blob: 2302abd8554d4e79eff433db4b9ca7d1fac2764c [file] [log] [blame]
//===- AffineExpr.h - MLIR Affine Expr Class --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An affine expression is an affine combination of dimension identifiers and
// symbols, including ceildiv/floordiv/mod by a constant integer.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_IR_AFFINE_EXPR_H
#define MLIR_IR_AFFINE_EXPR_H
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/Casting.h"
#include <type_traits>
namespace mlir {
class MLIRContext;
class AffineMap;
class IntegerSet;
namespace detail {
struct AffineExprStorage;
struct AffineBinaryOpExprStorage;
struct AffineDimExprStorage;
struct AffineSymbolExprStorage;
struct AffineConstantExprStorage;
} // namespace detail
enum class AffineExprKind {
Add,
/// RHS of mul is always a constant or a symbolic expression.
Mul,
/// RHS of mod is always a constant or a symbolic expression with a positive
/// value.
Mod,
/// RHS of floordiv is always a constant or a symbolic expression.
FloorDiv,
/// RHS of ceildiv is always a constant or a symbolic expression.
CeilDiv,
/// This is a marker for the last affine binary op. The range of binary
/// op's is expected to be this element and earlier.
LAST_AFFINE_BINARY_OP = CeilDiv,
/// Constant integer.
Constant,
/// Dimensional identifier.
DimId,
/// Symbolic identifier.
SymbolId,
};
/// Base type for affine expression.
/// AffineExpr's are immutable value types with intuitive operators to
/// operate on chainable, lightweight compositions.
/// An AffineExpr is an interface to the underlying storage type pointer.
class AffineExpr {
public:
using ImplType = detail::AffineExprStorage;
constexpr AffineExpr() : expr(nullptr) {}
/* implicit */ AffineExpr(const ImplType *expr)
: expr(const_cast<ImplType *>(expr)) {}
bool operator==(AffineExpr other) const { return expr == other.expr; }
bool operator!=(AffineExpr other) const { return !(*this == other); }
bool operator==(int64_t v) const;
bool operator!=(int64_t v) const { return !(*this == v); }
explicit operator bool() const { return expr; }
bool operator!() const { return expr == nullptr; }
template <typename U> bool isa() const;
template <typename U> U dyn_cast() const;
template <typename U> U dyn_cast_or_null() const;
template <typename U> U cast() const;
MLIRContext *getContext() const;
/// Return the classification for this type.
AffineExprKind getKind() const;
void print(raw_ostream &os) const;
void dump() const;
/// Returns true if this expression is made out of only symbols and
/// constants, i.e., it does not involve dimensional identifiers.
bool isSymbolicOrConstant() const;
/// Returns true if this is a pure affine expression, i.e., multiplication,
/// floordiv, ceildiv, and mod is only allowed w.r.t constants.
bool isPureAffine() const;
/// Returns the greatest known integral divisor of this affine expression. The
/// result is always positive.
int64_t getLargestKnownDivisor() const;
/// Return true if the affine expression is a multiple of 'factor'.
bool isMultipleOf(int64_t factor) const;
/// Return true if the affine expression involves AffineDimExpr `position`.
bool isFunctionOfDim(unsigned position) const;
/// Walk all of the AffineExpr's in this expression in postorder.
void walk(std::function<void(AffineExpr)> callback) const;
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) and returns the modified expression tree.
AffineExpr replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements) const;
AffineExpr operator+(int64_t v) const;
AffineExpr operator+(AffineExpr other) const;
AffineExpr operator-() const;
AffineExpr operator-(int64_t v) const;
AffineExpr operator-(AffineExpr other) const;
AffineExpr operator*(int64_t v) const;
AffineExpr operator*(AffineExpr other) const;
AffineExpr floorDiv(uint64_t v) const;
AffineExpr floorDiv(AffineExpr other) const;
AffineExpr ceilDiv(uint64_t v) const;
AffineExpr ceilDiv(AffineExpr other) const;
AffineExpr operator%(uint64_t v) const;
AffineExpr operator%(AffineExpr other) const;
/// Compose with an AffineMap.
/// Returns the composition of this AffineExpr with `map`.
///
/// Prerequisites:
/// `this` and `map` are composable, i.e. that the number of AffineDimExpr of
/// `this` is smaller than the number of results of `map`. If a result of a
/// map does not have a corresponding AffineDimExpr, that result simply does
/// not appear in the produced AffineExpr.
///
/// Example:
/// expr: `d0 + d2`
/// map: `(d0, d1, d2)[s0, s1] -> (d0 + s1, d1 + s0, d0 + d1 + d2)`
/// returned expr: `d0 * 2 + d1 + d2 + s1`
AffineExpr compose(AffineMap map) const;
friend ::llvm::hash_code hash_value(AffineExpr arg);
protected:
ImplType *expr;
};
/// Affine binary operation expression. An affine binary operation could be an
/// add, mul, floordiv, ceildiv, or a modulo operation. (Subtraction is
/// represented through a multiply by -1 and add.) These expressions are always
/// constructed in a simplified form. For eg., the LHS and RHS operands can't
/// both be constants. There are additional canonicalizing rules depending on
/// the op type: see checks in the constructor.
class AffineBinaryOpExpr : public AffineExpr {
public:
using ImplType = detail::AffineBinaryOpExprStorage;
/* implicit */ AffineBinaryOpExpr(AffineExpr::ImplType *ptr);
AffineExpr getLHS() const;
AffineExpr getRHS() const;
};
/// A dimensional identifier appearing in an affine expression.
class AffineDimExpr : public AffineExpr {
public:
using ImplType = detail::AffineDimExprStorage;
/* implicit */ AffineDimExpr(AffineExpr::ImplType *ptr);
unsigned getPosition() const;
};
/// A symbolic identifier appearing in an affine expression.
class AffineSymbolExpr : public AffineExpr {
public:
using ImplType = detail::AffineDimExprStorage;
/* implicit */ AffineSymbolExpr(AffineExpr::ImplType *ptr);
unsigned getPosition() const;
};
/// An integer constant appearing in affine expression.
class AffineConstantExpr : public AffineExpr {
public:
using ImplType = detail::AffineConstantExprStorage;
/* implicit */ AffineConstantExpr(AffineExpr::ImplType *ptr = nullptr);
int64_t getValue() const;
};
/// Make AffineExpr hashable.
inline ::llvm::hash_code hash_value(AffineExpr arg) {
return ::llvm::hash_value(arg.expr);
}
inline AffineExpr operator+(int64_t val, AffineExpr expr) { return expr + val; }
inline AffineExpr operator*(int64_t val, AffineExpr expr) { return expr * val; }
inline AffineExpr operator-(int64_t val, AffineExpr expr) {
return expr * (-1) + val;
}
/// These free functions allow clients of the API to not use classes in detail.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context);
AffineExpr getAffineSymbolExpr(unsigned position, MLIRContext *context);
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context);
AffineExpr getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
AffineExpr rhs);
/// Constructs an affine expression from a flat ArrayRef. If there are local
/// identifiers (neither dimensional nor symbolic) that appear in the sum of
/// products expression, 'localExprs' is expected to have the AffineExpr
/// for it, and is substituted into. The ArrayRef 'eq' is expected to be in the
/// format [dims, symbols, locals, constant term].
AffineExpr getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
unsigned numDims, unsigned numSymbols,
ArrayRef<AffineExpr> localExprs,
MLIRContext *context);
raw_ostream &operator<<(raw_ostream &os, AffineExpr expr);
template <typename U> bool AffineExpr::isa() const {
if (std::is_same<U, AffineBinaryOpExpr>::value)
return getKind() <= AffineExprKind::LAST_AFFINE_BINARY_OP;
if (std::is_same<U, AffineDimExpr>::value)
return getKind() == AffineExprKind::DimId;
if (std::is_same<U, AffineSymbolExpr>::value)
return getKind() == AffineExprKind::SymbolId;
if (std::is_same<U, AffineConstantExpr>::value)
return getKind() == AffineExprKind::Constant;
}
template <typename U> U AffineExpr::dyn_cast() const {
if (isa<U>())
return U(expr);
return U(nullptr);
}
template <typename U> U AffineExpr::dyn_cast_or_null() const {
return (!*this || !isa<U>()) ? U(nullptr) : U(expr);
}
template <typename U> U AffineExpr::cast() const {
assert(isa<U>());
return U(expr);
}
/// Simplify an affine expression by flattening and some amount of
/// simple analysis. This has complexity linear in the number of nodes in
/// 'expr'. Returns the simplified expression, which is the same as the input
/// expression if it can't be simplified.
AffineExpr simplifyAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols);
namespace detail {
template <int N> void bindDims(MLIRContext *ctx) {}
template <int N, typename AffineExprTy, typename... AffineExprTy2>
void bindDims(MLIRContext *ctx, AffineExprTy &e, AffineExprTy2 &... exprs) {
e = getAffineDimExpr(N, ctx);
bindDims<N + 1, AffineExprTy2 &...>(ctx, exprs...);
}
} // namespace detail
/// Bind a list of AffineExpr references to DimExpr at positions:
/// [0 .. sizeof...(exprs)]
template <typename... AffineExprTy>
void bindDims(MLIRContext *ctx, AffineExprTy &... exprs) {
detail::bindDims<0>(ctx, exprs...);
}
} // namespace mlir
namespace llvm {
// AffineExpr hash just like pointers
template <> struct DenseMapInfo<mlir::AffineExpr> {
static mlir::AffineExpr getEmptyKey() {
auto pointer = llvm::DenseMapInfo<void *>::getEmptyKey();
return mlir::AffineExpr(static_cast<mlir::AffineExpr::ImplType *>(pointer));
}
static mlir::AffineExpr getTombstoneKey() {
auto pointer = llvm::DenseMapInfo<void *>::getTombstoneKey();
return mlir::AffineExpr(static_cast<mlir::AffineExpr::ImplType *>(pointer));
}
static unsigned getHashValue(mlir::AffineExpr val) {
return mlir::hash_value(val);
}
static bool isEqual(mlir::AffineExpr LHS, mlir::AffineExpr RHS) {
return LHS == RHS;
}
};
} // namespace llvm
#endif // MLIR_IR_AFFINE_EXPR_H