| //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead |
| /// branches to help accelerate DSP applications. These two extensions, |
| /// combined with a new form of predication called tail-predication, can be used |
| /// to provide implicit vector predication within a low-overhead loop. |
| /// This is implicit because the predicate of active/inactive lanes is |
| /// calculated by hardware, and thus does not need to be explicitly passed |
| /// to vector instructions. The instructions responsible for this are the |
| /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the |
| /// the total number of data elements processed by the loop. The loop-end |
| /// LETP instruction is responsible for decrementing and setting the remaining |
| /// elements to be processed and generating the mask of active lanes. |
| /// |
| /// The HardwareLoops pass inserts intrinsics identifying loops that the |
| /// backend will attempt to convert into a low-overhead loop. The vectorizer is |
| /// responsible for generating a vectorized loop in which the lanes are |
| /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these |
| /// get.active.lane.mask intrinsic and attempts to convert them to VCTP |
| /// instructions. This will be picked up by the ARM Low-overhead loop pass later |
| /// in the backend, which performs the final transformation to a DLSTP or WLSTP |
| /// tail-predicated loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetTransformInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "mve-tail-predication" |
| #define DESC "Transform predicated vector loops to use MVE tail predication" |
| |
| cl::opt<TailPredication::Mode> EnableTailPredication( |
| "tail-predication", cl::desc("MVE tail-predication pass options"), |
| cl::init(TailPredication::Enabled), |
| cl::values(clEnumValN(TailPredication::Disabled, "disabled", |
| "Don't tail-predicate loops"), |
| clEnumValN(TailPredication::EnabledNoReductions, |
| "enabled-no-reductions", |
| "Enable tail-predication, but not for reduction loops"), |
| clEnumValN(TailPredication::Enabled, |
| "enabled", |
| "Enable tail-predication, including reduction loops"), |
| clEnumValN(TailPredication::ForceEnabledNoReductions, |
| "force-enabled-no-reductions", |
| "Enable tail-predication, but not for reduction loops, " |
| "and force this which might be unsafe"), |
| clEnumValN(TailPredication::ForceEnabled, |
| "force-enabled", |
| "Enable tail-predication, including reduction loops, " |
| "and force this which might be unsafe"))); |
| |
| |
| namespace { |
| |
| class MVETailPredication : public LoopPass { |
| SmallVector<IntrinsicInst*, 4> MaskedInsts; |
| Loop *L = nullptr; |
| ScalarEvolution *SE = nullptr; |
| TargetTransformInfo *TTI = nullptr; |
| const ARMSubtarget *ST = nullptr; |
| |
| public: |
| static char ID; |
| |
| MVETailPredication() : LoopPass(ID) { } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager&) override; |
| |
| private: |
| /// Perform the relevant checks on the loop and convert active lane masks if |
| /// possible. |
| bool TryConvertActiveLaneMask(Value *TripCount); |
| |
| /// Perform several checks on the arguments of @llvm.get.active.lane.mask |
| /// intrinsic. E.g., check that the loop induction variable and the element |
| /// count are of the form we expect, and also perform overflow checks for |
| /// the new expressions that are created. |
| bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount); |
| |
| /// Insert the intrinsic to represent the effect of tail predication. |
| void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount); |
| |
| /// Rematerialize the iteration count in exit blocks, which enables |
| /// ARMLowOverheadLoops to better optimise away loop update statements inside |
| /// hardware-loops. |
| void RematerializeIterCount(); |
| }; |
| |
| } // end namespace |
| |
| bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { |
| if (skipLoop(L) || !EnableTailPredication) |
| return false; |
| |
| MaskedInsts.clear(); |
| Function &F = *L->getHeader()->getParent(); |
| auto &TPC = getAnalysis<TargetPassConfig>(); |
| auto &TM = TPC.getTM<TargetMachine>(); |
| ST = &TM.getSubtarget<ARMSubtarget>(F); |
| TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| this->L = L; |
| |
| // The MVE and LOB extensions are combined to enable tail-predication, but |
| // there's nothing preventing us from generating VCTP instructions for v8.1m. |
| if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); |
| return false; |
| } |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) |
| return false; |
| |
| auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { |
| for (auto &I : *BB) { |
| auto *Call = dyn_cast<IntrinsicInst>(&I); |
| if (!Call) |
| continue; |
| |
| Intrinsic::ID ID = Call->getIntrinsicID(); |
| if (ID == Intrinsic::start_loop_iterations || |
| ID == Intrinsic::test_start_loop_iterations) |
| return cast<IntrinsicInst>(&I); |
| } |
| return nullptr; |
| }; |
| |
| // Look for the hardware loop intrinsic that sets the iteration count. |
| IntrinsicInst *Setup = FindLoopIterations(Preheader); |
| |
| // The test.set iteration could live in the pre-preheader. |
| if (!Setup) { |
| if (!Preheader->getSinglePredecessor()) |
| return false; |
| Setup = FindLoopIterations(Preheader->getSinglePredecessor()); |
| if (!Setup) |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"); |
| |
| bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0)); |
| |
| return Changed; |
| } |
| |
| // The active lane intrinsic has this form: |
| // |
| // @llvm.get.active.lane.mask(IV, TC) |
| // |
| // Here we perform checks that this intrinsic behaves as expected, |
| // which means: |
| // |
| // 1) Check that the TripCount (TC) belongs to this loop (originally). |
| // 2) The element count (TC) needs to be sufficiently large that the decrement |
| // of element counter doesn't overflow, which means that we need to prove: |
| // ceil(ElementCount / VectorWidth) >= TripCount |
| // by rounding up ElementCount up: |
| // ((ElementCount + (VectorWidth - 1)) / VectorWidth |
| // and evaluate if expression isKnownNonNegative: |
| // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount |
| // 3) The IV must be an induction phi with an increment equal to the |
| // vector width. |
| bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, |
| Value *TripCount) { |
| bool ForceTailPredication = |
| EnableTailPredication == TailPredication::ForceEnabledNoReductions || |
| EnableTailPredication == TailPredication::ForceEnabled; |
| |
| Value *ElemCount = ActiveLaneMask->getOperand(1); |
| bool Changed = false; |
| if (!L->makeLoopInvariant(ElemCount, Changed)) |
| return false; |
| |
| auto *EC= SE->getSCEV(ElemCount); |
| auto *TC = SE->getSCEV(TripCount); |
| int VectorWidth = |
| cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements(); |
| if (VectorWidth != 4 && VectorWidth != 8 && VectorWidth != 16) |
| return false; |
| ConstantInt *ConstElemCount = nullptr; |
| |
| // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to |
| // this loop. The scalar tripcount corresponds the number of elements |
| // processed by the loop, so we will refer to that from this point on. |
| if (!SE->isLoopInvariant(EC, L)) { |
| LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n"); |
| return false; |
| } |
| |
| if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) { |
| ConstantInt *TC = dyn_cast<ConstantInt>(TripCount); |
| if (!TC) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " |
| "set.loop.iterations\n"); |
| return false; |
| } |
| |
| // Calculate 2 tripcount values and check that they are consistent with |
| // each other. The TripCount for a predicated vector loop body is |
| // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we |
| // work it out here. |
| uint64_t TC1 = TC->getZExtValue(); |
| uint64_t TC2 = |
| (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth; |
| |
| // If the tripcount values are inconsistent, we can't insert the VCTP and |
| // trigger tail-predication; keep the intrinsic as a get.active.lane.mask |
| // and legalize this. |
| if (TC1 != TC2) { |
| LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " |
| << TC1 << " from set.loop.iterations, and " |
| << TC2 << " from get.active.lane.mask\n"); |
| return false; |
| } |
| } else if (!ForceTailPredication) { |
| // 2) We need to prove that the sub expression that we create in the |
| // tail-predicated loop body, which calculates the remaining elements to be |
| // processed, is non-negative, i.e. it doesn't overflow: |
| // |
| // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 |
| // |
| // This is true if: |
| // |
| // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth |
| // |
| // which what we will be using here. |
| // |
| auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)); |
| // ElementCount + (VW-1): |
| auto *ECPlusVWMinus1 = SE->getAddExpr(EC, |
| SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); |
| |
| // Ceil = ElementCount + (VW-1) / VW |
| auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW); |
| |
| // Prevent unused variable warnings with TC |
| (void)TC; |
| LLVM_DEBUG( |
| dbgs() << "ARM TP: Analysing overflow behaviour for:\n"; |
| dbgs() << "ARM TP: - TripCount = "; TC->dump(); |
| dbgs() << "ARM TP: - ElemCount = "; EC->dump(); |
| dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n"; |
| dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump(); |
| ); |
| |
| // As an example, almost all the tripcount expressions (produced by the |
| // vectoriser) look like this: |
| // |
| // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4) |
| // |
| // and "ElementCount + (VW-1) / VW": |
| // |
| // Ceil = ((3 + %N) /u 4) |
| // |
| // Check for equality of TC and Ceil by calculating SCEV expression |
| // TC - Ceil and test it for zero. |
| // |
| const SCEV *Sub = |
| SE->getMinusSCEV(SE->getBackedgeTakenCount(L), |
| SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW), |
| SE->getNegativeSCEV(VW)), |
| VW)); |
| |
| // Use context sensitive facts about the path to the loop to refine. This |
| // comes up as the backedge taken count can incorporate context sensitive |
| // reasoning, and our RHS just above doesn't. |
| Sub = SE->applyLoopGuards(Sub, L); |
| |
| if (!Sub->isZero()) { |
| LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n"); |
| return false; |
| } |
| } |
| |
| // 3) Find out if IV is an induction phi. Note that we can't use Loop |
| // helpers here to get the induction variable, because the hardware loop is |
| // no longer in loopsimplify form, and also the hwloop intrinsic uses a |
| // different counter. Using SCEV, we check that the induction is of the |
| // form i = i + 4, where the increment must be equal to the VectorWidth. |
| auto *IV = ActiveLaneMask->getOperand(0); |
| auto *IVExpr = SE->getSCEV(IV); |
| auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); |
| |
| if (!AddExpr) { |
| LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); |
| return false; |
| } |
| // Check that this AddRec is associated with this loop. |
| if (AddExpr->getLoop() != L) { |
| LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); |
| return false; |
| } |
| auto *Base = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); |
| if (!Base || !Base->isZero()) { |
| LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n"); |
| return false; |
| } |
| auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); |
| if (!Step) { |
| LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; |
| AddExpr->getOperand(1)->dump()); |
| return false; |
| } |
| auto StepValue = Step->getValue()->getSExtValue(); |
| if (VectorWidth == StepValue) |
| return true; |
| |
| LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue |
| << " doesn't match vector width " << VectorWidth << "\n"); |
| |
| return false; |
| } |
| |
| void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, |
| Value *TripCount) { |
| IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); |
| Module *M = L->getHeader()->getModule(); |
| Type *Ty = IntegerType::get(M->getContext(), 32); |
| unsigned VectorWidth = |
| cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements(); |
| |
| // Insert a phi to count the number of elements processed by the loop. |
| Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI()); |
| PHINode *Processed = Builder.CreatePHI(Ty, 2); |
| Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader()); |
| |
| // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and |
| // thus represent the effect of tail predication. |
| Builder.SetInsertPoint(ActiveLaneMask); |
| ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); |
| |
| Intrinsic::ID VCTPID; |
| switch (VectorWidth) { |
| default: |
| llvm_unreachable("unexpected number of lanes"); |
| case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; |
| case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; |
| case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; |
| |
| // FIXME: vctp64 currently not supported because the predicate |
| // vector wants to be <2 x i1>, but v2i1 is not a legal MVE |
| // type, so problems happen at isel time. |
| // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics |
| // purposes, but takes a v4i1 instead of a v2i1. |
| } |
| Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); |
| Value *VCTPCall = Builder.CreateCall(VCTP, Processed); |
| ActiveLaneMask->replaceAllUsesWith(VCTPCall); |
| |
| // Add the incoming value to the new phi. |
| // TODO: This add likely already exists in the loop. |
| Value *Remaining = Builder.CreateSub(Processed, Factor); |
| Processed->addIncoming(Remaining, L->getLoopLatch()); |
| LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " |
| << *Processed << "\n" |
| << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); |
| } |
| |
| bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) { |
| SmallVector<IntrinsicInst *, 4> ActiveLaneMasks; |
| for (auto *BB : L->getBlocks()) |
| for (auto &I : *BB) |
| if (auto *Int = dyn_cast<IntrinsicInst>(&I)) |
| if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask) |
| ActiveLaneMasks.push_back(Int); |
| |
| if (ActiveLaneMasks.empty()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); |
| |
| for (auto *ActiveLaneMask : ActiveLaneMasks) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " |
| << *ActiveLaneMask << "\n"); |
| |
| if (!IsSafeActiveMask(ActiveLaneMask, TripCount)) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); |
| InsertVCTPIntrinsic(ActiveLaneMask, TripCount); |
| } |
| |
| // Remove dead instructions and now dead phis. |
| for (auto *II : ActiveLaneMasks) |
| RecursivelyDeleteTriviallyDeadInstructions(II); |
| for (auto I : L->blocks()) |
| DeleteDeadPHIs(I); |
| return true; |
| } |
| |
| Pass *llvm::createMVETailPredicationPass() { |
| return new MVETailPredication(); |
| } |
| |
| char MVETailPredication::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
| INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) |