blob: 37882de7b3046b6b2def61445e63b2307ce12406 [file] [log] [blame]
//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "NVPTXISelLowering.h"
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "NVPTX.h"
#include "NVPTXSubtarget.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXUtilities.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGenTypes/MachineValueType.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/FPEnv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/NVPTXAddrSpace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <optional>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#define DEBUG_TYPE "nvptx-lower"
using namespace llvm;
static cl::opt<bool> sched4reg(
"nvptx-sched4reg",
cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
static cl::opt<unsigned> FMAContractLevelOpt(
"nvptx-fma-level", cl::Hidden,
cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
" 1: do it 2: do it aggressively"),
cl::init(2));
static cl::opt<int> UsePrecDivF32(
"nvptx-prec-divf32", cl::Hidden,
cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
" IEEE Compliant F32 div.rnd if available."),
cl::init(2));
static cl::opt<bool> UsePrecSqrtF32(
"nvptx-prec-sqrtf32", cl::Hidden,
cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
cl::init(true));
/// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it
/// does NOT use lg2.approx for log2, so this is disabled by default.
static cl::opt<bool> UseApproxLog2F32(
"nvptx-approx-log2f32",
cl::desc("NVPTX Specific: whether to use lg2.approx for log2"),
cl::init(false));
static cl::opt<bool> ForceMinByValParamAlign(
"nvptx-force-min-byval-param-align", cl::Hidden,
cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval"
" params of device functions."),
cl::init(false));
int NVPTXTargetLowering::getDivF32Level() const {
if (UsePrecDivF32.getNumOccurrences() > 0) {
// If nvptx-prec-div32=N is used on the command-line, always honor it
return UsePrecDivF32;
} else {
// Otherwise, use div.approx if fast math is enabled
if (getTargetMachine().Options.UnsafeFPMath)
return 0;
else
return 2;
}
}
bool NVPTXTargetLowering::usePrecSqrtF32() const {
if (UsePrecSqrtF32.getNumOccurrences() > 0) {
// If nvptx-prec-sqrtf32 is used on the command-line, always honor it
return UsePrecSqrtF32;
} else {
// Otherwise, use sqrt.approx if fast math is enabled
return !getTargetMachine().Options.UnsafeFPMath;
}
}
bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
DenormalMode::PreserveSign;
}
static bool IsPTXVectorType(MVT VT) {
switch (VT.SimpleTy) {
default:
return false;
case MVT::v2i1:
case MVT::v4i1:
case MVT::v2i8:
case MVT::v4i8:
case MVT::v8i8: // <2 x i8x4>
case MVT::v16i8: // <4 x i8x4>
case MVT::v2i16:
case MVT::v4i16:
case MVT::v8i16: // <4 x i16x2>
case MVT::v2i32:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v4f16:
case MVT::v8f16: // <4 x f16x2>
case MVT::v2bf16:
case MVT::v4bf16:
case MVT::v8bf16: // <4 x bf16x2>
case MVT::v2f32:
case MVT::v4f32:
case MVT::v2f64:
return true;
}
}
static bool Is16bitsType(MVT VT) {
return (VT.SimpleTy == MVT::f16 || VT.SimpleTy == MVT::bf16 ||
VT.SimpleTy == MVT::i16);
}
// When legalizing vector loads/stores, this function is called, which does two
// things:
// 1. Determines Whether the vector is something we want to custom lower,
// std::nullopt is returned if we do not want to custom lower it.
// 2. If we do want to handle it, returns two parameters:
// - unsigned int NumElts - The number of elements in the final vector
// - EVT EltVT - The type of the elements in the final vector
static std::optional<std::pair<unsigned int, MVT>>
getVectorLoweringShape(EVT VectorEVT) {
if (!VectorEVT.isSimple())
return std::nullopt;
const MVT VectorVT = VectorEVT.getSimpleVT();
if (!VectorVT.isVector()) {
if (VectorVT == MVT::i128 || VectorVT == MVT::f128)
return {{2, MVT::i64}};
return std::nullopt;
}
const MVT EltVT = VectorVT.getVectorElementType();
const unsigned NumElts = VectorVT.getVectorNumElements();
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 stores of <2 x double> here
// but I'm leaving that as a TODO for now.
switch (VectorVT.SimpleTy) {
default:
return std::nullopt;
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f16:
case MVT::v2bf16:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f16:
case MVT::v4bf16:
case MVT::v4f32:
// This is a "native" vector type
return std::pair(NumElts, EltVT);
case MVT::v8i8: // <2 x i8x4>
case MVT::v8f16: // <4 x f16x2>
case MVT::v8bf16: // <4 x bf16x2>
case MVT::v8i16: // <4 x i16x2>
case MVT::v16i8: // <4 x i8x4>
// This can be upsized into a "native" vector type.
// Despite vectors like v8i8, v16i8, v8i16 being within the bit-limit for
// total load/store size, PTX syntax only supports v2/v4. Thus, we can't use
// vectorized loads/stores with the actual element type for i8/i16 as that
// would require v8/v16 variants that do not exist.
// In order to load/store such vectors efficiently, here in Type
// Legalization, we split the vector into word-sized chunks (v2x16/v4i8).
// Later, we will lower to PTX as vectors of b32.
// Number of elements to pack in one word.
const unsigned NPerWord = 32 / EltVT.getSizeInBits();
return std::pair(NumElts / NPerWord, MVT::getVectorVT(EltVT, NPerWord));
}
llvm_unreachable("All cases in switch should return.");
}
/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
/// into their primitive components.
/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
/// LowerCall, and LowerReturn.
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets = nullptr,
uint64_t StartingOffset = 0) {
SmallVector<EVT, 16> TempVTs;
SmallVector<uint64_t, 16> TempOffsets;
// Special case for i128 - decompose to (i64, i64)
if (Ty->isIntegerTy(128) || Ty->isFP128Ty()) {
ValueVTs.append({MVT::i64, MVT::i64});
if (Offsets)
Offsets->append({StartingOffset + 0, StartingOffset + 8});
return;
}
// Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
if (StructType *STy = dyn_cast<StructType>(Ty)) {
auto const *SL = DL.getStructLayout(STy);
auto ElementNum = 0;
for(auto *EI : STy->elements()) {
ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
StartingOffset + SL->getElementOffset(ElementNum));
++ElementNum;
}
return;
}
// Given an array type, recursively traverse the elements with custom ComputePTXValueVTs.
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Type *EltTy = ATy->getElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
for (int I : llvm::seq<int>(ATy->getNumElements()))
ComputePTXValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, StartingOffset + I * EltSize);
return;
}
ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
EVT VT = TempVTs[i];
uint64_t Off = TempOffsets[i];
// Split vectors into individual elements, except for v2f16, which
// we will pass as a single scalar.
if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
// We require power-of-2 sized vectors because
// TargetLoweringBase::getVectorTypeBreakdown() which is invoked in
// ComputePTXValueVTs() cannot currently break down non-power-of-2 sized
// vectors.
if ((Is16bitsType(EltVT.getSimpleVT())) && NumElts % 2 == 0 &&
isPowerOf2_32(NumElts)) {
// Vectors with an even number of f16 elements will be passed to
// us as an array of v2f16/v2bf16 elements. We must match this so we
// stay in sync with Ins/Outs.
switch (EltVT.getSimpleVT().SimpleTy) {
case MVT::f16:
EltVT = MVT::v2f16;
break;
case MVT::bf16:
EltVT = MVT::v2bf16;
break;
case MVT::i16:
EltVT = MVT::v2i16;
break;
default:
llvm_unreachable("Unexpected type");
}
NumElts /= 2;
} else if (EltVT.getSimpleVT() == MVT::i8 &&
((NumElts % 4 == 0 && isPowerOf2_32(NumElts)) ||
NumElts == 3)) {
// v*i8 are formally lowered as v4i8
EltVT = MVT::v4i8;
NumElts = (NumElts + 3) / 4;
} else if (EltVT.getSimpleVT() == MVT::i8 && NumElts == 2) {
// v2i8 is promoted to v2i16
NumElts = 1;
EltVT = MVT::v2i16;
}
for (unsigned j = 0; j != NumElts; ++j) {
ValueVTs.push_back(EltVT);
if (Offsets)
Offsets->push_back(Off + j * EltVT.getStoreSize());
}
} else {
ValueVTs.push_back(VT);
if (Offsets)
Offsets->push_back(Off);
}
}
}
/// PromoteScalarIntegerPTX
/// Used to make sure the arguments/returns are suitable for passing
/// and promote them to a larger size if they're not.
///
/// The promoted type is placed in \p PromoteVT if the function returns true.
static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT) {
if (VT.isScalarInteger()) {
switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
default:
llvm_unreachable(
"Promotion is not suitable for scalars of size larger than 64-bits");
case 1:
*PromotedVT = MVT::i1;
break;
case 2:
case 4:
case 8:
*PromotedVT = MVT::i8;
break;
case 16:
*PromotedVT = MVT::i16;
break;
case 32:
*PromotedVT = MVT::i32;
break;
case 64:
*PromotedVT = MVT::i64;
break;
}
return EVT(*PromotedVT) != VT;
}
return false;
}
// Check whether we can merge loads/stores of some of the pieces of a
// flattened function parameter or return value into a single vector
// load/store.
//
// The flattened parameter is represented as a list of EVTs and
// offsets, and the whole structure is aligned to ParamAlignment. This
// function determines whether we can load/store pieces of the
// parameter starting at index Idx using a single vectorized op of
// size AccessSize. If so, it returns the number of param pieces
// covered by the vector op. Otherwise, it returns 1.
static unsigned CanMergeParamLoadStoresStartingAt(
unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
// Can't vectorize if param alignment is not sufficient.
if (ParamAlignment < AccessSize)
return 1;
// Can't vectorize if offset is not aligned.
if (Offsets[Idx] & (AccessSize - 1))
return 1;
EVT EltVT = ValueVTs[Idx];
unsigned EltSize = EltVT.getStoreSize();
// Element is too large to vectorize.
if (EltSize >= AccessSize)
return 1;
unsigned NumElts = AccessSize / EltSize;
// Can't vectorize if AccessBytes if not a multiple of EltSize.
if (AccessSize != EltSize * NumElts)
return 1;
// We don't have enough elements to vectorize.
if (Idx + NumElts > ValueVTs.size())
return 1;
// PTX ISA can only deal with 2- and 4-element vector ops.
if (NumElts != 4 && NumElts != 2)
return 1;
for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
// Types do not match.
if (ValueVTs[j] != EltVT)
return 1;
// Elements are not contiguous.
if (Offsets[j] - Offsets[j - 1] != EltSize)
return 1;
}
// OK. We can vectorize ValueVTs[i..i+NumElts)
return NumElts;
}
// Flags for tracking per-element vectorization state of loads/stores
// of a flattened function parameter or return value.
enum ParamVectorizationFlags {
PVF_INNER = 0x0, // Middle elements of a vector.
PVF_FIRST = 0x1, // First element of the vector.
PVF_LAST = 0x2, // Last element of the vector.
// Scalar is effectively a 1-element vector.
PVF_SCALAR = PVF_FIRST | PVF_LAST
};
// Computes whether and how we can vectorize the loads/stores of a
// flattened function parameter or return value.
//
// The flattened parameter is represented as the list of ValueVTs and
// Offsets, and is aligned to ParamAlignment bytes. We return a vector
// of the same size as ValueVTs indicating how each piece should be
// loaded/stored (i.e. as a scalar, or as part of a vector
// load/store).
static SmallVector<ParamVectorizationFlags, 16>
VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
const SmallVectorImpl<uint64_t> &Offsets,
Align ParamAlignment, bool IsVAArg = false) {
// Set vector size to match ValueVTs and mark all elements as
// scalars by default.
SmallVector<ParamVectorizationFlags, 16> VectorInfo;
VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
if (IsVAArg)
return VectorInfo;
// Check what we can vectorize using 128/64/32-bit accesses.
for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
// Skip elements we've already processed.
assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
for (unsigned AccessSize : {16, 8, 4, 2}) {
unsigned NumElts = CanMergeParamLoadStoresStartingAt(
I, AccessSize, ValueVTs, Offsets, ParamAlignment);
// Mark vectorized elements.
switch (NumElts) {
default:
llvm_unreachable("Unexpected return value");
case 1:
// Can't vectorize using this size, try next smaller size.
continue;
case 2:
assert(I + 1 < E && "Not enough elements.");
VectorInfo[I] = PVF_FIRST;
VectorInfo[I + 1] = PVF_LAST;
I += 1;
break;
case 4:
assert(I + 3 < E && "Not enough elements.");
VectorInfo[I] = PVF_FIRST;
VectorInfo[I + 1] = PVF_INNER;
VectorInfo[I + 2] = PVF_INNER;
VectorInfo[I + 3] = PVF_LAST;
I += 3;
break;
}
// Break out of the inner loop because we've already succeeded
// using largest possible AccessSize.
break;
}
}
return VectorInfo;
}
// NVPTXTargetLowering Constructor.
NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
const NVPTXSubtarget &STI)
: TargetLowering(TM), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) {
// always lower memset, memcpy, and memmove intrinsics to load/store
// instructions, rather
// then generating calls to memset, mempcy or memmove.
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = (unsigned)0xFFFFFFFF;
MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = (unsigned) 0xFFFFFFFF;
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = (unsigned) 0xFFFFFFFF;
setBooleanContents(ZeroOrNegativeOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Jump is Expensive. Don't create extra control flow for 'and', 'or'
// condition branches.
setJumpIsExpensive(true);
// Wide divides are _very_ slow. Try to reduce the width of the divide if
// possible.
addBypassSlowDiv(64, 32);
// By default, use the Source scheduling
if (sched4reg)
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Source);
auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
LegalizeAction NoF16Action) {
bool IsOpSupported = STI.allowFP16Math();
switch (Op) {
// Several FP16 instructions are available on sm_80 only.
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMAXNUM_IEEE:
case ISD::FMINNUM_IEEE:
case ISD::FMAXIMUM:
case ISD::FMINIMUM:
IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
break;
case ISD::FEXP2:
IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70;
break;
}
setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action);
};
auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
LegalizeAction NoBF16Action) {
bool IsOpSupported = STI.hasNativeBF16Support(Op);
setOperationAction(
Op, VT, IsOpSupported ? Action : NoBF16Action);
};
auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
LegalizeAction NoI16x2Action) {
bool IsOpSupported = false;
// instructions are available on sm_90 only
switch (Op) {
case ISD::ADD:
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMIN:
case ISD::UMAX:
IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80;
break;
}
setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action);
};
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::v2i16, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::v4i8, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
addRegisterClass(MVT::f16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::v2f16, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::bf16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::v2bf16, &NVPTX::Int32RegsRegClass);
// Conversion to/from FP16/FP16x2 is always legal.
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31)
setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal);
setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
// Conversion to/from BFP16/BFP16x2 is always legal.
setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2bf16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2bf16, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2bf16, Expand);
setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand);
setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote);
if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote)
AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32);
// Conversion to/from i16/i16x2 is always legal.
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i16, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
// Custom conversions to/from v2i8.
setOperationAction(ISD::BITCAST, MVT::v2i8, Custom);
// Only logical ops can be done on v4i8 directly, others must be done
// elementwise.
setOperationAction(
{ISD::ABS, ISD::ADD, ISD::ADDC, ISD::ADDE,
ISD::BITREVERSE, ISD::CTLZ, ISD::CTPOP, ISD::CTTZ,
ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FSHL, ISD::FSHR,
ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::PARITY,
ISD::ROTL, ISD::ROTR, ISD::SADDO, ISD::SADDO_CARRY,
ISD::SADDSAT, ISD::SDIV, ISD::SDIVREM, ISD::SELECT_CC,
ISD::SETCC, ISD::SHL, ISD::SINT_TO_FP, ISD::SMAX,
ISD::SMIN, ISD::SMULO, ISD::SMUL_LOHI, ISD::SRA,
ISD::SREM, ISD::SRL, ISD::SSHLSAT, ISD::SSUBO,
ISD::SSUBO_CARRY, ISD::SSUBSAT, ISD::SUB, ISD::SUBC,
ISD::SUBE, ISD::UADDO, ISD::UADDO_CARRY, ISD::UADDSAT,
ISD::UDIV, ISD::UDIVREM, ISD::UINT_TO_FP, ISD::UMAX,
ISD::UMIN, ISD::UMULO, ISD::UMUL_LOHI, ISD::UREM,
ISD::USHLSAT, ISD::USUBO, ISD::USUBO_CARRY, ISD::VSELECT,
ISD::USUBSAT},
MVT::v4i8, Expand);
// Operations not directly supported by NVPTX.
for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, MVT::v4i8,
MVT::i32, MVT::i64}) {
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::BR_CC, VT, Expand);
}
// Some SIGN_EXTEND_INREG can be done using cvt instruction.
// For others we will expand to a SHL/SRA pair.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
setOperationAction({ISD::ROTL, ISD::ROTR},
{MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
Expand);
if (STI.hasHWROT32()) {
setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Legal);
setOperationAction({ISD::ROTL, ISD::ROTR, ISD::FSHL, ISD::FSHR}, MVT::i64,
Custom);
}
setOperationAction(ISD::BSWAP, MVT::i16, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
// We want to legalize constant related memmove and memcopy
// intrinsics.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
// Turn FP extload into load/fpextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8bf16, Expand);
// Turn FP truncstore into trunc + store.
// FIXME: vector types should also be expanded
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PTX does not support load / store predicate registers
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setTruncStoreAction(VT, MVT::i1, Expand);
}
setCondCodeAction({ISD::SETNE, ISD::SETEQ, ISD::SETUGE, ISD::SETULE,
ISD::SETUGT, ISD::SETULT, ISD::SETGT, ISD::SETLT,
ISD::SETGE, ISD::SETLE},
MVT::i1, Expand);
// expand extload of vector of integers.
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i16,
MVT::v2i8, Expand);
setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
// This is legal in NVPTX
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
setOperationAction(ISD::DYNAMIC_STACKALLOC, {MVT::i32, MVT::i64}, Custom);
setOperationAction({ISD::STACKRESTORE, ISD::STACKSAVE}, MVT::Other, Custom);
// TRAP can be lowered to PTX trap
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// DEBUGTRAP can be lowered to PTX brkpt
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// Register custom handling for vector loads/stores
for (MVT VT : MVT::fixedlen_vector_valuetypes())
if (IsPTXVectorType(VT))
setOperationAction({ISD::LOAD, ISD::STORE, ISD::INTRINSIC_W_CHAIN}, VT,
Custom);
setOperationAction({ISD::LOAD, ISD::STORE, ISD::INTRINSIC_W_CHAIN},
{MVT::i128, MVT::f128}, Custom);
// Support varargs.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Custom handling for i8 intrinsics
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
setOperationAction({ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX},
{MVT::i16, MVT::i32, MVT::i64}, Legal);
setOperationAction({ISD::CTPOP, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i16,
Promote);
setOperationAction({ISD::CTPOP, ISD::CTLZ}, MVT::i32, Legal);
setOperationAction({ISD::CTPOP, ISD::CTLZ}, MVT::i64, Custom);
setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand);
setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand);
setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom);
setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom);
// Other arithmetic and logic ops are unsupported.
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SRA, ISD::SRL, ISD::MULHS,
ISD::MULHU, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::SETCC},
MVT::v2i16, Expand);
setOperationAction(ISD::ADDC, MVT::i32, Legal);
setOperationAction(ISD::ADDE, MVT::i32, Legal);
setOperationAction(ISD::SUBC, MVT::i32, Legal);
setOperationAction(ISD::SUBE, MVT::i32, Legal);
if (STI.getPTXVersion() >= 43) {
setOperationAction(ISD::ADDC, MVT::i64, Legal);
setOperationAction(ISD::ADDE, MVT::i64, Legal);
setOperationAction(ISD::SUBC, MVT::i64, Legal);
setOperationAction(ISD::SUBE, MVT::i64, Legal);
}
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
setOperationAction(ISD::CTTZ, MVT::v2i16, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
// PTX does not directly support SELP of i1, so promote to i32 first
setOperationAction(ISD::SELECT, MVT::i1, Custom);
// PTX cannot multiply two i64s in a single instruction.
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
// We have some custom DAG combine patterns for these nodes
setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::EXTRACT_VECTOR_ELT, ISD::FADD,
ISD::MUL, ISD::SHL, ISD::SREM, ISD::UREM, ISD::VSELECT,
ISD::BUILD_VECTOR, ISD::ADDRSPACECAST});
// setcc for f16x2 and bf16x2 needs special handling to prevent
// legalizer's attempt to scalarize it due to v2i1 not being legal.
if (STI.allowFP16Math() || STI.hasBF16Math())
setTargetDAGCombine(ISD::SETCC);
// Promote fp16 arithmetic if fp16 hardware isn't available or the
// user passed --nvptx-no-fp16-math. The flag is useful because,
// although sm_53+ GPUs have some sort of FP16 support in
// hardware, only sm_53 and sm_60 have full implementation. Others
// only have token amount of hardware and are likely to run faster
// by using fp32 units instead.
for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
setFP16OperationAction(Op, MVT::f16, Legal, Promote);
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
// bf16 must be promoted to f32.
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
if (getOperationAction(Op, MVT::bf16) == Promote)
AddPromotedToType(Op, MVT::bf16, MVT::f32);
}
// On SM80, we select add/mul/sub as fma to avoid promotion to float
for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) {
for (const auto &VT : {MVT::bf16, MVT::v2bf16}) {
if (!STI.hasNativeBF16Support(Op) && STI.hasNativeBF16Support(ISD::FMA)) {
setOperationAction(Op, VT, Custom);
}
}
}
// f16/f16x2 neg was introduced in PTX 60, SM_53.
const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
STI.getPTXVersion() >= 60 &&
STI.allowFP16Math();
for (const auto &VT : {MVT::f16, MVT::v2f16})
setOperationAction(ISD::FNEG, VT,
IsFP16FP16x2NegAvailable ? Legal : Expand);
setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand);
setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand);
// (would be) Library functions.
// These map to conversion instructions for scalar FP types.
for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
ISD::FROUNDEVEN, ISD::FTRUNC}) {
setOperationAction(Op, MVT::f16, Legal);
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setOperationAction(Op, MVT::v2f16, Expand);
setOperationAction(Op, MVT::v2bf16, Expand);
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
if (getOperationAction(Op, MVT::bf16) == Promote)
AddPromotedToType(Op, MVT::bf16, MVT::f32);
}
if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) {
setOperationAction(ISD::BF16_TO_FP, MVT::f32, Expand);
}
if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
setOperationAction(ISD::FP_EXTEND, VT, Custom);
setOperationAction(ISD::FP_ROUND, VT, Custom);
}
}
// sm_80 only has conversions between f32 and bf16. Custom lower all other
// bf16 conversions.
if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
setOperationAction(
{ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
VT, Custom);
}
setOperationAction(
{ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
MVT::bf16, Custom);
}
setOperationAction(ISD::FROUND, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
setOperationAction(ISD::FROUND, MVT::v2bf16, Expand);
setOperationAction(ISD::FROUND, MVT::f32, Custom);
setOperationAction(ISD::FROUND, MVT::f64, Custom);
setOperationAction(ISD::FROUND, MVT::bf16, Promote);
AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32);
// 'Expand' implements FCOPYSIGN without calling an external library.
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v2bf16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
// These map to corresponding instructions for f32/f64. f16 must be
// promoted to f32. v2f16 is expanded to f16, which is then promoted
// to f32.
for (const auto &Op :
{ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS}) {
setOperationAction(Op, MVT::f16, Promote);
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setOperationAction(Op, MVT::v2f16, Expand);
setOperationAction(Op, MVT::v2bf16, Expand);
setOperationAction(Op, MVT::bf16, Promote);
AddPromotedToType(Op, MVT::bf16, MVT::f32);
}
setOperationAction(ISD::FREM, {MVT::f32, MVT::f64}, Custom);
setOperationAction(ISD::FABS, {MVT::f32, MVT::f64}, Legal);
if (STI.getPTXVersion() >= 65) {
setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote);
setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand);
} else {
setOperationAction(ISD::FABS, MVT::f16, Promote);
setOperationAction(ISD::FABS, MVT::v2f16, Expand);
}
setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand);
setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote);
if (getOperationAction(ISD::FABS, MVT::bf16) == Promote)
AddPromotedToType(ISD::FABS, MVT::bf16, MVT::f32);
for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) {
setOperationAction(Op, MVT::f32, Legal);
setOperationAction(Op, MVT::f64, Legal);
setFP16OperationAction(Op, MVT::f16, Legal, Promote);
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
if (getOperationAction(Op, MVT::bf16) == Promote)
AddPromotedToType(Op, MVT::bf16, MVT::f32);
}
bool SupportsF32MinMaxNaN =
STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand);
setFP16OperationAction(Op, MVT::f16, Legal, Expand);
setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
setBF16OperationAction(Op, MVT::bf16, Legal, Expand);
setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
}
// Custom lowering for inline asm with 128-bit operands
setOperationAction(ISD::CopyToReg, MVT::i128, Custom);
setOperationAction(ISD::CopyFromReg, MVT::i128, Custom);
// FEXP2 support:
// - f32
// - f16/f16x2 (sm_70+, PTX 7.0+)
// - bf16/bf16x2 (sm_90+, PTX 7.8+)
// When f16/bf16 types aren't supported, they are promoted/expanded to f32.
setOperationAction(ISD::FEXP2, MVT::f32, Legal);
setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote);
setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand);
setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote);
setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand);
// FLOG2 supports f32 only
// f16/bf16 types aren't supported, but they are promoted/expanded to f32.
if (UseApproxLog2F32) {
setOperationAction(ISD::FLOG2, MVT::f32, Legal);
setOperationPromotedToType(ISD::FLOG2, MVT::f16, MVT::f32);
setOperationPromotedToType(ISD::FLOG2, MVT::bf16, MVT::f32);
setOperationAction(ISD::FLOG2, {MVT::v2f16, MVT::v2bf16}, Expand);
}
setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, {MVT::i32, MVT::i64}, Expand);
// No FPOW or FREM in PTX.
// Now deduce the information based on the above mentioned
// actions
computeRegisterProperties(STI.getRegisterInfo());
// PTX support for 16-bit CAS is emulated. Only use 32+
setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits());
setMaxAtomicSizeInBitsSupported(64);
setMaxDivRemBitWidthSupported(64);
// Custom lowering for tcgen05.ld vector operands
setOperationAction(ISD::INTRINSIC_W_CHAIN,
{MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
MVT::v32i32, MVT::v64i32, MVT::v128i32},
Custom);
// Custom lowering for tcgen05.st vector operands
setOperationAction(ISD::INTRINSIC_VOID,
{MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
MVT::v32i32, MVT::v64i32, MVT::v128i32},
Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
}
const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define MAKE_CASE(V) \
case V: \
return #V;
switch ((NVPTXISD::NodeType)Opcode) {
case NVPTXISD::FIRST_NUMBER:
break;
MAKE_CASE(NVPTXISD::CALL)
MAKE_CASE(NVPTXISD::RET_GLUE)
MAKE_CASE(NVPTXISD::LOAD_PARAM)
MAKE_CASE(NVPTXISD::Wrapper)
MAKE_CASE(NVPTXISD::DeclareParam)
MAKE_CASE(NVPTXISD::DeclareScalarParam)
MAKE_CASE(NVPTXISD::DeclareRet)
MAKE_CASE(NVPTXISD::DeclareScalarRet)
MAKE_CASE(NVPTXISD::DeclareRetParam)
MAKE_CASE(NVPTXISD::PrintCall)
MAKE_CASE(NVPTXISD::PrintConvergentCall)
MAKE_CASE(NVPTXISD::PrintCallUni)
MAKE_CASE(NVPTXISD::PrintConvergentCallUni)
MAKE_CASE(NVPTXISD::LoadParam)
MAKE_CASE(NVPTXISD::LoadParamV2)
MAKE_CASE(NVPTXISD::LoadParamV4)
MAKE_CASE(NVPTXISD::StoreParam)
MAKE_CASE(NVPTXISD::StoreParamV2)
MAKE_CASE(NVPTXISD::StoreParamV4)
MAKE_CASE(NVPTXISD::StoreParamS32)
MAKE_CASE(NVPTXISD::StoreParamU32)
MAKE_CASE(NVPTXISD::CallArgBegin)
MAKE_CASE(NVPTXISD::CallArg)
MAKE_CASE(NVPTXISD::LastCallArg)
MAKE_CASE(NVPTXISD::CallArgEnd)
MAKE_CASE(NVPTXISD::CallVoid)
MAKE_CASE(NVPTXISD::CallVal)
MAKE_CASE(NVPTXISD::CallSymbol)
MAKE_CASE(NVPTXISD::Prototype)
MAKE_CASE(NVPTXISD::MoveParam)
MAKE_CASE(NVPTXISD::StoreRetval)
MAKE_CASE(NVPTXISD::StoreRetvalV2)
MAKE_CASE(NVPTXISD::StoreRetvalV4)
MAKE_CASE(NVPTXISD::PseudoUseParam)
MAKE_CASE(NVPTXISD::UNPACK_VECTOR)
MAKE_CASE(NVPTXISD::BUILD_VECTOR)
MAKE_CASE(NVPTXISD::RETURN)
MAKE_CASE(NVPTXISD::CallSeqBegin)
MAKE_CASE(NVPTXISD::CallSeqEnd)
MAKE_CASE(NVPTXISD::CallPrototype)
MAKE_CASE(NVPTXISD::ProxyReg)
MAKE_CASE(NVPTXISD::LoadV2)
MAKE_CASE(NVPTXISD::LoadV4)
MAKE_CASE(NVPTXISD::LDUV2)
MAKE_CASE(NVPTXISD::LDUV4)
MAKE_CASE(NVPTXISD::StoreV2)
MAKE_CASE(NVPTXISD::StoreV4)
MAKE_CASE(NVPTXISD::FSHL_CLAMP)
MAKE_CASE(NVPTXISD::FSHR_CLAMP)
MAKE_CASE(NVPTXISD::BFE)
MAKE_CASE(NVPTXISD::BFI)
MAKE_CASE(NVPTXISD::PRMT)
MAKE_CASE(NVPTXISD::FCOPYSIGN)
MAKE_CASE(NVPTXISD::DYNAMIC_STACKALLOC)
MAKE_CASE(NVPTXISD::STACKRESTORE)
MAKE_CASE(NVPTXISD::STACKSAVE)
MAKE_CASE(NVPTXISD::SETP_F16X2)
MAKE_CASE(NVPTXISD::SETP_BF16X2)
MAKE_CASE(NVPTXISD::Dummy)
MAKE_CASE(NVPTXISD::MUL_WIDE_SIGNED)
MAKE_CASE(NVPTXISD::MUL_WIDE_UNSIGNED)
MAKE_CASE(NVPTXISD::BrxEnd)
MAKE_CASE(NVPTXISD::BrxItem)
MAKE_CASE(NVPTXISD::BrxStart)
}
return nullptr;
#undef MAKE_CASE
}
TargetLoweringBase::LegalizeTypeAction
NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
VT.getScalarType() == MVT::i1)
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &ExtraSteps,
bool &UseOneConst,
bool Reciprocal) const {
if (!(Enabled == ReciprocalEstimate::Enabled ||
(Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
return SDValue();
if (ExtraSteps == ReciprocalEstimate::Unspecified)
ExtraSteps = 0;
SDLoc DL(Operand);
EVT VT = Operand.getValueType();
bool Ftz = useF32FTZ(DAG.getMachineFunction());
auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(IID, DL, MVT::i32), Operand);
};
// The sqrt and rsqrt refinement processes assume we always start out with an
// approximation of the rsqrt. Therefore, if we're going to do any refinement
// (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
// any refinement, we must return a regular sqrt.
if (Reciprocal || ExtraSteps > 0) {
if (VT == MVT::f32)
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
: Intrinsic::nvvm_rsqrt_approx_f);
else if (VT == MVT::f64)
return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
else
return SDValue();
} else {
if (VT == MVT::f32)
return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
: Intrinsic::nvvm_sqrt_approx_f);
else {
// There's no sqrt.approx.f64 instruction, so we emit
// reciprocal(rsqrt(x)). This is faster than
// select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
// x * rsqrt(x).)
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
}
}
}
SDValue
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
}
std::string NVPTXTargetLowering::getPrototype(
const DataLayout &DL, Type *retTy, const ArgListTy &Args,
const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
std::optional<std::pair<unsigned, const APInt &>> VAInfo,
const CallBase &CB, unsigned UniqueCallSite) const {
auto PtrVT = getPointerTy(DL);
std::string Prototype;
raw_string_ostream O(Prototype);
O << "prototype_" << UniqueCallSite << " : .callprototype ";
if (retTy->getTypeID() == Type::VoidTyID) {
O << "()";
} else {
O << "(";
if ((retTy->isFloatingPointTy() || retTy->isIntegerTy()) &&
!shouldPassAsArray(retTy)) {
unsigned size = 0;
if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
size = ITy->getBitWidth();
} else {
assert(retTy->isFloatingPointTy() &&
"Floating point type expected here");
size = retTy->getPrimitiveSizeInBits();
}
// PTX ABI requires all scalar return values to be at least 32
// bits in size. fp16 normally uses .b16 as its storage type in
// PTX, so its size must be adjusted here, too.
size = promoteScalarArgumentSize(size);
O << ".param .b" << size << " _";
} else if (isa<PointerType>(retTy)) {
O << ".param .b" << PtrVT.getSizeInBits() << " _";
} else if (shouldPassAsArray(retTy)) {
O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
<< " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
} else {
llvm_unreachable("Unknown return type");
}
O << ") ";
}
O << "_ (";
bool first = true;
unsigned NumArgs = VAInfo ? VAInfo->first : Args.size();
for (unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) {
Type *Ty = Args[i].Ty;
if (!first) {
O << ", ";
}
first = false;
if (!Outs[OIdx].Flags.isByVal()) {
if (shouldPassAsArray(Ty)) {
Align ParamAlign =
getArgumentAlignment(&CB, Ty, i + AttributeList::FirstArgIndex, DL);
O << ".param .align " << ParamAlign.value() << " .b8 ";
O << "_";
O << "[" << DL.getTypeAllocSize(Ty) << "]";
// update the index for Outs
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, DL, Ty, vtparts);
if (unsigned len = vtparts.size())
OIdx += len - 1;
continue;
}
// i8 types in IR will be i16 types in SDAG
assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
(getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
"type mismatch between callee prototype and arguments");
// scalar type
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
sz = promoteScalarArgumentSize(sz);
} else if (isa<PointerType>(Ty)) {
sz = PtrVT.getSizeInBits();
} else {
sz = Ty->getPrimitiveSizeInBits();
}
O << ".param .b" << sz << " ";
O << "_";
continue;
}
// Indirect calls need strict ABI alignment so we disable optimizations by
// not providing a function to optimize.
Type *ETy = Args[i].IndirectType;
Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
Align ParamByValAlign =
getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL);
O << ".param .align " << ParamByValAlign.value() << " .b8 ";
O << "_";
O << "[" << Outs[OIdx].Flags.getByValSize() << "]";
}
if (VAInfo)
O << (first ? "" : ",") << " .param .align " << VAInfo->second
<< " .b8 _[]\n";
O << ")";
if (shouldEmitPTXNoReturn(&CB, *nvTM))
O << " .noreturn";
O << ";";
return Prototype;
}
Align NVPTXTargetLowering::getFunctionArgumentAlignment(
const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const {
return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL));
}
Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty,
unsigned Idx,
const DataLayout &DL) const {
if (!CB) {
// CallSite is zero, fallback to ABI type alignment
return DL.getABITypeAlign(Ty);
}
const Function *DirectCallee = CB->getCalledFunction();
if (!DirectCallee) {
// We don't have a direct function symbol, but that may be because of
// constant cast instructions in the call.
// With bitcast'd call targets, the instruction will be the call
if (const auto *CI = dyn_cast<CallInst>(CB)) {
// Check if we have call alignment metadata
if (MaybeAlign StackAlign = getAlign(*CI, Idx))
return StackAlign.value();
}
DirectCallee = getMaybeBitcastedCallee(CB);
}
// Check for function alignment information if we found that the
// ultimate target is a Function
if (DirectCallee)
return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL);
// Call is indirect, fall back to the ABI type alignment
return DL.getABITypeAlign(Ty);
}
static bool adjustElementType(EVT &ElementType) {
switch (ElementType.getSimpleVT().SimpleTy) {
default:
return false;
case MVT::f16:
case MVT::bf16:
ElementType = MVT::i16;
return true;
case MVT::f32:
case MVT::v2f16:
case MVT::v2bf16:
ElementType = MVT::i32;
return true;
case MVT::f64:
ElementType = MVT::i64;
return true;
}
}
// Use byte-store when the param address of the argument value is unaligned.
// This may happen when the return value is a field of a packed structure.
//
// This is called in LowerCall() when passing the param values.
static SDValue LowerUnalignedStoreParam(SelectionDAG &DAG, SDValue Chain,
uint64_t Offset, EVT ElementType,
SDValue StVal, SDValue &InGlue,
unsigned ArgID, const SDLoc &dl) {
// Bit logic only works on integer types
if (adjustElementType(ElementType))
StVal = DAG.getNode(ISD::BITCAST, dl, ElementType, StVal);
// Store each byte
SDVTList StoreVTs = DAG.getVTList(MVT::Other, MVT::Glue);
for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
// Shift the byte to the last byte position
SDValue ShiftVal = DAG.getNode(ISD::SRL, dl, ElementType, StVal,
DAG.getConstant(i * 8, dl, MVT::i32));
SDValue StoreOperands[] = {Chain, DAG.getConstant(ArgID, dl, MVT::i32),
DAG.getConstant(Offset + i, dl, MVT::i32),
ShiftVal, InGlue};
// Trunc store only the last byte by using
// st.param.b8
// The register type can be larger than b8.
Chain = DAG.getMemIntrinsicNode(
NVPTXISD::StoreParam, dl, StoreVTs, StoreOperands, MVT::i8,
MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
InGlue = Chain.getValue(1);
}
return Chain;
}
// Use byte-load when the param adress of the returned value is unaligned.
// This may happen when the returned value is a field of a packed structure.
static SDValue
LowerUnalignedLoadRetParam(SelectionDAG &DAG, SDValue &Chain, uint64_t Offset,
EVT ElementType, SDValue &InGlue,
SmallVectorImpl<SDValue> &TempProxyRegOps,
const SDLoc &dl) {
// Bit logic only works on integer types
EVT MergedType = ElementType;
adjustElementType(MergedType);
// Load each byte and construct the whole value. Initial value to 0
SDValue RetVal = DAG.getConstant(0, dl, MergedType);
// LoadParamMemI8 loads into i16 register only
SDVTList LoadVTs = DAG.getVTList(MVT::i16, MVT::Other, MVT::Glue);
for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
SDValue LoadOperands[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(Offset + i, dl, MVT::i32),
InGlue};
// This will be selected to LoadParamMemI8
SDValue LdVal =
DAG.getMemIntrinsicNode(NVPTXISD::LoadParam, dl, LoadVTs, LoadOperands,
MVT::i8, MachinePointerInfo(), Align(1));
SDValue TmpLdVal = LdVal.getValue(0);
Chain = LdVal.getValue(1);
InGlue = LdVal.getValue(2);
TmpLdVal = DAG.getNode(NVPTXISD::ProxyReg, dl,
TmpLdVal.getSimpleValueType(), TmpLdVal);
TempProxyRegOps.push_back(TmpLdVal);
SDValue CMask = DAG.getConstant(255, dl, MergedType);
SDValue CShift = DAG.getConstant(i * 8, dl, MVT::i32);
// Need to extend the i16 register to the whole width.
TmpLdVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MergedType, TmpLdVal);
// Mask off the high bits. Leave only the lower 8bits.
// Do this because we are using loadparam.b8.
TmpLdVal = DAG.getNode(ISD::AND, dl, MergedType, TmpLdVal, CMask);
// Shift and merge
TmpLdVal = DAG.getNode(ISD::SHL, dl, MergedType, TmpLdVal, CShift);
RetVal = DAG.getNode(ISD::OR, dl, MergedType, RetVal, TmpLdVal);
}
if (ElementType != MergedType)
RetVal = DAG.getNode(ISD::BITCAST, dl, ElementType, RetVal);
return RetVal;
}
static bool shouldConvertToIndirectCall(const CallBase *CB,
const GlobalAddressSDNode *Func) {
if (!Func)
return false;
if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
return CB->getFunctionType() != CalleeFunc->getFunctionType();
return false;
}
static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG,
const DataLayout &DL,
const TargetLowering &TL) {
if (Ptr->getOpcode() == ISD::FrameIndex) {
auto Ty = TL.getPointerTy(DL, ADDRESS_SPACE_LOCAL);
Ptr = DAG.getAddrSpaceCast(SDLoc(), Ty, Ptr, ADDRESS_SPACE_GENERIC,
ADDRESS_SPACE_LOCAL);
return MachinePointerInfo(ADDRESS_SPACE_LOCAL);
}
// Peel of an addrspacecast to generic and load directly from the specific
// address space.
if (Ptr->getOpcode() == ISD::ADDRSPACECAST) {
const auto *ASC = cast<AddrSpaceCastSDNode>(Ptr);
if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) {
Ptr = ASC->getOperand(0);
return MachinePointerInfo(ASC->getSrcAddressSpace());
}
}
return MachinePointerInfo();
}
SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
report_fatal_error(
"Support for variadic functions (unsized array parameter) introduced "
"in PTX ISA version 6.0 and requires target sm_30.");
SelectionDAG &DAG = CLI.DAG;
SDLoc dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
ArgListTy &Args = CLI.getArgs();
Type *RetTy = CLI.RetTy;
const CallBase *CB = CLI.CB;
const DataLayout &DL = DAG.getDataLayout();
// Variadic arguments.
//
// Normally, for each argument, we declare a param scalar or a param
// byte array in the .param space, and store the argument value to that
// param scalar or array starting at offset 0.
//
// In the case of the first variadic argument, we declare a vararg byte array
// with size 0. The exact size of this array isn't known at this point, so
// it'll be patched later. All the variadic arguments will be stored to this
// array at a certain offset (which gets tracked by 'VAOffset'). The offset is
// initially set to 0, so it can be used for non-variadic arguments (which use
// 0 offset) to simplify the code.
//
// After all vararg is processed, 'VAOffset' holds the size of the
// vararg byte array.
SDValue VADeclareParam; // vararg byte array
unsigned FirstVAArg = CLI.NumFixedArgs; // position of the first variadic
unsigned VAOffset = 0; // current offset in the param array
const unsigned UniqueCallSite = GlobalUniqueCallSite++;
SDValue TempChain = Chain;
Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
SDValue InGlue = Chain.getValue(1);
unsigned ParamCount = 0;
// Args.size() and Outs.size() need not match.
// Outs.size() will be larger
// * if there is an aggregate argument with multiple fields (each field
// showing up separately in Outs)
// * if there is a vector argument with more than typical vector-length
// elements (generally if more than 4) where each vector element is
// individually present in Outs.
// So a different index should be used for indexing into Outs/OutVals.
// See similar issue in LowerFormalArguments.
unsigned OIdx = 0;
// Declare the .params or .reg need to pass values
// to the function
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
EVT VT = Outs[OIdx].VT;
Type *Ty = Args[i].Ty;
bool IsVAArg = (i >= CLI.NumFixedArgs);
bool IsByVal = Outs[OIdx].Flags.isByVal();
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
assert((!IsByVal || Args[i].IndirectType) &&
"byval arg must have indirect type");
Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
ComputePTXValueVTs(*this, DL, ETy, VTs, &Offsets, IsByVal ? 0 : VAOffset);
Align ArgAlign;
if (IsByVal) {
// The ByValAlign in the Outs[OIdx].Flags is always set at this point,
// so we don't need to worry whether it's naturally aligned or not.
// See TargetLowering::LowerCallTo().
Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
ArgAlign = getFunctionByValParamAlign(CB->getCalledFunction(), ETy,
InitialAlign, DL);
if (IsVAArg)
VAOffset = alignTo(VAOffset, ArgAlign);
} else {
ArgAlign = getArgumentAlignment(CB, Ty, ParamCount + 1, DL);
}
unsigned TypeSize =
(IsByVal ? Outs[OIdx].Flags.getByValSize() : DL.getTypeAllocSize(Ty));
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
bool NeedAlign; // Does argument declaration specify alignment?
const bool PassAsArray = IsByVal || shouldPassAsArray(Ty);
if (IsVAArg) {
if (ParamCount == FirstVAArg) {
SDValue DeclareParamOps[] = {
Chain, DAG.getConstant(STI.getMaxRequiredAlignment(), dl, MVT::i32),
DAG.getConstant(ParamCount, dl, MVT::i32),
DAG.getConstant(1, dl, MVT::i32), InGlue};
VADeclareParam = Chain = DAG.getNode(NVPTXISD::DeclareParam, dl,
DeclareParamVTs, DeclareParamOps);
}
NeedAlign = PassAsArray;
} else if (PassAsArray) {
// declare .param .align <align> .b8 .param<n>[<size>];
SDValue DeclareParamOps[] = {
Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
DAG.getConstant(ParamCount, dl, MVT::i32),
DAG.getConstant(TypeSize, dl, MVT::i32), InGlue};
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps);
NeedAlign = true;
} else {
// declare .param .b<size> .param<n>;
if (VT.isInteger() || VT.isFloatingPoint()) {
// PTX ABI requires integral types to be at least 32 bits in
// size. FP16 is loaded/stored using i16, so it's handled
// here as well.
TypeSize = promoteScalarArgumentSize(TypeSize * 8) / 8;
}
SDValue DeclareScalarParamOps[] = {
Chain, DAG.getConstant(ParamCount, dl, MVT::i32),
DAG.getConstant(TypeSize * 8, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32), InGlue};
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
DeclareScalarParamOps);
NeedAlign = false;
}
InGlue = Chain.getValue(1);
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter
// than 32-bits are sign extended or zero extended, depending on
// whether they are signed or unsigned types. This case applies
// only to scalar parameters and not to aggregate values.
bool ExtendIntegerParam =
Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
SmallVector<SDValue, 6> StoreOperands;
for (const unsigned J : llvm::seq(VTs.size())) {
EVT EltVT = VTs[J];
const int CurOffset = Offsets[J];
MaybeAlign PartAlign;
if (NeedAlign)
PartAlign = commonAlignment(ArgAlign, CurOffset);
SDValue StVal = OutVals[OIdx];
MVT PromotedVT;
if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
EltVT = EVT(PromotedVT);
}
if (PromoteScalarIntegerPTX(StVal.getValueType(), &PromotedVT)) {
llvm::ISD::NodeType Ext =
Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
StVal = DAG.getNode(Ext, dl, PromotedVT, StVal);
}
if (IsByVal) {
auto MPI = refinePtrAS(StVal, DAG, DL, *this);
const EVT PtrVT = StVal.getValueType();
SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StVal,
DAG.getConstant(CurOffset, dl, PtrVT));
StVal = DAG.getLoad(EltVT, dl, TempChain, SrcAddr, MPI, PartAlign);
} else if (ExtendIntegerParam) {
assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
// zext/sext to i32
StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND,
dl, MVT::i32, StVal);
}
if (!ExtendIntegerParam && EltVT.getSizeInBits() < 16) {
// Use 16-bit registers for small stores as it's the
// smallest general purpose register size supported by NVPTX.
StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
}
// If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a
// scalar store. In such cases, fall back to byte stores.
if (VectorInfo[J] == PVF_SCALAR && !IsVAArg && PartAlign.has_value() &&
PartAlign.value() <
DL.getABITypeAlign(EltVT.getTypeForEVT(*DAG.getContext()))) {
assert(StoreOperands.empty() && "Unfinished preceeding store.");
Chain = LowerUnalignedStoreParam(
DAG, Chain, IsByVal ? CurOffset + VAOffset : CurOffset, EltVT,
StVal, InGlue, ParamCount, dl);
// LowerUnalignedStoreParam took care of inserting the necessary nodes
// into the SDAG, so just move on to the next element.
if (!IsByVal)
++OIdx;
continue;
}
// New store.
if (VectorInfo[J] & PVF_FIRST) {
assert(StoreOperands.empty() && "Unfinished preceding store.");
StoreOperands.push_back(Chain);
StoreOperands.push_back(
DAG.getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32));
if (!IsByVal && IsVAArg) {
// Align each part of the variadic argument to their type.
VAOffset = alignTo(VAOffset, DL.getABITypeAlign(EltVT.getTypeForEVT(
*DAG.getContext())));
}
StoreOperands.push_back(DAG.getConstant(
IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset),
dl, MVT::i32));
}
// Record the value to store.
StoreOperands.push_back(StVal);
if (VectorInfo[J] & PVF_LAST) {
const unsigned NumElts = StoreOperands.size() - 3;
NVPTXISD::NodeType Op;
switch (NumElts) {
case 1:
Op = NVPTXISD::StoreParam;
break;
case 2:
Op = NVPTXISD::StoreParamV2;
break;
case 4:
Op = NVPTXISD::StoreParamV4;
break;
default:
llvm_unreachable("Invalid vector info.");
}
StoreOperands.push_back(InGlue);
// Adjust type of the store op if we've extended the scalar
// return value.
EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
Chain = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
TheStoreType, MachinePointerInfo(), PartAlign,
MachineMemOperand::MOStore);
InGlue = Chain.getValue(1);
// Cleanup.
StoreOperands.clear();
// TODO: We may need to support vector types that can be passed
// as scalars in variadic arguments.
if (!IsByVal && IsVAArg) {
assert(NumElts == 1 &&
"Vectorization is expected to be disabled for variadics.");
VAOffset += DL.getTypeAllocSize(
TheStoreType.getTypeForEVT(*DAG.getContext()));
}
}
if (!IsByVal)
++OIdx;
}
assert(StoreOperands.empty() && "Unfinished parameter store.");
if (!IsByVal && VTs.size() > 0)
--OIdx;
++ParamCount;
if (IsByVal && IsVAArg)
VAOffset += TypeSize;
}
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
MaybeAlign retAlignment = std::nullopt;
// Handle Result
if (Ins.size() > 0) {
SmallVector<EVT, 16> resvtparts;
ComputeValueVTs(*this, DL, RetTy, resvtparts);
// Declare
// .param .align N .b8 retval0[<size-in-bytes>], or
// .param .b<size-in-bits> retval0
unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
if (!shouldPassAsArray(RetTy)) {
resultsz = promoteScalarArgumentSize(resultsz);
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(resultsz, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32), InGlue };
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
DeclareRetOps);
InGlue = Chain.getValue(1);
} else {
retAlignment = getArgumentAlignment(CB, RetTy, 0, DL);
assert(retAlignment && "retAlignment is guaranteed to be set");
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = {
Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
DAG.getConstant(resultsz / 8, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32), InGlue};
Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
DeclareRetOps);
InGlue = Chain.getValue(1);
}
}
bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
// Set the size of the vararg param byte array if the callee is a variadic
// function and the variadic part is not empty.
if (HasVAArgs) {
SDValue DeclareParamOps[] = {
VADeclareParam.getOperand(0), VADeclareParam.getOperand(1),
VADeclareParam.getOperand(2), DAG.getConstant(VAOffset, dl, MVT::i32),
VADeclareParam.getOperand(4)};
DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
VADeclareParam->getVTList(), DeclareParamOps);
}
// If the type of the callsite does not match that of the function, convert
// the callsite to an indirect call.
bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func);
// Both indirect calls and libcalls have nullptr Func. In order to distinguish
// between them we must rely on the call site value which is valid for
// indirect calls but is always null for libcalls.
bool isIndirectCall = (!Func && CB) || ConvertToIndirectCall;
if (isa<ExternalSymbolSDNode>(Callee)) {
Function* CalleeFunc = nullptr;
// Try to find the callee in the current module.
Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
assert(CalleeFunc != nullptr && "Libcall callee must be set.");
// Set the "libcall callee" attribute to indicate that the function
// must always have a declaration.
CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
}
if (isIndirectCall) {
// This is indirect function call case : PTX requires a prototype of the
// form
// proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
// to be emitted, and the label has to used as the last arg of call
// instruction.
// The prototype is embedded in a string and put as the operand for a
// CallPrototype SDNode which will print out to the value of the string.
SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
std::string Proto = getPrototype(
DL, RetTy, Args, Outs, retAlignment,
HasVAArgs
? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair(
CLI.NumFixedArgs, VADeclareParam->getConstantOperandAPInt(1)))
: std::nullopt,
*CB, UniqueCallSite);
const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
SDValue ProtoOps[] = {
Chain,
DAG.getTargetExternalSymbol(ProtoStr, MVT::i32),
InGlue,
};
Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
InGlue = Chain.getValue(1);
}
// Op to just print "call"
SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrintCallOps[] = {
Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InGlue
};
// We model convergent calls as separate opcodes.
unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
if (CLI.IsConvergent)
Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
: NVPTXISD::PrintConvergentCall;
Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
InGlue = Chain.getValue(1);
if (ConvertToIndirectCall) {
// Copy the function ptr to a ptx register and use the register to call the
// function.
EVT DestVT = Callee.getValueType();
MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned DestReg =
RegInfo.createVirtualRegister(TLI.getRegClassFor(DestVT.getSimpleVT()));
auto RegCopy = DAG.getCopyToReg(DAG.getEntryNode(), dl, DestReg, Callee);
Callee = DAG.getCopyFromReg(RegCopy, dl, DestReg, DestVT);
}
// Ops to print out the function name
SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallVoidOps[] = { Chain, Callee, InGlue };
Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
InGlue = Chain.getValue(1);
// Ops to print out the param list
SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgBeginOps[] = { Chain, InGlue };
Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
CallArgBeginOps);
InGlue = Chain.getValue(1);
for (unsigned i = 0, e = std::min(CLI.NumFixedArgs + 1, ParamCount); i != e;
++i) {
unsigned opcode;
if (i == (e - 1))
opcode = NVPTXISD::LastCallArg;
else
opcode = NVPTXISD::CallArg;
SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(i, dl, MVT::i32), InGlue };
Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
InGlue = Chain.getValue(1);
}
SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgEndOps[] = { Chain,
DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
InGlue };
Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
InGlue = Chain.getValue(1);
if (isIndirectCall) {
SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrototypeOps[] = {
Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InGlue};
Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
InGlue = Chain.getValue(1);
}
SmallVector<SDValue, 16> ProxyRegOps;
SmallVector<std::optional<MVT>, 16> ProxyRegTruncates;
// An item of the vector is filled if the element does not need a ProxyReg
// operation on it and should be added to InVals as is. ProxyRegOps and
// ProxyRegTruncates contain empty/none items at the same index.
SmallVector<SDValue, 16> RetElts;
// A temporary ProxyReg operations inserted in `LowerUnalignedLoadRetParam()`
// to use the values of `LoadParam`s and to be replaced later then
// `CALLSEQ_END` is added.
SmallVector<SDValue, 16> TempProxyRegOps;
// Generate loads from param memory/moves from registers for result
if (Ins.size() > 0) {
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
assert(VTs.size() == Ins.size() && "Bad value decomposition");
Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
SmallVector<EVT, 6> LoadVTs;
int VecIdx = -1; // Index of the first element of the vector.
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
// 32-bits are sign extended or zero extended, depending on whether
// they are signed or unsigned types.
bool ExtendIntegerRetVal =
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
bool needTruncate = false;
EVT TheLoadType = VTs[i];
EVT EltType = Ins[i].VT;
Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
MVT PromotedVT;
if (PromoteScalarIntegerPTX(TheLoadType, &PromotedVT)) {
TheLoadType = EVT(PromotedVT);
EltType = EVT(PromotedVT);
needTruncate = true;
}
if (ExtendIntegerRetVal) {
TheLoadType = MVT::i32;
EltType = MVT::i32;
needTruncate = true;
} else if (TheLoadType.getSizeInBits() < 16) {
if (VTs[i].isInteger())
needTruncate = true;
EltType = MVT::i16;
}
// If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a
// scalar load. In such cases, fall back to byte loads.
if (VectorInfo[i] == PVF_SCALAR && RetTy->isAggregateType() &&
EltAlign < DL.getABITypeAlign(
TheLoadType.getTypeForEVT(*DAG.getContext()))) {
assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
SDValue Ret = LowerUnalignedLoadRetParam(
DAG, Chain, Offsets[i], TheLoadType, InGlue, TempProxyRegOps, dl);
ProxyRegOps.push_back(SDValue());
ProxyRegTruncates.push_back(std::optional<MVT>());
RetElts.resize(i);
RetElts.push_back(Ret);
continue;
}
// Record index of the very first element of the vector.
if (VectorInfo[i] & PVF_FIRST) {
assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
VecIdx = i;
}
LoadVTs.push_back(EltType);
if (VectorInfo[i] & PVF_LAST) {
unsigned NumElts = LoadVTs.size();
LoadVTs.push_back(MVT::Other);
LoadVTs.push_back(MVT::Glue);
NVPTXISD::NodeType Op;
switch (NumElts) {
case 1:
Op = NVPTXISD::LoadParam;
break;
case 2:
Op = NVPTXISD::LoadParamV2;
break;
case 4:
Op = NVPTXISD::LoadParamV4;
break;
default:
llvm_unreachable("Invalid vector info.");
}
SDValue LoadOperands[] = {
Chain, DAG.getConstant(1, dl, MVT::i32),
DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InGlue};
SDValue RetVal = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
MachinePointerInfo(), EltAlign,
MachineMemOperand::MOLoad);
for (unsigned j = 0; j < NumElts; ++j) {
ProxyRegOps.push_back(RetVal.getValue(j));
if (needTruncate)
ProxyRegTruncates.push_back(std::optional<MVT>(Ins[VecIdx + j].VT));
else
ProxyRegTruncates.push_back(std::optional<MVT>());
}
Chain = RetVal.getValue(NumElts);
InGlue = RetVal.getValue(NumElts + 1);
// Cleanup
VecIdx = -1;
LoadVTs.clear();
}
}
}
Chain =
DAG.getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InGlue, dl);
InGlue = Chain.getValue(1);
// Append ProxyReg instructions to the chain to make sure that `callseq_end`
// will not get lost. Otherwise, during libcalls expansion, the nodes can become
// dangling.
for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
if (i < RetElts.size() && RetElts[i]) {
InVals.push_back(RetElts[i]);
continue;
}
SDValue Ret = DAG.getNode(
NVPTXISD::ProxyReg, dl,
DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
{ Chain, ProxyRegOps[i], InGlue }
);
Chain = Ret.getValue(1);
InGlue = Ret.getValue(2);
if (ProxyRegTruncates[i]) {
Ret = DAG.getNode(ISD::TRUNCATE, dl, *ProxyRegTruncates[i], Ret);
}
InVals.push_back(Ret);
}
for (SDValue &T : TempProxyRegOps) {
SDValue Repl = DAG.getNode(
NVPTXISD::ProxyReg, dl,
DAG.getVTList(T.getSimpleValueType(), MVT::Other, MVT::Glue),
{Chain, T.getOperand(0), InGlue});
DAG.ReplaceAllUsesWith(T, Repl);
DAG.RemoveDeadNode(T.getNode());
Chain = Repl.getValue(1);
InGlue = Repl.getValue(2);
}
// set isTailCall to false for now, until we figure out how to express
// tail call optimization in PTX
isTailCall = false;
return Chain;
}
SDValue NVPTXTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
const Function &Fn = DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported NoDynamicAlloca(
Fn,
"Support for dynamic alloca introduced in PTX ISA version 7.3 and "
"requires target sm_52.",
SDLoc(Op).getDebugLoc());
DAG.getContext()->diagnose(NoDynamicAlloca);
auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()),
Op.getOperand(0)};
return DAG.getMergeValues(Ops, SDLoc());
}
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
uint64_t Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
SDLoc DL(Op.getNode());
// The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32.
MVT ValueSizeTy = nvTM->is64Bit() ? MVT::i64 : MVT::i32;
SDValue AllocOps[] = {Chain, DAG.getZExtOrTrunc(Size, DL, ValueSizeTy),
DAG.getTargetConstant(Align, DL, MVT::i32)};
EVT RetTypes[] = {ValueSizeTy, MVT::Other};
return DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, RetTypes, AllocOps);
}
SDValue NVPTXTargetLowering::LowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op.getNode());
if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
const Function &Fn = DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported NoStackRestore(
Fn,
"Support for stackrestore requires PTX ISA version >= 7.3 and target "
">= sm_52.",
DL.getDebugLoc());
DAG.getContext()->diagnose(NoStackRestore);
return Op.getOperand(0);
}
const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
SDValue Chain = Op.getOperand(0);
SDValue Ptr = Op.getOperand(1);
SDValue ASC = DAG.getAddrSpaceCast(DL, LocalVT, Ptr, ADDRESS_SPACE_GENERIC,
ADDRESS_SPACE_LOCAL);
return DAG.getNode(NVPTXISD::STACKRESTORE, DL, MVT::Other, {Chain, ASC});
}
SDValue NVPTXTargetLowering::LowerSTACKSAVE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op.getNode());
if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
const Function &Fn = DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported NoStackSave(
Fn,
"Support for stacksave requires PTX ISA version >= 7.3 and target >= "
"sm_52.",
DL.getDebugLoc());
DAG.getContext()->diagnose(NoStackSave);
auto Ops = {DAG.getConstant(0, DL, Op.getValueType()), Op.getOperand(0)};
return DAG.getMergeValues(Ops, DL);
}
const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
SDValue Chain = Op.getOperand(0);
SDValue SS =
DAG.getNode(NVPTXISD::STACKSAVE, DL, {LocalVT, MVT::Other}, Chain);
SDValue ASC = DAG.getAddrSpaceCast(
DL, Op.getValueType(), SS, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC);
return DAG.getMergeValues({ASC, SDValue(SS.getNode(), 1)}, DL);
}
// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
// (see LegalizeDAG.cpp). This is slow and uses local memory.
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
SDValue
NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
SmallVector<SDValue, 8> Ops;
unsigned NumOperands = Node->getNumOperands();
for (unsigned i = 0; i < NumOperands; ++i) {
SDValue SubOp = Node->getOperand(i);
EVT VVT = SubOp.getNode()->getValueType(0);
EVT EltVT = VVT.getVectorElementType();
unsigned NumSubElem = VVT.getVectorNumElements();
for (unsigned j = 0; j < NumSubElem; ++j) {
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
DAG.getIntPtrConstant(j, dl)));
}
}
return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
}
SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
// Handle bitcasting from v2i8 without hitting the default promotion
// strategy which goes through stack memory.
EVT FromVT = Op->getOperand(0)->getValueType(0);
if (FromVT != MVT::v2i8) {
return Op;
}
// Pack vector elements into i16 and bitcast to final type
SDLoc DL(Op);
SDValue Vec0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
Op->getOperand(0), DAG.getIntPtrConstant(0, DL));
SDValue Vec1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
Op->getOperand(0), DAG.getIntPtrConstant(1, DL));
SDValue Extend0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec0);
SDValue Extend1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec1);
SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
SDValue AsInt = DAG.getNode(
ISD::OR, DL, MVT::i16,
{Extend0, DAG.getNode(ISD::SHL, DL, MVT::i16, {Extend1, Const8})});
EVT ToVT = Op->getValueType(0);
return DAG.getBitcast(ToVT, AsInt);
}
// We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it
// would get lowered as two constant loads and vector-packing move.
// Instead we want just a constant move:
// mov.b32 %r2, 0x40003C00
SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op->getValueType(0);
if (!(Isv2x16VT(VT) || VT == MVT::v4i8))
return Op;
SDLoc DL(Op);
if (!llvm::all_of(Op->ops(), [](SDValue Operand) {
return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
isa<ConstantFPSDNode>(Operand);
})) {
if (VT != MVT::v4i8)
return Op;
// Lower non-const v4i8 vector as byte-wise constructed i32, which allows us
// to optimize calculation of constant parts.
auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast,
uint64_t SelectionValue) -> SDValue {
SDValue L = Left;
SDValue R = Right;
if (Cast) {
L = DAG.getAnyExtOrTrunc(L, DL, MVT::i32);
R = DAG.getAnyExtOrTrunc(R, DL, MVT::i32);
}
return DAG.getNode(
NVPTXISD::PRMT, DL, MVT::v4i8,
{L, R, DAG.getConstant(SelectionValue, DL, MVT::i32),
DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32)});
};
auto PRMT__10 = GetPRMT(Op->getOperand(0), Op->getOperand(1), true, 0x3340);
auto PRMT__32 = GetPRMT(Op->getOperand(2), Op->getOperand(3), true, 0x3340);
auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410);
return DAG.getNode(ISD::BITCAST, DL, VT, PRMT3210);
}
// Get value or the Nth operand as an APInt(32). Undef values treated as 0.
auto GetOperand = [](SDValue Op, int N) -> APInt {
const SDValue &Operand = Op->getOperand(N);
EVT VT = Op->getValueType(0);
if (Operand->isUndef())
return APInt(32, 0);
APInt Value;
if (VT == MVT::v2f16 || VT == MVT::v2bf16)
Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
else if (VT == MVT::v2i16 || VT == MVT::v4i8)
Value = Operand->getAsAPIntVal();
else
llvm_unreachable("Unsupported type");
// i8 values are carried around as i16, so we need to zero out upper bits,
// so they do not get in the way of combining individual byte values
if (VT == MVT::v4i8)
Value = Value.trunc(8);
return Value.zext(32);
};
APInt Value;
if (Isv2x16VT(VT)) {
Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(16);
} else if (VT == MVT::v4i8) {
Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(8) |
GetOperand(Op, 2).shl(16) | GetOperand(Op, 3).shl(24);
} else {
llvm_unreachable("Unsupported type");
}
SDValue Const = DAG.getConstant(Value, DL, MVT::i32);
return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), Const);
}
SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Index = Op->getOperand(1);
SDValue Vector = Op->getOperand(0);
SDLoc DL(Op);
EVT VectorVT = Vector.getValueType();
if (VectorVT == MVT::v4i8) {
SDValue BFE =
DAG.getNode(NVPTXISD::BFE, DL, MVT::i32,
{Vector,
DAG.getNode(ISD::MUL, DL, MVT::i32,
DAG.getZExtOrTrunc(Index, DL, MVT::i32),
DAG.getConstant(8, DL, MVT::i32)),
DAG.getConstant(8, DL, MVT::i32)});
return DAG.getAnyExtOrTrunc(BFE, DL, Op->getValueType(0));
}
// Constant index will be matched by tablegen.
if (isa<ConstantSDNode>(Index.getNode()))
return Op;
// Extract individual elements and select one of them.
assert(Isv2x16VT(VectorVT) && "Unexpected vector type.");
EVT EltVT = VectorVT.getVectorElementType();
SDLoc dl(Op.getNode());
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
DAG.getIntPtrConstant(0, dl));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
DAG.getIntPtrConstant(1, dl));
return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
ISD::CondCode::SETEQ);
}
SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Vector = Op->getOperand(0);
EVT VectorVT = Vector.getValueType();
if (VectorVT != MVT::v4i8)
return Op;
SDLoc DL(Op);
SDValue Value = Op->getOperand(1);
if (Value->isUndef())
return Vector;
SDValue Index = Op->getOperand(2);
SDValue BFI =
DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
{DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector,
DAG.getNode(ISD::MUL, DL, MVT::i32,
DAG.getZExtOrTrunc(Index, DL, MVT::i32),
DAG.getConstant(8, DL, MVT::i32)),
DAG.getConstant(8, DL, MVT::i32)});
return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI);
}
SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDValue V1 = Op.getOperand(0);
EVT VectorVT = V1.getValueType();
if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8)
return Op;
// Lower shuffle to PRMT instruction.
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
SDValue V2 = Op.getOperand(1);
uint32_t Selector = 0;
for (auto I : llvm::enumerate(SVN->getMask())) {
if (I.value() != -1) // -1 is a placeholder for undef.
Selector |= (I.value() << (I.index() * 4));
}
SDLoc DL(Op);
return DAG.getNode(NVPTXISD::PRMT, DL, MVT::v4i8, V1, V2,
DAG.getConstant(Selector, DL, MVT::i32),
DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32));
}
/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
/// amount, or
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
/// amount.
SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
if (VTBits == 32 && STI.getSmVersion() >= 35) {
// For 32bit and sm35, we can use the funnel shift 'shf' instruction.
// {dHi, dLo} = {aHi, aLo} >> Amt
// dHi = aHi >> Amt
// dLo = shf.r.clamp aLo, aHi, Amt
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue Lo =
DAG.getNode(NVPTXISD::FSHR_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
else {
// {dHi, dLo} = {aHi, aLo} >> Amt
// - if (Amt>=size) then
// dLo = aHi >> (Amt-size)
// dHi = aHi >> Amt (this is either all 0 or all 1)
// else
// dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
// dHi = aHi >> Amt
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32),
ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32),
ISD::SETGE);
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
/// amount, or
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
/// amount.
SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
assert(Op.getOpcode() == ISD::SHL_PARTS);
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
if (VTBits == 32 && STI.getSmVersion() >= 35) {
// For 32bit and sm35, we can use the funnel shift 'shf' instruction.
// {dHi, dLo} = {aHi, aLo} << Amt
// dHi = shf.l.clamp aLo, aHi, Amt
// dLo = aLo << Amt
SDValue Hi =
DAG.getNode(NVPTXISD::FSHL_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
else {
// {dHi, dLo} = {aHi, aLo} << Amt
// - if (Amt>=size) then
// dLo = aLo << Amt (all 0)
// dLo = aLo << (Amt-size)
// else
// dLo = aLo << Amt
// dHi = (aHi << Amt) | (aLo >> (size-Amt))
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32),
ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32),
ISD::SETGE);
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
}
/// If the types match, convert the generic copysign to the NVPTXISD version,
/// otherwise bail ensuring that mismatched cases are properly expaned.
SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue In1 = Op.getOperand(0);
SDValue In2 = Op.getOperand(1);
EVT SrcVT = In2.getValueType();
if (!SrcVT.bitsEq(VT))
return SDValue();
return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2);
}
SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFROUND32(Op, DAG);
if (VT == MVT::f64)
return LowerFROUND64(Op, DAG);
llvm_unreachable("unhandled type");
}
// This is the the rounding method used in CUDA libdevice in C like code:
// float roundf(float A)
// {
// float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
// }
SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue A = Op.getOperand(0);
EVT VT = Op.getValueType();
SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
// RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
const unsigned SignBitMask = 0x80000000;
SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
DAG.getConstant(SignBitMask, SL, MVT::i32));
const unsigned PointFiveInBits = 0x3F000000;
SDValue PointFiveWithSignRaw =
DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
DAG.getConstant(PointFiveInBits, SL, MVT::i32));
SDValue PointFiveWithSign =
DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue IsLarge =
DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
ISD::SETOGT);
RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
}
// The implementation of round(double) is similar to that of round(float) in
// that they both separate the value range into three regions and use a method
// specific to the region to round the values. However, round(double) first
// calculates the round of the absolute value and then adds the sign back while
// round(float) directly rounds the value with sign.
SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue A = Op.getOperand(0);
EVT VT = Op.getValueType();
SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
// double RoundedA = (double) (int) (abs(A) + 0.5f);
SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
DAG.getConstantFP(0.5, SL, VT));
SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
// RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
DAG.getConstantFP(0, SL, VT),
RoundedA);
// Add sign to rounded_A
RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
DAG.getNode(ISD::FTRUNC, SL, VT, A);
// RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
SDValue IsLarge =
DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
ISD::SETOGT);
return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
}
static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
EVT NVT = MVT::f32;
if (VT.isVector()) {
NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
}
SDLoc DL(N);
SDValue Tmp0 = DAG.getFPExtendOrRound(N->getOperand(0), DL, NVT);
SDValue Tmp1 = DAG.getFPExtendOrRound(N->getOperand(1), DL, NVT);
SDValue Res = DAG.getNode(N->getOpcode(), DL, NVT, Tmp0, Tmp1, N->getFlags());
return DAG.getFPExtendOrRound(Res, DL, VT);
}
SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op,
SelectionDAG &DAG) const {
if (useF32FTZ(DAG.getMachineFunction())) {
return PromoteBinOpToF32(Op.getNode(), DAG);
}
return Op;
}
SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
if (Op.getValueType() == MVT::bf16) {
SDLoc Loc(Op);
return DAG.getNode(
ISD::FP_ROUND, Loc, MVT::bf16,
DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)),
DAG.getIntPtrConstant(0, Loc, /*isTarget=*/true));
}
// Everything else is considered legal.
return Op;
}
SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op,
SelectionDAG &DAG) const {
assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
if (Op.getOperand(0).getValueType() == MVT::bf16) {
SDLoc Loc(Op);
return DAG.getNode(
Op.getOpcode(), Loc, Op.getValueType(),
DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0)));
}
// Everything else is considered legal.
return Op;
}
SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op,
SelectionDAG &DAG) const {
EVT NarrowVT = Op.getValueType();
SDValue Wide = Op.getOperand(0);
EVT WideVT = Wide.getValueType();
if (NarrowVT.getScalarType() == MVT::bf16) {
const TargetLowering *TLI = STI.getTargetLowering();
if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) {
return TLI->expandFP_ROUND(Op.getNode(), DAG);
}
if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
// This combination was the first to support f32 -> bf16.
if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) {
if (WideVT.getScalarType() == MVT::f32) {
return Op;
}
if (WideVT.getScalarType() == MVT::f64) {
SDLoc Loc(Op);
// Round-inexact-to-odd f64 to f32, then do the final rounding using
// the hardware f32 -> bf16 instruction.
SDValue rod = TLI->expandRoundInexactToOdd(
WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32)
: MVT::f32,
Wide, Loc, DAG);
return DAG.getFPExtendOrRound(rod, Loc, NarrowVT);
}
}
return TLI->expandFP_ROUND(Op.getNode(), DAG);
}
}
// Everything else is considered legal.
return Op;
}
SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
SDValue Narrow = Op.getOperand(0);
EVT NarrowVT = Narrow.getValueType();
EVT WideVT = Op.getValueType();
if (NarrowVT.getScalarType() == MVT::bf16) {
if (WideVT.getScalarType() == MVT::f32 &&
(STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) {
SDLoc Loc(Op);
return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow);
}
if (WideVT.getScalarType() == MVT::f64 &&
(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) {
EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32)
: MVT::f32;
SDLoc Loc(Op);
if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) {
Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow);
} else {
Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow);
}
return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op);
}
}
// Everything else is considered legal.
return Op;
}
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
if (Op.getValueType() != MVT::v2i16)
return Op;
EVT EltVT = Op.getValueType().getVectorElementType();
SmallVector<SDValue> VecElements;
for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) {
SmallVector<SDValue> ScalarArgs;
llvm::transform(Op->ops(), std::back_inserter(ScalarArgs),
[&](const SDUse &O) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
O.get(), DAG.getIntPtrConstant(I, DL));
});
VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs));
}
SDValue V =
DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements);
return V;
}
static SDValue LowerTcgen05St(SDValue Op, SelectionDAG &DAG) {
SDNode *N = Op.getNode();
SDLoc DL(N);
SmallVector<SDValue, 32> Ops;
// split the vector argument
for (size_t I = 0; I < N->getNumOperands(); I++) {
SDValue Val = N->getOperand(I);
EVT ValVT = Val.getValueType();
if (ValVT.isVector()) {
EVT EltVT = ValVT.getVectorElementType();
for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
DAG.getIntPtrConstant(J, DL)));
} else
Ops.push_back(Val);
}
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
SDValue Tcgen05StNode =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, N->getVTList(), Ops,
MemSD->getMemoryVT(), MemSD->getMemOperand());
return Tcgen05StNode;
}
static SDValue LowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG) {
SDNode *N = Op.getNode();
SDValue Intrin = N->getOperand(1);
SDLoc DL(N);
// Get the intrinsic ID
unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
switch (IntrinNo) {
default:
break;
case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128:
case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
return LowerTcgen05St(Op, DAG);
}
return Op;
}
static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG) {
switch (Op->getConstantOperandVal(0)) {
default:
return Op;
case Intrinsic::nvvm_internal_addrspace_wrap:
return Op.getOperand(1);
}
}
// In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value.
// Lower these into a node returning the correct type which is zero-extended
// back to the correct size.
static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG) {
SDValue V = Op->getOperand(0);
assert(V.getValueType() == MVT::i64 &&
"Unexpected CTLZ/CTPOP type to legalize");
SDLoc DL(Op);
SDValue CT = DAG.getNode(Op->getOpcode(), DL, MVT::i32, V);
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CT, SDNodeFlags::NonNeg);
}
static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL,
unsigned Opcode, SelectionDAG &DAG) {
assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64);
const auto *AmtConst = dyn_cast<ConstantSDNode>(ShiftAmount);
if (!AmtConst)
return SDValue();
const auto Amt = AmtConst->getZExtValue() & 63;
SDValue UnpackA =
DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, A);
SDValue UnpackB =
DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, B);
// Arch is Little endiain: 0 = low bits, 1 = high bits
SDValue ALo = UnpackA.getValue(0);
SDValue AHi = UnpackA.getValue(1);
SDValue BLo = UnpackB.getValue(0);
SDValue BHi = UnpackB.getValue(1);
// The bitfeild consists of { AHi : ALo : BHi : BLo }
//
// * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi }
// * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo }
// * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo }
// * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi }
//
// Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts
// are not needed at all. Amt = 0 is a no-op producing either A or B depending
// on the direction. Amt = 32 can be implemented by a packing and unpacking
// move to select and arrange the 32bit values. For simplicity, these cases
// are not handled here explicitly and instead we rely on DAGCombiner to
// remove the no-op funnel shifts we insert.
auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32))
? std::make_tuple(AHi, ALo, BHi)
: std::make_tuple(ALo, BHi, BLo);
SDValue NewAmt = DAG.getConstant(Amt & 31, DL, MVT::i32);
SDValue RHi = DAG.getNode(Opcode, DL, MVT::i32, {High, Mid, NewAmt});
SDValue RLo = DAG.getNode(Opcode, DL, MVT::i32, {Mid, Low, NewAmt});
return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64, {RLo, RHi});
}
static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG) {
return expandFSH64(Op->getOperand(0), Op->getOperand(1), Op->getOperand(2),
SDLoc(Op), Op->getOpcode(), DAG);
}
static SDValue lowerROT(SDValue Op, SelectionDAG &DAG) {
unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR;
return expandFSH64(Op->getOperand(0), Op->getOperand(0), Op->getOperand(1),
SDLoc(Op), Opcode, DAG);
}
static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG,
bool AllowUnsafeFPMath) {
// Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)),
// i.e. "poor man's fmod()". When y is infinite, x is returned. This matches
// the semantics of LLVM's frem.
SDLoc DL(Op);
SDValue X = Op->getOperand(0);
SDValue Y = Op->getOperand(1);
EVT Ty = Op.getValueType();
SDValue Div = DAG.getNode(ISD::FDIV, DL, Ty, X, Y);
SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, Ty, Div);
SDValue Mul =
DAG.getNode(ISD::FMUL, DL, Ty, Trunc, Y, SDNodeFlags::AllowContract);
SDValue Sub =
DAG.getNode(ISD::FSUB, DL, Ty, X, Mul, SDNodeFlags::AllowContract);
if (AllowUnsafeFPMath || Op->getFlags().hasNoInfs())
return Sub;
// If Y is infinite, return X
SDValue AbsY = DAG.getNode(ISD::FABS, DL, Ty, Y);
SDValue Inf =
DAG.getConstantFP(APFloat::getInf(Ty.getFltSemantics()), DL, Ty);
SDValue IsInf = DAG.getSetCC(DL, MVT::i1, AbsY, Inf, ISD::SETEQ);
return DAG.getSelect(DL, Ty, IsInf, X, Sub);
}
static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) {
assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
SDValue Cond = Op->getOperand(0);
SDValue TrueVal = Op->getOperand(1);
SDValue FalseVal = Op->getOperand(2);
SDLoc DL(Op);
// If both operands are truncated, we push the select through the truncates.
if (TrueVal.getOpcode() == ISD::TRUNCATE &&
FalseVal.getOpcode() == ISD::TRUNCATE) {
TrueVal = TrueVal.getOperand(0);
FalseVal = FalseVal.getOperand(0);
EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType())
? TrueVal.getValueType()
: FalseVal.getValueType();
TrueVal = DAG.getAnyExtOrTrunc(TrueVal, DL, VT);
FalseVal = DAG.getAnyExtOrTrunc(FalseVal, DL, VT);
SDValue Select = DAG.getSelect(DL, VT, Cond, TrueVal, FalseVal);
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
}
// Otherwise, expand the select into a series of logical operations. These
// often can be folded into other operations either by us or ptxas.
TrueVal = DAG.getFreeze(TrueVal);
FalseVal = DAG.getFreeze(FalseVal);
SDValue And1 = DAG.getNode(ISD::AND, DL, MVT::i1, Cond, TrueVal);
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
SDValue And2 = DAG.getNode(ISD::AND, DL, MVT::i1, NotCond, FalseVal);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i1, And1, And2);
return Or;
}
SDValue
NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::RETURNADDR:
return SDValue();
case ISD::FRAMEADDR:
return SDValue();
case ISD::ADDRSPACECAST:
return LowerADDRSPACECAST(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return Op;
case ISD::INTRINSIC_WO_CHAIN:
return lowerIntrinsicWOChain(Op, DAG);
case ISD::INTRINSIC_VOID:
return LowerIntrinsicVoid(Op, DAG);
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG);
case ISD::BITCAST:
return LowerBITCAST(Op, DAG);
case ISD::EXTRACT_SUBVECTOR:
return Op;
case ISD::EXTRACT_VECTOR_ELT:
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::CONCAT_VECTORS:
return LowerCONCAT_VECTORS(Op, DAG);
case ISD::STORE:
return LowerSTORE(Op, DAG);
case ISD::LOAD:
return LowerLOAD(Op, DAG);
case ISD::SHL_PARTS:
return LowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
return LowerShiftRightParts(Op, DAG);
case ISD::SELECT:
return lowerSELECT(Op, DAG);
case ISD::FROUND:
return LowerFROUND(Op, DAG);
case ISD::FCOPYSIGN:
return LowerFCOPYSIGN(Op, DAG);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
return LowerFP_TO_INT(Op, DAG);
case ISD::FP_ROUND:
return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND:
return LowerFP_EXTEND(Op, DAG);
case ISD::BR_JT:
return LowerBR_JT(Op, DAG);
case ISD::VAARG:
return LowerVAARG(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG);
case ISD::FSHL:
case ISD::FSHR:
return lowerFSH(Op, DAG);
case ISD::ROTL:
case ISD::ROTR:
return lowerROT(Op, DAG);
case ISD::ABS:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SHL:
case ISD::SREM:
case ISD::UREM:
return LowerVectorArith(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::STACKRESTORE:
return LowerSTACKRESTORE(Op, DAG);
case ISD::STACKSAVE:
return LowerSTACKSAVE(Op, DAG);
case ISD::CopyToReg:
return LowerCopyToReg_128(Op, DAG);
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
// Used only for bf16 on SM80, where we select fma for non-ftz operation
return PromoteBinOpIfF32FTZ(Op, DAG);
case ISD::CTPOP:
case ISD::CTLZ:
return lowerCTLZCTPOP(Op, DAG);
case ISD::FREM:
return lowerFREM(Op, DAG, allowUnsafeFPMath(DAG.getMachineFunction()));
default:
llvm_unreachable("Custom lowering not defined for operation");
}
}
SDValue NVPTXTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
SDValue Index = Op.getOperand(2);
unsigned JId = JT->getIndex();
MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
ArrayRef<MachineBasicBlock *> MBBs = MJTI->getJumpTables()[JId].MBBs;
SDValue IdV = DAG.getConstant(JId, DL, MVT::i32);
// Generate BrxStart node
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(NVPTXISD::BrxStart, DL, VTs, Chain, IdV);
// Generate BrxItem nodes
assert(!MBBs.empty());
for (MachineBasicBlock *MBB : MBBs.drop_back())
Chain = DAG.getNode(NVPTXISD::BrxItem, DL, VTs, Chain.getValue(0),
DAG.getBasicBlock(MBB), Chain.getValue(1));
// Generate BrxEnd nodes
SDValue EndOps[] = {Chain.getValue(0), DAG.getBasicBlock(MBBs.back()), Index,
IdV, Chain.getValue(1)};
SDValue BrxEnd = DAG.getNode(NVPTXISD::BrxEnd, DL, VTs, EndOps);
return BrxEnd;
}
// This will prevent AsmPrinter from trying to print the jump tables itself.
unsigned NVPTXTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op,
SelectionDAG &DAG) const {
AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Op.getNode());
unsigned SrcAS = N->getSrcAddressSpace();
unsigned DestAS = N->getDestAddressSpace();
if (SrcAS != llvm::ADDRESS_SPACE_GENERIC &&
DestAS != llvm::ADDRESS_SPACE_GENERIC) {
// Shared and SharedCluster can be converted to each other through generic
// space
if ((SrcAS == llvm::ADDRESS_SPACE_SHARED &&
DestAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER) ||
(SrcAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER &&
DestAS == llvm::ADDRESS_SPACE_SHARED)) {
SDLoc DL(Op.getNode());
const MVT GenerictVT =
getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_GENERIC);
SDValue GenericConversion = DAG.getAddrSpaceCast(
DL, GenerictVT, Op.getOperand(0), SrcAS, ADDRESS_SPACE_GENERIC);
SDValue SharedClusterConversion =
DAG.getAddrSpaceCast(DL, Op.getValueType(), GenericConversion,
ADDRESS_SPACE_GENERIC, DestAS);
return SharedClusterConversion;
}
return DAG.getUNDEF(Op.getValueType());
}
return Op;
}
// This function is almost a copy of SelectionDAG::expandVAArg().
// The only diff is that this one produces loads from local address space.
SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
const TargetLowering *TLI = STI.getTargetLowering();
SDLoc DL(Op);
SDNode *Node = Op.getNode();
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
EVT VT = Node->getValueType(0);
auto *Ty = VT.getTypeForEVT(*DAG.getContext());
SDValue Tmp1 = Node->getOperand(0);
SDValue Tmp2 = Node->getOperand(1);
const MaybeAlign MA(Node->getConstantOperandVal(3));
SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
Tmp1, Tmp2, MachinePointerInfo(V));
SDValue VAList = VAListLoad;
if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
VAList = DAG.getNode(
ISD::ADD, DL, VAList.getValueType(), VAList,
DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
DAG.getSignedConstant(-(int64_t)MA->value(), DL,
VAList.getValueType()));
}
// Increment the pointer, VAList, to the next vaarg
Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
DAG.getConstant(DAG.getDataLayout().getTypeAllocSize(Ty),
DL, VAList.getValueType()));
// Store the incremented VAList to the legalized pointer
Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
MachinePointerInfo(V));
const Value *SrcV = Constant::getNullValue(
PointerType::get(*DAG.getContext(), ADDRESS_SPACE_LOCAL));
// Load the actual argument out of the pointer VAList
return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
}
SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
const TargetLowering *TLI = STI.getTargetLowering();
SDLoc DL(Op);
EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
// Store the address of unsized array <function>_vararg[] in the ap object.
SDValue Arg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
SDValue VAReg = DAG.getNode(NVPTXISD::Wrapper, DL, PtrVT, Arg);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() == MVT::i1)
return LowerLOADi1(Op, DAG);
// v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle
// unaligned loads and have to handle it here.
EVT VT = Op.getValueType();
if (Isv2x16VT(VT) || VT == MVT::v4i8) {
LoadSDNode *Load = cast<LoadSDNode>(Op);
EVT MemVT = Load->getMemoryVT();
if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
MemVT, *Load->getMemOperand())) {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
return DAG.getMergeValues(Ops, SDLoc(Op));
}
}
return SDValue();
}
// v = ld i1* addr
// =>
// v1 = ld i8* addr (-> i16)
// v = trunc i16 to i1
SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDLoc dl(Node);
assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
assert(Node->getValueType(0) == MVT::i1 &&
"Custom lowering for i1 load only");
SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(),
LD->getBasePtr(), LD->getPointerInfo(),
MVT::i8, LD->getAlign(),
LD->getMemOperand()->getFlags());
SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
// The legalizer (the caller) is expecting two values from the legalized
// load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
// in LegalizeDAG.cpp which also uses MergeValues.
SDValue Ops[] = { result, LD->getChain() };
return DAG.getMergeValues(Ops, dl);
}
SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1)
return LowerSTOREi1(Op, DAG);
// v2f16 is legal, so we can't rely on legalizer to handle unaligned
// stores and have to handle it here.
if ((Isv2x16VT(VT) || VT == MVT::v4i8) &&
!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
VT, *Store->getMemOperand()))
return expandUnalignedStore(Store, DAG);
// v2f16, v2bf16 and v2i16 don't need special handling.
if (Isv2x16VT(VT) || VT == MVT::v4i8)
return SDValue();
return LowerSTOREVector(Op, DAG);
}
SDValue
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
MemSDNode *N = cast<MemSDNode>(Op.getNode());
SDValue Val = N->getOperand(1);
SDLoc DL(N);
const EVT ValVT = Val.getValueType();
const EVT MemVT = N->getMemoryVT();
// If we're truncating as part of the store, avoid lowering to a StoreV node.
// TODO: consider relaxing this restriction.
if (ValVT != MemVT)
return SDValue();
const auto NumEltsAndEltVT = getVectorLoweringShape(ValVT);
if (!NumEltsAndEltVT)
return SDValue();
const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
const DataLayout &TD = DAG.getDataLayout();
Align Alignment = N->getAlign();
Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
if (Alignment < PrefAlign) {
// This store is not sufficiently aligned, so bail out and let this vector
// store be scalarized. Note that we may still be able to emit smaller
// vector stores. For example, if we are storing a <4 x float> with an
// alignment of 8, this check will fail but the legalizer will try again
// with 2 x <2 x float>, which will succeed with an alignment of 8.
return SDValue();
}
unsigned Opcode;
switch (NumElts) {
default:
return SDValue();
case 2:
Opcode = NVPTXISD::StoreV2;
break;
case 4:
Opcode = NVPTXISD::StoreV4;
break;
}
SmallVector<SDValue, 8> Ops;
// First is the chain
Ops.push_back(N->getOperand(0));
// Then the split values
if (EltVT.isVector()) {
assert(EVT(EltVT.getVectorElementType()) == ValVT.getVectorElementType());
assert(NumElts * EltVT.getVectorNumElements() ==
ValVT.getVectorNumElements());
// Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be
// stored as b32s
const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements();
for (const unsigned I : llvm::seq(NumElts)) {
SmallVector<SDValue, 4> SubVectorElts;
DAG.ExtractVectorElements(Val, SubVectorElts, I * NumEltsPerSubVector,
NumEltsPerSubVector);
Ops.push_back(DAG.getBuildVector(EltVT, DL, SubVectorElts));
}
} else {
SDValue V = DAG.getBitcast(MVT::getVectorVT(EltVT, NumElts), Val);
for (const unsigned I : llvm::seq(NumElts)) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, V,
DAG.getIntPtrConstant(I, DL));
// Since StoreV2 is a target node, we cannot rely on DAG type
// legalization. Therefore, we must ensure the type is legal. For i1 and
// i8, we set the stored type to i16 and propagate the "real" type as the
// memory type.
if (EltVT.getSizeInBits() < 16)
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
Ops.push_back(ExtVal);
}
}
// Then any remaining arguments
Ops.append(N->op_begin() + 2, N->op_end());
SDValue NewSt =
DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
N->getMemoryVT(), N->getMemOperand());
// return DCI.CombineTo(N, NewSt, true);
return NewSt;
}
// st i1 v, addr
// =>
// v1 = zxt v to i16
// st.u8 i16, addr
SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
StoreSDNode *ST = cast<StoreSDNode>(Node);
SDValue Tmp1 = ST->getChain();
SDValue Tmp2 = ST->getBasePtr();
SDValue Tmp3 = ST->getValue();
assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
SDValue Result =
DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
ST->getAlign(), ST->getMemOperand()->getFlags());
return Result;
}
SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op,
SelectionDAG &DAG) const {
// Change the CopyToReg to take in two 64-bit operands instead of a 128-bit
// operand so that it can pass the legalization.
assert(Op.getOperand(1).getValueType() == MVT::i128 &&
"Custom lowering for 128-bit CopyToReg only");
SDNode *Node = Op.getNode();
SDLoc DL(Node);
SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2));
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
DAG.getIntPtrConstant(0, DL));
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
DAG.getIntPtrConstant(1, DL));
SmallVector<SDValue, 5> NewOps(Op->getNumOperands() + 1);
SmallVector<EVT, 3> ResultsType(Node->values());
NewOps[0] = Op->getOperand(0); // Chain
NewOps[1] = Op->getOperand(1); // Dst Reg
NewOps[2] = Lo; // Lower 64-bit
NewOps[3] = Hi; // Higher 64-bit
if (Op.getNumOperands() == 4)
NewOps[4] = Op->getOperand(3); // Glue if exists
return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps);
}
unsigned NVPTXTargetLowering::getNumRegisters(
LLVMContext &Context, EVT VT,
std::optional<MVT> RegisterVT = std::nullopt) const {
if (VT == MVT::i128 && RegisterVT == MVT::i128)
return 1;
return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT);
}
bool NVPTXTargetLowering::splitValueIntoRegisterParts(
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
if (Val.getValueType() == MVT::i128 && NumParts == 1) {
Parts[0] = Val;
return true;
}
return false;
}
// This creates target external symbol for a function parameter.
// Name of the symbol is composed from its index and the function name.
// Negative index corresponds to special parameter (unsized array) used for
// passing variable arguments.
SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx,
EVT v) const {
StringRef SavedStr = nvTM->getStrPool().save(
getParamName(&DAG.getMachineFunction().getFunction(), idx));
return DAG.getTargetExternalSymbol(SavedStr.data(), v);
}
SDValue NVPTXTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
const DataLayout &DL = DAG.getDataLayout();
auto PtrVT = getPointerTy(DAG.getDataLayout());
const Function *F = &MF.getFunction();
SDValue Root = DAG.getRoot();
SmallVector<SDValue, 16> OutChains;
// argTypes.size() (or theArgs.size()) and Ins.size() need not match.
// Ins.size() will be larger
// * if there is an aggregate argument with multiple fields (each field
// showing up separately in Ins)
// * if there is a vector argument with more than typical vector-length
// elements (generally if more than 4) where each vector element is
// individually present in Ins.
// So a different index should be used for indexing into Ins.
// See similar issue in LowerCall.
auto AllIns = ArrayRef(Ins);
for (const auto &Arg : F->args()) {
const auto ArgIns = AllIns.take_while(
[&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); });
AllIns = AllIns.drop_front(ArgIns.size());
Type *Ty = Arg.getType();
if (ArgIns.empty())
report_fatal_error("Empty parameter types are not supported");
if (Arg.use_empty()) {
// argument is dead
for (const auto &In : ArgIns) {
assert(!In.Used && "Arg.use_empty() is true but Arg is used?");
InVals.push_back(DAG.getUNDEF(In.VT));
}
continue;
}
SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT);
// In the following cases, assign a node order of "i+1"
// to newly created nodes. The SDNodes for params have to
// appear in the same order as their order of appearance
// in the original function. "i+1" holds that order.
if (Arg.hasByValAttr()) {
// Param has ByVal attribute
// Return MoveParam(param symbol).
// Ideally, the param symbol can be returned directly,
// but when SDNode builder decides to use it in a CopyToReg(),
// machine instruction fails because TargetExternalSymbol
// (not lowered) is target dependent, and CopyToReg assumes
// the source is lowered.
assert(ArgIns.size() == 1 && "ByVal argument must be a pointer");
const auto &ByvalIn = ArgIns[0];
assert(getValueType(DL, Ty) == ByvalIn.VT &&
"Ins type did not match function type");
assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer");
SDValue P;
if (isKernelFunction(*F)) {
P = DAG.getNode(NVPTXISD::Wrapper, dl, ByvalIn.VT, ArgSymbol);
P.getNode()->setIROrder(Arg.getArgNo() + 1);
} else {
P = DAG.getNode(NVPTXISD::MoveParam, dl, ByvalIn.VT, ArgSymbol);
P.getNode()->setIROrder(Arg.getArgNo() + 1);
P = DAG.getAddrSpaceCast(dl, ByvalIn.VT, P, ADDRESS_SPACE_LOCAL,
ADDRESS_SPACE_GENERIC);
}
InVals.push_back(P);
} else {
bool aggregateIsPacked = false;
if (StructType *STy = dyn_cast<StructType>(Ty))
aggregateIsPacked = STy->isPacked();
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
assert(VTs.size() == ArgIns.size() && "Size mismatch");
assert(VTs.size() == Offsets.size() && "Size mismatch");
Align ArgAlign = getFunctionArgumentAlignment(
F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex, DL);
auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
assert(VectorInfo.size() == VTs.size() && "Size mismatch");
int VecIdx = -1; // Index of the first element of the current vector.
for (const unsigned PartI : llvm::seq(VTs.size())) {
if (VectorInfo[PartI] & PVF_FIRST) {
assert(VecIdx == -1 && "Orphaned vector.");
VecIdx = PartI;
}
// That's the last element of this store op.
if (VectorInfo[PartI] & PVF_LAST) {
const unsigned NumElts = PartI - VecIdx + 1;
EVT EltVT = VTs[PartI];
// i1 is loaded/stored as i8.
EVT LoadVT = EltVT;
if (EltVT == MVT::i1)
LoadVT = MVT::i8;
else if (Isv2x16VT(EltVT) || EltVT == MVT::v4i8)
// getLoad needs a vector type, but it can't handle
// vectors which contain v2f16 or v2bf16 elements. So we must load
// using i32 here and then bitcast back.
LoadVT = MVT::i32;
EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
SDValue VecAddr =
DAG.getNode(ISD::ADD, dl, PtrVT, ArgSymbol,
DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
const MaybeAlign PartAlign = [&]() -> MaybeAlign {
if (aggregateIsPacked)
return Align(1);
if (NumElts != 1)
return std::nullopt;
Align PartAlign =
DL.getABITypeAlign(EltVT.getTypeForEVT(F->getContext()));
return commonAlignment(PartAlign, Offsets[PartI]);
}();
SDValue P =
DAG.getLoad(VecVT, dl, Root, VecAddr,
MachinePointerInfo(ADDRESS_SPACE_PARAM), PartAlign,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
if (P.getNode())
P.getNode()->setIROrder(Arg.getArgNo() + 1);
for (const unsigned J : llvm::seq(NumElts)) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
DAG.getIntPtrConstant(J, dl));
// We've loaded i1 as an i8 and now must truncate it back to i1
if (EltVT == MVT::i1)
Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
// v2f16 was loaded as an i32. Now we must bitcast it back.
Elt = DAG.getBitcast(EltVT, Elt);
// If a promoted integer type is used, truncate down to the original
MVT PromotedVT;
if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
}
// Extend the element if necessary (e.g. an i8 is loaded
// into an i16 register)
if (ArgIns[PartI].VT.getFixedSizeInBits() !=
LoadVT.getFixedSizeInBits()) {
assert(ArgIns[PartI].VT.isInteger() && LoadVT.isInteger() &&
"Non-integer argument type size mismatch");
Elt = DAG.getExtOrTrunc(ArgIns[PartI].Flags.isSExt(), Elt, dl,
ArgIns[PartI].VT);
}
InVals.push_back(Elt);
}
// Reset vector tracking state.
VecIdx = -1;
}
}
}
}
if (!OutChains.empty())
DAG.setRoot(DAG.getTokenFactor(dl, OutChains));
return Chain;
}
// Use byte-store when the param adress of the return value is unaligned.
// This may happen when the return value is a field of a packed structure.
static SDValue LowerUnalignedStoreRet(SelectionDAG &DAG, SDValue Chain,
uint64_t Offset, EVT ElementType,
SDValue RetVal, const SDLoc &dl) {
// Bit logic only works on integer types
if (adjustElementType(ElementType))
RetVal = DAG.getNode(ISD::BITCAST, dl, ElementType, RetVal);
// Store each byte
for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) {
// Shift the byte to the last byte position
SDValue ShiftVal = DAG.getNode(ISD::SRL, dl, ElementType, RetVal,
DAG.getConstant(i * 8, dl, MVT::i32));
SDValue StoreOperands[] = {Chain, DAG.getConstant(Offset + i, dl, MVT::i32),
ShiftVal};
// Trunc store only the last byte by using
// st.param.b8
// The register type can be larger than b8.
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
DAG.getVTList(MVT::Other), StoreOperands,
MVT::i8, MachinePointerInfo(), std::nullopt,
MachineMemOperand::MOStore);
}
return Chain;
}
SDValue
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
const MachineFunction &MF = DAG.getMachineFunction();
const Function &F = MF.getFunction();
Type *RetTy = MF.getFunction().getReturnType();
const DataLayout &DL = DAG.getDataLayout();
SmallVector<SDValue, 16> PromotedOutVals;
SmallVector<EVT, 16> VTs;
SmallVector<uint64_t, 16> Offsets;
ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
SDValue PromotedOutVal = OutVals[i];
MVT PromotedVT;
if (PromoteScalarIntegerPTX(VTs[i], &PromotedVT)) {
VTs[i] = EVT(PromotedVT);
}
if (PromoteScalarIntegerPTX(PromotedOutVal.getValueType(), &PromotedVT)) {
llvm::ISD::NodeType Ext =
Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
PromotedOutVal = DAG.getNode(Ext, dl, PromotedVT, PromotedOutVal);
}
PromotedOutVals.push_back(PromotedOutVal);
}
auto VectorInfo = VectorizePTXValueVTs(
VTs, Offsets,
RetTy->isSized() ? getFunctionParamOptimizedAlign(&F, RetTy, DL)
: Align(1));
// PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
// 32-bits are sign extended or zero extended, depending on whether
// they are signed or unsigned types.
bool ExtendIntegerRetVal =
RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
SmallVector<SDValue, 6> StoreOperands;
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
SDValue OutVal = OutVals[i];
SDValue RetVal = PromotedOutVals[i];
if (ExtendIntegerRetVal) {
RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND,
dl, MVT::i32, RetVal);
} else if (OutVal.getValueSizeInBits() < 16) {
// Use 16-bit registers for small load-stores as it's the
// smallest general purpose register size supported by NVPTX.
RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
}
// If we have a PVF_SCALAR entry, it may not even be sufficiently aligned
// for a scalar store. In such cases, fall back to byte stores.
if (VectorInfo[i] == PVF_SCALAR && RetTy->isAggregateType()) {
EVT ElementType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
Align ElementTypeAlign =
DL.getABITypeAlign(ElementType.getTypeForEVT(RetTy->getContext()));
Align ElementAlign =
commonAlignment(DL.getABITypeAlign(RetTy), Offsets[i]);
if (ElementAlign < ElementTypeAlign) {
assert(StoreOperands.empty() && "Orphaned operand list.");
Chain = LowerUnalignedStoreRet(DAG, Chain, Offsets[i], ElementType,
RetVal, dl);
// The call to LowerUnalignedStoreRet inserted the necessary SDAG nodes
// into the graph, so just move on to the next element.
continue;
}
}
// New load/store. Record chain and offset operands.
if (VectorInfo[i] & PVF_FIRST) {
assert(StoreOperands.empty() && "Orphaned operand list.");
StoreOperands.push_back(Chain);
StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
}
// Record the value to return.
StoreOperands.push_back(RetVal);
// That's the last element of this store op.
if (VectorInfo[i] & PVF_LAST) {
NVPTXISD::NodeType Op;
unsigned NumElts = StoreOperands.size() - 2;
switch (NumElts) {
case 1:
Op = NVPTXISD::StoreRetval;
break;
case 2:
Op = NVPTXISD::StoreRetvalV2;
break;
case 4:
Op = NVPTXISD::StoreRetvalV4;
break;
default:
llvm_unreachable("Invalid vector info.");
}
// Adjust type of load/store op if we've extended the scalar
// return value.
EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
Chain = DAG.getMemIntrinsicNode(
Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
// Cleanup vector state.
StoreOperands.clear();
}
}
return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
}
void NVPTXTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
if (Constraint.size() > 1)
return;
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
// TgtMemIntrinsic
// because we need the information that is only available in the "Value" type
// of destination
// pointer. In particular, the address space information.
bool NVPTXTargetLowering::getTgtMemIntrinsic(
IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF, unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::nvvm_match_all_sync_i32p:
case Intrinsic::nvvm_match_all_sync_i64p:
Info.opc = ISD::INTRINSIC_W_CHAIN;
// memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
// in order to model data exchange with other threads, but perform no real
// memory accesses.
Info.memVT = MVT::i1;
// Our result depends on both our and other thread's arguments.
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
return true;
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8f16;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(4);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4f16;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64:
case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::f64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2f64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v4f16;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v8f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v8i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(8);
return true;
}
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v2f64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align = Align(16);
return true;
}
case Intrinsic::nvvm_atomic_add_gen_f_cta:
case Intrinsic::nvvm_atomic_add_gen_f_sys:
case Intrinsic::nvvm_atomic_add_gen_i_cta:
case Intrinsic::nvvm_atomic_add_gen_i_sys:
case Intrinsic::nvvm_atomic_and_gen_i_cta:
case Intrinsic::nvvm_atomic_and_gen_i_sys:
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
case Intrinsic::nvvm_atomic_max_gen_i_cta:
case Intrinsic::nvvm_atomic_max_gen_i_sys:
case Intrinsic::nvvm_atomic_min_gen_i_cta:
case Intrinsic::nvvm_atomic_min_gen_i_sys:
case Intrinsic::nvvm_atomic_or_gen_i_cta:
case Intrinsic::nvvm_atomic_or_gen_i_sys:
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
auto &DL = I.getDataLayout();
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = getValueType(DL, I.getType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p: {
auto &DL = I.getDataLayout();
Info.opc = ISD::INTRINSIC_W_CHAIN;
if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
Info.memVT = getValueType(DL, I.getType());
else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
Info.memVT = getPointerTy(DL);
else
Info.memVT = getValueType(DL, I.getType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
return true;
}
case Intrinsic::nvvm_tex_1d_v4f32_s32:
case Intrinsic::nvvm_tex_1d_v4f32_f32:
case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_2d_v4f32_s32:
case Intrinsic::nvvm_tex_2d_v4f32_f32:
case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_3d_v4f32_s32:
case Intrinsic::nvvm_tex_3d_v4f32_f32:
case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_cube_v4f32_f32:
case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4f32;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_tex_1d_v4s32_s32:
case Intrinsic::nvvm_tex_1d_v4s32_f32:
case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_2d_v4s32_s32:
case Intrinsic::nvvm_tex_2d_v4s32_f32:
case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_3d_v4s32_s32:
case Intrinsic::nvvm_tex_3d_v4s32_f32:
case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_cube_v4s32_f32:
case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_cube_v4u32_f32:
case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_1d_v4u32_s32:
case Intrinsic::nvvm_tex_1d_v4u32_f32:
case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_2d_v4u32_s32:
case Intrinsic::nvvm_tex_2d_v4u32_f32:
case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_3d_v4u32_s32:
case Intrinsic::nvvm_tex_3d_v4u32_f32:
case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4i32;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i8_clamp:
case Intrinsic::nvvm_suld_1d_v2i8_clamp:
case Intrinsic::nvvm_suld_1d_v4i8_clamp:
case Intrinsic::nvvm_suld_1d_array_i8_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
case Intrinsic::nvvm_suld_2d_i8_clamp:
case Intrinsic::nvvm_suld_2d_v2i8_clamp:
case Intrinsic::nvvm_suld_2d_v4i8_clamp:
case Intrinsic::nvvm_suld_2d_array_i8_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
case Intrinsic::nvvm_suld_3d_i8_clamp:
case Intrinsic::nvvm_suld_3d_v2i8_clamp:
case Intrinsic::nvvm_suld_3d_v4i8_clamp:
case Intrinsic::nvvm_suld_1d_i8_trap:
case Intrinsic::nvvm_suld_1d_v2i8_trap:
case Intrinsic::nvvm_suld_1d_v4i8_trap:
case Intrinsic::nvvm_suld_1d_array_i8_trap:
case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
case Intrinsic::nvvm_suld_2d_i8_trap:
case Intrinsic::nvvm_suld_2d_v2i8_trap:
case Intrinsic::nvvm_suld_2d_v4i8_trap:
case Intrinsic::nvvm_suld_2d_array_i8_trap:
case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
case Intrinsic::nvvm_suld_3d_i8_trap:
case Intrinsic::nvvm_suld_3d_v2i8_trap:
case Intrinsic::nvvm_suld_3d_v4i8_trap:
case Intrinsic::nvvm_suld_1d_i8_zero:
case Intrinsic::nvvm_suld_1d_v2i8_zero:
case Intrinsic::nvvm_suld_1d_v4i8_zero:
case Intrinsic::nvvm_suld_1d_array_i8_zero:
case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
case Intrinsic::nvvm_suld_2d_i8_zero:
case Intrinsic::nvvm_suld_2d_v2i8_zero:
case Intrinsic::nvvm_suld_2d_v4i8_zero:
case Intrinsic::nvvm_suld_2d_array_i8_zero:
case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
case Intrinsic::nvvm_suld_3d_i8_zero:
case Intrinsic::nvvm_suld_3d_v2i8_zero:
case Intrinsic::nvvm_suld_3d_v4i8_zero:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i8;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i16_clamp:
case Intrinsic::nvvm_suld_1d_v2i16_clamp:
case Intrinsic::nvvm_suld_1d_v4i16_clamp:
case Intrinsic::nvvm_suld_1d_array_i16_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
case Intrinsic::nvvm_suld_2d_i16_clamp:
case Intrinsic::nvvm_suld_2d_v2i16_clamp:
case Intrinsic::nvvm_suld_2d_v4i16_clamp:
case Intrinsic::nvvm_suld_2d_array_i16_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
case Intrinsic::nvvm_suld_3d_i16_clamp:
case Intrinsic::nvvm_suld_3d_v2i16_clamp:
case Intrinsic::nvvm_suld_3d_v4i16_clamp:
case Intrinsic::nvvm_suld_1d_i16_trap:
case Intrinsic::nvvm_suld_1d_v2i16_trap:
case Intrinsic::nvvm_suld_1d_v4i16_trap:
case Intrinsic::nvvm_suld_1d_array_i16_trap:
case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
case Intrinsic::nvvm_suld_2d_i16_trap:
case Intrinsic::nvvm_suld_2d_v2i16_trap:
case Intrinsic::nvvm_suld_2d_v4i16_trap:
case Intrinsic::nvvm_suld_2d_array_i16_trap:
case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
case Intrinsic::nvvm_suld_3d_i16_trap:
case Intrinsic::nvvm_suld_3d_v2i16_trap:
case Intrinsic::nvvm_suld_3d_v4i16_trap:
case Intrinsic::nvvm_suld_1d_i16_zero:
case Intrinsic::nvvm_suld_1d_v2i16_zero:
case Intrinsic::nvvm_suld_1d_v4i16_zero:
case Intrinsic::nvvm_suld_1d_array_i16_zero:
case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
case Intrinsic::nvvm_suld_2d_i16_zero:
case Intrinsic::nvvm_suld_2d_v2i16_zero:
case Intrinsic::nvvm_suld_2d_v4i16_zero:
case Intrinsic::nvvm_suld_2d_array_i16_zero:
case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
case Intrinsic::nvvm_suld_3d_i16_zero:
case Intrinsic::nvvm_suld_3d_v2i16_zero:
case Intrinsic::nvvm_suld_3d_v4i16_zero:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i16;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i32_clamp:
case Intrinsic::nvvm_suld_1d_v2i32_clamp:
case Intrinsic::nvvm_suld_1d_v4i32_clamp:
case Intrinsic::nvvm_suld_1d_array_i32_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
case Intrinsic::nvvm_suld_2d_i32_clamp:
case Intrinsic::nvvm_suld_2d_v2i32_clamp:
case Intrinsic::nvvm_suld_2d_v4i32_clamp:
case Intrinsic::nvvm_suld_2d_array_i32_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
case Intrinsic::nvvm_suld_3d_i32_clamp:
case Intrinsic::nvvm_suld_3d_v2i32_clamp:
case Intrinsic::nvvm_suld_3d_v4i32_clamp:
case Intrinsic::nvvm_suld_1d_i32_trap:
case Intrinsic::nvvm_suld_1d_v2i32_trap:
case Intrinsic::nvvm_suld_1d_v4i32_trap:
case Intrinsic::nvvm_suld_1d_array_i32_trap:
case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
case Intrinsic::nvvm_suld_2d_i32_trap:
case Intrinsic::nvvm_suld_2d_v2i32_trap:
case Intrinsic::nvvm_suld_2d_v4i32_trap:
case Intrinsic::nvvm_suld_2d_array_i32_trap:
case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
case Intrinsic::nvvm_suld_3d_i32_trap:
case Intrinsic::nvvm_suld_3d_v2i32_trap:
case Intrinsic::nvvm_suld_3d_v4i32_trap:
case Intrinsic::nvvm_suld_1d_i32_zero:
case Intrinsic::nvvm_suld_1d_v2i32_zero:
case Intrinsic::nvvm_suld_1d_v4i32_zero:
case Intrinsic::nvvm_suld_1d_array_i32_zero:
case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
case Intrinsic::nvvm_suld_2d_i32_zero:
case Intrinsic::nvvm_suld_2d_v2i32_zero:
case Intrinsic::nvvm_suld_2d_v4i32_zero:
case Intrinsic::nvvm_suld_2d_array_i32_zero:
case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
case Intrinsic::nvvm_suld_3d_i32_zero:
case Intrinsic::nvvm_suld_3d_v2i32_zero:
case Intrinsic::nvvm_suld_3d_v4i32_zero:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_suld_1d_i64_clamp:
case Intrinsic::nvvm_suld_1d_v2i64_clamp:
case Intrinsic::nvvm_suld_1d_array_i64_clamp:
case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
case Intrinsic::nvvm_suld_2d_i64_clamp:
case Intrinsic::nvvm_suld_2d_v2i64_clamp:
case Intrinsic::nvvm_suld_2d_array_i64_clamp:
case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
case Intrinsic::nvvm_suld_3d_i64_clamp:
case Intrinsic::nvvm_suld_3d_v2i64_clamp:
case Intrinsic::nvvm_suld_1d_i64_trap:
case Intrinsic::nvvm_suld_1d_v2i64_trap:
case Intrinsic::nvvm_suld_1d_array_i64_trap:
case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
case Intrinsic::nvvm_suld_2d_i64_trap:
case Intrinsic::nvvm_suld_2d_v2i64_trap:
case Intrinsic::nvvm_suld_2d_array_i64_trap:
case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
case Intrinsic::nvvm_suld_3d_i64_trap:
case Intrinsic::nvvm_suld_3d_v2i64_trap:
case Intrinsic::nvvm_suld_1d_i64_zero:
case Intrinsic::nvvm_suld_1d_v2i64_zero:
case Intrinsic::nvvm_suld_1d_array_i64_zero:
case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
case Intrinsic::nvvm_suld_2d_i64_zero:
case Intrinsic::nvvm_suld_2d_v2i64_zero:
case Intrinsic::nvvm_suld_2d_array_i64_zero:
case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
case Intrinsic::nvvm_suld_3d_i64_zero:
case Intrinsic::nvvm_suld_3d_v2i64_zero:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i64;
Info.ptrVal = nullptr;
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align = Align(16);
return true;
case Intrinsic::nvvm_tcgen05_ld_16x64b_x1:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x1:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v1i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v4i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v8i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v16i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v32i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v64i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::v128i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOLoad;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v2i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v4i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v8i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v16i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v32i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v64i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: {
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = MVT::v128i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.flags = MachineMemOperand::MOStore;
Info.align.reset();
return true;
}
}
return false;
}
/// getFunctionParamOptimizedAlign - since function arguments are passed via
/// .param space, we may want to increase their alignment in a way that
/// ensures that we can effectively vectorize their loads & stores. We can
/// increase alignment only if the function has internal or has private
/// linkage as for other linkage types callers may already rely on default
/// alignment. To allow using 128-bit vectorized loads/stores, this function
/// ensures that alignment is 16 or greater.
Align NVPTXTargetLowering::getFunctionParamOptimizedAlign(
const Function *F, Type *ArgTy, const DataLayout &DL) const {
// Capping the alignment to 128 bytes as that is the maximum alignment
// supported by PTX.
const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy));
// If a function has linkage different from internal or private, we
// must use default ABI alignment as external users rely on it. Same
// for a function that may be called from a function pointer.
if (!F || !F->hasLocalLinkage() ||
F->hasAddressTaken(/*Users=*/nullptr,
/*IgnoreCallbackUses=*/false,
/*IgnoreAssumeLikeCalls=*/true,
/*IgnoreLLVMUsed=*/true))
return ABITypeAlign;
assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
return std::max(Align(16), ABITypeAlign);
}
/// Helper for computing alignment of a device function byval parameter.
Align NVPTXTargetLowering::getFunctionByValParamAlign(
const Function *F, Type *ArgTy, Align InitialAlign,
const DataLayout &DL) const {
Align ArgAlign = InitialAlign;
// Try to increase alignment to enhance vectorization options.
if (F)
ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
// Old ptx versions have a bug. When PTX code takes address of
// byval parameter with alignment < 4, ptxas generates code to
// spill argument into memory. Alas on sm_50+ ptxas generates
// SASS code that fails with misaligned access. To work around
// the problem, make sure that we align byval parameters by at
// least 4. This bug seems to be fixed at least starting from
// ptxas > 9.0.
// TODO: remove this after verifying the bug is not reproduced
// on non-deprecated ptxas versions.
if (ForceMinByValParamAlign)
ArgAlign = std::max(ArgAlign, Align(4));
return ArgAlign;
}
// Helper for getting a function parameter name. Name is composed from
// its index and the function name. Negative index corresponds to special
// parameter (unsized array) used for passing variable arguments.
std::string NVPTXTargetLowering::getParamName(const Function *F,
int Idx) const {
std::string ParamName;
raw_string_ostream ParamStr(ParamName);
ParamStr << getTargetMachine().getSymbol(F)->getName();
if (Idx < 0)
ParamStr << "_vararg";
else
ParamStr << "_param_" << Idx;
return ParamName;
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
/// Used to guide target specific optimizations, like loop strength reduction
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
/// (CodeGenPrepare.cpp)
bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// AddrMode - This represents an addressing mode of:
// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
//
// The legal address modes are
// - [avar]
// - [areg]
// - [areg+immoff]
// - [immAddr]
// immoff must fit in a signed 32-bit int
if (!APInt(64, AM.BaseOffs).isSignedIntN(32))
return false;
if (AM.BaseGV)
return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
switch (AM.Scale) {
case 0: // "r", "r+i" or "i" is allowed
break;
case 1:
if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
return false;
// Otherwise we have r+i.
break;
default:
// No scale > 1 is allowed
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// NVPTX Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
NVPTXTargetLowering::ConstraintType
NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'b':
case 'r':
case 'h':
case 'c':
case 'l':
case 'f':
case 'd':
case 'q':
case '0':
case 'N':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'b':
return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
case 'c':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'h':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'r':
return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
case 'l':
case 'N':
return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
case 'q': {
if (STI.getSmVersion() < 70)
report_fatal_error("Inline asm with 128 bit operands is only "
"supported for sm_70 and higher!");
return std::make_pair(0U, &NVPTX::Int128RegsRegClass);
}
case 'f':
return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
case 'd':
return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
//===----------------------------------------------------------------------===//
// NVPTX DAG Combining
//===----------------------------------------------------------------------===//
bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
CodeGenOptLevel OptLevel) const {
// Always honor command-line argument
if (FMAContractLevelOpt.getNumOccurrences() > 0)
return FMAContractLevelOpt > 0;
// Do not contract if we're not optimizing the code.
if (OptLevel == CodeGenOptLevel::None)
return false;
// Honor TargetOptions flags that explicitly say fusion is okay.
if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
return true;
return allowUnsafeFPMath(MF);
}
bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
// Honor TargetOptions flags that explicitly say unsafe math is okay.
if (MF.getTarget().Options.UnsafeFPMath)
return true;
// Allow unsafe math if unsafe-fp-math attribute explicitly says so.
const Function &F = MF.getFunction();
return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
}
static bool isConstZero(const SDValue &Operand) {
const auto *Const = dyn_cast<ConstantSDNode>(Operand);
return Const && Const->getZExtValue() == 0;
}
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
/// operands N0 and N1. This is a helper for PerformADDCombine that is
/// called with the default operands, and if that fails, with commuted
/// operands.
static SDValue
PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N0.getValueType();
// Since integer multiply-add costs the same as integer multiply
// but is more costly than integer add, do the fusion only when
// the mul is only used in the add.
// TODO: this may not be true for later architectures, consider relaxing this
if (!N0.getNode()->hasOneUse())
return SDValue();
// fold (add (select cond, 0, (mul a, b)), c)
// -> (select cond, c, (add (mul a, b), c))
//
if (N0.getOpcode() == ISD::SELECT) {
unsigned ZeroOpNum;
if (isConstZero(N0->getOperand(1)))
ZeroOpNum = 1;
else if (isConstZero(N0->getOperand(2)))
ZeroOpNum = 2;
else
return SDValue();
SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1);
if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse())
return SDValue();
SDLoc DL(N);
SDValue Mul =
DCI.DAG.getNode(ISD::MUL, DL, VT, M->getOperand(0), M->getOperand(1));
SDValue MAD = DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, N1);
return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0),
((ZeroOpNum == 1) ? N1 : MAD),
((ZeroOpNum == 1) ? MAD : N1));
}
return SDValue();
}
static SDValue
PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOptLevel OptLevel) {
EVT VT = N0.getValueType();
if (N0.getOpcode() == ISD::FMUL) {
const auto *TLI = static_cast<const NVPTXTargetLowering *>(
&DCI.DAG.getTargetLoweringInfo());
if (!(TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel) ||
(N->getFlags().hasAllowContract() &&
N0->getFlags().hasAllowContract())))
return SDValue();
// For floating point:
// Do the fusion only when the mul has less than 5 uses and all
// are add.
// The heuristic is that if a use is not an add, then that use
// cannot be fused into fma, therefore mul is still needed anyway.
// If there are more than 4 uses, even if they are all add, fusing
// them will increase register pressue.
//
int numUses = 0;
int nonAddCount = 0;
for (const SDNode *User : N0.getNode()->users()) {
numUses++;
if (User->getOpcode() != ISD::FADD)
++nonAddCount;
if (numUses >= 5)
return SDValue();
}
if (nonAddCount) {
int orderNo = N->getIROrder();
int orderNo2 = N0.getNode()->getIROrder();
// simple heuristics here for considering potential register
// pressure, the logics here is that the differnce are used
// to measure the distance between def and use, the longer distance
// more likely cause register pressure.
if (orderNo - orderNo2 < 500)
return SDValue();
// Now, check if at least one of the FMUL's operands is live beyond the
// node N, which guarantees that the FMA will not increase register
// pressure at node N.
bool opIsLive = false;
const SDNode *left = N0.getOperand(0).getNode();
const SDNode *right = N0.getOperand(1).getNode();
if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
opIsLive = true;
if (!opIsLive)
for (const SDNode *User : left->users()) {
int orderNo3 = User->getIROrder();
if (orderNo3 > orderNo) {
opIsLive = true;
break;
}
}
if (!opIsLive)
for (const SDNode *User : right->users()) {
int orderNo3 = User->getIROrder();
if (orderNo3 > orderNo) {
opIsLive = true;
break;
}
}
if (!opIsLive)
return SDValue();
}
return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0),
N0.getOperand(1), N1);
}
return SDValue();
}
static SDValue PerformStoreCombineHelper(SDNode *N, std::size_t Front,
std::size_t Back) {
if (all_of(N->ops().drop_front(Front).drop_back(Back),
[](const SDUse &U) { return U.get()->isUndef(); }))
// Operand 0 is the previous value in the chain. Cannot return EntryToken
// as the previous value will become unused and eliminated later.
return N->getOperand(0);
return SDValue();
}
static SDValue PerformStoreParamCombine(SDNode *N) {
// Operands from the 3rd to the 2nd last one are the values to be stored.
// {Chain, ArgID, Offset, Val, Glue}
return PerformStoreCombineHelper(N, 3, 1);
}
static SDValue PerformStoreRetvalCombine(SDNode *N) {
// Operands from the 2nd to the last one are the values to be stored
return PerformStoreCombineHelper(N, 2, 0);
}
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
///
static SDValue PerformADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOptLevel OptLevel) {
if (OptLevel == CodeGenOptLevel::None)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Skip non-integer, non-scalar case
EVT VT = N0.getValueType();
if (VT.isVector() || VT != MVT::i32)
return SDValue();
// First try with the default operand order.
if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI))
return Result;
// If that didn't work, try again with the operands commuted.
return PerformADDCombineWithOperands(N, N1, N0, DCI);
}
/// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD.
///
static SDValue PerformFADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOptLevel OptLevel) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64))
return SDValue();
// First try with the default operand order.
if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel))
return Result;
// If that didn't work, try again with the operands commuted.
return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel);
}
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// The type legalizer turns a vector load of i8 values into a zextload to i16
// registers, optionally ANY_EXTENDs it (if target type is integer),
// and ANDs off the high 8 bits. Since we turn this load into a
// target-specific DAG node, the DAG combiner fails to eliminate these AND
// nodes. Do that here.
SDValue Val = N->getOperand(0);
SDValue Mask = N->getOperand(1);
if (isa<ConstantSDNode>(Val)) {
std::swap(Val, Mask);
}
SDValue AExt;
// Convert BFE-> truncate i16 -> and 255
// To just BFE-> truncate i16, as the value already has all the bits in the
// right places.
if (Val.getOpcode() == ISD::TRUNCATE) {
SDValue BFE = Val.getOperand(0);
if (BFE.getOpcode() != NVPTXISD::BFE)
return SDValue();
ConstantSDNode *BFEBits = dyn_cast<ConstantSDNode>(BFE.getOperand(0));
if (!BFEBits)
return SDValue();
uint64_t BFEBitsVal = BFEBits->getZExtValue();
ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
if (!MaskCnst) {
// Not an AND with a constant
return SDValue();
}
uint64_t MaskVal = MaskCnst->getZExtValue();
if (MaskVal != (uint64_t(1) << BFEBitsVal) - 1)
return SDValue();
// If we get here, the AND is unnecessary. Just replace it with the trunc
DCI.CombineTo(N, Val, false);
}
// Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
if (Val.getOpcode() == ISD::ANY_EXTEND) {
AExt = Val;
Val = Val->getOperand(0);
}
if (Val->getOpcode() == NVPTXISD::LoadV2 ||
Val->getOpcode() == NVPTXISD::LoadV4) {
ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
if (!MaskCnst) {
// Not an AND with a constant
return SDValue();
}
uint64_t MaskVal = MaskCnst->getZExtValue();
if (MaskVal != 0xff) {
// Not an AND that chops off top 8 bits
return SDValue();
}
MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
if (!Mem) {
// Not a MemSDNode?!?
return SDValue();
}
EVT MemVT = Mem->getMemoryVT();
if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
// We only handle the i8 case
return SDValue();
}
unsigned ExtType = Val->getConstantOperandVal(Val->getNumOperands() - 1);
if (ExtType == ISD::SEXTLOAD) {
// If for some reason the load is a sextload, the and is needed to zero
// out the high 8 bits
return SDValue();
}
bool AddTo = false;
if (AExt.getNode() != nullptr) {
// Re-insert the ext as a zext.
Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
AExt.getValueType(), Val);
AddTo = true;
}
// If we get here, the AND is unnecessary. Just replace it with the load
DCI.CombineTo(N, Val, AddTo);
}
return SDValue();
}
static SDValue PerformREMCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOptLevel OptLevel) {
assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
// Don't do anything at less than -O2.
if (OptLevel < CodeGenOptLevel::Default)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
bool IsSigned = N->getOpcode() == ISD::SREM;
unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
const SDValue &Num = N->getOperand(0);
const SDValue &Den = N->getOperand(1);
for (const SDNode *U : Num->users()) {
if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
U->getOperand(1) == Den) {
// Num % Den -> Num - (Num / Den) * Den
return DAG.getNode(ISD::SUB, DL, VT, Num,
DAG.getNode(ISD::MUL, DL, VT,
DAG.getNode(DivOpc, DL, VT, Num, Den),
Den));
}
}
return SDValue();
}
enum OperandSignedness {
Signed = 0,
Unsigned,
Unknown
};
/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
/// that can be demoted to \p OptSize bits without loss of information. The
/// signedness of the operand, if determinable, is placed in \p S.
static bool IsMulWideOperandDemotable(SDValue Op,
unsigned OptSize,
OperandSignedness &S) {
S = Unknown;
if (Op.getOpcode() == ISD::SIGN_EXTEND ||
Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
EVT OrigVT = Op.getOperand(0).getValueType();
if (OrigVT.getFixedSizeInBits() <= OptSize) {
S = Signed;
return true;
}
} else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
EVT OrigVT = Op.getOperand(0).getValueType();
if (OrigVT.getFixedSizeInBits() <= OptSize) {
S = Unsigned;
return true;
}
}
return false;
}
/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
/// be demoted to \p OptSize bits without loss of information. If the operands
/// contain a constant, it should appear as the RHS operand. The signedness of
/// the operands is placed in \p IsSigned.
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
unsigned OptSize,
bool &IsSigned) {
OperandSignedness LHSSign;
// The LHS operand must be a demotable op
if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
return false;
// We should have been able to determine the signedness from the LHS
if (LHSSign == Unknown)
return false;
IsSigned = (LHSSign == Signed);
// The RHS can be a demotable op or a constant
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
const APInt &Val = CI->getAPIntValue();
if (LHSSign == Unsigned) {
return Val.isIntN(OptSize);
} else {
return Val.isSignedIntN(OptSize);
}
} else {
OperandSignedness RHSSign;
if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
return false;
return LHSSign == RHSSign;
}
}
/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
/// amount.
static SDValue TryMULWIDECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT MulType = N->getValueType(0);
if (MulType != MVT::i32 && MulType != MVT::i64) {
return SDValue();
}
SDLoc DL(N);
unsigned OptSize = MulType.getSizeInBits() >> 1;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// Canonicalize the multiply so the constant (if any) is on the right
if (N->getOpcode() == ISD::MUL) {
if (isa<ConstantSDNode>(LHS)) {
std::swap(LHS, RHS);
}
}
// If we have a SHL, determine the actual multiply amount
if (N->getOpcode() == ISD::SHL) {
ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
if (!ShlRHS) {
return SDValue();
}
APInt ShiftAmt = ShlRHS->getAPIntValue();
unsigned BitWidth = MulType.getSizeInBits();
if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
} else {
return SDValue();
}
}
bool Signed;
// Verify that our operands are demotable
if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
return SDValue();
}
EVT DemotedVT;
if (MulType == MVT::i32) {
DemotedVT = MVT::i16;
} else {
DemotedVT = MVT::i32;
}
// Truncate the operands to the correct size. Note that these are just for
// type consistency and will (likely) be eliminated in later phases.
SDValue TruncLHS =
DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
SDValue TruncRHS =
DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
unsigned Opc;
if (Signed) {
Opc = NVPTXISD::MUL_WIDE_SIGNED;
} else {
Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
}
return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
}
static bool isConstOne(const SDValue &Operand) {
const auto *Const = dyn_cast<ConstantSDNode>(Operand);
return Const && Const->getZExtValue() == 1;
}
static SDValue matchMADConstOnePattern(SDValue Add) {
if (Add->getOpcode() != ISD::ADD)
return SDValue();
if (isConstOne(Add->getOperand(0)))
return Add->getOperand(1);
if (isConstOne(Add->getOperand(1)))
return Add->getOperand(0);
return SDValue();
}
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL,
TargetLowering::DAGCombinerInfo &DCI) {
if (SDValue Y = matchMADConstOnePattern(Add)) {
SDValue Mul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
return DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, X);
}
return SDValue();
}
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT,
SDLoc DL,
TargetLowering::DAGCombinerInfo &DCI) {
if (Select->getOpcode() != ISD::SELECT)
return SDValue();
SDValue Cond = Select->getOperand(0);
unsigned ConstOpNo;
if (isConstOne(Select->getOperand(1)))
ConstOpNo = 1;
else if (isConstOne(Select->getOperand(2)))
ConstOpNo = 2;
else
return SDValue();
SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1);
// Do not combine if the resulting sequence is not obviously profitable.
if (!matchMADConstOnePattern(Y))
return SDValue();
SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond,
(ConstOpNo == 1) ? X : NewMul,
(ConstOpNo == 1) ? NewMul : X);
}
static SDValue
PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N0.getValueType();
if (VT.isVector())
return SDValue();
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
SDLoc DL(N);
// (mul x, (add y, 1)) -> (add (mul x, y), x)
if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI))
return Res;
if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI))
return Res;
// (mul x, (select y, 1)) -> (select (mul x, y), x)
if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI))
return Res;
if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI))
return Res;
return SDValue();
}
/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
static SDValue PerformMULCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOptLevel OptLevel) {
if (OptLevel == CodeGenOptLevel::None)
return SDValue();
if (SDValue Ret = TryMULWIDECombine(N, DCI))
return Ret;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
return PerformMULCombineWithOperands(N, N0, N1, DCI);
}
/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
static SDValue PerformSHLCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
CodeGenOptLevel OptLevel) {
if (OptLevel > CodeGenOptLevel::None) {
// Try mul.wide combining at OptLevel > 0
if (SDValue Ret = TryMULWIDECombine(N, DCI))
return Ret;
}
return SDValue();
}
static SDValue PerformSETCCCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
unsigned int SmVersion) {
EVT CCType = N->getValueType(0);
SDValue A = N->getOperand(0);
SDValue B = N->getOperand(1);
EVT AType = A.getValueType();
if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
return SDValue();
if (A.getValueType() == MVT::v2bf16 && SmVersion < 90)
return SDValue();
SDLoc DL(N);
// setp.f16x2 returns two scalar predicates, which we need to
// convert back to v2i1. The returned result will be scalarized by
// the legalizer, but the comparison will remain a single vector
// instruction.
SDValue CCNode = DCI.DAG.getNode(
A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2
: NVPTXISD::SETP_BF16X2,
DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
CCNode.getValue(1));
}
static SDValue PerformEXTRACTCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue Vector = N->getOperand(0);
if (Vector->getOpcode() == ISD::FREEZE)
Vector = Vector->getOperand(0);
SDLoc DL(N);
EVT VectorVT = Vector.getValueType();
if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() &&
IsPTXVectorType(VectorVT.getSimpleVT()))
return SDValue(); // Native vector loads already combine nicely w/
// extract_vector_elt.
// Don't mess with singletons or v2*16, v4i8 and v8i8 types, we already
// handle them OK.
if (VectorVT.getVectorNumElements() == 1 || Isv2x16VT(VectorVT) ||
VectorVT == MVT::v4i8 || VectorVT == MVT::v8i8)
return SDValue();
// Don't mess with undef values as sra may be simplified to 0, not undef.
if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode()))
return SDValue();
uint64_t VectorBits = VectorVT.getSizeInBits();
// We only handle the types we can extract in-register.
if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
return SDValue();
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1));
// Index == 0 is handled by generic DAG combiner.
if (!Index || Index->getZExtValue() == 0)
return SDValue();
MVT IVT = MVT::getIntegerVT(VectorBits);
EVT EltVT = VectorVT.getVectorElementType();
EVT EltIVT = EltVT.changeTypeToInteger();
uint64_t EltBits = EltVT.getScalarSizeInBits();
SDValue Result = DCI.DAG.getNode(
ISD::TRUNCATE, DL, EltIVT,
DCI.DAG.getNode(
ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector),
DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT)));
// If element has non-integer type, bitcast it back to the expected type.
if (EltVT != EltIVT)
Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result);
// Past legalizer, we may need to extent i8 -> i16 to match the register type.
if (EltVT != N->getValueType(0))
Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result);
return Result;
}
static SDValue PerformVSELECTCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue VA = N->getOperand(1);
EVT VectorVT = VA.getValueType();
if (VectorVT != MVT::v4i8)
return SDValue();
// We need to split vselect into individual per-element operations Because we
// use BFE/BFI instruction for byte extraction/insertion, we do end up with
// 32-bit values, so we may as well do comparison as i32 to avoid conversions
// to/from i16 normally used for i8 values.
SmallVector<SDValue, 4> E;
SDLoc DL(N);
SDValue VCond = N->getOperand(0);
SDValue VB = N->getOperand(2);
for (int I = 0; I < 4; ++I) {
SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond,
DCI.DAG.getConstant(I, DL, MVT::i32));
SDValue EA = DCI.DAG.getAnyExtOrTrunc(
DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA,
DCI.DAG.getConstant(I, DL, MVT::i32)),
DL, MVT::i32);
SDValue EB = DCI.DAG.getAnyExtOrTrunc(
DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB,
DCI.DAG.getConstant(I, DL, MVT::i32)),
DL, MVT::i32);
E.push_back(DCI.DAG.getAnyExtOrTrunc(
DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8));
}
return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E);
}
static SDValue
PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
auto VT = N->getValueType(0);
if (!DCI.isAfterLegalizeDAG() || !Isv2x16VT(VT))
return SDValue();
auto Op0 = N->getOperand(0);
auto Op1 = N->getOperand(1);
// Start out by assuming we want to take the lower 2 bytes of each i32
// operand.
uint64_t Op0Bytes = 0x10;
uint64_t Op1Bytes = 0x54;
std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
{&Op1, &Op1Bytes}};
// Check that each operand is an i16, truncated from an i32 operand. We'll
// select individual bytes from those original operands. Optionally, fold in a
// shift right of that original operand.
for (auto &[Op, OpBytes] : OpData) {
// Eat up any bitcast
if (Op->getOpcode() == ISD::BITCAST)
*Op = Op->getOperand(0);
if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE &&
Op->getOperand(0).getValueType() == MVT::i32))
return SDValue();
// If the truncate has multiple uses, this optimization can increase
// register pressure
if (!Op->hasOneUse())
return SDValue();
*Op = Op->getOperand(0);
// Optionally, fold in a shift-right of the original operand and let permute
// pick the two higher bytes of the original value directly.
if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Op->getOperand(1))) {
if (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue() == 16) {
// Shift the PRMT byte selector to pick upper bytes from each respective
// value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76
assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
"PRMT selector values out of range");
*OpBytes += 0x22;
*Op = Op->getOperand(0);
}
}
}
SDLoc DL(N);
auto &DAG = DCI.DAG;
auto PRMT = DAG.getNode(
NVPTXISD::PRMT, DL, MVT::v4i8,
{Op0, Op1, DAG.getConstant((Op1Bytes << 8) | Op0Bytes, DL, MVT::i32),
DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32)});
return DAG.getNode(ISD::BITCAST, DL, VT, PRMT);
}
static SDValue combineADDRSPACECAST(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
auto *ASCN1 = cast<AddrSpaceCastSDNode>(N);
if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(ASCN1->getOperand(0))) {
assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace());
// Fold asc[B -> A](asc[A -> B](x)) -> x
if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace())
return ASCN2->getOperand(0);
}
return SDValue();
}
SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
CodeGenOptLevel OptLevel = getTargetMachine().getOptLevel();
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
return PerformADDCombine(N, DCI, OptLevel);
case ISD::FADD:
return PerformFADDCombine(N, DCI, OptLevel);
case ISD::MUL:
return PerformMULCombine(N, DCI, OptLevel);
case ISD::SHL:
return PerformSHLCombine(N, DCI, OptLevel);
case ISD::AND:
return PerformANDCombine(N, DCI);
case ISD::UREM:
case ISD::SREM:
return PerformREMCombine(N, DCI, OptLevel);
case ISD::SETCC:
return PerformSETCCCombine(N, DCI, STI.getSmVersion());
case NVPTXISD::StoreRetval:
case NVPTXISD::StoreRetvalV2:
case NVPTXISD::StoreRetvalV4:
return PerformStoreRetvalCombine(N);
case NVPTXISD::StoreParam:
case NVPTXISD::StoreParamV2:
case NVPTXISD::StoreParamV4:
return PerformStoreParamCombine(N);
case ISD::EXTRACT_VECTOR_ELT:
return PerformEXTRACTCombine(N, DCI);
case ISD::VSELECT:
return PerformVSELECTCombine(N, DCI);
case ISD::BUILD_VECTOR:
return PerformBUILD_VECTORCombine(N, DCI);
case ISD::ADDRSPACECAST:
return combineADDRSPACECAST(N, DCI);
}
return SDValue();
}
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
// Handle bitcasting to v2i8 without hitting the default promotion
// strategy which goes through stack memory.
SDValue Op(Node, 0);
EVT ToVT = Op->getValueType(0);
if (ToVT != MVT::v2i8) {
return;
}
// Bitcast to i16 and unpack elements into a vector
SDLoc DL(Node);
SDValue AsInt = DAG.getBitcast(MVT::i16, Op->getOperand(0));
SDValue Vec0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, AsInt);
SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
SDValue Vec1 =
DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
DAG.getNode(ISD::SRL, DL, MVT::i16, {AsInt, Const8}));
Results.push_back(
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i8, {Vec0, Vec1}));
}
/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
LoadSDNode *LD = cast<LoadSDNode>(N);
const EVT ResVT = LD->getValueType(0);
const EVT MemVT = LD->getMemoryVT();
// If we're doing sign/zero extension as part of the load, avoid lowering to
// a LoadV node. TODO: consider relaxing this restriction.
if (ResVT != MemVT)
return;
const auto NumEltsAndEltVT = getVectorLoweringShape(ResVT);
if (!NumEltsAndEltVT)
return;
const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
Align Alignment = LD->getAlign();
const auto &TD = DAG.getDataLayout();
Align PrefAlign = TD.getPrefTypeAlign(MemVT.getTypeForEVT(*DAG.getContext()));
if (Alignment < PrefAlign) {
// This load is not sufficiently aligned, so bail out and let this vector
// load be scalarized. Note that we may still be able to emit smaller
// vector loads. For example, if we are loading a <4 x float> with an
// alignment of 8, this check will fail but the legalizer will try again
// with 2 x <2 x float>, which will succeed with an alignment of 8.
return;
}
// Since LoadV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propagate the "real" type as the memory type.
const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT;
unsigned Opcode;
SDVTList LdResVTs;
switch (NumElts) {
default:
return;
case 2:
Opcode = NVPTXISD::LoadV2;
LdResVTs = DAG.getVTList(LoadEltVT, LoadEltVT, MVT::Other);
break;
case 4: {
Opcode = NVPTXISD::LoadV4;
LdResVTs =
DAG.getVTList({LoadEltVT, LoadEltVT, LoadEltVT, LoadEltVT, MVT::Other});
break;
}
}
SDLoc DL(LD);
// Copy regular operands
SmallVector<SDValue, 8> OtherOps(LD->ops());
// The select routine does not have access to the LoadSDNode instance, so
// pass along the extension information
OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
LD->getMemoryVT(),
LD->getMemOperand());
SmallVector<SDValue> ScalarRes;
if (EltVT.isVector()) {
assert(EVT(EltVT.getVectorElementType()) == ResVT.getVectorElementType());
assert(NumElts * EltVT.getVectorNumElements() ==
ResVT.getVectorNumElements());
// Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back
// into individual elements.
for (const unsigned I : llvm::seq(NumElts)) {
SDValue SubVector = NewLD.getValue(I);
DAG.ExtractVectorElements(SubVector, ScalarRes);
}
} else {
for (const unsigned I : llvm::seq(NumElts)) {
SDValue Res = NewLD.getValue(I);
if (LoadEltVT != EltVT)
Res = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
ScalarRes.push_back(Res);
}
}
SDValue LoadChain = NewLD.getValue(NumElts);
const MVT BuildVecVT =
MVT::getVectorVT(EltVT.getScalarType(), ScalarRes.size());
SDValue BuildVec = DAG.getBuildVector(BuildVecVT, DL, ScalarRes);
SDValue LoadValue = DAG.getBitcast(ResVT, BuildVec);
Results.append({LoadValue, LoadChain});
}
// Lower vector return type of tcgen05.ld intrinsics
static void ReplaceTcgen05Ld(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results,
bool hasOffset = false) {
SDLoc DL(N);
EVT ResVT = N->getValueType(0);
if (!ResVT.isVector())
return; // already legalized.
const unsigned NumElts = ResVT.getVectorNumElements();
// Create the return type of the instructions
SmallVector<EVT, 5> ListVTs;
for (unsigned i = 0; i < NumElts; ++i)
ListVTs.push_back(MVT::i32);
ListVTs.push_back(N->getValueType(1)); // Chain
SDVTList ResVTs = DAG.getVTList(ListVTs);
SmallVector<SDValue, 8> Ops{N->getOperand(0), N->getOperand(1),
N->getOperand(2)};
if (hasOffset) {
Ops.push_back(N->getOperand(3)); // offset
Ops.push_back(N->getOperand(4)); // Pack flag
} else
Ops.push_back(N->getOperand(3)); // Pack flag
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
SDValue NewNode =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, ResVTs, Ops,
MemSD->getMemoryVT(), MemSD->getMemOperand());
// split the vector result
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewNode.getValue(i);
ScalarRes.push_back(Res);
}
SDValue Chain = NewNode.getValue(NumElts);
SDValue BuildVector = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
Results.push_back(BuildVector); // Build Vector
Results.push_back(Chain); // Chain
}
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
SDValue Chain = N->getOperand(0);
SDValue Intrin = N->getOperand(1);
SDLoc DL(N);
// Get the intrinsic ID
unsigned IntrinNo = Intrin.getNode()->getAsZExtVal();
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p: {
EVT ResVT = N->getValueType(0);
if (ResVT.isVector()) {
// Vector LDG/LDU
unsigned NumElts = ResVT.getVectorNumElements();
EVT EltVT = ResVT.getVectorElementType();
// Since LDU/LDG are target nodes, we cannot rely on DAG type
// legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propagate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
switch (NumElts) {
default:
return;
case 2:
Opcode = NVPTXISD::LDUV2;
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
Opcode = NVPTXISD::LDUV4;
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs);
break;
}
}
SmallVector<SDValue, 8> OtherOps;
// Copy regular operands
OtherOps.push_back(Chain); // Chain
// Skip operand 1 (intrinsic ID)
// Others
OtherOps.append(N->op_begin() + 2, N->op_end());
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
MemSD->getMemoryVT(),
MemSD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res =
DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec =
DAG.getBuildVector(ResVT, DL, ScalarRes);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
} else {
// i8 LDG/LDU
assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
"Custom handling of non-i8 ldu/ldg?");
// Just copy all operands as-is
SmallVector<SDValue, 4> Ops(N->ops());
// Force output to i16
SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
// We make sure the memory type is i8, which will be used during isel
// to select the proper instruction.
SDValue NewLD =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
MVT::i8, MemSD->getMemOperand());
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
NewLD.getValue(0)));
Results.push_back(NewLD.getValue(1));
}
return;
}
case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
return ReplaceTcgen05Ld(N, DAG, Results);
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64:
case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128:
return ReplaceTcgen05Ld(N, DAG, Results, /* Offset */ true);
}
}
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
// Change the CopyFromReg to output 2 64-bit results instead of a 128-bit
// result so that it can pass the legalization
SDLoc DL(N);
SDValue Chain = N->getOperand(0);
SDValue Reg = N->getOperand(1);
SDValue Glue = N->getOperand(2);
assert(Reg.getValueType() == MVT::i128 &&
"Custom lowering for CopyFromReg with 128-bit reg only");
SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1),
N->getValueType(2)};
SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue};
SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps);
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
{NewValue.getValue(0), NewValue.getValue(1)});
Results.push_back(Pair);
Results.push_back(NewValue.getValue(2));
Results.push_back(NewValue.getValue(3));
}
void NVPTXTargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
report_fatal_error("Unhandled custom legalization");
case ISD::BITCAST:
ReplaceBITCAST(N, DAG, Results);
return;
case ISD::LOAD:
ReplaceLoadVector(N, DAG, Results);
return;
case ISD::INTRINSIC_W_CHAIN:
ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
return;
case ISD::CopyFromReg:
ReplaceCopyFromReg_128(N, DAG, Results);
return;
}
}
NVPTXTargetLowering::AtomicExpansionKind
NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Type *Ty = AI->getValOperand()->getType();
if (AI->isFloatingPointOperation()) {
if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) {
if (Ty->isHalfTy() && STI.getSmVersion() >= 70 &&
STI.getPTXVersion() >= 63)
return AtomicExpansionKind::None;
if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 &&
STI.getPTXVersion() >= 78)
return AtomicExpansionKind::None;
if (Ty->isFloatTy())
return AtomicExpansionKind::None;
if (Ty->isDoubleTy() && STI.hasAtomAddF64())
return AtomicExpansionKind::None;
}
return AtomicExpansionKind::CmpXChg;
}
assert(Ty->isIntegerTy() && "Ty should be integer at this point");
auto ITy = cast<llvm::IntegerType>(Ty);
switch (AI->getOperation()) {
default:
return AtomicExpansionKind::CmpXChg;
case AtomicRMWInst::BinOp::And:
case AtomicRMWInst::BinOp::Or:
case AtomicRMWInst::BinOp::Xor:
case AtomicRMWInst::BinOp::Xchg:
switch (ITy->getBitWidth()) {
case 8:
case 16:
return AtomicExpansionKind::CmpXChg;
case 32:
return AtomicExpansionKind::None;
case 64:
if (STI.hasAtomBitwise64())
return AtomicExpansionKind::None;
return AtomicExpansionKind::CmpXChg;
default:
llvm_unreachable("unsupported width encountered");
}
case AtomicRMWInst::BinOp::Add:
case AtomicRMWInst::BinOp::Sub:
case AtomicRMWInst::BinOp::Max:
case AtomicRMWInst::BinOp::Min:
case AtomicRMWInst::BinOp::UMax:
case AtomicRMWInst::BinOp::UMin:
switch (ITy->getBitWidth()) {
case 8:
case 16:
return AtomicExpansionKind::CmpXChg;
case 32:
return AtomicExpansionKind::None;
case 64:
if (STI.hasAtomMinMax64())
return AtomicExpansionKind::None;
return AtomicExpansionKind::CmpXChg;
default:
llvm_unreachable("unsupported width encountered");
}
case AtomicRMWInst::BinOp::UIncWrap:
case AtomicRMWInst::BinOp::UDecWrap:
switch (ITy->getBitWidth()) {
case 32:
return AtomicExpansionKind::None;
case 8:
case 16:
case 64:
return AtomicExpansionKind::CmpXChg;
default:
llvm_unreachable("unsupported width encountered");
}
}
return AtomicExpansionKind::CmpXChg;
}
bool NVPTXTargetLowering::shouldInsertFencesForAtomic(
const Instruction *I) const {
auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
// When CAS bitwidth is not supported on the hardware, the CAS is emulated
// using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce
// the memory order using explicit fences around the retry loop.
// The memory order of natively supported CAS operations can be enforced
// by lowering to an atom.cas with the right memory synchronizing effect.
// However, atom.cas only supports relaxed, acquire, release and acq_rel.
// So we also use explicit fences for enforcing memory order for
// seq_cast CAS with natively-supported bitwidths.
return CI &&
(cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() <
STI.getMinCmpXchgSizeInBits() ||
CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent);
}
AtomicOrdering NVPTXTargetLowering::atomicOperationOrderAfterFenceSplit(
const Instruction *I) const {
auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
bool BitwidthSupportedAndIsSeqCst =
CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent &&
cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() >=
STI.getMinCmpXchgSizeInBits();
return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire
: AtomicOrdering::Monotonic;
}
Instruction *NVPTXTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (!isa<AtomicCmpXchgInst>(Inst))
return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord);
// Specialize for cmpxchg
// Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated
if (isReleaseOrStronger(Ord))
return Ord == AtomicOrdering::SequentiallyConsistent
? Builder.CreateFence(AtomicOrdering::SequentiallyConsistent)
: Builder.CreateFence(AtomicOrdering::Release);
return nullptr;
}
Instruction *NVPTXTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
// Specialize for cmpxchg
if (!isa<AtomicCmpXchgInst>(Inst))
return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord);
auto CASWidth =
cast<IntegerType>(
dyn_cast<AtomicCmpXchgInst>(Inst)->getCompareOperand()->getType())
->getBitWidth();
// Do not emit a trailing fence for cmpxchg seq_cst which are not emulated
if (isAcquireOrStronger(Ord) &&
(Ord != AtomicOrdering::SequentiallyConsistent ||
CASWidth < STI.getMinCmpXchgSizeInBits()))
return Builder.CreateFence(AtomicOrdering::Acquire);
return nullptr;
}
// Rather than default to SINT when both UINT and SINT are custom, we only
// change the opcode when UINT is not legal and SINT is. UINT is preferred when
// both are custom since unsigned CVT instructions can lead to slightly better
// SASS code with fewer instructions.
unsigned NVPTXTargetLowering::getPreferredFPToIntOpcode(unsigned Op, EVT FromVT,
EVT ToVT) const {
if (isOperationLegal(Op, ToVT))
return Op;
switch (Op) {
case ISD::FP_TO_UINT:
if (isOperationLegal(ISD::FP_TO_SINT, ToVT))
return ISD::FP_TO_SINT;
break;
case ISD::STRICT_FP_TO_UINT:
if (isOperationLegal(ISD::STRICT_FP_TO_SINT, ToVT))
return ISD::STRICT_FP_TO_SINT;
break;
case ISD::VP_FP_TO_UINT:
if (isOperationLegal(ISD::VP_FP_TO_SINT, ToVT))
return ISD::VP_FP_TO_SINT;
break;
default:
break;
}
return Op;
}
// Pin NVPTXTargetObjectFile's vtables to this file.
NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default;
MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
return getDataSection();
}