| //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that NVPTX uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "NVPTXISelLowering.h" |
| #include "MCTargetDesc/NVPTXBaseInfo.h" |
| #include "NVPTX.h" |
| #include "NVPTXSubtarget.h" |
| #include "NVPTXTargetMachine.h" |
| #include "NVPTXTargetObjectFile.h" |
| #include "NVPTXUtilities.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetCallingConv.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/CodeGenTypes/MachineValueType.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/FPEnv.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/NVPTXAddrSpace.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstdint> |
| #include <iterator> |
| #include <optional> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "nvptx-lower" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> sched4reg( |
| "nvptx-sched4reg", |
| cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); |
| |
| static cl::opt<unsigned> FMAContractLevelOpt( |
| "nvptx-fma-level", cl::Hidden, |
| cl::desc("NVPTX Specific: FMA contraction (0: don't do it" |
| " 1: do it 2: do it aggressively"), |
| cl::init(2)); |
| |
| static cl::opt<int> UsePrecDivF32( |
| "nvptx-prec-divf32", cl::Hidden, |
| cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" |
| " IEEE Compliant F32 div.rnd if available."), |
| cl::init(2)); |
| |
| static cl::opt<bool> UsePrecSqrtF32( |
| "nvptx-prec-sqrtf32", cl::Hidden, |
| cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), |
| cl::init(true)); |
| |
| /// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it |
| /// does NOT use lg2.approx for log2, so this is disabled by default. |
| static cl::opt<bool> UseApproxLog2F32( |
| "nvptx-approx-log2f32", |
| cl::desc("NVPTX Specific: whether to use lg2.approx for log2"), |
| cl::init(false)); |
| |
| static cl::opt<bool> ForceMinByValParamAlign( |
| "nvptx-force-min-byval-param-align", cl::Hidden, |
| cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" |
| " params of device functions."), |
| cl::init(false)); |
| |
| int NVPTXTargetLowering::getDivF32Level() const { |
| if (UsePrecDivF32.getNumOccurrences() > 0) { |
| // If nvptx-prec-div32=N is used on the command-line, always honor it |
| return UsePrecDivF32; |
| } else { |
| // Otherwise, use div.approx if fast math is enabled |
| if (getTargetMachine().Options.UnsafeFPMath) |
| return 0; |
| else |
| return 2; |
| } |
| } |
| |
| bool NVPTXTargetLowering::usePrecSqrtF32() const { |
| if (UsePrecSqrtF32.getNumOccurrences() > 0) { |
| // If nvptx-prec-sqrtf32 is used on the command-line, always honor it |
| return UsePrecSqrtF32; |
| } else { |
| // Otherwise, use sqrt.approx if fast math is enabled |
| return !getTargetMachine().Options.UnsafeFPMath; |
| } |
| } |
| |
| bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { |
| return MF.getDenormalMode(APFloat::IEEEsingle()).Output == |
| DenormalMode::PreserveSign; |
| } |
| |
| static bool IsPTXVectorType(MVT VT) { |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::v2i1: |
| case MVT::v4i1: |
| case MVT::v2i8: |
| case MVT::v4i8: |
| case MVT::v8i8: // <2 x i8x4> |
| case MVT::v16i8: // <4 x i8x4> |
| case MVT::v2i16: |
| case MVT::v4i16: |
| case MVT::v8i16: // <4 x i16x2> |
| case MVT::v2i32: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v2f16: |
| case MVT::v4f16: |
| case MVT::v8f16: // <4 x f16x2> |
| case MVT::v2bf16: |
| case MVT::v4bf16: |
| case MVT::v8bf16: // <4 x bf16x2> |
| case MVT::v2f32: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| return true; |
| } |
| } |
| |
| static bool Is16bitsType(MVT VT) { |
| return (VT.SimpleTy == MVT::f16 || VT.SimpleTy == MVT::bf16 || |
| VT.SimpleTy == MVT::i16); |
| } |
| |
| // When legalizing vector loads/stores, this function is called, which does two |
| // things: |
| // 1. Determines Whether the vector is something we want to custom lower, |
| // std::nullopt is returned if we do not want to custom lower it. |
| // 2. If we do want to handle it, returns two parameters: |
| // - unsigned int NumElts - The number of elements in the final vector |
| // - EVT EltVT - The type of the elements in the final vector |
| static std::optional<std::pair<unsigned int, MVT>> |
| getVectorLoweringShape(EVT VectorEVT) { |
| if (!VectorEVT.isSimple()) |
| return std::nullopt; |
| const MVT VectorVT = VectorEVT.getSimpleVT(); |
| |
| if (!VectorVT.isVector()) { |
| if (VectorVT == MVT::i128 || VectorVT == MVT::f128) |
| return {{2, MVT::i64}}; |
| return std::nullopt; |
| } |
| |
| const MVT EltVT = VectorVT.getVectorElementType(); |
| const unsigned NumElts = VectorVT.getVectorNumElements(); |
| |
| // We only handle "native" vector sizes for now, e.g. <4 x double> is not |
| // legal. We can (and should) split that into 2 stores of <2 x double> here |
| // but I'm leaving that as a TODO for now. |
| switch (VectorVT.SimpleTy) { |
| default: |
| return std::nullopt; |
| case MVT::v2i8: |
| case MVT::v2i16: |
| case MVT::v2i32: |
| case MVT::v2i64: |
| case MVT::v2f16: |
| case MVT::v2bf16: |
| case MVT::v2f32: |
| case MVT::v2f64: |
| case MVT::v4i8: |
| case MVT::v4i16: |
| case MVT::v4i32: |
| case MVT::v4f16: |
| case MVT::v4bf16: |
| case MVT::v4f32: |
| // This is a "native" vector type |
| return std::pair(NumElts, EltVT); |
| case MVT::v8i8: // <2 x i8x4> |
| case MVT::v8f16: // <4 x f16x2> |
| case MVT::v8bf16: // <4 x bf16x2> |
| case MVT::v8i16: // <4 x i16x2> |
| case MVT::v16i8: // <4 x i8x4> |
| // This can be upsized into a "native" vector type. |
| // Despite vectors like v8i8, v16i8, v8i16 being within the bit-limit for |
| // total load/store size, PTX syntax only supports v2/v4. Thus, we can't use |
| // vectorized loads/stores with the actual element type for i8/i16 as that |
| // would require v8/v16 variants that do not exist. |
| // In order to load/store such vectors efficiently, here in Type |
| // Legalization, we split the vector into word-sized chunks (v2x16/v4i8). |
| // Later, we will lower to PTX as vectors of b32. |
| |
| // Number of elements to pack in one word. |
| const unsigned NPerWord = 32 / EltVT.getSizeInBits(); |
| |
| return std::pair(NumElts / NPerWord, MVT::getVectorVT(EltVT, NPerWord)); |
| } |
| |
| llvm_unreachable("All cases in switch should return."); |
| } |
| |
| /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive |
| /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors |
| /// into their primitive components. |
| /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the |
| /// same number of types as the Ins/Outs arrays in LowerFormalArguments, |
| /// LowerCall, and LowerReturn. |
| static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, |
| Type *Ty, SmallVectorImpl<EVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> *Offsets = nullptr, |
| uint64_t StartingOffset = 0) { |
| SmallVector<EVT, 16> TempVTs; |
| SmallVector<uint64_t, 16> TempOffsets; |
| |
| // Special case for i128 - decompose to (i64, i64) |
| if (Ty->isIntegerTy(128) || Ty->isFP128Ty()) { |
| ValueVTs.append({MVT::i64, MVT::i64}); |
| |
| if (Offsets) |
| Offsets->append({StartingOffset + 0, StartingOffset + 8}); |
| |
| return; |
| } |
| |
| // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| auto const *SL = DL.getStructLayout(STy); |
| auto ElementNum = 0; |
| for(auto *EI : STy->elements()) { |
| ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets, |
| StartingOffset + SL->getElementOffset(ElementNum)); |
| ++ElementNum; |
| } |
| return; |
| } |
| |
| // Given an array type, recursively traverse the elements with custom ComputePTXValueVTs. |
| if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| Type *EltTy = ATy->getElementType(); |
| uint64_t EltSize = DL.getTypeAllocSize(EltTy); |
| for (int I : llvm::seq<int>(ATy->getNumElements())) |
| ComputePTXValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, StartingOffset + I * EltSize); |
| return; |
| } |
| |
| ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset); |
| for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) { |
| EVT VT = TempVTs[i]; |
| uint64_t Off = TempOffsets[i]; |
| // Split vectors into individual elements, except for v2f16, which |
| // we will pass as a single scalar. |
| if (VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| // We require power-of-2 sized vectors because |
| // TargetLoweringBase::getVectorTypeBreakdown() which is invoked in |
| // ComputePTXValueVTs() cannot currently break down non-power-of-2 sized |
| // vectors. |
| if ((Is16bitsType(EltVT.getSimpleVT())) && NumElts % 2 == 0 && |
| isPowerOf2_32(NumElts)) { |
| // Vectors with an even number of f16 elements will be passed to |
| // us as an array of v2f16/v2bf16 elements. We must match this so we |
| // stay in sync with Ins/Outs. |
| switch (EltVT.getSimpleVT().SimpleTy) { |
| case MVT::f16: |
| EltVT = MVT::v2f16; |
| break; |
| case MVT::bf16: |
| EltVT = MVT::v2bf16; |
| break; |
| case MVT::i16: |
| EltVT = MVT::v2i16; |
| break; |
| default: |
| llvm_unreachable("Unexpected type"); |
| } |
| NumElts /= 2; |
| } else if (EltVT.getSimpleVT() == MVT::i8 && |
| ((NumElts % 4 == 0 && isPowerOf2_32(NumElts)) || |
| NumElts == 3)) { |
| // v*i8 are formally lowered as v4i8 |
| EltVT = MVT::v4i8; |
| NumElts = (NumElts + 3) / 4; |
| } else if (EltVT.getSimpleVT() == MVT::i8 && NumElts == 2) { |
| // v2i8 is promoted to v2i16 |
| NumElts = 1; |
| EltVT = MVT::v2i16; |
| } |
| for (unsigned j = 0; j != NumElts; ++j) { |
| ValueVTs.push_back(EltVT); |
| if (Offsets) |
| Offsets->push_back(Off + j * EltVT.getStoreSize()); |
| } |
| } else { |
| ValueVTs.push_back(VT); |
| if (Offsets) |
| Offsets->push_back(Off); |
| } |
| } |
| } |
| |
| /// PromoteScalarIntegerPTX |
| /// Used to make sure the arguments/returns are suitable for passing |
| /// and promote them to a larger size if they're not. |
| /// |
| /// The promoted type is placed in \p PromoteVT if the function returns true. |
| static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT) { |
| if (VT.isScalarInteger()) { |
| switch (PowerOf2Ceil(VT.getFixedSizeInBits())) { |
| default: |
| llvm_unreachable( |
| "Promotion is not suitable for scalars of size larger than 64-bits"); |
| case 1: |
| *PromotedVT = MVT::i1; |
| break; |
| case 2: |
| case 4: |
| case 8: |
| *PromotedVT = MVT::i8; |
| break; |
| case 16: |
| *PromotedVT = MVT::i16; |
| break; |
| case 32: |
| *PromotedVT = MVT::i32; |
| break; |
| case 64: |
| *PromotedVT = MVT::i64; |
| break; |
| } |
| return EVT(*PromotedVT) != VT; |
| } |
| return false; |
| } |
| |
| // Check whether we can merge loads/stores of some of the pieces of a |
| // flattened function parameter or return value into a single vector |
| // load/store. |
| // |
| // The flattened parameter is represented as a list of EVTs and |
| // offsets, and the whole structure is aligned to ParamAlignment. This |
| // function determines whether we can load/store pieces of the |
| // parameter starting at index Idx using a single vectorized op of |
| // size AccessSize. If so, it returns the number of param pieces |
| // covered by the vector op. Otherwise, it returns 1. |
| static unsigned CanMergeParamLoadStoresStartingAt( |
| unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs, |
| const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) { |
| |
| // Can't vectorize if param alignment is not sufficient. |
| if (ParamAlignment < AccessSize) |
| return 1; |
| // Can't vectorize if offset is not aligned. |
| if (Offsets[Idx] & (AccessSize - 1)) |
| return 1; |
| |
| EVT EltVT = ValueVTs[Idx]; |
| unsigned EltSize = EltVT.getStoreSize(); |
| |
| // Element is too large to vectorize. |
| if (EltSize >= AccessSize) |
| return 1; |
| |
| unsigned NumElts = AccessSize / EltSize; |
| // Can't vectorize if AccessBytes if not a multiple of EltSize. |
| if (AccessSize != EltSize * NumElts) |
| return 1; |
| |
| // We don't have enough elements to vectorize. |
| if (Idx + NumElts > ValueVTs.size()) |
| return 1; |
| |
| // PTX ISA can only deal with 2- and 4-element vector ops. |
| if (NumElts != 4 && NumElts != 2) |
| return 1; |
| |
| for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { |
| // Types do not match. |
| if (ValueVTs[j] != EltVT) |
| return 1; |
| |
| // Elements are not contiguous. |
| if (Offsets[j] - Offsets[j - 1] != EltSize) |
| return 1; |
| } |
| // OK. We can vectorize ValueVTs[i..i+NumElts) |
| return NumElts; |
| } |
| |
| // Flags for tracking per-element vectorization state of loads/stores |
| // of a flattened function parameter or return value. |
| enum ParamVectorizationFlags { |
| PVF_INNER = 0x0, // Middle elements of a vector. |
| PVF_FIRST = 0x1, // First element of the vector. |
| PVF_LAST = 0x2, // Last element of the vector. |
| // Scalar is effectively a 1-element vector. |
| PVF_SCALAR = PVF_FIRST | PVF_LAST |
| }; |
| |
| // Computes whether and how we can vectorize the loads/stores of a |
| // flattened function parameter or return value. |
| // |
| // The flattened parameter is represented as the list of ValueVTs and |
| // Offsets, and is aligned to ParamAlignment bytes. We return a vector |
| // of the same size as ValueVTs indicating how each piece should be |
| // loaded/stored (i.e. as a scalar, or as part of a vector |
| // load/store). |
| static SmallVector<ParamVectorizationFlags, 16> |
| VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs, |
| const SmallVectorImpl<uint64_t> &Offsets, |
| Align ParamAlignment, bool IsVAArg = false) { |
| // Set vector size to match ValueVTs and mark all elements as |
| // scalars by default. |
| SmallVector<ParamVectorizationFlags, 16> VectorInfo; |
| VectorInfo.assign(ValueVTs.size(), PVF_SCALAR); |
| |
| if (IsVAArg) |
| return VectorInfo; |
| |
| // Check what we can vectorize using 128/64/32-bit accesses. |
| for (int I = 0, E = ValueVTs.size(); I != E; ++I) { |
| // Skip elements we've already processed. |
| assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state."); |
| for (unsigned AccessSize : {16, 8, 4, 2}) { |
| unsigned NumElts = CanMergeParamLoadStoresStartingAt( |
| I, AccessSize, ValueVTs, Offsets, ParamAlignment); |
| // Mark vectorized elements. |
| switch (NumElts) { |
| default: |
| llvm_unreachable("Unexpected return value"); |
| case 1: |
| // Can't vectorize using this size, try next smaller size. |
| continue; |
| case 2: |
| assert(I + 1 < E && "Not enough elements."); |
| VectorInfo[I] = PVF_FIRST; |
| VectorInfo[I + 1] = PVF_LAST; |
| I += 1; |
| break; |
| case 4: |
| assert(I + 3 < E && "Not enough elements."); |
| VectorInfo[I] = PVF_FIRST; |
| VectorInfo[I + 1] = PVF_INNER; |
| VectorInfo[I + 2] = PVF_INNER; |
| VectorInfo[I + 3] = PVF_LAST; |
| I += 3; |
| break; |
| } |
| // Break out of the inner loop because we've already succeeded |
| // using largest possible AccessSize. |
| break; |
| } |
| } |
| return VectorInfo; |
| } |
| |
| // NVPTXTargetLowering Constructor. |
| NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, |
| const NVPTXSubtarget &STI) |
| : TargetLowering(TM), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) { |
| // always lower memset, memcpy, and memmove intrinsics to load/store |
| // instructions, rather |
| // then generating calls to memset, mempcy or memmove. |
| MaxStoresPerMemset = MaxStoresPerMemsetOptSize = (unsigned)0xFFFFFFFF; |
| MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = (unsigned) 0xFFFFFFFF; |
| MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = (unsigned) 0xFFFFFFFF; |
| |
| setBooleanContents(ZeroOrNegativeOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // Jump is Expensive. Don't create extra control flow for 'and', 'or' |
| // condition branches. |
| setJumpIsExpensive(true); |
| |
| // Wide divides are _very_ slow. Try to reduce the width of the divide if |
| // possible. |
| addBypassSlowDiv(64, 32); |
| |
| // By default, use the Source scheduling |
| if (sched4reg) |
| setSchedulingPreference(Sched::RegPressure); |
| else |
| setSchedulingPreference(Sched::Source); |
| |
| auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoF16Action) { |
| bool IsOpSupported = STI.allowFP16Math(); |
| switch (Op) { |
| // Several FP16 instructions are available on sm_80 only. |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXIMUM: |
| case ISD::FMINIMUM: |
| IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70; |
| break; |
| case ISD::FEXP2: |
| IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70; |
| break; |
| } |
| setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action); |
| }; |
| |
| auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoBF16Action) { |
| bool IsOpSupported = STI.hasNativeBF16Support(Op); |
| setOperationAction( |
| Op, VT, IsOpSupported ? Action : NoBF16Action); |
| }; |
| |
| auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoI16x2Action) { |
| bool IsOpSupported = false; |
| // instructions are available on sm_90 only |
| switch (Op) { |
| case ISD::ADD: |
| case ISD::SMAX: |
| case ISD::SMIN: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80; |
| break; |
| } |
| setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action); |
| }; |
| |
| addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass); |
| addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass); |
| addRegisterClass(MVT::v2i16, &NVPTX::Int32RegsRegClass); |
| addRegisterClass(MVT::v4i8, &NVPTX::Int32RegsRegClass); |
| addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass); |
| addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass); |
| addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass); |
| addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass); |
| addRegisterClass(MVT::f16, &NVPTX::Int16RegsRegClass); |
| addRegisterClass(MVT::v2f16, &NVPTX::Int32RegsRegClass); |
| addRegisterClass(MVT::bf16, &NVPTX::Int16RegsRegClass); |
| addRegisterClass(MVT::v2bf16, &NVPTX::Int32RegsRegClass); |
| |
| // Conversion to/from FP16/FP16x2 is always legal. |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand); |
| |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
| if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31) |
| setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal); |
| |
| setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); |
| |
| // Conversion to/from BFP16/BFP16x2 is always legal. |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2bf16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2bf16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2bf16, Expand); |
| |
| setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand); |
| setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote); |
| if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote) |
| AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32); |
| |
| // Conversion to/from i16/i16x2 is always legal. |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i16, Expand); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); |
| |
| // Custom conversions to/from v2i8. |
| setOperationAction(ISD::BITCAST, MVT::v2i8, Custom); |
| |
| // Only logical ops can be done on v4i8 directly, others must be done |
| // elementwise. |
| setOperationAction( |
| {ISD::ABS, ISD::ADD, ISD::ADDC, ISD::ADDE, |
| ISD::BITREVERSE, ISD::CTLZ, ISD::CTPOP, ISD::CTTZ, |
| ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FSHL, ISD::FSHR, |
| ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::PARITY, |
| ISD::ROTL, ISD::ROTR, ISD::SADDO, ISD::SADDO_CARRY, |
| ISD::SADDSAT, ISD::SDIV, ISD::SDIVREM, ISD::SELECT_CC, |
| ISD::SETCC, ISD::SHL, ISD::SINT_TO_FP, ISD::SMAX, |
| ISD::SMIN, ISD::SMULO, ISD::SMUL_LOHI, ISD::SRA, |
| ISD::SREM, ISD::SRL, ISD::SSHLSAT, ISD::SSUBO, |
| ISD::SSUBO_CARRY, ISD::SSUBSAT, ISD::SUB, ISD::SUBC, |
| ISD::SUBE, ISD::UADDO, ISD::UADDO_CARRY, ISD::UADDSAT, |
| ISD::UDIV, ISD::UDIVREM, ISD::UINT_TO_FP, ISD::UMAX, |
| ISD::UMIN, ISD::UMULO, ISD::UMUL_LOHI, ISD::UREM, |
| ISD::USHLSAT, ISD::USUBO, ISD::USUBO_CARRY, ISD::VSELECT, |
| ISD::USUBSAT}, |
| MVT::v4i8, Expand); |
| |
| // Operations not directly supported by NVPTX. |
| for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32, |
| MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, MVT::v4i8, |
| MVT::i32, MVT::i64}) { |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::BR_CC, VT, Expand); |
| } |
| |
| // Some SIGN_EXTEND_INREG can be done using cvt instruction. |
| // For others we will expand to a SHL/SRA pair. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom); |
| |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| |
| setOperationAction({ISD::ROTL, ISD::ROTR}, |
| {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64}, |
| Expand); |
| |
| if (STI.hasHWROT32()) { |
| setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Legal); |
| setOperationAction({ISD::ROTL, ISD::ROTR, ISD::FSHL, ISD::FSHR}, MVT::i64, |
| Custom); |
| } |
| |
| setOperationAction(ISD::BSWAP, MVT::i16, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| |
| // We want to legalize constant related memmove and memcopy |
| // intrinsics. |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| |
| // Turn FP extload into load/fpextend |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8bf16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8bf16, Expand); |
| // Turn FP truncstore into trunc + store. |
| // FIXME: vector types should also be expanded |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f32, MVT::bf16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::bf16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // PTX does not support load / store predicate registers |
| setOperationAction(ISD::LOAD, MVT::i1, Custom); |
| setOperationAction(ISD::STORE, MVT::i1, Custom); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setTruncStoreAction(VT, MVT::i1, Expand); |
| } |
| |
| setCondCodeAction({ISD::SETNE, ISD::SETEQ, ISD::SETUGE, ISD::SETULE, |
| ISD::SETUGT, ISD::SETULT, ISD::SETGT, ISD::SETLT, |
| ISD::SETGE, ISD::SETLE}, |
| MVT::i1, Expand); |
| |
| // expand extload of vector of integers. |
| setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i16, |
| MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); |
| |
| // This is legal in NVPTX |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f16, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, {MVT::i32, MVT::i64}, Custom); |
| setOperationAction({ISD::STACKRESTORE, ISD::STACKSAVE}, MVT::Other, Custom); |
| |
| // TRAP can be lowered to PTX trap |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| // DEBUGTRAP can be lowered to PTX brkpt |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| |
| // Register custom handling for vector loads/stores |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) |
| if (IsPTXVectorType(VT)) |
| setOperationAction({ISD::LOAD, ISD::STORE, ISD::INTRINSIC_W_CHAIN}, VT, |
| Custom); |
| |
| setOperationAction({ISD::LOAD, ISD::STORE, ISD::INTRINSIC_W_CHAIN}, |
| {MVT::i128, MVT::f128}, Custom); |
| |
| // Support varargs. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| // Custom handling for i8 intrinsics |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); |
| |
| setOperationAction({ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, |
| {MVT::i16, MVT::i32, MVT::i64}, Legal); |
| |
| setOperationAction({ISD::CTPOP, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i16, |
| Promote); |
| setOperationAction({ISD::CTPOP, ISD::CTLZ}, MVT::i32, Legal); |
| setOperationAction({ISD::CTPOP, ISD::CTLZ}, MVT::i64, Custom); |
| |
| setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand); |
| setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand); |
| |
| setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom); |
| |
| // Other arithmetic and logic ops are unsupported. |
| setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SRA, ISD::SRL, ISD::MULHS, |
| ISD::MULHU, ISD::FP_TO_SINT, ISD::FP_TO_UINT, |
| ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::SETCC}, |
| MVT::v2i16, Expand); |
| |
| setOperationAction(ISD::ADDC, MVT::i32, Legal); |
| setOperationAction(ISD::ADDE, MVT::i32, Legal); |
| setOperationAction(ISD::SUBC, MVT::i32, Legal); |
| setOperationAction(ISD::SUBE, MVT::i32, Legal); |
| if (STI.getPTXVersion() >= 43) { |
| setOperationAction(ISD::ADDC, MVT::i64, Legal); |
| setOperationAction(ISD::ADDE, MVT::i64, Legal); |
| setOperationAction(ISD::SUBC, MVT::i64, Legal); |
| setOperationAction(ISD::SUBE, MVT::i64, Legal); |
| } |
| |
| setOperationAction(ISD::CTTZ, MVT::i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v2i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i64, Expand); |
| |
| // PTX does not directly support SELP of i1, so promote to i32 first |
| setOperationAction(ISD::SELECT, MVT::i1, Custom); |
| |
| // PTX cannot multiply two i64s in a single instruction. |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| |
| // We have some custom DAG combine patterns for these nodes |
| setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::EXTRACT_VECTOR_ELT, ISD::FADD, |
| ISD::MUL, ISD::SHL, ISD::SREM, ISD::UREM, ISD::VSELECT, |
| ISD::BUILD_VECTOR, ISD::ADDRSPACECAST}); |
| |
| // setcc for f16x2 and bf16x2 needs special handling to prevent |
| // legalizer's attempt to scalarize it due to v2i1 not being legal. |
| if (STI.allowFP16Math() || STI.hasBF16Math()) |
| setTargetDAGCombine(ISD::SETCC); |
| |
| // Promote fp16 arithmetic if fp16 hardware isn't available or the |
| // user passed --nvptx-no-fp16-math. The flag is useful because, |
| // although sm_53+ GPUs have some sort of FP16 support in |
| // hardware, only sm_53 and sm_60 have full implementation. Others |
| // only have token amount of hardware and are likely to run faster |
| // by using fp32 units instead. |
| for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { |
| setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| // bf16 must be promoted to f32. |
| setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| if (getOperationAction(Op, MVT::bf16) == Promote) |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| } |
| |
| // On SM80, we select add/mul/sub as fma to avoid promotion to float |
| for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) { |
| for (const auto &VT : {MVT::bf16, MVT::v2bf16}) { |
| if (!STI.hasNativeBF16Support(Op) && STI.hasNativeBF16Support(ISD::FMA)) { |
| setOperationAction(Op, VT, Custom); |
| } |
| } |
| } |
| |
| // f16/f16x2 neg was introduced in PTX 60, SM_53. |
| const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 && |
| STI.getPTXVersion() >= 60 && |
| STI.allowFP16Math(); |
| for (const auto &VT : {MVT::f16, MVT::v2f16}) |
| setOperationAction(ISD::FNEG, VT, |
| IsFP16FP16x2NegAvailable ? Legal : Expand); |
| |
| setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand); |
| setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand); |
| // (would be) Library functions. |
| |
| // These map to conversion instructions for scalar FP types. |
| for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, |
| ISD::FROUNDEVEN, ISD::FTRUNC}) { |
| setOperationAction(Op, MVT::f16, Legal); |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setOperationAction(Op, MVT::v2f16, Expand); |
| setOperationAction(Op, MVT::v2bf16, Expand); |
| setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| if (getOperationAction(Op, MVT::bf16) == Promote) |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| } |
| |
| if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) { |
| setOperationAction(ISD::BF16_TO_FP, MVT::f32, Expand); |
| } |
| if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) { |
| setOperationAction(ISD::FP_EXTEND, VT, Custom); |
| setOperationAction(ISD::FP_ROUND, VT, Custom); |
| } |
| } |
| |
| // sm_80 only has conversions between f32 and bf16. Custom lower all other |
| // bf16 conversions. |
| if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) { |
| setOperationAction( |
| {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| VT, Custom); |
| } |
| setOperationAction( |
| {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| MVT::bf16, Custom); |
| } |
| |
| setOperationAction(ISD::FROUND, MVT::f16, Promote); |
| setOperationAction(ISD::FROUND, MVT::v2f16, Expand); |
| setOperationAction(ISD::FROUND, MVT::v2bf16, Expand); |
| setOperationAction(ISD::FROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FROUND, MVT::f64, Custom); |
| setOperationAction(ISD::FROUND, MVT::bf16, Promote); |
| AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32); |
| |
| // 'Expand' implements FCOPYSIGN without calling an external library. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2bf16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| |
| // These map to corresponding instructions for f32/f64. f16 must be |
| // promoted to f32. v2f16 is expanded to f16, which is then promoted |
| // to f32. |
| for (const auto &Op : |
| {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS}) { |
| setOperationAction(Op, MVT::f16, Promote); |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setOperationAction(Op, MVT::v2f16, Expand); |
| setOperationAction(Op, MVT::v2bf16, Expand); |
| setOperationAction(Op, MVT::bf16, Promote); |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| } |
| setOperationAction(ISD::FREM, {MVT::f32, MVT::f64}, Custom); |
| |
| setOperationAction(ISD::FABS, {MVT::f32, MVT::f64}, Legal); |
| if (STI.getPTXVersion() >= 65) { |
| setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand); |
| } else { |
| setOperationAction(ISD::FABS, MVT::f16, Promote); |
| setOperationAction(ISD::FABS, MVT::v2f16, Expand); |
| } |
| setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand); |
| setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote); |
| if (getOperationAction(ISD::FABS, MVT::bf16) == Promote) |
| AddPromotedToType(ISD::FABS, MVT::bf16, MVT::f32); |
| |
| for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) { |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| if (getOperationAction(Op, MVT::bf16) == Promote) |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| } |
| bool SupportsF32MinMaxNaN = |
| STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70; |
| for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) { |
| setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand); |
| setFP16OperationAction(Op, MVT::f16, Legal, Expand); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::bf16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| } |
| |
| // Custom lowering for inline asm with 128-bit operands |
| setOperationAction(ISD::CopyToReg, MVT::i128, Custom); |
| setOperationAction(ISD::CopyFromReg, MVT::i128, Custom); |
| |
| // FEXP2 support: |
| // - f32 |
| // - f16/f16x2 (sm_70+, PTX 7.0+) |
| // - bf16/bf16x2 (sm_90+, PTX 7.8+) |
| // When f16/bf16 types aren't supported, they are promoted/expanded to f32. |
| setOperationAction(ISD::FEXP2, MVT::f32, Legal); |
| setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote); |
| setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand); |
| |
| // FLOG2 supports f32 only |
| // f16/bf16 types aren't supported, but they are promoted/expanded to f32. |
| if (UseApproxLog2F32) { |
| setOperationAction(ISD::FLOG2, MVT::f32, Legal); |
| setOperationPromotedToType(ISD::FLOG2, MVT::f16, MVT::f32); |
| setOperationPromotedToType(ISD::FLOG2, MVT::bf16, MVT::f32); |
| setOperationAction(ISD::FLOG2, {MVT::v2f16, MVT::v2bf16}, Expand); |
| } |
| |
| setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); |
| |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, {MVT::i32, MVT::i64}, Expand); |
| // No FPOW or FREM in PTX. |
| |
| // Now deduce the information based on the above mentioned |
| // actions |
| computeRegisterProperties(STI.getRegisterInfo()); |
| |
| // PTX support for 16-bit CAS is emulated. Only use 32+ |
| setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits()); |
| setMaxAtomicSizeInBitsSupported(64); |
| setMaxDivRemBitWidthSupported(64); |
| |
| // Custom lowering for tcgen05.ld vector operands |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, |
| {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32, |
| MVT::v32i32, MVT::v64i32, MVT::v128i32}, |
| Custom); |
| |
| // Custom lowering for tcgen05.st vector operands |
| setOperationAction(ISD::INTRINSIC_VOID, |
| {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32, |
| MVT::v32i32, MVT::v64i32, MVT::v128i32}, |
| Custom); |
| |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| } |
| |
| const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| |
| #define MAKE_CASE(V) \ |
| case V: \ |
| return #V; |
| |
| switch ((NVPTXISD::NodeType)Opcode) { |
| case NVPTXISD::FIRST_NUMBER: |
| break; |
| |
| MAKE_CASE(NVPTXISD::CALL) |
| MAKE_CASE(NVPTXISD::RET_GLUE) |
| MAKE_CASE(NVPTXISD::LOAD_PARAM) |
| MAKE_CASE(NVPTXISD::Wrapper) |
| MAKE_CASE(NVPTXISD::DeclareParam) |
| MAKE_CASE(NVPTXISD::DeclareScalarParam) |
| MAKE_CASE(NVPTXISD::DeclareRet) |
| MAKE_CASE(NVPTXISD::DeclareScalarRet) |
| MAKE_CASE(NVPTXISD::DeclareRetParam) |
| MAKE_CASE(NVPTXISD::PrintCall) |
| MAKE_CASE(NVPTXISD::PrintConvergentCall) |
| MAKE_CASE(NVPTXISD::PrintCallUni) |
| MAKE_CASE(NVPTXISD::PrintConvergentCallUni) |
| MAKE_CASE(NVPTXISD::LoadParam) |
| MAKE_CASE(NVPTXISD::LoadParamV2) |
| MAKE_CASE(NVPTXISD::LoadParamV4) |
| MAKE_CASE(NVPTXISD::StoreParam) |
| MAKE_CASE(NVPTXISD::StoreParamV2) |
| MAKE_CASE(NVPTXISD::StoreParamV4) |
| MAKE_CASE(NVPTXISD::StoreParamS32) |
| MAKE_CASE(NVPTXISD::StoreParamU32) |
| MAKE_CASE(NVPTXISD::CallArgBegin) |
| MAKE_CASE(NVPTXISD::CallArg) |
| MAKE_CASE(NVPTXISD::LastCallArg) |
| MAKE_CASE(NVPTXISD::CallArgEnd) |
| MAKE_CASE(NVPTXISD::CallVoid) |
| MAKE_CASE(NVPTXISD::CallVal) |
| MAKE_CASE(NVPTXISD::CallSymbol) |
| MAKE_CASE(NVPTXISD::Prototype) |
| MAKE_CASE(NVPTXISD::MoveParam) |
| MAKE_CASE(NVPTXISD::StoreRetval) |
| MAKE_CASE(NVPTXISD::StoreRetvalV2) |
| MAKE_CASE(NVPTXISD::StoreRetvalV4) |
| MAKE_CASE(NVPTXISD::PseudoUseParam) |
| MAKE_CASE(NVPTXISD::UNPACK_VECTOR) |
| MAKE_CASE(NVPTXISD::BUILD_VECTOR) |
| MAKE_CASE(NVPTXISD::RETURN) |
| MAKE_CASE(NVPTXISD::CallSeqBegin) |
| MAKE_CASE(NVPTXISD::CallSeqEnd) |
| MAKE_CASE(NVPTXISD::CallPrototype) |
| MAKE_CASE(NVPTXISD::ProxyReg) |
| MAKE_CASE(NVPTXISD::LoadV2) |
| MAKE_CASE(NVPTXISD::LoadV4) |
| MAKE_CASE(NVPTXISD::LDUV2) |
| MAKE_CASE(NVPTXISD::LDUV4) |
| MAKE_CASE(NVPTXISD::StoreV2) |
| MAKE_CASE(NVPTXISD::StoreV4) |
| MAKE_CASE(NVPTXISD::FSHL_CLAMP) |
| MAKE_CASE(NVPTXISD::FSHR_CLAMP) |
| MAKE_CASE(NVPTXISD::BFE) |
| MAKE_CASE(NVPTXISD::BFI) |
| MAKE_CASE(NVPTXISD::PRMT) |
| MAKE_CASE(NVPTXISD::FCOPYSIGN) |
| MAKE_CASE(NVPTXISD::DYNAMIC_STACKALLOC) |
| MAKE_CASE(NVPTXISD::STACKRESTORE) |
| MAKE_CASE(NVPTXISD::STACKSAVE) |
| MAKE_CASE(NVPTXISD::SETP_F16X2) |
| MAKE_CASE(NVPTXISD::SETP_BF16X2) |
| MAKE_CASE(NVPTXISD::Dummy) |
| MAKE_CASE(NVPTXISD::MUL_WIDE_SIGNED) |
| MAKE_CASE(NVPTXISD::MUL_WIDE_UNSIGNED) |
| MAKE_CASE(NVPTXISD::BrxEnd) |
| MAKE_CASE(NVPTXISD::BrxItem) |
| MAKE_CASE(NVPTXISD::BrxStart) |
| } |
| return nullptr; |
| |
| #undef MAKE_CASE |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { |
| if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| VT.getScalarType() == MVT::i1) |
| return TypeSplitVector; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, |
| int Enabled, int &ExtraSteps, |
| bool &UseOneConst, |
| bool Reciprocal) const { |
| if (!(Enabled == ReciprocalEstimate::Enabled || |
| (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32()))) |
| return SDValue(); |
| |
| if (ExtraSteps == ReciprocalEstimate::Unspecified) |
| ExtraSteps = 0; |
| |
| SDLoc DL(Operand); |
| EVT VT = Operand.getValueType(); |
| bool Ftz = useF32FTZ(DAG.getMachineFunction()); |
| |
| auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(IID, DL, MVT::i32), Operand); |
| }; |
| |
| // The sqrt and rsqrt refinement processes assume we always start out with an |
| // approximation of the rsqrt. Therefore, if we're going to do any refinement |
| // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing |
| // any refinement, we must return a regular sqrt. |
| if (Reciprocal || ExtraSteps > 0) { |
| if (VT == MVT::f32) |
| return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f |
| : Intrinsic::nvvm_rsqrt_approx_f); |
| else if (VT == MVT::f64) |
| return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); |
| else |
| return SDValue(); |
| } else { |
| if (VT == MVT::f32) |
| return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f |
| : Intrinsic::nvvm_sqrt_approx_f); |
| else { |
| // There's no sqrt.approx.f64 instruction, so we emit |
| // reciprocal(rsqrt(x)). This is faster than |
| // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain |
| // x * rsqrt(x).) |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32), |
| MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); |
| } |
| } |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op); |
| auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace()); |
| Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT); |
| return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op); |
| } |
| |
| std::string NVPTXTargetLowering::getPrototype( |
| const DataLayout &DL, Type *retTy, const ArgListTy &Args, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment, |
| std::optional<std::pair<unsigned, const APInt &>> VAInfo, |
| const CallBase &CB, unsigned UniqueCallSite) const { |
| auto PtrVT = getPointerTy(DL); |
| |
| std::string Prototype; |
| raw_string_ostream O(Prototype); |
| O << "prototype_" << UniqueCallSite << " : .callprototype "; |
| |
| if (retTy->getTypeID() == Type::VoidTyID) { |
| O << "()"; |
| } else { |
| O << "("; |
| if ((retTy->isFloatingPointTy() || retTy->isIntegerTy()) && |
| !shouldPassAsArray(retTy)) { |
| unsigned size = 0; |
| if (auto *ITy = dyn_cast<IntegerType>(retTy)) { |
| size = ITy->getBitWidth(); |
| } else { |
| assert(retTy->isFloatingPointTy() && |
| "Floating point type expected here"); |
| size = retTy->getPrimitiveSizeInBits(); |
| } |
| // PTX ABI requires all scalar return values to be at least 32 |
| // bits in size. fp16 normally uses .b16 as its storage type in |
| // PTX, so its size must be adjusted here, too. |
| size = promoteScalarArgumentSize(size); |
| |
| O << ".param .b" << size << " _"; |
| } else if (isa<PointerType>(retTy)) { |
| O << ".param .b" << PtrVT.getSizeInBits() << " _"; |
| } else if (shouldPassAsArray(retTy)) { |
| O << ".param .align " << (retAlignment ? retAlignment->value() : 0) |
| << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]"; |
| } else { |
| llvm_unreachable("Unknown return type"); |
| } |
| O << ") "; |
| } |
| O << "_ ("; |
| |
| bool first = true; |
| |
| unsigned NumArgs = VAInfo ? VAInfo->first : Args.size(); |
| for (unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) { |
| Type *Ty = Args[i].Ty; |
| if (!first) { |
| O << ", "; |
| } |
| first = false; |
| |
| if (!Outs[OIdx].Flags.isByVal()) { |
| if (shouldPassAsArray(Ty)) { |
| Align ParamAlign = |
| getArgumentAlignment(&CB, Ty, i + AttributeList::FirstArgIndex, DL); |
| O << ".param .align " << ParamAlign.value() << " .b8 "; |
| O << "_"; |
| O << "[" << DL.getTypeAllocSize(Ty) << "]"; |
| // update the index for Outs |
| SmallVector<EVT, 16> vtparts; |
| ComputeValueVTs(*this, DL, Ty, vtparts); |
| if (unsigned len = vtparts.size()) |
| OIdx += len - 1; |
| continue; |
| } |
| // i8 types in IR will be i16 types in SDAG |
| assert((getValueType(DL, Ty) == Outs[OIdx].VT || |
| (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && |
| "type mismatch between callee prototype and arguments"); |
| // scalar type |
| unsigned sz = 0; |
| if (isa<IntegerType>(Ty)) { |
| sz = cast<IntegerType>(Ty)->getBitWidth(); |
| sz = promoteScalarArgumentSize(sz); |
| } else if (isa<PointerType>(Ty)) { |
| sz = PtrVT.getSizeInBits(); |
| } else { |
| sz = Ty->getPrimitiveSizeInBits(); |
| } |
| O << ".param .b" << sz << " "; |
| O << "_"; |
| continue; |
| } |
| |
| // Indirect calls need strict ABI alignment so we disable optimizations by |
| // not providing a function to optimize. |
| Type *ETy = Args[i].IndirectType; |
| Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign(); |
| Align ParamByValAlign = |
| getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL); |
| |
| O << ".param .align " << ParamByValAlign.value() << " .b8 "; |
| O << "_"; |
| O << "[" << Outs[OIdx].Flags.getByValSize() << "]"; |
| } |
| |
| if (VAInfo) |
| O << (first ? "" : ",") << " .param .align " << VAInfo->second |
| << " .b8 _[]\n"; |
| O << ")"; |
| if (shouldEmitPTXNoReturn(&CB, *nvTM)) |
| O << " .noreturn"; |
| O << ";"; |
| |
| return Prototype; |
| } |
| |
| Align NVPTXTargetLowering::getFunctionArgumentAlignment( |
| const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const { |
| return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL)); |
| } |
| |
| Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty, |
| unsigned Idx, |
| const DataLayout &DL) const { |
| if (!CB) { |
| // CallSite is zero, fallback to ABI type alignment |
| return DL.getABITypeAlign(Ty); |
| } |
| |
| const Function *DirectCallee = CB->getCalledFunction(); |
| |
| if (!DirectCallee) { |
| // We don't have a direct function symbol, but that may be because of |
| // constant cast instructions in the call. |
| |
| // With bitcast'd call targets, the instruction will be the call |
| if (const auto *CI = dyn_cast<CallInst>(CB)) { |
| // Check if we have call alignment metadata |
| if (MaybeAlign StackAlign = getAlign(*CI, Idx)) |
| return StackAlign.value(); |
| } |
| DirectCallee = getMaybeBitcastedCallee(CB); |
| } |
| |
| // Check for function alignment information if we found that the |
| // ultimate target is a Function |
| if (DirectCallee) |
| return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL); |
| |
| // Call is indirect, fall back to the ABI type alignment |
| return DL.getABITypeAlign(Ty); |
| } |
| |
| static bool adjustElementType(EVT &ElementType) { |
| switch (ElementType.getSimpleVT().SimpleTy) { |
| default: |
| return false; |
| case MVT::f16: |
| case MVT::bf16: |
| ElementType = MVT::i16; |
| return true; |
| case MVT::f32: |
| case MVT::v2f16: |
| case MVT::v2bf16: |
| ElementType = MVT::i32; |
| return true; |
| case MVT::f64: |
| ElementType = MVT::i64; |
| return true; |
| } |
| } |
| |
| // Use byte-store when the param address of the argument value is unaligned. |
| // This may happen when the return value is a field of a packed structure. |
| // |
| // This is called in LowerCall() when passing the param values. |
| static SDValue LowerUnalignedStoreParam(SelectionDAG &DAG, SDValue Chain, |
| uint64_t Offset, EVT ElementType, |
| SDValue StVal, SDValue &InGlue, |
| unsigned ArgID, const SDLoc &dl) { |
| // Bit logic only works on integer types |
| if (adjustElementType(ElementType)) |
| StVal = DAG.getNode(ISD::BITCAST, dl, ElementType, StVal); |
| |
| // Store each byte |
| SDVTList StoreVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) { |
| // Shift the byte to the last byte position |
| SDValue ShiftVal = DAG.getNode(ISD::SRL, dl, ElementType, StVal, |
| DAG.getConstant(i * 8, dl, MVT::i32)); |
| SDValue StoreOperands[] = {Chain, DAG.getConstant(ArgID, dl, MVT::i32), |
| DAG.getConstant(Offset + i, dl, MVT::i32), |
| ShiftVal, InGlue}; |
| // Trunc store only the last byte by using |
| // st.param.b8 |
| // The register type can be larger than b8. |
| Chain = DAG.getMemIntrinsicNode( |
| NVPTXISD::StoreParam, dl, StoreVTs, StoreOperands, MVT::i8, |
| MachinePointerInfo(), Align(1), MachineMemOperand::MOStore); |
| InGlue = Chain.getValue(1); |
| } |
| return Chain; |
| } |
| |
| // Use byte-load when the param adress of the returned value is unaligned. |
| // This may happen when the returned value is a field of a packed structure. |
| static SDValue |
| LowerUnalignedLoadRetParam(SelectionDAG &DAG, SDValue &Chain, uint64_t Offset, |
| EVT ElementType, SDValue &InGlue, |
| SmallVectorImpl<SDValue> &TempProxyRegOps, |
| const SDLoc &dl) { |
| // Bit logic only works on integer types |
| EVT MergedType = ElementType; |
| adjustElementType(MergedType); |
| |
| // Load each byte and construct the whole value. Initial value to 0 |
| SDValue RetVal = DAG.getConstant(0, dl, MergedType); |
| // LoadParamMemI8 loads into i16 register only |
| SDVTList LoadVTs = DAG.getVTList(MVT::i16, MVT::Other, MVT::Glue); |
| for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) { |
| SDValue LoadOperands[] = {Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(Offset + i, dl, MVT::i32), |
| InGlue}; |
| // This will be selected to LoadParamMemI8 |
| SDValue LdVal = |
| DAG.getMemIntrinsicNode(NVPTXISD::LoadParam, dl, LoadVTs, LoadOperands, |
| MVT::i8, MachinePointerInfo(), Align(1)); |
| SDValue TmpLdVal = LdVal.getValue(0); |
| Chain = LdVal.getValue(1); |
| InGlue = LdVal.getValue(2); |
| |
| TmpLdVal = DAG.getNode(NVPTXISD::ProxyReg, dl, |
| TmpLdVal.getSimpleValueType(), TmpLdVal); |
| TempProxyRegOps.push_back(TmpLdVal); |
| |
| SDValue CMask = DAG.getConstant(255, dl, MergedType); |
| SDValue CShift = DAG.getConstant(i * 8, dl, MVT::i32); |
| // Need to extend the i16 register to the whole width. |
| TmpLdVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MergedType, TmpLdVal); |
| // Mask off the high bits. Leave only the lower 8bits. |
| // Do this because we are using loadparam.b8. |
| TmpLdVal = DAG.getNode(ISD::AND, dl, MergedType, TmpLdVal, CMask); |
| // Shift and merge |
| TmpLdVal = DAG.getNode(ISD::SHL, dl, MergedType, TmpLdVal, CShift); |
| RetVal = DAG.getNode(ISD::OR, dl, MergedType, RetVal, TmpLdVal); |
| } |
| if (ElementType != MergedType) |
| RetVal = DAG.getNode(ISD::BITCAST, dl, ElementType, RetVal); |
| |
| return RetVal; |
| } |
| |
| static bool shouldConvertToIndirectCall(const CallBase *CB, |
| const GlobalAddressSDNode *Func) { |
| if (!Func) |
| return false; |
| if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal())) |
| return CB->getFunctionType() != CalleeFunc->getFunctionType(); |
| return false; |
| } |
| |
| static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, |
| const DataLayout &DL, |
| const TargetLowering &TL) { |
| if (Ptr->getOpcode() == ISD::FrameIndex) { |
| auto Ty = TL.getPointerTy(DL, ADDRESS_SPACE_LOCAL); |
| Ptr = DAG.getAddrSpaceCast(SDLoc(), Ty, Ptr, ADDRESS_SPACE_GENERIC, |
| ADDRESS_SPACE_LOCAL); |
| |
| return MachinePointerInfo(ADDRESS_SPACE_LOCAL); |
| } |
| |
| // Peel of an addrspacecast to generic and load directly from the specific |
| // address space. |
| if (Ptr->getOpcode() == ISD::ADDRSPACECAST) { |
| const auto *ASC = cast<AddrSpaceCastSDNode>(Ptr); |
| if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) { |
| Ptr = ASC->getOperand(0); |
| return MachinePointerInfo(ASC->getSrcAddressSpace()); |
| } |
| } |
| |
| return MachinePointerInfo(); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30)) |
| report_fatal_error( |
| "Support for variadic functions (unsized array parameter) introduced " |
| "in PTX ISA version 6.0 and requires target sm_30."); |
| |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| ArgListTy &Args = CLI.getArgs(); |
| Type *RetTy = CLI.RetTy; |
| const CallBase *CB = CLI.CB; |
| const DataLayout &DL = DAG.getDataLayout(); |
| |
| // Variadic arguments. |
| // |
| // Normally, for each argument, we declare a param scalar or a param |
| // byte array in the .param space, and store the argument value to that |
| // param scalar or array starting at offset 0. |
| // |
| // In the case of the first variadic argument, we declare a vararg byte array |
| // with size 0. The exact size of this array isn't known at this point, so |
| // it'll be patched later. All the variadic arguments will be stored to this |
| // array at a certain offset (which gets tracked by 'VAOffset'). The offset is |
| // initially set to 0, so it can be used for non-variadic arguments (which use |
| // 0 offset) to simplify the code. |
| // |
| // After all vararg is processed, 'VAOffset' holds the size of the |
| // vararg byte array. |
| |
| SDValue VADeclareParam; // vararg byte array |
| unsigned FirstVAArg = CLI.NumFixedArgs; // position of the first variadic |
| unsigned VAOffset = 0; // current offset in the param array |
| |
| const unsigned UniqueCallSite = GlobalUniqueCallSite++; |
| SDValue TempChain = Chain; |
| Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl); |
| SDValue InGlue = Chain.getValue(1); |
| |
| unsigned ParamCount = 0; |
| // Args.size() and Outs.size() need not match. |
| // Outs.size() will be larger |
| // * if there is an aggregate argument with multiple fields (each field |
| // showing up separately in Outs) |
| // * if there is a vector argument with more than typical vector-length |
| // elements (generally if more than 4) where each vector element is |
| // individually present in Outs. |
| // So a different index should be used for indexing into Outs/OutVals. |
| // See similar issue in LowerFormalArguments. |
| unsigned OIdx = 0; |
| // Declare the .params or .reg need to pass values |
| // to the function |
| for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { |
| EVT VT = Outs[OIdx].VT; |
| Type *Ty = Args[i].Ty; |
| bool IsVAArg = (i >= CLI.NumFixedArgs); |
| bool IsByVal = Outs[OIdx].Flags.isByVal(); |
| |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| |
| assert((!IsByVal || Args[i].IndirectType) && |
| "byval arg must have indirect type"); |
| Type *ETy = (IsByVal ? Args[i].IndirectType : Ty); |
| ComputePTXValueVTs(*this, DL, ETy, VTs, &Offsets, IsByVal ? 0 : VAOffset); |
| |
| Align ArgAlign; |
| if (IsByVal) { |
| // The ByValAlign in the Outs[OIdx].Flags is always set at this point, |
| // so we don't need to worry whether it's naturally aligned or not. |
| // See TargetLowering::LowerCallTo(). |
| Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign(); |
| ArgAlign = getFunctionByValParamAlign(CB->getCalledFunction(), ETy, |
| InitialAlign, DL); |
| if (IsVAArg) |
| VAOffset = alignTo(VAOffset, ArgAlign); |
| } else { |
| ArgAlign = getArgumentAlignment(CB, Ty, ParamCount + 1, DL); |
| } |
| |
| unsigned TypeSize = |
| (IsByVal ? Outs[OIdx].Flags.getByValSize() : DL.getTypeAllocSize(Ty)); |
| SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| bool NeedAlign; // Does argument declaration specify alignment? |
| const bool PassAsArray = IsByVal || shouldPassAsArray(Ty); |
| if (IsVAArg) { |
| if (ParamCount == FirstVAArg) { |
| SDValue DeclareParamOps[] = { |
| Chain, DAG.getConstant(STI.getMaxRequiredAlignment(), dl, MVT::i32), |
| DAG.getConstant(ParamCount, dl, MVT::i32), |
| DAG.getConstant(1, dl, MVT::i32), InGlue}; |
| VADeclareParam = Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, |
| DeclareParamVTs, DeclareParamOps); |
| } |
| NeedAlign = PassAsArray; |
| } else if (PassAsArray) { |
| // declare .param .align <align> .b8 .param<n>[<size>]; |
| SDValue DeclareParamOps[] = { |
| Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), |
| DAG.getConstant(ParamCount, dl, MVT::i32), |
| DAG.getConstant(TypeSize, dl, MVT::i32), InGlue}; |
| Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, |
| DeclareParamOps); |
| NeedAlign = true; |
| } else { |
| // declare .param .b<size> .param<n>; |
| if (VT.isInteger() || VT.isFloatingPoint()) { |
| // PTX ABI requires integral types to be at least 32 bits in |
| // size. FP16 is loaded/stored using i16, so it's handled |
| // here as well. |
| TypeSize = promoteScalarArgumentSize(TypeSize * 8) / 8; |
| } |
| SDValue DeclareScalarParamOps[] = { |
| Chain, DAG.getConstant(ParamCount, dl, MVT::i32), |
| DAG.getConstant(TypeSize * 8, dl, MVT::i32), |
| DAG.getConstant(0, dl, MVT::i32), InGlue}; |
| Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, |
| DeclareScalarParamOps); |
| NeedAlign = false; |
| } |
| InGlue = Chain.getValue(1); |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter |
| // than 32-bits are sign extended or zero extended, depending on |
| // whether they are signed or unsigned types. This case applies |
| // only to scalar parameters and not to aggregate values. |
| bool ExtendIntegerParam = |
| Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32; |
| |
| auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg); |
| SmallVector<SDValue, 6> StoreOperands; |
| for (const unsigned J : llvm::seq(VTs.size())) { |
| EVT EltVT = VTs[J]; |
| const int CurOffset = Offsets[J]; |
| MaybeAlign PartAlign; |
| if (NeedAlign) |
| PartAlign = commonAlignment(ArgAlign, CurOffset); |
| |
| SDValue StVal = OutVals[OIdx]; |
| |
| MVT PromotedVT; |
| if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) { |
| EltVT = EVT(PromotedVT); |
| } |
| if (PromoteScalarIntegerPTX(StVal.getValueType(), &PromotedVT)) { |
| llvm::ISD::NodeType Ext = |
| Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| StVal = DAG.getNode(Ext, dl, PromotedVT, StVal); |
| } |
| |
| if (IsByVal) { |
| auto MPI = refinePtrAS(StVal, DAG, DL, *this); |
| const EVT PtrVT = StVal.getValueType(); |
| SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StVal, |
| DAG.getConstant(CurOffset, dl, PtrVT)); |
| |
| StVal = DAG.getLoad(EltVT, dl, TempChain, SrcAddr, MPI, PartAlign); |
| } else if (ExtendIntegerParam) { |
| assert(VTs.size() == 1 && "Scalar can't have multiple parts."); |
| // zext/sext to i32 |
| StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND |
| : ISD::ZERO_EXTEND, |
| dl, MVT::i32, StVal); |
| } |
| |
| if (!ExtendIntegerParam && EltVT.getSizeInBits() < 16) { |
| // Use 16-bit registers for small stores as it's the |
| // smallest general purpose register size supported by NVPTX. |
| StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal); |
| } |
| |
| // If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a |
| // scalar store. In such cases, fall back to byte stores. |
| if (VectorInfo[J] == PVF_SCALAR && !IsVAArg && PartAlign.has_value() && |
| PartAlign.value() < |
| DL.getABITypeAlign(EltVT.getTypeForEVT(*DAG.getContext()))) { |
| assert(StoreOperands.empty() && "Unfinished preceeding store."); |
| Chain = LowerUnalignedStoreParam( |
| DAG, Chain, IsByVal ? CurOffset + VAOffset : CurOffset, EltVT, |
| StVal, InGlue, ParamCount, dl); |
| |
| // LowerUnalignedStoreParam took care of inserting the necessary nodes |
| // into the SDAG, so just move on to the next element. |
| if (!IsByVal) |
| ++OIdx; |
| continue; |
| } |
| |
| // New store. |
| if (VectorInfo[J] & PVF_FIRST) { |
| assert(StoreOperands.empty() && "Unfinished preceding store."); |
| StoreOperands.push_back(Chain); |
| StoreOperands.push_back( |
| DAG.getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32)); |
| |
| if (!IsByVal && IsVAArg) { |
| // Align each part of the variadic argument to their type. |
| VAOffset = alignTo(VAOffset, DL.getABITypeAlign(EltVT.getTypeForEVT( |
| *DAG.getContext()))); |
| } |
| |
| StoreOperands.push_back(DAG.getConstant( |
| IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset), |
| dl, MVT::i32)); |
| } |
| |
| // Record the value to store. |
| StoreOperands.push_back(StVal); |
| |
| if (VectorInfo[J] & PVF_LAST) { |
| const unsigned NumElts = StoreOperands.size() - 3; |
| NVPTXISD::NodeType Op; |
| switch (NumElts) { |
| case 1: |
| Op = NVPTXISD::StoreParam; |
| break; |
| case 2: |
| Op = NVPTXISD::StoreParamV2; |
| break; |
| case 4: |
| Op = NVPTXISD::StoreParamV4; |
| break; |
| default: |
| llvm_unreachable("Invalid vector info."); |
| } |
| |
| StoreOperands.push_back(InGlue); |
| |
| // Adjust type of the store op if we've extended the scalar |
| // return value. |
| EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT; |
| |
| Chain = DAG.getMemIntrinsicNode( |
| Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands, |
| TheStoreType, MachinePointerInfo(), PartAlign, |
| MachineMemOperand::MOStore); |
| InGlue = Chain.getValue(1); |
| |
| // Cleanup. |
| StoreOperands.clear(); |
| |
| // TODO: We may need to support vector types that can be passed |
| // as scalars in variadic arguments. |
| if (!IsByVal && IsVAArg) { |
| assert(NumElts == 1 && |
| "Vectorization is expected to be disabled for variadics."); |
| VAOffset += DL.getTypeAllocSize( |
| TheStoreType.getTypeForEVT(*DAG.getContext())); |
| } |
| } |
| if (!IsByVal) |
| ++OIdx; |
| } |
| assert(StoreOperands.empty() && "Unfinished parameter store."); |
| if (!IsByVal && VTs.size() > 0) |
| --OIdx; |
| ++ParamCount; |
| if (IsByVal && IsVAArg) |
| VAOffset += TypeSize; |
| } |
| |
| GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode()); |
| MaybeAlign retAlignment = std::nullopt; |
| |
| // Handle Result |
| if (Ins.size() > 0) { |
| SmallVector<EVT, 16> resvtparts; |
| ComputeValueVTs(*this, DL, RetTy, resvtparts); |
| |
| // Declare |
| // .param .align N .b8 retval0[<size-in-bytes>], or |
| // .param .b<size-in-bits> retval0 |
| unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy); |
| if (!shouldPassAsArray(RetTy)) { |
| resultsz = promoteScalarArgumentSize(resultsz); |
| SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(resultsz, dl, MVT::i32), |
| DAG.getConstant(0, dl, MVT::i32), InGlue }; |
| Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, |
| DeclareRetOps); |
| InGlue = Chain.getValue(1); |
| } else { |
| retAlignment = getArgumentAlignment(CB, RetTy, 0, DL); |
| assert(retAlignment && "retAlignment is guaranteed to be set"); |
| SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue DeclareRetOps[] = { |
| Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32), |
| DAG.getConstant(resultsz / 8, dl, MVT::i32), |
| DAG.getConstant(0, dl, MVT::i32), InGlue}; |
| Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs, |
| DeclareRetOps); |
| InGlue = Chain.getValue(1); |
| } |
| } |
| |
| bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs); |
| // Set the size of the vararg param byte array if the callee is a variadic |
| // function and the variadic part is not empty. |
| if (HasVAArgs) { |
| SDValue DeclareParamOps[] = { |
| VADeclareParam.getOperand(0), VADeclareParam.getOperand(1), |
| VADeclareParam.getOperand(2), DAG.getConstant(VAOffset, dl, MVT::i32), |
| VADeclareParam.getOperand(4)}; |
| DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(), |
| VADeclareParam->getVTList(), DeclareParamOps); |
| } |
| |
| // If the type of the callsite does not match that of the function, convert |
| // the callsite to an indirect call. |
| bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func); |
| |
| // Both indirect calls and libcalls have nullptr Func. In order to distinguish |
| // between them we must rely on the call site value which is valid for |
| // indirect calls but is always null for libcalls. |
| bool isIndirectCall = (!Func && CB) || ConvertToIndirectCall; |
| |
| if (isa<ExternalSymbolSDNode>(Callee)) { |
| Function* CalleeFunc = nullptr; |
| |
| // Try to find the callee in the current module. |
| Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc); |
| assert(CalleeFunc != nullptr && "Libcall callee must be set."); |
| |
| // Set the "libcall callee" attribute to indicate that the function |
| // must always have a declaration. |
| CalleeFunc->addFnAttr("nvptx-libcall-callee", "true"); |
| } |
| |
| if (isIndirectCall) { |
| // This is indirect function call case : PTX requires a prototype of the |
| // form |
| // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); |
| // to be emitted, and the label has to used as the last arg of call |
| // instruction. |
| // The prototype is embedded in a string and put as the operand for a |
| // CallPrototype SDNode which will print out to the value of the string. |
| SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| std::string Proto = getPrototype( |
| DL, RetTy, Args, Outs, retAlignment, |
| HasVAArgs |
| ? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair( |
| CLI.NumFixedArgs, VADeclareParam->getConstantOperandAPInt(1))) |
| : std::nullopt, |
| *CB, UniqueCallSite); |
| const char *ProtoStr = nvTM->getStrPool().save(Proto).data(); |
| SDValue ProtoOps[] = { |
| Chain, |
| DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), |
| InGlue, |
| }; |
| Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps); |
| InGlue = Chain.getValue(1); |
| } |
| // Op to just print "call" |
| SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue PrintCallOps[] = { |
| Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InGlue |
| }; |
| // We model convergent calls as separate opcodes. |
| unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni; |
| if (CLI.IsConvergent) |
| Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni |
| : NVPTXISD::PrintConvergentCall; |
| Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps); |
| InGlue = Chain.getValue(1); |
| |
| if (ConvertToIndirectCall) { |
| // Copy the function ptr to a ptx register and use the register to call the |
| // function. |
| EVT DestVT = Callee.getValueType(); |
| MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned DestReg = |
| RegInfo.createVirtualRegister(TLI.getRegClassFor(DestVT.getSimpleVT())); |
| auto RegCopy = DAG.getCopyToReg(DAG.getEntryNode(), dl, DestReg, Callee); |
| Callee = DAG.getCopyFromReg(RegCopy, dl, DestReg, DestVT); |
| } |
| |
| // Ops to print out the function name |
| SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallVoidOps[] = { Chain, Callee, InGlue }; |
| Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps); |
| InGlue = Chain.getValue(1); |
| |
| // Ops to print out the param list |
| SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallArgBeginOps[] = { Chain, InGlue }; |
| Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs, |
| CallArgBeginOps); |
| InGlue = Chain.getValue(1); |
| |
| for (unsigned i = 0, e = std::min(CLI.NumFixedArgs + 1, ParamCount); i != e; |
| ++i) { |
| unsigned opcode; |
| if (i == (e - 1)) |
| opcode = NVPTXISD::LastCallArg; |
| else |
| opcode = NVPTXISD::CallArg; |
| SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(i, dl, MVT::i32), InGlue }; |
| Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps); |
| InGlue = Chain.getValue(1); |
| } |
| SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallArgEndOps[] = { Chain, |
| DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32), |
| InGlue }; |
| Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps); |
| InGlue = Chain.getValue(1); |
| |
| if (isIndirectCall) { |
| SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue PrototypeOps[] = { |
| Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InGlue}; |
| Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps); |
| InGlue = Chain.getValue(1); |
| } |
| |
| SmallVector<SDValue, 16> ProxyRegOps; |
| SmallVector<std::optional<MVT>, 16> ProxyRegTruncates; |
| // An item of the vector is filled if the element does not need a ProxyReg |
| // operation on it and should be added to InVals as is. ProxyRegOps and |
| // ProxyRegTruncates contain empty/none items at the same index. |
| SmallVector<SDValue, 16> RetElts; |
| // A temporary ProxyReg operations inserted in `LowerUnalignedLoadRetParam()` |
| // to use the values of `LoadParam`s and to be replaced later then |
| // `CALLSEQ_END` is added. |
| SmallVector<SDValue, 16> TempProxyRegOps; |
| |
| // Generate loads from param memory/moves from registers for result |
| if (Ins.size() > 0) { |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0); |
| assert(VTs.size() == Ins.size() && "Bad value decomposition"); |
| |
| Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL); |
| auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign); |
| |
| SmallVector<EVT, 6> LoadVTs; |
| int VecIdx = -1; // Index of the first element of the vector. |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| // 32-bits are sign extended or zero extended, depending on whether |
| // they are signed or unsigned types. |
| bool ExtendIntegerRetVal = |
| RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; |
| |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| bool needTruncate = false; |
| EVT TheLoadType = VTs[i]; |
| EVT EltType = Ins[i].VT; |
| Align EltAlign = commonAlignment(RetAlign, Offsets[i]); |
| MVT PromotedVT; |
| |
| if (PromoteScalarIntegerPTX(TheLoadType, &PromotedVT)) { |
| TheLoadType = EVT(PromotedVT); |
| EltType = EVT(PromotedVT); |
| needTruncate = true; |
| } |
| |
| if (ExtendIntegerRetVal) { |
| TheLoadType = MVT::i32; |
| EltType = MVT::i32; |
| needTruncate = true; |
| } else if (TheLoadType.getSizeInBits() < 16) { |
| if (VTs[i].isInteger()) |
| needTruncate = true; |
| EltType = MVT::i16; |
| } |
| |
| // If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a |
| // scalar load. In such cases, fall back to byte loads. |
| if (VectorInfo[i] == PVF_SCALAR && RetTy->isAggregateType() && |
| EltAlign < DL.getABITypeAlign( |
| TheLoadType.getTypeForEVT(*DAG.getContext()))) { |
| assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list."); |
| SDValue Ret = LowerUnalignedLoadRetParam( |
| DAG, Chain, Offsets[i], TheLoadType, InGlue, TempProxyRegOps, dl); |
| ProxyRegOps.push_back(SDValue()); |
| ProxyRegTruncates.push_back(std::optional<MVT>()); |
| RetElts.resize(i); |
| RetElts.push_back(Ret); |
| |
| continue; |
| } |
| |
| // Record index of the very first element of the vector. |
| if (VectorInfo[i] & PVF_FIRST) { |
| assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list."); |
| VecIdx = i; |
| } |
| |
| LoadVTs.push_back(EltType); |
| |
| if (VectorInfo[i] & PVF_LAST) { |
| unsigned NumElts = LoadVTs.size(); |
| LoadVTs.push_back(MVT::Other); |
| LoadVTs.push_back(MVT::Glue); |
| NVPTXISD::NodeType Op; |
| switch (NumElts) { |
| case 1: |
| Op = NVPTXISD::LoadParam; |
| break; |
| case 2: |
| Op = NVPTXISD::LoadParamV2; |
| break; |
| case 4: |
| Op = NVPTXISD::LoadParamV4; |
| break; |
| default: |
| llvm_unreachable("Invalid vector info."); |
| } |
| |
| SDValue LoadOperands[] = { |
| Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InGlue}; |
| SDValue RetVal = DAG.getMemIntrinsicNode( |
| Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType, |
| MachinePointerInfo(), EltAlign, |
| MachineMemOperand::MOLoad); |
| |
| for (unsigned j = 0; j < NumElts; ++j) { |
| ProxyRegOps.push_back(RetVal.getValue(j)); |
| |
| if (needTruncate) |
| ProxyRegTruncates.push_back(std::optional<MVT>(Ins[VecIdx + j].VT)); |
| else |
| ProxyRegTruncates.push_back(std::optional<MVT>()); |
| } |
| |
| Chain = RetVal.getValue(NumElts); |
| InGlue = RetVal.getValue(NumElts + 1); |
| |
| // Cleanup |
| VecIdx = -1; |
| LoadVTs.clear(); |
| } |
| } |
| } |
| |
| Chain = |
| DAG.getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InGlue, dl); |
| InGlue = Chain.getValue(1); |
| |
| // Append ProxyReg instructions to the chain to make sure that `callseq_end` |
| // will not get lost. Otherwise, during libcalls expansion, the nodes can become |
| // dangling. |
| for (unsigned i = 0; i < ProxyRegOps.size(); ++i) { |
| if (i < RetElts.size() && RetElts[i]) { |
| InVals.push_back(RetElts[i]); |
| continue; |
| } |
| |
| SDValue Ret = DAG.getNode( |
| NVPTXISD::ProxyReg, dl, |
| DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue), |
| { Chain, ProxyRegOps[i], InGlue } |
| ); |
| |
| Chain = Ret.getValue(1); |
| InGlue = Ret.getValue(2); |
| |
| if (ProxyRegTruncates[i]) { |
| Ret = DAG.getNode(ISD::TRUNCATE, dl, *ProxyRegTruncates[i], Ret); |
| } |
| |
| InVals.push_back(Ret); |
| } |
| |
| for (SDValue &T : TempProxyRegOps) { |
| SDValue Repl = DAG.getNode( |
| NVPTXISD::ProxyReg, dl, |
| DAG.getVTList(T.getSimpleValueType(), MVT::Other, MVT::Glue), |
| {Chain, T.getOperand(0), InGlue}); |
| DAG.ReplaceAllUsesWith(T, Repl); |
| DAG.RemoveDeadNode(T.getNode()); |
| |
| Chain = Repl.getValue(1); |
| InGlue = Repl.getValue(2); |
| } |
| |
| // set isTailCall to false for now, until we figure out how to express |
| // tail call optimization in PTX |
| isTailCall = false; |
| return Chain; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DiagnosticInfoUnsupported NoDynamicAlloca( |
| Fn, |
| "Support for dynamic alloca introduced in PTX ISA version 7.3 and " |
| "requires target sm_52.", |
| SDLoc(Op).getDebugLoc()); |
| DAG.getContext()->diagnose(NoDynamicAlloca); |
| auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), |
| Op.getOperand(0)}; |
| return DAG.getMergeValues(Ops, SDLoc()); |
| } |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| uint64_t Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| SDLoc DL(Op.getNode()); |
| |
| // The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32. |
| MVT ValueSizeTy = nvTM->is64Bit() ? MVT::i64 : MVT::i32; |
| |
| SDValue AllocOps[] = {Chain, DAG.getZExtOrTrunc(Size, DL, ValueSizeTy), |
| DAG.getTargetConstant(Align, DL, MVT::i32)}; |
| EVT RetTypes[] = {ValueSizeTy, MVT::Other}; |
| return DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, RetTypes, AllocOps); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTACKRESTORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op.getNode()); |
| if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DiagnosticInfoUnsupported NoStackRestore( |
| Fn, |
| "Support for stackrestore requires PTX ISA version >= 7.3 and target " |
| ">= sm_52.", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(NoStackRestore); |
| return Op.getOperand(0); |
| } |
| |
| const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Ptr = Op.getOperand(1); |
| SDValue ASC = DAG.getAddrSpaceCast(DL, LocalVT, Ptr, ADDRESS_SPACE_GENERIC, |
| ADDRESS_SPACE_LOCAL); |
| return DAG.getNode(NVPTXISD::STACKRESTORE, DL, MVT::Other, {Chain, ASC}); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTACKSAVE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op.getNode()); |
| if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DiagnosticInfoUnsupported NoStackSave( |
| Fn, |
| "Support for stacksave requires PTX ISA version >= 7.3 and target >= " |
| "sm_52.", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(NoStackSave); |
| auto Ops = {DAG.getConstant(0, DL, Op.getValueType()), Op.getOperand(0)}; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL); |
| SDValue Chain = Op.getOperand(0); |
| SDValue SS = |
| DAG.getNode(NVPTXISD::STACKSAVE, DL, {LocalVT, MVT::Other}, Chain); |
| SDValue ASC = DAG.getAddrSpaceCast( |
| DL, Op.getValueType(), SS, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC); |
| return DAG.getMergeValues({ASC, SDValue(SS.getNode(), 1)}, DL); |
| } |
| |
| // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() |
| // (see LegalizeDAG.cpp). This is slow and uses local memory. |
| // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 |
| SDValue |
| NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| SmallVector<SDValue, 8> Ops; |
| unsigned NumOperands = Node->getNumOperands(); |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| SDValue SubOp = Node->getOperand(i); |
| EVT VVT = SubOp.getNode()->getValueType(0); |
| EVT EltVT = VVT.getVectorElementType(); |
| unsigned NumSubElem = VVT.getVectorNumElements(); |
| for (unsigned j = 0; j < NumSubElem; ++j) { |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, |
| DAG.getIntPtrConstant(j, dl))); |
| } |
| } |
| return DAG.getBuildVector(Node->getValueType(0), dl, Ops); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { |
| // Handle bitcasting from v2i8 without hitting the default promotion |
| // strategy which goes through stack memory. |
| EVT FromVT = Op->getOperand(0)->getValueType(0); |
| if (FromVT != MVT::v2i8) { |
| return Op; |
| } |
| |
| // Pack vector elements into i16 and bitcast to final type |
| SDLoc DL(Op); |
| SDValue Vec0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, |
| Op->getOperand(0), DAG.getIntPtrConstant(0, DL)); |
| SDValue Vec1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, |
| Op->getOperand(0), DAG.getIntPtrConstant(1, DL)); |
| SDValue Extend0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec0); |
| SDValue Extend1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec1); |
| SDValue Const8 = DAG.getConstant(8, DL, MVT::i16); |
| SDValue AsInt = DAG.getNode( |
| ISD::OR, DL, MVT::i16, |
| {Extend0, DAG.getNode(ISD::SHL, DL, MVT::i16, {Extend1, Const8})}); |
| EVT ToVT = Op->getValueType(0); |
| return DAG.getBitcast(ToVT, AsInt); |
| } |
| |
| // We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it |
| // would get lowered as two constant loads and vector-packing move. |
| // Instead we want just a constant move: |
| // mov.b32 %r2, 0x40003C00 |
| SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op->getValueType(0); |
| if (!(Isv2x16VT(VT) || VT == MVT::v4i8)) |
| return Op; |
| SDLoc DL(Op); |
| |
| if (!llvm::all_of(Op->ops(), [](SDValue Operand) { |
| return Operand->isUndef() || isa<ConstantSDNode>(Operand) || |
| isa<ConstantFPSDNode>(Operand); |
| })) { |
| if (VT != MVT::v4i8) |
| return Op; |
| // Lower non-const v4i8 vector as byte-wise constructed i32, which allows us |
| // to optimize calculation of constant parts. |
| auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast, |
| uint64_t SelectionValue) -> SDValue { |
| SDValue L = Left; |
| SDValue R = Right; |
| if (Cast) { |
| L = DAG.getAnyExtOrTrunc(L, DL, MVT::i32); |
| R = DAG.getAnyExtOrTrunc(R, DL, MVT::i32); |
| } |
| return DAG.getNode( |
| NVPTXISD::PRMT, DL, MVT::v4i8, |
| {L, R, DAG.getConstant(SelectionValue, DL, MVT::i32), |
| DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32)}); |
| }; |
| auto PRMT__10 = GetPRMT(Op->getOperand(0), Op->getOperand(1), true, 0x3340); |
| auto PRMT__32 = GetPRMT(Op->getOperand(2), Op->getOperand(3), true, 0x3340); |
| auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410); |
| return DAG.getNode(ISD::BITCAST, DL, VT, PRMT3210); |
| } |
| |
| // Get value or the Nth operand as an APInt(32). Undef values treated as 0. |
| auto GetOperand = [](SDValue Op, int N) -> APInt { |
| const SDValue &Operand = Op->getOperand(N); |
| EVT VT = Op->getValueType(0); |
| if (Operand->isUndef()) |
| return APInt(32, 0); |
| APInt Value; |
| if (VT == MVT::v2f16 || VT == MVT::v2bf16) |
| Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt(); |
| else if (VT == MVT::v2i16 || VT == MVT::v4i8) |
| Value = Operand->getAsAPIntVal(); |
| else |
| llvm_unreachable("Unsupported type"); |
| // i8 values are carried around as i16, so we need to zero out upper bits, |
| // so they do not get in the way of combining individual byte values |
| if (VT == MVT::v4i8) |
| Value = Value.trunc(8); |
| return Value.zext(32); |
| }; |
| APInt Value; |
| if (Isv2x16VT(VT)) { |
| Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(16); |
| } else if (VT == MVT::v4i8) { |
| Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(8) | |
| GetOperand(Op, 2).shl(16) | GetOperand(Op, 3).shl(24); |
| } else { |
| llvm_unreachable("Unsupported type"); |
| } |
| SDValue Const = DAG.getConstant(Value, DL, MVT::i32); |
| return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), Const); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Index = Op->getOperand(1); |
| SDValue Vector = Op->getOperand(0); |
| SDLoc DL(Op); |
| EVT VectorVT = Vector.getValueType(); |
| |
| if (VectorVT == MVT::v4i8) { |
| SDValue BFE = |
| DAG.getNode(NVPTXISD::BFE, DL, MVT::i32, |
| {Vector, |
| DAG.getNode(ISD::MUL, DL, MVT::i32, |
| DAG.getZExtOrTrunc(Index, DL, MVT::i32), |
| DAG.getConstant(8, DL, MVT::i32)), |
| DAG.getConstant(8, DL, MVT::i32)}); |
| return DAG.getAnyExtOrTrunc(BFE, DL, Op->getValueType(0)); |
| } |
| |
| // Constant index will be matched by tablegen. |
| if (isa<ConstantSDNode>(Index.getNode())) |
| return Op; |
| |
| // Extract individual elements and select one of them. |
| assert(Isv2x16VT(VectorVT) && "Unexpected vector type."); |
| EVT EltVT = VectorVT.getVectorElementType(); |
| |
| SDLoc dl(Op.getNode()); |
| SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, |
| DAG.getIntPtrConstant(0, dl)); |
| SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, |
| DAG.getIntPtrConstant(1, dl)); |
| return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1, |
| ISD::CondCode::SETEQ); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vector = Op->getOperand(0); |
| EVT VectorVT = Vector.getValueType(); |
| |
| if (VectorVT != MVT::v4i8) |
| return Op; |
| SDLoc DL(Op); |
| SDValue Value = Op->getOperand(1); |
| if (Value->isUndef()) |
| return Vector; |
| |
| SDValue Index = Op->getOperand(2); |
| |
| SDValue BFI = |
| DAG.getNode(NVPTXISD::BFI, DL, MVT::i32, |
| {DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector, |
| DAG.getNode(ISD::MUL, DL, MVT::i32, |
| DAG.getZExtOrTrunc(Index, DL, MVT::i32), |
| DAG.getConstant(8, DL, MVT::i32)), |
| DAG.getConstant(8, DL, MVT::i32)}); |
| return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue V1 = Op.getOperand(0); |
| EVT VectorVT = V1.getValueType(); |
| if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8) |
| return Op; |
| |
| // Lower shuffle to PRMT instruction. |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| SDValue V2 = Op.getOperand(1); |
| uint32_t Selector = 0; |
| for (auto I : llvm::enumerate(SVN->getMask())) { |
| if (I.value() != -1) // -1 is a placeholder for undef. |
| Selector |= (I.value() << (I.index() * 4)); |
| } |
| |
| SDLoc DL(Op); |
| return DAG.getNode(NVPTXISD::PRMT, DL, MVT::v4i8, V1, V2, |
| DAG.getConstant(Selector, DL, MVT::i32), |
| DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32)); |
| } |
| /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which |
| /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| /// amount, or |
| /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| /// amount. |
| SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| // {dHi, dLo} = {aHi, aLo} >> Amt |
| // dHi = aHi >> Amt |
| // dLo = shf.r.clamp aLo, aHi, Amt |
| |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = |
| DAG.getNode(NVPTXISD::FSHR_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| else { |
| // {dHi, dLo} = {aHi, aLo} >> Amt |
| // - if (Amt>=size) then |
| // dLo = aHi >> (Amt-size) |
| // dHi = aHi >> Amt (this is either all 0 or all 1) |
| // else |
| // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) |
| // dHi = aHi >> Amt |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| |
| SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ISD::SETGE); |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which |
| /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| /// amount, or |
| /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| /// amount. |
| SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| |
| if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| // {dHi, dLo} = {aHi, aLo} << Amt |
| // dHi = shf.l.clamp aLo, aHi, Amt |
| // dLo = aLo << Amt |
| |
| SDValue Hi = |
| DAG.getNode(NVPTXISD::FSHL_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| else { |
| // {dHi, dLo} = {aHi, aLo} << Amt |
| // - if (Amt>=size) then |
| // dLo = aLo << Amt (all 0) |
| // dLo = aLo << (Amt-size) |
| // else |
| // dLo = aLo << Amt |
| // dHi = (aHi << Amt) | (aLo >> (size-Amt)) |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ISD::SETGE); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| } |
| |
| /// If the types match, convert the generic copysign to the NVPTXISD version, |
| /// otherwise bail ensuring that mismatched cases are properly expaned. |
| SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| |
| SDValue In1 = Op.getOperand(0); |
| SDValue In2 = Op.getOperand(1); |
| EVT SrcVT = In2.getValueType(); |
| |
| if (!SrcVT.bitsEq(VT)) |
| return SDValue(); |
| |
| return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::f32) |
| return LowerFROUND32(Op, DAG); |
| |
| if (VT == MVT::f64) |
| return LowerFROUND64(Op, DAG); |
| |
| llvm_unreachable("unhandled type"); |
| } |
| |
| // This is the the rounding method used in CUDA libdevice in C like code: |
| // float roundf(float A) |
| // { |
| // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); |
| // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| // } |
| SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue A = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); |
| |
| // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) |
| SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A); |
| const unsigned SignBitMask = 0x80000000; |
| SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast, |
| DAG.getConstant(SignBitMask, SL, MVT::i32)); |
| const unsigned PointFiveInBits = 0x3F000000; |
| SDValue PointFiveWithSignRaw = |
| DAG.getNode(ISD::OR, SL, MVT::i32, Sign, |
| DAG.getConstant(PointFiveInBits, SL, MVT::i32)); |
| SDValue PointFiveWithSign = |
| DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw); |
| SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign); |
| SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); |
| |
| // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue IsLarge = |
| DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT), |
| ISD::SETOGT); |
| RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); |
| |
| // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); |
| SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A); |
| return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA); |
| } |
| |
| // The implementation of round(double) is similar to that of round(float) in |
| // that they both separate the value range into three regions and use a method |
| // specific to the region to round the values. However, round(double) first |
| // calculates the round of the absolute value and then adds the sign back while |
| // round(float) directly rounds the value with sign. |
| SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue A = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); |
| |
| // double RoundedA = (double) (int) (abs(A) + 0.5f); |
| SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT)); |
| SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); |
| |
| // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); |
| RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall, |
| DAG.getConstantFP(0, SL, VT), |
| RoundedA); |
| |
| // Add sign to rounded_A |
| RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A); |
| DAG.getNode(ISD::FTRUNC, SL, VT, A); |
| |
| // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; |
| SDValue IsLarge = |
| DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT), |
| ISD::SETOGT); |
| return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); |
| } |
| |
| static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| EVT NVT = MVT::f32; |
| if (VT.isVector()) { |
| NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); |
| } |
| SDLoc DL(N); |
| SDValue Tmp0 = DAG.getFPExtendOrRound(N->getOperand(0), DL, NVT); |
| SDValue Tmp1 = DAG.getFPExtendOrRound(N->getOperand(1), DL, NVT); |
| SDValue Res = DAG.getNode(N->getOpcode(), DL, NVT, Tmp0, Tmp1, N->getFlags()); |
| return DAG.getFPExtendOrRound(Res, DL, VT); |
| } |
| |
| SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (useF32FTZ(DAG.getMachineFunction())) { |
| return PromoteBinOpToF32(Op.getNode(), DAG); |
| } |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78); |
| |
| if (Op.getValueType() == MVT::bf16) { |
| SDLoc Loc(Op); |
| return DAG.getNode( |
| ISD::FP_ROUND, Loc, MVT::bf16, |
| DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)), |
| DAG.getIntPtrConstant(0, Loc, /*isTarget=*/true)); |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78); |
| |
| if (Op.getOperand(0).getValueType() == MVT::bf16) { |
| SDLoc Loc(Op); |
| return DAG.getNode( |
| Op.getOpcode(), Loc, Op.getValueType(), |
| DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0))); |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT NarrowVT = Op.getValueType(); |
| SDValue Wide = Op.getOperand(0); |
| EVT WideVT = Wide.getValueType(); |
| if (NarrowVT.getScalarType() == MVT::bf16) { |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) { |
| return TLI->expandFP_ROUND(Op.getNode(), DAG); |
| } |
| if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| // This combination was the first to support f32 -> bf16. |
| if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) { |
| if (WideVT.getScalarType() == MVT::f32) { |
| return Op; |
| } |
| if (WideVT.getScalarType() == MVT::f64) { |
| SDLoc Loc(Op); |
| // Round-inexact-to-odd f64 to f32, then do the final rounding using |
| // the hardware f32 -> bf16 instruction. |
| SDValue rod = TLI->expandRoundInexactToOdd( |
| WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32) |
| : MVT::f32, |
| Wide, Loc, DAG); |
| return DAG.getFPExtendOrRound(rod, Loc, NarrowVT); |
| } |
| } |
| return TLI->expandFP_ROUND(Op.getNode(), DAG); |
| } |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Narrow = Op.getOperand(0); |
| EVT NarrowVT = Narrow.getValueType(); |
| EVT WideVT = Op.getValueType(); |
| if (NarrowVT.getScalarType() == MVT::bf16) { |
| if (WideVT.getScalarType() == MVT::f32 && |
| (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) { |
| SDLoc Loc(Op); |
| return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow); |
| } |
| if (WideVT.getScalarType() == MVT::f64 && |
| (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) { |
| EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32) |
| : MVT::f32; |
| SDLoc Loc(Op); |
| if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) { |
| Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow); |
| } else { |
| Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow); |
| } |
| return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op); |
| } |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| if (Op.getValueType() != MVT::v2i16) |
| return Op; |
| EVT EltVT = Op.getValueType().getVectorElementType(); |
| SmallVector<SDValue> VecElements; |
| for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) { |
| SmallVector<SDValue> ScalarArgs; |
| llvm::transform(Op->ops(), std::back_inserter(ScalarArgs), |
| [&](const SDUse &O) { |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, |
| O.get(), DAG.getIntPtrConstant(I, DL)); |
| }); |
| VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs)); |
| } |
| SDValue V = |
| DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements); |
| return V; |
| } |
| |
| static SDValue LowerTcgen05St(SDValue Op, SelectionDAG &DAG) { |
| SDNode *N = Op.getNode(); |
| SDLoc DL(N); |
| SmallVector<SDValue, 32> Ops; |
| |
| // split the vector argument |
| for (size_t I = 0; I < N->getNumOperands(); I++) { |
| SDValue Val = N->getOperand(I); |
| EVT ValVT = Val.getValueType(); |
| if (ValVT.isVector()) { |
| EVT EltVT = ValVT.getVectorElementType(); |
| for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++) |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val, |
| DAG.getIntPtrConstant(J, DL))); |
| } else |
| Ops.push_back(Val); |
| } |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| SDValue Tcgen05StNode = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, N->getVTList(), Ops, |
| MemSD->getMemoryVT(), MemSD->getMemOperand()); |
| |
| return Tcgen05StNode; |
| } |
| |
| static SDValue LowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG) { |
| SDNode *N = Op.getNode(); |
| SDValue Intrin = N->getOperand(1); |
| SDLoc DL(N); |
| |
| // Get the intrinsic ID |
| unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue(); |
| switch (IntrinNo) { |
| default: |
| break; |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| return LowerTcgen05St(Op, DAG); |
| } |
| return Op; |
| } |
| |
| static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG) { |
| switch (Op->getConstantOperandVal(0)) { |
| default: |
| return Op; |
| case Intrinsic::nvvm_internal_addrspace_wrap: |
| return Op.getOperand(1); |
| } |
| } |
| |
| // In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value. |
| // Lower these into a node returning the correct type which is zero-extended |
| // back to the correct size. |
| static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG) { |
| SDValue V = Op->getOperand(0); |
| assert(V.getValueType() == MVT::i64 && |
| "Unexpected CTLZ/CTPOP type to legalize"); |
| |
| SDLoc DL(Op); |
| SDValue CT = DAG.getNode(Op->getOpcode(), DL, MVT::i32, V); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CT, SDNodeFlags::NonNeg); |
| } |
| |
| static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, |
| unsigned Opcode, SelectionDAG &DAG) { |
| assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64); |
| |
| const auto *AmtConst = dyn_cast<ConstantSDNode>(ShiftAmount); |
| if (!AmtConst) |
| return SDValue(); |
| const auto Amt = AmtConst->getZExtValue() & 63; |
| |
| SDValue UnpackA = |
| DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, A); |
| SDValue UnpackB = |
| DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, B); |
| |
| // Arch is Little endiain: 0 = low bits, 1 = high bits |
| SDValue ALo = UnpackA.getValue(0); |
| SDValue AHi = UnpackA.getValue(1); |
| SDValue BLo = UnpackB.getValue(0); |
| SDValue BHi = UnpackB.getValue(1); |
| |
| // The bitfeild consists of { AHi : ALo : BHi : BLo } |
| // |
| // * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi } |
| // * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo } |
| // * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo } |
| // * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi } |
| // |
| // Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts |
| // are not needed at all. Amt = 0 is a no-op producing either A or B depending |
| // on the direction. Amt = 32 can be implemented by a packing and unpacking |
| // move to select and arrange the 32bit values. For simplicity, these cases |
| // are not handled here explicitly and instead we rely on DAGCombiner to |
| // remove the no-op funnel shifts we insert. |
| auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32)) |
| ? std::make_tuple(AHi, ALo, BHi) |
| : std::make_tuple(ALo, BHi, BLo); |
| |
| SDValue NewAmt = DAG.getConstant(Amt & 31, DL, MVT::i32); |
| SDValue RHi = DAG.getNode(Opcode, DL, MVT::i32, {High, Mid, NewAmt}); |
| SDValue RLo = DAG.getNode(Opcode, DL, MVT::i32, {Mid, Low, NewAmt}); |
| |
| return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64, {RLo, RHi}); |
| } |
| |
| static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG) { |
| return expandFSH64(Op->getOperand(0), Op->getOperand(1), Op->getOperand(2), |
| SDLoc(Op), Op->getOpcode(), DAG); |
| } |
| |
| static SDValue lowerROT(SDValue Op, SelectionDAG &DAG) { |
| unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR; |
| return expandFSH64(Op->getOperand(0), Op->getOperand(0), Op->getOperand(1), |
| SDLoc(Op), Opcode, DAG); |
| } |
| |
| static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG, |
| bool AllowUnsafeFPMath) { |
| // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)), |
| // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches |
| // the semantics of LLVM's frem. |
| SDLoc DL(Op); |
| SDValue X = Op->getOperand(0); |
| SDValue Y = Op->getOperand(1); |
| EVT Ty = Op.getValueType(); |
| |
| SDValue Div = DAG.getNode(ISD::FDIV, DL, Ty, X, Y); |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, Ty, Div); |
| SDValue Mul = |
| DAG.getNode(ISD::FMUL, DL, Ty, Trunc, Y, SDNodeFlags::AllowContract); |
| SDValue Sub = |
| DAG.getNode(ISD::FSUB, DL, Ty, X, Mul, SDNodeFlags::AllowContract); |
| |
| if (AllowUnsafeFPMath || Op->getFlags().hasNoInfs()) |
| return Sub; |
| |
| // If Y is infinite, return X |
| SDValue AbsY = DAG.getNode(ISD::FABS, DL, Ty, Y); |
| SDValue Inf = |
| DAG.getConstantFP(APFloat::getInf(Ty.getFltSemantics()), DL, Ty); |
| SDValue IsInf = DAG.getSetCC(DL, MVT::i1, AbsY, Inf, ISD::SETEQ); |
| return DAG.getSelect(DL, Ty, IsInf, X, Sub); |
| } |
| |
| static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"); |
| |
| SDValue Cond = Op->getOperand(0); |
| SDValue TrueVal = Op->getOperand(1); |
| SDValue FalseVal = Op->getOperand(2); |
| SDLoc DL(Op); |
| |
| // If both operands are truncated, we push the select through the truncates. |
| if (TrueVal.getOpcode() == ISD::TRUNCATE && |
| FalseVal.getOpcode() == ISD::TRUNCATE) { |
| TrueVal = TrueVal.getOperand(0); |
| FalseVal = FalseVal.getOperand(0); |
| |
| EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType()) |
| ? TrueVal.getValueType() |
| : FalseVal.getValueType(); |
| TrueVal = DAG.getAnyExtOrTrunc(TrueVal, DL, VT); |
| FalseVal = DAG.getAnyExtOrTrunc(FalseVal, DL, VT); |
| SDValue Select = DAG.getSelect(DL, VT, Cond, TrueVal, FalseVal); |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select); |
| } |
| |
| // Otherwise, expand the select into a series of logical operations. These |
| // often can be folded into other operations either by us or ptxas. |
| TrueVal = DAG.getFreeze(TrueVal); |
| FalseVal = DAG.getFreeze(FalseVal); |
| SDValue And1 = DAG.getNode(ISD::AND, DL, MVT::i1, Cond, TrueVal); |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| SDValue And2 = DAG.getNode(ISD::AND, DL, MVT::i1, NotCond, FalseVal); |
| SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i1, And1, And2); |
| return Or; |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| case ISD::RETURNADDR: |
| return SDValue(); |
| case ISD::FRAMEADDR: |
| return SDValue(); |
| case ISD::ADDRSPACECAST: |
| return LowerADDRSPACECAST(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: |
| return Op; |
| case ISD::INTRINSIC_WO_CHAIN: |
| return lowerIntrinsicWOChain(Op, DAG); |
| case ISD::INTRINSIC_VOID: |
| return LowerIntrinsicVoid(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::BITCAST: |
| return LowerBITCAST(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: |
| return Op; |
| case ISD::EXTRACT_VECTOR_ELT: |
| return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::CONCAT_VECTORS: |
| return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::STORE: |
| return LowerSTORE(Op, DAG); |
| case ISD::LOAD: |
| return LowerLOAD(Op, DAG); |
| case ISD::SHL_PARTS: |
| return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| return LowerShiftRightParts(Op, DAG); |
| case ISD::SELECT: |
| return lowerSELECT(Op, DAG); |
| case ISD::FROUND: |
| return LowerFROUND(Op, DAG); |
| case ISD::FCOPYSIGN: |
| return LowerFCOPYSIGN(Op, DAG); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return LowerFP_TO_INT(Op, DAG); |
| case ISD::FP_ROUND: |
| return LowerFP_ROUND(Op, DAG); |
| case ISD::FP_EXTEND: |
| return LowerFP_EXTEND(Op, DAG); |
| case ISD::BR_JT: |
| return LowerBR_JT(Op, DAG); |
| case ISD::VAARG: |
| return LowerVAARG(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::FSHL: |
| case ISD::FSHR: |
| return lowerFSH(Op, DAG); |
| case ISD::ROTL: |
| case ISD::ROTR: |
| return lowerROT(Op, DAG); |
| case ISD::ABS: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SHL: |
| case ISD::SREM: |
| case ISD::UREM: |
| return LowerVectorArith(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::STACKRESTORE: |
| return LowerSTACKRESTORE(Op, DAG); |
| case ISD::STACKSAVE: |
| return LowerSTACKSAVE(Op, DAG); |
| case ISD::CopyToReg: |
| return LowerCopyToReg_128(Op, DAG); |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| // Used only for bf16 on SM80, where we select fma for non-ftz operation |
| return PromoteBinOpIfF32FTZ(Op, DAG); |
| case ISD::CTPOP: |
| case ISD::CTLZ: |
| return lowerCTLZCTPOP(Op, DAG); |
| case ISD::FREM: |
| return lowerFREM(Op, DAG, allowUnsafeFPMath(DAG.getMachineFunction())); |
| |
| default: |
| llvm_unreachable("Custom lowering not defined for operation"); |
| } |
| } |
| |
| SDValue NVPTXTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Chain = Op.getOperand(0); |
| const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); |
| SDValue Index = Op.getOperand(2); |
| |
| unsigned JId = JT->getIndex(); |
| MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); |
| ArrayRef<MachineBasicBlock *> MBBs = MJTI->getJumpTables()[JId].MBBs; |
| |
| SDValue IdV = DAG.getConstant(JId, DL, MVT::i32); |
| |
| // Generate BrxStart node |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(NVPTXISD::BrxStart, DL, VTs, Chain, IdV); |
| |
| // Generate BrxItem nodes |
| assert(!MBBs.empty()); |
| for (MachineBasicBlock *MBB : MBBs.drop_back()) |
| Chain = DAG.getNode(NVPTXISD::BrxItem, DL, VTs, Chain.getValue(0), |
| DAG.getBasicBlock(MBB), Chain.getValue(1)); |
| |
| // Generate BrxEnd nodes |
| SDValue EndOps[] = {Chain.getValue(0), DAG.getBasicBlock(MBBs.back()), Index, |
| IdV, Chain.getValue(1)}; |
| SDValue BrxEnd = DAG.getNode(NVPTXISD::BrxEnd, DL, VTs, EndOps); |
| |
| return BrxEnd; |
| } |
| |
| // This will prevent AsmPrinter from trying to print the jump tables itself. |
| unsigned NVPTXTargetLowering::getJumpTableEncoding() const { |
| return MachineJumpTableInfo::EK_Inline; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op, |
| SelectionDAG &DAG) const { |
| AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Op.getNode()); |
| unsigned SrcAS = N->getSrcAddressSpace(); |
| unsigned DestAS = N->getDestAddressSpace(); |
| if (SrcAS != llvm::ADDRESS_SPACE_GENERIC && |
| DestAS != llvm::ADDRESS_SPACE_GENERIC) { |
| // Shared and SharedCluster can be converted to each other through generic |
| // space |
| if ((SrcAS == llvm::ADDRESS_SPACE_SHARED && |
| DestAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER) || |
| (SrcAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER && |
| DestAS == llvm::ADDRESS_SPACE_SHARED)) { |
| SDLoc DL(Op.getNode()); |
| const MVT GenerictVT = |
| getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_GENERIC); |
| SDValue GenericConversion = DAG.getAddrSpaceCast( |
| DL, GenerictVT, Op.getOperand(0), SrcAS, ADDRESS_SPACE_GENERIC); |
| SDValue SharedClusterConversion = |
| DAG.getAddrSpaceCast(DL, Op.getValueType(), GenericConversion, |
| ADDRESS_SPACE_GENERIC, DestAS); |
| return SharedClusterConversion; |
| } |
| |
| return DAG.getUNDEF(Op.getValueType()); |
| } |
| |
| return Op; |
| } |
| |
| // This function is almost a copy of SelectionDAG::expandVAArg(). |
| // The only diff is that this one produces loads from local address space. |
| SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| SDLoc DL(Op); |
| |
| SDNode *Node = Op.getNode(); |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| EVT VT = Node->getValueType(0); |
| auto *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| SDValue Tmp1 = Node->getOperand(0); |
| SDValue Tmp2 = Node->getOperand(1); |
| const MaybeAlign MA(Node->getConstantOperandVal(3)); |
| |
| SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL, |
| Tmp1, Tmp2, MachinePointerInfo(V)); |
| SDValue VAList = VAListLoad; |
| |
| if (MA && *MA > TLI->getMinStackArgumentAlignment()) { |
| VAList = DAG.getNode( |
| ISD::ADD, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(MA->value() - 1, DL, VAList.getValueType())); |
| |
| VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, |
| DAG.getSignedConstant(-(int64_t)MA->value(), DL, |
| VAList.getValueType())); |
| } |
| |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(DAG.getDataLayout().getTypeAllocSize(Ty), |
| DL, VAList.getValueType())); |
| |
| // Store the incremented VAList to the legalized pointer |
| Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2, |
| MachinePointerInfo(V)); |
| |
| const Value *SrcV = Constant::getNullValue( |
| PointerType::get(*DAG.getContext(), ADDRESS_SPACE_LOCAL)); |
| |
| // Load the actual argument out of the pointer VAList |
| return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV)); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| SDLoc DL(Op); |
| EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout()); |
| |
| // Store the address of unsized array <function>_vararg[] in the ap object. |
| SDValue Arg = getParamSymbol(DAG, /* vararg */ -1, PtrVT); |
| SDValue VAReg = DAG.getNode(NVPTXISD::Wrapper, DL, PtrVT, Arg); |
| |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| if (Op.getValueType() == MVT::i1) |
| return LowerLOADi1(Op, DAG); |
| |
| // v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle |
| // unaligned loads and have to handle it here. |
| EVT VT = Op.getValueType(); |
| if (Isv2x16VT(VT) || VT == MVT::v4i8) { |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| EVT MemVT = Load->getMemoryVT(); |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| MemVT, *Load->getMemOperand())) { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, SDLoc(Op)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // v = ld i1* addr |
| // => |
| // v1 = ld i8* addr (-> i16) |
| // v = trunc i16 to i1 |
| SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDLoc dl(Node); |
| assert(LD->getExtensionType() == ISD::NON_EXTLOAD); |
| assert(Node->getValueType(0) == MVT::i1 && |
| "Custom lowering for i1 load only"); |
| SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(), |
| LD->getBasePtr(), LD->getPointerInfo(), |
| MVT::i8, LD->getAlign(), |
| LD->getMemOperand()->getFlags()); |
| SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD); |
| // The legalizer (the caller) is expecting two values from the legalized |
| // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() |
| // in LegalizeDAG.cpp which also uses MergeValues. |
| SDValue Ops[] = { result, LD->getChain() }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| EVT VT = Store->getMemoryVT(); |
| |
| if (VT == MVT::i1) |
| return LowerSTOREi1(Op, DAG); |
| |
| // v2f16 is legal, so we can't rely on legalizer to handle unaligned |
| // stores and have to handle it here. |
| if ((Isv2x16VT(VT) || VT == MVT::v4i8) && |
| !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| VT, *Store->getMemOperand())) |
| return expandUnalignedStore(Store, DAG); |
| |
| // v2f16, v2bf16 and v2i16 don't need special handling. |
| if (Isv2x16VT(VT) || VT == MVT::v4i8) |
| return SDValue(); |
| |
| return LowerSTOREVector(Op, DAG); |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { |
| MemSDNode *N = cast<MemSDNode>(Op.getNode()); |
| SDValue Val = N->getOperand(1); |
| SDLoc DL(N); |
| const EVT ValVT = Val.getValueType(); |
| const EVT MemVT = N->getMemoryVT(); |
| |
| // If we're truncating as part of the store, avoid lowering to a StoreV node. |
| // TODO: consider relaxing this restriction. |
| if (ValVT != MemVT) |
| return SDValue(); |
| |
| const auto NumEltsAndEltVT = getVectorLoweringShape(ValVT); |
| if (!NumEltsAndEltVT) |
| return SDValue(); |
| const auto [NumElts, EltVT] = NumEltsAndEltVT.value(); |
| |
| const DataLayout &TD = DAG.getDataLayout(); |
| |
| Align Alignment = N->getAlign(); |
| Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext())); |
| if (Alignment < PrefAlign) { |
| // This store is not sufficiently aligned, so bail out and let this vector |
| // store be scalarized. Note that we may still be able to emit smaller |
| // vector stores. For example, if we are storing a <4 x float> with an |
| // alignment of 8, this check will fail but the legalizer will try again |
| // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| return SDValue(); |
| } |
| |
| unsigned Opcode; |
| switch (NumElts) { |
| default: |
| return SDValue(); |
| case 2: |
| Opcode = NVPTXISD::StoreV2; |
| break; |
| case 4: |
| Opcode = NVPTXISD::StoreV4; |
| break; |
| } |
| |
| SmallVector<SDValue, 8> Ops; |
| |
| // First is the chain |
| Ops.push_back(N->getOperand(0)); |
| |
| // Then the split values |
| if (EltVT.isVector()) { |
| assert(EVT(EltVT.getVectorElementType()) == ValVT.getVectorElementType()); |
| assert(NumElts * EltVT.getVectorNumElements() == |
| ValVT.getVectorNumElements()); |
| // Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be |
| // stored as b32s |
| const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements(); |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SmallVector<SDValue, 4> SubVectorElts; |
| DAG.ExtractVectorElements(Val, SubVectorElts, I * NumEltsPerSubVector, |
| NumEltsPerSubVector); |
| Ops.push_back(DAG.getBuildVector(EltVT, DL, SubVectorElts)); |
| } |
| } else { |
| SDValue V = DAG.getBitcast(MVT::getVectorVT(EltVT, NumElts), Val); |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, V, |
| DAG.getIntPtrConstant(I, DL)); |
| |
| // Since StoreV2 is a target node, we cannot rely on DAG type |
| // legalization. Therefore, we must ensure the type is legal. For i1 and |
| // i8, we set the stored type to i16 and propagate the "real" type as the |
| // memory type. |
| if (EltVT.getSizeInBits() < 16) |
| ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal); |
| Ops.push_back(ExtVal); |
| } |
| } |
| |
| // Then any remaining arguments |
| Ops.append(N->op_begin() + 2, N->op_end()); |
| |
| SDValue NewSt = |
| DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops, |
| N->getMemoryVT(), N->getMemOperand()); |
| |
| // return DCI.CombineTo(N, NewSt, true); |
| return NewSt; |
| } |
| |
| // st i1 v, addr |
| // => |
| // v1 = zxt v to i16 |
| // st.u8 i16, addr |
| SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| SDValue Tmp1 = ST->getChain(); |
| SDValue Tmp2 = ST->getBasePtr(); |
| SDValue Tmp3 = ST->getValue(); |
| assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"); |
| Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3); |
| SDValue Result = |
| DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8, |
| ST->getAlign(), ST->getMemOperand()->getFlags()); |
| return Result; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Change the CopyToReg to take in two 64-bit operands instead of a 128-bit |
| // operand so that it can pass the legalization. |
| |
| assert(Op.getOperand(1).getValueType() == MVT::i128 && |
| "Custom lowering for 128-bit CopyToReg only"); |
| |
| SDNode *Node = Op.getNode(); |
| SDLoc DL(Node); |
| |
| SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2)); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SmallVector<SDValue, 5> NewOps(Op->getNumOperands() + 1); |
| SmallVector<EVT, 3> ResultsType(Node->values()); |
| |
| NewOps[0] = Op->getOperand(0); // Chain |
| NewOps[1] = Op->getOperand(1); // Dst Reg |
| NewOps[2] = Lo; // Lower 64-bit |
| NewOps[3] = Hi; // Higher 64-bit |
| if (Op.getNumOperands() == 4) |
| NewOps[4] = Op->getOperand(3); // Glue if exists |
| |
| return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps); |
| } |
| |
| unsigned NVPTXTargetLowering::getNumRegisters( |
| LLVMContext &Context, EVT VT, |
| std::optional<MVT> RegisterVT = std::nullopt) const { |
| if (VT == MVT::i128 && RegisterVT == MVT::i128) |
| return 1; |
| return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT); |
| } |
| |
| bool NVPTXTargetLowering::splitValueIntoRegisterParts( |
| SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| if (Val.getValueType() == MVT::i128 && NumParts == 1) { |
| Parts[0] = Val; |
| return true; |
| } |
| return false; |
| } |
| |
| // This creates target external symbol for a function parameter. |
| // Name of the symbol is composed from its index and the function name. |
| // Negative index corresponds to special parameter (unsized array) used for |
| // passing variable arguments. |
| SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, |
| EVT v) const { |
| StringRef SavedStr = nvTM->getStrPool().save( |
| getParamName(&DAG.getMachineFunction().getFunction(), idx)); |
| return DAG.getTargetExternalSymbol(SavedStr.data(), v); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| const Function *F = &MF.getFunction(); |
| |
| SDValue Root = DAG.getRoot(); |
| SmallVector<SDValue, 16> OutChains; |
| |
| // argTypes.size() (or theArgs.size()) and Ins.size() need not match. |
| // Ins.size() will be larger |
| // * if there is an aggregate argument with multiple fields (each field |
| // showing up separately in Ins) |
| // * if there is a vector argument with more than typical vector-length |
| // elements (generally if more than 4) where each vector element is |
| // individually present in Ins. |
| // So a different index should be used for indexing into Ins. |
| // See similar issue in LowerCall. |
| |
| auto AllIns = ArrayRef(Ins); |
| for (const auto &Arg : F->args()) { |
| const auto ArgIns = AllIns.take_while( |
| [&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); }); |
| AllIns = AllIns.drop_front(ArgIns.size()); |
| |
| Type *Ty = Arg.getType(); |
| |
| if (ArgIns.empty()) |
| report_fatal_error("Empty parameter types are not supported"); |
| |
| if (Arg.use_empty()) { |
| // argument is dead |
| for (const auto &In : ArgIns) { |
| assert(!In.Used && "Arg.use_empty() is true but Arg is used?"); |
| InVals.push_back(DAG.getUNDEF(In.VT)); |
| } |
| continue; |
| } |
| |
| SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT); |
| |
| // In the following cases, assign a node order of "i+1" |
| // to newly created nodes. The SDNodes for params have to |
| // appear in the same order as their order of appearance |
| // in the original function. "i+1" holds that order. |
| if (Arg.hasByValAttr()) { |
| // Param has ByVal attribute |
| // Return MoveParam(param symbol). |
| // Ideally, the param symbol can be returned directly, |
| // but when SDNode builder decides to use it in a CopyToReg(), |
| // machine instruction fails because TargetExternalSymbol |
| // (not lowered) is target dependent, and CopyToReg assumes |
| // the source is lowered. |
| assert(ArgIns.size() == 1 && "ByVal argument must be a pointer"); |
| const auto &ByvalIn = ArgIns[0]; |
| assert(getValueType(DL, Ty) == ByvalIn.VT && |
| "Ins type did not match function type"); |
| assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer"); |
| |
| SDValue P; |
| if (isKernelFunction(*F)) { |
| P = DAG.getNode(NVPTXISD::Wrapper, dl, ByvalIn.VT, ArgSymbol); |
| P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| } else { |
| P = DAG.getNode(NVPTXISD::MoveParam, dl, ByvalIn.VT, ArgSymbol); |
| P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| P = DAG.getAddrSpaceCast(dl, ByvalIn.VT, P, ADDRESS_SPACE_LOCAL, |
| ADDRESS_SPACE_GENERIC); |
| } |
| InVals.push_back(P); |
| } else { |
| bool aggregateIsPacked = false; |
| if (StructType *STy = dyn_cast<StructType>(Ty)) |
| aggregateIsPacked = STy->isPacked(); |
| |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0); |
| assert(VTs.size() == ArgIns.size() && "Size mismatch"); |
| assert(VTs.size() == Offsets.size() && "Size mismatch"); |
| |
| Align ArgAlign = getFunctionArgumentAlignment( |
| F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex, DL); |
| auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign); |
| assert(VectorInfo.size() == VTs.size() && "Size mismatch"); |
| |
| int VecIdx = -1; // Index of the first element of the current vector. |
| for (const unsigned PartI : llvm::seq(VTs.size())) { |
| if (VectorInfo[PartI] & PVF_FIRST) { |
| assert(VecIdx == -1 && "Orphaned vector."); |
| VecIdx = PartI; |
| } |
| |
| // That's the last element of this store op. |
| if (VectorInfo[PartI] & PVF_LAST) { |
| const unsigned NumElts = PartI - VecIdx + 1; |
| EVT EltVT = VTs[PartI]; |
| // i1 is loaded/stored as i8. |
| EVT LoadVT = EltVT; |
| if (EltVT == MVT::i1) |
| LoadVT = MVT::i8; |
| else if (Isv2x16VT(EltVT) || EltVT == MVT::v4i8) |
| // getLoad needs a vector type, but it can't handle |
| // vectors which contain v2f16 or v2bf16 elements. So we must load |
| // using i32 here and then bitcast back. |
| LoadVT = MVT::i32; |
| |
| EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts); |
| SDValue VecAddr = |
| DAG.getNode(ISD::ADD, dl, PtrVT, ArgSymbol, |
| DAG.getConstant(Offsets[VecIdx], dl, PtrVT)); |
| |
| const MaybeAlign PartAlign = [&]() -> MaybeAlign { |
| if (aggregateIsPacked) |
| return Align(1); |
| if (NumElts != 1) |
| return std::nullopt; |
| Align PartAlign = |
| DL.getABITypeAlign(EltVT.getTypeForEVT(F->getContext())); |
| return commonAlignment(PartAlign, Offsets[PartI]); |
| }(); |
| SDValue P = |
| DAG.getLoad(VecVT, dl, Root, VecAddr, |
| MachinePointerInfo(ADDRESS_SPACE_PARAM), PartAlign, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| if (P.getNode()) |
| P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| for (const unsigned J : llvm::seq(NumElts)) { |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P, |
| DAG.getIntPtrConstant(J, dl)); |
| // We've loaded i1 as an i8 and now must truncate it back to i1 |
| if (EltVT == MVT::i1) |
| Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt); |
| // v2f16 was loaded as an i32. Now we must bitcast it back. |
| Elt = DAG.getBitcast(EltVT, Elt); |
| |
| // If a promoted integer type is used, truncate down to the original |
| MVT PromotedVT; |
| if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) { |
| Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); |
| } |
| |
| // Extend the element if necessary (e.g. an i8 is loaded |
| // into an i16 register) |
| if (ArgIns[PartI].VT.getFixedSizeInBits() != |
| LoadVT.getFixedSizeInBits()) { |
| assert(ArgIns[PartI].VT.isInteger() && LoadVT.isInteger() && |
| "Non-integer argument type size mismatch"); |
| Elt = DAG.getExtOrTrunc(ArgIns[PartI].Flags.isSExt(), Elt, dl, |
| ArgIns[PartI].VT); |
| } |
| InVals.push_back(Elt); |
| } |
| |
| // Reset vector tracking state. |
| VecIdx = -1; |
| } |
| } |
| } |
| } |
| |
| if (!OutChains.empty()) |
| DAG.setRoot(DAG.getTokenFactor(dl, OutChains)); |
| |
| return Chain; |
| } |
| |
| // Use byte-store when the param adress of the return value is unaligned. |
| // This may happen when the return value is a field of a packed structure. |
| static SDValue LowerUnalignedStoreRet(SelectionDAG &DAG, SDValue Chain, |
| uint64_t Offset, EVT ElementType, |
| SDValue RetVal, const SDLoc &dl) { |
| // Bit logic only works on integer types |
| if (adjustElementType(ElementType)) |
| RetVal = DAG.getNode(ISD::BITCAST, dl, ElementType, RetVal); |
| |
| // Store each byte |
| for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) { |
| // Shift the byte to the last byte position |
| SDValue ShiftVal = DAG.getNode(ISD::SRL, dl, ElementType, RetVal, |
| DAG.getConstant(i * 8, dl, MVT::i32)); |
| SDValue StoreOperands[] = {Chain, DAG.getConstant(Offset + i, dl, MVT::i32), |
| ShiftVal}; |
| // Trunc store only the last byte by using |
| // st.param.b8 |
| // The register type can be larger than b8. |
| Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl, |
| DAG.getVTList(MVT::Other), StoreOperands, |
| MVT::i8, MachinePointerInfo(), std::nullopt, |
| MachineMemOperand::MOStore); |
| } |
| return Chain; |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &F = MF.getFunction(); |
| Type *RetTy = MF.getFunction().getReturnType(); |
| |
| const DataLayout &DL = DAG.getDataLayout(); |
| SmallVector<SDValue, 16> PromotedOutVals; |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets); |
| assert(VTs.size() == OutVals.size() && "Bad return value decomposition"); |
| |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| SDValue PromotedOutVal = OutVals[i]; |
| MVT PromotedVT; |
| if (PromoteScalarIntegerPTX(VTs[i], &PromotedVT)) { |
| VTs[i] = EVT(PromotedVT); |
| } |
| if (PromoteScalarIntegerPTX(PromotedOutVal.getValueType(), &PromotedVT)) { |
| llvm::ISD::NodeType Ext = |
| Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| PromotedOutVal = DAG.getNode(Ext, dl, PromotedVT, PromotedOutVal); |
| } |
| PromotedOutVals.push_back(PromotedOutVal); |
| } |
| |
| auto VectorInfo = VectorizePTXValueVTs( |
| VTs, Offsets, |
| RetTy->isSized() ? getFunctionParamOptimizedAlign(&F, RetTy, DL) |
| : Align(1)); |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| // 32-bits are sign extended or zero extended, depending on whether |
| // they are signed or unsigned types. |
| bool ExtendIntegerRetVal = |
| RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; |
| |
| SmallVector<SDValue, 6> StoreOperands; |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| SDValue OutVal = OutVals[i]; |
| SDValue RetVal = PromotedOutVals[i]; |
| |
| if (ExtendIntegerRetVal) { |
| RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND |
| : ISD::ZERO_EXTEND, |
| dl, MVT::i32, RetVal); |
| } else if (OutVal.getValueSizeInBits() < 16) { |
| // Use 16-bit registers for small load-stores as it's the |
| // smallest general purpose register size supported by NVPTX. |
| RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal); |
| } |
| |
| // If we have a PVF_SCALAR entry, it may not even be sufficiently aligned |
| // for a scalar store. In such cases, fall back to byte stores. |
| if (VectorInfo[i] == PVF_SCALAR && RetTy->isAggregateType()) { |
| EVT ElementType = ExtendIntegerRetVal ? MVT::i32 : VTs[i]; |
| Align ElementTypeAlign = |
| DL.getABITypeAlign(ElementType.getTypeForEVT(RetTy->getContext())); |
| Align ElementAlign = |
| commonAlignment(DL.getABITypeAlign(RetTy), Offsets[i]); |
| if (ElementAlign < ElementTypeAlign) { |
| assert(StoreOperands.empty() && "Orphaned operand list."); |
| Chain = LowerUnalignedStoreRet(DAG, Chain, Offsets[i], ElementType, |
| RetVal, dl); |
| |
| // The call to LowerUnalignedStoreRet inserted the necessary SDAG nodes |
| // into the graph, so just move on to the next element. |
| continue; |
| } |
| } |
| |
| // New load/store. Record chain and offset operands. |
| if (VectorInfo[i] & PVF_FIRST) { |
| assert(StoreOperands.empty() && "Orphaned operand list."); |
| StoreOperands.push_back(Chain); |
| StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32)); |
| } |
| |
| // Record the value to return. |
| StoreOperands.push_back(RetVal); |
| |
| // That's the last element of this store op. |
| if (VectorInfo[i] & PVF_LAST) { |
| NVPTXISD::NodeType Op; |
| unsigned NumElts = StoreOperands.size() - 2; |
| switch (NumElts) { |
| case 1: |
| Op = NVPTXISD::StoreRetval; |
| break; |
| case 2: |
| Op = NVPTXISD::StoreRetvalV2; |
| break; |
| case 4: |
| Op = NVPTXISD::StoreRetvalV4; |
| break; |
| default: |
| llvm_unreachable("Invalid vector info."); |
| } |
| |
| // Adjust type of load/store op if we've extended the scalar |
| // return value. |
| EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i]; |
| Chain = DAG.getMemIntrinsicNode( |
| Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType, |
| MachinePointerInfo(), Align(1), MachineMemOperand::MOStore); |
| // Cleanup vector state. |
| StoreOperands.clear(); |
| } |
| } |
| |
| return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain); |
| } |
| |
| void NVPTXTargetLowering::LowerAsmOperandForConstraint( |
| SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| if (Constraint.size() > 1) |
| return; |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as |
| // TgtMemIntrinsic |
| // because we need the information that is only available in the "Value" type |
| // of destination |
| // pointer. In particular, the address space information. |
| bool NVPTXTargetLowering::getTgtMemIntrinsic( |
| IntrinsicInfo &Info, const CallInst &I, |
| MachineFunction &MF, unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| default: |
| return false; |
| case Intrinsic::nvvm_match_all_sync_i32p: |
| case Intrinsic::nvvm_match_all_sync_i64p: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute |
| // in order to model data exchange with other threads, but perform no real |
| // memory accesses. |
| Info.memVT = MVT::i1; |
| |
| // Our result depends on both our and other thread's arguments. |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| return true; |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8f16; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row: |
| |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(4); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4f16; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8f32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::f64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2f64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v4f16; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v8f32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v2f64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_atomic_add_gen_f_cta: |
| case Intrinsic::nvvm_atomic_add_gen_f_sys: |
| case Intrinsic::nvvm_atomic_add_gen_i_cta: |
| case Intrinsic::nvvm_atomic_add_gen_i_sys: |
| case Intrinsic::nvvm_atomic_and_gen_i_cta: |
| case Intrinsic::nvvm_atomic_and_gen_i_sys: |
| case Intrinsic::nvvm_atomic_cas_gen_i_cta: |
| case Intrinsic::nvvm_atomic_cas_gen_i_sys: |
| case Intrinsic::nvvm_atomic_dec_gen_i_cta: |
| case Intrinsic::nvvm_atomic_dec_gen_i_sys: |
| case Intrinsic::nvvm_atomic_inc_gen_i_cta: |
| case Intrinsic::nvvm_atomic_inc_gen_i_sys: |
| case Intrinsic::nvvm_atomic_max_gen_i_cta: |
| case Intrinsic::nvvm_atomic_max_gen_i_sys: |
| case Intrinsic::nvvm_atomic_min_gen_i_cta: |
| case Intrinsic::nvvm_atomic_min_gen_i_sys: |
| case Intrinsic::nvvm_atomic_or_gen_i_cta: |
| case Intrinsic::nvvm_atomic_or_gen_i_sys: |
| case Intrinsic::nvvm_atomic_exch_gen_i_cta: |
| case Intrinsic::nvvm_atomic_exch_gen_i_sys: |
| case Intrinsic::nvvm_atomic_xor_gen_i_cta: |
| case Intrinsic::nvvm_atomic_xor_gen_i_sys: { |
| auto &DL = I.getDataLayout(); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = getValueType(DL, I.getType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_ldu_global_i: |
| case Intrinsic::nvvm_ldu_global_f: |
| case Intrinsic::nvvm_ldu_global_p: { |
| auto &DL = I.getDataLayout(); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| if (Intrinsic == Intrinsic::nvvm_ldu_global_i) |
| Info.memVT = getValueType(DL, I.getType()); |
| else if(Intrinsic == Intrinsic::nvvm_ldu_global_p) |
| Info.memVT = getPointerTy(DL); |
| else |
| Info.memVT = getValueType(DL, I.getType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); |
| |
| return true; |
| } |
| case Intrinsic::nvvm_tex_1d_v4f32_s32: |
| case Intrinsic::nvvm_tex_1d_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_1d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_v4f32_s32: |
| case Intrinsic::nvvm_tex_2d_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_2d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_3d_v4f32_s32: |
| case Intrinsic::nvvm_tex_3d_v4f32_f32: |
| case Intrinsic::nvvm_tex_3d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4f32; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_tex_1d_v4s32_s32: |
| case Intrinsic::nvvm_tex_1d_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_1d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_v4s32_s32: |
| case Intrinsic::nvvm_tex_2d_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_2d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_3d_v4s32_s32: |
| case Intrinsic::nvvm_tex_3d_v4s32_f32: |
| case Intrinsic::nvvm_tex_3d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_v4u32_f32: |
| case Intrinsic::nvvm_tex_cube_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_cube_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_v4u32_s32: |
| case Intrinsic::nvvm_tex_1d_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_1d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_v4u32_s32: |
| case Intrinsic::nvvm_tex_2d_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_2d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_3d_v4u32_s32: |
| case Intrinsic::nvvm_tex_3d_v4u32_f32: |
| case Intrinsic::nvvm_tex_3d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i8_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i8_clamp: |
| case Intrinsic::nvvm_suld_1d_v4i8_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i8_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: |
| case Intrinsic::nvvm_suld_2d_i8_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i8_clamp: |
| case Intrinsic::nvvm_suld_2d_v4i8_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i8_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: |
| case Intrinsic::nvvm_suld_3d_i8_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i8_clamp: |
| case Intrinsic::nvvm_suld_3d_v4i8_clamp: |
| case Intrinsic::nvvm_suld_1d_i8_trap: |
| case Intrinsic::nvvm_suld_1d_v2i8_trap: |
| case Intrinsic::nvvm_suld_1d_v4i8_trap: |
| case Intrinsic::nvvm_suld_1d_array_i8_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i8_trap: |
| case Intrinsic::nvvm_suld_1d_array_v4i8_trap: |
| case Intrinsic::nvvm_suld_2d_i8_trap: |
| case Intrinsic::nvvm_suld_2d_v2i8_trap: |
| case Intrinsic::nvvm_suld_2d_v4i8_trap: |
| case Intrinsic::nvvm_suld_2d_array_i8_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i8_trap: |
| case Intrinsic::nvvm_suld_2d_array_v4i8_trap: |
| case Intrinsic::nvvm_suld_3d_i8_trap: |
| case Intrinsic::nvvm_suld_3d_v2i8_trap: |
| case Intrinsic::nvvm_suld_3d_v4i8_trap: |
| case Intrinsic::nvvm_suld_1d_i8_zero: |
| case Intrinsic::nvvm_suld_1d_v2i8_zero: |
| case Intrinsic::nvvm_suld_1d_v4i8_zero: |
| case Intrinsic::nvvm_suld_1d_array_i8_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i8_zero: |
| case Intrinsic::nvvm_suld_1d_array_v4i8_zero: |
| case Intrinsic::nvvm_suld_2d_i8_zero: |
| case Intrinsic::nvvm_suld_2d_v2i8_zero: |
| case Intrinsic::nvvm_suld_2d_v4i8_zero: |
| case Intrinsic::nvvm_suld_2d_array_i8_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i8_zero: |
| case Intrinsic::nvvm_suld_2d_array_v4i8_zero: |
| case Intrinsic::nvvm_suld_3d_i8_zero: |
| case Intrinsic::nvvm_suld_3d_v2i8_zero: |
| case Intrinsic::nvvm_suld_3d_v4i8_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i8; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i16_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i16_clamp: |
| case Intrinsic::nvvm_suld_1d_v4i16_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i16_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: |
| case Intrinsic::nvvm_suld_2d_i16_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i16_clamp: |
| case Intrinsic::nvvm_suld_2d_v4i16_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i16_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: |
| case Intrinsic::nvvm_suld_3d_i16_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i16_clamp: |
| case Intrinsic::nvvm_suld_3d_v4i16_clamp: |
| case Intrinsic::nvvm_suld_1d_i16_trap: |
| case Intrinsic::nvvm_suld_1d_v2i16_trap: |
| case Intrinsic::nvvm_suld_1d_v4i16_trap: |
| case Intrinsic::nvvm_suld_1d_array_i16_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i16_trap: |
| case Intrinsic::nvvm_suld_1d_array_v4i16_trap: |
| case Intrinsic::nvvm_suld_2d_i16_trap: |
| case Intrinsic::nvvm_suld_2d_v2i16_trap: |
| case Intrinsic::nvvm_suld_2d_v4i16_trap: |
| case Intrinsic::nvvm_suld_2d_array_i16_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i16_trap: |
| case Intrinsic::nvvm_suld_2d_array_v4i16_trap: |
| case Intrinsic::nvvm_suld_3d_i16_trap: |
| case Intrinsic::nvvm_suld_3d_v2i16_trap: |
| case Intrinsic::nvvm_suld_3d_v4i16_trap: |
| case Intrinsic::nvvm_suld_1d_i16_zero: |
| case Intrinsic::nvvm_suld_1d_v2i16_zero: |
| case Intrinsic::nvvm_suld_1d_v4i16_zero: |
| case Intrinsic::nvvm_suld_1d_array_i16_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i16_zero: |
| case Intrinsic::nvvm_suld_1d_array_v4i16_zero: |
| case Intrinsic::nvvm_suld_2d_i16_zero: |
| case Intrinsic::nvvm_suld_2d_v2i16_zero: |
| case Intrinsic::nvvm_suld_2d_v4i16_zero: |
| case Intrinsic::nvvm_suld_2d_array_i16_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i16_zero: |
| case Intrinsic::nvvm_suld_2d_array_v4i16_zero: |
| case Intrinsic::nvvm_suld_3d_i16_zero: |
| case Intrinsic::nvvm_suld_3d_v2i16_zero: |
| case Intrinsic::nvvm_suld_3d_v4i16_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i16; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i32_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i32_clamp: |
| case Intrinsic::nvvm_suld_1d_v4i32_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i32_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: |
| case Intrinsic::nvvm_suld_2d_i32_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i32_clamp: |
| case Intrinsic::nvvm_suld_2d_v4i32_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i32_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: |
| case Intrinsic::nvvm_suld_3d_i32_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i32_clamp: |
| case Intrinsic::nvvm_suld_3d_v4i32_clamp: |
| case Intrinsic::nvvm_suld_1d_i32_trap: |
| case Intrinsic::nvvm_suld_1d_v2i32_trap: |
| case Intrinsic::nvvm_suld_1d_v4i32_trap: |
| case Intrinsic::nvvm_suld_1d_array_i32_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i32_trap: |
| case Intrinsic::nvvm_suld_1d_array_v4i32_trap: |
| case Intrinsic::nvvm_suld_2d_i32_trap: |
| case Intrinsic::nvvm_suld_2d_v2i32_trap: |
| case Intrinsic::nvvm_suld_2d_v4i32_trap: |
| case Intrinsic::nvvm_suld_2d_array_i32_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i32_trap: |
| case Intrinsic::nvvm_suld_2d_array_v4i32_trap: |
| case Intrinsic::nvvm_suld_3d_i32_trap: |
| case Intrinsic::nvvm_suld_3d_v2i32_trap: |
| case Intrinsic::nvvm_suld_3d_v4i32_trap: |
| case Intrinsic::nvvm_suld_1d_i32_zero: |
| case Intrinsic::nvvm_suld_1d_v2i32_zero: |
| case Intrinsic::nvvm_suld_1d_v4i32_zero: |
| case Intrinsic::nvvm_suld_1d_array_i32_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i32_zero: |
| case Intrinsic::nvvm_suld_1d_array_v4i32_zero: |
| case Intrinsic::nvvm_suld_2d_i32_zero: |
| case Intrinsic::nvvm_suld_2d_v2i32_zero: |
| case Intrinsic::nvvm_suld_2d_v4i32_zero: |
| case Intrinsic::nvvm_suld_2d_array_i32_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i32_zero: |
| case Intrinsic::nvvm_suld_2d_array_v4i32_zero: |
| case Intrinsic::nvvm_suld_3d_i32_zero: |
| case Intrinsic::nvvm_suld_3d_v2i32_zero: |
| case Intrinsic::nvvm_suld_3d_v4i32_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i64_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i64_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i64_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: |
| case Intrinsic::nvvm_suld_2d_i64_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i64_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i64_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: |
| case Intrinsic::nvvm_suld_3d_i64_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i64_clamp: |
| case Intrinsic::nvvm_suld_1d_i64_trap: |
| case Intrinsic::nvvm_suld_1d_v2i64_trap: |
| case Intrinsic::nvvm_suld_1d_array_i64_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i64_trap: |
| case Intrinsic::nvvm_suld_2d_i64_trap: |
| case Intrinsic::nvvm_suld_2d_v2i64_trap: |
| case Intrinsic::nvvm_suld_2d_array_i64_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i64_trap: |
| case Intrinsic::nvvm_suld_3d_i64_trap: |
| case Intrinsic::nvvm_suld_3d_v2i64_trap: |
| case Intrinsic::nvvm_suld_1d_i64_zero: |
| case Intrinsic::nvvm_suld_1d_v2i64_zero: |
| case Intrinsic::nvvm_suld_1d_array_i64_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i64_zero: |
| case Intrinsic::nvvm_suld_2d_i64_zero: |
| case Intrinsic::nvvm_suld_2d_v2i64_zero: |
| case Intrinsic::nvvm_suld_2d_array_i64_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i64_zero: |
| case Intrinsic::nvvm_suld_3d_i64_zero: |
| case Intrinsic::nvvm_suld_3d_v2i64_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v1i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v16i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v32i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v64i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v128i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v16i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v32i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v64i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v128i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// getFunctionParamOptimizedAlign - since function arguments are passed via |
| /// .param space, we may want to increase their alignment in a way that |
| /// ensures that we can effectively vectorize their loads & stores. We can |
| /// increase alignment only if the function has internal or has private |
| /// linkage as for other linkage types callers may already rely on default |
| /// alignment. To allow using 128-bit vectorized loads/stores, this function |
| /// ensures that alignment is 16 or greater. |
| Align NVPTXTargetLowering::getFunctionParamOptimizedAlign( |
| const Function *F, Type *ArgTy, const DataLayout &DL) const { |
| // Capping the alignment to 128 bytes as that is the maximum alignment |
| // supported by PTX. |
| const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy)); |
| |
| // If a function has linkage different from internal or private, we |
| // must use default ABI alignment as external users rely on it. Same |
| // for a function that may be called from a function pointer. |
| if (!F || !F->hasLocalLinkage() || |
| F->hasAddressTaken(/*Users=*/nullptr, |
| /*IgnoreCallbackUses=*/false, |
| /*IgnoreAssumeLikeCalls=*/true, |
| /*IgnoreLLVMUsed=*/true)) |
| return ABITypeAlign; |
| |
| assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage"); |
| return std::max(Align(16), ABITypeAlign); |
| } |
| |
| /// Helper for computing alignment of a device function byval parameter. |
| Align NVPTXTargetLowering::getFunctionByValParamAlign( |
| const Function *F, Type *ArgTy, Align InitialAlign, |
| const DataLayout &DL) const { |
| Align ArgAlign = InitialAlign; |
| // Try to increase alignment to enhance vectorization options. |
| if (F) |
| ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL)); |
| |
| // Old ptx versions have a bug. When PTX code takes address of |
| // byval parameter with alignment < 4, ptxas generates code to |
| // spill argument into memory. Alas on sm_50+ ptxas generates |
| // SASS code that fails with misaligned access. To work around |
| // the problem, make sure that we align byval parameters by at |
| // least 4. This bug seems to be fixed at least starting from |
| // ptxas > 9.0. |
| // TODO: remove this after verifying the bug is not reproduced |
| // on non-deprecated ptxas versions. |
| if (ForceMinByValParamAlign) |
| ArgAlign = std::max(ArgAlign, Align(4)); |
| |
| return ArgAlign; |
| } |
| |
| // Helper for getting a function parameter name. Name is composed from |
| // its index and the function name. Negative index corresponds to special |
| // parameter (unsized array) used for passing variable arguments. |
| std::string NVPTXTargetLowering::getParamName(const Function *F, |
| int Idx) const { |
| std::string ParamName; |
| raw_string_ostream ParamStr(ParamName); |
| |
| ParamStr << getTargetMachine().getSymbol(F)->getName(); |
| if (Idx < 0) |
| ParamStr << "_vararg"; |
| else |
| ParamStr << "_param_" << Idx; |
| |
| return ParamName; |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| /// Used to guide target specific optimizations, like loop strength reduction |
| /// (LoopStrengthReduce.cpp) and memory optimization for address mode |
| /// (CodeGenPrepare.cpp) |
| bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| // AddrMode - This represents an addressing mode of: |
| // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg |
| // |
| // The legal address modes are |
| // - [avar] |
| // - [areg] |
| // - [areg+immoff] |
| // - [immAddr] |
| |
| // immoff must fit in a signed 32-bit int |
| if (!APInt(64, AM.BaseOffs).isSignedIntN(32)) |
| return false; |
| |
| if (AM.BaseGV) |
| return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale; |
| |
| switch (AM.Scale) { |
| case 0: // "r", "r+i" or "i" is allowed |
| break; |
| case 1: |
| if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. |
| return false; |
| // Otherwise we have r+i. |
| break; |
| default: |
| // No scale > 1 is allowed |
| return false; |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| NVPTXTargetLowering::ConstraintType |
| NVPTXTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'b': |
| case 'r': |
| case 'h': |
| case 'c': |
| case 'l': |
| case 'f': |
| case 'd': |
| case 'q': |
| case '0': |
| case 'N': |
| return C_RegisterClass; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'b': |
| return std::make_pair(0U, &NVPTX::Int1RegsRegClass); |
| case 'c': |
| return std::make_pair(0U, &NVPTX::Int16RegsRegClass); |
| case 'h': |
| return std::make_pair(0U, &NVPTX::Int16RegsRegClass); |
| case 'r': |
| return std::make_pair(0U, &NVPTX::Int32RegsRegClass); |
| case 'l': |
| case 'N': |
| return std::make_pair(0U, &NVPTX::Int64RegsRegClass); |
| case 'q': { |
| if (STI.getSmVersion() < 70) |
| report_fatal_error("Inline asm with 128 bit operands is only " |
| "supported for sm_70 and higher!"); |
| return std::make_pair(0U, &NVPTX::Int128RegsRegClass); |
| } |
| case 'f': |
| return std::make_pair(0U, &NVPTX::Float32RegsRegClass); |
| case 'd': |
| return std::make_pair(0U, &NVPTX::Float64RegsRegClass); |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX DAG Combining |
| //===----------------------------------------------------------------------===// |
| |
| bool NVPTXTargetLowering::allowFMA(MachineFunction &MF, |
| CodeGenOptLevel OptLevel) const { |
| // Always honor command-line argument |
| if (FMAContractLevelOpt.getNumOccurrences() > 0) |
| return FMAContractLevelOpt > 0; |
| |
| // Do not contract if we're not optimizing the code. |
| if (OptLevel == CodeGenOptLevel::None) |
| return false; |
| |
| // Honor TargetOptions flags that explicitly say fusion is okay. |
| if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast) |
| return true; |
| |
| return allowUnsafeFPMath(MF); |
| } |
| |
| bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const { |
| // Honor TargetOptions flags that explicitly say unsafe math is okay. |
| if (MF.getTarget().Options.UnsafeFPMath) |
| return true; |
| |
| // Allow unsafe math if unsafe-fp-math attribute explicitly says so. |
| const Function &F = MF.getFunction(); |
| return F.getFnAttribute("unsafe-fp-math").getValueAsBool(); |
| } |
| |
| static bool isConstZero(const SDValue &Operand) { |
| const auto *Const = dyn_cast<ConstantSDNode>(Operand); |
| return Const && Const->getZExtValue() == 0; |
| } |
| |
| /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with |
| /// operands N0 and N1. This is a helper for PerformADDCombine that is |
| /// called with the default operands, and if that fails, with commuted |
| /// operands. |
| static SDValue |
| PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| EVT VT = N0.getValueType(); |
| |
| // Since integer multiply-add costs the same as integer multiply |
| // but is more costly than integer add, do the fusion only when |
| // the mul is only used in the add. |
| // TODO: this may not be true for later architectures, consider relaxing this |
| if (!N0.getNode()->hasOneUse()) |
| return SDValue(); |
| |
| // fold (add (select cond, 0, (mul a, b)), c) |
| // -> (select cond, c, (add (mul a, b), c)) |
| // |
| if (N0.getOpcode() == ISD::SELECT) { |
| unsigned ZeroOpNum; |
| if (isConstZero(N0->getOperand(1))) |
| ZeroOpNum = 1; |
| else if (isConstZero(N0->getOperand(2))) |
| ZeroOpNum = 2; |
| else |
| return SDValue(); |
| |
| SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1); |
| if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue Mul = |
| DCI.DAG.getNode(ISD::MUL, DL, VT, M->getOperand(0), M->getOperand(1)); |
| SDValue MAD = DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, N1); |
| return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0), |
| ((ZeroOpNum == 1) ? N1 : MAD), |
| ((ZeroOpNum == 1) ? MAD : N1)); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue |
| PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| EVT VT = N0.getValueType(); |
| if (N0.getOpcode() == ISD::FMUL) { |
| const auto *TLI = static_cast<const NVPTXTargetLowering *>( |
| &DCI.DAG.getTargetLoweringInfo()); |
| if (!(TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel) || |
| (N->getFlags().hasAllowContract() && |
| N0->getFlags().hasAllowContract()))) |
| return SDValue(); |
| |
| // For floating point: |
| // Do the fusion only when the mul has less than 5 uses and all |
| // are add. |
| // The heuristic is that if a use is not an add, then that use |
| // cannot be fused into fma, therefore mul is still needed anyway. |
| // If there are more than 4 uses, even if they are all add, fusing |
| // them will increase register pressue. |
| // |
| int numUses = 0; |
| int nonAddCount = 0; |
| for (const SDNode *User : N0.getNode()->users()) { |
| numUses++; |
| if (User->getOpcode() != ISD::FADD) |
| ++nonAddCount; |
| if (numUses >= 5) |
| return SDValue(); |
| } |
| if (nonAddCount) { |
| int orderNo = N->getIROrder(); |
| int orderNo2 = N0.getNode()->getIROrder(); |
| // simple heuristics here for considering potential register |
| // pressure, the logics here is that the differnce are used |
| // to measure the distance between def and use, the longer distance |
| // more likely cause register pressure. |
| if (orderNo - orderNo2 < 500) |
| return SDValue(); |
| |
| // Now, check if at least one of the FMUL's operands is live beyond the |
| // node N, which guarantees that the FMA will not increase register |
| // pressure at node N. |
| bool opIsLive = false; |
| const SDNode *left = N0.getOperand(0).getNode(); |
| const SDNode *right = N0.getOperand(1).getNode(); |
| |
| if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right)) |
| opIsLive = true; |
| |
| if (!opIsLive) |
| for (const SDNode *User : left->users()) { |
| int orderNo3 = User->getIROrder(); |
| if (orderNo3 > orderNo) { |
| opIsLive = true; |
| break; |
| } |
| } |
| |
| if (!opIsLive) |
| for (const SDNode *User : right->users()) { |
| int orderNo3 = User->getIROrder(); |
| if (orderNo3 > orderNo) { |
| opIsLive = true; |
| break; |
| } |
| } |
| |
| if (!opIsLive) |
| return SDValue(); |
| } |
| |
| return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1), N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformStoreCombineHelper(SDNode *N, std::size_t Front, |
| std::size_t Back) { |
| if (all_of(N->ops().drop_front(Front).drop_back(Back), |
| [](const SDUse &U) { return U.get()->isUndef(); })) |
| // Operand 0 is the previous value in the chain. Cannot return EntryToken |
| // as the previous value will become unused and eliminated later. |
| return N->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformStoreParamCombine(SDNode *N) { |
| // Operands from the 3rd to the 2nd last one are the values to be stored. |
| // {Chain, ArgID, Offset, Val, Glue} |
| return PerformStoreCombineHelper(N, 3, 1); |
| } |
| |
| static SDValue PerformStoreRetvalCombine(SDNode *N) { |
| // Operands from the 2nd to the last one are the values to be stored |
| return PerformStoreCombineHelper(N, 2, 0); |
| } |
| |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| /// |
| static SDValue PerformADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel == CodeGenOptLevel::None) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Skip non-integer, non-scalar case |
| EVT VT = N0.getValueType(); |
| if (VT.isVector() || VT != MVT::i32) |
| return SDValue(); |
| |
| // First try with the default operand order. |
| if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI)) |
| return Result; |
| |
| // If that didn't work, try again with the operands commuted. |
| return PerformADDCombineWithOperands(N, N1, N0, DCI); |
| } |
| |
| /// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD. |
| /// |
| static SDValue PerformFADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| EVT VT = N0.getValueType(); |
| if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64)) |
| return SDValue(); |
| |
| // First try with the default operand order. |
| if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel)) |
| return Result; |
| |
| // If that didn't work, try again with the operands commuted. |
| return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel); |
| } |
| |
| static SDValue PerformANDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // The type legalizer turns a vector load of i8 values into a zextload to i16 |
| // registers, optionally ANY_EXTENDs it (if target type is integer), |
| // and ANDs off the high 8 bits. Since we turn this load into a |
| // target-specific DAG node, the DAG combiner fails to eliminate these AND |
| // nodes. Do that here. |
| SDValue Val = N->getOperand(0); |
| SDValue Mask = N->getOperand(1); |
| |
| if (isa<ConstantSDNode>(Val)) { |
| std::swap(Val, Mask); |
| } |
| |
| SDValue AExt; |
| |
| // Convert BFE-> truncate i16 -> and 255 |
| // To just BFE-> truncate i16, as the value already has all the bits in the |
| // right places. |
| if (Val.getOpcode() == ISD::TRUNCATE) { |
| SDValue BFE = Val.getOperand(0); |
| if (BFE.getOpcode() != NVPTXISD::BFE) |
| return SDValue(); |
| |
| ConstantSDNode *BFEBits = dyn_cast<ConstantSDNode>(BFE.getOperand(0)); |
| if (!BFEBits) |
| return SDValue(); |
| uint64_t BFEBitsVal = BFEBits->getZExtValue(); |
| |
| ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask); |
| if (!MaskCnst) { |
| // Not an AND with a constant |
| return SDValue(); |
| } |
| uint64_t MaskVal = MaskCnst->getZExtValue(); |
| |
| if (MaskVal != (uint64_t(1) << BFEBitsVal) - 1) |
| return SDValue(); |
| // If we get here, the AND is unnecessary. Just replace it with the trunc |
| DCI.CombineTo(N, Val, false); |
| } |
| // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and |
| if (Val.getOpcode() == ISD::ANY_EXTEND) { |
| AExt = Val; |
| Val = Val->getOperand(0); |
| } |
| |
| if (Val->getOpcode() == NVPTXISD::LoadV2 || |
| Val->getOpcode() == NVPTXISD::LoadV4) { |
| ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask); |
| if (!MaskCnst) { |
| // Not an AND with a constant |
| return SDValue(); |
| } |
| |
| uint64_t MaskVal = MaskCnst->getZExtValue(); |
| if (MaskVal != 0xff) { |
| // Not an AND that chops off top 8 bits |
| return SDValue(); |
| } |
| |
| MemSDNode *Mem = dyn_cast<MemSDNode>(Val); |
| if (!Mem) { |
| // Not a MemSDNode?!? |
| return SDValue(); |
| } |
| |
| EVT MemVT = Mem->getMemoryVT(); |
| if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) { |
| // We only handle the i8 case |
| return SDValue(); |
| } |
| |
| unsigned ExtType = Val->getConstantOperandVal(Val->getNumOperands() - 1); |
| if (ExtType == ISD::SEXTLOAD) { |
| // If for some reason the load is a sextload, the and is needed to zero |
| // out the high 8 bits |
| return SDValue(); |
| } |
| |
| bool AddTo = false; |
| if (AExt.getNode() != nullptr) { |
| // Re-insert the ext as a zext. |
| Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), |
| AExt.getValueType(), Val); |
| AddTo = true; |
| } |
| |
| // If we get here, the AND is unnecessary. Just replace it with the load |
| DCI.CombineTo(N, Val, AddTo); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformREMCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM); |
| |
| // Don't do anything at less than -O2. |
| if (OptLevel < CodeGenOptLevel::Default) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| bool IsSigned = N->getOpcode() == ISD::SREM; |
| unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV; |
| |
| const SDValue &Num = N->getOperand(0); |
| const SDValue &Den = N->getOperand(1); |
| |
| for (const SDNode *U : Num->users()) { |
| if (U->getOpcode() == DivOpc && U->getOperand(0) == Num && |
| U->getOperand(1) == Den) { |
| // Num % Den -> Num - (Num / Den) * Den |
| return DAG.getNode(ISD::SUB, DL, VT, Num, |
| DAG.getNode(ISD::MUL, DL, VT, |
| DAG.getNode(DivOpc, DL, VT, Num, Den), |
| Den)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| enum OperandSignedness { |
| Signed = 0, |
| Unsigned, |
| Unknown |
| }; |
| |
| /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand |
| /// that can be demoted to \p OptSize bits without loss of information. The |
| /// signedness of the operand, if determinable, is placed in \p S. |
| static bool IsMulWideOperandDemotable(SDValue Op, |
| unsigned OptSize, |
| OperandSignedness &S) { |
| S = Unknown; |
| |
| if (Op.getOpcode() == ISD::SIGN_EXTEND || |
| Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| EVT OrigVT = Op.getOperand(0).getValueType(); |
| if (OrigVT.getFixedSizeInBits() <= OptSize) { |
| S = Signed; |
| return true; |
| } |
| } else if (Op.getOpcode() == ISD::ZERO_EXTEND) { |
| EVT OrigVT = Op.getOperand(0).getValueType(); |
| if (OrigVT.getFixedSizeInBits() <= OptSize) { |
| S = Unsigned; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can |
| /// be demoted to \p OptSize bits without loss of information. If the operands |
| /// contain a constant, it should appear as the RHS operand. The signedness of |
| /// the operands is placed in \p IsSigned. |
| static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, |
| unsigned OptSize, |
| bool &IsSigned) { |
| OperandSignedness LHSSign; |
| |
| // The LHS operand must be a demotable op |
| if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign)) |
| return false; |
| |
| // We should have been able to determine the signedness from the LHS |
| if (LHSSign == Unknown) |
| return false; |
| |
| IsSigned = (LHSSign == Signed); |
| |
| // The RHS can be a demotable op or a constant |
| if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) { |
| const APInt &Val = CI->getAPIntValue(); |
| if (LHSSign == Unsigned) { |
| return Val.isIntN(OptSize); |
| } else { |
| return Val.isSignedIntN(OptSize); |
| } |
| } else { |
| OperandSignedness RHSSign; |
| if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign)) |
| return false; |
| |
| return LHSSign == RHSSign; |
| } |
| } |
| |
| /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply |
| /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform |
| /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift |
| /// amount. |
| static SDValue TryMULWIDECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| EVT MulType = N->getValueType(0); |
| if (MulType != MVT::i32 && MulType != MVT::i64) { |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| unsigned OptSize = MulType.getSizeInBits() >> 1; |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // Canonicalize the multiply so the constant (if any) is on the right |
| if (N->getOpcode() == ISD::MUL) { |
| if (isa<ConstantSDNode>(LHS)) { |
| std::swap(LHS, RHS); |
| } |
| } |
| |
| // If we have a SHL, determine the actual multiply amount |
| if (N->getOpcode() == ISD::SHL) { |
| ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (!ShlRHS) { |
| return SDValue(); |
| } |
| |
| APInt ShiftAmt = ShlRHS->getAPIntValue(); |
| unsigned BitWidth = MulType.getSizeInBits(); |
| if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) { |
| APInt MulVal = APInt(BitWidth, 1) << ShiftAmt; |
| RHS = DCI.DAG.getConstant(MulVal, DL, MulType); |
| } else { |
| return SDValue(); |
| } |
| } |
| |
| bool Signed; |
| // Verify that our operands are demotable |
| if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) { |
| return SDValue(); |
| } |
| |
| EVT DemotedVT; |
| if (MulType == MVT::i32) { |
| DemotedVT = MVT::i16; |
| } else { |
| DemotedVT = MVT::i32; |
| } |
| |
| // Truncate the operands to the correct size. Note that these are just for |
| // type consistency and will (likely) be eliminated in later phases. |
| SDValue TruncLHS = |
| DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS); |
| SDValue TruncRHS = |
| DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS); |
| |
| unsigned Opc; |
| if (Signed) { |
| Opc = NVPTXISD::MUL_WIDE_SIGNED; |
| } else { |
| Opc = NVPTXISD::MUL_WIDE_UNSIGNED; |
| } |
| |
| return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS); |
| } |
| |
| static bool isConstOne(const SDValue &Operand) { |
| const auto *Const = dyn_cast<ConstantSDNode>(Operand); |
| return Const && Const->getZExtValue() == 1; |
| } |
| |
| static SDValue matchMADConstOnePattern(SDValue Add) { |
| if (Add->getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| if (isConstOne(Add->getOperand(0))) |
| return Add->getOperand(1); |
| |
| if (isConstOne(Add->getOperand(1))) |
| return Add->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| if (SDValue Y = matchMADConstOnePattern(Add)) { |
| SDValue Mul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y); |
| return DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, X); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, |
| SDLoc DL, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (Select->getOpcode() != ISD::SELECT) |
| return SDValue(); |
| |
| SDValue Cond = Select->getOperand(0); |
| |
| unsigned ConstOpNo; |
| if (isConstOne(Select->getOperand(1))) |
| ConstOpNo = 1; |
| else if (isConstOne(Select->getOperand(2))) |
| ConstOpNo = 2; |
| else |
| return SDValue(); |
| |
| SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1); |
| |
| // Do not combine if the resulting sequence is not obviously profitable. |
| if (!matchMADConstOnePattern(Y)) |
| return SDValue(); |
| |
| SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y); |
| |
| return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| (ConstOpNo == 1) ? X : NewMul, |
| (ConstOpNo == 1) ? NewMul : X); |
| } |
| |
| static SDValue |
| PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| EVT VT = N0.getValueType(); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // (mul x, (add y, 1)) -> (add (mul x, y), x) |
| if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI)) |
| return Res; |
| if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI)) |
| return Res; |
| |
| // (mul x, (select y, 1)) -> (select (mul x, y), x) |
| if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI)) |
| return Res; |
| if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes. |
| static SDValue PerformMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel == CodeGenOptLevel::None) |
| return SDValue(); |
| |
| if (SDValue Ret = TryMULWIDECombine(N, DCI)) |
| return Ret; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| return PerformMULCombineWithOperands(N, N0, N1, DCI); |
| } |
| |
| /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes. |
| static SDValue PerformSHLCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel > CodeGenOptLevel::None) { |
| // Try mul.wide combining at OptLevel > 0 |
| if (SDValue Ret = TryMULWIDECombine(N, DCI)) |
| return Ret; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformSETCCCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| unsigned int SmVersion) { |
| EVT CCType = N->getValueType(0); |
| SDValue A = N->getOperand(0); |
| SDValue B = N->getOperand(1); |
| |
| EVT AType = A.getValueType(); |
| if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16))) |
| return SDValue(); |
| |
| if (A.getValueType() == MVT::v2bf16 && SmVersion < 90) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| // setp.f16x2 returns two scalar predicates, which we need to |
| // convert back to v2i1. The returned result will be scalarized by |
| // the legalizer, but the comparison will remain a single vector |
| // instruction. |
| SDValue CCNode = DCI.DAG.getNode( |
| A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2 |
| : NVPTXISD::SETP_BF16X2, |
| DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)}); |
| return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0), |
| CCNode.getValue(1)); |
| } |
| |
| static SDValue PerformEXTRACTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue Vector = N->getOperand(0); |
| if (Vector->getOpcode() == ISD::FREEZE) |
| Vector = Vector->getOperand(0); |
| SDLoc DL(N); |
| EVT VectorVT = Vector.getValueType(); |
| if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() && |
| IsPTXVectorType(VectorVT.getSimpleVT())) |
| return SDValue(); // Native vector loads already combine nicely w/ |
| // extract_vector_elt. |
| // Don't mess with singletons or v2*16, v4i8 and v8i8 types, we already |
| // handle them OK. |
| if (VectorVT.getVectorNumElements() == 1 || Isv2x16VT(VectorVT) || |
| VectorVT == MVT::v4i8 || VectorVT == MVT::v8i8) |
| return SDValue(); |
| |
| // Don't mess with undef values as sra may be simplified to 0, not undef. |
| if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode())) |
| return SDValue(); |
| |
| uint64_t VectorBits = VectorVT.getSizeInBits(); |
| // We only handle the types we can extract in-register. |
| if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64)) |
| return SDValue(); |
| |
| ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| // Index == 0 is handled by generic DAG combiner. |
| if (!Index || Index->getZExtValue() == 0) |
| return SDValue(); |
| |
| MVT IVT = MVT::getIntegerVT(VectorBits); |
| EVT EltVT = VectorVT.getVectorElementType(); |
| EVT EltIVT = EltVT.changeTypeToInteger(); |
| uint64_t EltBits = EltVT.getScalarSizeInBits(); |
| |
| SDValue Result = DCI.DAG.getNode( |
| ISD::TRUNCATE, DL, EltIVT, |
| DCI.DAG.getNode( |
| ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector), |
| DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT))); |
| |
| // If element has non-integer type, bitcast it back to the expected type. |
| if (EltVT != EltIVT) |
| Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result); |
| // Past legalizer, we may need to extent i8 -> i16 to match the register type. |
| if (EltVT != N->getValueType(0)) |
| Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result); |
| |
| return Result; |
| } |
| |
| static SDValue PerformVSELECTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue VA = N->getOperand(1); |
| EVT VectorVT = VA.getValueType(); |
| if (VectorVT != MVT::v4i8) |
| return SDValue(); |
| |
| // We need to split vselect into individual per-element operations Because we |
| // use BFE/BFI instruction for byte extraction/insertion, we do end up with |
| // 32-bit values, so we may as well do comparison as i32 to avoid conversions |
| // to/from i16 normally used for i8 values. |
| SmallVector<SDValue, 4> E; |
| SDLoc DL(N); |
| SDValue VCond = N->getOperand(0); |
| SDValue VB = N->getOperand(2); |
| for (int I = 0; I < 4; ++I) { |
| SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond, |
| DCI.DAG.getConstant(I, DL, MVT::i32)); |
| SDValue EA = DCI.DAG.getAnyExtOrTrunc( |
| DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA, |
| DCI.DAG.getConstant(I, DL, MVT::i32)), |
| DL, MVT::i32); |
| SDValue EB = DCI.DAG.getAnyExtOrTrunc( |
| DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB, |
| DCI.DAG.getConstant(I, DL, MVT::i32)), |
| DL, MVT::i32); |
| E.push_back(DCI.DAG.getAnyExtOrTrunc( |
| DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8)); |
| } |
| return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E); |
| } |
| |
| static SDValue |
| PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| auto VT = N->getValueType(0); |
| if (!DCI.isAfterLegalizeDAG() || !Isv2x16VT(VT)) |
| return SDValue(); |
| |
| auto Op0 = N->getOperand(0); |
| auto Op1 = N->getOperand(1); |
| |
| // Start out by assuming we want to take the lower 2 bytes of each i32 |
| // operand. |
| uint64_t Op0Bytes = 0x10; |
| uint64_t Op1Bytes = 0x54; |
| |
| std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes}, |
| {&Op1, &Op1Bytes}}; |
| |
| // Check that each operand is an i16, truncated from an i32 operand. We'll |
| // select individual bytes from those original operands. Optionally, fold in a |
| // shift right of that original operand. |
| for (auto &[Op, OpBytes] : OpData) { |
| // Eat up any bitcast |
| if (Op->getOpcode() == ISD::BITCAST) |
| *Op = Op->getOperand(0); |
| |
| if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE && |
| Op->getOperand(0).getValueType() == MVT::i32)) |
| return SDValue(); |
| |
| // If the truncate has multiple uses, this optimization can increase |
| // register pressure |
| if (!Op->hasOneUse()) |
| return SDValue(); |
| |
| *Op = Op->getOperand(0); |
| |
| // Optionally, fold in a shift-right of the original operand and let permute |
| // pick the two higher bytes of the original value directly. |
| if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Op->getOperand(1))) { |
| if (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue() == 16) { |
| // Shift the PRMT byte selector to pick upper bytes from each respective |
| // value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76 |
| assert((*OpBytes == 0x10 || *OpBytes == 0x54) && |
| "PRMT selector values out of range"); |
| *OpBytes += 0x22; |
| *Op = Op->getOperand(0); |
| } |
| } |
| } |
| |
| SDLoc DL(N); |
| auto &DAG = DCI.DAG; |
| |
| auto PRMT = DAG.getNode( |
| NVPTXISD::PRMT, DL, MVT::v4i8, |
| {Op0, Op1, DAG.getConstant((Op1Bytes << 8) | Op0Bytes, DL, MVT::i32), |
| DAG.getConstant(NVPTX::PTXPrmtMode::NONE, DL, MVT::i32)}); |
| return DAG.getNode(ISD::BITCAST, DL, VT, PRMT); |
| } |
| |
| static SDValue combineADDRSPACECAST(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| auto *ASCN1 = cast<AddrSpaceCastSDNode>(N); |
| |
| if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(ASCN1->getOperand(0))) { |
| assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace()); |
| |
| // Fold asc[B -> A](asc[A -> B](x)) -> x |
| if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace()) |
| return ASCN2->getOperand(0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| CodeGenOptLevel OptLevel = getTargetMachine().getOptLevel(); |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| return PerformADDCombine(N, DCI, OptLevel); |
| case ISD::FADD: |
| return PerformFADDCombine(N, DCI, OptLevel); |
| case ISD::MUL: |
| return PerformMULCombine(N, DCI, OptLevel); |
| case ISD::SHL: |
| return PerformSHLCombine(N, DCI, OptLevel); |
| case ISD::AND: |
| return PerformANDCombine(N, DCI); |
| case ISD::UREM: |
| case ISD::SREM: |
| return PerformREMCombine(N, DCI, OptLevel); |
| case ISD::SETCC: |
| return PerformSETCCCombine(N, DCI, STI.getSmVersion()); |
| case NVPTXISD::StoreRetval: |
| case NVPTXISD::StoreRetvalV2: |
| case NVPTXISD::StoreRetvalV4: |
| return PerformStoreRetvalCombine(N); |
| case NVPTXISD::StoreParam: |
| case NVPTXISD::StoreParamV2: |
| case NVPTXISD::StoreParamV4: |
| return PerformStoreParamCombine(N); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return PerformEXTRACTCombine(N, DCI); |
| case ISD::VSELECT: |
| return PerformVSELECTCombine(N, DCI); |
| case ISD::BUILD_VECTOR: |
| return PerformBUILD_VECTORCombine(N, DCI); |
| case ISD::ADDRSPACECAST: |
| return combineADDRSPACECAST(N, DCI); |
| } |
| return SDValue(); |
| } |
| |
| static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| // Handle bitcasting to v2i8 without hitting the default promotion |
| // strategy which goes through stack memory. |
| SDValue Op(Node, 0); |
| EVT ToVT = Op->getValueType(0); |
| if (ToVT != MVT::v2i8) { |
| return; |
| } |
| |
| // Bitcast to i16 and unpack elements into a vector |
| SDLoc DL(Node); |
| SDValue AsInt = DAG.getBitcast(MVT::i16, Op->getOperand(0)); |
| SDValue Vec0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, AsInt); |
| SDValue Const8 = DAG.getConstant(8, DL, MVT::i16); |
| SDValue Vec1 = |
| DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, |
| DAG.getNode(ISD::SRL, DL, MVT::i16, {AsInt, Const8})); |
| Results.push_back( |
| DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i8, {Vec0, Vec1})); |
| } |
| |
| /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads. |
| static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| const EVT ResVT = LD->getValueType(0); |
| const EVT MemVT = LD->getMemoryVT(); |
| |
| // If we're doing sign/zero extension as part of the load, avoid lowering to |
| // a LoadV node. TODO: consider relaxing this restriction. |
| if (ResVT != MemVT) |
| return; |
| |
| const auto NumEltsAndEltVT = getVectorLoweringShape(ResVT); |
| if (!NumEltsAndEltVT) |
| return; |
| const auto [NumElts, EltVT] = NumEltsAndEltVT.value(); |
| |
| Align Alignment = LD->getAlign(); |
| const auto &TD = DAG.getDataLayout(); |
| Align PrefAlign = TD.getPrefTypeAlign(MemVT.getTypeForEVT(*DAG.getContext())); |
| if (Alignment < PrefAlign) { |
| // This load is not sufficiently aligned, so bail out and let this vector |
| // load be scalarized. Note that we may still be able to emit smaller |
| // vector loads. For example, if we are loading a <4 x float> with an |
| // alignment of 8, this check will fail but the legalizer will try again |
| // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| return; |
| } |
| |
| // Since LoadV2 is a target node, we cannot rely on DAG type legalization. |
| // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| // loaded type to i16 and propagate the "real" type as the memory type. |
| const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT; |
| |
| unsigned Opcode; |
| SDVTList LdResVTs; |
| switch (NumElts) { |
| default: |
| return; |
| case 2: |
| Opcode = NVPTXISD::LoadV2; |
| LdResVTs = DAG.getVTList(LoadEltVT, LoadEltVT, MVT::Other); |
| break; |
| case 4: { |
| Opcode = NVPTXISD::LoadV4; |
| LdResVTs = |
| DAG.getVTList({LoadEltVT, LoadEltVT, LoadEltVT, LoadEltVT, MVT::Other}); |
| break; |
| } |
| } |
| SDLoc DL(LD); |
| |
| // Copy regular operands |
| SmallVector<SDValue, 8> OtherOps(LD->ops()); |
| |
| // The select routine does not have access to the LoadSDNode instance, so |
| // pass along the extension information |
| OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL)); |
| |
| SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, |
| LD->getMemoryVT(), |
| LD->getMemOperand()); |
| |
| SmallVector<SDValue> ScalarRes; |
| if (EltVT.isVector()) { |
| assert(EVT(EltVT.getVectorElementType()) == ResVT.getVectorElementType()); |
| assert(NumElts * EltVT.getVectorNumElements() == |
| ResVT.getVectorNumElements()); |
| // Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back |
| // into individual elements. |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SDValue SubVector = NewLD.getValue(I); |
| DAG.ExtractVectorElements(SubVector, ScalarRes); |
| } |
| } else { |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SDValue Res = NewLD.getValue(I); |
| if (LoadEltVT != EltVT) |
| Res = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res); |
| ScalarRes.push_back(Res); |
| } |
| } |
| |
| SDValue LoadChain = NewLD.getValue(NumElts); |
| |
| const MVT BuildVecVT = |
| MVT::getVectorVT(EltVT.getScalarType(), ScalarRes.size()); |
| SDValue BuildVec = DAG.getBuildVector(BuildVecVT, DL, ScalarRes); |
| SDValue LoadValue = DAG.getBitcast(ResVT, BuildVec); |
| |
| Results.append({LoadValue, LoadChain}); |
| } |
| |
| // Lower vector return type of tcgen05.ld intrinsics |
| static void ReplaceTcgen05Ld(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results, |
| bool hasOffset = false) { |
| SDLoc DL(N); |
| EVT ResVT = N->getValueType(0); |
| if (!ResVT.isVector()) |
| return; // already legalized. |
| |
| const unsigned NumElts = ResVT.getVectorNumElements(); |
| |
| // Create the return type of the instructions |
| SmallVector<EVT, 5> ListVTs; |
| for (unsigned i = 0; i < NumElts; ++i) |
| ListVTs.push_back(MVT::i32); |
| |
| ListVTs.push_back(N->getValueType(1)); // Chain |
| |
| SDVTList ResVTs = DAG.getVTList(ListVTs); |
| |
| SmallVector<SDValue, 8> Ops{N->getOperand(0), N->getOperand(1), |
| N->getOperand(2)}; |
| |
| if (hasOffset) { |
| Ops.push_back(N->getOperand(3)); // offset |
| Ops.push_back(N->getOperand(4)); // Pack flag |
| } else |
| Ops.push_back(N->getOperand(3)); // Pack flag |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| SDValue NewNode = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, ResVTs, Ops, |
| MemSD->getMemoryVT(), MemSD->getMemOperand()); |
| |
| // split the vector result |
| SmallVector<SDValue, 4> ScalarRes; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue Res = NewNode.getValue(i); |
| ScalarRes.push_back(Res); |
| } |
| |
| SDValue Chain = NewNode.getValue(NumElts); |
| SDValue BuildVector = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes); |
| Results.push_back(BuildVector); // Build Vector |
| Results.push_back(Chain); // Chain |
| } |
| |
| static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Chain = N->getOperand(0); |
| SDValue Intrin = N->getOperand(1); |
| SDLoc DL(N); |
| |
| // Get the intrinsic ID |
| unsigned IntrinNo = Intrin.getNode()->getAsZExtVal(); |
| switch (IntrinNo) { |
| default: |
| return; |
| case Intrinsic::nvvm_ldu_global_i: |
| case Intrinsic::nvvm_ldu_global_f: |
| case Intrinsic::nvvm_ldu_global_p: { |
| EVT ResVT = N->getValueType(0); |
| |
| if (ResVT.isVector()) { |
| // Vector LDG/LDU |
| |
| unsigned NumElts = ResVT.getVectorNumElements(); |
| EVT EltVT = ResVT.getVectorElementType(); |
| |
| // Since LDU/LDG are target nodes, we cannot rely on DAG type |
| // legalization. |
| // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| // loaded type to i16 and propagate the "real" type as the memory type. |
| bool NeedTrunc = false; |
| if (EltVT.getSizeInBits() < 16) { |
| EltVT = MVT::i16; |
| NeedTrunc = true; |
| } |
| |
| unsigned Opcode = 0; |
| SDVTList LdResVTs; |
| |
| switch (NumElts) { |
| default: |
| return; |
| case 2: |
| Opcode = NVPTXISD::LDUV2; |
| LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); |
| break; |
| case 4: { |
| Opcode = NVPTXISD::LDUV4; |
| EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; |
| LdResVTs = DAG.getVTList(ListVTs); |
| break; |
| } |
| } |
| |
| SmallVector<SDValue, 8> OtherOps; |
| |
| // Copy regular operands |
| |
| OtherOps.push_back(Chain); // Chain |
| // Skip operand 1 (intrinsic ID) |
| // Others |
| OtherOps.append(N->op_begin() + 2, N->op_end()); |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| |
| SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, |
| MemSD->getMemoryVT(), |
| MemSD->getMemOperand()); |
| |
| SmallVector<SDValue, 4> ScalarRes; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue Res = NewLD.getValue(i); |
| if (NeedTrunc) |
| Res = |
| DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); |
| ScalarRes.push_back(Res); |
| } |
| |
| SDValue LoadChain = NewLD.getValue(NumElts); |
| |
| SDValue BuildVec = |
| DAG.getBuildVector(ResVT, DL, ScalarRes); |
| |
| Results.push_back(BuildVec); |
| Results.push_back(LoadChain); |
| } else { |
| // i8 LDG/LDU |
| assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && |
| "Custom handling of non-i8 ldu/ldg?"); |
| |
| // Just copy all operands as-is |
| SmallVector<SDValue, 4> Ops(N->ops()); |
| |
| // Force output to i16 |
| SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other); |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| |
| // We make sure the memory type is i8, which will be used during isel |
| // to select the proper instruction. |
| SDValue NewLD = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops, |
| MVT::i8, MemSD->getMemOperand()); |
| |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, |
| NewLD.getValue(0))); |
| Results.push_back(NewLD.getValue(1)); |
| } |
| return; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| return ReplaceTcgen05Ld(N, DAG, Results); |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: |
| return ReplaceTcgen05Ld(N, DAG, Results, /* Offset */ true); |
| } |
| } |
| |
| static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| // Change the CopyFromReg to output 2 64-bit results instead of a 128-bit |
| // result so that it can pass the legalization |
| SDLoc DL(N); |
| SDValue Chain = N->getOperand(0); |
| SDValue Reg = N->getOperand(1); |
| SDValue Glue = N->getOperand(2); |
| |
| assert(Reg.getValueType() == MVT::i128 && |
| "Custom lowering for CopyFromReg with 128-bit reg only"); |
| SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1), |
| N->getValueType(2)}; |
| SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue}; |
| |
| SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps); |
| SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, |
| {NewValue.getValue(0), NewValue.getValue(1)}); |
| |
| Results.push_back(Pair); |
| Results.push_back(NewValue.getValue(2)); |
| Results.push_back(NewValue.getValue(3)); |
| } |
| |
| void NVPTXTargetLowering::ReplaceNodeResults( |
| SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| default: |
| report_fatal_error("Unhandled custom legalization"); |
| case ISD::BITCAST: |
| ReplaceBITCAST(N, DAG, Results); |
| return; |
| case ISD::LOAD: |
| ReplaceLoadVector(N, DAG, Results); |
| return; |
| case ISD::INTRINSIC_W_CHAIN: |
| ReplaceINTRINSIC_W_CHAIN(N, DAG, Results); |
| return; |
| case ISD::CopyFromReg: |
| ReplaceCopyFromReg_128(N, DAG, Results); |
| return; |
| } |
| } |
| |
| NVPTXTargetLowering::AtomicExpansionKind |
| NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| Type *Ty = AI->getValOperand()->getType(); |
| |
| if (AI->isFloatingPointOperation()) { |
| if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) { |
| if (Ty->isHalfTy() && STI.getSmVersion() >= 70 && |
| STI.getPTXVersion() >= 63) |
| return AtomicExpansionKind::None; |
| if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 && |
| STI.getPTXVersion() >= 78) |
| return AtomicExpansionKind::None; |
| if (Ty->isFloatTy()) |
| return AtomicExpansionKind::None; |
| if (Ty->isDoubleTy() && STI.hasAtomAddF64()) |
| return AtomicExpansionKind::None; |
| } |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| assert(Ty->isIntegerTy() && "Ty should be integer at this point"); |
| auto ITy = cast<llvm::IntegerType>(Ty); |
| |
| switch (AI->getOperation()) { |
| default: |
| return AtomicExpansionKind::CmpXChg; |
| case AtomicRMWInst::BinOp::And: |
| case AtomicRMWInst::BinOp::Or: |
| case AtomicRMWInst::BinOp::Xor: |
| case AtomicRMWInst::BinOp::Xchg: |
| switch (ITy->getBitWidth()) { |
| case 8: |
| case 16: |
| return AtomicExpansionKind::CmpXChg; |
| case 32: |
| return AtomicExpansionKind::None; |
| case 64: |
| if (STI.hasAtomBitwise64()) |
| return AtomicExpansionKind::None; |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| llvm_unreachable("unsupported width encountered"); |
| } |
| case AtomicRMWInst::BinOp::Add: |
| case AtomicRMWInst::BinOp::Sub: |
| case AtomicRMWInst::BinOp::Max: |
| case AtomicRMWInst::BinOp::Min: |
| case AtomicRMWInst::BinOp::UMax: |
| case AtomicRMWInst::BinOp::UMin: |
| switch (ITy->getBitWidth()) { |
| case 8: |
| case 16: |
| return AtomicExpansionKind::CmpXChg; |
| case 32: |
| return AtomicExpansionKind::None; |
| case 64: |
| if (STI.hasAtomMinMax64()) |
| return AtomicExpansionKind::None; |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| llvm_unreachable("unsupported width encountered"); |
| } |
| case AtomicRMWInst::BinOp::UIncWrap: |
| case AtomicRMWInst::BinOp::UDecWrap: |
| switch (ITy->getBitWidth()) { |
| case 32: |
| return AtomicExpansionKind::None; |
| case 8: |
| case 16: |
| case 64: |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| llvm_unreachable("unsupported width encountered"); |
| } |
| } |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| bool NVPTXTargetLowering::shouldInsertFencesForAtomic( |
| const Instruction *I) const { |
| auto *CI = dyn_cast<AtomicCmpXchgInst>(I); |
| // When CAS bitwidth is not supported on the hardware, the CAS is emulated |
| // using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce |
| // the memory order using explicit fences around the retry loop. |
| // The memory order of natively supported CAS operations can be enforced |
| // by lowering to an atom.cas with the right memory synchronizing effect. |
| // However, atom.cas only supports relaxed, acquire, release and acq_rel. |
| // So we also use explicit fences for enforcing memory order for |
| // seq_cast CAS with natively-supported bitwidths. |
| return CI && |
| (cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() < |
| STI.getMinCmpXchgSizeInBits() || |
| CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent); |
| } |
| |
| AtomicOrdering NVPTXTargetLowering::atomicOperationOrderAfterFenceSplit( |
| const Instruction *I) const { |
| auto *CI = dyn_cast<AtomicCmpXchgInst>(I); |
| bool BitwidthSupportedAndIsSeqCst = |
| CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent && |
| cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() >= |
| STI.getMinCmpXchgSizeInBits(); |
| return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire |
| : AtomicOrdering::Monotonic; |
| } |
| |
| Instruction *NVPTXTargetLowering::emitLeadingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (!isa<AtomicCmpXchgInst>(Inst)) |
| return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord); |
| |
| // Specialize for cmpxchg |
| // Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated |
| if (isReleaseOrStronger(Ord)) |
| return Ord == AtomicOrdering::SequentiallyConsistent |
| ? Builder.CreateFence(AtomicOrdering::SequentiallyConsistent) |
| : Builder.CreateFence(AtomicOrdering::Release); |
| |
| return nullptr; |
| } |
| |
| Instruction *NVPTXTargetLowering::emitTrailingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| // Specialize for cmpxchg |
| if (!isa<AtomicCmpXchgInst>(Inst)) |
| return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord); |
| |
| auto CASWidth = |
| cast<IntegerType>( |
| dyn_cast<AtomicCmpXchgInst>(Inst)->getCompareOperand()->getType()) |
| ->getBitWidth(); |
| // Do not emit a trailing fence for cmpxchg seq_cst which are not emulated |
| if (isAcquireOrStronger(Ord) && |
| (Ord != AtomicOrdering::SequentiallyConsistent || |
| CASWidth < STI.getMinCmpXchgSizeInBits())) |
| return Builder.CreateFence(AtomicOrdering::Acquire); |
| |
| return nullptr; |
| } |
| |
| // Rather than default to SINT when both UINT and SINT are custom, we only |
| // change the opcode when UINT is not legal and SINT is. UINT is preferred when |
| // both are custom since unsigned CVT instructions can lead to slightly better |
| // SASS code with fewer instructions. |
| unsigned NVPTXTargetLowering::getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, |
| EVT ToVT) const { |
| if (isOperationLegal(Op, ToVT)) |
| return Op; |
| switch (Op) { |
| case ISD::FP_TO_UINT: |
| if (isOperationLegal(ISD::FP_TO_SINT, ToVT)) |
| return ISD::FP_TO_SINT; |
| break; |
| case ISD::STRICT_FP_TO_UINT: |
| if (isOperationLegal(ISD::STRICT_FP_TO_SINT, ToVT)) |
| return ISD::STRICT_FP_TO_SINT; |
| break; |
| case ISD::VP_FP_TO_UINT: |
| if (isOperationLegal(ISD::VP_FP_TO_SINT, ToVT)) |
| return ISD::VP_FP_TO_SINT; |
| break; |
| default: |
| break; |
| } |
| return Op; |
| } |
| |
| // Pin NVPTXTargetObjectFile's vtables to this file. |
| NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default; |
| |
| MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal( |
| const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { |
| return getDataSection(); |
| } |