| //===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This describes the calling conventions for the PowerPC 32- and 64-bit |
| // architectures. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| /// CCIfSubtarget - Match if the current subtarget has a feature F. |
| class CCIfSubtarget<string F, CCAction A> |
| : CCIf<!strconcat("static_cast<const PPCSubtarget&>" |
| "(State.getMachineFunction().getSubtarget()).", |
| F), |
| A>; |
| class CCIfNotSubtarget<string F, CCAction A> |
| : CCIf<!strconcat("!static_cast<const PPCSubtarget&>" |
| "(State.getMachineFunction().getSubtarget()).", |
| F), |
| A>; |
| class CCIfOrigArgWasNotPPCF128<CCAction A> |
| : CCIf<"!static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)", |
| A>; |
| class CCIfOrigArgWasPPCF128<CCAction A> |
| : CCIf<"static_cast<PPCCCState *>(&State)->WasOriginalArgPPCF128(ValNo)", |
| A>; |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention |
| //===----------------------------------------------------------------------===// |
| |
| // PPC64 AnyReg return-value convention. No explicit register is specified for |
| // the return-value. The register allocator is allowed and expected to choose |
| // any free register. |
| // |
| // This calling convention is currently only supported by the stackmap and |
| // patchpoint intrinsics. All other uses will result in an assert on Debug |
| // builds. On Release builds we fallback to the PPC C calling convention. |
| def RetCC_PPC64_AnyReg : CallingConv<[ |
| CCCustom<"CC_PPC_AnyReg_Error"> |
| ]>; |
| |
| // Return-value convention for PowerPC coldcc. |
| let Entry = 1 in |
| def RetCC_PPC_Cold : CallingConv<[ |
| // Use the same return registers as RetCC_PPC, but limited to only |
| // one return value. The remaining return values will be saved to |
| // the stack. |
| CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>, |
| CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>, |
| |
| CCIfType<[i32], CCAssignToReg<[R3]>>, |
| CCIfType<[i64], CCAssignToReg<[X3]>>, |
| CCIfType<[i128], CCAssignToReg<[X3]>>, |
| |
| CCIfType<[f32], CCAssignToReg<[F1]>>, |
| CCIfType<[f64], CCAssignToReg<[F1]>>, |
| CCIfType<[f128], CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2]>>>, |
| |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64], |
| CCIfSubtarget<"hasAltivec()", |
| CCAssignToReg<[V2]>>> |
| ]>; |
| |
| // Return-value convention for PowerPC |
| let Entry = 1 in |
| def RetCC_PPC : CallingConv<[ |
| CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>, |
| |
| // On PPC64, integer return values are always promoted to i64 |
| CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>, |
| CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>, |
| |
| CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>, |
| CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>, |
| CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>, |
| |
| // Floating point types returned as "direct" go into F1 .. F8; note that |
| // only the ELFv2 ABI fully utilizes all these registers. |
| CCIfNotSubtarget<"hasSPE()", |
| CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>, |
| CCIfNotSubtarget<"hasSPE()", |
| CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>, |
| CCIfSubtarget<"hasSPE()", |
| CCIfType<[f32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>, |
| CCIfSubtarget<"hasSPE()", |
| CCIfType<[f64], CCCustom<"CC_PPC32_SPE_RetF64">>>, |
| |
| // For P9, f128 are passed in vector registers. |
| CCIfType<[f128], |
| CCIfSubtarget<"hasAltivec()", |
| CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>, |
| |
| // Vector types returned as "direct" go into V2 .. V9; note that only the |
| // ELFv2 ABI fully utilizes all these registers. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64], |
| CCIfSubtarget<"hasAltivec()", |
| CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>> |
| ]>; |
| |
| // No explicit register is specified for the AnyReg calling convention. The |
| // register allocator may assign the arguments to any free register. |
| // |
| // This calling convention is currently only supported by the stackmap and |
| // patchpoint intrinsics. All other uses will result in an assert on Debug |
| // builds. On Release builds we fallback to the PPC C calling convention. |
| def CC_PPC64_AnyReg : CallingConv<[ |
| CCCustom<"CC_PPC_AnyReg_Error"> |
| ]>; |
| |
| // Note that we don't currently have calling conventions for 64-bit |
| // PowerPC, but handle all the complexities of the ABI in the lowering |
| // logic. FIXME: See if the logic can be simplified with use of CCs. |
| // This may require some extensions to current table generation. |
| |
| // Simple calling convention for 64-bit ELF PowerPC fast isel. |
| // Only handle ints and floats. All ints are promoted to i64. |
| // Vector types and quadword ints are not handled. |
| let Entry = 1 in |
| def CC_PPC64_ELF_FIS : CallingConv<[ |
| CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>, |
| |
| CCIfType<[i1], CCPromoteToType<i64>>, |
| CCIfType<[i8], CCPromoteToType<i64>>, |
| CCIfType<[i16], CCPromoteToType<i64>>, |
| CCIfType<[i32], CCPromoteToType<i64>>, |
| CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>, |
| CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>> |
| ]>; |
| |
| // Simple return-value convention for 64-bit ELF PowerPC fast isel. |
| // All small ints are promoted to i64. Vector types, quadword ints, |
| // and multiple register returns are "supported" to avoid compile |
| // errors, but none are handled by the fast selector. |
| let Entry = 1 in |
| def RetCC_PPC64_ELF_FIS : CallingConv<[ |
| CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>, |
| |
| CCIfType<[i1], CCPromoteToType<i64>>, |
| CCIfType<[i8], CCPromoteToType<i64>>, |
| CCIfType<[i16], CCPromoteToType<i64>>, |
| CCIfType<[i32], CCPromoteToType<i64>>, |
| CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>, |
| CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>, |
| CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, |
| CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, |
| CCIfType<[f128], |
| CCIfSubtarget<"hasAltivec()", |
| CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>, |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64], |
| CCIfSubtarget<"hasAltivec()", |
| CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // PowerPC System V Release 4 32-bit ABI |
| //===----------------------------------------------------------------------===// |
| |
| def CC_PPC32_SVR4_Common : CallingConv<[ |
| CCIfType<[i1], CCPromoteToType<i32>>, |
| |
| // The ABI requires i64 to be passed in two adjacent registers with the first |
| // register having an odd register number. |
| CCIfType<[i32], |
| CCIfSplit<CCIfSubtarget<"useSoftFloat()", |
| CCIfOrigArgWasNotPPCF128< |
| CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>>, |
| |
| CCIfType<[i32], |
| CCIfSplit<CCIfNotSubtarget<"useSoftFloat()", |
| CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>>, |
| CCIfType<[f64], |
| CCIfSubtarget<"hasSPE()", |
| CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>, |
| CCIfSplit<CCIfSubtarget<"useSoftFloat()", |
| CCIfOrigArgWasPPCF128<CCCustom< |
| "CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128">>>>, |
| |
| // The 'nest' parameter, if any, is passed in R11. |
| CCIfNest<CCAssignToReg<[R11]>>, |
| |
| // The first 8 integer arguments are passed in integer registers. |
| CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>, |
| |
| // Make sure the i64 words from a long double are either both passed in |
| // registers or both passed on the stack. |
| CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>, |
| |
| // FP values are passed in F1 - F8. |
| CCIfType<[f32, f64], |
| CCIfNotSubtarget<"hasSPE()", |
| CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>>, |
| CCIfType<[f64], |
| CCIfSubtarget<"hasSPE()", |
| CCCustom<"CC_PPC32_SPE_CustomSplitFP64">>>, |
| CCIfType<[f32], |
| CCIfSubtarget<"hasSPE()", |
| CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>>, |
| |
| // Split arguments have an alignment of 8 bytes on the stack. |
| CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>, |
| |
| CCIfType<[i32], CCAssignToStack<4, 4>>, |
| |
| // Floats are stored in double precision format, thus they have the same |
| // alignment and size as doubles. |
| // With SPE floats are stored as single precision, so have alignment and |
| // size of int. |
| CCIfType<[f32,f64], CCIfNotSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>, |
| CCIfType<[f32], CCIfSubtarget<"hasSPE()", CCAssignToStack<4, 4>>>, |
| CCIfType<[f64], CCIfSubtarget<"hasSPE()", CCAssignToStack<8, 8>>>, |
| |
| // Vectors and float128 get 16-byte stack slots that are 16-byte aligned. |
| CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>, |
| CCIfType<[f128], CCIfSubtarget<"hasAltivec()", CCAssignToStack<16, 16>>> |
| ]>; |
| |
| // This calling convention puts vector arguments always on the stack. It is used |
| // to assign vector arguments which belong to the variable portion of the |
| // parameter list of a variable argument function. |
| let Entry = 1 in |
| def CC_PPC32_SVR4_VarArg : CallingConv<[ |
| CCDelegateTo<CC_PPC32_SVR4_Common> |
| ]>; |
| |
| // In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to |
| // put vector arguments in vector registers before putting them on the stack. |
| let Entry = 1 in |
| def CC_PPC32_SVR4 : CallingConv<[ |
| // The first 12 Vector arguments are passed in AltiVec registers. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32, v2f64], |
| CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7, |
| V8, V9, V10, V11, V12, V13]>>>, |
| |
| // Float128 types treated as vector arguments. |
| CCIfType<[f128], |
| CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7, |
| V8, V9, V10, V11, V12, V13]>>>, |
| |
| CCDelegateTo<CC_PPC32_SVR4_Common> |
| ]>; |
| |
| // Helper "calling convention" to handle aggregate by value arguments. |
| // Aggregate by value arguments are always placed in the local variable space |
| // of the caller. This calling convention is only used to assign those stack |
| // offsets in the callers stack frame. |
| // |
| // Still, the address of the aggregate copy in the callers stack frame is passed |
| // in a GPR (or in the parameter list area if all GPRs are allocated) from the |
| // caller to the callee. The location for the address argument is assigned by |
| // the CC_PPC32_SVR4 calling convention. |
| // |
| // The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are |
| // not passed by value. |
| |
| let Entry = 1 in |
| def CC_PPC32_SVR4_ByVal : CallingConv<[ |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| CCCustom<"CC_PPC32_SVR4_Custom_Dummy"> |
| ]>; |
| |
| def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27, |
| V28, V29, V30, V31)>; |
| |
| // SPE does not use FPRs, so break out the common register set as base. |
| def CSR_SVR432_COMM : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20, |
| R21, R22, R23, R24, R25, R26, R27, |
| R28, R29, R30, R31, CR2, CR3, CR4 |
| )>; |
| def CSR_SVR432 : CalleeSavedRegs<(add CSR_SVR432_COMM, F14, F15, F16, F17, F18, |
| F19, F20, F21, F22, F23, F24, F25, F26, |
| F27, F28, F29, F30, F31 |
| )>; |
| def CSR_SPE : CalleeSavedRegs<(add S14, S15, S16, S17, S18, S19, S20, S21, S22, |
| S23, S24, S25, S26, S27, S28, S29, S30, S31 |
| )>; |
| |
| def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>; |
| |
| def CSR_SVR432_SPE : CalleeSavedRegs<(add CSR_SVR432_COMM, CSR_SPE)>; |
| |
| def CSR_AIX32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20, |
| R21, R22, R23, R24, R25, R26, R27, R28, |
| R29, R30, R31, F14, F15, F16, F17, F18, |
| F19, F20, F21, F22, F23, F24, F25, F26, |
| F27, F28, F29, F30, F31, CR2, CR3, CR4 |
| )>; |
| |
| def CSR_AIX32_Altivec : CalleeSavedRegs<(add CSR_AIX32, CSR_Altivec)>; |
| |
| // Common CalleeSavedRegs for SVR4 and AIX. |
| def CSR_PPC64 : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20, |
| X21, X22, X23, X24, X25, X26, X27, X28, |
| X29, X30, X31, F14, F15, F16, F17, F18, |
| F19, F20, F21, F22, F23, F24, F25, F26, |
| F27, F28, F29, F30, F31, CR2, CR3, CR4 |
| )>; |
| |
| |
| def CSR_PPC64_Altivec : CalleeSavedRegs<(add CSR_PPC64, CSR_Altivec)>; |
| |
| def CSR_PPC64_R2 : CalleeSavedRegs<(add CSR_PPC64, X2)>; |
| |
| def CSR_PPC64_R2_Altivec : CalleeSavedRegs<(add CSR_PPC64_Altivec, X2)>; |
| |
| def CSR_NoRegs : CalleeSavedRegs<(add)>; |
| |
| // coldcc calling convection marks most registers as non-volatile. |
| // Do not include r1 since the stack pointer is never considered a CSR. |
| // Do not include r2, since it is the TOC register and is added depending |
| // on whether or not the function uses the TOC and is a non-leaf. |
| // Do not include r0,r11,r13 as they are optional in functional linkage |
| // and value may be altered by inter-library calls. |
| // Do not include r12 as it is used as a scratch register. |
| // Do not include return registers r3, f1, v2. |
| def CSR_SVR32_ColdCC_Common : CalleeSavedRegs<(add (sequence "R%u", 4, 10), |
| (sequence "R%u", 14, 31), |
| (sequence "CR%u", 0, 7))>; |
| |
| def CSR_SVR32_ColdCC : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common, |
| F0, (sequence "F%u", 2, 31))>; |
| |
| |
| def CSR_SVR32_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR32_ColdCC, |
| (sequence "V%u", 0, 1), |
| (sequence "V%u", 3, 31))>; |
| |
| def CSR_SVR32_ColdCC_SPE : CalleeSavedRegs<(add CSR_SVR32_ColdCC_Common, |
| (sequence "S%u", 4, 10), |
| (sequence "S%u", 14, 31))>; |
| |
| def CSR_SVR64_ColdCC : CalleeSavedRegs<(add (sequence "X%u", 4, 10), |
| (sequence "X%u", 14, 31), |
| F0, (sequence "F%u", 2, 31), |
| (sequence "CR%u", 0, 7))>; |
| |
| def CSR_SVR64_ColdCC_R2: CalleeSavedRegs<(add CSR_SVR64_ColdCC, X2)>; |
| |
| def CSR_SVR64_ColdCC_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC, |
| (sequence "V%u", 0, 1), |
| (sequence "V%u", 3, 31))>; |
| |
| def CSR_SVR64_ColdCC_R2_Altivec : CalleeSavedRegs<(add CSR_SVR64_ColdCC_Altivec, X2)>; |
| |
| def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10), |
| (sequence "X%u", 14, 31), |
| (sequence "F%u", 0, 31), |
| (sequence "CR%u", 0, 7))>; |
| |
| def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs, |
| (sequence "V%u", 0, 31))>; |
| |
| def CSR_64_AllRegs_AIX_Dflt_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs, |
| (sequence "V%u", 0, 19))>; |
| |
| def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec, |
| (sequence "VSL%u", 0, 31))>; |
| |
| def CSR_64_AllRegs_AIX_Dflt_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec, |
| (sequence "VSL%u", 0, 19))>; |