &LHS, const auto &RHS) {
return compare(LHS, RHS);
});
}
bool PartialOrderingVisitor::compare(const BasicBlock *LHS,
const BasicBlock *RHS) const {
const OrderInfo &InfoLHS = BlockToOrder.at(const_cast<BasicBlock *>(LHS));
const OrderInfo &InfoRHS = BlockToOrder.at(const_cast<BasicBlock *>(RHS));
if (InfoLHS.Rank != InfoRHS.Rank)
return InfoLHS.Rank < InfoRHS.Rank;
return InfoLHS.TraversalIndex < InfoRHS.TraversalIndex;
}
void PartialOrderingVisitor::partialOrderVisit(
BasicBlock &Start, std::function<bool(BasicBlock *)> Op) {
std::unordered_set<BasicBlock *> Reachable = getReachableFrom(&Start);
assert(BlockToOrder.count(&Start) != 0);
// Skipping blocks with a rank inferior to |Start|'s rank.
auto It = Order.begin();
while (It != Order.end() && *It != &Start)
++It;
// This is unexpected. Worst case |Start| is the last block,
// so It should point to the last block, not past-end.
assert(It != Order.end());
// By default, there is no rank limit. Setting it to the maximum value.
std::optional<size_t> EndRank = std::nullopt;
for (; It != Order.end(); ++It) {
if (EndRank.has_value() && BlockToOrder[*It].Rank > *EndRank)
break;
if (Reachable.count(*It) == 0) {
continue;
}
if (!Op(*It)) {
EndRank = BlockToOrder[*It].Rank;
}
}
}
bool sortBlocks(Function &F) {
if (F.size() == 0)
return false;
bool Modified = false;
std::vector<BasicBlock *> Order;
Order.reserve(F.size());
ReversePostOrderTraversal<Function *> RPOT(&F);
llvm::append_range(Order, RPOT);
assert(&*F.begin() == Order[0]);
BasicBlock *LastBlock = &*F.begin();
for (BasicBlock *BB : Order) {
if (BB != LastBlock && &*LastBlock->getNextNode() != BB) {
Modified = true;
BB->moveAfter(LastBlock);
}
LastBlock = BB;
}
return Modified;
}
MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg) {
MachineInstr *MaybeDef = MRI.getVRegDef(Reg);
if (MaybeDef && MaybeDef->getOpcode() == SPIRV::ASSIGN_TYPE)
MaybeDef = MRI.getVRegDef(MaybeDef->getOperand(1).getReg());
return MaybeDef;
}
bool getVacantFunctionName(Module &M, std::string &Name) {
// It's a bit of paranoia, but still we don't want to have even a chance that
// the loop will work for too long.
constexpr unsigned MaxIters = 1024;
for (unsigned I = 0; I < MaxIters; ++I) {
std::string OrdName = Name + Twine(I).str();
if (!M.getFunction(OrdName)) {
Name = OrdName;
return true;
}
}
return false;
}
// Assign SPIR-V type to the register. If the register has no valid assigned
// class, set register LLT type and class according to the SPIR-V type.
void setRegClassType(Register Reg, SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
MachineRegisterInfo *MRI, const MachineFunction &MF,
bool Force) {
GR->assignSPIRVTypeToVReg(SpvType, Reg, MF);
if (!MRI->getRegClassOrNull(Reg) || Force) {
MRI->setRegClass(Reg, GR->getRegClass(SpvType));
MRI->setType(Reg, GR->getRegType(SpvType));
}
}
// Create a SPIR-V type, assign SPIR-V type to the register. If the register has
// no valid assigned class, set register LLT type and class according to the
// SPIR-V type.
void setRegClassType(Register Reg, const Type *Ty, SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual,
bool EmitIR, bool Force) {
setRegClassType(Reg,
GR->getOrCreateSPIRVType(Ty, MIRBuilder, AccessQual, EmitIR),
GR, MIRBuilder.getMRI(), MIRBuilder.getMF(), Force);
}
// Create a virtual register and assign SPIR-V type to the register. Set
// register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
MachineRegisterInfo *MRI,
const MachineFunction &MF) {
Register Reg = MRI->createVirtualRegister(GR->getRegClass(SpvType));
MRI->setType(Reg, GR->getRegType(SpvType));
GR->assignSPIRVTypeToVReg(SpvType, Reg, MF);
return Reg;
}
// Create a virtual register and assign SPIR-V type to the register. Set
// register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder) {
return createVirtualRegister(SpvType, GR, MIRBuilder.getMRI(),
MIRBuilder.getMF());
}
// Create a SPIR-V type, virtual register and assign SPIR-V type to the
// register. Set register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(
const Type *Ty, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual, bool EmitIR) {
return createVirtualRegister(
GR->getOrCreateSPIRVType(Ty, MIRBuilder, AccessQual, EmitIR), GR,
MIRBuilder);
}
CallInst *buildIntrWithMD(Intrinsic::ID IntrID, ArrayRef<Type *> Types,
Value *Arg, Value *Arg2, ArrayRef<Constant *> Imms,
IRBuilder<> &B) {
SmallVector<Value *, 4> Args;
Args.push_back(Arg2);
Args.push_back(buildMD(Arg));
llvm::append_range(Args, Imms);
return B.CreateIntrinsic(IntrID, {Types}, Args);
}
// Return true if there is an opaque pointer type nested in the argument.
bool isNestedPointer(const Type *Ty) {
if (Ty->isPtrOrPtrVectorTy())
return true;
if (const FunctionType *RefTy = dyn_cast<FunctionType>(Ty)) {
if (isNestedPointer(RefTy->getReturnType()))
return true;
for (const Type *ArgTy : RefTy->params())
if (isNestedPointer(ArgTy))
return true;
return false;
}
if (const ArrayType *RefTy = dyn_cast<ArrayType>(Ty))
return isNestedPointer(RefTy->getElementType());
return false;
}
bool isSpvIntrinsic(const Value *Arg) {
if (const auto *II = dyn_cast<IntrinsicInst>(Arg))
if (Function *F = II->getCalledFunction())
if (F->getName().starts_with("llvm.spv."))
return true;
return false;
}
// Function to create continued instructions for SPV_INTEL_long_composites
// extension
SmallVector<MachineInstr *, 4>
createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode,
unsigned MinWC, unsigned ContinuedOpcode,
ArrayRef<Register> Args, Register ReturnRegister,
Register TypeID) {
SmallVector<MachineInstr *, 4> Instructions;
constexpr unsigned MaxWordCount = UINT16_MAX;
const size_t NumElements = Args.size();
size_t MaxNumElements = MaxWordCount - MinWC;
size_t SPIRVStructNumElements = NumElements;
if (NumElements > MaxNumElements) {
// Do adjustments for continued instructions which always had only one
// minumum word count.
SPIRVStructNumElements = MaxNumElements;
MaxNumElements = MaxWordCount - 1;
}
auto MIB =
MIRBuilder.buildInstr(Opcode).addDef(ReturnRegister).addUse(TypeID);
for (size_t I = 0; I < SPIRVStructNumElements; ++I)
MIB.addUse(Args[I]);
Instructions.push_back(MIB.getInstr());
for (size_t I = SPIRVStructNumElements; I < NumElements;
I += MaxNumElements) {
auto MIB = MIRBuilder.buildInstr(ContinuedOpcode);
for (size_t J = I; J < std::min(I + MaxNumElements, NumElements); ++J)
MIB.addUse(Args[J]);
Instructions.push_back(MIB.getInstr());
}
return Instructions;
}
SmallVector<unsigned, 1> getSpirvLoopControlOperandsFromLoopMetadata(Loop *L) {
unsigned LC = SPIRV::LoopControl::None;
// Currently used only to store PartialCount value. Later when other
// LoopControls are added - this map should be sorted before making
// them loop_merge operands to satisfy 3.23. Loop Control requirements.
std::vector<std::pair<unsigned, unsigned>> MaskToValueMap;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) {
LC |= SPIRV::LoopControl::DontUnroll;
} else {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable") ||
getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) {
LC |= SPIRV::LoopControl::Unroll;
}
std::optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
if (Count && Count != 1) {
LC |= SPIRV::LoopControl::PartialCount;
MaskToValueMap.emplace_back(
std::make_pair(SPIRV::LoopControl::PartialCount, *Count));
}
}
SmallVector<unsigned, 1> Result = {LC};
for (auto &[Mask, Val] : MaskToValueMap)
Result.push_back(Val);
return Result;
}
const std::set<unsigned> &getTypeFoldingSupportedOpcodes() {
// clang-format off
static const std::set<unsigned> TypeFoldingSupportingOpcs = {
TargetOpcode::G_ADD,
TargetOpcode::G_FADD,
TargetOpcode::G_STRICT_FADD,
TargetOpcode::G_SUB,
TargetOpcode::G_FSUB,
TargetOpcode::G_STRICT_FSUB,
TargetOpcode::G_MUL,
TargetOpcode::G_FMUL,
TargetOpcode::G_STRICT_FMUL,
TargetOpcode::G_SDIV,
TargetOpcode::G_UDIV,
TargetOpcode::G_FDIV,
TargetOpcode::G_STRICT_FDIV,
TargetOpcode::G_SREM,
TargetOpcode::G_UREM,
TargetOpcode::G_FREM,
TargetOpcode::G_STRICT_FREM,
TargetOpcode::G_FNEG,
TargetOpcode::G_CONSTANT,
TargetOpcode::G_FCONSTANT,
TargetOpcode::G_AND,
TargetOpcode::G_OR,
TargetOpcode::G_XOR,
TargetOpcode::G_SHL,
TargetOpcode::G_ASHR,
TargetOpcode::G_LSHR,
TargetOpcode::G_SELECT,
TargetOpcode::G_EXTRACT_VECTOR_ELT,
};
// clang-format on
return TypeFoldingSupportingOpcs;
}
bool isTypeFoldingSupported(unsigned Opcode) {
return getTypeFoldingSupportedOpcodes().count(Opcode) > 0;
}
// Traversing [g]MIR accounting for pseudo-instructions.
MachineInstr *passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI) {
return (Def->getOpcode() == SPIRV::ASSIGN_TYPE ||
Def->getOpcode() == TargetOpcode::COPY)
? MRI->getVRegDef(Def->getOperand(1).getReg())
: Def;
}
MachineInstr *getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
if (MachineInstr *Def = MRI->getVRegDef(MO.getReg()))
return passCopy(Def, MRI);
return nullptr;
}
MachineInstr *getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
if (MachineInstr *Def = getDef(MO, MRI)) {
if (Def->getOpcode() == TargetOpcode::G_CONSTANT ||
Def->getOpcode() == SPIRV::OpConstantI)
return Def;
}
return nullptr;
}
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
if (MachineInstr *Def = getImm(MO, MRI)) {
if (Def->getOpcode() == SPIRV::OpConstantI)
return Def->getOperand(2).getImm();
if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
return Def->getOperand(1).getCImm()->getZExtValue();
}
llvm_unreachable("Unexpected integer constant pattern");
}
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI,
const MachineInstr *ResType) {
return foldImm(ResType->getOperand(2), MRI);
}
} // namespace llvm