| //===-- Lower/Support/Utils.cpp -- utilities --------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Lower/Support/Utils.h" |
| |
| #include "flang/Common/indirection.h" |
| #include "flang/Lower/IterationSpace.h" |
| #include "flang/Semantics/tools.h" |
| #include <cstdint> |
| #include <optional> |
| #include <type_traits> |
| |
| namespace Fortran::lower { |
| // Fortran::evaluate::Expr are functional values organized like an AST. A |
| // Fortran::evaluate::Expr is meant to be moved and cloned. Using the front end |
| // tools can often cause copies and extra wrapper classes to be added to any |
| // Fortran::evaluate::Expr. These values should not be assumed or relied upon to |
| // have an *object* identity. They are deeply recursive, irregular structures |
| // built from a large number of classes which do not use inheritance and |
| // necessitate a large volume of boilerplate code as a result. |
| // |
| // Contrastingly, LLVM data structures make ubiquitous assumptions about an |
| // object's identity via pointers to the object. An object's location in memory |
| // is thus very often an identifying relation. |
| |
| // This class defines a hash computation of a Fortran::evaluate::Expr tree value |
| // so it can be used with llvm::DenseMap. The Fortran::evaluate::Expr need not |
| // have the same address. |
| class HashEvaluateExpr { |
| public: |
| // A Se::Symbol is the only part of an Fortran::evaluate::Expr with an |
| // identity property. |
| static unsigned getHashValue(const Fortran::semantics::Symbol &x) { |
| return static_cast<unsigned>(reinterpret_cast<std::intptr_t>(&x)); |
| } |
| template <typename A, bool COPY> |
| static unsigned getHashValue(const Fortran::common::Indirection<A, COPY> &x) { |
| return getHashValue(x.value()); |
| } |
| template <typename A> |
| static unsigned getHashValue(const std::optional<A> &x) { |
| if (x.has_value()) |
| return getHashValue(x.value()); |
| return 0u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::Subscript &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return getHashValue(v); }, x.u); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::Triplet &x) { |
| return getHashValue(x.lower()) - getHashValue(x.upper()) * 5u - |
| getHashValue(x.stride()) * 11u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::Component &x) { |
| return getHashValue(x.base()) * 83u - getHashValue(x.GetLastSymbol()); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::ArrayRef &x) { |
| unsigned subs = 1u; |
| for (const Fortran::evaluate::Subscript &v : x.subscript()) |
| subs -= getHashValue(v); |
| return getHashValue(x.base()) * 89u - subs; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::CoarrayRef &x) { |
| unsigned subs = 1u; |
| for (const Fortran::evaluate::Subscript &v : x.subscript()) |
| subs -= getHashValue(v); |
| unsigned cosubs = 3u; |
| for (const Fortran::evaluate::Expr<Fortran::evaluate::SubscriptInteger> &v : |
| x.cosubscript()) |
| cosubs -= getHashValue(v); |
| unsigned syms = 7u; |
| for (const Fortran::evaluate::SymbolRef &v : x.base()) |
| syms += getHashValue(v); |
| return syms * 97u - subs - cosubs + getHashValue(x.stat()) + 257u + |
| getHashValue(x.team()); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::NamedEntity &x) { |
| if (x.IsSymbol()) |
| return getHashValue(x.GetFirstSymbol()) * 11u; |
| return getHashValue(x.GetComponent()) * 13u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::DataRef &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return getHashValue(v); }, x.u); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::ComplexPart &x) { |
| return getHashValue(x.complex()) - static_cast<unsigned>(x.part()); |
| } |
| template <Fortran::common::TypeCategory TC1, int KIND, |
| Fortran::common::TypeCategory TC2> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, TC2> |
| &x) { |
| return getHashValue(x.left()) - (static_cast<unsigned>(TC1) + 2u) - |
| (static_cast<unsigned>(KIND) + 5u); |
| } |
| template <int KIND> |
| static unsigned |
| getHashValue(const Fortran::evaluate::ComplexComponent<KIND> &x) { |
| return getHashValue(x.left()) - |
| (static_cast<unsigned>(x.isImaginaryPart) + 1u) * 3u; |
| } |
| template <typename T> |
| static unsigned getHashValue(const Fortran::evaluate::Parentheses<T> &x) { |
| return getHashValue(x.left()) * 17u; |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Negate<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return getHashValue(x.left()) - (static_cast<unsigned>(TC) + 5u) - |
| (static_cast<unsigned>(KIND) + 7u); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Add<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return (getHashValue(x.left()) + getHashValue(x.right())) * 23u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Subtract<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 19u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Multiply<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return (getHashValue(x.left()) + getHashValue(x.right())) * 29u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Divide<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 31u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 37u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND); |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { |
| return (getHashValue(x.left()) + getHashValue(x.right())) * 41u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND) + |
| static_cast<unsigned>(x.ordering) * 7u; |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
| &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 43u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND); |
| } |
| template <int KIND> |
| static unsigned |
| getHashValue(const Fortran::evaluate::ComplexConstructor<KIND> &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 47u + |
| static_cast<unsigned>(KIND); |
| } |
| template <int KIND> |
| static unsigned getHashValue(const Fortran::evaluate::Concat<KIND> &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 53u + |
| static_cast<unsigned>(KIND); |
| } |
| template <int KIND> |
| static unsigned getHashValue(const Fortran::evaluate::SetLength<KIND> &x) { |
| return (getHashValue(x.left()) - getHashValue(x.right())) * 59u + |
| static_cast<unsigned>(KIND); |
| } |
| static unsigned getHashValue(const Fortran::semantics::SymbolRef &sym) { |
| return getHashValue(sym.get()); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::Substring &x) { |
| return 61u * |
| Fortran::common::visit( |
| [&](const auto &p) { return getHashValue(p); }, x.parent()) - |
| getHashValue(x.lower()) - (getHashValue(x.lower()) + 1u); |
| } |
| static unsigned |
| getHashValue(const Fortran::evaluate::StaticDataObject::Pointer &x) { |
| return llvm::hash_value(x->name()); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::SpecificIntrinsic &x) { |
| return llvm::hash_value(x.name); |
| } |
| template <typename A> |
| static unsigned getHashValue(const Fortran::evaluate::Constant<A> &x) { |
| // FIXME: Should hash the content. |
| return 103u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::ActualArgument &x) { |
| if (const Fortran::evaluate::Symbol *sym = x.GetAssumedTypeDummy()) |
| return getHashValue(*sym); |
| return getHashValue(*x.UnwrapExpr()); |
| } |
| static unsigned |
| getHashValue(const Fortran::evaluate::ProcedureDesignator &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return getHashValue(v); }, x.u); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::ProcedureRef &x) { |
| unsigned args = 13u; |
| for (const std::optional<Fortran::evaluate::ActualArgument> &v : |
| x.arguments()) |
| args -= getHashValue(v); |
| return getHashValue(x.proc()) * 101u - args; |
| } |
| template <typename A> |
| static unsigned |
| getHashValue(const Fortran::evaluate::ArrayConstructor<A> &x) { |
| // FIXME: hash the contents. |
| return 127u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::ImpliedDoIndex &x) { |
| return llvm::hash_value(toStringRef(x.name).str()) * 131u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::TypeParamInquiry &x) { |
| return getHashValue(x.base()) * 137u - getHashValue(x.parameter()) * 3u; |
| } |
| static unsigned getHashValue(const Fortran::evaluate::DescriptorInquiry &x) { |
| return getHashValue(x.base()) * 139u - |
| static_cast<unsigned>(x.field()) * 13u + |
| static_cast<unsigned>(x.dimension()); |
| } |
| static unsigned |
| getHashValue(const Fortran::evaluate::StructureConstructor &x) { |
| // FIXME: hash the contents. |
| return 149u; |
| } |
| template <int KIND> |
| static unsigned getHashValue(const Fortran::evaluate::Not<KIND> &x) { |
| return getHashValue(x.left()) * 61u + static_cast<unsigned>(KIND); |
| } |
| template <int KIND> |
| static unsigned |
| getHashValue(const Fortran::evaluate::LogicalOperation<KIND> &x) { |
| unsigned result = getHashValue(x.left()) + getHashValue(x.right()); |
| return result * 67u + static_cast<unsigned>(x.logicalOperator) * 5u; |
| } |
| template <Fortran::common::TypeCategory TC, int KIND> |
| static unsigned getHashValue( |
| const Fortran::evaluate::Relational<Fortran::evaluate::Type<TC, KIND>> |
| &x) { |
| return (getHashValue(x.left()) + getHashValue(x.right())) * 71u + |
| static_cast<unsigned>(TC) + static_cast<unsigned>(KIND) + |
| static_cast<unsigned>(x.opr) * 11u; |
| } |
| template <typename A> |
| static unsigned getHashValue(const Fortran::evaluate::Expr<A> &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return getHashValue(v); }, x.u); |
| } |
| static unsigned getHashValue( |
| const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return getHashValue(v); }, x.u); |
| } |
| template <typename A> |
| static unsigned getHashValue(const Fortran::evaluate::Designator<A> &x) { |
| return Fortran::common::visit( |
| [&](const auto &v) { return getHashValue(v); }, x.u); |
| } |
| template <int BITS> |
| static unsigned |
| getHashValue(const Fortran::evaluate::value::Integer<BITS> &x) { |
| return static_cast<unsigned>(x.ToSInt()); |
| } |
| static unsigned getHashValue(const Fortran::evaluate::NullPointer &x) { |
| return ~179u; |
| } |
| }; |
| |
| // Define the is equals test for using Fortran::evaluate::Expr values with |
| // llvm::DenseMap. |
| class IsEqualEvaluateExpr { |
| public: |
| // A Se::Symbol is the only part of an Fortran::evaluate::Expr with an |
| // identity property. |
| static bool isEqual(const Fortran::semantics::Symbol &x, |
| const Fortran::semantics::Symbol &y) { |
| return isEqual(&x, &y); |
| } |
| static bool isEqual(const Fortran::semantics::Symbol *x, |
| const Fortran::semantics::Symbol *y) { |
| return x == y; |
| } |
| template <typename A, bool COPY> |
| static bool isEqual(const Fortran::common::Indirection<A, COPY> &x, |
| const Fortran::common::Indirection<A, COPY> &y) { |
| return isEqual(x.value(), y.value()); |
| } |
| template <typename A> |
| static bool isEqual(const std::optional<A> &x, const std::optional<A> &y) { |
| if (x.has_value() && y.has_value()) |
| return isEqual(x.value(), y.value()); |
| return !x.has_value() && !y.has_value(); |
| } |
| template <typename A> |
| static bool isEqual(const std::vector<A> &x, const std::vector<A> &y) { |
| if (x.size() != y.size()) |
| return false; |
| const std::size_t size = x.size(); |
| for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) |
| if (!isEqual(x[i], y[i])) |
| return false; |
| return true; |
| } |
| static bool isEqual(const Fortran::evaluate::Subscript &x, |
| const Fortran::evaluate::Subscript &y) { |
| return Fortran::common::visit( |
| [&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u); |
| } |
| static bool isEqual(const Fortran::evaluate::Triplet &x, |
| const Fortran::evaluate::Triplet &y) { |
| return isEqual(x.lower(), y.lower()) && isEqual(x.upper(), y.upper()) && |
| isEqual(x.stride(), y.stride()); |
| } |
| static bool isEqual(const Fortran::evaluate::Component &x, |
| const Fortran::evaluate::Component &y) { |
| return isEqual(x.base(), y.base()) && |
| isEqual(x.GetLastSymbol(), y.GetLastSymbol()); |
| } |
| static bool isEqual(const Fortran::evaluate::ArrayRef &x, |
| const Fortran::evaluate::ArrayRef &y) { |
| return isEqual(x.base(), y.base()) && isEqual(x.subscript(), y.subscript()); |
| } |
| static bool isEqual(const Fortran::evaluate::CoarrayRef &x, |
| const Fortran::evaluate::CoarrayRef &y) { |
| return isEqual(x.base(), y.base()) && |
| isEqual(x.subscript(), y.subscript()) && |
| isEqual(x.cosubscript(), y.cosubscript()) && |
| isEqual(x.stat(), y.stat()) && isEqual(x.team(), y.team()); |
| } |
| static bool isEqual(const Fortran::evaluate::NamedEntity &x, |
| const Fortran::evaluate::NamedEntity &y) { |
| if (x.IsSymbol() && y.IsSymbol()) |
| return isEqual(x.GetFirstSymbol(), y.GetFirstSymbol()); |
| return !x.IsSymbol() && !y.IsSymbol() && |
| isEqual(x.GetComponent(), y.GetComponent()); |
| } |
| static bool isEqual(const Fortran::evaluate::DataRef &x, |
| const Fortran::evaluate::DataRef &y) { |
| return Fortran::common::visit( |
| [&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u); |
| } |
| static bool isEqual(const Fortran::evaluate::ComplexPart &x, |
| const Fortran::evaluate::ComplexPart &y) { |
| return isEqual(x.complex(), y.complex()) && x.part() == y.part(); |
| } |
| template <typename A, Fortran::common::TypeCategory TC2> |
| static bool isEqual(const Fortran::evaluate::Convert<A, TC2> &x, |
| const Fortran::evaluate::Convert<A, TC2> &y) { |
| return isEqual(x.left(), y.left()); |
| } |
| template <int KIND> |
| static bool isEqual(const Fortran::evaluate::ComplexComponent<KIND> &x, |
| const Fortran::evaluate::ComplexComponent<KIND> &y) { |
| return isEqual(x.left(), y.left()) && |
| x.isImaginaryPart == y.isImaginaryPart; |
| } |
| template <typename T> |
| static bool isEqual(const Fortran::evaluate::Parentheses<T> &x, |
| const Fortran::evaluate::Parentheses<T> &y) { |
| return isEqual(x.left(), y.left()); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Negate<A> &x, |
| const Fortran::evaluate::Negate<A> &y) { |
| return isEqual(x.left(), y.left()); |
| } |
| template <typename A> |
| static bool isBinaryEqual(const A &x, const A &y) { |
| return isEqual(x.left(), y.left()) && isEqual(x.right(), y.right()); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Add<A> &x, |
| const Fortran::evaluate::Add<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Subtract<A> &x, |
| const Fortran::evaluate::Subtract<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Multiply<A> &x, |
| const Fortran::evaluate::Multiply<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Divide<A> &x, |
| const Fortran::evaluate::Divide<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Power<A> &x, |
| const Fortran::evaluate::Power<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Extremum<A> &x, |
| const Fortran::evaluate::Extremum<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::RealToIntPower<A> &x, |
| const Fortran::evaluate::RealToIntPower<A> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <int KIND> |
| static bool isEqual(const Fortran::evaluate::ComplexConstructor<KIND> &x, |
| const Fortran::evaluate::ComplexConstructor<KIND> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <int KIND> |
| static bool isEqual(const Fortran::evaluate::Concat<KIND> &x, |
| const Fortran::evaluate::Concat<KIND> &y) { |
| return isBinaryEqual(x, y); |
| } |
| template <int KIND> |
| static bool isEqual(const Fortran::evaluate::SetLength<KIND> &x, |
| const Fortran::evaluate::SetLength<KIND> &y) { |
| return isBinaryEqual(x, y); |
| } |
| static bool isEqual(const Fortran::semantics::SymbolRef &x, |
| const Fortran::semantics::SymbolRef &y) { |
| return isEqual(x.get(), y.get()); |
| } |
| static bool isEqual(const Fortran::evaluate::Substring &x, |
| const Fortran::evaluate::Substring &y) { |
| return Fortran::common::visit( |
| [&](const auto &p, const auto &q) { return isEqual(p, q); }, |
| x.parent(), y.parent()) && |
| isEqual(x.lower(), y.lower()) && isEqual(x.upper(), y.upper()); |
| } |
| static bool isEqual(const Fortran::evaluate::StaticDataObject::Pointer &x, |
| const Fortran::evaluate::StaticDataObject::Pointer &y) { |
| return x->name() == y->name(); |
| } |
| static bool isEqual(const Fortran::evaluate::SpecificIntrinsic &x, |
| const Fortran::evaluate::SpecificIntrinsic &y) { |
| return x.name == y.name; |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Constant<A> &x, |
| const Fortran::evaluate::Constant<A> &y) { |
| return x == y; |
| } |
| static bool isEqual(const Fortran::evaluate::ActualArgument &x, |
| const Fortran::evaluate::ActualArgument &y) { |
| if (const Fortran::evaluate::Symbol *xs = x.GetAssumedTypeDummy()) { |
| if (const Fortran::evaluate::Symbol *ys = y.GetAssumedTypeDummy()) |
| return isEqual(*xs, *ys); |
| return false; |
| } |
| return !y.GetAssumedTypeDummy() && |
| isEqual(*x.UnwrapExpr(), *y.UnwrapExpr()); |
| } |
| static bool isEqual(const Fortran::evaluate::ProcedureDesignator &x, |
| const Fortran::evaluate::ProcedureDesignator &y) { |
| return Fortran::common::visit( |
| [&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u); |
| } |
| static bool isEqual(const Fortran::evaluate::ProcedureRef &x, |
| const Fortran::evaluate::ProcedureRef &y) { |
| return isEqual(x.proc(), y.proc()) && isEqual(x.arguments(), y.arguments()); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::ArrayConstructor<A> &x, |
| const Fortran::evaluate::ArrayConstructor<A> &y) { |
| llvm::report_fatal_error("not implemented"); |
| } |
| static bool isEqual(const Fortran::evaluate::ImpliedDoIndex &x, |
| const Fortran::evaluate::ImpliedDoIndex &y) { |
| return toStringRef(x.name) == toStringRef(y.name); |
| } |
| static bool isEqual(const Fortran::evaluate::TypeParamInquiry &x, |
| const Fortran::evaluate::TypeParamInquiry &y) { |
| return isEqual(x.base(), y.base()) && isEqual(x.parameter(), y.parameter()); |
| } |
| static bool isEqual(const Fortran::evaluate::DescriptorInquiry &x, |
| const Fortran::evaluate::DescriptorInquiry &y) { |
| return isEqual(x.base(), y.base()) && x.field() == y.field() && |
| x.dimension() == y.dimension(); |
| } |
| static bool isEqual(const Fortran::evaluate::StructureConstructor &x, |
| const Fortran::evaluate::StructureConstructor &y) { |
| const auto &xValues = x.values(); |
| const auto &yValues = y.values(); |
| if (xValues.size() != yValues.size()) |
| return false; |
| if (x.derivedTypeSpec() != y.derivedTypeSpec()) |
| return false; |
| for (const auto &[xSymbol, xValue] : xValues) { |
| auto yIt = yValues.find(xSymbol); |
| // This should probably never happen, since the derived type |
| // should be the same. |
| if (yIt == yValues.end()) |
| return false; |
| if (!isEqual(xValue, yIt->second)) |
| return false; |
| } |
| return true; |
| } |
| template <int KIND> |
| static bool isEqual(const Fortran::evaluate::Not<KIND> &x, |
| const Fortran::evaluate::Not<KIND> &y) { |
| return isEqual(x.left(), y.left()); |
| } |
| template <int KIND> |
| static bool isEqual(const Fortran::evaluate::LogicalOperation<KIND> &x, |
| const Fortran::evaluate::LogicalOperation<KIND> &y) { |
| return isEqual(x.left(), y.left()) && isEqual(x.right(), y.right()); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Relational<A> &x, |
| const Fortran::evaluate::Relational<A> &y) { |
| return isEqual(x.left(), y.left()) && isEqual(x.right(), y.right()); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Expr<A> &x, |
| const Fortran::evaluate::Expr<A> &y) { |
| return Fortran::common::visit( |
| [&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u); |
| } |
| static bool |
| isEqual(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x, |
| const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &y) { |
| return Fortran::common::visit( |
| [&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u); |
| } |
| template <typename A> |
| static bool isEqual(const Fortran::evaluate::Designator<A> &x, |
| const Fortran::evaluate::Designator<A> &y) { |
| return Fortran::common::visit( |
| [&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u); |
| } |
| template <int BITS> |
| static bool isEqual(const Fortran::evaluate::value::Integer<BITS> &x, |
| const Fortran::evaluate::value::Integer<BITS> &y) { |
| return x == y; |
| } |
| static bool isEqual(const Fortran::evaluate::NullPointer &x, |
| const Fortran::evaluate::NullPointer &y) { |
| return true; |
| } |
| template <typename A, typename B, |
| std::enable_if_t<!std::is_same_v<A, B>, bool> = true> |
| static bool isEqual(const A &, const B &) { |
| return false; |
| } |
| }; |
| |
| unsigned getHashValue(const Fortran::lower::SomeExpr *x) { |
| return HashEvaluateExpr::getHashValue(*x); |
| } |
| |
| unsigned getHashValue(const Fortran::lower::ExplicitIterSpace::ArrayBases &x) { |
| return Fortran::common::visit( |
| [&](const auto *p) { return HashEvaluateExpr::getHashValue(*p); }, x); |
| } |
| |
| bool isEqual(const Fortran::lower::SomeExpr *x, |
| const Fortran::lower::SomeExpr *y) { |
| const auto *empty = |
| llvm::DenseMapInfo<const Fortran::lower::SomeExpr *>::getEmptyKey(); |
| const auto *tombstone = |
| llvm::DenseMapInfo<const Fortran::lower::SomeExpr *>::getTombstoneKey(); |
| if (x == empty || y == empty || x == tombstone || y == tombstone) |
| return x == y; |
| return x == y || IsEqualEvaluateExpr::isEqual(*x, *y); |
| } |
| |
| bool isEqual(const Fortran::lower::ExplicitIterSpace::ArrayBases &x, |
| const Fortran::lower::ExplicitIterSpace::ArrayBases &y) { |
| return Fortran::common::visit( |
| Fortran::common::visitors{ |
| // Fortran::semantics::Symbol * are the exception here. These pointers |
| // have identity; if two Symbol * values are the same (different) then |
| // they are the same (different) logical symbol. |
| [&](Fortran::lower::FrontEndSymbol p, |
| Fortran::lower::FrontEndSymbol q) { return p == q; }, |
| [&](const auto *p, const auto *q) { |
| if constexpr (std::is_same_v<decltype(p), decltype(q)>) { |
| return IsEqualEvaluateExpr::isEqual(*p, *q); |
| } else { |
| // Different subtree types are never equal. |
| return false; |
| } |
| }}, |
| x, y); |
| } |
| } // end namespace Fortran::lower |