| //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the PowerPC implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCInstrInfo.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCHazardRecognizers.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppc-instr-info" |
| |
| #define GET_INSTRMAP_INFO |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "PPCGenInstrInfo.inc" |
| |
| STATISTIC(NumStoreSPILLVSRRCAsVec, |
| "Number of spillvsrrc spilled to stack as vec"); |
| STATISTIC(NumStoreSPILLVSRRCAsGpr, |
| "Number of spillvsrrc spilled to stack as gpr"); |
| STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); |
| STATISTIC(CmpIselsConverted, |
| "Number of ISELs that depend on comparison of constants converted"); |
| STATISTIC(MissedConvertibleImmediateInstrs, |
| "Number of compare-immediate instructions fed by constants"); |
| STATISTIC(NumRcRotatesConvertedToRcAnd, |
| "Number of record-form rotates converted to record-form andi"); |
| |
| static cl:: |
| opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, |
| cl::desc("Disable analysis for CTR loops")); |
| |
| static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", |
| cl::desc("Disable compare instruction optimization"), cl::Hidden); |
| |
| static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", |
| cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), |
| cl::Hidden); |
| |
| static cl::opt<bool> |
| UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, |
| cl::desc("Use the old (incorrect) instruction latency calculation")); |
| |
| static cl::opt<float> |
| FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), |
| cl::desc("register pressure factor for the transformations.")); |
| |
| static cl::opt<bool> EnableFMARegPressureReduction( |
| "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), |
| cl::desc("enable register pressure reduce in machine combiner pass.")); |
| |
| // Pin the vtable to this file. |
| void PPCInstrInfo::anchor() {} |
| |
| PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) |
| : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, |
| /* CatchRetOpcode */ -1, |
| STI.isPPC64() ? PPC::BLR8 : PPC::BLR), |
| Subtarget(STI), RI(STI.getTargetMachine()) {} |
| |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for |
| /// this target when scheduling the DAG. |
| ScheduleHazardRecognizer * |
| PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| const ScheduleDAG *DAG) const { |
| unsigned Directive = |
| static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); |
| if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || |
| Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { |
| const InstrItineraryData *II = |
| static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); |
| return new ScoreboardHazardRecognizer(II, DAG); |
| } |
| |
| return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); |
| } |
| |
| /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer |
| /// to use for this target when scheduling the DAG. |
| ScheduleHazardRecognizer * |
| PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| unsigned Directive = |
| DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); |
| |
| // FIXME: Leaving this as-is until we have POWER9 scheduling info |
| if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) |
| return new PPCDispatchGroupSBHazardRecognizer(II, DAG); |
| |
| // Most subtargets use a PPC970 recognizer. |
| if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && |
| Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { |
| assert(DAG->TII && "No InstrInfo?"); |
| |
| return new PPCHazardRecognizer970(*DAG); |
| } |
| |
| return new ScoreboardHazardRecognizer(II, DAG); |
| } |
| |
| unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &MI, |
| unsigned *PredCost) const { |
| if (!ItinData || UseOldLatencyCalc) |
| return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); |
| |
| // The default implementation of getInstrLatency calls getStageLatency, but |
| // getStageLatency does not do the right thing for us. While we have |
| // itinerary, most cores are fully pipelined, and so the itineraries only |
| // express the first part of the pipeline, not every stage. Instead, we need |
| // to use the listed output operand cycle number (using operand 0 here, which |
| // is an output). |
| |
| unsigned Latency = 1; |
| unsigned DefClass = MI.getDesc().getSchedClass(); |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| continue; |
| |
| int Cycle = ItinData->getOperandCycle(DefClass, i); |
| if (Cycle < 0) |
| continue; |
| |
| Latency = std::max(Latency, (unsigned) Cycle); |
| } |
| |
| return Latency; |
| } |
| |
| int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &DefMI, unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const { |
| int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, |
| UseMI, UseIdx); |
| |
| if (!DefMI.getParent()) |
| return Latency; |
| |
| const MachineOperand &DefMO = DefMI.getOperand(DefIdx); |
| Register Reg = DefMO.getReg(); |
| |
| bool IsRegCR; |
| if (Register::isVirtualRegister(Reg)) { |
| const MachineRegisterInfo *MRI = |
| &DefMI.getParent()->getParent()->getRegInfo(); |
| IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || |
| MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); |
| } else { |
| IsRegCR = PPC::CRRCRegClass.contains(Reg) || |
| PPC::CRBITRCRegClass.contains(Reg); |
| } |
| |
| if (UseMI.isBranch() && IsRegCR) { |
| if (Latency < 0) |
| Latency = getInstrLatency(ItinData, DefMI); |
| |
| // On some cores, there is an additional delay between writing to a condition |
| // register, and using it from a branch. |
| unsigned Directive = Subtarget.getCPUDirective(); |
| switch (Directive) { |
| default: break; |
| case PPC::DIR_7400: |
| case PPC::DIR_750: |
| case PPC::DIR_970: |
| case PPC::DIR_E5500: |
| case PPC::DIR_PWR4: |
| case PPC::DIR_PWR5: |
| case PPC::DIR_PWR5X: |
| case PPC::DIR_PWR6: |
| case PPC::DIR_PWR6X: |
| case PPC::DIR_PWR7: |
| case PPC::DIR_PWR8: |
| // FIXME: Is this needed for POWER9? |
| Latency += 2; |
| break; |
| } |
| } |
| |
| return Latency; |
| } |
| |
| /// This is an architecture-specific helper function of reassociateOps. |
| /// Set special operand attributes for new instructions after reassociation. |
| void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, |
| MachineInstr &OldMI2, |
| MachineInstr &NewMI1, |
| MachineInstr &NewMI2) const { |
| // Propagate FP flags from the original instructions. |
| // But clear poison-generating flags because those may not be valid now. |
| uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); |
| NewMI1.setFlags(IntersectedFlags); |
| NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); |
| NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); |
| NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); |
| |
| NewMI2.setFlags(IntersectedFlags); |
| NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); |
| NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); |
| NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); |
| } |
| |
| void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, |
| uint16_t Flags) const { |
| MI.setFlags(Flags); |
| MI.clearFlag(MachineInstr::MIFlag::NoSWrap); |
| MI.clearFlag(MachineInstr::MIFlag::NoUWrap); |
| MI.clearFlag(MachineInstr::MIFlag::IsExact); |
| } |
| |
| // This function does not list all associative and commutative operations, but |
| // only those worth feeding through the machine combiner in an attempt to |
| // reduce the critical path. Mostly, this means floating-point operations, |
| // because they have high latencies(>=5) (compared to other operations, such as |
| // and/or, which are also associative and commutative, but have low latencies). |
| bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { |
| switch (Inst.getOpcode()) { |
| // Floating point: |
| // FP Add: |
| case PPC::FADD: |
| case PPC::FADDS: |
| // FP Multiply: |
| case PPC::FMUL: |
| case PPC::FMULS: |
| // Altivec Add: |
| case PPC::VADDFP: |
| // VSX Add: |
| case PPC::XSADDDP: |
| case PPC::XVADDDP: |
| case PPC::XVADDSP: |
| case PPC::XSADDSP: |
| // VSX Multiply: |
| case PPC::XSMULDP: |
| case PPC::XVMULDP: |
| case PPC::XVMULSP: |
| case PPC::XSMULSP: |
| return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Inst.getFlag(MachineInstr::MIFlag::FmNsz); |
| // Fixed point: |
| // Multiply: |
| case PPC::MULHD: |
| case PPC::MULLD: |
| case PPC::MULHW: |
| case PPC::MULLW: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| #define InfoArrayIdxFMAInst 0 |
| #define InfoArrayIdxFAddInst 1 |
| #define InfoArrayIdxFMULInst 2 |
| #define InfoArrayIdxAddOpIdx 3 |
| #define InfoArrayIdxMULOpIdx 4 |
| #define InfoArrayIdxFSubInst 5 |
| // Array keeps info for FMA instructions: |
| // Index 0(InfoArrayIdxFMAInst): FMA instruction; |
| // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; |
| // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; |
| // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; |
| // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; |
| // second MUL operand index is plus 1; |
| // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. |
| static const uint16_t FMAOpIdxInfo[][6] = { |
| // FIXME: Add more FMA instructions like XSNMADDADP and so on. |
| {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, |
| {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, |
| {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, |
| {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, |
| {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, |
| {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; |
| |
| // Check if an opcode is a FMA instruction. If it is, return the index in array |
| // FMAOpIdxInfo. Otherwise, return -1. |
| int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { |
| for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) |
| if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) |
| return I; |
| return -1; |
| } |
| |
| // On PowerPC target, we have two kinds of patterns related to FMA: |
| // 1: Improve ILP. |
| // Try to reassociate FMA chains like below: |
| // |
| // Pattern 1: |
| // A = FADD X, Y (Leaf) |
| // B = FMA A, M21, M22 (Prev) |
| // C = FMA B, M31, M32 (Root) |
| // --> |
| // A = FMA X, M21, M22 |
| // B = FMA Y, M31, M32 |
| // C = FADD A, B |
| // |
| // Pattern 2: |
| // A = FMA X, M11, M12 (Leaf) |
| // B = FMA A, M21, M22 (Prev) |
| // C = FMA B, M31, M32 (Root) |
| // --> |
| // A = FMUL M11, M12 |
| // B = FMA X, M21, M22 |
| // D = FMA A, M31, M32 |
| // C = FADD B, D |
| // |
| // breaking the dependency between A and B, allowing FMA to be executed in |
| // parallel (or back-to-back in a pipeline) instead of depending on each other. |
| // |
| // 2: Reduce register pressure. |
| // Try to reassociate FMA with FSUB and a constant like below: |
| // C is a floating point const. |
| // |
| // Pattern 1: |
| // A = FSUB X, Y (Leaf) |
| // D = FMA B, C, A (Root) |
| // --> |
| // A = FMA B, Y, -C |
| // D = FMA A, X, C |
| // |
| // Pattern 2: |
| // A = FSUB X, Y (Leaf) |
| // D = FMA B, A, C (Root) |
| // --> |
| // A = FMA B, Y, -C |
| // D = FMA A, X, C |
| // |
| // Before the transformation, A must be assigned with different hardware |
| // register with D. After the transformation, A and D must be assigned with |
| // same hardware register due to TIE attribute of FMA instructions. |
| // |
| bool PPCInstrInfo::getFMAPatterns( |
| MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) const { |
| MachineBasicBlock *MBB = Root.getParent(); |
| const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { |
| for (const auto &MO : Instr.explicit_operands()) |
| if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) |
| return false; |
| return true; |
| }; |
| |
| auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, |
| unsigned OpType) { |
| if (Instr.getOpcode() != |
| FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) |
| return false; |
| |
| // Instruction can be reassociated. |
| // fast math flags may prohibit reassociation. |
| if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Instr.getFlag(MachineInstr::MIFlag::FmNsz))) |
| return false; |
| |
| // Instruction operands are virtual registers for reassociation. |
| if (!IsAllOpsVirtualReg(Instr)) |
| return false; |
| |
| // For register pressure reassociation, the FSub must have only one use as |
| // we want to delete the sub to save its def. |
| if (OpType == InfoArrayIdxFSubInst && |
| !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) |
| return false; |
| |
| return true; |
| }; |
| |
| auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, |
| int16_t &MulOpIdx, bool IsLeaf) { |
| int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); |
| if (Idx < 0) |
| return false; |
| |
| // Instruction can be reassociated. |
| // fast math flags may prohibit reassociation. |
| if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Instr.getFlag(MachineInstr::MIFlag::FmNsz))) |
| return false; |
| |
| // Instruction operands are virtual registers for reassociation. |
| if (!IsAllOpsVirtualReg(Instr)) |
| return false; |
| |
| MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| if (IsLeaf) |
| return true; |
| |
| AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; |
| |
| const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); |
| MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); |
| // If 'add' operand's def is not in current block, don't do ILP related opt. |
| if (!MIAdd || MIAdd->getParent() != MBB) |
| return false; |
| |
| // If this is not Leaf FMA Instr, its 'add' operand should only have one use |
| // as this fma will be changed later. |
| return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); |
| }; |
| |
| int16_t AddOpIdx = -1; |
| int16_t MulOpIdx = -1; |
| |
| bool IsUsedOnceL = false; |
| bool IsUsedOnceR = false; |
| MachineInstr *MULInstrL = nullptr; |
| MachineInstr *MULInstrR = nullptr; |
| |
| auto IsRPReductionCandidate = [&]() { |
| // Currently, we only support float and double. |
| // FIXME: add support for other types. |
| unsigned Opcode = Root.getOpcode(); |
| if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) |
| return false; |
| |
| // Root must be a valid FMA like instruction. |
| // Treat it as leaf as we don't care its add operand. |
| if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { |
| assert((MulOpIdx >= 0) && "mul operand index not right!"); |
| Register MULRegL = TRI->lookThruSingleUseCopyChain( |
| Root.getOperand(MulOpIdx).getReg(), MRI); |
| Register MULRegR = TRI->lookThruSingleUseCopyChain( |
| Root.getOperand(MulOpIdx + 1).getReg(), MRI); |
| if (!MULRegL && !MULRegR) |
| return false; |
| |
| if (MULRegL && !MULRegR) { |
| MULRegR = |
| TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); |
| IsUsedOnceL = true; |
| } else if (!MULRegL && MULRegR) { |
| MULRegL = |
| TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); |
| IsUsedOnceR = true; |
| } else { |
| IsUsedOnceL = true; |
| IsUsedOnceR = true; |
| } |
| |
| if (!Register::isVirtualRegister(MULRegL) || |
| !Register::isVirtualRegister(MULRegR)) |
| return false; |
| |
| MULInstrL = MRI->getVRegDef(MULRegL); |
| MULInstrR = MRI->getVRegDef(MULRegR); |
| return true; |
| } |
| return false; |
| }; |
| |
| // Register pressure fma reassociation patterns. |
| if (DoRegPressureReduce && IsRPReductionCandidate()) { |
| assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); |
| // Register pressure pattern 1 |
| if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && |
| IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); |
| return true; |
| } |
| |
| // Register pressure pattern 2 |
| if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && |
| IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); |
| return true; |
| } |
| } |
| |
| // ILP fma reassociation patterns. |
| // Root must be a valid FMA like instruction. |
| AddOpIdx = -1; |
| if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) |
| return false; |
| |
| assert((AddOpIdx >= 0) && "add operand index not right!"); |
| |
| Register RegB = Root.getOperand(AddOpIdx).getReg(); |
| MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); |
| |
| // Prev must be a valid FMA like instruction. |
| AddOpIdx = -1; |
| if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) |
| return false; |
| |
| assert((AddOpIdx >= 0) && "add operand index not right!"); |
| |
| Register RegA = Prev->getOperand(AddOpIdx).getReg(); |
| MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); |
| AddOpIdx = -1; |
| if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); |
| return true; |
| } |
| if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); |
| return true; |
| } |
| return false; |
| } |
| |
| void PPCInstrInfo::finalizeInsInstrs( |
| MachineInstr &Root, MachineCombinerPattern &P, |
| SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); |
| |
| MachineFunction *MF = Root.getMF(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineConstantPool *MCP = MF->getConstantPool(); |
| |
| int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); |
| if (Idx < 0) |
| return; |
| |
| uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| |
| // For now we only need to fix up placeholder for register pressure reduce |
| // patterns. |
| Register ConstReg = 0; |
| switch (P) { |
| case MachineCombinerPattern::REASSOC_XY_BCA: |
| ConstReg = |
| TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); |
| break; |
| case MachineCombinerPattern::REASSOC_XY_BAC: |
| ConstReg = |
| TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); |
| break; |
| default: |
| // Not register pressure reduce patterns. |
| return; |
| } |
| |
| MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); |
| // Get const value from const pool. |
| const Constant *C = getConstantFromConstantPool(ConstDefInstr); |
| assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); |
| |
| // Get negative fp const. |
| APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); |
| F1.changeSign(); |
| Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); |
| Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); |
| |
| // Put negative fp const into constant pool. |
| unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); |
| |
| MachineOperand *Placeholder = nullptr; |
| // Record the placeholder PPC::ZERO8 we add in reassociateFMA. |
| for (auto *Inst : InsInstrs) { |
| for (MachineOperand &Operand : Inst->explicit_operands()) { |
| assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); |
| if (Operand.getReg() == PPC::ZERO8) { |
| Placeholder = &Operand; |
| break; |
| } |
| } |
| } |
| |
| assert(Placeholder && "Placeholder does not exist!"); |
| |
| // Generate instructions to load the const fp from constant pool. |
| // We only support PPC64 and medium code model. |
| Register LoadNewConst = |
| generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); |
| |
| // Fill the placeholder with the new load from constant pool. |
| Placeholder->setReg(LoadNewConst); |
| } |
| |
| bool PPCInstrInfo::shouldReduceRegisterPressure( |
| MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { |
| |
| if (!EnableFMARegPressureReduction) |
| return false; |
| |
| // Currently, we only enable register pressure reducing in machine combiner |
| // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector |
| // support. |
| // |
| // So we need following instructions to access a TOC entry: |
| // |
| // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 |
| // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, |
| // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) |
| // |
| // FIXME: add more supported targets, like Small and Large code model, PPC32, |
| // AIX. |
| if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && |
| Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| |
| auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { |
| RegionPressure Pressure; |
| RegPressureTracker RPTracker(Pressure); |
| |
| // Initialize the register pressure tracker. |
| RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), |
| /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); |
| |
| for (MachineBasicBlock::iterator MII = MBB->instr_end(), |
| MIE = MBB->instr_begin(); |
| MII != MIE; --MII) { |
| MachineInstr &MI = *std::prev(MII); |
| if (MI.isDebugValue() || MI.isDebugLabel()) |
| continue; |
| RegisterOperands RegOpers; |
| RegOpers.collect(MI, *TRI, *MRI, false, false); |
| RPTracker.recedeSkipDebugValues(); |
| assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); |
| RPTracker.recede(RegOpers); |
| } |
| |
| // Close the RPTracker to finalize live ins. |
| RPTracker.closeRegion(); |
| |
| return RPTracker.getPressure().MaxSetPressure; |
| }; |
| |
| // For now we only care about float and double type fma. |
| unsigned VSSRCLimit = TRI->getRegPressureSetLimit( |
| *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); |
| |
| // Only reduce register pressure when pressure is high. |
| return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > |
| (float)VSSRCLimit * FMARPFactor; |
| } |
| |
| bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { |
| // I has only one memory operand which is load from constant pool. |
| if (!I->hasOneMemOperand()) |
| return false; |
| |
| MachineMemOperand *Op = I->memoperands()[0]; |
| return Op->isLoad() && Op->getPseudoValue() && |
| Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; |
| } |
| |
| Register PPCInstrInfo::generateLoadForNewConst( |
| unsigned Idx, MachineInstr *MI, Type *Ty, |
| SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| // Now we only support PPC64, Medium code model and P9 with vector. |
| // We have immutable pattern to access const pool. See function |
| // shouldReduceRegisterPressure. |
| assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && |
| Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && |
| "Target not supported!\n"); |
| |
| MachineFunction *MF = MI->getMF(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| |
| // Generate ADDIStocHA8 |
| Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); |
| MachineInstrBuilder TOCOffset = |
| BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) |
| .addReg(PPC::X2) |
| .addConstantPoolIndex(Idx); |
| |
| assert((Ty->isFloatTy() || Ty->isDoubleTy()) && |
| "Only float and double are supported!"); |
| |
| unsigned LoadOpcode; |
| // Should be float type or double type. |
| if (Ty->isFloatTy()) |
| LoadOpcode = PPC::DFLOADf32; |
| else |
| LoadOpcode = PPC::DFLOADf64; |
| |
| const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); |
| Register VReg2 = MRI->createVirtualRegister(RC); |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, |
| Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); |
| |
| // Generate Load from constant pool. |
| MachineInstrBuilder Load = |
| BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) |
| .addConstantPoolIndex(Idx) |
| .addReg(VReg1, getKillRegState(true)) |
| .addMemOperand(MMO); |
| |
| Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); |
| |
| // Insert the toc load instructions into InsInstrs. |
| InsInstrs.insert(InsInstrs.begin(), Load); |
| InsInstrs.insert(InsInstrs.begin(), TOCOffset); |
| return VReg2; |
| } |
| |
| // This function returns the const value in constant pool if the \p I is a load |
| // from constant pool. |
| const Constant * |
| PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { |
| MachineFunction *MF = I->getMF(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| MachineConstantPool *MCP = MF->getConstantPool(); |
| assert(I->mayLoad() && "Should be a load instruction.\n"); |
| for (auto MO : I->uses()) { |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Reg == 0 || !Register::isVirtualRegister(Reg)) |
| continue; |
| // Find the toc address. |
| MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| for (auto MO2 : DefMI->uses()) |
| if (MO2.isCPI()) |
| return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; |
| } |
| return nullptr; |
| } |
| |
| bool PPCInstrInfo::getMachineCombinerPatterns( |
| MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) const { |
| // Using the machine combiner in this way is potentially expensive, so |
| // restrict to when aggressive optimizations are desired. |
| if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) |
| return false; |
| |
| if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) |
| return true; |
| |
| return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, |
| DoRegPressureReduce); |
| } |
| |
| void PPCInstrInfo::genAlternativeCodeSequence( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| switch (Pattern) { |
| case MachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| case MachineCombinerPattern::REASSOC_XY_BCA: |
| case MachineCombinerPattern::REASSOC_XY_BAC: |
| reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); |
| break; |
| default: |
| // Reassociate default patterns. |
| TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
| DelInstrs, InstrIdxForVirtReg); |
| break; |
| } |
| } |
| |
| void PPCInstrInfo::reassociateFMA( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| MachineFunction *MF = Root.getMF(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineOperand &OpC = Root.getOperand(0); |
| Register RegC = OpC.getReg(); |
| const TargetRegisterClass *RC = MRI.getRegClass(RegC); |
| MRI.constrainRegClass(RegC, RC); |
| |
| unsigned FmaOp = Root.getOpcode(); |
| int16_t Idx = getFMAOpIdxInfo(FmaOp); |
| assert(Idx >= 0 && "Root must be a FMA instruction"); |
| |
| bool IsILPReassociate = |
| (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || |
| (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); |
| |
| uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; |
| uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| |
| MachineInstr *Prev = nullptr; |
| MachineInstr *Leaf = nullptr; |
| switch (Pattern) { |
| default: |
| llvm_unreachable("not recognized pattern!"); |
| case MachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); |
| Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); |
| break; |
| case MachineCombinerPattern::REASSOC_XY_BAC: { |
| Register MULReg = |
| TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); |
| Leaf = MRI.getVRegDef(MULReg); |
| break; |
| } |
| case MachineCombinerPattern::REASSOC_XY_BCA: { |
| Register MULReg = TRI->lookThruCopyLike( |
| Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); |
| Leaf = MRI.getVRegDef(MULReg); |
| break; |
| } |
| } |
| |
| uint16_t IntersectedFlags = 0; |
| if (IsILPReassociate) |
| IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); |
| else |
| IntersectedFlags = Root.getFlags() & Leaf->getFlags(); |
| |
| auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, |
| bool &KillFlag) { |
| Reg = Operand.getReg(); |
| MRI.constrainRegClass(Reg, RC); |
| KillFlag = Operand.isKill(); |
| }; |
| |
| auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, |
| Register &MulOp2, Register &AddOp, |
| bool &MulOp1KillFlag, bool &MulOp2KillFlag, |
| bool &AddOpKillFlag) { |
| GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); |
| GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); |
| GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); |
| }; |
| |
| Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, |
| RegA21, RegB; |
| bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, |
| KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, |
| KillA11 = false, KillA21 = false, KillB = false; |
| |
| GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); |
| |
| if (IsILPReassociate) |
| GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); |
| |
| if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { |
| GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); |
| GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); |
| } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { |
| GetOperandInfo(Leaf->getOperand(1), RegX, KillX); |
| GetOperandInfo(Leaf->getOperand(2), RegY, KillY); |
| } else { |
| // Get FSUB instruction info. |
| GetOperandInfo(Leaf->getOperand(1), RegX, KillX); |
| GetOperandInfo(Leaf->getOperand(2), RegY, KillY); |
| } |
| |
| // Create new virtual registers for the new results instead of |
| // recycling legacy ones because the MachineCombiner's computation of the |
| // critical path requires a new register definition rather than an existing |
| // one. |
| // For register pressure reassociation, we only need create one virtual |
| // register for the new fma. |
| Register NewVRA = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); |
| |
| Register NewVRB = 0; |
| if (IsILPReassociate) { |
| NewVRB = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); |
| } |
| |
| Register NewVRD = 0; |
| if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { |
| NewVRD = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); |
| } |
| |
| auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, |
| Register RegMul1, bool KillRegMul1, |
| Register RegMul2, bool KillRegMul2) { |
| MI->getOperand(AddOpIdx).setReg(RegAdd); |
| MI->getOperand(AddOpIdx).setIsKill(KillAdd); |
| MI->getOperand(FirstMulOpIdx).setReg(RegMul1); |
| MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); |
| MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); |
| MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); |
| }; |
| |
| MachineInstrBuilder NewARegPressure, NewCRegPressure; |
| switch (Pattern) { |
| default: |
| llvm_unreachable("not recognized pattern!"); |
| case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { |
| // Create new instructions for insertion. |
| MachineInstrBuilder MINewB = |
| BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(RegM21, getKillRegState(KillM21)) |
| .addReg(RegM22, getKillRegState(KillM22)); |
| MachineInstrBuilder MINewA = |
| BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) |
| .addReg(RegY, getKillRegState(KillY)) |
| .addReg(RegM31, getKillRegState(KillM31)) |
| .addReg(RegM32, getKillRegState(KillM32)); |
| // If AddOpIdx is not 1, adjust the order. |
| if (AddOpIdx != 1) { |
| AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); |
| AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); |
| } |
| |
| MachineInstrBuilder MINewC = |
| BuildMI(*MF, Root.getDebugLoc(), |
| get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) |
| .addReg(NewVRB, getKillRegState(true)) |
| .addReg(NewVRA, getKillRegState(true)); |
| |
| // Update flags for newly created instructions. |
| setSpecialOperandAttr(*MINewA, IntersectedFlags); |
| setSpecialOperandAttr(*MINewB, IntersectedFlags); |
| setSpecialOperandAttr(*MINewC, IntersectedFlags); |
| |
| // Record new instructions for insertion. |
| InsInstrs.push_back(MINewA); |
| InsInstrs.push_back(MINewB); |
| InsInstrs.push_back(MINewC); |
| break; |
| } |
| case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { |
| assert(NewVRD && "new FMA register not created!"); |
| // Create new instructions for insertion. |
| MachineInstrBuilder MINewA = |
| BuildMI(*MF, Leaf->getDebugLoc(), |
| get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) |
| .addReg(RegM11, getKillRegState(KillM11)) |
| .addReg(RegM12, getKillRegState(KillM12)); |
| MachineInstrBuilder MINewB = |
| BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(RegM21, getKillRegState(KillM21)) |
| .addReg(RegM22, getKillRegState(KillM22)); |
| MachineInstrBuilder MINewD = |
| BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) |
| .addReg(NewVRA, getKillRegState(true)) |
| .addReg(RegM31, getKillRegState(KillM31)) |
| .addReg(RegM32, getKillRegState(KillM32)); |
| // If AddOpIdx is not 1, adjust the order. |
| if (AddOpIdx != 1) { |
| AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); |
| AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, |
| KillM32); |
| } |
| |
| MachineInstrBuilder MINewC = |
| BuildMI(*MF, Root.getDebugLoc(), |
| get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) |
| .addReg(NewVRB, getKillRegState(true)) |
| .addReg(NewVRD, getKillRegState(true)); |
| |
| // Update flags for newly created instructions. |
| setSpecialOperandAttr(*MINewA, IntersectedFlags); |
| setSpecialOperandAttr(*MINewB, IntersectedFlags); |
| setSpecialOperandAttr(*MINewD, IntersectedFlags); |
| setSpecialOperandAttr(*MINewC, IntersectedFlags); |
| |
| // Record new instructions for insertion. |
| InsInstrs.push_back(MINewA); |
| InsInstrs.push_back(MINewB); |
| InsInstrs.push_back(MINewD); |
| InsInstrs.push_back(MINewC); |
| break; |
| } |
| case MachineCombinerPattern::REASSOC_XY_BAC: |
| case MachineCombinerPattern::REASSOC_XY_BCA: { |
| Register VarReg; |
| bool KillVarReg = false; |
| if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { |
| VarReg = RegM31; |
| KillVarReg = KillM31; |
| } else { |
| VarReg = RegM32; |
| KillVarReg = KillM32; |
| } |
| // We don't want to get negative const from memory pool too early, as the |
| // created entry will not be deleted even if it has no users. Since all |
| // operand of Leaf and Root are virtual register, we use zero register |
| // here as a placeholder. When the InsInstrs is selected in |
| // MachineCombiner, we call finalizeInsInstrs to replace the zero register |
| // with a virtual register which is a load from constant pool. |
| NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) |
| .addReg(RegB, getKillRegState(RegB)) |
| .addReg(RegY, getKillRegState(KillY)) |
| .addReg(PPC::ZERO8); |
| NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) |
| .addReg(NewVRA, getKillRegState(true)) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(VarReg, getKillRegState(KillVarReg)); |
| // For now, we only support xsmaddadp/xsmaddasp, their add operand are |
| // both at index 1, no need to adjust. |
| // FIXME: when add more fma instructions support, like fma/fmas, adjust |
| // the operand index here. |
| break; |
| } |
| } |
| |
| if (!IsILPReassociate) { |
| setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); |
| setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); |
| |
| InsInstrs.push_back(NewARegPressure); |
| InsInstrs.push_back(NewCRegPressure); |
| } |
| |
| assert(!InsInstrs.empty() && |
| "Insertion instructions set should not be empty!"); |
| |
| // Record old instructions for deletion. |
| DelInstrs.push_back(Leaf); |
| if (IsILPReassociate) |
| DelInstrs.push_back(Prev); |
| DelInstrs.push_back(&Root); |
| } |
| |
| // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. |
| bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| Register &SrcReg, Register &DstReg, |
| unsigned &SubIdx) const { |
| switch (MI.getOpcode()) { |
| default: return false; |
| case PPC::EXTSW: |
| case PPC::EXTSW_32: |
| case PPC::EXTSW_32_64: |
| SrcReg = MI.getOperand(1).getReg(); |
| DstReg = MI.getOperand(0).getReg(); |
| SubIdx = PPC::sub_32; |
| return true; |
| } |
| } |
| |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Opcode = MI.getOpcode(); |
| const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); |
| const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; |
| |
| if (End != std::find(OpcodesForSpill, End, Opcode)) { |
| // Check for the operands added by addFrameReference (the immediate is the |
| // offset which defaults to 0). |
| if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && |
| MI.getOperand(2).isFI()) { |
| FrameIndex = MI.getOperand(2).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| } |
| return 0; |
| } |
| |
| // For opcodes with the ReMaterializable flag set, this function is called to |
| // verify the instruction is really rematable. |
| bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, |
| AliasAnalysis *AA) const { |
| switch (MI.getOpcode()) { |
| default: |
| // This function should only be called for opcodes with the ReMaterializable |
| // flag set. |
| llvm_unreachable("Unknown rematerializable operation!"); |
| break; |
| case PPC::LI: |
| case PPC::LI8: |
| case PPC::PLI: |
| case PPC::PLI8: |
| case PPC::LIS: |
| case PPC::LIS8: |
| case PPC::ADDIStocHA: |
| case PPC::ADDIStocHA8: |
| case PPC::ADDItocL: |
| case PPC::LOAD_STACK_GUARD: |
| case PPC::XXLXORz: |
| case PPC::XXLXORspz: |
| case PPC::XXLXORdpz: |
| case PPC::XXLEQVOnes: |
| case PPC::XXSPLTI32DX: |
| case PPC::XXSPLTIW: |
| case PPC::XXSPLTIDP: |
| case PPC::V_SET0B: |
| case PPC::V_SET0H: |
| case PPC::V_SET0: |
| case PPC::V_SETALLONESB: |
| case PPC::V_SETALLONESH: |
| case PPC::V_SETALLONES: |
| case PPC::CRSET: |
| case PPC::CRUNSET: |
| case PPC::XXSETACCZ: |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Opcode = MI.getOpcode(); |
| const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); |
| const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; |
| |
| if (End != std::find(OpcodesForSpill, End, Opcode)) { |
| if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && |
| MI.getOperand(2).isFI()) { |
| FrameIndex = MI.getOperand(2).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| } |
| return 0; |
| } |
| |
| MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| |
| // Normal instructions can be commuted the obvious way. |
| if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a |
| // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because |
| // changing the relative order of the mask operands might change what happens |
| // to the high-bits of the mask (and, thus, the result). |
| |
| // Cannot commute if it has a non-zero rotate count. |
| if (MI.getOperand(3).getImm() != 0) |
| return nullptr; |
| |
| // If we have a zero rotate count, we have: |
| // M = mask(MB,ME) |
| // Op0 = (Op1 & ~M) | (Op2 & M) |
| // Change this to: |
| // M = mask((ME+1)&31, (MB-1)&31) |
| // Op0 = (Op2 & ~M) | (Op1 & M) |
| |
| // Swap op1/op2 |
| assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && |
| "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); |
| Register Reg0 = MI.getOperand(0).getReg(); |
| Register Reg1 = MI.getOperand(1).getReg(); |
| Register Reg2 = MI.getOperand(2).getReg(); |
| unsigned SubReg1 = MI.getOperand(1).getSubReg(); |
| unsigned SubReg2 = MI.getOperand(2).getSubReg(); |
| bool Reg1IsKill = MI.getOperand(1).isKill(); |
| bool Reg2IsKill = MI.getOperand(2).isKill(); |
| bool ChangeReg0 = false; |
| // If machine instrs are no longer in two-address forms, update |
| // destination register as well. |
| if (Reg0 == Reg1) { |
| // Must be two address instruction! |
| assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); |
| Reg2IsKill = false; |
| ChangeReg0 = true; |
| } |
| |
| // Masks. |
| unsigned MB = MI.getOperand(4).getImm(); |
| unsigned ME = MI.getOperand(5).getImm(); |
| |
| // We can't commute a trivial mask (there is no way to represent an all-zero |
| // mask). |
| if (MB == 0 && ME == 31) |
| return nullptr; |
| |
| if (NewMI) { |
| // Create a new instruction. |
| Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); |
| bool Reg0IsDead = MI.getOperand(0).isDead(); |
| return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) |
| .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) |
| .addReg(Reg2, getKillRegState(Reg2IsKill)) |
| .addReg(Reg1, getKillRegState(Reg1IsKill)) |
| .addImm((ME + 1) & 31) |
| .addImm((MB - 1) & 31); |
| } |
| |
| if (ChangeReg0) { |
| MI.getOperand(0).setReg(Reg2); |
| MI.getOperand(0).setSubReg(SubReg2); |
| } |
| MI.getOperand(2).setReg(Reg1); |
| MI.getOperand(1).setReg(Reg2); |
| MI.getOperand(2).setSubReg(SubReg1); |
| MI.getOperand(1).setSubReg(SubReg2); |
| MI.getOperand(2).setIsKill(Reg1IsKill); |
| MI.getOperand(1).setIsKill(Reg2IsKill); |
| |
| // Swap the mask around. |
| MI.getOperand(4).setImm((ME + 1) & 31); |
| MI.getOperand(5).setImm((MB - 1) & 31); |
| return &MI; |
| } |
| |
| bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| // For VSX A-Type FMA instructions, it is the first two operands that can be |
| // commuted, however, because the non-encoded tied input operand is listed |
| // first, the operands to swap are actually the second and third. |
| |
| int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); |
| if (AltOpc == -1) |
| return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| |
| // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 |
| // and SrcOpIdx2. |
| return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); |
| } |
| |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| // This function is used for scheduling, and the nop wanted here is the type |
| // that terminates dispatch groups on the POWER cores. |
| unsigned Directive = Subtarget.getCPUDirective(); |
| unsigned Opcode; |
| switch (Directive) { |
| default: Opcode = PPC::NOP; break; |
| case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; |
| case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; |
| case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ |
| // FIXME: Update when POWER9 scheduling model is ready. |
| case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; |
| } |
| |
| DebugLoc DL; |
| BuildMI(MBB, MI, DL, get(Opcode)); |
| } |
| |
| /// Return the noop instruction to use for a noop. |
| MCInst PPCInstrInfo::getNop() const { |
| MCInst Nop; |
| Nop.setOpcode(PPC::NOP); |
| return Nop; |
| } |
| |
| // Branch analysis. |
| // Note: If the condition register is set to CTR or CTR8 then this is a |
| // BDNZ (imm == 1) or BDZ (imm == 0) branch. |
| bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return false; |
| |
| if (!isUnpredicatedTerminator(*I)) |
| return false; |
| |
| if (AllowModify) { |
| // If the BB ends with an unconditional branch to the fallthrough BB, |
| // we eliminate the branch instruction. |
| if (I->getOpcode() == PPC::B && |
| MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { |
| I->eraseFromParent(); |
| |
| // We update iterator after deleting the last branch. |
| I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end() || !isUnpredicatedTerminator(*I)) |
| return false; |
| } |
| } |
| |
| // Get the last instruction in the block. |
| MachineInstr &LastInst = *I; |
| |
| // If there is only one terminator instruction, process it. |
| if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { |
| if (LastInst.getOpcode() == PPC::B) { |
| if (!LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BCC) { |
| if (!LastInst.getOperand(2).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst.getOperand(2).getMBB(); |
| Cond.push_back(LastInst.getOperand(0)); |
| Cond.push_back(LastInst.getOperand(1)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BC) { |
| if (!LastInst.getOperand(1).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); |
| Cond.push_back(LastInst.getOperand(0)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BCn) { |
| if (!LastInst.getOperand(1).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); |
| Cond.push_back(LastInst.getOperand(0)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BDNZ8 || |
| LastInst.getOpcode() == PPC::BDNZ) { |
| if (!LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = LastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(1)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BDZ8 || |
| LastInst.getOpcode() == PPC::BDZ) { |
| if (!LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = LastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return false; |
| } |
| |
| // Otherwise, don't know what this is. |
| return true; |
| } |
| |
| // Get the instruction before it if it's a terminator. |
| MachineInstr &SecondLastInst = *I; |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) |
| return true; |
| |
| // If the block ends with PPC::B and PPC:BCC, handle it. |
| if (SecondLastInst.getOpcode() == PPC::BCC && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(2).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(2).getMBB(); |
| Cond.push_back(SecondLastInst.getOperand(0)); |
| Cond.push_back(SecondLastInst.getOperand(1)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if (SecondLastInst.getOpcode() == PPC::BC && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(1).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); |
| Cond.push_back(SecondLastInst.getOperand(0)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if (SecondLastInst.getOpcode() == PPC::BCn && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(1).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); |
| Cond.push_back(SecondLastInst.getOperand(0)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || |
| SecondLastInst.getOpcode() == PPC::BDNZ) && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(0).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = SecondLastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(1)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || |
| SecondLastInst.getOpcode() == PPC::BDZ) && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(0).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = SecondLastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two PPC:Bs, handle it. The second one is not |
| // executed, so remove it. |
| if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(0).getMBB(); |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| assert(!BytesRemoved && "code size not handled"); |
| |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && |
| I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && |
| I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (I->getOpcode() != PPC::BCC && |
| I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && |
| I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "PPC branch conditions have two components!"); |
| assert(!BytesAdded && "code size not handled"); |
| |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| // One-way branch. |
| if (!FBB) { |
| if (Cond.empty()) // Unconditional branch |
| BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); |
| else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| BuildMI(&MBB, DL, get(Cond[0].getImm() ? |
| (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_SET) |
| BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) |
| BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); |
| else // Conditional branch |
| BuildMI(&MBB, DL, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]) |
| .addMBB(TBB); |
| return 1; |
| } |
| |
| // Two-way Conditional Branch. |
| if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| BuildMI(&MBB, DL, get(Cond[0].getImm() ? |
| (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_SET) |
| BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) |
| BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); |
| else |
| BuildMI(&MBB, DL, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]) |
| .addMBB(TBB); |
| BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); |
| return 2; |
| } |
| |
| // Select analysis. |
| bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, |
| ArrayRef<MachineOperand> Cond, |
| Register DstReg, Register TrueReg, |
| Register FalseReg, int &CondCycles, |
| int &TrueCycles, int &FalseCycles) const { |
| if (Cond.size() != 2) |
| return false; |
| |
| // If this is really a bdnz-like condition, then it cannot be turned into a |
| // select. |
| if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| return false; |
| |
| // If the conditional branch uses a physical register, then it cannot be |
| // turned into a select. |
| if (Register::isPhysicalRegister(Cond[1].getReg())) |
| return false; |
| |
| // Check register classes. |
| const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = |
| RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); |
| if (!RC) |
| return false; |
| |
| // isel is for regular integer GPRs only. |
| if (!PPC::GPRCRegClass.hasSubClassEq(RC) && |
| !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && |
| !PPC::G8RCRegClass.hasSubClassEq(RC) && |
| !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) |
| return false; |
| |
| // FIXME: These numbers are for the A2, how well they work for other cores is |
| // an open question. On the A2, the isel instruction has a 2-cycle latency |
| // but single-cycle throughput. These numbers are used in combination with |
| // the MispredictPenalty setting from the active SchedMachineModel. |
| CondCycles = 1; |
| TrueCycles = 1; |
| FalseCycles = 1; |
| |
| return true; |
| } |
| |
| void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const DebugLoc &dl, Register DestReg, |
| ArrayRef<MachineOperand> Cond, Register TrueReg, |
| Register FalseReg) const { |
| assert(Cond.size() == 2 && |
| "PPC branch conditions have two components!"); |
| |
| // Get the register classes. |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = |
| RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); |
| assert(RC && "TrueReg and FalseReg must have overlapping register classes"); |
| |
| bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || |
| PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); |
| assert((Is64Bit || |
| PPC::GPRCRegClass.hasSubClassEq(RC) || |
| PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && |
| "isel is for regular integer GPRs only"); |
| |
| unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; |
| auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); |
| |
| unsigned SubIdx = 0; |
| bool SwapOps = false; |
| switch (SelectPred) { |
| case PPC::PRED_EQ: |
| case PPC::PRED_EQ_MINUS: |
| case PPC::PRED_EQ_PLUS: |
| SubIdx = PPC::sub_eq; SwapOps = false; break; |
| case PPC::PRED_NE: |
| case PPC::PRED_NE_MINUS: |
| case PPC::PRED_NE_PLUS: |
| SubIdx = PPC::sub_eq; SwapOps = true; break; |
| case PPC::PRED_LT: |
| case PPC::PRED_LT_MINUS: |
| case PPC::PRED_LT_PLUS: |
| SubIdx = PPC::sub_lt; SwapOps = false; break; |
| case PPC::PRED_GE: |
| case PPC::PRED_GE_MINUS: |
| case PPC::PRED_GE_PLUS: |
| SubIdx = PPC::sub_lt; SwapOps = true; break; |
| case PPC::PRED_GT: |
| case PPC::PRED_GT_MINUS: |
| case PPC::PRED_GT_PLUS: |
| SubIdx = PPC::sub_gt; SwapOps = false; break; |
| case PPC::PRED_LE: |
| case PPC::PRED_LE_MINUS: |
| case PPC::PRED_LE_PLUS: |
| SubIdx = PPC::sub_gt; SwapOps = true; break; |
| case PPC::PRED_UN: |
| case PPC::PRED_UN_MINUS: |
| case PPC::PRED_UN_PLUS: |
| SubIdx = PPC::sub_un; SwapOps = false; break; |
| case PPC::PRED_NU: |
| case PPC::PRED_NU_MINUS: |
| case PPC::PRED_NU_PLUS: |
| SubIdx = PPC::sub_un; SwapOps = true; break; |
| case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; |
| case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; |
| } |
| |
| Register FirstReg = SwapOps ? FalseReg : TrueReg, |
| SecondReg = SwapOps ? TrueReg : FalseReg; |
| |
| // The first input register of isel cannot be r0. If it is a member |
| // of a register class that can be r0, then copy it first (the |
| // register allocator should eliminate the copy). |
| if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || |
| MRI.getRegClass(FirstReg)->contains(PPC::X0)) { |
| const TargetRegisterClass *FirstRC = |
| MRI.getRegClass(FirstReg)->contains(PPC::X0) ? |
| &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; |
| Register OldFirstReg = FirstReg; |
| FirstReg = MRI.createVirtualRegister(FirstRC); |
| BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) |
| .addReg(OldFirstReg); |
| } |
| |
| BuildMI(MBB, MI, dl, get(OpCode), DestReg) |
| .addReg(FirstReg).addReg(SecondReg) |
| .addReg(Cond[1].getReg(), 0, SubIdx); |
| } |
| |
| static unsigned getCRBitValue(unsigned CRBit) { |
| unsigned Ret = 4; |
| if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || |
| CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || |
| CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || |
| CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) |
| Ret = 3; |
| if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || |
| CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || |
| CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || |
| CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) |
| Ret = 2; |
| if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || |
| CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || |
| CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || |
| CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) |
| Ret = 1; |
| if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || |
| CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || |
| CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || |
| CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) |
| Ret = 0; |
| |
| assert(Ret != 4 && "Invalid CR bit register"); |
| return Ret; |
| } |
| |
| void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, MCRegister DestReg, |
| MCRegister SrcReg, bool KillSrc) const { |
| // We can end up with self copies and similar things as a result of VSX copy |
| // legalization. Promote them here. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| if (PPC::F8RCRegClass.contains(DestReg) && |
| PPC::VSRCRegClass.contains(SrcReg)) { |
| MCRegister SuperReg = |
| TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); |
| |
| if (VSXSelfCopyCrash && SrcReg == SuperReg) |
| llvm_unreachable("nop VSX copy"); |
| |
| DestReg = SuperReg; |
| } else if (PPC::F8RCRegClass.contains(SrcReg) && |
| PPC::VSRCRegClass.contains(DestReg)) { |
| MCRegister SuperReg = |
| TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); |
| |
| if (VSXSelfCopyCrash && DestReg == SuperReg) |
| llvm_unreachable("nop VSX copy"); |
| |
| SrcReg = SuperReg; |
| } |
| |
| // Different class register copy |
| if (PPC::CRBITRCRegClass.contains(SrcReg) && |
| PPC::GPRCRegClass.contains(DestReg)) { |
| MCRegister CRReg = getCRFromCRBit(SrcReg); |
| BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); |
| getKillRegState(KillSrc); |
| // Rotate the CR bit in the CR fields to be the least significant bit and |
| // then mask with 0x1 (MB = ME = 31). |
| BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) |
| .addImm(31) |
| .addImm(31); |
| return; |
| } else if (PPC::CRRCRegClass.contains(SrcReg) && |
| (PPC::G8RCRegClass.contains(DestReg) || |
| PPC::GPRCRegClass.contains(DestReg))) { |
| bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); |
| unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; |
| unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; |
| unsigned CRNum = TRI->getEncodingValue(SrcReg); |
| BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| if (CRNum == 7) |
| return; |
| // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. |
| BuildMI(MBB, I, DL, get(ShCode), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addImm(CRNum * 4 + 4) |
| .addImm(28) |
| .addImm(31); |
| return; |
| } else if (PPC::G8RCRegClass.contains(SrcReg) && |
| PPC::VSFRCRegClass.contains(DestReg)) { |
| assert(Subtarget.hasDirectMove() && |
| "Subtarget doesn't support directmove, don't know how to copy."); |
| BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); |
| NumGPRtoVSRSpill++; |
| getKillRegState(KillSrc); |
| return; |
| } else if (PPC::VSFRCRegClass.contains(SrcReg) && |
| PPC::G8RCRegClass.contains(DestReg)) { |
| assert(Subtarget.hasDirectMove() && |
| "Subtarget doesn't support directmove, don't know how to copy."); |
| BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| return; |
| } else if (PPC::SPERCRegClass.contains(SrcReg) && |
| PPC::GPRCRegClass.contains(DestReg)) { |
| BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| return; |
| } else if (PPC::GPRCRegClass.contains(SrcReg) && |
| PPC::SPERCRegClass.contains(DestReg)) { |
| BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| return; |
| } |
| |
| unsigned Opc; |
| if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::OR; |
| else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::OR8; |
| else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::FMR; |
| else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::MCRF; |
| else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::VOR; |
| else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) |
| // There are two different ways this can be done: |
| // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only |
| // issue in VSU pipeline 0. |
| // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but |
| // can go to either pipeline. |
| // We'll always use xxlor here, because in practically all cases where |
| // copies are generated, they are close enough to some use that the |
| // lower-latency form is preferable. |
| Opc = PPC::XXLOR; |
| else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || |
| PPC::VSSRCRegClass.contains(DestReg, SrcReg)) |
| Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; |
| else if (Subtarget.pairedVectorMemops() && |
| PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { |
| if (SrcReg > PPC::VSRp15) |
| SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; |
| else |
| SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; |
| if (DestReg > PPC::VSRp15) |
| DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; |
| else |
| DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; |
| BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). |
| addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). |
| addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); |
| return; |
| } |
| else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::CROR; |
| else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::EVOR; |
| else if ((PPC::ACCRCRegClass.contains(DestReg) || |
| PPC::UACCRCRegClass.contains(DestReg)) && |
| (PPC::ACCRCRegClass.contains(SrcReg) || |
| PPC::UACCRCRegClass.contains(SrcReg))) { |
| // If primed, de-prime the source register, copy the individual registers |
| // and prime the destination if needed. The vector subregisters are |
| // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the |
| // source is primed, we need to re-prime it after the copy as well. |
| PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); |
| bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); |
| bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); |
| MCRegister VSLSrcReg = |
| PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; |
| MCRegister VSLDestReg = |
| PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; |
| if (SrcPrimed) |
| BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); |
| for (unsigned Idx = 0; Idx < 4; Idx++) |
| BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) |
| .addReg(VSLSrcReg + Idx) |
| .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); |
| if (DestPrimed) |
| BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); |
| if (SrcPrimed && !KillSrc) |
| BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); |
| return; |
| } else if (PPC::G8pRCRegClass.contains(DestReg) && |
| PPC::G8pRCRegClass.contains(SrcReg)) { |
| // TODO: Handle G8RC to G8pRC (and vice versa) copy. |
| unsigned DestRegIdx = DestReg - PPC::G8p0; |
| MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; |
| MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; |
| unsigned SrcRegIdx = SrcReg - PPC::G8p0; |
| MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; |
| MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; |
| BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) |
| .addReg(SrcRegSub0) |
| .addReg(SrcRegSub0, getKillRegState(KillSrc)); |
| BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) |
| .addReg(SrcRegSub1) |
| .addReg(SrcRegSub1, getKillRegState(KillSrc)); |
| return; |
| } else |
| llvm_unreachable("Impossible reg-to-reg copy"); |
| |
| const MCInstrDesc &MCID = get(Opc); |
| if (MCID.getNumOperands() == 3) |
| BuildMI(MBB, I, DL, MCID, DestReg) |
| .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| else |
| BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| |
| unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { |
| int OpcodeIndex = 0; |
| |
| if (PPC::GPRCRegClass.hasSubClassEq(RC) || |
| PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Int4Spill; |
| } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || |
| PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Int8Spill; |
| } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Float8Spill; |
| } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Float4Spill; |
| } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_SPESpill; |
| } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_CRSpill; |
| } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_CRBitSpill; |
| } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VRVectorSpill; |
| } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VSXVectorSpill; |
| } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VectorFloat8Spill; |
| } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VectorFloat4Spill; |
| } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_SpillToVSR; |
| } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_AccumulatorSpill; |
| } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_UAccumulatorSpill; |
| } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_PairedVecSpill; |
| } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_PairedG8Spill; |
| } else { |
| llvm_unreachable("Unknown regclass!"); |
| } |
| return OpcodeIndex; |
| } |
| |
| unsigned |
| PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { |
| const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); |
| return OpcodesForSpill[getSpillIndex(RC)]; |
| } |
| |
| unsigned |
| PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { |
| const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); |
| return OpcodesForSpill[getSpillIndex(RC)]; |
| } |
| |
| void PPCInstrInfo::StoreRegToStackSlot( |
| MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr *> &NewMIs) const { |
| unsigned Opcode = getStoreOpcodeForSpill(RC); |
| DebugLoc DL; |
| |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setHasSpills(); |
| |
| NewMIs.push_back(addFrameReference( |
| BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), |
| FrameIdx)); |
| |
| if (PPC::CRRCRegClass.hasSubClassEq(RC) || |
| PPC::CRBITRCRegClass.hasSubClassEq(RC)) |
| FuncInfo->setSpillsCR(); |
| |
| if (isXFormMemOp(Opcode)) |
| FuncInfo->setHasNonRISpills(); |
| } |
| |
| void PPCInstrInfo::storeRegToStackSlotNoUpd( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, |
| bool isKill, int FrameIdx, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr *, 4> NewMIs; |
| |
| StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); |
| |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FrameIdx), |
| MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlign(FrameIdx)); |
| NewMIs.back()->addMemOperand(MF, MMO); |
| } |
| |
| void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| Register SrcReg, bool isKill, |
| int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| // We need to avoid a situation in which the value from a VRRC register is |
| // spilled using an Altivec instruction and reloaded into a VSRC register |
| // using a VSX instruction. The issue with this is that the VSX |
| // load/store instructions swap the doublewords in the vector and the Altivec |
| // ones don't. The register classes on the spill/reload may be different if |
| // the register is defined using an Altivec instruction and is then used by a |
| // VSX instruction. |
| RC = updatedRC(RC); |
| storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); |
| } |
| |
| void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr *> &NewMIs) |
| const { |
| unsigned Opcode = getLoadOpcodeForSpill(RC); |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), |
| FrameIdx)); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| if (PPC::CRRCRegClass.hasSubClassEq(RC) || |
| PPC::CRBITRCRegClass.hasSubClassEq(RC)) |
| FuncInfo->setSpillsCR(); |
| |
| if (isXFormMemOp(Opcode)) |
| FuncInfo->setHasNonRISpills(); |
| } |
| |
| void PPCInstrInfo::loadRegFromStackSlotNoUpd( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, |
| int FrameIdx, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| DebugLoc DL; |
| if (MI != MBB.end()) DL = MI->getDebugLoc(); |
| |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setHasSpills(); |
| |
| LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); |
| |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FrameIdx), |
| MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlign(FrameIdx)); |
| NewMIs.back()->addMemOperand(MF, MMO); |
| } |
| |
| void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| Register DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| // We need to avoid a situation in which the value from a VRRC register is |
| // spilled using an Altivec instruction and reloaded into a VSRC register |
| // using a VSX instruction. The issue with this is that the VSX |
| // load/store instructions swap the doublewords in the vector and the Altivec |
| // ones don't. The register classes on the spill/reload may be different if |
| // the register is defined using an Altivec instruction and is then used by a |
| // VSX instruction. |
| RC = updatedRC(RC); |
| |
| loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); |
| } |
| |
| bool PPCInstrInfo:: |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); |
| if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) |
| Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); |
| else |
| // Leave the CR# the same, but invert the condition. |
| Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); |
| return false; |
| } |
| |
| // For some instructions, it is legal to fold ZERO into the RA register field. |
| // This function performs that fold by replacing the operand with PPC::ZERO, |
| // it does not consider whether the load immediate zero is no longer in use. |
| bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| Register Reg) const { |
| // A zero immediate should always be loaded with a single li. |
| unsigned DefOpc = DefMI.getOpcode(); |
| if (DefOpc != PPC::LI && DefOpc != PPC::LI8) |
| return false; |
| if (!DefMI.getOperand(1).isImm()) |
| return false; |
| if (DefMI.getOperand(1).getImm() != 0) |
| return false; |
| |
| // Note that we cannot here invert the arguments of an isel in order to fold |
| // a ZERO into what is presented as the second argument. All we have here |
| // is the condition bit, and that might come from a CR-logical bit operation. |
| |
| const MCInstrDesc &UseMCID = UseMI.getDesc(); |
| |
| // Only fold into real machine instructions. |
| if (UseMCID.isPseudo()) |
| return false; |
| |
| // We need to find which of the User's operands is to be folded, that will be |
| // the operand that matches the given register ID. |
| unsigned UseIdx; |
| for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) |
| if (UseMI.getOperand(UseIdx).isReg() && |
| UseMI.getOperand(UseIdx).getReg() == Reg) |
| break; |
| |
| assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); |
| assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); |
| |
| const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; |
| |
| // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 |
| // register (which might also be specified as a pointer class kind). |
| if (UseInfo->isLookupPtrRegClass()) { |
| if (UseInfo->RegClass /* Kind */ != 1) |
| return false; |
| } else { |
| if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && |
| UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) |
| return false; |
| } |
| |
| // Make sure this is not tied to an output register (or otherwise |
| // constrained). This is true for ST?UX registers, for example, which |
| // are tied to their output registers. |
| if (UseInfo->Constraints != 0) |
| return false; |
| |
| MCRegister ZeroReg; |
| if (UseInfo->isLookupPtrRegClass()) { |
| bool isPPC64 = Subtarget.isPPC64(); |
| ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; |
| } else { |
| ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? |
| PPC::ZERO8 : PPC::ZERO; |
| } |
| |
| UseMI.getOperand(UseIdx).setReg(ZeroReg); |
| return true; |
| } |
| |
| // Folds zero into instructions which have a load immediate zero as an operand |
| // but also recognize zero as immediate zero. If the definition of the load |
| // has no more users it is deleted. |
| bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| Register Reg, MachineRegisterInfo *MRI) const { |
| bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); |
| if (MRI->use_nodbg_empty(Reg)) |
| DefMI.eraseFromParent(); |
| return Changed; |
| } |
| |
| static bool MBBDefinesCTR(MachineBasicBlock &MBB) { |
| for (MachineInstr &MI : MBB) |
| if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8)) |
| return true; |
| return false; |
| } |
| |
| // We should make sure that, if we're going to predicate both sides of a |
| // condition (a diamond), that both sides don't define the counter register. We |
| // can predicate counter-decrement-based branches, but while that predicates |
| // the branching, it does not predicate the counter decrement. If we tried to |
| // merge the triangle into one predicated block, we'd decrement the counter |
| // twice. |
| bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| unsigned NumT, unsigned ExtraT, |
| MachineBasicBlock &FMBB, |
| unsigned NumF, unsigned ExtraF, |
| BranchProbability Probability) const { |
| return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); |
| } |
| |
| |
| bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { |
| // The predicated branches are identified by their type, not really by the |
| // explicit presence of a predicate. Furthermore, some of them can be |
| // predicated more than once. Because if conversion won't try to predicate |
| // any instruction which already claims to be predicated (by returning true |
| // here), always return false. In doing so, we let isPredicable() be the |
| // final word on whether not the instruction can be (further) predicated. |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion |
| // across them, since some FP operations may change content of FPSCR. |
| // TODO: Model FPSCR in PPC instruction definitions and remove the workaround |
| if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) |
| return true; |
| return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); |
| } |
| |
| bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, |
| ArrayRef<MachineOperand> Pred) const { |
| unsigned OpC = MI.getOpcode(); |
| if (OpC == PPC::BLR || OpC == PPC::BLR8) { |
| if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { |
| bool isPPC64 = Subtarget.isPPC64(); |
| MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) |
| : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); |
| // Need add Def and Use for CTR implicit operand. |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(Pred[1].getReg(), RegState::Implicit) |
| .addReg(Pred[1].getReg(), RegState::ImplicitDefine); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| MI.setDesc(get(PPC::BCLR)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| MI.setDesc(get(PPC::BCLRn)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else { |
| MI.setDesc(get(PPC::BCCLR)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .add(Pred[1]); |
| } |
| |
| return true; |
| } else if (OpC == PPC::B) { |
| if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { |
| bool isPPC64 = Subtarget.isPPC64(); |
| MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) |
| : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); |
| // Need add Def and Use for CTR implicit operand. |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(Pred[1].getReg(), RegState::Implicit) |
| .addReg(Pred[1].getReg(), RegState::ImplicitDefine); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); |
| MI.RemoveOperand(0); |
| |
| MI.setDesc(get(PPC::BC)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .add(Pred[1]) |
| .addMBB(MBB); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); |
| MI.RemoveOperand(0); |
| |
| MI.setDesc(get(PPC::BCn)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .add(Pred[1]) |
| .addMBB(MBB); |
| } else { |
| MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); |
| MI.RemoveOperand(0); |
| |
| MI.setDesc(get(PPC::BCC)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .add(Pred[1]) |
| .addMBB(MBB); |
| } |
| |
| return true; |
| } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || |
| OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || |
| OpC == PPC::BCTRL8_RM) { |
| if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) |
| llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); |
| |
| bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || |
| OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) |
| : (setLR ? PPC::BCCTRL : PPC::BCCTR))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) |
| : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else { |
| MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) |
| : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .add(Pred[1]); |
| } |
| |
| // Need add Def and Use for LR implicit operand. |
| if (setLR) |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) |
| .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); |
| if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(PPC::RM, RegState::ImplicitDefine); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| ArrayRef<MachineOperand> Pred2) const { |
| assert(Pred1.size() == 2 && "Invalid PPC first predicate"); |
| assert(Pred2.size() == 2 && "Invalid PPC second predicate"); |
| |
| if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) |
| return false; |
| if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) |
| return false; |
| |
| // P1 can only subsume P2 if they test the same condition register. |
| if (Pred1[1].getReg() != Pred2[1].getReg()) |
| return false; |
| |
| PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); |
| PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); |
| |
| if (P1 == P2) |
| return true; |
| |
| // Does P1 subsume P2, e.g. GE subsumes GT. |
| if (P1 == PPC::PRED_LE && |
| (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) |
| return true; |
| if (P1 == PPC::PRED_GE && |
| (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) |
| return true; |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, |
| std::vector<MachineOperand> &Pred, |
| bool SkipDead) const { |
| // Note: At the present time, the contents of Pred from this function is |
| // unused by IfConversion. This implementation follows ARM by pushing the |
| // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of |
| // predicate, instructions defining CTR or CTR8 are also included as |
| // predicate-defining instructions. |
| |
| const TargetRegisterClass *RCs[] = |
| { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, |
| &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; |
| |
| bool Found = false; |
| for (const MachineOperand &MO : MI.operands()) { |
| for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { |
| const TargetRegisterClass *RC = RCs[c]; |
| if (MO.isReg()) { |
| if (MO.isDef() && RC->contains(MO.getReg())) { |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } else if (MO.isRegMask()) { |
| for (TargetRegisterClass::iterator I = RC->begin(), |
| IE = RC->end(); I != IE; ++I) |
| if (MO.clobbersPhysReg(*I)) { |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } |
| } |
| } |
| |
| return Found; |
| } |
| |
| bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| Register &SrcReg2, int64_t &Mask, |
| int64_t &Value) const { |
| unsigned Opc = MI.getOpcode(); |
| |
| switch (Opc) { |
| default: return false; |
| case PPC::CMPWI: |
| case PPC::CMPLWI: |
| case PPC::CMPDI: |
| case PPC::CMPLDI: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = 0; |
| Value = MI.getOperand(2).getImm(); |
| Mask = 0xFFFF; |
| return true; |
| case PPC::CMPW: |
| case PPC::CMPLW: |
| case PPC::CMPD: |
| case PPC::CMPLD: |
| case PPC::FCMPUS: |
| case PPC::FCMPUD: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = MI.getOperand(2).getReg(); |
| Value = 0; |
| Mask = 0; |
| return true; |
| } |
| } |
| |
| bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, |
| Register SrcReg2, int64_t Mask, |
| int64_t Value, |
| const MachineRegisterInfo *MRI) const { |
| if (DisableCmpOpt) |
| return false; |
| |
| int OpC = CmpInstr.getOpcode(); |
| Register CRReg = CmpInstr.getOperand(0).getReg(); |
| |
| // FP record forms set CR1 based on the exception status bits, not a |
| // comparison with zero. |
| if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| // The record forms set the condition register based on a signed comparison |
| // with zero (so says the ISA manual). This is not as straightforward as it |
| // seems, however, because this is always a 64-bit comparison on PPC64, even |
| // for instructions that are 32-bit in nature (like slw for example). |
| // So, on PPC32, for unsigned comparisons, we can use the record forms only |
| // for equality checks (as those don't depend on the sign). On PPC64, |
| // we are restricted to equality for unsigned 64-bit comparisons and for |
| // signed 32-bit comparisons the applicability is more restricted. |
| bool isPPC64 = Subtarget.isPPC64(); |
| bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; |
| bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; |
| bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; |
| |
| // Look through copies unless that gets us to a physical register. |
| Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); |
| if (ActualSrc.isVirtual()) |
| SrcReg = ActualSrc; |
| |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) return false; |
| |
| bool equalityOnly = false; |
| bool noSub = false; |
| if (isPPC64) { |
| if (is32BitSignedCompare) { |
| // We can perform this optimization only if MI is sign-extending. |
| if (isSignExtended(*MI)) |
| noSub = true; |
| else |
| return false; |
| } else if (is32BitUnsignedCompare) { |
| // We can perform this optimization, equality only, if MI is |
| // zero-extending. |
| if (isZeroExtended(*MI)) { |
| noSub = true; |
| equalityOnly = true; |
| } else |
| return false; |
| } else |
| equalityOnly = is64BitUnsignedCompare; |
| } else |
| equalityOnly = is32BitUnsignedCompare; |
| |
| if (equalityOnly) { |
| // We need to check the uses of the condition register in order to reject |
| // non-equality comparisons. |
| for (MachineRegisterInfo::use_instr_iterator |
| I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); |
| I != IE; ++I) { |
| MachineInstr *UseMI = &*I; |
| if (UseMI->getOpcode() == PPC::BCC) { |
| PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| // We ignore hint bits when checking for non-equality comparisons. |
| if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) |
| return false; |
| } else if (UseMI->getOpcode() == PPC::ISEL || |
| UseMI->getOpcode() == PPC::ISEL8) { |
| unsigned SubIdx = UseMI->getOperand(3).getSubReg(); |
| if (SubIdx != PPC::sub_eq) |
| return false; |
| } else |
| return false; |
| } |
| } |
| |
| MachineBasicBlock::iterator I = CmpInstr; |
| |
| // Scan forward to find the first use of the compare. |
| for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; |
| ++I) { |
| bool FoundUse = false; |
| for (MachineRegisterInfo::use_instr_iterator |
| J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); |
| J != JE; ++J) |
| if (&*J == &*I) { |
| FoundUse = true; |
| break; |
| } |
| |
| if (FoundUse) |
| break; |
| } |
| |
| SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; |
| SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; |
| |
| // There are two possible candidates which can be changed to set CR[01]. |
| // One is MI, the other is a SUB instruction. |
| // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). |
| MachineInstr *Sub = nullptr; |
| if (SrcReg2 != 0) |
| // MI is not a candidate for CMPrr. |
| MI = nullptr; |
| // FIXME: Conservatively refuse to convert an instruction which isn't in the |
| // same BB as the comparison. This is to allow the check below to avoid calls |
| // (and other explicit clobbers); instead we should really check for these |
| // more explicitly (in at least a few predecessors). |
| else if (MI->getParent() != CmpInstr.getParent()) |
| return false; |
| else if (Value != 0) { |
| // The record-form instructions set CR bit based on signed comparison |
| // against 0. We try to convert a compare against 1 or -1 into a compare |
| // against 0 to exploit record-form instructions. For example, we change |
| // the condition "greater than -1" into "greater than or equal to 0" |
| // and "less than 1" into "less than or equal to 0". |
| |
|