blob: 4cac0e3551f611f0a199be690dcb44dabb2ca5b4 [file] [log] [blame]
//===-- PPCBranchSelector.cpp - Emit long conditional branches ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that scans a machine function to determine which
// conditional branches need more than 16 bits of displacement to reach their
// target basic block. It does this in two passes; a calculation of basic block
// positions pass, and a branch pseudo op to machine branch opcode pass. This
// pass should be run last, just before the assembly printer.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "ppc-branch-select"
STATISTIC(NumExpanded, "Number of branches expanded to long format");
STATISTIC(NumPrefixed, "Number of prefixed instructions");
STATISTIC(NumPrefixedAligned,
"Number of prefixed instructions that have been aligned");
namespace {
struct PPCBSel : public MachineFunctionPass {
static char ID;
PPCBSel() : MachineFunctionPass(ID) {
initializePPCBSelPass(*PassRegistry::getPassRegistry());
}
// The sizes of the basic blocks in the function (the first
// element of the pair); the second element of the pair is the amount of the
// size that is due to potential padding.
std::vector<std::pair<unsigned, unsigned>> BlockSizes;
// The first block number which has imprecise instruction address.
int FirstImpreciseBlock = -1;
unsigned GetAlignmentAdjustment(MachineBasicBlock &MBB, unsigned Offset);
unsigned ComputeBlockSizes(MachineFunction &Fn);
void modifyAdjustment(MachineFunction &Fn);
int computeBranchSize(MachineFunction &Fn,
const MachineBasicBlock *Src,
const MachineBasicBlock *Dest,
unsigned BrOffset);
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return "PowerPC Branch Selector"; }
};
char PPCBSel::ID = 0;
}
INITIALIZE_PASS(PPCBSel, "ppc-branch-select", "PowerPC Branch Selector",
false, false)
/// createPPCBranchSelectionPass - returns an instance of the Branch Selection
/// Pass
///
FunctionPass *llvm::createPPCBranchSelectionPass() {
return new PPCBSel();
}
/// In order to make MBB aligned, we need to add an adjustment value to the
/// original Offset.
unsigned PPCBSel::GetAlignmentAdjustment(MachineBasicBlock &MBB,
unsigned Offset) {
const Align Alignment = MBB.getAlignment();
if (Alignment == Align(1))
return 0;
const Align ParentAlign = MBB.getParent()->getAlignment();
if (Alignment <= ParentAlign)
return offsetToAlignment(Offset, Alignment);
// The alignment of this MBB is larger than the function's alignment, so we
// can't tell whether or not it will insert nops. Assume that it will.
if (FirstImpreciseBlock < 0)
FirstImpreciseBlock = MBB.getNumber();
return Alignment.value() + offsetToAlignment(Offset, Alignment);
}
/// We need to be careful about the offset of the first block in the function
/// because it might not have the function's alignment. This happens because,
/// under the ELFv2 ABI, for functions which require a TOC pointer, we add a
/// two-instruction sequence to the start of the function.
/// Note: This needs to be synchronized with the check in
/// PPCLinuxAsmPrinter::EmitFunctionBodyStart.
static inline unsigned GetInitialOffset(MachineFunction &Fn) {
unsigned InitialOffset = 0;
if (Fn.getSubtarget<PPCSubtarget>().isELFv2ABI() &&
!Fn.getRegInfo().use_empty(PPC::X2))
InitialOffset = 8;
return InitialOffset;
}
/// Measure each MBB and compute a size for the entire function.
unsigned PPCBSel::ComputeBlockSizes(MachineFunction &Fn) {
const PPCInstrInfo *TII =
static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
unsigned FuncSize = GetInitialOffset(Fn);
for (MachineBasicBlock &MBB : Fn) {
// The end of the previous block may have extra nops if this block has an
// alignment requirement.
if (MBB.getNumber() > 0) {
unsigned AlignExtra = GetAlignmentAdjustment(MBB, FuncSize);
auto &BS = BlockSizes[MBB.getNumber()-1];
BS.first += AlignExtra;
BS.second = AlignExtra;
FuncSize += AlignExtra;
}
unsigned BlockSize = 0;
unsigned UnalignedBytesRemaining = 0;
for (MachineInstr &MI : MBB) {
unsigned MINumBytes = TII->getInstSizeInBytes(MI);
if (MI.isInlineAsm() && (FirstImpreciseBlock < 0))
FirstImpreciseBlock = MBB.getNumber();
if (TII->isPrefixed(MI.getOpcode())) {
NumPrefixed++;
// All 8 byte instructions may require alignment. Each 8 byte
// instruction may be aligned by another 4 bytes.
// This means that an 8 byte instruction may require 12 bytes
// (8 for the instruction itself and 4 for the alignment nop).
// This will happen if an 8 byte instruction can be aligned to 64 bytes
// by only adding a 4 byte nop.
// We don't know the alignment at this point in the code so we have to
// adopt a more pessimistic approach. If an instruction may need
// alignment we assume that it does need alignment and add 4 bytes to
// it. As a result we may end up with more long branches than before
// but we are in the safe position where if we need a long branch we
// have one.
// The if statement checks to make sure that two 8 byte instructions
// are at least 64 bytes away from each other. It is not possible for
// two instructions that both need alignment to be within 64 bytes of
// each other.
if (!UnalignedBytesRemaining) {
BlockSize += 4;
UnalignedBytesRemaining = 60;
NumPrefixedAligned++;
}
}
UnalignedBytesRemaining -= std::min(UnalignedBytesRemaining, MINumBytes);
BlockSize += MINumBytes;
}
BlockSizes[MBB.getNumber()].first = BlockSize;
FuncSize += BlockSize;
}
return FuncSize;
}
/// Modify the basic block align adjustment.
void PPCBSel::modifyAdjustment(MachineFunction &Fn) {
unsigned Offset = GetInitialOffset(Fn);
for (MachineBasicBlock &MBB : Fn) {
if (MBB.getNumber() > 0) {
auto &BS = BlockSizes[MBB.getNumber()-1];
BS.first -= BS.second;
Offset -= BS.second;
unsigned AlignExtra = GetAlignmentAdjustment(MBB, Offset);
BS.first += AlignExtra;
BS.second = AlignExtra;
Offset += AlignExtra;
}
Offset += BlockSizes[MBB.getNumber()].first;
}
}
/// Determine the offset from the branch in Src block to the Dest block.
/// BrOffset is the offset of the branch instruction inside Src block.
int PPCBSel::computeBranchSize(MachineFunction &Fn,
const MachineBasicBlock *Src,
const MachineBasicBlock *Dest,
unsigned BrOffset) {
int BranchSize;
Align MaxAlign = Align(4);
bool NeedExtraAdjustment = false;
if (Dest->getNumber() <= Src->getNumber()) {
// If this is a backwards branch, the delta is the offset from the
// start of this block to this branch, plus the sizes of all blocks
// from this block to the dest.
BranchSize = BrOffset;
MaxAlign = std::max(MaxAlign, Src->getAlignment());
int DestBlock = Dest->getNumber();
BranchSize += BlockSizes[DestBlock].first;
for (unsigned i = DestBlock+1, e = Src->getNumber(); i < e; ++i) {
BranchSize += BlockSizes[i].first;
MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment());
}
NeedExtraAdjustment = (FirstImpreciseBlock >= 0) &&
(DestBlock >= FirstImpreciseBlock);
} else {
// Otherwise, add the size of the blocks between this block and the
// dest to the number of bytes left in this block.
unsigned StartBlock = Src->getNumber();
BranchSize = BlockSizes[StartBlock].first - BrOffset;
MaxAlign = std::max(MaxAlign, Dest->getAlignment());
for (unsigned i = StartBlock+1, e = Dest->getNumber(); i != e; ++i) {
BranchSize += BlockSizes[i].first;
MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment());
}
NeedExtraAdjustment = (FirstImpreciseBlock >= 0) &&
(Src->getNumber() >= FirstImpreciseBlock);
}
// We tend to over estimate code size due to large alignment and
// inline assembly. Usually it causes larger computed branch offset.
// But sometimes it may also causes smaller computed branch offset
// than actual branch offset. If the offset is close to the limit of
// encoding, it may cause problem at run time.
// Following is a simplified example.
//
// actual estimated
// address address
// ...
// bne Far 100 10c
// .p2align 4
// Near: 110 110
// ...
// Far: 8108 8108
//
// Actual offset: 0x8108 - 0x100 = 0x8008
// Computed offset: 0x8108 - 0x10c = 0x7ffc
//
// This example also shows when we can get the largest gap between
// estimated offset and actual offset. If there is an aligned block
// ABB between branch and target, assume its alignment is <align>
// bits. Now consider the accumulated function size FSIZE till the end
// of previous block PBB. If the estimated FSIZE is multiple of
// 2^<align>, we don't need any padding for the estimated address of
// ABB. If actual FSIZE at the end of PBB is 4 bytes more than
// multiple of 2^<align>, then we need (2^<align> - 4) bytes of
// padding. It also means the actual branch offset is (2^<align> - 4)
// larger than computed offset. Other actual FSIZE needs less padding
// bytes, so causes smaller gap between actual and computed offset.
//
// On the other hand, if the inline asm or large alignment occurs
// between the branch block and destination block, the estimated address
// can be <delta> larger than actual address. If padding bytes are
// needed for a later aligned block, the actual number of padding bytes
// is at most <delta> more than estimated padding bytes. So the actual
// aligned block address is less than or equal to the estimated aligned
// block address. So the actual branch offset is less than or equal to
// computed branch offset.
//
// The computed offset is at most ((1 << alignment) - 4) bytes smaller
// than actual offset. So we add this number to the offset for safety.
if (NeedExtraAdjustment)
BranchSize += MaxAlign.value() - 4;
return BranchSize;
}
bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
const PPCInstrInfo *TII =
static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
// Give the blocks of the function a dense, in-order, numbering.
Fn.RenumberBlocks();
BlockSizes.resize(Fn.getNumBlockIDs());
FirstImpreciseBlock = -1;
// Measure each MBB and compute a size for the entire function.
unsigned FuncSize = ComputeBlockSizes(Fn);
// If the entire function is smaller than the displacement of a branch field,
// we know we don't need to shrink any branches in this function. This is a
// common case.
if (FuncSize < (1 << 15)) {
BlockSizes.clear();
return false;
}
// For each conditional branch, if the offset to its destination is larger
// than the offset field allows, transform it into a long branch sequence
// like this:
// short branch:
// bCC MBB
// long branch:
// b!CC $PC+8
// b MBB
//
bool MadeChange = true;
bool EverMadeChange = false;
while (MadeChange) {
// Iteratively expand branches until we reach a fixed point.
MadeChange = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock &MBB = *MFI;
unsigned MBBStartOffset = 0;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
MachineBasicBlock *Dest = nullptr;
if (I->getOpcode() == PPC::BCC && !I->getOperand(2).isImm())
Dest = I->getOperand(2).getMBB();
else if ((I->getOpcode() == PPC::BC || I->getOpcode() == PPC::BCn) &&
!I->getOperand(1).isImm())
Dest = I->getOperand(1).getMBB();
else if ((I->getOpcode() == PPC::BDNZ8 || I->getOpcode() == PPC::BDNZ ||
I->getOpcode() == PPC::BDZ8 || I->getOpcode() == PPC::BDZ) &&
!I->getOperand(0).isImm())
Dest = I->getOperand(0).getMBB();
if (!Dest) {
MBBStartOffset += TII->getInstSizeInBytes(*I);
continue;
}
// Determine the offset from the current branch to the destination
// block.
int BranchSize = computeBranchSize(Fn, &MBB, Dest, MBBStartOffset);
// If this branch is in range, ignore it.
if (isInt<16>(BranchSize)) {
MBBStartOffset += 4;
continue;
}
// Otherwise, we have to expand it to a long branch.
MachineInstr &OldBranch = *I;
DebugLoc dl = OldBranch.getDebugLoc();
if (I->getOpcode() == PPC::BCC) {
// The BCC operands are:
// 0. PPC branch predicate
// 1. CR register
// 2. Target MBB
PPC::Predicate Pred = (PPC::Predicate)I->getOperand(0).getImm();
Register CRReg = I->getOperand(1).getReg();
// Jump over the uncond branch inst (i.e. $PC+8) on opposite condition.
BuildMI(MBB, I, dl, TII->get(PPC::BCC))
.addImm(PPC::InvertPredicate(Pred)).addReg(CRReg).addImm(2);
} else if (I->getOpcode() == PPC::BC) {
Register CRBit = I->getOperand(0).getReg();
BuildMI(MBB, I, dl, TII->get(PPC::BCn)).addReg(CRBit).addImm(2);
} else if (I->getOpcode() == PPC::BCn) {
Register CRBit = I->getOperand(0).getReg();
BuildMI(MBB, I, dl, TII->get(PPC::BC)).addReg(CRBit).addImm(2);
} else if (I->getOpcode() == PPC::BDNZ) {
BuildMI(MBB, I, dl, TII->get(PPC::BDZ)).addImm(2);
} else if (I->getOpcode() == PPC::BDNZ8) {
BuildMI(MBB, I, dl, TII->get(PPC::BDZ8)).addImm(2);
} else if (I->getOpcode() == PPC::BDZ) {
BuildMI(MBB, I, dl, TII->get(PPC::BDNZ)).addImm(2);
} else if (I->getOpcode() == PPC::BDZ8) {
BuildMI(MBB, I, dl, TII->get(PPC::BDNZ8)).addImm(2);
} else {
llvm_unreachable("Unhandled branch type!");
}
// Uncond branch to the real destination.
I = BuildMI(MBB, I, dl, TII->get(PPC::B)).addMBB(Dest);
// Remove the old branch from the function.
OldBranch.eraseFromParent();
// Remember that this instruction is 8-bytes, increase the size of the
// block by 4, remember to iterate.
BlockSizes[MBB.getNumber()].first += 4;
MBBStartOffset += 8;
++NumExpanded;
MadeChange = true;
}
}
if (MadeChange) {
// If we're going to iterate again, make sure we've updated our
// padding-based contributions to the block sizes.
modifyAdjustment(Fn);
}
EverMadeChange |= MadeChange;
}
BlockSizes.clear();
return EverMadeChange;
}