blob: 5edd7a02bc42b1c2c71cd09c0c2b19120e23b360 [file] [log] [blame]
//===- RankReductionPatterns.cpp - Patterns related to rank reductions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
/// Fold expand_shape(extract_slice) ops that cancel itself out.
struct FoldExpandOfRankReducingExtract
: public OpRewritePattern<ExpandShapeOp> {
using OpRewritePattern<ExpandShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExpandShapeOp expandShapeOp,
PatternRewriter &rewriter) const override {
RankedTensorType resultType = expandShapeOp.getResultType();
auto extractSliceOp =
expandShapeOp.getSrc().getDefiningOp<ExtractSliceOp>();
if (!extractSliceOp)
return failure();
RankedTensorType srcType = extractSliceOp.getSourceType();
// Only cases where the ExpandShapeOp can be folded away entirely are
// supported. Moreover, only simple cases where the resulting ExtractSliceOp
// has no rank-reduction anymore are supported at the moment.
RankedTensorType nonReducingExtractType = ExtractSliceOp::inferResultType(
srcType, extractSliceOp.getStaticOffsets(),
extractSliceOp.getStaticSizes(), extractSliceOp.getStaticStrides());
if (nonReducingExtractType != resultType)
return failure();
SmallVector<OpFoldResult> mixedOffsets = extractSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = extractSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = extractSliceOp.getMixedStrides();
rewriter.replaceOpWithNewOp<tensor::ExtractSliceOp>(
expandShapeOp, extractSliceOp.getSource(), mixedOffsets, mixedSizes,
mixedStrides);
return success();
}
};
/// Fold collapse_shape which only removes static dimensions of size `1`
/// into extract_slice.
struct FoldUnPaddingCollapseIntoExtract
: public OpRewritePattern<tensor::CollapseShapeOp> {
using OpRewritePattern<tensor::CollapseShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::CollapseShapeOp collapseShapeOp,
PatternRewriter &rewriter) const override {
auto extractSliceOp =
collapseShapeOp.getSrc().getDefiningOp<tensor::ExtractSliceOp>();
// Collapse cannot be folded away with multiple users of the extract slice
// and it is not necessarily beneficial to only convert the collapse into
// another extract slice.
if (!extractSliceOp || !extractSliceOp->hasOneUse())
return failure();
// Only fold away simple collapse where all removed dimensions have static
// size `1`.
SliceVerificationResult res = isRankReducedType(
collapseShapeOp.getSrcType(), collapseShapeOp.getResultType());
if (res != SliceVerificationResult::Success)
return rewriter.notifyMatchFailure(collapseShapeOp,
"expected unpadding collapse");
Value unPaddedExtractSlice = rewriter.create<tensor::ExtractSliceOp>(
extractSliceOp.getLoc(), collapseShapeOp.getResultType(),
extractSliceOp.getSource(), extractSliceOp.getMixedOffsets(),
extractSliceOp.getMixedSizes(), extractSliceOp.getMixedStrides());
rewriter.replaceOp(collapseShapeOp, unPaddedExtractSlice);
return success();
}
};
/// Fold insert_slice(collapse_shape) ops that cancel itself out.
template <typename OpTy>
struct FoldInsertOfRankReducingInsert : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy insertSliceOp,
PatternRewriter &rewriter) const override {
auto collapseShapeOp =
insertSliceOp.getSource().template getDefiningOp<CollapseShapeOp>();
if (!collapseShapeOp)
return failure();
RankedTensorType srcType = collapseShapeOp.getSrcType();
// Only cases where the CollapseShapeOp can be folded away entirely are
// supported. Moreover, only simple cases where the resulting InsertSliceOp
// has no rank-reduction anymore are supported at the moment.
RankedTensorType nonReducingInsertType =
RankedTensorType::get(insertSliceOp.getStaticSizes(),
insertSliceOp.getDestType().getElementType());
if (nonReducingInsertType != srcType)
return failure();
SmallVector<OpFoldResult> mixedOffsets = insertSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = insertSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = insertSliceOp.getMixedStrides();
rewriter.replaceOpWithNewOp<OpTy>(insertSliceOp, collapseShapeOp.getSrc(),
insertSliceOp.getDest(), mixedOffsets,
mixedSizes, mixedStrides);
return success();
}
};
/// Fold expand_shape which only adds static dimensions of size `1`
/// into insert_slice.
template <typename OpTy>
struct FoldPaddingExpandIntoInsert : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy insertSliceOp,
PatternRewriter &rewriter) const override {
auto expandShapeOp = insertSliceOp.getSource()
.template getDefiningOp<tensor::ExpandShapeOp>();
if (!expandShapeOp)
return failure();
// Only fold away simple expansion where all added dimensions have static
// size `1`.
SliceVerificationResult res = isRankReducedType(
expandShapeOp.getResultType(), expandShapeOp.getSrcType());
if (res != SliceVerificationResult::Success)
return rewriter.notifyMatchFailure(insertSliceOp,
"expected rank increasing expansion");
rewriter.modifyOpInPlace(insertSliceOp, [&]() {
insertSliceOp.getSourceMutable().assign(expandShapeOp.getSrc());
});
return success();
}
};
/// Pattern to bubble up a tensor.expand_shape op through a producer
/// tensor.collapse_shape op that has non intersecting reassociations.
struct BubbleUpExpandThroughParallelCollapse
: public OpRewritePattern<tensor::ExpandShapeOp> {
using OpRewritePattern<tensor::ExpandShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExpandShapeOp expandOp,
PatternRewriter &rewriter) const override {
auto collapseOp =
expandOp.getSrc().getDefiningOp<tensor::CollapseShapeOp>();
if (!collapseOp)
return failure();
auto expandReInds = expandOp.getReassociationIndices();
auto collapseReInds = collapseOp.getReassociationIndices();
// Reshapes are parallel to each other if none of the reassociation indices
// have greater than 1 index for both reshapes.
for (auto [expandReassociation, collapseReassociation] :
llvm::zip_equal(expandReInds, collapseReInds)) {
if (collapseReassociation.size() != 1 && expandReassociation.size() != 1)
return failure();
}
// Compute new reassociation indices and expanded/collaped shapes.
SmallVector<ReassociationIndices> newExpandReInds, newCollapseReInds;
Location loc = expandOp->getLoc();
SmallVector<OpFoldResult> collapseSizes =
tensor::getMixedSizes(rewriter, loc, collapseOp.getSrc());
SmallVector<OpFoldResult> expandSizes(getMixedValues(
expandOp.getStaticOutputShape(), expandOp.getOutputShape(), rewriter));
SmallVector<OpFoldResult> newExpandSizes;
int64_t index = 0, expandIndex = 0, collapseIndex = 0;
for (auto [idx, collapseReassociation] : llvm::enumerate(collapseReInds)) {
if (collapseReassociation.size() != 1) {
ReassociationIndices newCollapseReassociation;
for (size_t i = 0; i < collapseReassociation.size(); ++i) {
newCollapseReassociation.push_back(index);
newExpandReInds.push_back({index++});
newExpandSizes.push_back(collapseSizes[collapseIndex++]);
}
newCollapseReInds.push_back(newCollapseReassociation);
expandIndex++;
continue;
}
ReassociationIndices newExpandReassociation;
auto expandReassociation = expandReInds[idx];
for (size_t i = 0; i < expandReassociation.size(); ++i) {
newExpandReassociation.push_back(index);
newCollapseReInds.push_back({index++});
newExpandSizes.push_back(expandSizes[expandIndex++]);
}
newExpandReInds.push_back(newExpandReassociation);
collapseIndex++;
}
// Swap reshape order.
SmallVector<Value> dynamicSizes;
SmallVector<int64_t> staticSizes;
dispatchIndexOpFoldResults(newExpandSizes, dynamicSizes, staticSizes);
auto expandResultType = expandOp.getResultType().clone(staticSizes);
auto newExpand = rewriter.create<tensor::ExpandShapeOp>(
loc, expandResultType, collapseOp.getSrc(), newExpandReInds,
newExpandSizes);
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
expandOp, newExpand.getResult(), newCollapseReInds);
return success();
}
};
} // namespace
void mlir::tensor::populateReassociativeReshapeFoldingPatterns(
RewritePatternSet &patterns) {
patterns
.add<FoldExpandOfRankReducingExtract, FoldUnPaddingCollapseIntoExtract,
FoldInsertOfRankReducingInsert<tensor::InsertSliceOp>,
FoldInsertOfRankReducingInsert<tensor::ParallelInsertSliceOp>,
FoldPaddingExpandIntoInsert<tensor::InsertSliceOp>,
FoldPaddingExpandIntoInsert<tensor::ParallelInsertSliceOp>>(
patterns.getContext());
}
void mlir::tensor::populateBubbleUpExpandShapePatterns(
RewritePatternSet &patterns) {
patterns.add<BubbleUpExpandThroughParallelCollapse>(patterns.getContext());
}