blob: 49db94fff78aa7a628b11b44c7df160e0202a804 [file] [log] [blame]
//===- DWARFVerifier.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFAttribute.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFLocationExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFObject.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
namespace llvm {
class DWARFDebugInfoEntry;
}
std::optional<DWARFAddressRange>
DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) {
auto Begin = Ranges.begin();
auto End = Ranges.end();
auto Pos = std::lower_bound(Begin, End, R);
// Check for exact duplicates which is an allowed special case
if (Pos != End && *Pos == R) {
return std::nullopt;
}
if (Pos != End) {
DWARFAddressRange Range(*Pos);
if (Pos->merge(R))
return Range;
}
if (Pos != Begin) {
auto Iter = Pos - 1;
DWARFAddressRange Range(*Iter);
if (Iter->merge(R))
return Range;
}
Ranges.insert(Pos, R);
return std::nullopt;
}
DWARFVerifier::DieRangeInfo::die_range_info_iterator
DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) {
if (RI.Ranges.empty())
return Children.end();
auto End = Children.end();
auto Iter = Children.begin();
while (Iter != End) {
if (Iter->intersects(RI))
return Iter;
++Iter;
}
Children.insert(RI);
return Children.end();
}
bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const {
auto I1 = Ranges.begin(), E1 = Ranges.end();
auto I2 = RHS.Ranges.begin(), E2 = RHS.Ranges.end();
if (I2 == E2)
return true;
DWARFAddressRange R = *I2;
while (I1 != E1) {
bool Covered = I1->LowPC <= R.LowPC;
if (R.LowPC == R.HighPC || (Covered && R.HighPC <= I1->HighPC)) {
if (++I2 == E2)
return true;
R = *I2;
continue;
}
if (!Covered)
return false;
if (R.LowPC < I1->HighPC)
R.LowPC = I1->HighPC;
++I1;
}
return false;
}
bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const {
auto I1 = Ranges.begin(), E1 = Ranges.end();
auto I2 = RHS.Ranges.begin(), E2 = RHS.Ranges.end();
while (I1 != E1 && I2 != E2) {
if (I1->intersects(*I2)) {
// Exact duplicates are allowed
if (!(*I1 == *I2))
return true;
}
if (I1->LowPC < I2->LowPC)
++I1;
else
++I2;
}
return false;
}
bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData,
uint64_t *Offset, unsigned UnitIndex,
uint8_t &UnitType, bool &isUnitDWARF64) {
uint64_t AbbrOffset, Length;
uint8_t AddrSize = 0;
uint16_t Version;
bool Success = true;
bool ValidLength = false;
bool ValidVersion = false;
bool ValidAddrSize = false;
bool ValidType = true;
bool ValidAbbrevOffset = true;
uint64_t OffsetStart = *Offset;
DwarfFormat Format;
std::tie(Length, Format) = DebugInfoData.getInitialLength(Offset);
isUnitDWARF64 = Format == DWARF64;
Version = DebugInfoData.getU16(Offset);
if (Version >= 5) {
UnitType = DebugInfoData.getU8(Offset);
AddrSize = DebugInfoData.getU8(Offset);
AbbrOffset = isUnitDWARF64 ? DebugInfoData.getU64(Offset) : DebugInfoData.getU32(Offset);
ValidType = dwarf::isUnitType(UnitType);
} else {
UnitType = 0;
AbbrOffset = isUnitDWARF64 ? DebugInfoData.getU64(Offset) : DebugInfoData.getU32(Offset);
AddrSize = DebugInfoData.getU8(Offset);
}
Expected<const DWARFAbbreviationDeclarationSet *> AbbrevSetOrErr =
DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset);
if (!AbbrevSetOrErr) {
ValidAbbrevOffset = false;
// FIXME: A problematic debug_abbrev section is reported below in the form
// of a `note:`. We should propagate this error there (or elsewhere) to
// avoid losing the specific problem with the debug_abbrev section.
consumeError(AbbrevSetOrErr.takeError());
}
ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3);
ValidVersion = DWARFContext::isSupportedVersion(Version);
ValidAddrSize = DWARFContext::isAddressSizeSupported(AddrSize);
if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset ||
!ValidType) {
Success = false;
bool HeaderShown = false;
auto ShowHeaderOnce = [&]() {
if (!HeaderShown) {
error() << format("Units[%d] - start offset: 0x%08" PRIx64 " \n",
UnitIndex, OffsetStart);
HeaderShown = true;
}
};
if (!ValidLength)
ErrorCategory.Report(
"Unit Header Length: Unit too large for .debug_info provided", [&]() {
ShowHeaderOnce();
note() << "The length for this unit is too "
"large for the .debug_info provided.\n";
});
if (!ValidVersion)
ErrorCategory.Report(
"Unit Header Length: 16 bit unit header version is not valid", [&]() {
ShowHeaderOnce();
note() << "The 16 bit unit header version is not valid.\n";
});
if (!ValidType)
ErrorCategory.Report(
"Unit Header Length: Unit type encoding is not valid", [&]() {
ShowHeaderOnce();
note() << "The unit type encoding is not valid.\n";
});
if (!ValidAbbrevOffset)
ErrorCategory.Report(
"Unit Header Length: Offset into the .debug_abbrev section is not "
"valid",
[&]() {
ShowHeaderOnce();
note() << "The offset into the .debug_abbrev section is "
"not valid.\n";
});
if (!ValidAddrSize)
ErrorCategory.Report("Unit Header Length: Address size is unsupported",
[&]() {
ShowHeaderOnce();
note() << "The address size is unsupported.\n";
});
}
*Offset = OffsetStart + Length + (isUnitDWARF64 ? 12 : 4);
return Success;
}
bool DWARFVerifier::verifyName(const DWARFDie &Die) {
// FIXME Add some kind of record of which DIE names have already failed and
// don't bother checking a DIE that uses an already failed DIE.
std::string ReconstructedName;
raw_string_ostream OS(ReconstructedName);
std::string OriginalFullName;
Die.getFullName(OS, &OriginalFullName);
OS.flush();
if (OriginalFullName.empty() || OriginalFullName == ReconstructedName)
return false;
ErrorCategory.Report(
"Simplified template DW_AT_name could not be reconstituted", [&]() {
error()
<< "Simplified template DW_AT_name could not be reconstituted:\n"
<< formatv(" original: {0}\n"
" reconstituted: {1}\n",
OriginalFullName, ReconstructedName);
dump(Die) << '\n';
dump(Die.getDwarfUnit()->getUnitDIE()) << '\n';
});
return true;
}
unsigned DWARFVerifier::verifyUnitContents(DWARFUnit &Unit,
ReferenceMap &UnitLocalReferences,
ReferenceMap &CrossUnitReferences) {
unsigned NumUnitErrors = 0;
unsigned NumDies = Unit.getNumDIEs();
for (unsigned I = 0; I < NumDies; ++I) {
auto Die = Unit.getDIEAtIndex(I);
if (Die.getTag() == DW_TAG_null)
continue;
for (auto AttrValue : Die.attributes()) {
NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue);
NumUnitErrors += verifyDebugInfoForm(Die, AttrValue, UnitLocalReferences,
CrossUnitReferences);
}
NumUnitErrors += verifyName(Die);
if (Die.hasChildren()) {
if (Die.getFirstChild().isValid() &&
Die.getFirstChild().getTag() == DW_TAG_null) {
warn() << dwarf::TagString(Die.getTag())
<< " has DW_CHILDREN_yes but DIE has no children: ";
Die.dump(OS);
}
}
NumUnitErrors += verifyDebugInfoCallSite(Die);
}
DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false);
if (!Die) {
ErrorCategory.Report("Compilation unit missing DIE", [&]() {
error() << "Compilation unit without DIE.\n";
});
NumUnitErrors++;
return NumUnitErrors;
}
if (!dwarf::isUnitType(Die.getTag())) {
ErrorCategory.Report("Compilation unit root DIE is not a unit DIE", [&]() {
error() << "Compilation unit root DIE is not a unit DIE: "
<< dwarf::TagString(Die.getTag()) << ".\n";
});
NumUnitErrors++;
}
uint8_t UnitType = Unit.getUnitType();
if (!DWARFUnit::isMatchingUnitTypeAndTag(UnitType, Die.getTag())) {
ErrorCategory.Report("Mismatched unit type", [&]() {
error() << "Compilation unit type (" << dwarf::UnitTypeString(UnitType)
<< ") and root DIE (" << dwarf::TagString(Die.getTag())
<< ") do not match.\n";
});
NumUnitErrors++;
}
// According to DWARF Debugging Information Format Version 5,
// 3.1.2 Skeleton Compilation Unit Entries:
// "A skeleton compilation unit has no children."
if (Die.getTag() == dwarf::DW_TAG_skeleton_unit && Die.hasChildren()) {
ErrorCategory.Report("Skeleton CU has children", [&]() {
error() << "Skeleton compilation unit has children.\n";
});
NumUnitErrors++;
}
DieRangeInfo RI;
NumUnitErrors += verifyDieRanges(Die, RI);
return NumUnitErrors;
}
unsigned DWARFVerifier::verifyDebugInfoCallSite(const DWARFDie &Die) {
if (Die.getTag() != DW_TAG_call_site && Die.getTag() != DW_TAG_GNU_call_site)
return 0;
DWARFDie Curr = Die.getParent();
for (; Curr.isValid() && !Curr.isSubprogramDIE(); Curr = Die.getParent()) {
if (Curr.getTag() == DW_TAG_inlined_subroutine) {
ErrorCategory.Report(
"Call site nested entry within inlined subroutine", [&]() {
error() << "Call site entry nested within inlined subroutine:";
Curr.dump(OS);
});
return 1;
}
}
if (!Curr.isValid()) {
ErrorCategory.Report(
"Call site entry not nested within valid subprogram", [&]() {
error() << "Call site entry not nested within a valid subprogram:";
Die.dump(OS);
});
return 1;
}
std::optional<DWARFFormValue> CallAttr = Curr.find(
{DW_AT_call_all_calls, DW_AT_call_all_source_calls,
DW_AT_call_all_tail_calls, DW_AT_GNU_all_call_sites,
DW_AT_GNU_all_source_call_sites, DW_AT_GNU_all_tail_call_sites});
if (!CallAttr) {
ErrorCategory.Report(
"Subprogram with call site entry has no DW_AT_call attribute", [&]() {
error()
<< "Subprogram with call site entry has no DW_AT_call attribute:";
Curr.dump(OS);
Die.dump(OS, /*indent*/ 1);
});
return 1;
}
return 0;
}
unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) {
if (!Abbrev)
return 0;
Expected<const DWARFAbbreviationDeclarationSet *> AbbrDeclsOrErr =
Abbrev->getAbbreviationDeclarationSet(0);
if (!AbbrDeclsOrErr) {
std::string ErrMsg = toString(AbbrDeclsOrErr.takeError());
ErrorCategory.Report("Abbreviation Declaration error",
[&]() { error() << ErrMsg << "\n"; });
return 1;
}
const auto *AbbrDecls = *AbbrDeclsOrErr;
unsigned NumErrors = 0;
for (auto AbbrDecl : *AbbrDecls) {
SmallDenseSet<uint16_t> AttributeSet;
for (auto Attribute : AbbrDecl.attributes()) {
auto Result = AttributeSet.insert(Attribute.Attr);
if (!Result.second) {
ErrorCategory.Report(
"Abbreviation declartion contains multiple attributes", [&]() {
error() << "Abbreviation declaration contains multiple "
<< AttributeString(Attribute.Attr) << " attributes.\n";
AbbrDecl.dump(OS);
});
++NumErrors;
}
}
}
return NumErrors;
}
bool DWARFVerifier::handleDebugAbbrev() {
OS << "Verifying .debug_abbrev...\n";
const DWARFObject &DObj = DCtx.getDWARFObj();
unsigned NumErrors = 0;
if (!DObj.getAbbrevSection().empty())
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev());
if (!DObj.getAbbrevDWOSection().empty())
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO());
return NumErrors == 0;
}
unsigned DWARFVerifier::verifyUnits(const DWARFUnitVector &Units) {
unsigned NumDebugInfoErrors = 0;
ReferenceMap CrossUnitReferences;
unsigned Index = 1;
for (const auto &Unit : Units) {
OS << "Verifying unit: " << Index << " / " << Units.getNumUnits();
if (const char* Name = Unit->getUnitDIE(true).getShortName())
OS << ", \"" << Name << '\"';
OS << '\n';
OS.flush();
ReferenceMap UnitLocalReferences;
NumDebugInfoErrors +=
verifyUnitContents(*Unit, UnitLocalReferences, CrossUnitReferences);
NumDebugInfoErrors += verifyDebugInfoReferences(
UnitLocalReferences, [&](uint64_t Offset) { return Unit.get(); });
++Index;
}
NumDebugInfoErrors += verifyDebugInfoReferences(
CrossUnitReferences, [&](uint64_t Offset) -> DWARFUnit * {
if (DWARFUnit *U = Units.getUnitForOffset(Offset))
return U;
return nullptr;
});
return NumDebugInfoErrors;
}
unsigned DWARFVerifier::verifyUnitSection(const DWARFSection &S) {
const DWARFObject &DObj = DCtx.getDWARFObj();
DWARFDataExtractor DebugInfoData(DObj, S, DCtx.isLittleEndian(), 0);
unsigned NumDebugInfoErrors = 0;
uint64_t Offset = 0, UnitIdx = 0;
uint8_t UnitType = 0;
bool isUnitDWARF64 = false;
bool isHeaderChainValid = true;
bool hasDIE = DebugInfoData.isValidOffset(Offset);
DWARFUnitVector TypeUnitVector;
DWARFUnitVector CompileUnitVector;
/// A map that tracks all references (converted absolute references) so we
/// can verify each reference points to a valid DIE and not an offset that
/// lies between to valid DIEs.
ReferenceMap CrossUnitReferences;
while (hasDIE) {
if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType,
isUnitDWARF64)) {
isHeaderChainValid = false;
if (isUnitDWARF64)
break;
}
hasDIE = DebugInfoData.isValidOffset(Offset);
++UnitIdx;
}
if (UnitIdx == 0 && !hasDIE) {
warn() << "Section is empty.\n";
isHeaderChainValid = true;
}
if (!isHeaderChainValid)
++NumDebugInfoErrors;
return NumDebugInfoErrors;
}
unsigned DWARFVerifier::verifyIndex(StringRef Name,
DWARFSectionKind InfoColumnKind,
StringRef IndexStr) {
if (IndexStr.empty())
return 0;
OS << "Verifying " << Name << "...\n";
DWARFUnitIndex Index(InfoColumnKind);
DataExtractor D(IndexStr, DCtx.isLittleEndian(), 0);
if (!Index.parse(D))
return 1;
using MapType = IntervalMap<uint64_t, uint64_t>;
MapType::Allocator Alloc;
std::vector<std::unique_ptr<MapType>> Sections(Index.getColumnKinds().size());
for (const DWARFUnitIndex::Entry &E : Index.getRows()) {
uint64_t Sig = E.getSignature();
if (!E.getContributions())
continue;
for (auto E : enumerate(
InfoColumnKind == DW_SECT_INFO
? ArrayRef(E.getContributions(), Index.getColumnKinds().size())
: ArrayRef(E.getContribution(), 1))) {
const DWARFUnitIndex::Entry::SectionContribution &SC = E.value();
int Col = E.index();
if (SC.getLength() == 0)
continue;
if (!Sections[Col])
Sections[Col] = std::make_unique<MapType>(Alloc);
auto &M = *Sections[Col];
auto I = M.find(SC.getOffset());
if (I != M.end() && I.start() < (SC.getOffset() + SC.getLength())) {
StringRef Category = InfoColumnKind == DWARFSectionKind::DW_SECT_INFO
? "Overlapping CU index entries"
: "Overlapping TU index entries";
ErrorCategory.Report(Category, [&]() {
error() << llvm::formatv(
"overlapping index entries for entries {0:x16} "
"and {1:x16} for column {2}\n",
*I, Sig, toString(Index.getColumnKinds()[Col]));
});
return 1;
}
M.insert(SC.getOffset(), SC.getOffset() + SC.getLength() - 1, Sig);
}
}
return 0;
}
bool DWARFVerifier::handleDebugCUIndex() {
return verifyIndex(".debug_cu_index", DWARFSectionKind::DW_SECT_INFO,
DCtx.getDWARFObj().getCUIndexSection()) == 0;
}
bool DWARFVerifier::handleDebugTUIndex() {
return verifyIndex(".debug_tu_index", DWARFSectionKind::DW_SECT_EXT_TYPES,
DCtx.getDWARFObj().getTUIndexSection()) == 0;
}
bool DWARFVerifier::handleDebugInfo() {
const DWARFObject &DObj = DCtx.getDWARFObj();
unsigned NumErrors = 0;
OS << "Verifying .debug_info Unit Header Chain...\n";
DObj.forEachInfoSections([&](const DWARFSection &S) {
NumErrors += verifyUnitSection(S);
});
OS << "Verifying .debug_types Unit Header Chain...\n";
DObj.forEachTypesSections([&](const DWARFSection &S) {
NumErrors += verifyUnitSection(S);
});
OS << "Verifying non-dwo Units...\n";
NumErrors += verifyUnits(DCtx.getNormalUnitsVector());
OS << "Verifying dwo Units...\n";
NumErrors += verifyUnits(DCtx.getDWOUnitsVector());
return NumErrors == 0;
}
unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die,
DieRangeInfo &ParentRI) {
unsigned NumErrors = 0;
if (!Die.isValid())
return NumErrors;
DWARFUnit *Unit = Die.getDwarfUnit();
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError) {
// FIXME: Report the error.
if (!Unit->isDWOUnit())
++NumErrors;
llvm::consumeError(RangesOrError.takeError());
return NumErrors;
}
const DWARFAddressRangesVector &Ranges = RangesOrError.get();
// Build RI for this DIE and check that ranges within this DIE do not
// overlap.
DieRangeInfo RI(Die);
// TODO support object files better
//
// Some object file formats (i.e. non-MachO) support COMDAT. ELF in
// particular does so by placing each function into a section. The DWARF data
// for the function at that point uses a section relative DW_FORM_addrp for
// the DW_AT_low_pc and a DW_FORM_data4 for the offset as the DW_AT_high_pc.
// In such a case, when the Die is the CU, the ranges will overlap, and we
// will flag valid conflicting ranges as invalid.
//
// For such targets, we should read the ranges from the CU and partition them
// by the section id. The ranges within a particular section should be
// disjoint, although the ranges across sections may overlap. We would map
// the child die to the entity that it references and the section with which
// it is associated. The child would then be checked against the range
// information for the associated section.
//
// For now, simply elide the range verification for the CU DIEs if we are
// processing an object file.
if (!IsObjectFile || IsMachOObject || Die.getTag() != DW_TAG_compile_unit) {
bool DumpDieAfterError = false;
for (const auto &Range : Ranges) {
if (!Range.valid()) {
++NumErrors;
ErrorCategory.Report("Invalid address range", [&]() {
error() << "Invalid address range " << Range << "\n";
DumpDieAfterError = true;
});
continue;
}
// Verify that ranges don't intersect and also build up the DieRangeInfo
// address ranges. Don't break out of the loop below early, or we will
// think this DIE doesn't have all of the address ranges it is supposed
// to have. Compile units often have DW_AT_ranges that can contain one or
// more dead stripped address ranges which tend to all be at the same
// address: 0 or -1.
if (auto PrevRange = RI.insert(Range)) {
++NumErrors;
ErrorCategory.Report("DIE has overlapping DW_AT_ranges", [&]() {
error() << "DIE has overlapping ranges in DW_AT_ranges attribute: "
<< *PrevRange << " and " << Range << '\n';
DumpDieAfterError = true;
});
}
}
if (DumpDieAfterError)
dump(Die, 2) << '\n';
}
// Verify that children don't intersect.
const auto IntersectingChild = ParentRI.insert(RI);
if (IntersectingChild != ParentRI.Children.end()) {
++NumErrors;
ErrorCategory.Report("DIEs have overlapping address ranges", [&]() {
error() << "DIEs have overlapping address ranges:";
dump(Die);
dump(IntersectingChild->Die) << '\n';
});
}
// Verify that ranges are contained within their parent.
bool ShouldBeContained = !RI.Ranges.empty() && !ParentRI.Ranges.empty() &&
!(Die.getTag() == DW_TAG_subprogram &&
ParentRI.Die.getTag() == DW_TAG_subprogram);
if (ShouldBeContained && !ParentRI.contains(RI)) {
++NumErrors;
ErrorCategory.Report(
"DIE address ranges are not contained by parent ranges", [&]() {
error()
<< "DIE address ranges are not contained in its parent's ranges:";
dump(ParentRI.Die);
dump(Die, 2) << '\n';
});
}
// Recursively check children.
for (DWARFDie Child : Die)
NumErrors += verifyDieRanges(Child, RI);
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die,
DWARFAttribute &AttrValue) {
unsigned NumErrors = 0;
auto ReportError = [&](StringRef category, const Twine &TitleMsg) {
++NumErrors;
ErrorCategory.Report(category, [&]() {
error() << TitleMsg << '\n';
dump(Die) << '\n';
});
};
const DWARFObject &DObj = DCtx.getDWARFObj();
DWARFUnit *U = Die.getDwarfUnit();
const auto Attr = AttrValue.Attr;
switch (Attr) {
case DW_AT_ranges:
// Make sure the offset in the DW_AT_ranges attribute is valid.
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
unsigned DwarfVersion = U->getVersion();
const DWARFSection &RangeSection = DwarfVersion < 5
? DObj.getRangesSection()
: DObj.getRnglistsSection();
if (U->isDWOUnit() && RangeSection.Data.empty())
break;
if (*SectionOffset >= RangeSection.Data.size())
ReportError("DW_AT_ranges offset out of bounds",
"DW_AT_ranges offset is beyond " +
StringRef(DwarfVersion < 5 ? ".debug_ranges"
: ".debug_rnglists") +
" bounds: " + llvm::formatv("{0:x8}", *SectionOffset));
break;
}
ReportError("Invalid DW_AT_ranges encoding",
"DIE has invalid DW_AT_ranges encoding:");
break;
case DW_AT_stmt_list:
// Make sure the offset in the DW_AT_stmt_list attribute is valid.
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
if (*SectionOffset >= U->getLineSection().Data.size())
ReportError("DW_AT_stmt_list offset out of bounds",
"DW_AT_stmt_list offset is beyond .debug_line bounds: " +
llvm::formatv("{0:x8}", *SectionOffset));
break;
}
ReportError("Invalid DW_AT_stmt_list encoding",
"DIE has invalid DW_AT_stmt_list encoding:");
break;
case DW_AT_location: {
// FIXME: It might be nice if there's a way to walk location expressions
// without trying to resolve the address ranges - it'd be a more efficient
// API (since the API is currently unnecessarily resolving addresses for
// this use case which only wants to validate the expressions themselves) &
// then the expressions could be validated even if the addresses can't be
// resolved.
// That sort of API would probably look like a callback "for each
// expression" with some way to lazily resolve the address ranges when
// needed (& then the existing API used here could be built on top of that -
// using the callback API to build the data structure and return it).
if (Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(DW_AT_location)) {
for (const auto &Entry : *Loc) {
DataExtractor Data(toStringRef(Entry.Expr), DCtx.isLittleEndian(), 0);
DWARFExpression Expression(Data, U->getAddressByteSize(),
U->getFormParams().Format);
bool Error =
any_of(Expression, [](const DWARFExpression::Operation &Op) {
return Op.isError();
});
if (Error || !Expression.verify(U))
ReportError("Invalid DWARF expressions",
"DIE contains invalid DWARF expression:");
}
} else if (Error Err = handleErrors(
Loc.takeError(), [&](std::unique_ptr<ResolverError> E) {
return U->isDWOUnit() ? Error::success()
: Error(std::move(E));
}))
ReportError("Invalid DW_AT_location", toString(std::move(Err)));
break;
}
case DW_AT_specification:
case DW_AT_abstract_origin: {
if (auto ReferencedDie = Die.getAttributeValueAsReferencedDie(Attr)) {
auto DieTag = Die.getTag();
auto RefTag = ReferencedDie.getTag();
if (DieTag == RefTag)
break;
if (DieTag == DW_TAG_inlined_subroutine && RefTag == DW_TAG_subprogram)
break;
if (DieTag == DW_TAG_variable && RefTag == DW_TAG_member)
break;
// This might be reference to a function declaration.
if (DieTag == DW_TAG_GNU_call_site && RefTag == DW_TAG_subprogram)
break;
ReportError("Incompatible DW_AT_abstract_origin tag reference",
"DIE with tag " + TagString(DieTag) + " has " +
AttributeString(Attr) +
" that points to DIE with "
"incompatible tag " +
TagString(RefTag));
}
break;
}
case DW_AT_type: {
DWARFDie TypeDie = Die.getAttributeValueAsReferencedDie(DW_AT_type);
if (TypeDie && !isType(TypeDie.getTag())) {
ReportError("Incompatible DW_AT_type attribute tag",
"DIE has " + AttributeString(Attr) +
" with incompatible tag " + TagString(TypeDie.getTag()));
}
break;
}
case DW_AT_call_file:
case DW_AT_decl_file: {
if (auto FileIdx = AttrValue.Value.getAsUnsignedConstant()) {
if (U->isDWOUnit() && !U->isTypeUnit())
break;
const auto *LT = U->getContext().getLineTableForUnit(U);
if (LT) {
if (!LT->hasFileAtIndex(*FileIdx)) {
bool IsZeroIndexed = LT->Prologue.getVersion() >= 5;
if (std::optional<uint64_t> LastFileIdx =
LT->getLastValidFileIndex()) {
ReportError("Invalid file index in DW_AT_decl_file",
"DIE has " + AttributeString(Attr) +
" with an invalid file index " +
llvm::formatv("{0}", *FileIdx) +
" (valid values are [" +
(IsZeroIndexed ? "0-" : "1-") +
llvm::formatv("{0}", *LastFileIdx) + "])");
} else {
ReportError("Invalid file index in DW_AT_decl_file",
"DIE has " + AttributeString(Attr) +
" with an invalid file index " +
llvm::formatv("{0}", *FileIdx) +
" (the file table in the prologue is empty)");
}
}
} else {
ReportError(
"File index in DW_AT_decl_file reference CU with no line table",
"DIE has " + AttributeString(Attr) +
" that references a file with index " +
llvm::formatv("{0}", *FileIdx) +
" and the compile unit has no line table");
}
} else {
ReportError("Invalid encoding in DW_AT_decl_file",
"DIE has " + AttributeString(Attr) +
" with invalid encoding");
}
break;
}
case DW_AT_call_line:
case DW_AT_decl_line: {
if (!AttrValue.Value.getAsUnsignedConstant()) {
ReportError(
Attr == DW_AT_call_line ? "Invalid file index in DW_AT_decl_line"
: "Invalid file index in DW_AT_call_line",
"DIE has " + AttributeString(Attr) + " with invalid encoding");
}
break;
}
default:
break;
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die,
DWARFAttribute &AttrValue,
ReferenceMap &LocalReferences,
ReferenceMap &CrossUnitReferences) {
auto DieCU = Die.getDwarfUnit();
unsigned NumErrors = 0;
const auto Form = AttrValue.Value.getForm();
switch (Form) {
case DW_FORM_ref1:
case DW_FORM_ref2:
case DW_FORM_ref4:
case DW_FORM_ref8:
case DW_FORM_ref_udata: {
// Verify all CU relative references are valid CU offsets.
std::optional<uint64_t> RefVal = AttrValue.Value.getAsRelativeReference();
assert(RefVal);
if (RefVal) {
auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset();
auto CUOffset = AttrValue.Value.getRawUValue();
if (CUOffset >= CUSize) {
++NumErrors;
ErrorCategory.Report("Invalid CU offset", [&]() {
error() << FormEncodingString(Form) << " CU offset "
<< format("0x%08" PRIx64, CUOffset)
<< " is invalid (must be less than CU size of "
<< format("0x%08" PRIx64, CUSize) << "):\n";
Die.dump(OS, 0, DumpOpts);
dump(Die) << '\n';
});
} else {
// Valid reference, but we will verify it points to an actual
// DIE later.
LocalReferences[AttrValue.Value.getUnit()->getOffset() + *RefVal]
.insert(Die.getOffset());
}
}
break;
}
case DW_FORM_ref_addr: {
// Verify all absolute DIE references have valid offsets in the
// .debug_info section.
std::optional<uint64_t> RefVal = AttrValue.Value.getAsDebugInfoReference();
assert(RefVal);
if (RefVal) {
if (*RefVal >= DieCU->getInfoSection().Data.size()) {
++NumErrors;
ErrorCategory.Report("DW_FORM_ref_addr offset out of bounds", [&]() {
error() << "DW_FORM_ref_addr offset beyond .debug_info "
"bounds:\n";
dump(Die) << '\n';
});
} else {
// Valid reference, but we will verify it points to an actual
// DIE later.
CrossUnitReferences[*RefVal].insert(Die.getOffset());
}
}
break;
}
case DW_FORM_strp:
case DW_FORM_strx:
case DW_FORM_strx1:
case DW_FORM_strx2:
case DW_FORM_strx3:
case DW_FORM_strx4:
case DW_FORM_line_strp: {
if (Error E = AttrValue.Value.getAsCString().takeError()) {
++NumErrors;
std::string ErrMsg = toString(std::move(E));
ErrorCategory.Report("Invalid DW_FORM attribute", [&]() {
error() << ErrMsg << ":\n";
dump(Die) << '\n';
});
}
break;
}
default:
break;
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoReferences(
const ReferenceMap &References,
llvm::function_ref<DWARFUnit *(uint64_t)> GetUnitForOffset) {
auto GetDIEForOffset = [&](uint64_t Offset) {
if (DWARFUnit *U = GetUnitForOffset(Offset))
return U->getDIEForOffset(Offset);
return DWARFDie();
};
unsigned NumErrors = 0;
for (const std::pair<const uint64_t, std::set<uint64_t>> &Pair :
References) {
if (GetDIEForOffset(Pair.first))
continue;
++NumErrors;
ErrorCategory.Report("Invalid DIE reference", [&]() {
error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first)
<< ". Offset is in between DIEs:\n";
for (auto Offset : Pair.second)
dump(GetDIEForOffset(Offset)) << '\n';
OS << "\n";
});
}
return NumErrors;
}
void DWARFVerifier::verifyDebugLineStmtOffsets() {
std::map<uint64_t, DWARFDie> StmtListToDie;
for (const auto &CU : DCtx.compile_units()) {
auto Die = CU->getUnitDIE();
// Get the attribute value as a section offset. No need to produce an
// error here if the encoding isn't correct because we validate this in
// the .debug_info verifier.
auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list));
if (!StmtSectionOffset)
continue;
const uint64_t LineTableOffset = *StmtSectionOffset;
auto LineTable = DCtx.getLineTableForUnit(CU.get());
if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) {
if (!LineTable) {
++NumDebugLineErrors;
ErrorCategory.Report("Unparsable .debug_line entry", [&]() {
error() << ".debug_line[" << format("0x%08" PRIx64, LineTableOffset)
<< "] was not able to be parsed for CU:\n";
dump(Die) << '\n';
});
continue;
}
} else {
// Make sure we don't get a valid line table back if the offset is wrong.
assert(LineTable == nullptr);
// Skip this line table as it isn't valid. No need to create an error
// here because we validate this in the .debug_info verifier.
continue;
}
auto [Iter, Inserted] = StmtListToDie.try_emplace(LineTableOffset, Die);
if (!Inserted) {
++NumDebugLineErrors;
const auto &OldDie = Iter->second;
ErrorCategory.Report("Identical DW_AT_stmt_list section offset", [&]() {
error() << "two compile unit DIEs, "
<< format("0x%08" PRIx64, OldDie.getOffset()) << " and "
<< format("0x%08" PRIx64, Die.getOffset())
<< ", have the same DW_AT_stmt_list section offset:\n";
dump(OldDie);
dump(Die) << '\n';
});
// Already verified this line table before, no need to do it again.
}
}
}
void DWARFVerifier::verifyDebugLineRows() {
for (const auto &CU : DCtx.compile_units()) {
auto Die = CU->getUnitDIE();
auto LineTable = DCtx.getLineTableForUnit(CU.get());
// If there is no line table we will have created an error in the
// .debug_info verifier or in verifyDebugLineStmtOffsets().
if (!LineTable)
continue;
// Verify prologue.
bool isDWARF5 = LineTable->Prologue.getVersion() >= 5;
uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size();
uint32_t MinFileIndex = isDWARF5 ? 0 : 1;
uint32_t FileIndex = MinFileIndex;
StringMap<uint16_t> FullPathMap;
for (const auto &FileName : LineTable->Prologue.FileNames) {
// Verify directory index.
if (FileName.DirIdx > MaxDirIndex) {
++NumDebugLineErrors;
ErrorCategory.Report(
"Invalid index in .debug_line->prologue.file_names->dir_idx",
[&]() {
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "].prologue.file_names[" << FileIndex
<< "].dir_idx contains an invalid index: "
<< FileName.DirIdx << "\n";
});
}
// Check file paths for duplicates.
std::string FullPath;
const bool HasFullPath = LineTable->getFileNameByIndex(
FileIndex, CU->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath);
assert(HasFullPath && "Invalid index?");
(void)HasFullPath;
auto [It, Inserted] = FullPathMap.try_emplace(FullPath, FileIndex);
if (!Inserted && It->second != FileIndex && DumpOpts.Verbose) {
warn() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "].prologue.file_names[" << FileIndex
<< "] is a duplicate of file_names[" << It->second << "]\n";
}
FileIndex++;
}
// Nothing to verify in a line table with a single row containing the end
// sequence.
if (LineTable->Rows.size() == 1 && LineTable->Rows.front().EndSequence)
continue;
// Verify rows.
uint64_t PrevAddress = 0;
uint32_t RowIndex = 0;
for (const auto &Row : LineTable->Rows) {
// Verify row address.
if (Row.Address.Address < PrevAddress) {
++NumDebugLineErrors;
ErrorCategory.Report(
"decreasing address between debug_line rows", [&]() {
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "] row[" << RowIndex
<< "] decreases in address from previous row:\n";
DWARFDebugLine::Row::dumpTableHeader(OS, 0);
if (RowIndex > 0)
LineTable->Rows[RowIndex - 1].dump(OS);
Row.dump(OS);
OS << '\n';
});
}
if (!LineTable->hasFileAtIndex(Row.File)) {
++NumDebugLineErrors;
ErrorCategory.Report("Invalid file index in debug_line", [&]() {
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "][" << RowIndex << "] has invalid file index " << Row.File
<< " (valid values are [" << MinFileIndex << ','
<< LineTable->Prologue.FileNames.size()
<< (isDWARF5 ? ")" : "]") << "):\n";
DWARFDebugLine::Row::dumpTableHeader(OS, 0);
Row.dump(OS);
OS << '\n';
});
}
if (Row.EndSequence)
PrevAddress = 0;
else
PrevAddress = Row.Address.Address;
++RowIndex;
}
}
}
DWARFVerifier::DWARFVerifier(raw_ostream &S, DWARFContext &D,
DIDumpOptions DumpOpts)
: OS(S), DCtx(D), DumpOpts(std::move(DumpOpts)), IsObjectFile(false),
IsMachOObject(false) {
ErrorCategory.ShowDetail(this->DumpOpts.Verbose ||
!this->DumpOpts.ShowAggregateErrors);
if (const auto *F = DCtx.getDWARFObj().getFile()) {
IsObjectFile = F->isRelocatableObject();
IsMachOObject = F->isMachO();
}
}
bool DWARFVerifier::handleDebugLine() {
NumDebugLineErrors = 0;
OS << "Verifying .debug_line...\n";
verifyDebugLineStmtOffsets();
verifyDebugLineRows();
return NumDebugLineErrors == 0;
}
void DWARFVerifier::verifyAppleAccelTable(const DWARFSection *AccelSection,
DataExtractor *StrData,
const char *SectionName) {
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection,
DCtx.isLittleEndian(), 0);
AppleAcceleratorTable AccelTable(AccelSectionData, *StrData);
OS << "Verifying " << SectionName << "...\n";
// Verify that the fixed part of the header is not too short.
if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) {
ErrorCategory.Report("Section is too small to fit a section header", [&]() {
error() << "Section is too small to fit a section header.\n";
});
return;
}
// Verify that the section is not too short.
if (Error E = AccelTable.extract()) {
std::string Msg = toString(std::move(E));
ErrorCategory.Report("Section is too small to fit a section header",
[&]() { error() << Msg << '\n'; });
return;
}
// Verify that all buckets have a valid hash index or are empty.
uint32_t NumBuckets = AccelTable.getNumBuckets();
uint32_t NumHashes = AccelTable.getNumHashes();
uint64_t BucketsOffset =
AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength();
uint64_t HashesBase = BucketsOffset + NumBuckets * 4;
uint64_t OffsetsBase = HashesBase + NumHashes * 4;
for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) {
uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset);
if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) {
ErrorCategory.Report("Invalid hash index", [&]() {
error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx,
HashIdx);
});
}
}
uint32_t NumAtoms = AccelTable.getAtomsDesc().size();
if (NumAtoms == 0) {
ErrorCategory.Report("No atoms", [&]() {
error() << "No atoms: failed to read HashData.\n";
});
return;
}
if (!AccelTable.validateForms()) {
ErrorCategory.Report("Unsupported form", [&]() {
error() << "Unsupported form: failed to read HashData.\n";
});
return;
}
for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) {
uint64_t HashOffset = HashesBase + 4 * HashIdx;
uint64_t DataOffset = OffsetsBase + 4 * HashIdx;
uint32_t Hash = AccelSectionData.getU32(&HashOffset);
uint64_t HashDataOffset = AccelSectionData.getU32(&DataOffset);
if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset,
sizeof(uint64_t))) {
ErrorCategory.Report("Invalid HashData offset", [&]() {
error() << format("Hash[%d] has invalid HashData offset: "
"0x%08" PRIx64 ".\n",
HashIdx, HashDataOffset);
});
}
uint64_t StrpOffset;
uint64_t StringOffset;
uint32_t StringCount = 0;
uint64_t Offset;
unsigned Tag;
while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) {
const uint32_t NumHashDataObjects =
AccelSectionData.getU32(&HashDataOffset);
for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects;
++HashDataIdx) {
std::tie(Offset, Tag) = AccelTable.readAtoms(&HashDataOffset);
auto Die = DCtx.getDIEForOffset(Offset);
if (!Die) {
const uint32_t BucketIdx =
NumBuckets ? (Hash % NumBuckets) : UINT32_MAX;
StringOffset = StrpOffset;
const char *Name = StrData->getCStr(&StringOffset);
if (!Name)
Name = "<NULL>";
ErrorCategory.Report("Invalid DIE offset", [&]() {
error() << format(
"%s Bucket[%d] Hash[%d] = 0x%08x "
"Str[%u] = 0x%08" PRIx64 " DIE[%d] = 0x%08" PRIx64 " "
"is not a valid DIE offset for \"%s\".\n",
SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset,
HashDataIdx, Offset, Name);
});
continue;
}
if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) {
ErrorCategory.Report("Mismatched Tag in accellerator table", [&]() {
error() << "Tag " << dwarf::TagString(Tag)
<< " in accelerator table does not match Tag "
<< dwarf::TagString(Die.getTag()) << " of DIE["
<< HashDataIdx << "].\n";
});
}
}
}
}
}
void DWARFVerifier::verifyDebugNamesCULists(const DWARFDebugNames &AccelTable) {
// A map from CU offset to the (first) Name Index offset which claims to index
// this CU.
DenseMap<uint64_t, uint64_t> CUMap;
CUMap.reserve(DCtx.getNumCompileUnits());
DenseSet<uint64_t> CUOffsets;
for (const auto &CU : DCtx.compile_units())
CUOffsets.insert(CU->getOffset());
parallelForEach(AccelTable, [&](const DWARFDebugNames::NameIndex &NI) {
if (NI.getCUCount() == 0) {
ErrorCategory.Report("Name Index doesn't index any CU", [&]() {
error() << formatv("Name Index @ {0:x} does not index any CU\n",
NI.getUnitOffset());
});
return;
}
for (uint32_t CU = 0, End = NI.getCUCount(); CU < End; ++CU) {
uint64_t Offset = NI.getCUOffset(CU);
if (!CUOffsets.count(Offset)) {
ErrorCategory.Report("Name Index references non-existing CU", [&]() {
error() << formatv(
"Name Index @ {0:x} references a non-existing CU @ {1:x}\n",
NI.getUnitOffset(), Offset);
});
continue;
}
uint64_t DuplicateCUOffset = 0;
{
std::lock_guard<std::mutex> Lock(AccessMutex);
auto Iter = CUMap.find(Offset);
if (Iter != CUMap.end())
DuplicateCUOffset = Iter->second;
else
CUMap[Offset] = NI.getUnitOffset();
}
if (DuplicateCUOffset) {
ErrorCategory.Report("Duplicate Name Index", [&]() {
error() << formatv(
"Name Index @ {0:x} references a CU @ {1:x}, but "
"this CU is already indexed by Name Index @ {2:x}\n",
NI.getUnitOffset(), Offset, DuplicateCUOffset);
});
continue;
}
}
});
for (const auto &CU : DCtx.compile_units()) {
if (CUMap.count(CU->getOffset()) == 0)
warn() << formatv("CU @ {0:x} not covered by any Name Index\n",
CU->getOffset());
}
}
void DWARFVerifier::verifyNameIndexBuckets(const DWARFDebugNames::NameIndex &NI,
const DataExtractor &StrData) {
struct BucketInfo {
uint32_t Bucket;
uint32_t Index;
constexpr BucketInfo(uint32_t Bucket, uint32_t Index)
: Bucket(Bucket), Index(Index) {}
bool operator<(const BucketInfo &RHS) const { return Index < RHS.Index; }
};
if (NI.getBucketCount() == 0) {
warn() << formatv("Name Index @ {0:x} does not contain a hash table.\n",
NI.getUnitOffset());
return;
}
// Build up a list of (Bucket, Index) pairs. We use this later to verify that
// each Name is reachable from the appropriate bucket.
std::vector<BucketInfo> BucketStarts;
BucketStarts.reserve(NI.getBucketCount() + 1);
const uint64_t OrigNumberOfErrors = ErrorCategory.GetNumErrors();
for (uint32_t Bucket = 0, End = NI.getBucketCount(); Bucket < End; ++Bucket) {
uint32_t Index = NI.getBucketArrayEntry(Bucket);
if (Index > NI.getNameCount()) {
ErrorCategory.Report("Name Index Bucket contains invalid value", [&]() {
error() << formatv("Bucket {0} of Name Index @ {1:x} contains invalid "
"value {2}. Valid range is [0, {3}].\n",
Bucket, NI.getUnitOffset(), Index,
NI.getNameCount());
});
continue;
}
if (Index > 0)
BucketStarts.emplace_back(Bucket, Index);
}
// If there were any buckets with invalid values, skip further checks as they
// will likely produce many errors which will only confuse the actual root
// problem.
if (OrigNumberOfErrors != ErrorCategory.GetNumErrors())
return;
// Sort the list in the order of increasing "Index" entries.
array_pod_sort(BucketStarts.begin(), BucketStarts.end());
// Insert a sentinel entry at the end, so we can check that the end of the
// table is covered in the loop below.
BucketStarts.emplace_back(NI.getBucketCount(), NI.getNameCount() + 1);
// Loop invariant: NextUncovered is the (1-based) index of the first Name
// which is not reachable by any of the buckets we processed so far (and
// hasn't been reported as uncovered).
uint32_t NextUncovered = 1;
for (const BucketInfo &B : BucketStarts) {
// Under normal circumstances B.Index be equal to NextUncovered, but it can
// be less if a bucket points to names which are already known to be in some
// bucket we processed earlier. In that case, we won't trigger this error,
// but report the mismatched hash value error instead. (We know the hash
// will not match because we have already verified that the name's hash
// puts it into the previous bucket.)
if (B.Index > NextUncovered) {
ErrorCategory.Report("Name table entries uncovered by hash table", [&]() {
error() << formatv("Name Index @ {0:x}: Name table entries [{1}, {2}] "
"are not covered by the hash table.\n",
NI.getUnitOffset(), NextUncovered, B.Index - 1);
});
}
uint32_t Idx = B.Index;
// The rest of the checks apply only to non-sentinel entries.
if (B.Bucket == NI.getBucketCount())
break;
// This triggers if a non-empty bucket points to a name with a mismatched
// hash. Clients are likely to interpret this as an empty bucket, because a
// mismatched hash signals the end of a bucket, but if this is indeed an
// empty bucket, the producer should have signalled this by marking the
// bucket as empty.
uint32_t FirstHash = NI.getHashArrayEntry(Idx);
if (FirstHash % NI.getBucketCount() != B.Bucket) {
ErrorCategory.Report("Name Index point to mismatched hash value", [&]() {
error() << formatv(
"Name Index @ {0:x}: Bucket {1} is not empty but points to a "
"mismatched hash value {2:x} (belonging to bucket {3}).\n",
NI.getUnitOffset(), B.Bucket, FirstHash,
FirstHash % NI.getBucketCount());
});
}
// This find the end of this bucket and also verifies that all the hashes in
// this bucket are correct by comparing the stored hashes to the ones we
// compute ourselves.
while (Idx <= NI.getNameCount()) {
uint32_t Hash = NI.getHashArrayEntry(Idx);
if (Hash % NI.getBucketCount() != B.Bucket)
break;
const char *Str = NI.getNameTableEntry(Idx).getString();
if (caseFoldingDjbHash(Str) != Hash) {
ErrorCategory.Report(
"String hash doesn't match Name Index hash", [&]() {
error() << formatv(
"Name Index @ {0:x}: String ({1}) at index {2} "
"hashes to {3:x}, but "
"the Name Index hash is {4:x}\n",
NI.getUnitOffset(), Str, Idx, caseFoldingDjbHash(Str), Hash);
});
}
++Idx;
}
NextUncovered = std::max(NextUncovered, Idx);
}
}
void DWARFVerifier::verifyNameIndexAttribute(
const DWARFDebugNames::NameIndex &NI, const DWARFDebugNames::Abbrev &Abbr,
DWARFDebugNames::AttributeEncoding AttrEnc) {
StringRef FormName = dwarf::FormEncodingString(AttrEnc.Form);
if (FormName.empty()) {
ErrorCategory.Report("Unknown NameIndex Abbreviation", [&]() {
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an "
"unknown form: {3}.\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index,
AttrEnc.Form);
});
return;
}
if (AttrEnc.Index == DW_IDX_type_hash) {
if (AttrEnc.Form != dwarf::DW_FORM_data8) {
ErrorCategory.Report("Unexpected NameIndex Abbreviation", [&]() {
error() << formatv(
"NameIndex @ {0:x}: Abbreviation {1:x}: DW_IDX_type_hash "
"uses an unexpected form {2} (should be {3}).\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Form, dwarf::DW_FORM_data8);
});
return;
}
return;
}
if (AttrEnc.Index == dwarf::DW_IDX_parent) {
constexpr static auto AllowedForms = {dwarf::Form::DW_FORM_flag_present,
dwarf::Form::DW_FORM_ref4};
if (!is_contained(AllowedForms, AttrEnc.Form)) {
ErrorCategory.Report("Unexpected NameIndex Abbreviation", [&]() {
error() << formatv(
"NameIndex @ {0:x}: Abbreviation {1:x}: DW_IDX_parent "
"uses an unexpected form {2} (should be "
"DW_FORM_ref4 or DW_FORM_flag_present).\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Form);
});
return;
}
return;
}
// A list of known index attributes and their expected form classes.
// DW_IDX_type_hash is handled specially in the check above, as it has a
// specific form (not just a form class) we should expect.
struct FormClassTable {
dwarf::Index Index;
DWARFFormValue::FormClass Class;
StringLiteral ClassName;
};
static constexpr FormClassTable Table[] = {
{dwarf::DW_IDX_compile_unit, DWARFFormValue::FC_Constant, {"constant"}},
{dwarf::DW_IDX_type_unit, DWARFFormValue::FC_Constant, {"constant"}},
{dwarf::DW_IDX_die_offset, DWARFFormValue::FC_Reference, {"reference"}},
};
ArrayRef<FormClassTable> TableRef(Table);
auto Iter = find_if(TableRef, [AttrEnc](const FormClassTable &T) {
return T.Index == AttrEnc.Index;
});
if (Iter == TableRef.end()) {
warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains an "
"unknown index attribute: {2}.\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index);
return;
}
if (!DWARFFormValue(AttrEnc.Form).isFormClass(Iter->Class)) {
ErrorCategory.Report("Unexpected NameIndex Abbreviation", [&]() {
error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an "
"unexpected form {3} (expected form class {4}).\n",
NI.getUnitOffset(), Abbr.Code, AttrEnc.Index,
AttrEnc.Form, Iter->ClassName);
});
return;
}
}
void DWARFVerifier::verifyNameIndexAbbrevs(
const DWARFDebugNames::NameIndex &NI) {
for (const auto &Abbrev : NI.getAbbrevs()) {
StringRef TagName = dwarf::TagString(Abbrev.Tag);
if (TagName.empty()) {
warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} references an "
"unknown tag: {2}.\n",
NI.getUnitOffset(), Abbrev.Code, Abbrev.Tag);
}
SmallSet<unsigned, 5> Attributes;
for (const auto &AttrEnc : Abbrev.Attributes) {
if (!Attributes.insert(AttrEnc.Index).second) {
ErrorCategory.Report(
"NameIndex Abbreviateion contains multiple attributes", [&]() {
error() << formatv(
"NameIndex @ {0:x}: Abbreviation {1:x} contains "
"multiple {2} attributes.\n",
NI.getUnitOffset(), Abbrev.Code, AttrEnc.Index);
});
continue;
}
verifyNameIndexAttribute(NI, Abbrev, AttrEnc);
}
if (NI.getCUCount() > 1 && !Attributes.count(dwarf::DW_IDX_compile_unit) &&
!Attributes.count(dwarf::DW_IDX_type_unit)) {
ErrorCategory.Report("Abbreviation contains no attribute", [&]() {
error() << formatv("NameIndex @ {0:x}: Indexing multiple compile units "
"and abbreviation {1:x} has no DW_IDX_compile_unit "
"or DW_IDX_type_unit attribute.\n",
NI.getUnitOffset(), Abbrev.Code);
});
}
if (!Attributes.count(dwarf::DW_IDX_die_offset)) {
ErrorCategory.Report("Abbreviate in NameIndex missing attribute", [&]() {
error() << formatv(
"NameIndex @ {0:x}: Abbreviation {1:x} has no {2} attribute.\n",
NI.getUnitOffset(), Abbrev.Code, dwarf::DW_IDX_die_offset);
});
}
}
}
/// Constructs a full name for a DIE. Potentially it does recursive lookup on
/// DIEs. This can lead to extraction of DIEs in a different CU or TU.
static SmallVector<std::string, 3> getNames(const DWARFDie &DIE,
bool IncludeStrippedTemplateNames,
bool IncludeObjCNames = true,
bool IncludeLinkageName = true) {
SmallVector<std::string, 3> Result;
if (const char *Str = DIE.getShortName()) {
StringRef Name(Str);
Result.emplace_back(Name);
if (IncludeStrippedTemplateNames) {
if (std::optional<StringRef> StrippedName =
StripTemplateParameters(Result.back()))
// Convert to std::string and push; emplacing the StringRef may trigger
// a vector resize which may destroy the StringRef memory.
Result.push_back(StrippedName->str());
}
if (IncludeObjCNames) {
if (std::optional<ObjCSelectorNames> ObjCNames =
getObjCNamesIfSelector(Name)) {
Result.emplace_back(ObjCNames->ClassName);
Result.emplace_back(ObjCNames->Selector);
if (ObjCNames->ClassNameNoCategory)
Result.emplace_back(*ObjCNames->ClassNameNoCategory);
if (ObjCNames->MethodNameNoCategory)
Result.push_back(std::move(*ObjCNames->MethodNameNoCategory));
}
}
} else if (DIE.getTag() == dwarf::DW_TAG_namespace)
Result.emplace_back("(anonymous namespace)");
if (IncludeLinkageName) {
if (const char *Str = DIE.getLinkageName())
Result.emplace_back(Str);
}
return Result;
}
void DWARFVerifier::verifyNameIndexEntries(
const DWARFDebugNames::NameIndex &NI,
const DWARFDebugNames::NameTableEntry &NTE,
const DenseMap<uint64_t, DWARFUnit *> &CUOffsetsToDUMap) {
const char *CStr = NTE.getString();
if (!CStr) {
ErrorCategory.Report("Unable to get string associated with name", [&]() {
error() << formatv("Name Index @ {0:x}: Unable to get string associated "
"with name {1}.\n",
NI.getUnitOffset(), NTE.getIndex());
});
return;
}
StringRef Str(CStr);
unsigned NumEntries = 0;
uint64_t EntryID = NTE.getEntryOffset();
uint64_t NextEntryID = EntryID;
Expected<DWARFDebugNames::Entry> EntryOr = NI.getEntry(&NextEntryID);
for (; EntryOr; ++NumEntries, EntryID = NextEntryID,
EntryOr = NI.getEntry(&NextEntryID)) {
std::optional<uint64_t> CUIndex = EntryOr->getRelatedCUIndex();
std::optional<uint64_t> TUIndex = EntryOr->getTUIndex();
if (CUIndex && *CUIndex >= NI.getCUCount()) {
ErrorCategory.Report("Name Index entry contains invalid CU index", [&]() {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an "
"invalid CU index ({2}).\n",
NI.getUnitOffset(), EntryID, *CUIndex);
});
continue;
}
const uint32_t NumLocalTUs = NI.getLocalTUCount();
const uint32_t NumForeignTUs = NI.getForeignTUCount();
if (TUIndex && *TUIndex >= (NumLocalTUs + NumForeignTUs)) {
ErrorCategory.Report("Name Index entry contains invalid TU index", [&]() {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an "
"invalid TU index ({2}).\n",
NI.getUnitOffset(), EntryID, *TUIndex);
});
continue;
}
std::optional<uint64_t> UnitOffset;
if (TUIndex) {
// We have a local or foreign type unit.
if (*TUIndex >= NumLocalTUs) {
// This is a foreign type unit, we will find the right type unit by
// type unit signature later in this function.
// Foreign type units must have a valid CU index, either from a
// DW_IDX_comp_unit attribute value or from the .debug_names table only
// having a single compile unit. We need the originating compile unit
// because foreign type units can come from any .dwo file, yet only one
// copy of the type unit will end up in the .dwp file.
if (CUIndex) {
// We need the local skeleton unit offset for the code below.
UnitOffset = NI.getCUOffset(*CUIndex);
} else {
ErrorCategory.Report(
"Name Index entry contains foreign TU index with invalid CU "
"index",
[&]() {
error() << formatv(
"Name Index @ {0:x}: Entry @ {1:x} contains an "
"foreign TU index ({2}) with no CU index.\n",
NI.getUnitOffset(), EntryID, *TUIndex);
});
continue;
}
} else {
// Local type unit, get the DWARF unit offset for the type unit.
UnitOffset = NI.getLocalTUOffset(*TUIndex);
}
} else if (CUIndex) {
// Local CU entry, get the DWARF unit offset for the CU.
UnitOffset = NI.getCUOffset(*CUIndex);
}
// Watch for tombstoned type unit entries.
if (!UnitOffset || UnitOffset == UINT32_MAX)
continue;
// For split DWARF entries we need to make sure we find the non skeleton
// DWARF unit that is needed and use that's DWARF unit offset as the
// DIE offset to add the DW_IDX_die_offset to.
DWARFUnit *DU = DCtx.getUnitForOffset(*UnitOffset);
if (DU == nullptr || DU->getOffset() != *UnitOffset) {
// If we didn't find a DWARF Unit from the UnitOffset, or if the offset
// of the unit doesn't match exactly, report an error.
ErrorCategory.Report(
"Name Index entry contains invalid CU or TU offset", [&]() {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an "
"invalid CU or TU offset {2:x}.\n",
NI.getUnitOffset(), EntryID, *UnitOffset);
});
continue;
}
// This function will try to get the non skeleton unit DIE, but if it is
// unable to load the .dwo file from the .dwo or .dwp, it will return the
// unit DIE of the DWARFUnit in "DU". So we need to check if the DWARFUnit
// has a .dwo file, but we couldn't load it.
// FIXME: Need a follow up patch to fix usage of
// DWARFUnit::getNonSkeletonUnitDIE() so that it returns an empty DWARFDie
// if the .dwo file isn't available and clean up other uses of this function
// call to properly deal with it. It isn't clear that getNonSkeletonUnitDIE
// will return the unit DIE of DU if we aren't able to get the .dwo file,
// but that is what the function currently does.
DWARFUnit *NonSkeletonUnit = nullptr;
if (DU->getDWOId()) {
auto Iter = CUOffsetsToDUMap.find(DU->getOffset());
NonSkeletonUnit = Iter->second;
} else {
NonSkeletonUnit = DU;
}
DWARFDie UnitDie = DU->getUnitDIE();
if (DU->getDWOId() && !NonSkeletonUnit->isDWOUnit()) {
ErrorCategory.Report("Unable to get load .dwo file", [&]() {
error() << formatv(
"Name Index @ {0:x}: Entry @ {1:x} unable to load "
".dwo file \"{2}\" for DWARF unit @ {3:x}.\n",
NI.getUnitOffset(), EntryID,
dwarf::toString(UnitDie.find({DW_AT_dwo_name, DW_AT_GNU_dwo_name})),
*UnitOffset);
});
continue;
}
if (TUIndex && *TUIndex >= NumLocalTUs) {
// We have a foreign TU index, which either means we have a .dwo file
// that has one or more type units, or we have a .dwp file with one or
// more type units. We need to get the type unit from the DWARFContext
// of the .dwo. We got the NonSkeletonUnitDie above that has the .dwo
// or .dwp DWARF context, so we have to get the type unit from that file.
// We have also verified that NonSkeletonUnitDie points to a DWO file
// above, so we know we have the right file.
const uint32_t ForeignTUIdx = *TUIndex - NumLocalTUs;
const uint64_t TypeSig = NI.getForeignTUSignature(ForeignTUIdx);
llvm::DWARFContext &NonSkeletonDCtx = NonSkeletonUnit->getContext();
// Now find the type unit from the type signature and then update the
// NonSkeletonUnitDie to point to the actual type unit in the .dwo/.dwp.
NonSkeletonUnit =
NonSkeletonDCtx.getTypeUnitForHash(TypeSig, /*IsDWO=*/true);
// If we have foreign type unit in a DWP file, then we need to ignore
// any entries from type units that don't match the one that made it into
// the .dwp file.
if (NonSkeletonDCtx.isDWP()) {
DWARFDie NonSkeletonUnitDie = NonSkeletonUnit->getUnitDIE(true);
StringRef DUDwoName = dwarf::toStringRef(
UnitDie.find({DW_AT_dwo_name, DW_AT_GNU_dwo_name}));
StringRef TUDwoName = dwarf::toStringRef(
NonSkeletonUnitDie.find({DW_AT_dwo_name, DW_AT_GNU_dwo_name}));
if (DUDwoName != TUDwoName)
continue; // Skip this TU, it isn't the one in the .dwp file.
}
}
uint64_t DIEOffset =
NonSkeletonUnit->getOffset() + *EntryOr->getDIEUnitOffset();
const uint64_t NextUnitOffset = NonSkeletonUnit->getNextUnitOffset();
// DIE offsets are relative to the specified CU or TU. Make sure the DIE
// offsets is a valid relative offset.
if (DIEOffset >= NextUnitOffset) {
ErrorCategory.Report("NameIndex relative DIE offset too large", [&]() {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} references a "
"DIE @ {2:x} when CU or TU ends at {3:x}.\n",
NI.getUnitOffset(), EntryID, DIEOffset,
NextUnitOffset);
});
continue;
}
DWARFDie DIE = NonSkeletonUnit->getDIEForOffset(DIEOffset);
if (!DIE) {
ErrorCategory.Report("NameIndex references nonexistent DIE", [&]() {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x} references a "
"non-existing DIE @ {2:x}.\n",
NI.getUnitOffset(), EntryID, DIEOffset);
});
continue;
}
// Only compare the DIE we found's DWARFUnit offset if the DIE lives in
// the DWARFUnit from the DW_IDX_comp_unit or DW_IDX_type_unit. If we are
// using split DWARF, then the DIE's DWARFUnit doesn't need to match the
// skeleton unit.
if (DIE.getDwarfUnit() == DU &&
DIE.getDwarfUnit()->getOffset() != *UnitOffset) {
ErrorCategory.Report("Name index contains mismatched CU of DIE", [&]() {
error() << formatv(
"Name Index @ {0:x}: Entry @ {1:x}: mismatched CU of "
"DIE @ {2:x}: index - {3:x}; debug_info - {4:x}.\n",
NI.getUnitOffset(), EntryID, DIEOffset, *UnitOffset,
DIE.getDwarfUnit()->getOffset());
});
}
if (DIE.getTag() != EntryOr->tag()) {
ErrorCategory.Report("Name Index contains mismatched Tag of DIE", [&]() {
error() << formatv(
"Name Index @ {0:x}: Entry @ {1:x}: mismatched Tag of "
"DIE @ {2:x}: index - {3}; debug_info - {4}.\n",
NI.getUnitOffset(), EntryID, DIEOffset, EntryOr->tag(),
DIE.getTag());
});
}
// We allow an extra name for functions: their name without any template
// parameters.
auto IncludeStrippedTemplateNames =
DIE.getTag() == DW_TAG_subprogram ||
DIE.getTag() == DW_TAG_inlined_subroutine;
auto EntryNames = getNames(DIE, IncludeStrippedTemplateNames);
if (!is_contained(EntryNames, Str)) {
ErrorCategory.Report("Name Index contains mismatched name of DIE", [&]() {
error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Name "
"of DIE @ {2:x}: index - {3}; debug_info - {4}.\n",
NI.getUnitOffset(), EntryID, DIEOffset, Str,
make_range(EntryNames.begin(), EntryNames.end()));
});
}
}
handleAllErrors(
EntryOr.takeError(),
[&](const DWARFDebugNames::SentinelError &) {
if (NumEntries > 0)
return;
ErrorCategory.Report(
"NameIndex Name is not associated with any entries", [&]() {
error() << formatv("Name Index @ {0:x}: Name {1} ({2}) is "
"not associated with any entries.\n",
NI.getUnitOffset(), NTE.getIndex(), Str);
});
},
[&](const ErrorInfoBase &Info) {
ErrorCategory.Report("Uncategorized NameIndex error", [&]() {
error() << formatv("Name Index @ {0:x}: Name {1} ({2}): {3}\n",
NI.getUnitOffset(), NTE.getIndex(), Str,
Info.message());
});
});
}
static bool isVariableIndexable(const DWARFDie &Die, DWARFContext &DCtx) {
Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(DW_AT_location);
if (!Loc) {
consumeError(Loc.takeError());
return false;
}
DWARFUnit *U = Die.getDwarfUnit();
for (const auto &Entry : *Loc) {
DataExtractor Data(toStringRef(Entry.Expr), DCtx.isLittleEndian(),
U->getAddressByteSize());
DWARFExpression Expression(Data, U->getAddressByteSize(),
U->getFormParams().Format);
bool IsInteresting =
any_of(Expression, [](const DWARFExpression::Operation &Op) {
return !Op.isError() && (Op.getCode() == DW_OP_addr ||
Op.getCode() == DW_OP_form_tls_address ||
Op.getCode() == DW_OP_GNU_push_tls_address);
});
if (IsInteresting)
return true;
}
return false;
}
void DWARFVerifier::verifyNameIndexCompleteness(
const DWARFDie &Die, const DWARFDebugNames::NameIndex &NI,
const StringMap<DenseSet<uint64_t>> &NamesToDieOffsets) {
// First check, if the Die should be indexed. The code follows the DWARF v5
// wording as closely as possible.
// "All non-defining declarations (that is, debugging information entries
// with a DW_AT_declaration attribute) are excluded."
if (Die.find(DW_AT_declaration))
return;
// "DW_TAG_namespace debugging information entries without a DW_AT_name
// attribute are included with the name “(anonymous namespace)”.
// All other debugging information entries without a DW_AT_name attribute
// are excluded."
// "If a subprogram or inlined subroutine is included, and has a
// DW_AT_linkage_name attribute, there will be an additional index entry for
// the linkage name."
auto IncludeLinkageName = Die.getTag() == DW_TAG_subprogram ||
Die.getTag() == DW_TAG_inlined_subroutine;
// We *allow* stripped template names / ObjectiveC names as extra entries into
// the table, but we don't *require* them to pass the completeness test.
auto IncludeStrippedTemplateNames = false;
auto IncludeObjCNames = false;
auto EntryNames = getNames(Die, IncludeStrippedTemplateNames,
IncludeObjCNames, IncludeLinkageName);
if (EntryNames.empty())
return;
// We deviate from the specification here, which says:
// "The name index must contain an entry for each debugging information entry
// that defines a named subprogram, label, variable, type, or namespace,
// subject to ..."
// Explicitly exclude all TAGs that we know shouldn't be indexed.
switch (Die.getTag()) {
// Compile units and modules have names but shouldn't be indexed.
case DW_TAG_compile_unit:
case DW_TAG_module:
return;
// Function and template parameters are not globally visible, so we shouldn't
// index them.
case DW_TAG_formal_parameter:
case DW_TAG_template_value_parameter:
case DW_TAG_template_type_parameter:
case DW_TAG_GNU_template_parameter_pack:
case DW_TAG_GNU_template_template_param:
return;
// Object members aren't globally visible.
case DW_TAG_member:
return;
// According to a strict reading of the specification, enumerators should not
// be indexed (and LLVM currently does not do that). However, this causes
// problems for the debuggers, so we may need to reconsider this.
case DW_TAG_enumerator:
return;
// Imported declarations should not be indexed according to the specification
// and LLVM currently does not do that.
case DW_TAG_imported_declaration:
return;
// "DW_TAG_subprogram, DW_TAG_inlined_subroutine, and DW_TAG_label debugging
// information entries without an address attribute (DW_AT_low_pc,
// DW_AT_high_pc, DW_AT_ranges, or DW_AT_entry_pc) are excluded."
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
case DW_TAG_label:
if (Die.findRecursively(
{DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_entry_pc}))
break;
return;
// "DW_TAG_variable debugging information entries with a DW_AT_location
// attribute that includes a DW_OP_addr or DW_OP_form_tls_address operator are
// included; otherwise, they are excluded."
//
// LLVM extension: We also add DW_OP_GNU_push_tls_address to this list.
case DW_TAG_variable:
if (isVariableIndexable(Die, DCtx))
break;
return;
default:
break;
}
// Now we know that our Die should be present in the Index. Let's check if
// that's the case.
uint64_t DieUnitOffset = Die.getOffset() - Die.getDwarfUnit()->getOffset();
for (StringRef Name : EntryNames) {
auto iter = NamesToDieOffsets.find(Name);
if (iter == NamesToDieOffsets.end() || !iter->second.count(DieUnitOffset)) {
ErrorCategory.Report(
"Name Index DIE entry missing name",
llvm::dwarf::TagString(Die.getTag()), [&]() {
error() << formatv(
"Name Index @ {0:x}: Entry for DIE @ {1:x} ({2}) with "
"name {3} missing.\n",
NI.getUnitOffset(), Die.getOffset(), Die.getTag(), Name);
});
}
}
}
/// Extracts all the data for CU/TUs so we can access it in parallel without
/// locks.
static void extractCUsTus(DWARFContext &DCtx) {
// Abbrev DeclSet is shared beween the units.
for (auto &CUTU : DCtx.normal_units()) {
CUTU->getUnitDIE();
CUTU->getBaseAddress();
}
parallelForEach(DCtx.normal_units(), [&](const auto &CUTU) {
if (Error E = CUTU->tryExtractDIEsIfNeeded(false))
DCtx.getRecoverableErrorHandler()(std::move(E));
});
// Invoking getNonSkeletonUnitDIE() sets up all the base pointers for DWO
// Units. This is needed for getBaseAddress().
for (const auto &CU : DCtx.compile_units()) {
if (!CU->getDWOId())
continue;
DWARFContext &NonSkeletonContext =
CU->getNonSkeletonUnitDIE().getDwarfUnit()->getContext();
// Iterates over CUs and TUs.
for (auto &CUTU : NonSkeletonContext.dwo_units()) {
CUTU->getUnitDIE();
CUTU->getBaseAddress();
}
parallelForEach(NonSkeletonContext.dwo_units(), [&](const auto &CUTU) {
if (Error E = CUTU->tryExtractDIEsIfNeeded(false))
DCtx.getRecoverableErrorHandler()(std::move(E));
});
// If context is for DWP we only need to extract once.
if (NonSkeletonContext.isDWP())
break;
}
}
void DWARFVerifier::verifyDebugNames(const DWARFSection &AccelSection,
const DataExtractor &StrData) {
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), AccelSection,
DCtx.isLittleEndian(), 0);
DWARFDebugNames AccelTable(AccelSectionData, StrData);
OS << "Verifying .debug_names...\n";
// This verifies that we can read individual name indices and their
// abbreviation tables.
if (Error E = AccelTable.extract()) {
std::string Msg = toString(std::move(E));
ErrorCategory.Report("Accelerator Table Error",
[&]() { error() << Msg << '\n'; });
return;
}
const uint64_t OriginalNumErrors = ErrorCategory.GetNumErrors();
verifyDebugNamesCULists(AccelTable);
for (const auto &NI : AccelTable)
verifyNameIndexBuckets(NI, StrData);
parallelForEach(AccelTable, [&](const DWARFDebugNames::NameIndex &NI) {
verifyNameIndexAbbrevs(NI);
});
// Don't attempt Entry validation if any of the previous checks found errors
if (OriginalNumErrors != ErrorCategory.GetNumErrors())
return;
DenseMap<uint64_t, DWARFUnit *> CUOffsetsToDUMap;
for (const auto &CU : DCtx.compile_units()) {
if (!(CU->getVersion() >= 5 && CU->getDWOId()))
continue;
CUOffsetsToDUMap[CU->getOffset()] =
CU->getNonSkeletonUnitDIE().getDwarfUnit();
}
extractCUsTus(DCtx);
for (const DWARFDebugNames::NameIndex &NI : AccelTable) {
parallelForEach(NI, [&](DWARFDebugNames::NameTableEntry NTE) {
verifyNameIndexEntries(NI, NTE, CUOffsetsToDUMap);
});
}
auto populateNameToOffset =
[&](const DWARFDebugNames::NameIndex &NI,
StringMap<DenseSet<uint64_t>> &NamesToDieOffsets) {
for (const DWARFDebugNames::NameTableEntry &NTE : NI) {
const char *tName = NTE.getString();
const std::string Name = tName ? std::string(tName) : "";
uint64_t EntryID = NTE.getEntryOffset();
Expected<DWARFDebugNames::Entry> EntryOr = NI.getEntry(&EntryID);
auto Iter = NamesToDieOffsets.insert({Name, DenseSet<uint64_t>(3)});
for (; EntryOr; EntryOr = NI.getEntry(&EntryID)) {
if (std::optional<uint64_t> DieOffset = EntryOr->getDIEUnitOffset())
Iter.first->second.insert(*DieOffset);
}
handleAllErrors(
EntryOr.takeError(),
[&](const DWARFDebugNames::SentinelError &) {
if (!NamesToDieOffsets.empty())
return;
ErrorCategory.Report(
"NameIndex Name is not associated with any entries", [&]() {
error()
<< formatv("Name Index @ {0:x}: Name {1} ({2}) is "
"not associated with any entries.\n",
NI.getUnitOffset(), NTE.getIndex(), Name);
});
},
[&](const ErrorInfoBase &Info) {
ErrorCategory.Report("Uncategorized NameIndex error", [&]() {
error() << formatv(
"Name Index @ {0:x}: Name {1} ({2}): {3}\n",
NI.getUnitOffset(), NTE.getIndex(), Name, Info.message());
});
});
}
};
// NameIndex can have multiple CUs. For example if it was created by BOLT.
// So better to iterate over NI, and then over CUs in it.
for (const DWARFDebugNames::NameIndex &NI : AccelTable) {
StringMap<DenseSet<uint64_t>> NamesToDieOffsets(NI.getNameCount());
populateNameToOffset(NI, NamesToDieOffsets);
for (uint32_t i = 0, iEnd = NI.getCUCount(); i < iEnd; ++i) {
const uint64_t CUOffset = NI.getCUOffset(i);
DWARFUnit *U = DCtx.getUnitForOffset(CUOffset);
DWARFCompileUnit *CU = dyn_cast<DWARFCompileUnit>(U);
if (CU) {
if (CU->getDWOId()) {
DWARFDie CUDie = CU->getUnitDIE(true);
DWARFDie NonSkeletonUnitDie =
CUDie.getDwarfUnit()->getNonSkeletonUnitDIE(false);
if (CUDie != NonSkeletonUnitDie) {
parallelForEach(
NonSkeletonUnitDie.getDwarfUnit()->dies(),
[&](const DWARFDebugInfoEntry &Die) {
verifyNameIndexCompleteness(
DWARFDie(NonSkeletonUnitDie.getDwarfUnit(), &Die), NI,
NamesToDieOffsets);
});
}
} else {
parallelForEach(CU->dies(), [&](const DWARFDebugInfoEntry &Die) {
verifyNameIndexCompleteness(DWARFDie(CU, &Die), NI,
NamesToDieOffsets);
});
}
}
}
}
}
bool DWARFVerifier::handleAccelTables() {
const DWARFObject &D = DCtx.getDWARFObj();
DataExtractor StrData(D.getStrSection(), DCtx.isLittleEndian(), 0);
if (!D.getAppleNamesSection().Data.empty())
verifyAppleAccelTable(&D.getAppleNamesSection(), &StrData, ".apple_names");
if (!D.getAppleTypesSection().Data.empty())
verifyAppleAccelTable(&D.getAppleTypesSection(), &StrData, ".apple_types");
if (!D.getAppleNamespacesSection().Data.empty())
verifyAppleAccelTable(&D.getAppleNamespacesSection(), &StrData,
".apple_namespaces");
if (!D.getAppleObjCSection().Data.empty())
verifyAppleAccelTable(&D.getAppleObjCSection(), &StrData, ".apple_objc");
if (!D.getNamesSection().Data.empty())
verifyDebugNames(D.getNamesSection(), StrData);
return ErrorCategory.GetNumErrors() == 0;
}
bool DWARFVerifier::handleDebugStrOffsets() {
OS << "Verifying .debug_str_offsets...\n";
const DWARFObject &DObj = DCtx.getDWARFObj();
bool Success = true;
// dwo sections may contain the legacy debug_str_offsets format (and they
// can't be mixed with dwarf 5's format). This section format contains no
// header.
// As such, check the version from debug_info and, if we are in the legacy
// mode (Dwarf <= 4), extract Dwarf32/Dwarf64.
std::optional<DwarfFormat> DwoLegacyDwarf4Format;
DObj.forEachInfoDWOSections([&](const DWARFSection &S) {
if (DwoLegacyDwarf4Format)
return;
DWARFDataExtractor DebugInfoData(DObj, S, DCtx.isLittleEndian(), 0);
uint64_t Offset = 0;
DwarfFormat InfoFormat = DebugInfoData.getInitialLength(&Offset).second;
if (uint16_t InfoVersion = DebugInfoData.getU16(&Offset); InfoVersion <= 4)
DwoLegacyDwarf4Format = InfoFormat;
});
Success &= verifyDebugStrOffsets(
DwoLegacyDwarf4Format, ".debug_str_offsets.dwo",
DObj.getStrOffsetsDWOSection(), DObj.getStrDWOSection());
Success &= verifyDebugStrOffsets(
/*LegacyFormat=*/std::nullopt, ".debug_str_offsets",
DObj.getStrOffsetsSection(), DObj.getStrSection());
return Success;
}
bool DWARFVerifier::verifyDebugStrOffsets(
std::optional<DwarfFormat> LegacyFormat, StringRef SectionName,
const DWARFSection &Section, StringRef StrData) {
const DWARFObject &DObj = DCtx.getDWARFObj();
DWARFDataExtractor DA(DObj, Section, DCtx.isLittleEndian(), 0);
DataExtractor::Cursor C(0);
uint64_t NextUnit = 0;
bool Success = true;
while (C.seek(NextUnit), C.tell() < DA.getData().size()) {
DwarfFormat Format;
uint64_t Length;
uint64_t StartOffset = C.tell();
if (LegacyFormat) {
Format = *LegacyFormat;
Length = DA.getData().size();
NextUnit = C.tell() + Length;
} else {
std::tie(Length, Format) = DA.getInitialLength(C);
if (!C)
break;
if (C.tell() + Length > DA.getData().size()) {
ErrorCategory.Report(
"Section contribution length exceeds available space", [&]() {
error() << formatv(
"{0}: contribution {1:X}: length exceeds available space "
"(contribution "
"offset ({1:X}) + length field space ({2:X}) + length "
"({3:X}) == "
"{4:X} > section size {5:X})\n",
SectionName, StartOffset, C.tell() - StartOffset, Length,
C.tell() + Length, DA.getData().size());
});
Success = false;
// Nothing more to do - no other contributions to try.
break;
}
NextUnit = C.tell() + Length;
uint8_t Version = DA.getU16(C);
if (C && Version != 5) {
ErrorCategory.Report("Invalid Section version", [&]() {
error() << formatv("{0}: contribution {1:X}: invalid version {2}\n",
SectionName, StartOffset, Version);
});
Success = false;
// Can't parse the rest of this contribution, since we don't know the
// version, but we can pick up with the next contribution.
continue;
}
(void)DA.getU16(C); // padding
}
uint64_t OffsetByteSize = getDwarfOffsetByteSize(Format);
DA.setAddressSize(OffsetByteSize);
uint64_t Remainder = (Length - 4) % OffsetByteSize;
if (Remainder != 0) {
ErrorCategory.Report("Invalid section contribution length", [&]() {
error() << formatv(
"{0}: contribution {1:X}: invalid length ((length ({2:X}) "
"- header (0x4)) % offset size {3:X} == {4:X} != 0)\n",
SectionName, StartOffset, Length, OffsetByteSize, Remainder);
});
Success = false;
}
for (uint64_t Index = 0; C && C.tell() + OffsetByteSize <= NextUnit; ++Index) {
uint64_t OffOff = C.tell();
uint64_t StrOff = DA.getAddress(C);
// check StrOff refers to the start of a string
if (StrOff == 0)
continue;
if (StrData.size() <= StrOff) {
ErrorCategory.Report(
"String offset out of bounds of string section", [&]() {
error() << formatv(
"{0}: contribution {1:X}: index {2:X}: invalid string "
"offset *{3:X} == {4:X}, is beyond the bounds of the string "
"section of length {5:X}\n",
SectionName, StartOffset, Index, OffOff, StrOff,
StrData.size());
});
continue;
}
if (StrData[StrOff - 1] == '\0')
continue;
ErrorCategory.Report(
"Section contribution contains invalid string offset", [&]() {
error() << formatv(
"{0}: contribution {1:X}: index {2:X}: invalid string "
"offset *{3:X} == {4:X}, is neither zero nor "
"immediately following a null character\n",
SectionName, StartOffset, Index, OffOff, StrOff);
});
Success = false;
}
}
if (Error E = C.takeError()) {
std::string Msg = toString(std::move(E));
ErrorCategory.Report("String offset error", [&]() {
error() << SectionName << ": " << Msg << '\n';
return false;
});
}
return Success;
}
void OutputCategoryAggregator::Report(
StringRef s, std::function<void(void)> detailCallback) {
this->Report(s, "", detailCallback);
}
void OutputCategoryAggregator::Report(
StringRef category, StringRef sub_category,
std::function<void(void)> detailCallback) {
std::lock_guard<std::mutex> Lock(WriteMutex);
++NumErrors;
std::string category_str = std::string(category);
AggregationData &Agg = Aggregation[category_str];
Agg.OverallCount++;
if (!sub_category.empty()) {
Agg.DetailedCounts[std::string(sub_category)]++;
}
if (IncludeDetail)
detailCallback();
}
void OutputCategoryAggregator::EnumerateResults(
std::function<void(StringRef, unsigned)> handleCounts) {
for (const auto &[name, aggData] : Aggregation) {
handleCounts(name, aggData.OverallCount);
}
}
void OutputCategoryAggregator::EnumerateDetailedResultsFor(
StringRef category, std::function<void(StringRef, unsigned)> handleCounts) {
const auto Agg = Aggregation.find(category);
if (Agg != Aggregation.end()) {
for (const auto &[name, aggData] : Agg->second.DetailedCounts) {
handleCounts(name, aggData);
}
}
}
void DWARFVerifier::summarize() {
if (DumpOpts.ShowAggregateErrors && ErrorCategory.GetNumCategories()) {
error() << "Aggregated error counts:\n";
ErrorCategory.EnumerateResults([&](StringRef s, unsigned count) {
error() << s << " occurred " << count << " time(s).\n";
});
}
if (!DumpOpts.JsonErrSummaryFile.empty()) {
std::error_code EC;
raw_fd_ostream JsonStream(DumpOpts.JsonErrSummaryFile, EC,
sys::fs::OF_Text);
if (EC) {
error() << "unable to open json summary file '"
<< DumpOpts.JsonErrSummaryFile
<< "' for writing: " << EC.message() << '\n';
return;
}
llvm::json::Object Categories;
uint64_t ErrorCount = 0;
ErrorCategory.EnumerateResults([&](StringRef Category, unsigned Count) {
llvm::json::Object Val;
Val.try_emplace("count", Count);
llvm::json::Object Details;
ErrorCategory.EnumerateDetailedResultsFor(
Category, [&](StringRef SubCategory, unsigned SubCount) {
Details.try_emplace(SubCategory, SubCount);
});
Val.try_emplace("details", std::move(Details));
Categories.try_emplace(Category, std::move(Val));
ErrorCount += Count;
});
llvm::json::Object RootNode;
RootNode.try_emplace("error-categories", std::move(Categories));
RootNode.try_emplace("error-count", ErrorCount);
JsonStream << llvm::json::Value(std::move(RootNode));
}
}
raw_ostream &DWARFVerifier::error() const { return WithColor::error(OS); }
raw_ostream &DWARFVerifier::warn() const { return WithColor::warning(OS); }
raw_ostream &DWARFVerifier::note() const { return WithColor::note(OS); }
raw_ostream &DWARFVerifier::dump(const DWARFDie &Die, unsigned indent) const {
Die.dump(OS, indent, DumpOpts);
return OS;
}