| //===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the PPCMCCodeEmitter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/PPCFixupKinds.h" |
| #include "PPCInstrInfo.h" |
| #include "PPCMCCodeEmitter.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/MC/MCFixup.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "mccodeemitter" |
| |
| STATISTIC(MCNumEmitted, "Number of MC instructions emitted"); |
| |
| MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII, |
| const MCRegisterInfo &MRI, |
| MCContext &Ctx) { |
| return new PPCMCCodeEmitter(MCII, Ctx); |
| } |
| |
| unsigned PPCMCCodeEmitter:: |
| getDirectBrEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| |
| if (MO.isReg() || MO.isImm()) |
| return getMachineOpValue(MI, MO, Fixups, STI); |
| // Add a fixup for the branch target. |
| Fixups.push_back(MCFixup::create(0, MO.getExpr(), |
| ((MI.getOpcode() == PPC::BL8_NOTOC || |
| MI.getOpcode() == PPC::BL8_NOTOC_TLS) |
| ? (MCFixupKind)PPC::fixup_ppc_br24_notoc |
| : (MCFixupKind)PPC::fixup_ppc_br24))); |
| return 0; |
| } |
| |
| unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); |
| |
| // Add a fixup for the branch target. |
| Fixups.push_back(MCFixup::create(0, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_brcond14)); |
| return 0; |
| } |
| |
| unsigned PPCMCCodeEmitter:: |
| getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); |
| |
| // Add a fixup for the branch target. |
| Fixups.push_back(MCFixup::create(0, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_br24abs)); |
| return 0; |
| } |
| |
| unsigned PPCMCCodeEmitter:: |
| getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); |
| |
| // Add a fixup for the branch target. |
| Fixups.push_back(MCFixup::create(0, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_brcond14abs)); |
| return 0; |
| } |
| |
| unsigned |
| PPCMCCodeEmitter::getVSRpEvenEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| assert(MI.getOperand(OpNo).isReg() && "Operand should be a register"); |
| unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) |
| << 1; |
| return RegBits; |
| } |
| |
| unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); |
| |
| // Add a fixup for the immediate field. |
| Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_half16)); |
| return 0; |
| } |
| |
| uint64_t PPCMCCodeEmitter::getImm34Encoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI, |
| MCFixupKind Fixup) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| assert(!MO.isReg() && "Not expecting a register for this operand."); |
| if (MO.isImm()) |
| return getMachineOpValue(MI, MO, Fixups, STI); |
| |
| // Add a fixup for the immediate field. |
| Fixups.push_back(MCFixup::create(0, MO.getExpr(), Fixup)); |
| return 0; |
| } |
| |
| uint64_t |
| PPCMCCodeEmitter::getImm34EncodingNoPCRel(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| return getImm34Encoding(MI, OpNo, Fixups, STI, |
| (MCFixupKind)PPC::fixup_ppc_imm34); |
| } |
| |
| uint64_t |
| PPCMCCodeEmitter::getImm34EncodingPCRel(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| return getImm34Encoding(MI, OpNo, Fixups, STI, |
| (MCFixupKind)PPC::fixup_ppc_pcrel34); |
| } |
| |
| unsigned PPCMCCodeEmitter::getMemRIEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // Encode (imm, reg) as a memri, which has the low 16-bits as the |
| // displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo+1).isReg()); |
| unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 16; |
| |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isImm()) |
| return (getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF) | RegBits; |
| |
| // Add a fixup for the displacement field. |
| Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_half16)); |
| return RegBits; |
| } |
| |
| unsigned PPCMCCodeEmitter::getMemRIXEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // Encode (imm, reg) as a memrix, which has the low 14-bits as the |
| // displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo+1).isReg()); |
| unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 14; |
| |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isImm()) |
| return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF) | RegBits; |
| |
| // Add a fixup for the displacement field. |
| Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_half16ds)); |
| return RegBits; |
| } |
| |
| unsigned PPCMCCodeEmitter::getMemRIX16Encoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // Encode (imm, reg) as a memrix16, which has the low 12-bits as the |
| // displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo+1).isReg()); |
| unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 12; |
| |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isImm()) { |
| assert(!(MO.getImm() % 16) && |
| "Expecting an immediate that is a multiple of 16"); |
| return ((getMachineOpValue(MI, MO, Fixups, STI) >> 4) & 0xFFF) | RegBits; |
| } |
| |
| // Otherwise add a fixup for the displacement field. |
| Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_half16ds)); |
| return RegBits; |
| } |
| |
| unsigned |
| PPCMCCodeEmitter::getMemRIHashEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // Encode (imm, reg) for the hash load/store to stack for the ROP Protection |
| // instructions. |
| const MCOperand &RegMO = MI.getOperand(OpNo + 1); |
| const MCOperand &MO = MI.getOperand(OpNo); |
| |
| assert(RegMO.isReg() && "Base address must be a register."); |
| assert(MO.isImm() && "Expecting an immediate operand."); |
| assert(!(MO.getImm() % 8) && "Expecting offset to be 8 byte aligned."); |
| |
| unsigned RegBits = getMachineOpValue(MI, RegMO, Fixups, STI) << 6; |
| unsigned DX = (MO.getImm() >> 3) & 0x3F; |
| return RegBits | DX; |
| } |
| |
| uint64_t |
| PPCMCCodeEmitter::getMemRI34PCRelEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // Encode the PCRelative version of memri34: imm34(r0). |
| // In the PC relative version the register for the address must be zero. |
| // The 34 bit immediate can fall into one of three cases: |
| // 1) It is a relocation to be filled in by the linker represented as: |
| // (MCExpr::SymbolRef) |
| // 2) It is a relocation + SignedOffset represented as: |
| // (MCExpr::Binary(MCExpr::SymbolRef + MCExpr::Constant)) |
| // 3) It is a known value at compile time. |
| |
| // Make sure that the register is a zero as expected. |
| assert(MI.getOperand(OpNo + 1).isImm() && "Expecting an immediate."); |
| uint64_t RegBits = |
| getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI) << 34; |
| assert(RegBits == 0 && "Operand must be 0."); |
| |
| // If this is not a MCExpr then we are in case 3) and we are dealing with |
| // a value known at compile time, not a relocation. |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (!MO.isExpr()) |
| return ((getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL) | RegBits; |
| |
| // At this point in the function it is known that MO is of type MCExpr. |
| // Therefore we are dealing with either case 1) a symbol ref or |
| // case 2) a symbol ref plus a constant. |
| const MCExpr *Expr = MO.getExpr(); |
| switch (Expr->getKind()) { |
| default: |
| llvm_unreachable("Unsupported MCExpr for getMemRI34PCRelEncoding."); |
| case MCExpr::SymbolRef: { |
| // Relocation alone. |
| const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(Expr); |
| (void)SRE; |
| // Currently these are the only valid PCRelative Relocations. |
| assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL || |
| SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL || |
| SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSGD_PCREL || |
| SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSLD_PCREL || |
| SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TPREL_PCREL) && |
| "VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL or " |
| "VK_PPC_GOT_TLSGD_PCREL or VK_PPC_GOT_TLSLD_PCREL or " |
| "VK_PPC_GOT_TPREL_PCREL."); |
| // Generate the fixup for the relocation. |
| Fixups.push_back( |
| MCFixup::create(0, Expr, |
| static_cast<MCFixupKind>(PPC::fixup_ppc_pcrel34))); |
| // Put zero in the location of the immediate. The linker will fill in the |
| // correct value based on the relocation. |
| return 0; |
| } |
| case MCExpr::Binary: { |
| // Relocation plus some offset. |
| const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr); |
| assert(BE->getOpcode() == MCBinaryExpr::Add && |
| "Binary expression opcode must be an add."); |
| |
| const MCExpr *LHS = BE->getLHS(); |
| const MCExpr *RHS = BE->getRHS(); |
| |
| // Need to check in both directions. Reloc+Offset and Offset+Reloc. |
| if (LHS->getKind() != MCExpr::SymbolRef) |
| std::swap(LHS, RHS); |
| |
| if (LHS->getKind() != MCExpr::SymbolRef || |
| RHS->getKind() != MCExpr::Constant) |
| llvm_unreachable("Expecting to have one constant and one relocation."); |
| |
| const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(LHS); |
| (void)SRE; |
| assert(isInt<34>(cast<MCConstantExpr>(RHS)->getValue()) && |
| "Value must fit in 34 bits."); |
| |
| // Currently these are the only valid PCRelative Relocations. |
| assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL || |
| SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL) && |
| "VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL"); |
| // Generate the fixup for the relocation. |
| Fixups.push_back( |
| MCFixup::create(0, Expr, |
| static_cast<MCFixupKind>(PPC::fixup_ppc_pcrel34))); |
| // Put zero in the location of the immediate. The linker will fill in the |
| // correct value based on the relocation. |
| return 0; |
| } |
| } |
| } |
| |
| uint64_t |
| PPCMCCodeEmitter::getMemRI34Encoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // Encode (imm, reg) as a memri34, which has the low 34-bits as the |
| // displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo + 1).isReg() && "Expecting a register."); |
| uint64_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI) |
| << 34; |
| const MCOperand &MO = MI.getOperand(OpNo); |
| return ((getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL) | RegBits; |
| } |
| |
| unsigned PPCMCCodeEmitter::getSPE8DisEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) |
| const { |
| // Encode (imm, reg) as a spe8dis, which has the low 5-bits of (imm / 8) |
| // as the displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo+1).isReg()); |
| uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5; |
| |
| const MCOperand &MO = MI.getOperand(OpNo); |
| assert(MO.isImm()); |
| uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 3; |
| return reverseBits(Imm | RegBits) >> 22; |
| } |
| |
| unsigned PPCMCCodeEmitter::getSPE4DisEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) |
| const { |
| // Encode (imm, reg) as a spe4dis, which has the low 5-bits of (imm / 4) |
| // as the displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo+1).isReg()); |
| uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5; |
| |
| const MCOperand &MO = MI.getOperand(OpNo); |
| assert(MO.isImm()); |
| uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 2; |
| return reverseBits(Imm | RegBits) >> 22; |
| } |
| |
| unsigned PPCMCCodeEmitter::getSPE2DisEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) |
| const { |
| // Encode (imm, reg) as a spe2dis, which has the low 5-bits of (imm / 2) |
| // as the displacement and the next 5 bits as the register #. |
| assert(MI.getOperand(OpNo+1).isReg()); |
| uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5; |
| |
| const MCOperand &MO = MI.getOperand(OpNo); |
| assert(MO.isImm()); |
| uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 1; |
| return reverseBits(Imm | RegBits) >> 22; |
| } |
| |
| unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI); |
| |
| // Add a fixup for the TLS register, which simply provides a relocation |
| // hint to the linker that this statement is part of a relocation sequence. |
| // Return the thread-pointer register's encoding. Add a one byte displacement |
| // if using PC relative memops. |
| const MCExpr *Expr = MO.getExpr(); |
| const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(Expr); |
| bool IsPCRel = SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS_PCREL; |
| Fixups.push_back(MCFixup::create(IsPCRel ? 1 : 0, Expr, |
| (MCFixupKind)PPC::fixup_ppc_nofixup)); |
| const Triple &TT = STI.getTargetTriple(); |
| bool isPPC64 = TT.isPPC64(); |
| return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2); |
| } |
| |
| unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| // For special TLS calls, we need two fixups; one for the branch target |
| // (__tls_get_addr), which we create via getDirectBrEncoding as usual, |
| // and one for the TLSGD or TLSLD symbol, which is emitted here. |
| const MCOperand &MO = MI.getOperand(OpNo+1); |
| Fixups.push_back(MCFixup::create(0, MO.getExpr(), |
| (MCFixupKind)PPC::fixup_ppc_nofixup)); |
| return getDirectBrEncoding(MI, OpNo, Fixups, STI); |
| } |
| |
| unsigned PPCMCCodeEmitter:: |
| get_crbitm_encoding(const MCInst &MI, unsigned OpNo, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| const MCOperand &MO = MI.getOperand(OpNo); |
| assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 || |
| MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) && |
| (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7)); |
| return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); |
| } |
| |
| // Get the index for this operand in this instruction. This is needed for |
| // computing the register number in PPCInstrInfo::getRegNumForOperand() for |
| // any instructions that use a different numbering scheme for registers in |
| // different operands. |
| static unsigned getOpIdxForMO(const MCInst &MI, const MCOperand &MO) { |
| for (unsigned i = 0; i < MI.getNumOperands(); i++) { |
| const MCOperand &Op = MI.getOperand(i); |
| if (&Op == &MO) |
| return i; |
| } |
| llvm_unreachable("This operand is not part of this instruction"); |
| return ~0U; // Silence any warnings about no return. |
| } |
| |
| uint64_t PPCMCCodeEmitter:: |
| getMachineOpValue(const MCInst &MI, const MCOperand &MO, |
| SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| if (MO.isReg()) { |
| // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand. |
| // The GPR operand should come through here though. |
| assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 && |
| MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) || |
| MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7); |
| unsigned OpNo = getOpIdxForMO(MI, MO); |
| unsigned Reg = |
| PPCInstrInfo::getRegNumForOperand(MCII.get(MI.getOpcode()), |
| MO.getReg(), OpNo); |
| return CTX.getRegisterInfo()->getEncodingValue(Reg); |
| } |
| |
| assert(MO.isImm() && |
| "Relocation required in an instruction that we cannot encode!"); |
| return MO.getImm(); |
| } |
| |
| void PPCMCCodeEmitter::encodeInstruction( |
| const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, |
| const MCSubtargetInfo &STI) const { |
| verifyInstructionPredicates(MI, |
| computeAvailableFeatures(STI.getFeatureBits())); |
| |
| uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); |
| |
| // Output the constant in big/little endian byte order. |
| unsigned Size = getInstSizeInBytes(MI); |
| support::endianness E = IsLittleEndian ? support::little : support::big; |
| switch (Size) { |
| case 0: |
| break; |
| case 4: |
| support::endian::write<uint32_t>(OS, Bits, E); |
| break; |
| case 8: |
| // If we emit a pair of instructions, the first one is |
| // always in the top 32 bits, even on little-endian. |
| support::endian::write<uint32_t>(OS, Bits >> 32, E); |
| support::endian::write<uint32_t>(OS, Bits, E); |
| break; |
| default: |
| llvm_unreachable("Invalid instruction size"); |
| } |
| |
| ++MCNumEmitted; // Keep track of the # of mi's emitted. |
| } |
| |
| // Get the number of bytes used to encode the given MCInst. |
| unsigned PPCMCCodeEmitter::getInstSizeInBytes(const MCInst &MI) const { |
| unsigned Opcode = MI.getOpcode(); |
| const MCInstrDesc &Desc = MCII.get(Opcode); |
| return Desc.getSize(); |
| } |
| |
| bool PPCMCCodeEmitter::isPrefixedInstruction(const MCInst &MI) const { |
| unsigned Opcode = MI.getOpcode(); |
| const PPCInstrInfo *InstrInfo = static_cast<const PPCInstrInfo*>(&MCII); |
| return InstrInfo->isPrefixed(Opcode); |
| } |
| |
| #define ENABLE_INSTR_PREDICATE_VERIFIER |
| #include "PPCGenMCCodeEmitter.inc" |