| //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LanaiTargetLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LanaiISelLowering.h" |
| #include "Lanai.h" |
| #include "LanaiCondCode.h" |
| #include "LanaiMachineFunctionInfo.h" |
| #include "LanaiSubtarget.h" |
| #include "LanaiTargetObjectFile.h" |
| #include "MCTargetDesc/LanaiBaseInfo.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetCallingConv.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cassert> |
| #include <cmath> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <utility> |
| |
| #define DEBUG_TYPE "lanai-lower" |
| |
| using namespace llvm; |
| |
| // Limit on number of instructions the lowered multiplication may have before a |
| // call to the library function should be generated instead. The threshold is |
| // currently set to 14 as this was the smallest threshold that resulted in all |
| // constant multiplications being lowered. A threshold of 5 covered all cases |
| // except for one multiplication which required 14. mulsi3 requires 16 |
| // instructions (including the prologue and epilogue but excluding instructions |
| // at call site). Until we can inline mulsi3, generating at most 14 instructions |
| // will be faster than invoking mulsi3. |
| static cl::opt<int> LanaiLowerConstantMulThreshold( |
| "lanai-constant-mul-threshold", cl::Hidden, |
| cl::desc("Maximum number of instruction to generate when lowering constant " |
| "multiplication instead of calling library function [default=14]"), |
| cl::init(14)); |
| |
| LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, |
| const LanaiSubtarget &STI) |
| : TargetLowering(TM) { |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &Lanai::GPRRegClass); |
| |
| // Compute derived properties from the register classes |
| TRI = STI.getRegisterInfo(); |
| computeRegisterProperties(TRI); |
| |
| setStackPointerRegisterToSaveRestore(Lanai::SP); |
| |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| |
| setOperationAction(ISD::MUL, MVT::i32, Custom); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| |
| setOperationAction(ISD::ROTR, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Legal); |
| setOperationAction(ISD::CTLZ, MVT::i32, Legal); |
| setOperationAction(ISD::CTTZ, MVT::i32, Legal); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| |
| // Extended load operations for i1 types must be promoted |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| } |
| |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::XOR); |
| |
| // Function alignments |
| setMinFunctionAlignment(Align(4)); |
| setPrefFunctionAlignment(Align(4)); |
| |
| setJumpIsExpensive(true); |
| |
| // TODO: Setting the minimum jump table entries needed before a |
| // switch is transformed to a jump table to 100 to avoid creating jump tables |
| // as this was causing bad performance compared to a large group of if |
| // statements. Re-evaluate this on new benchmarks. |
| setMinimumJumpTableEntries(100); |
| |
| // Use fast calling convention for library functions. |
| for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { |
| setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); |
| } |
| |
| MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores |
| MaxStoresPerMemsetOptSize = 8; |
| MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores |
| MaxStoresPerMemcpyOptSize = 8; |
| MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores |
| MaxStoresPerMemmoveOptSize = 8; |
| |
| // Booleans always contain 0 or 1. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| } |
| |
| SDValue LanaiTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| case ISD::MUL: |
| return LowerMUL(Op, DAG); |
| case ISD::BR_CC: |
| return LowerBR_CC(Op, DAG); |
| case ISD::ConstantPool: |
| return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: |
| return LowerBlockAddress(Op, DAG); |
| case ISD::JumpTable: |
| return LowerJumpTable(Op, DAG); |
| case ISD::SELECT_CC: |
| return LowerSELECT_CC(Op, DAG); |
| case ISD::SETCC: |
| return LowerSETCC(Op, DAG); |
| case ISD::SHL_PARTS: |
| return LowerSHL_PARTS(Op, DAG); |
| case ISD::SRL_PARTS: |
| return LowerSRL_PARTS(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::RETURNADDR: |
| return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: |
| return LowerFRAMEADDR(Op, DAG); |
| default: |
| llvm_unreachable("unimplemented operand"); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lanai Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| Register LanaiTargetLowering::getRegisterByName( |
| const char *RegName, LLT /*VT*/, |
| const MachineFunction & /*MF*/) const { |
| // Only unallocatable registers should be matched here. |
| Register Reg = StringSwitch<unsigned>(RegName) |
| .Case("pc", Lanai::PC) |
| .Case("sp", Lanai::SP) |
| .Case("fp", Lanai::FP) |
| .Case("rr1", Lanai::RR1) |
| .Case("r10", Lanai::R10) |
| .Case("rr2", Lanai::RR2) |
| .Case("r11", Lanai::R11) |
| .Case("rca", Lanai::RCA) |
| .Default(0); |
| |
| if (Reg) |
| return Reg; |
| report_fatal_error("Invalid register name global variable"); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| case 'r': // GENERAL_REGS |
| return std::make_pair(0U, &Lanai::GPRRegClass); |
| default: |
| break; |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| // Examine constraint type and operand type and determine a weight value. |
| // This object must already have been set up with the operand type |
| // and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| LanaiTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &Info, const char *Constraint) const { |
| ConstraintWeight Weight = CW_Invalid; |
| Value *CallOperandVal = Info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (CallOperandVal == nullptr) |
| return CW_Default; |
| // Look at the constraint type. |
| switch (*Constraint) { |
| case 'I': // signed 16 bit immediate |
| case 'J': // integer zero |
| case 'K': // unsigned 16 bit immediate |
| case 'L': // immediate in the range 0 to 31 |
| case 'M': // signed 32 bit immediate where lower 16 bits are 0 |
| case 'N': // signed 26 bit immediate |
| case 'O': // integer zero |
| if (isa<ConstantInt>(CallOperandVal)) |
| Weight = CW_Constant; |
| break; |
| default: |
| Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); |
| break; |
| } |
| return Weight; |
| } |
| |
| // LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| // vector. If it is invalid, don't add anything to Ops. |
| void LanaiTargetLowering::LowerAsmOperandForConstraint( |
| SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(nullptr, 0); |
| |
| // Only support length 1 constraints for now. |
| if (Constraint.length() > 1) |
| return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| case 'I': // Signed 16 bit constant |
| // If this fails, the parent routine will give an error |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (isInt<16>(C->getSExtValue())) { |
| Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'J': // integer zero |
| case 'O': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() == 0) { |
| Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'K': // unsigned 16 bit immediate |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (isUInt<16>(C->getZExtValue())) { |
| Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'L': // immediate in the range 0 to 31 |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 31) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), |
| Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'M': // signed 32 bit immediate where lower 16 bits are 0 |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| int64_t Val = C->getSExtValue(); |
| if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { |
| Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'N': // signed 26 bit immediate |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| int64_t Val = C->getSExtValue(); |
| if ((Val >= -33554432) && (Val <= 33554431)) { |
| Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| default: |
| break; // This will fall through to the generic implementation |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "LanaiGenCallingConv.inc" |
| |
| static unsigned NumFixedArgs; |
| static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| // Handle fixed arguments with default CC. |
| // Note: Both the default and fast CC handle VarArg the same and hence the |
| // calling convention of the function is not considered here. |
| if (ValNo < NumFixedArgs) { |
| return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); |
| } |
| |
| // Promote i8/i16 args to i32 |
| if (LocVT == MVT::i8 || LocVT == MVT::i16) { |
| LocVT = MVT::i32; |
| if (ArgFlags.isSExt()) |
| LocInfo = CCValAssign::SExt; |
| else if (ArgFlags.isZExt()) |
| LocInfo = CCValAssign::ZExt; |
| else |
| LocInfo = CCValAssign::AExt; |
| } |
| |
| // VarArgs get passed on stack |
| unsigned Offset = State.AllocateStack(4, Align(4)); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| SDValue LanaiTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| switch (CallConv) { |
| case CallingConv::C: |
| case CallingConv::Fast: |
| return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| } |
| } |
| |
| SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| |
| // Lanai target does not yet support tail call optimization. |
| IsTailCall = false; |
| |
| switch (CallConv) { |
| case CallingConv::Fast: |
| case CallingConv::C: |
| return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, |
| OutVals, Ins, DL, DAG, InVals); |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| } |
| } |
| |
| // LowerCCCArguments - transform physical registers into virtual registers and |
| // generate load operations for arguments places on the stack. |
| SDValue LanaiTargetLowering::LowerCCCArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| if (CallConv == CallingConv::Fast) { |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); |
| } else { |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); |
| } |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (VA.isRegLoc()) { |
| // Arguments passed in registers |
| EVT RegVT = VA.getLocVT(); |
| switch (RegVT.getSimpleVT().SimpleTy) { |
| case MVT::i32: { |
| Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); |
| RegInfo.addLiveIn(VA.getLocReg(), VReg); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); |
| |
| // If this is an 8/16-bit value, it is really passed promoted to 32 |
| // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| // right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| |
| if (VA.getLocInfo() != CCValAssign::Full) |
| ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); |
| |
| InVals.push_back(ArgValue); |
| break; |
| } |
| default: |
| LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " |
| << RegVT.getEVTString() << "\n"); |
| llvm_unreachable("unhandled argument type"); |
| } |
| } else { |
| // Only arguments passed on the stack should make it here. |
| assert(VA.isMemLoc()); |
| // Load the argument to a virtual register |
| unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; |
| // Check that the argument fits in stack slot |
| if (ObjSize > 4) { |
| errs() << "LowerFormalArguments Unhandled argument type: " |
| << EVT(VA.getLocVT()).getEVTString() << "\n"; |
| } |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); |
| |
| // Create the SelectionDAG nodes corresponding to a load |
| // from this parameter |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| InVals.push_back(DAG.getLoad( |
| VA.getLocVT(), DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); |
| } |
| } |
| |
| // The Lanai ABI for returning structs by value requires that we copy |
| // the sret argument into rv for the return. Save the argument into |
| // a virtual register so that we can access it from the return points. |
| if (MF.getFunction().hasStructRetAttr()) { |
| unsigned Reg = LanaiMFI->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); |
| LanaiMFI->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); |
| } |
| |
| if (IsVarArg) { |
| // Record the frame index of the first variable argument |
| // which is a value necessary to VASTART. |
| int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true); |
| LanaiMFI->setVarArgsFrameIndex(FI); |
| } |
| |
| return Chain; |
| } |
| |
| bool LanaiTargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| |
| return CCInfo.CheckReturn(Outs, RetCC_Lanai32); |
| } |
| |
| SDValue |
| LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to a location |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analize return values. |
| CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // The Lanai ABI for returning structs by value requires that we copy |
| // the sret argument into rv for the return. We saved the argument into |
| // a virtual register in the entry block, so now we copy the value out |
| // and into rv. |
| if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); |
| unsigned Reg = LanaiMFI->getSRetReturnReg(); |
| assert(Reg && |
| "SRetReturnReg should have been set in LowerFormalArguments()."); |
| SDValue Val = |
| DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); |
| |
| Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back( |
| DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); |
| } |
| |
| RetOps[0] = Chain; // Update chain |
| |
| unsigned Opc = LanaiISD::RET_FLAG; |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| // Return Void |
| return DAG.getNode(Opc, DL, MVT::Other, |
| ArrayRef<SDValue>(&RetOps[0], RetOps.size())); |
| } |
| |
| // LowerCCCCallTo - functions arguments are copied from virtual regs to |
| // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. |
| SDValue LanaiTargetLowering::LowerCCCCallTo( |
| SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, |
| bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| |
| NumFixedArgs = 0; |
| if (IsVarArg && G) { |
| const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); |
| if (CalleeFn) |
| NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); |
| } |
| if (NumFixedArgs) |
| CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); |
| else { |
| if (CallConv == CallingConv::Fast) |
| CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); |
| else |
| CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); |
| } |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // Create local copies for byval args. |
| SmallVector<SDValue, 8> ByValArgs; |
| for (unsigned I = 0, E = Outs.size(); I != E; ++I) { |
| ISD::ArgFlagsTy Flags = Outs[I].Flags; |
| if (!Flags.isByVal()) |
| continue; |
| |
| SDValue Arg = OutVals[I]; |
| unsigned Size = Flags.getByValSize(); |
| Align Alignment = Flags.getNonZeroByValAlign(); |
| |
| int FI = MFI.CreateStackObject(Size, Alignment, false); |
| SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); |
| |
| Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, |
| /*IsVolatile=*/false, |
| /*AlwaysInline=*/false, |
| /*isTailCall=*/false, MachinePointerInfo(), |
| MachinePointerInfo()); |
| ByValArgs.push_back(FIPtr); |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; |
| SmallVector<SDValue, 12> MemOpChains; |
| SDValue StackPtr; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { |
| CCValAssign &VA = ArgLocs[I]; |
| SDValue Arg = OutVals[I]; |
| ISD::ArgFlagsTy Flags = Outs[I].Flags; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| // Use local copy if it is a byval arg. |
| if (Flags.isByVal()) |
| Arg = ByValArgs[J++]; |
| |
| // Arguments that can be passed on register must be kept at RegsToPass |
| // vector |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| if (StackPtr.getNode() == nullptr) |
| StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, |
| getPointerTy(DAG.getDataLayout())); |
| |
| SDValue PtrOff = |
| DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, |
| DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); |
| |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); |
| } |
| } |
| |
| // Transform all store nodes into one single node because all store nodes are |
| // independent of each other. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); |
| |
| SDValue InFlag; |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain and |
| // flag operands which copy the outgoing args into registers. The InFlag in |
| // necessary since all emitted instructions must be stuck together. |
| for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { |
| Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, |
| RegsToPass[I].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| // Likewise ExternalSymbol -> TargetExternalSymbol. |
| uint8_t OpFlag = LanaiII::MO_NO_FLAG; |
| if (G) { |
| Callee = DAG.getTargetGlobalAddress( |
| G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); |
| } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol( |
| E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| // TODO: Should return-twice functions be handled? |
| const uint32_t *Mask = |
| TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) |
| Ops.push_back(DAG.getRegister(RegsToPass[I].first, |
| RegsToPass[I].second.getValueType())); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, |
| ArrayRef<SDValue>(&Ops[0], Ops.size())); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END( |
| Chain, |
| DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), |
| DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, |
| DL); |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, |
| InVals); |
| } |
| |
| // LowerCallResult - Lower the result values of a call into the |
| // appropriate copies out of appropriate physical registers. |
| SDValue LanaiTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned I = 0; I != RVLocs.size(); ++I) { |
| Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), |
| RVLocs[I].getValVT(), InFlag) |
| .getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom Lowerings |
| //===----------------------------------------------------------------------===// |
| |
| static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, |
| SDValue &RHS, SelectionDAG &DAG) { |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| |
| // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, |
| // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) |
| // and Lanai only supports integer comparisons, so only provide definitions |
| // for them. |
| switch (SetCCOpcode) { |
| case ISD::SETEQ: |
| return LPCC::ICC_EQ; |
| case ISD::SETGT: |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) |
| if (RHSC->getZExtValue() == 0xFFFFFFFF) { |
| // X > -1 -> X >= 0 -> is_plus(X) |
| RHS = DAG.getConstant(0, DL, RHS.getValueType()); |
| return LPCC::ICC_PL; |
| } |
| return LPCC::ICC_GT; |
| case ISD::SETUGT: |
| return LPCC::ICC_UGT; |
| case ISD::SETLT: |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) |
| if (RHSC->getZExtValue() == 0) |
| // X < 0 -> is_minus(X) |
| return LPCC::ICC_MI; |
| return LPCC::ICC_LT; |
| case ISD::SETULT: |
| return LPCC::ICC_ULT; |
| case ISD::SETLE: |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) |
| if (RHSC->getZExtValue() == 0xFFFFFFFF) { |
| // X <= -1 -> X < 0 -> is_minus(X) |
| RHS = DAG.getConstant(0, DL, RHS.getValueType()); |
| return LPCC::ICC_MI; |
| } |
| return LPCC::ICC_LE; |
| case ISD::SETULE: |
| return LPCC::ICC_ULE; |
| case ISD::SETGE: |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) |
| if (RHSC->getZExtValue() == 0) |
| // X >= 0 -> is_plus(X) |
| return LPCC::ICC_PL; |
| return LPCC::ICC_GE; |
| case ISD::SETUGE: |
| return LPCC::ICC_UGE; |
| case ISD::SETNE: |
| return LPCC::ICC_NE; |
| case ISD::SETONE: |
| case ISD::SETUNE: |
| case ISD::SETOGE: |
| case ISD::SETOLE: |
| case ISD::SETOLT: |
| case ISD::SETOGT: |
| case ISD::SETOEQ: |
| case ISD::SETUEQ: |
| case ISD::SETO: |
| case ISD::SETUO: |
| llvm_unreachable("Unsupported comparison."); |
| default: |
| llvm_unreachable("Unknown integer condition code!"); |
| } |
| } |
| |
| SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Cond = Op.getOperand(1); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc DL(Op); |
| |
| LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); |
| SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); |
| SDValue Flag = |
| DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); |
| |
| return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, |
| TargetCC, Flag); |
| } |
| |
| SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| int64_t MulAmt = C->getSExtValue(); |
| int32_t HighestOne = -1; |
| uint32_t NonzeroEntries = 0; |
| int SignedDigit[32] = {0}; |
| |
| // Convert to non-adjacent form (NAF) signed-digit representation. |
| // NAF is a signed-digit form where no adjacent digits are non-zero. It is the |
| // minimal Hamming weight representation of a number (on average 1/3 of the |
| // digits will be non-zero vs 1/2 for regular binary representation). And as |
| // the non-zero digits will be the only digits contributing to the instruction |
| // count, this is desirable. The next loop converts it to NAF (following the |
| // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by |
| // choosing the non-zero coefficients such that the resulting quotient is |
| // divisible by 2 which will cause the next coefficient to be zero. |
| int64_t E = std::abs(MulAmt); |
| int S = (MulAmt < 0 ? -1 : 1); |
| int I = 0; |
| while (E > 0) { |
| int ZI = 0; |
| if (E % 2 == 1) { |
| ZI = 2 - (E % 4); |
| if (ZI != 0) |
| ++NonzeroEntries; |
| } |
| SignedDigit[I] = S * ZI; |
| if (SignedDigit[I] == 1) |
| HighestOne = I; |
| E = (E - ZI) / 2; |
| ++I; |
| } |
| |
| // Compute number of instructions required. Due to differences in lowering |
| // between the different processors this count is not exact. |
| // Start by assuming a shift and a add/sub for every non-zero entry (hence |
| // every non-zero entry requires 1 shift and 1 add/sub except for the first |
| // entry). |
| int32_t InstrRequired = 2 * NonzeroEntries - 1; |
| // Correct possible over-adding due to shift by 0 (which is not emitted). |
| if (std::abs(MulAmt) % 2 == 1) |
| --InstrRequired; |
| // Return if the form generated would exceed the instruction threshold. |
| if (InstrRequired > LanaiLowerConstantMulThreshold) |
| return SDValue(); |
| |
| SDValue Res; |
| SDLoc DL(Op); |
| SDValue V = Op->getOperand(0); |
| |
| // Initialize the running sum. Set the running sum to the maximal shifted |
| // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a |
| // term NAF). |
| if (HighestOne == -1) |
| Res = DAG.getConstant(0, DL, MVT::i32); |
| else { |
| Res = DAG.getNode(ISD::SHL, DL, VT, V, |
| DAG.getConstant(HighestOne, DL, MVT::i32)); |
| SignedDigit[HighestOne] = 0; |
| } |
| |
| // Assemble multiplication from shift, add, sub using NAF form and running |
| // sum. |
| for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]); |
| ++I) { |
| if (SignedDigit[I] == 0) |
| continue; |
| |
| // Shifted multiplicand (v<<i). |
| SDValue Op = |
| DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); |
| if (SignedDigit[I] == 1) |
| Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); |
| else if (SignedDigit[I] == -1) |
| Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); |
| } |
| return Res; |
| } |
| |
| SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue Cond = Op.getOperand(2); |
| SDLoc DL(Op); |
| |
| LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); |
| SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); |
| SDValue Flag = |
| DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); |
| |
| return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag); |
| } |
| |
| SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue TrueV = Op.getOperand(2); |
| SDValue FalseV = Op.getOperand(3); |
| SDValue Cond = Op.getOperand(4); |
| SDLoc DL(Op); |
| |
| LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); |
| SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); |
| SDValue Flag = |
| DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, |
| Flag); |
| } |
| |
| SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); |
| |
| SDLoc DL(Op); |
| SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy(DAG.getDataLayout())); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| SDLoc DL(Op); |
| |
| Register SPReg = getStackPointerRegisterToSaveRestore(); |
| |
| // Get a reference to the stack pointer. |
| SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); |
| |
| // Subtract the dynamic size from the actual stack size to |
| // obtain the new stack size. |
| SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); |
| |
| // For Lanai, the outgoing memory arguments area should be on top of the |
| // alloca area on the stack i.e., the outgoing memory arguments should be |
| // at a lower address than the alloca area. Move the alloca area down the |
| // stack by adding back the space reserved for outgoing arguments to SP |
| // here. |
| // |
| // We do not know what the size of the outgoing args is at this point. |
| // So, we add a pseudo instruction ADJDYNALLOC that will adjust the |
| // stack pointer. We replace this instruction with on that has the correct, |
| // known offset in emitPrologue(). |
| SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); |
| |
| // The Sub result contains the new stack start address, so it |
| // must be placed in the stack pointer register. |
| SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); |
| |
| SDValue Ops[2] = {ArgAdjust, CopyChain}; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| const unsigned Offset = -4; |
| SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); |
| } |
| |
| // Return the link register, which contains the return address. |
| // Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); |
| } |
| |
| SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| while (Depth--) { |
| const unsigned Offset = -8; |
| SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| FrameAddr = |
| DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); |
| } |
| return FrameAddr; |
| } |
| |
| const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| case LanaiISD::ADJDYNALLOC: |
| return "LanaiISD::ADJDYNALLOC"; |
| case LanaiISD::RET_FLAG: |
| return "LanaiISD::RET_FLAG"; |
| case LanaiISD::CALL: |
| return "LanaiISD::CALL"; |
| case LanaiISD::SELECT_CC: |
| return "LanaiISD::SELECT_CC"; |
| case LanaiISD::SETCC: |
| return "LanaiISD::SETCC"; |
| case LanaiISD::SUBBF: |
| return "LanaiISD::SUBBF"; |
| case LanaiISD::SET_FLAG: |
| return "LanaiISD::SET_FLAG"; |
| case LanaiISD::BR_CC: |
| return "LanaiISD::BR_CC"; |
| case LanaiISD::Wrapper: |
| return "LanaiISD::Wrapper"; |
| case LanaiISD::HI: |
| return "LanaiISD::HI"; |
| case LanaiISD::LO: |
| return "LanaiISD::LO"; |
| case LanaiISD::SMALL: |
| return "LanaiISD::SMALL"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); |
| const Constant *C = N->getConstVal(); |
| const LanaiTargetObjectFile *TLOF = |
| static_cast<const LanaiTargetObjectFile *>( |
| getTargetMachine().getObjFileLowering()); |
| |
| // If the code model is small or constant will be placed in the small section, |
| // then assume address will fit in 21-bits. |
| if (getTargetMachine().getCodeModel() == CodeModel::Small || |
| TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { |
| SDValue Small = DAG.getTargetConstantPool( |
| C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG); |
| return DAG.getNode(ISD::OR, DL, MVT::i32, |
| DAG.getRegister(Lanai::R0, MVT::i32), |
| DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); |
| } else { |
| uint8_t OpFlagHi = LanaiII::MO_ABS_HI; |
| uint8_t OpFlagLo = LanaiII::MO_ABS_LO; |
| |
| SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), |
| N->getOffset(), OpFlagHi); |
| SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), |
| N->getOffset(), OpFlagLo); |
| Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); |
| Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); |
| SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); |
| return Result; |
| } |
| } |
| |
| SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| |
| const LanaiTargetObjectFile *TLOF = |
| static_cast<const LanaiTargetObjectFile *>( |
| getTargetMachine().getObjFileLowering()); |
| |
| // If the code model is small or global variable will be placed in the small |
| // section, then assume address will fit in 21-bits. |
| const GlobalObject *GO = GV->getAliaseeObject(); |
| if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { |
| SDValue Small = DAG.getTargetGlobalAddress( |
| GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); |
| return DAG.getNode(ISD::OR, DL, MVT::i32, |
| DAG.getRegister(Lanai::R0, MVT::i32), |
| DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); |
| } else { |
| uint8_t OpFlagHi = LanaiII::MO_ABS_HI; |
| uint8_t OpFlagLo = LanaiII::MO_ABS_LO; |
| |
| // Create the TargetGlobalAddress node, folding in the constant offset. |
| SDValue Hi = DAG.getTargetGlobalAddress( |
| GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); |
| SDValue Lo = DAG.getTargetGlobalAddress( |
| GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); |
| Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); |
| Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); |
| return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); |
| } |
| } |
| |
| SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| |
| uint8_t OpFlagHi = LanaiII::MO_ABS_HI; |
| uint8_t OpFlagLo = LanaiII::MO_ABS_LO; |
| |
| SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); |
| SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); |
| Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); |
| Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); |
| SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); |
| return Result; |
| } |
| |
| SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| // If the code model is small assume address will fit in 21-bits. |
| if (getTargetMachine().getCodeModel() == CodeModel::Small) { |
| SDValue Small = DAG.getTargetJumpTable( |
| JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); |
| return DAG.getNode(ISD::OR, DL, MVT::i32, |
| DAG.getRegister(Lanai::R0, MVT::i32), |
| DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); |
| } else { |
| uint8_t OpFlagHi = LanaiII::MO_ABS_HI; |
| uint8_t OpFlagLo = LanaiII::MO_ABS_LO; |
| |
| SDValue Hi = DAG.getTargetJumpTable( |
| JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); |
| SDValue Lo = DAG.getTargetJumpTable( |
| JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); |
| Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); |
| Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); |
| SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); |
| return Result; |
| } |
| } |
| |
| SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| |
| // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: |
| // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) |
| // HiBitsForHi = ShOpHi << ShAmt |
| // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) |
| // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) |
| // return (Hi << 32) | Lo; |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); |
| SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| |
| // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We |
| // wanted 0, so CSEL it directly. |
| SDValue Zero = DAG.getConstant(0, dl, MVT::i32); |
| SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); |
| LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); |
| |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue HiForNormalShift = |
| DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); |
| |
| SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); |
| SDValue Hi = |
| DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); |
| |
| // Lanai shifts of larger than register sizes are wrapped rather than |
| // clamped, so we can't just emit "lo << b" if b is too big. |
| SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Lo = DAG.getSelect( |
| dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); |
| |
| SDValue Ops[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VT = Op.getSimpleValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| |
| // Performs the following for a >> b: |
| // unsigned r_high = a_high >> b; |
| // r_high = (32 - b <= 0) ? 0 : r_high; |
| // |
| // unsigned r_low = a_low >> b; |
| // r_low = (32 - b <= 0) ? r_high : r_low; |
| // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); |
| // return (unsigned long long)r_high << 32 | r_low; |
| // Note: This takes advantage of Lanai's shift behavior to avoid needing to |
| // mask the shift amount. |
| |
| SDValue Zero = DAG.getConstant(0, dl, MVT::i32); |
| SDValue NegatedPlus32 = DAG.getNode( |
| ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); |
| SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); |
| |
| SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); |
| Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); |
| |
| SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); |
| Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); |
| SDValue CarryBits = |
| DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); |
| SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); |
| Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, |
| DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); |
| |
| SDValue Ops[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| // Helper function that checks if N is a null or all ones constant. |
| static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { |
| return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); |
| } |
| |
| // Return true if N is conditionally 0 or all ones. |
| // Detects these expressions where cc is an i1 value: |
| // |
| // (select cc 0, y) [AllOnes=0] |
| // (select cc y, 0) [AllOnes=0] |
| // (zext cc) [AllOnes=0] |
| // (sext cc) [AllOnes=0/1] |
| // (select cc -1, y) [AllOnes=1] |
| // (select cc y, -1) [AllOnes=1] |
| // |
| // * AllOnes determines whether to check for an all zero (AllOnes false) or an |
| // all ones operand (AllOnes true). |
| // * Invert is set when N is the all zero/ones constant when CC is false. |
| // * OtherOp is set to the alternative value of N. |
| // |
| // For example, for (select cc X, Y) and AllOnes = 0 if: |
| // * X = 0, Invert = False and OtherOp = Y |
| // * Y = 0, Invert = True and OtherOp = X |
| static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, |
| bool &Invert, SDValue &OtherOp, |
| SelectionDAG &DAG) { |
| switch (N->getOpcode()) { |
| default: |
| return false; |
| case ISD::SELECT: { |
| CC = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| if (isZeroOrAllOnes(N1, AllOnes)) { |
| Invert = false; |
| OtherOp = N2; |
| return true; |
| } |
| if (isZeroOrAllOnes(N2, AllOnes)) { |
| Invert = true; |
| OtherOp = N1; |
| return true; |
| } |
| return false; |
| } |
| case ISD::ZERO_EXTEND: { |
| // (zext cc) can never be the all ones value. |
| if (AllOnes) |
| return false; |
| CC = N->getOperand(0); |
| if (CC.getValueType() != MVT::i1) |
| return false; |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| OtherOp = DAG.getConstant(1, dl, VT); |
| Invert = true; |
| return true; |
| } |
| case ISD::SIGN_EXTEND: { |
| CC = N->getOperand(0); |
| if (CC.getValueType() != MVT::i1) |
| return false; |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| Invert = !AllOnes; |
| if (AllOnes) |
| // When looking for an AllOnes constant, N is an sext, and the 'other' |
| // value is 0. |
| OtherOp = DAG.getConstant(0, dl, VT); |
| else |
| OtherOp = DAG.getAllOnesConstant(dl, VT); |
| return true; |
| } |
| } |
| } |
| |
| // Combine a constant select operand into its use: |
| // |
| // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] |
| // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) |
| // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) |
| // |
| // The transform is rejected if the select doesn't have a constant operand that |
| // is null, or all ones when AllOnes is set. |
| // |
| // Also recognize sext/zext from i1: |
| // |
| // (add (zext cc), x) -> (select cc (add x, 1), x) |
| // (add (sext cc), x) -> (select cc (add x, -1), x) |
| // |
| // These transformations eventually create predicated instructions. |
| static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, |
| TargetLowering::DAGCombinerInfo &DCI, |
| bool AllOnes) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDValue NonConstantVal; |
| SDValue CCOp; |
| bool SwapSelectOps; |
| if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, |
| NonConstantVal, DAG)) |
| return SDValue(); |
| |
| // Slct is now know to be the desired identity constant when CC is true. |
| SDValue TrueVal = OtherOp; |
| SDValue FalseVal = |
| DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); |
| // Unless SwapSelectOps says CC should be false. |
| if (SwapSelectOps) |
| std::swap(TrueVal, FalseVal); |
| |
| return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); |
| } |
| |
| // Attempt combineSelectAndUse on each operand of a commutative operator N. |
| static SDValue |
| combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, |
| bool AllOnes) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (N0.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) |
| return Result; |
| if (N1.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) |
| return Result; |
| return SDValue(); |
| } |
| |
| // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. |
| static SDValue PerformSUBCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| if (N1.getNode()->hasOneUse()) |
| if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) |
| return Result; |
| |
| return SDValue(); |
| } |
| |
| SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::ADD: |
| case ISD::OR: |
| case ISD::XOR: |
| return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); |
| case ISD::AND: |
| return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); |
| case ISD::SUB: |
| return PerformSUBCombine(N, DCI); |
| } |
| |
| return SDValue(); |
| } |
| |
| void LanaiTargetLowering::computeKnownBitsForTargetNode( |
| const SDValue Op, KnownBits &Known, const APInt &DemandedElts, |
| const SelectionDAG &DAG, unsigned Depth) const { |
| unsigned BitWidth = Known.getBitWidth(); |
| switch (Op.getOpcode()) { |
| default: |
| break; |
| case LanaiISD::SETCC: |
| Known = KnownBits(BitWidth); |
| Known.Zero.setBits(1, BitWidth); |
| break; |
| case LanaiISD::SELECT_CC: |
| KnownBits Known2; |
| Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); |
| Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); |
| Known = KnownBits::commonBits(Known, Known2); |
| break; |
| } |
| } |