| //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that PPC uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H |
| #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H |
| |
| #include "PPCInstrInfo.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include <utility> |
| |
| namespace llvm { |
| |
| namespace PPCISD { |
| |
| // When adding a NEW PPCISD node please add it to the correct position in |
| // the enum. The order of elements in this enum matters! |
| // Values that are added after this entry: |
| // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE |
| // are considered memory opcodes and are treated differently than entries |
| // that come before it. For example, ADD or MUL should be placed before |
| // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come |
| // after it. |
| enum NodeType : unsigned { |
| // Start the numbering where the builtin ops and target ops leave off. |
| FIRST_NUMBER = ISD::BUILTIN_OP_END, |
| |
| /// FSEL - Traditional three-operand fsel node. |
| /// |
| FSEL, |
| |
| /// XSMAXCDP, XSMINCDP - C-type min/max instructions. |
| XSMAXCDP, |
| XSMINCDP, |
| |
| /// FCFID - The FCFID instruction, taking an f64 operand and producing |
| /// and f64 value containing the FP representation of the integer that |
| /// was temporarily in the f64 operand. |
| FCFID, |
| |
| /// Newer FCFID[US] integer-to-floating-point conversion instructions for |
| /// unsigned integers and single-precision outputs. |
| FCFIDU, |
| FCFIDS, |
| FCFIDUS, |
| |
| /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 |
| /// operand, producing an f64 value containing the integer representation |
| /// of that FP value. |
| FCTIDZ, |
| FCTIWZ, |
| |
| /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for |
| /// unsigned integers with round toward zero. |
| FCTIDUZ, |
| FCTIWUZ, |
| |
| /// Floating-point-to-interger conversion instructions |
| FP_TO_UINT_IN_VSR, |
| FP_TO_SINT_IN_VSR, |
| |
| /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in |
| /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer. |
| VEXTS, |
| |
| /// Reciprocal estimate instructions (unary FP ops). |
| FRE, |
| FRSQRTE, |
| |
| /// Test instruction for software square root. |
| FTSQRT, |
| |
| /// Square root instruction. |
| FSQRT, |
| |
| /// VPERM - The PPC VPERM Instruction. |
| /// |
| VPERM, |
| |
| /// XXSPLT - The PPC VSX splat instructions |
| /// |
| XXSPLT, |
| |
| /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for |
| /// converting immediate single precision numbers to double precision |
| /// vector or scalar. |
| XXSPLTI_SP_TO_DP, |
| |
| /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction. |
| /// |
| XXSPLTI32DX, |
| |
| /// VECINSERT - The PPC vector insert instruction |
| /// |
| VECINSERT, |
| |
| /// VECSHL - The PPC vector shift left instruction |
| /// |
| VECSHL, |
| |
| /// XXPERMDI - The PPC XXPERMDI instruction |
| /// |
| XXPERMDI, |
| |
| /// The CMPB instruction (takes two operands of i32 or i64). |
| CMPB, |
| |
| /// Hi/Lo - These represent the high and low 16-bit parts of a global |
| /// address respectively. These nodes have two operands, the first of |
| /// which must be a TargetGlobalAddress, and the second of which must be a |
| /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', |
| /// though these are usually folded into other nodes. |
| Hi, |
| Lo, |
| |
| /// The following two target-specific nodes are used for calls through |
| /// function pointers in the 64-bit SVR4 ABI. |
| |
| /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) |
| /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to |
| /// compute an allocation on the stack. |
| DYNALLOC, |
| |
| /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to |
| /// compute an offset from native SP to the address of the most recent |
| /// dynamic alloca. |
| DYNAREAOFFSET, |
| |
| /// To avoid stack clash, allocation is performed by block and each block is |
| /// probed. |
| PROBED_ALLOCA, |
| |
| /// The result of the mflr at function entry, used for PIC code. |
| GlobalBaseReg, |
| |
| /// These nodes represent PPC shifts. |
| /// |
| /// For scalar types, only the last `n + 1` bits of the shift amounts |
| /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc. |
| /// for exact behaviors. |
| /// |
| /// For vector types, only the last n bits are used. See vsld. |
| SRL, |
| SRA, |
| SHL, |
| |
| /// FNMSUB - Negated multiply-subtract instruction. |
| FNMSUB, |
| |
| /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign |
| /// word and shift left immediate. |
| EXTSWSLI, |
| |
| /// The combination of sra[wd]i and addze used to implemented signed |
| /// integer division by a power of 2. The first operand is the dividend, |
| /// and the second is the constant shift amount (representing the |
| /// divisor). |
| SRA_ADDZE, |
| |
| /// CALL - A direct function call. |
| /// CALL_NOP is a call with the special NOP which follows 64-bit |
| /// CALL_NOTOC the caller does not use the TOC. |
| /// SVR4 calls and 32-bit/64-bit AIX calls. |
| CALL, |
| CALL_NOP, |
| CALL_NOTOC, |
| |
| /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a |
| /// MTCTR instruction. |
| MTCTR, |
| |
| /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a |
| /// BCTRL instruction. |
| BCTRL, |
| |
| /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl |
| /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX |
| /// and 64-bit AIX. |
| BCTRL_LOAD_TOC, |
| |
| /// The variants that implicitly define rounding mode for calls with |
| /// strictfp semantics. |
| CALL_RM, |
| CALL_NOP_RM, |
| CALL_NOTOC_RM, |
| BCTRL_RM, |
| BCTRL_LOAD_TOC_RM, |
| |
| /// Return with a flag operand, matched by 'blr' |
| RET_FLAG, |
| |
| /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. |
| /// This copies the bits corresponding to the specified CRREG into the |
| /// resultant GPR. Bits corresponding to other CR regs are undefined. |
| MFOCRF, |
| |
| /// Direct move from a VSX register to a GPR |
| MFVSR, |
| |
| /// Direct move from a GPR to a VSX register (algebraic) |
| MTVSRA, |
| |
| /// Direct move from a GPR to a VSX register (zero) |
| MTVSRZ, |
| |
| /// Direct move of 2 consecutive GPR to a VSX register. |
| BUILD_FP128, |
| |
| /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and |
| /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is |
| /// unsupported for this target. |
| /// Merge 2 GPRs to a single SPE register. |
| BUILD_SPE64, |
| |
| /// Extract SPE register component, second argument is high or low. |
| EXTRACT_SPE, |
| |
| /// Extract a subvector from signed integer vector and convert to FP. |
| /// It is primarily used to convert a (widened) illegal integer vector |
| /// type to a legal floating point vector type. |
| /// For example v2i32 -> widened to v4i32 -> v2f64 |
| SINT_VEC_TO_FP, |
| |
| /// Extract a subvector from unsigned integer vector and convert to FP. |
| /// As with SINT_VEC_TO_FP, used for converting illegal types. |
| UINT_VEC_TO_FP, |
| |
| /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to |
| /// place the value into the least significant element of the most |
| /// significant doubleword in the vector. This is not element zero for |
| /// anything smaller than a doubleword on either endianness. This node has |
| /// the same semantics as SCALAR_TO_VECTOR except that the value remains in |
| /// the aforementioned location in the vector register. |
| SCALAR_TO_VECTOR_PERMUTED, |
| |
| // FIXME: Remove these once the ANDI glue bug is fixed: |
| /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the |
| /// eq or gt bit of CR0 after executing andi. x, 1. This is used to |
| /// implement truncation of i32 or i64 to i1. |
| ANDI_rec_1_EQ_BIT, |
| ANDI_rec_1_GT_BIT, |
| |
| // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit |
| // target (returns (Lo, Hi)). It takes a chain operand. |
| READ_TIME_BASE, |
| |
| // EH_SJLJ_SETJMP - SjLj exception handling setjmp. |
| EH_SJLJ_SETJMP, |
| |
| // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. |
| EH_SJLJ_LONGJMP, |
| |
| /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* |
| /// instructions. For lack of better number, we use the opcode number |
| /// encoding for the OPC field to identify the compare. For example, 838 |
| /// is VCMPGTSH. |
| VCMP, |
| |
| /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the |
| /// altivec VCMP*_rec instructions. For lack of better number, we use the |
| /// opcode number encoding for the OPC field to identify the compare. For |
| /// example, 838 is VCMPGTSH. |
| VCMP_rec, |
| |
| /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This |
| /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the |
| /// condition register to branch on, OPC is the branch opcode to use (e.g. |
| /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is |
| /// an optional input flag argument. |
| COND_BRANCH, |
| |
| /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based |
| /// loops. |
| BDNZ, |
| BDZ, |
| |
| /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding |
| /// towards zero. Used only as part of the long double-to-int |
| /// conversion sequence. |
| FADDRTZ, |
| |
| /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. |
| MFFS, |
| |
| /// TC_RETURN - A tail call return. |
| /// operand #0 chain |
| /// operand #1 callee (register or absolute) |
| /// operand #2 stack adjustment |
| /// operand #3 optional in flag |
| TC_RETURN, |
| |
| /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls |
| CR6SET, |
| CR6UNSET, |
| |
| /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS |
| /// for non-position independent code on PPC32. |
| PPC32_GOT, |
| |
| /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and |
| /// local dynamic TLS and position indendepent code on PPC32. |
| PPC32_PICGOT, |
| |
| /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec |
| /// TLS model, produces an ADDIS8 instruction that adds the GOT |
| /// base to sym\@got\@tprel\@ha. |
| ADDIS_GOT_TPREL_HA, |
| |
| /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec |
| /// TLS model, produces a LD instruction with base register G8RReg |
| /// and offset sym\@got\@tprel\@l. This completes the addition that |
| /// finds the offset of "sym" relative to the thread pointer. |
| LD_GOT_TPREL_L, |
| |
| /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS |
| /// model, produces an ADD instruction that adds the contents of |
| /// G8RReg to the thread pointer. Symbol contains a relocation |
| /// sym\@tls which is to be replaced by the thread pointer and |
| /// identifies to the linker that the instruction is part of a |
| /// TLS sequence. |
| ADD_TLS, |
| |
| /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS |
| /// model, produces an ADDIS8 instruction that adds the GOT base |
| /// register to sym\@got\@tlsgd\@ha. |
| ADDIS_TLSGD_HA, |
| |
| /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS |
| /// model, produces an ADDI8 instruction that adds G8RReg to |
| /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by |
| /// ADDIS_TLSGD_L_ADDR until after register assignment. |
| ADDI_TLSGD_L, |
| |
| /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS |
| /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by |
| /// ADDIS_TLSGD_L_ADDR until after register assignment. |
| GET_TLS_ADDR, |
| |
| /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that |
| /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following |
| /// register assignment. |
| ADDI_TLSGD_L_ADDR, |
| |
| /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY |
| /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY |
| /// Op that combines two register copies of TOC entries |
| /// (region handle into R3 and variable offset into R4) followed by a |
| /// GET_TLS_ADDR node which will be expanded to a call to __get_tls_addr. |
| /// This node is used in 64-bit mode as well (in which case the result is |
| /// G8RC and inputs are X3/X4). |
| TLSGD_AIX, |
| |
| /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDIS8 instruction that adds the GOT base |
| /// register to sym\@got\@tlsld\@ha. |
| ADDIS_TLSLD_HA, |
| |
| /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDI8 instruction that adds G8RReg to |
| /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by |
| /// ADDIS_TLSLD_L_ADDR until after register assignment. |
| ADDI_TLSLD_L, |
| |
| /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS |
| /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by |
| /// ADDIS_TLSLD_L_ADDR until after register assignment. |
| GET_TLSLD_ADDR, |
| |
| /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that |
| /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion |
| /// following register assignment. |
| ADDI_TLSLD_L_ADDR, |
| |
| /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDIS8 instruction that adds X3 to |
| /// sym\@dtprel\@ha. |
| ADDIS_DTPREL_HA, |
| |
| /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDI8 instruction that adds G8RReg to |
| /// sym\@got\@dtprel\@l. |
| ADDI_DTPREL_L, |
| |
| /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS |
| /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel. |
| PADDI_DTPREL, |
| |
| /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded |
| /// during instruction selection to optimize a BUILD_VECTOR into |
| /// operations on splats. This is necessary to avoid losing these |
| /// optimizations due to constant folding. |
| VADD_SPLAT, |
| |
| /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned |
| /// operand identifies the operating system entry point. |
| SC, |
| |
| /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer. |
| CLRBHRB, |
| |
| /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch |
| /// history rolling buffer entry. |
| MFBHRBE, |
| |
| /// CHAIN = RFEBB CHAIN, State - Return from event-based branch. |
| RFEBB, |
| |
| /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little |
| /// endian. Maps to an xxswapd instruction that corrects an lxvd2x |
| /// or stxvd2x instruction. The chain is necessary because the |
| /// sequence replaces a load and needs to provide the same number |
| /// of outputs. |
| XXSWAPD, |
| |
| /// An SDNode for swaps that are not associated with any loads/stores |
| /// and thereby have no chain. |
| SWAP_NO_CHAIN, |
| |
| /// An SDNode for Power9 vector absolute value difference. |
| /// operand #0 vector |
| /// operand #1 vector |
| /// operand #2 constant i32 0 or 1, to indicate whether needs to patch |
| /// the most significant bit for signed i32 |
| /// |
| /// Power9 VABSD* instructions are designed to support unsigned integer |
| /// vectors (byte/halfword/word), if we want to make use of them for signed |
| /// integer vectors, we have to flip their sign bits first. To flip sign bit |
| /// for byte/halfword integer vector would become inefficient, but for word |
| /// integer vector, we can leverage XVNEGSP to make it efficiently. eg: |
| /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000) |
| /// => VABSDUW((XVNEGSP a), (XVNEGSP b)) |
| VABSD, |
| |
| /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or |
| /// lower (IDX=1) half of v4f32 to v2f64. |
| FP_EXTEND_HALF, |
| |
| /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done |
| /// either through an add like PADDI or through a PC Relative load like |
| /// PLD. |
| MAT_PCREL_ADDR, |
| |
| /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for |
| /// TLS global address when using dynamic access models. This can be done |
| /// through an add like PADDI. |
| TLS_DYNAMIC_MAT_PCREL_ADDR, |
| |
| /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address |
| /// when using local exec access models, and when prefixed instructions are |
| /// available. This is used with ADD_TLS to produce an add like PADDI. |
| TLS_LOCAL_EXEC_MAT_ADDR, |
| |
| /// ACC_BUILD = Build an accumulator register from 4 VSX registers. |
| ACC_BUILD, |
| |
| /// PAIR_BUILD = Build a vector pair register from 2 VSX registers. |
| PAIR_BUILD, |
| |
| /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of |
| /// an accumulator or pair register. This node is needed because |
| /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same |
| /// element type. |
| EXTRACT_VSX_REG, |
| |
| /// XXMFACC = This corresponds to the xxmfacc instruction. |
| XXMFACC, |
| |
| // Constrained conversion from floating point to int |
| STRICT_FCTIDZ = ISD::FIRST_TARGET_STRICTFP_OPCODE, |
| STRICT_FCTIWZ, |
| STRICT_FCTIDUZ, |
| STRICT_FCTIWUZ, |
| |
| /// Constrained integer-to-floating-point conversion instructions. |
| STRICT_FCFID, |
| STRICT_FCFIDU, |
| STRICT_FCFIDS, |
| STRICT_FCFIDUS, |
| |
| /// Constrained floating point add in round-to-zero mode. |
| STRICT_FADDRTZ, |
| |
| // NOTE: The nodes below may require PC-Rel specific patterns if the |
| // address could be PC-Relative. When adding new nodes below, consider |
| // whether or not the address can be PC-Relative and add the corresponding |
| // PC-relative patterns and tests. |
| |
| /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a |
| /// byte-swapping store instruction. It byte-swaps the low "Type" bits of |
| /// the GPRC input, then stores it through Ptr. Type can be either i16 or |
| /// i32. |
| STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE, |
| |
| /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a |
| /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, |
| /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 |
| /// or i32. |
| LBRX, |
| |
| /// STFIWX - The STFIWX instruction. The first operand is an input token |
| /// chain, then an f64 value to store, then an address to store it to. |
| STFIWX, |
| |
| /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point |
| /// load which sign-extends from a 32-bit integer value into the |
| /// destination 64-bit register. |
| LFIWAX, |
| |
| /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point |
| /// load which zero-extends from a 32-bit integer value into the |
| /// destination 64-bit register. |
| LFIWZX, |
| |
| /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an |
| /// integer smaller than 64 bits into a VSR. The integer is zero-extended. |
| /// This can be used for converting loaded integers to floating point. |
| LXSIZX, |
| |
| /// STXSIX - The STXSI[bh]X instruction. The first operand is an input |
| /// chain, then an f64 value to store, then an address to store it to, |
| /// followed by a byte-width for the store. |
| STXSIX, |
| |
| /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian. |
| /// Maps directly to an lxvd2x instruction that will be followed by |
| /// an xxswapd. |
| LXVD2X, |
| |
| /// LXVRZX - Load VSX Vector Rightmost and Zero Extend |
| /// This node represents v1i128 BUILD_VECTOR of a zero extending load |
| /// instruction from <byte, halfword, word, or doubleword> to i128. |
| /// Allows utilization of the Load VSX Vector Rightmost Instructions. |
| LXVRZX, |
| |
| /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian. |
| /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on |
| /// the vector type to load vector in big-endian element order. |
| LOAD_VEC_BE, |
| |
| /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a |
| /// v2f32 value into the lower half of a VSR register. |
| LD_VSX_LH, |
| |
| /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory |
| /// instructions such as LXVDSX, LXVWSX. |
| LD_SPLAT, |
| |
| /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory |
| /// that zero-extends. |
| ZEXT_LD_SPLAT, |
| |
| /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory |
| /// that sign-extends. |
| SEXT_LD_SPLAT, |
| |
| /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian. |
| /// Maps directly to an stxvd2x instruction that will be preceded by |
| /// an xxswapd. |
| STXVD2X, |
| |
| /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian. |
| /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on |
| /// the vector type to store vector in big-endian element order. |
| STORE_VEC_BE, |
| |
| /// Store scalar integers from VSR. |
| ST_VSR_SCAL_INT, |
| |
| /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes |
| /// except they ensure that the compare input is zero-extended for |
| /// sub-word versions because the atomic loads zero-extend. |
| ATOMIC_CMP_SWAP_8, |
| ATOMIC_CMP_SWAP_16, |
| |
| /// GPRC = TOC_ENTRY GA, TOC |
| /// Loads the entry for GA from the TOC, where the TOC base is given by |
| /// the last operand. |
| TOC_ENTRY |
| }; |
| |
| } // end namespace PPCISD |
| |
| /// Define some predicates that are used for node matching. |
| namespace PPC { |
| |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUDUM instruction. |
| bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned ShuffleKind, SelectionDAG &DAG); |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned ShuffleKind, SelectionDAG &DAG); |
| |
| /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VMRGEW or VMRGOW instruction |
| bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, |
| unsigned ShuffleKind, SelectionDAG &DAG); |
| /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXSLDWI instruction. |
| bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| bool &Swap, bool IsLE); |
| |
| /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRH instruction. |
| bool isXXBRHShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRW instruction. |
| bool isXXBRWShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRD instruction. |
| bool isXXBRDShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRQ instruction. |
| bool isXXBRQShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXPERMDI instruction. |
| bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| bool &Swap, bool IsLE); |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the |
| /// shift amount, otherwise return -1. |
| int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// VSPLTB/VSPLTH/VSPLTW. |
| bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); |
| |
| /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by |
| /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any |
| /// shuffle of v4f32/v4i32 vectors that just inserts one element from one |
| /// vector into the other. This function will also set a couple of |
| /// output parameters for how much the source vector needs to be shifted and |
| /// what byte number needs to be specified for the instruction to put the |
| /// element in the desired location of the target vector. |
| bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| unsigned &InsertAtByte, bool &Swap, bool IsLE); |
| |
| /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is |
| /// appropriate for PPC mnemonics (which have a big endian bias - namely |
| /// elements are counted from the left of the vector register). |
| unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, |
| SelectionDAG &DAG); |
| |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be |
| /// formed by using a vspltis[bhw] instruction of the specified element |
| /// size, return the constant being splatted. The ByteSize field indicates |
| /// the number of bytes of each element [124] -> [bhw]. |
| SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); |
| |
| // Flags for computing the optimal addressing mode for loads and stores. |
| enum MemOpFlags { |
| MOF_None = 0, |
| |
| // Extension mode for integer loads. |
| MOF_SExt = 1, |
| MOF_ZExt = 1 << 1, |
| MOF_NoExt = 1 << 2, |
| |
| // Address computation flags. |
| MOF_NotAddNorCst = 1 << 5, // Not const. or sum of ptr and scalar. |
| MOF_RPlusSImm16 = 1 << 6, // Reg plus signed 16-bit constant. |
| MOF_RPlusLo = 1 << 7, // Reg plus signed 16-bit relocation |
| MOF_RPlusSImm16Mult4 = 1 << 8, // Reg plus 16-bit signed multiple of 4. |
| MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16. |
| MOF_RPlusSImm34 = 1 << 10, // Reg plus 34-bit signed constant. |
| MOF_RPlusR = 1 << 11, // Sum of two variables. |
| MOF_PCRel = 1 << 12, // PC-Relative relocation. |
| MOF_AddrIsSImm32 = 1 << 13, // A simple 32-bit constant. |
| |
| // The in-memory type. |
| MOF_SubWordInt = 1 << 15, |
| MOF_WordInt = 1 << 16, |
| MOF_DoubleWordInt = 1 << 17, |
| MOF_ScalarFloat = 1 << 18, // Scalar single or double precision. |
| MOF_Vector = 1 << 19, // Vector types and quad precision scalars. |
| MOF_Vector256 = 1 << 20, |
| |
| // Subtarget features. |
| MOF_SubtargetBeforeP9 = 1 << 22, |
| MOF_SubtargetP9 = 1 << 23, |
| MOF_SubtargetP10 = 1 << 24, |
| MOF_SubtargetSPE = 1 << 25 |
| }; |
| |
| // The addressing modes for loads and stores. |
| enum AddrMode { |
| AM_None, |
| AM_DForm, |
| AM_DSForm, |
| AM_DQForm, |
| AM_PrefixDForm, |
| AM_XForm, |
| AM_PCRel |
| }; |
| } // end namespace PPC |
| |
| class PPCTargetLowering : public TargetLowering { |
| const PPCSubtarget &Subtarget; |
| |
| public: |
| explicit PPCTargetLowering(const PPCTargetMachine &TM, |
| const PPCSubtarget &STI); |
| |
| /// getTargetNodeName() - This method returns the name of a target specific |
| /// DAG node. |
| const char *getTargetNodeName(unsigned Opcode) const override; |
| |
| bool isSelectSupported(SelectSupportKind Kind) const override { |
| // PowerPC does not support scalar condition selects on vectors. |
| return (Kind != SelectSupportKind::ScalarCondVectorVal); |
| } |
| |
| /// getPreferredVectorAction - The code we generate when vector types are |
| /// legalized by promoting the integer element type is often much worse |
| /// than code we generate if we widen the type for applicable vector types. |
| /// The issue with promoting is that the vector is scalaraized, individual |
| /// elements promoted and then the vector is rebuilt. So say we load a pair |
| /// of v4i8's and shuffle them. This will turn into a mess of 8 extending |
| /// loads, moves back into VSR's (or memory ops if we don't have moves) and |
| /// then the VPERM for the shuffle. All in all a very slow sequence. |
| TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) |
| const override { |
| if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| VT.getScalarSizeInBits() % 8 == 0) |
| return TypeWidenVector; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| bool useSoftFloat() const override; |
| |
| bool hasSPE() const; |
| |
| MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { |
| return MVT::i32; |
| } |
| |
| bool isCheapToSpeculateCttz() const override { |
| return true; |
| } |
| |
| bool isCheapToSpeculateCtlz() const override { |
| return true; |
| } |
| |
| bool isCtlzFast() const override { |
| return true; |
| } |
| |
| bool isEqualityCmpFoldedWithSignedCmp() const override { |
| return false; |
| } |
| |
| bool hasAndNotCompare(SDValue) const override { |
| return true; |
| } |
| |
| bool preferIncOfAddToSubOfNot(EVT VT) const override; |
| |
| bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { |
| return VT.isScalarInteger(); |
| } |
| |
| SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, |
| bool OptForSize, NegatibleCost &Cost, |
| unsigned Depth = 0) const override; |
| |
| /// getSetCCResultType - Return the ISD::SETCC ValueType |
| EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, |
| EVT VT) const override; |
| |
| /// Return true if target always benefits from combining into FMA for a |
| /// given value type. This must typically return false on targets where FMA |
| /// takes more cycles to execute than FADD. |
| bool enableAggressiveFMAFusion(EVT VT) const override; |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const override; |
| |
| /// SelectAddressEVXRegReg - Given the specified addressed, check to see if |
| /// it can be more efficiently represented as [r+imm]. |
| bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it |
| /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment |
| /// is non-zero, only accept displacement which is not suitable for [r+imm]. |
| /// Returns false if it can be represented by [r+imm], which are preferred. |
| bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG, |
| MaybeAlign EncodingAlignment = None) const; |
| |
| /// SelectAddressRegImm - Returns true if the address N can be represented |
| /// by a base register plus a signed 16-bit displacement [r+imm], and if it |
| /// is not better represented as reg+reg. If \p EncodingAlignment is |
| /// non-zero, only accept displacements suitable for instruction encoding |
| /// requirement, i.e. multiples of 4 for DS form. |
| bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG, |
| MaybeAlign EncodingAlignment) const; |
| bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressPCRel - Represent the specified address as pc relative to |
| /// be represented as [pc+imm] |
| bool SelectAddressPCRel(SDValue N, SDValue &Base) const; |
| |
| Sched::Preference getSchedulingPreference(SDNode *N) const override; |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| /// |
| void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const override; |
| |
| SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; |
| |
| SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) const override; |
| |
| Register getRegisterByName(const char* RegName, LLT VT, |
| const MachineFunction &MF) const override; |
| |
| void computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const override; |
| |
| Align getPrefLoopAlignment(MachineLoop *ML) const override; |
| |
| bool shouldInsertFencesForAtomic(const Instruction *I) const override { |
| return true; |
| } |
| |
| Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, |
| AtomicOrdering Ord) const override; |
| Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, |
| AtomicOrdering Ord) const override; |
| |
| TargetLowering::AtomicExpansionKind |
| shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; |
| |
| TargetLowering::AtomicExpansionKind |
| shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; |
| |
| Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, |
| AtomicRMWInst *AI, Value *AlignedAddr, |
| Value *Incr, Value *Mask, |
| Value *ShiftAmt, |
| AtomicOrdering Ord) const override; |
| Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, |
| AtomicCmpXchgInst *CI, |
| Value *AlignedAddr, Value *CmpVal, |
| Value *NewVal, Value *Mask, |
| AtomicOrdering Ord) const override; |
| |
| MachineBasicBlock * |
| EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *MBB) const override; |
| MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| unsigned AtomicSize, |
| unsigned BinOpcode, |
| unsigned CmpOpcode = 0, |
| unsigned CmpPred = 0) const; |
| MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| bool is8bit, |
| unsigned Opcode, |
| unsigned CmpOpcode = 0, |
| unsigned CmpPred = 0) const; |
| |
| MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const; |
| |
| MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const; |
| |
| MachineBasicBlock *emitProbedAlloca(MachineInstr &MI, |
| MachineBasicBlock *MBB) const; |
| |
| bool hasInlineStackProbe(MachineFunction &MF) const override; |
| |
| unsigned getStackProbeSize(MachineFunction &MF) const; |
| |
| ConstraintType getConstraintType(StringRef Constraint) const override; |
| |
| /// Examine constraint string and operand type and determine a weight value. |
| /// The operand object must already have been set up with the operand type. |
| ConstraintWeight getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const override; |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, MVT VT) const override; |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| uint64_t getByValTypeAlignment(Type *Ty, |
| const DataLayout &DL) const override; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const override; |
| |
| unsigned |
| getInlineAsmMemConstraint(StringRef ConstraintCode) const override { |
| if (ConstraintCode == "es") |
| return InlineAsm::Constraint_es; |
| else if (ConstraintCode == "Q") |
| return InlineAsm::Constraint_Q; |
| else if (ConstraintCode == "Z") |
| return InlineAsm::Constraint_Z; |
| else if (ConstraintCode == "Zy") |
| return InlineAsm::Constraint_Zy; |
| return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, |
| Type *Ty, unsigned AS, |
| Instruction *I = nullptr) const override; |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can |
| /// compare a register against the immediate without having to materialize |
| /// the immediate into a register. |
| bool isLegalICmpImmediate(int64_t Imm) const override; |
| |
| /// isLegalAddImmediate - Return true if the specified immediate is legal |
| /// add immediate, that is the target has add instructions which can |
| /// add a register and the immediate without having to materialize |
| /// the immediate into a register. |
| bool isLegalAddImmediate(int64_t Imm) const override; |
| |
| /// isTruncateFree - Return true if it's free to truncate a value of |
| /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in |
| /// register X1 to i32 by referencing its sub-register R1. |
| bool isTruncateFree(Type *Ty1, Type *Ty2) const override; |
| bool isTruncateFree(EVT VT1, EVT VT2) const override; |
| |
| bool isZExtFree(SDValue Val, EVT VT2) const override; |
| |
| bool isFPExtFree(EVT DestVT, EVT SrcVT) const override; |
| |
| /// Returns true if it is beneficial to convert a load of a constant |
| /// to just the constant itself. |
| bool shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const override; |
| |
| bool convertSelectOfConstantsToMath(EVT VT) const override { |
| return true; |
| } |
| |
| bool decomposeMulByConstant(LLVMContext &Context, EVT VT, |
| SDValue C) const override; |
| |
| bool isDesirableToTransformToIntegerOp(unsigned Opc, |
| EVT VT) const override { |
| // Only handle float load/store pair because float(fpr) load/store |
| // instruction has more cycles than integer(gpr) load/store in PPC. |
| if (Opc != ISD::LOAD && Opc != ISD::STORE) |
| return false; |
| if (VT != MVT::f32 && VT != MVT::f64) |
| return false; |
| |
| return true; |
| } |
| |
| // Returns true if the address of the global is stored in TOC entry. |
| bool isAccessedAsGotIndirect(SDValue N) const; |
| |
| bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; |
| |
| bool getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const override; |
| |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| EVT getOptimalMemOpType(const MemOp &Op, |
| const AttributeList &FuncAttributes) const override; |
| |
| /// Is unaligned memory access allowed for the given type, and is it fast |
| /// relative to software emulation. |
| bool allowsMisalignedMemoryAccesses( |
| EVT VT, unsigned AddrSpace, Align Alignment = Align(1), |
| MachineMemOperand::Flags Flags = MachineMemOperand::MONone, |
| bool *Fast = nullptr) const override; |
| |
| /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster |
| /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be |
| /// expanded to FMAs when this method returns true, otherwise fmuladd is |
| /// expanded to fmul + fadd. |
| bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
| EVT VT) const override; |
| |
| bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override; |
| |
| /// isProfitableToHoist - Check if it is profitable to hoist instruction |
| /// \p I to its dominator block. |
| /// For example, it is not profitable if \p I and it's only user can form a |
| /// FMA instruction, because Powerpc prefers FMADD. |
| bool isProfitableToHoist(Instruction *I) const override; |
| |
| const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; |
| |
| // Should we expand the build vector with shuffles? |
| bool |
| shouldExpandBuildVectorWithShuffles(EVT VT, |
| unsigned DefinedValues) const override; |
| |
| // Keep the zero-extensions for arguments to libcalls. |
| bool shouldKeepZExtForFP16Conv() const override { return true; } |
| |
| /// createFastISel - This method returns a target-specific FastISel object, |
| /// or null if the target does not support "fast" instruction selection. |
| FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, |
| const TargetLibraryInfo *LibInfo) const override; |
| |
| /// Returns true if an argument of type Ty needs to be passed in a |
| /// contiguous block of registers in calling convention CallConv. |
| bool functionArgumentNeedsConsecutiveRegisters( |
| Type *Ty, CallingConv::ID CallConv, bool isVarArg, |
| const DataLayout &DL) const override { |
| // We support any array type as "consecutive" block in the parameter |
| // save area. The element type defines the alignment requirement and |
| // whether the argument should go in GPRs, FPRs, or VRs if available. |
| // |
| // Note that clang uses this capability both to implement the ELFv2 |
| // homogeneous float/vector aggregate ABI, and to avoid having to use |
| // "byval" when passing aggregates that might fully fit in registers. |
| return Ty->isArrayTy(); |
| } |
| |
| /// If a physical register, this returns the register that receives the |
| /// exception address on entry to an EH pad. |
| Register |
| getExceptionPointerRegister(const Constant *PersonalityFn) const override; |
| |
| /// If a physical register, this returns the register that receives the |
| /// exception typeid on entry to a landing pad. |
| Register |
| getExceptionSelectorRegister(const Constant *PersonalityFn) const override; |
| |
| /// Override to support customized stack guard loading. |
| bool useLoadStackGuardNode() const override; |
| void insertSSPDeclarations(Module &M) const override; |
| Value *getSDagStackGuard(const Module &M) const override; |
| |
| bool isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const override; |
| |
| unsigned getJumpTableEncoding() const override; |
| bool isJumpTableRelative() const override; |
| SDValue getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const override; |
| const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI, |
| MCContext &Ctx) const override; |
| |
| /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), |
| /// compute the address flags of the node, get the optimal address mode |
| /// based on the flags, and set the Base and Disp based on the address mode. |
| PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N, |
| SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG, |
| MaybeAlign Align) const; |
| /// SelectForceXFormMode - Given the specified address, force it to be |
| /// represented as an indexed [r+r] operation (an XForm instruction). |
| PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG) const; |
| |
| bool |
| splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, |
| SDValue *Parts, unsigned NumParts, MVT PartVT, |
| Optional<CallingConv::ID> CC) const override; |
| /// Structure that collects some common arguments that get passed around |
| /// between the functions for call lowering. |
| struct CallFlags { |
| const CallingConv::ID CallConv; |
| const bool IsTailCall : 1; |
| const bool IsVarArg : 1; |
| const bool IsPatchPoint : 1; |
| const bool IsIndirect : 1; |
| const bool HasNest : 1; |
| const bool NoMerge : 1; |
| |
| CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg, |
| bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge) |
| : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg), |
| IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect), |
| HasNest(HasNest), NoMerge(NoMerge) {} |
| }; |
| |
| CCAssignFn *ccAssignFnForCall(CallingConv::ID CC, bool Return, |
| bool IsVarArg) const; |
| |
| private: |
| struct ReuseLoadInfo { |
| SDValue Ptr; |
| SDValue Chain; |
| SDValue ResChain; |
| MachinePointerInfo MPI; |
| bool IsDereferenceable = false; |
| bool IsInvariant = false; |
| Align Alignment; |
| AAMDNodes AAInfo; |
| const MDNode *Ranges = nullptr; |
| |
| ReuseLoadInfo() = default; |
| |
| MachineMemOperand::Flags MMOFlags() const { |
| MachineMemOperand::Flags F = MachineMemOperand::MONone; |
| if (IsDereferenceable) |
| F |= MachineMemOperand::MODereferenceable; |
| if (IsInvariant) |
| F |= MachineMemOperand::MOInvariant; |
| return F; |
| } |
| }; |
| |
| // Map that relates a set of common address flags to PPC addressing modes. |
| std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap; |
| void initializeAddrModeMap(); |
| |
| bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, |
| SelectionDAG &DAG, |
| ISD::LoadExtType ET = ISD::NON_EXTLOAD) const; |
| void spliceIntoChain(SDValue ResChain, SDValue NewResChain, |
| SelectionDAG &DAG) const; |
| |
| void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, |
| SelectionDAG &DAG, const SDLoc &dl) const; |
| SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| bool directMoveIsProfitable(const SDValue &Op) const; |
| SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; |
| SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; |
| |
| bool |
| IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const; |
| |
| bool IsEligibleForTailCallOptimization_64SVR4( |
| SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, |
| bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const; |
| |
| SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff, |
| SDValue Chain, SDValue &LROpOut, |
| SDValue &FPOpOut, |
| const SDLoc &dl) const; |
| |
| SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const; |
| |
| SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| |
| SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, |
| SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, |
| SDValue InFlag, SDValue Chain, SDValue CallSeqStart, |
| SDValue &Callee, int SPDiff, unsigned NumBytes, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const; |
| |
| SDValue |
| LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const override; |
| |
| SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const override; |
| |
| bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const override; |
| |
| SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const override; |
| |
| SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, |
| SelectionDAG &DAG, SDValue ArgVal, |
| const SDLoc &dl) const; |
| |
| SDValue LowerFormalArguments_AIX( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; |
| SDValue LowerFormalArguments_64SVR4( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; |
| SDValue LowerFormalArguments_32SVR4( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; |
| |
| SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, |
| SDValue CallSeqStart, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const; |
| SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const; |
| SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const; |
| |
| SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG) const; |
| SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase, |
| DAGCombinerInfo &DCI) const; |
| |
| /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces |
| /// SETCC with integer subtraction when (1) there is a legal way of doing it |
| /// (2) keeping the result of comparison in GPR has performance benefit. |
| SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps, bool &UseOneConstNR, |
| bool Reciprocal) const override; |
| SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps) const override; |
| SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, |
| const DenormalMode &Mode) const override; |
| SDValue getSqrtResultForDenormInput(SDValue Operand, |
| SelectionDAG &DAG) const override; |
| unsigned combineRepeatedFPDivisors() const override; |
| |
| SDValue |
| combineElementTruncationToVectorTruncation(SDNode *N, |
| DAGCombinerInfo &DCI) const; |
| |
| /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be |
| /// handled by the VINSERTH instruction introduced in ISA 3.0. This is |
| /// essentially any shuffle of v8i16 vectors that just inserts one element |
| /// from one vector into the other. |
| SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; |
| |
| /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be |
| /// handled by the VINSERTB instruction introduced in ISA 3.0. This is |
| /// essentially v16i8 vector version of VINSERTH. |
| SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; |
| |
| /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be |
| /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1. |
| SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; |
| |
| // Return whether the call instruction can potentially be optimized to a |
| // tail call. This will cause the optimizers to attempt to move, or |
| // duplicate return instructions to help enable tail call optimizations. |
| bool mayBeEmittedAsTailCall(const CallInst *CI) const override; |
| bool hasBitPreservingFPLogic(EVT VT) const override; |
| bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; |
| |
| /// getAddrModeForFlags - Based on the set of address flags, select the most |
| /// optimal instruction format to match by. |
| PPC::AddrMode getAddrModeForFlags(unsigned Flags) const; |
| |
| /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute |
| /// the address flags of the load/store instruction that is to be matched. |
| /// The address flags are stored in a map, which is then searched |
| /// through to determine the optimal load/store instruction format. |
| unsigned computeMOFlags(const SDNode *Parent, SDValue N, |
| SelectionDAG &DAG) const; |
| }; // end class PPCTargetLowering |
| |
| namespace PPC { |
| |
| FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, |
| const TargetLibraryInfo *LibInfo); |
| |
| } // end namespace PPC |
| |
| bool isIntS16Immediate(SDNode *N, int16_t &Imm); |
| bool isIntS16Immediate(SDValue Op, int16_t &Imm); |
| bool isIntS34Immediate(SDNode *N, int64_t &Imm); |
| bool isIntS34Immediate(SDValue Op, int64_t &Imm); |
| |
| bool convertToNonDenormSingle(APInt &ArgAPInt); |
| bool convertToNonDenormSingle(APFloat &ArgAPFloat); |
| bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat); |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H |