| //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass that performs load / store related peephole |
| // optimizations. This pass should be run after register allocation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64InstrInfo.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-ldst-opt" |
| |
| STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); |
| STATISTIC(NumPostFolded, "Number of post-index updates folded"); |
| STATISTIC(NumPreFolded, "Number of pre-index updates folded"); |
| STATISTIC(NumUnscaledPairCreated, |
| "Number of load/store from unscaled generated"); |
| STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); |
| STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); |
| |
| DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", |
| "Controls which pairs are considered for renaming"); |
| |
| // The LdStLimit limits how far we search for load/store pairs. |
| static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", |
| cl::init(20), cl::Hidden); |
| |
| // The UpdateLimit limits how far we search for update instructions when we form |
| // pre-/post-index instructions. |
| static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), |
| cl::Hidden); |
| |
| // Enable register renaming to find additional store pairing opportunities. |
| static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", |
| cl::init(true), cl::Hidden); |
| |
| #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" |
| |
| namespace { |
| |
| using LdStPairFlags = struct LdStPairFlags { |
| // If a matching instruction is found, MergeForward is set to true if the |
| // merge is to remove the first instruction and replace the second with |
| // a pair-wise insn, and false if the reverse is true. |
| bool MergeForward = false; |
| |
| // SExtIdx gives the index of the result of the load pair that must be |
| // extended. The value of SExtIdx assumes that the paired load produces the |
| // value in this order: (I, returned iterator), i.e., -1 means no value has |
| // to be extended, 0 means I, and 1 means the returned iterator. |
| int SExtIdx = -1; |
| |
| // If not none, RenameReg can be used to rename the result register of the |
| // first store in a pair. Currently this only works when merging stores |
| // forward. |
| Optional<MCPhysReg> RenameReg = None; |
| |
| LdStPairFlags() = default; |
| |
| void setMergeForward(bool V = true) { MergeForward = V; } |
| bool getMergeForward() const { return MergeForward; } |
| |
| void setSExtIdx(int V) { SExtIdx = V; } |
| int getSExtIdx() const { return SExtIdx; } |
| |
| void setRenameReg(MCPhysReg R) { RenameReg = R; } |
| void clearRenameReg() { RenameReg = None; } |
| Optional<MCPhysReg> getRenameReg() const { return RenameReg; } |
| }; |
| |
| struct AArch64LoadStoreOpt : public MachineFunctionPass { |
| static char ID; |
| |
| AArch64LoadStoreOpt() : MachineFunctionPass(ID) { |
| initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| AliasAnalysis *AA; |
| const AArch64InstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const AArch64Subtarget *Subtarget; |
| |
| // Track which register units have been modified and used. |
| LiveRegUnits ModifiedRegUnits, UsedRegUnits; |
| LiveRegUnits DefinedInBB; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AAResultsWrapperPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| // Scan the instructions looking for a load/store that can be combined |
| // with the current instruction into a load/store pair. |
| // Return the matching instruction if one is found, else MBB->end(). |
| MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, |
| LdStPairFlags &Flags, |
| unsigned Limit, |
| bool FindNarrowMerge); |
| |
| // Scan the instructions looking for a store that writes to the address from |
| // which the current load instruction reads. Return true if one is found. |
| bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, |
| MachineBasicBlock::iterator &StoreI); |
| |
| // Merge the two instructions indicated into a wider narrow store instruction. |
| MachineBasicBlock::iterator |
| mergeNarrowZeroStores(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator MergeMI, |
| const LdStPairFlags &Flags); |
| |
| // Merge the two instructions indicated into a single pair-wise instruction. |
| MachineBasicBlock::iterator |
| mergePairedInsns(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator Paired, |
| const LdStPairFlags &Flags); |
| |
| // Promote the load that reads directly from the address stored to. |
| MachineBasicBlock::iterator |
| promoteLoadFromStore(MachineBasicBlock::iterator LoadI, |
| MachineBasicBlock::iterator StoreI); |
| |
| // Scan the instruction list to find a base register update that can |
| // be combined with the current instruction (a load or store) using |
| // pre or post indexed addressing with writeback. Scan forwards. |
| MachineBasicBlock::iterator |
| findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, |
| int UnscaledOffset, unsigned Limit); |
| |
| // Scan the instruction list to find a base register update that can |
| // be combined with the current instruction (a load or store) using |
| // pre or post indexed addressing with writeback. Scan backwards. |
| MachineBasicBlock::iterator |
| findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); |
| |
| // Find an instruction that updates the base register of the ld/st |
| // instruction. |
| bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, |
| unsigned BaseReg, int Offset); |
| |
| // Merge a pre- or post-index base register update into a ld/st instruction. |
| MachineBasicBlock::iterator |
| mergeUpdateInsn(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator Update, bool IsPreIdx); |
| |
| // Find and merge zero store instructions. |
| bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); |
| |
| // Find and pair ldr/str instructions. |
| bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); |
| |
| // Find and promote load instructions which read directly from store. |
| bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); |
| |
| // Find and merge a base register updates before or after a ld/st instruction. |
| bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); |
| |
| bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); |
| |
| bool runOnMachineFunction(MachineFunction &Fn) override; |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } |
| }; |
| |
| char AArch64LoadStoreOpt::ID = 0; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", |
| AARCH64_LOAD_STORE_OPT_NAME, false, false) |
| |
| static bool isNarrowStore(unsigned Opc) { |
| switch (Opc) { |
| default: |
| return false; |
| case AArch64::STRBBui: |
| case AArch64::STURBBi: |
| case AArch64::STRHHui: |
| case AArch64::STURHHi: |
| return true; |
| } |
| } |
| |
| // These instruction set memory tag and either keep memory contents unchanged or |
| // set it to zero, ignoring the address part of the source register. |
| static bool isTagStore(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case AArch64::STGOffset: |
| case AArch64::STZGOffset: |
| case AArch64::ST2GOffset: |
| case AArch64::STZ2GOffset: |
| return true; |
| } |
| } |
| |
| static unsigned getMatchingNonSExtOpcode(unsigned Opc, |
| bool *IsValidLdStrOpc = nullptr) { |
| if (IsValidLdStrOpc) |
| *IsValidLdStrOpc = true; |
| switch (Opc) { |
| default: |
| if (IsValidLdStrOpc) |
| *IsValidLdStrOpc = false; |
| return std::numeric_limits<unsigned>::max(); |
| case AArch64::STRDui: |
| case AArch64::STURDi: |
| case AArch64::STRDpre: |
| case AArch64::STRQui: |
| case AArch64::STURQi: |
| case AArch64::STRQpre: |
| case AArch64::STRBBui: |
| case AArch64::STURBBi: |
| case AArch64::STRHHui: |
| case AArch64::STURHHi: |
| case AArch64::STRWui: |
| case AArch64::STRWpre: |
| case AArch64::STURWi: |
| case AArch64::STRXui: |
| case AArch64::STRXpre: |
| case AArch64::STURXi: |
| case AArch64::LDRDui: |
| case AArch64::LDURDi: |
| case AArch64::LDRDpre: |
| case AArch64::LDRQui: |
| case AArch64::LDURQi: |
| case AArch64::LDRQpre: |
| case AArch64::LDRWui: |
| case AArch64::LDURWi: |
| case AArch64::LDRWpre: |
| case AArch64::LDRXui: |
| case AArch64::LDURXi: |
| case AArch64::LDRXpre: |
| case AArch64::STRSui: |
| case AArch64::STURSi: |
| case AArch64::STRSpre: |
| case AArch64::LDRSui: |
| case AArch64::LDURSi: |
| case AArch64::LDRSpre: |
| return Opc; |
| case AArch64::LDRSWui: |
| return AArch64::LDRWui; |
| case AArch64::LDURSWi: |
| return AArch64::LDURWi; |
| } |
| } |
| |
| static unsigned getMatchingWideOpcode(unsigned Opc) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("Opcode has no wide equivalent!"); |
| case AArch64::STRBBui: |
| return AArch64::STRHHui; |
| case AArch64::STRHHui: |
| return AArch64::STRWui; |
| case AArch64::STURBBi: |
| return AArch64::STURHHi; |
| case AArch64::STURHHi: |
| return AArch64::STURWi; |
| case AArch64::STURWi: |
| return AArch64::STURXi; |
| case AArch64::STRWui: |
| return AArch64::STRXui; |
| } |
| } |
| |
| static unsigned getMatchingPairOpcode(unsigned Opc) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("Opcode has no pairwise equivalent!"); |
| case AArch64::STRSui: |
| case AArch64::STURSi: |
| return AArch64::STPSi; |
| case AArch64::STRSpre: |
| return AArch64::STPSpre; |
| case AArch64::STRDui: |
| case AArch64::STURDi: |
| return AArch64::STPDi; |
| case AArch64::STRDpre: |
| return AArch64::STPDpre; |
| case AArch64::STRQui: |
| case AArch64::STURQi: |
| return AArch64::STPQi; |
| case AArch64::STRQpre: |
| return AArch64::STPQpre; |
| case AArch64::STRWui: |
| case AArch64::STURWi: |
| return AArch64::STPWi; |
| case AArch64::STRWpre: |
| return AArch64::STPWpre; |
| case AArch64::STRXui: |
| case AArch64::STURXi: |
| return AArch64::STPXi; |
| case AArch64::STRXpre: |
| return AArch64::STPXpre; |
| case AArch64::LDRSui: |
| case AArch64::LDURSi: |
| return AArch64::LDPSi; |
| case AArch64::LDRSpre: |
| return AArch64::LDPSpre; |
| case AArch64::LDRDui: |
| case AArch64::LDURDi: |
| return AArch64::LDPDi; |
| case AArch64::LDRDpre: |
| return AArch64::LDPDpre; |
| case AArch64::LDRQui: |
| case AArch64::LDURQi: |
| return AArch64::LDPQi; |
| case AArch64::LDRQpre: |
| return AArch64::LDPQpre; |
| case AArch64::LDRWui: |
| case AArch64::LDURWi: |
| return AArch64::LDPWi; |
| case AArch64::LDRWpre: |
| return AArch64::LDPWpre; |
| case AArch64::LDRXui: |
| case AArch64::LDURXi: |
| return AArch64::LDPXi; |
| case AArch64::LDRXpre: |
| return AArch64::LDPXpre; |
| case AArch64::LDRSWui: |
| case AArch64::LDURSWi: |
| return AArch64::LDPSWi; |
| } |
| } |
| |
| static unsigned isMatchingStore(MachineInstr &LoadInst, |
| MachineInstr &StoreInst) { |
| unsigned LdOpc = LoadInst.getOpcode(); |
| unsigned StOpc = StoreInst.getOpcode(); |
| switch (LdOpc) { |
| default: |
| llvm_unreachable("Unsupported load instruction!"); |
| case AArch64::LDRBBui: |
| return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || |
| StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; |
| case AArch64::LDURBBi: |
| return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || |
| StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; |
| case AArch64::LDRHHui: |
| return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || |
| StOpc == AArch64::STRXui; |
| case AArch64::LDURHHi: |
| return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || |
| StOpc == AArch64::STURXi; |
| case AArch64::LDRWui: |
| return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; |
| case AArch64::LDURWi: |
| return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; |
| case AArch64::LDRXui: |
| return StOpc == AArch64::STRXui; |
| case AArch64::LDURXi: |
| return StOpc == AArch64::STURXi; |
| } |
| } |
| |
| static unsigned getPreIndexedOpcode(unsigned Opc) { |
| // FIXME: We don't currently support creating pre-indexed loads/stores when |
| // the load or store is the unscaled version. If we decide to perform such an |
| // optimization in the future the cases for the unscaled loads/stores will |
| // need to be added here. |
| switch (Opc) { |
| default: |
| llvm_unreachable("Opcode has no pre-indexed equivalent!"); |
| case AArch64::STRSui: |
| return AArch64::STRSpre; |
| case AArch64::STRDui: |
| return AArch64::STRDpre; |
| case AArch64::STRQui: |
| return AArch64::STRQpre; |
| case AArch64::STRBBui: |
| return AArch64::STRBBpre; |
| case AArch64::STRHHui: |
| return AArch64::STRHHpre; |
| case AArch64::STRWui: |
| return AArch64::STRWpre; |
| case AArch64::STRXui: |
| return AArch64::STRXpre; |
| case AArch64::LDRSui: |
| return AArch64::LDRSpre; |
| case AArch64::LDRDui: |
| return AArch64::LDRDpre; |
| case AArch64::LDRQui: |
| return AArch64::LDRQpre; |
| case AArch64::LDRBBui: |
| return AArch64::LDRBBpre; |
| case AArch64::LDRHHui: |
| return AArch64::LDRHHpre; |
| case AArch64::LDRWui: |
| return AArch64::LDRWpre; |
| case AArch64::LDRXui: |
| return AArch64::LDRXpre; |
| case AArch64::LDRSWui: |
| return AArch64::LDRSWpre; |
| case AArch64::LDPSi: |
| return AArch64::LDPSpre; |
| case AArch64::LDPSWi: |
| return AArch64::LDPSWpre; |
| case AArch64::LDPDi: |
| return AArch64::LDPDpre; |
| case AArch64::LDPQi: |
| return AArch64::LDPQpre; |
| case AArch64::LDPWi: |
| return AArch64::LDPWpre; |
| case AArch64::LDPXi: |
| return AArch64::LDPXpre; |
| case AArch64::STPSi: |
| return AArch64::STPSpre; |
| case AArch64::STPDi: |
| return AArch64::STPDpre; |
| case AArch64::STPQi: |
| return AArch64::STPQpre; |
| case AArch64::STPWi: |
| return AArch64::STPWpre; |
| case AArch64::STPXi: |
| return AArch64::STPXpre; |
| case AArch64::STGOffset: |
| return AArch64::STGPreIndex; |
| case AArch64::STZGOffset: |
| return AArch64::STZGPreIndex; |
| case AArch64::ST2GOffset: |
| return AArch64::ST2GPreIndex; |
| case AArch64::STZ2GOffset: |
| return AArch64::STZ2GPreIndex; |
| case AArch64::STGPi: |
| return AArch64::STGPpre; |
| } |
| } |
| |
| static unsigned getPostIndexedOpcode(unsigned Opc) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("Opcode has no post-indexed wise equivalent!"); |
| case AArch64::STRSui: |
| case AArch64::STURSi: |
| return AArch64::STRSpost; |
| case AArch64::STRDui: |
| case AArch64::STURDi: |
| return AArch64::STRDpost; |
| case AArch64::STRQui: |
| case AArch64::STURQi: |
| return AArch64::STRQpost; |
| case AArch64::STRBBui: |
| return AArch64::STRBBpost; |
| case AArch64::STRHHui: |
| return AArch64::STRHHpost; |
| case AArch64::STRWui: |
| case AArch64::STURWi: |
| return AArch64::STRWpost; |
| case AArch64::STRXui: |
| case AArch64::STURXi: |
| return AArch64::STRXpost; |
| case AArch64::LDRSui: |
| case AArch64::LDURSi: |
| return AArch64::LDRSpost; |
| case AArch64::LDRDui: |
| case AArch64::LDURDi: |
| return AArch64::LDRDpost; |
| case AArch64::LDRQui: |
| case AArch64::LDURQi: |
| return AArch64::LDRQpost; |
| case AArch64::LDRBBui: |
| return AArch64::LDRBBpost; |
| case AArch64::LDRHHui: |
| return AArch64::LDRHHpost; |
| case AArch64::LDRWui: |
| case AArch64::LDURWi: |
| return AArch64::LDRWpost; |
| case AArch64::LDRXui: |
| case AArch64::LDURXi: |
| return AArch64::LDRXpost; |
| case AArch64::LDRSWui: |
| return AArch64::LDRSWpost; |
| case AArch64::LDPSi: |
| return AArch64::LDPSpost; |
| case AArch64::LDPSWi: |
| return AArch64::LDPSWpost; |
| case AArch64::LDPDi: |
| return AArch64::LDPDpost; |
| case AArch64::LDPQi: |
| return AArch64::LDPQpost; |
| case AArch64::LDPWi: |
| return AArch64::LDPWpost; |
| case AArch64::LDPXi: |
| return AArch64::LDPXpost; |
| case AArch64::STPSi: |
| return AArch64::STPSpost; |
| case AArch64::STPDi: |
| return AArch64::STPDpost; |
| case AArch64::STPQi: |
| return AArch64::STPQpost; |
| case AArch64::STPWi: |
| return AArch64::STPWpost; |
| case AArch64::STPXi: |
| return AArch64::STPXpost; |
| case AArch64::STGOffset: |
| return AArch64::STGPostIndex; |
| case AArch64::STZGOffset: |
| return AArch64::STZGPostIndex; |
| case AArch64::ST2GOffset: |
| return AArch64::ST2GPostIndex; |
| case AArch64::STZ2GOffset: |
| return AArch64::STZ2GPostIndex; |
| case AArch64::STGPi: |
| return AArch64::STGPpost; |
| } |
| } |
| |
| static bool isPairedLdSt(const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case AArch64::LDPSi: |
| case AArch64::LDPSWi: |
| case AArch64::LDPDi: |
| case AArch64::LDPQi: |
| case AArch64::LDPWi: |
| case AArch64::LDPXi: |
| case AArch64::STPSi: |
| case AArch64::STPDi: |
| case AArch64::STPQi: |
| case AArch64::STPWi: |
| case AArch64::STPXi: |
| case AArch64::STGPi: |
| return true; |
| } |
| } |
| |
| static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) { |
| |
| unsigned OpcA = FirstMI.getOpcode(); |
| unsigned OpcB = MI.getOpcode(); |
| |
| switch (OpcA) { |
| default: |
| return false; |
| case AArch64::STRSpre: |
| return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi); |
| case AArch64::STRDpre: |
| return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi); |
| case AArch64::STRQpre: |
| return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi); |
| case AArch64::STRWpre: |
| return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi); |
| case AArch64::STRXpre: |
| return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi); |
| case AArch64::LDRSpre: |
| return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi); |
| case AArch64::LDRDpre: |
| return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi); |
| case AArch64::LDRQpre: |
| return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi); |
| case AArch64::LDRWpre: |
| return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi); |
| case AArch64::LDRXpre: |
| return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi); |
| } |
| } |
| |
| // Returns the scale and offset range of pre/post indexed variants of MI. |
| static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, |
| int &MinOffset, int &MaxOffset) { |
| bool IsPaired = isPairedLdSt(MI); |
| bool IsTagStore = isTagStore(MI); |
| // ST*G and all paired ldst have the same scale in pre/post-indexed variants |
| // as in the "unsigned offset" variant. |
| // All other pre/post indexed ldst instructions are unscaled. |
| Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; |
| |
| if (IsPaired) { |
| MinOffset = -64; |
| MaxOffset = 63; |
| } else { |
| MinOffset = -256; |
| MaxOffset = 255; |
| } |
| } |
| |
| static MachineOperand &getLdStRegOp(MachineInstr &MI, |
| unsigned PairedRegOp = 0) { |
| assert(PairedRegOp < 2 && "Unexpected register operand idx."); |
| bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI); |
| if (IsPreLdSt) |
| PairedRegOp += 1; |
| unsigned Idx = isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0; |
| return MI.getOperand(Idx); |
| } |
| |
| static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { |
| unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 2 : 1; |
| return MI.getOperand(Idx); |
| } |
| |
| static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { |
| unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 3 : 2; |
| return MI.getOperand(Idx); |
| } |
| |
| static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, |
| MachineInstr &StoreInst, |
| const AArch64InstrInfo *TII) { |
| assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); |
| int LoadSize = TII->getMemScale(LoadInst); |
| int StoreSize = TII->getMemScale(StoreInst); |
| int UnscaledStOffset = TII->hasUnscaledLdStOffset(StoreInst) |
| ? getLdStOffsetOp(StoreInst).getImm() |
| : getLdStOffsetOp(StoreInst).getImm() * StoreSize; |
| int UnscaledLdOffset = TII->hasUnscaledLdStOffset(LoadInst) |
| ? getLdStOffsetOp(LoadInst).getImm() |
| : getLdStOffsetOp(LoadInst).getImm() * LoadSize; |
| return (UnscaledStOffset <= UnscaledLdOffset) && |
| (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); |
| } |
| |
| static bool isPromotableZeroStoreInst(MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || |
| isNarrowStore(Opc)) && |
| getLdStRegOp(MI).getReg() == AArch64::WZR; |
| } |
| |
| static bool isPromotableLoadFromStore(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| // Scaled instructions. |
| case AArch64::LDRBBui: |
| case AArch64::LDRHHui: |
| case AArch64::LDRWui: |
| case AArch64::LDRXui: |
| // Unscaled instructions. |
| case AArch64::LDURBBi: |
| case AArch64::LDURHHi: |
| case AArch64::LDURWi: |
| case AArch64::LDURXi: |
| return true; |
| } |
| } |
| |
| static bool isMergeableLdStUpdate(MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| default: |
| return false; |
| // Scaled instructions. |
| case AArch64::STRSui: |
| case AArch64::STRDui: |
| case AArch64::STRQui: |
| case AArch64::STRXui: |
| case AArch64::STRWui: |
| case AArch64::STRHHui: |
| case AArch64::STRBBui: |
| case AArch64::LDRSui: |
| case AArch64::LDRDui: |
| case AArch64::LDRQui: |
| case AArch64::LDRXui: |
| case AArch64::LDRWui: |
| case AArch64::LDRHHui: |
| case AArch64::LDRBBui: |
| case AArch64::STGOffset: |
| case AArch64::STZGOffset: |
| case AArch64::ST2GOffset: |
| case AArch64::STZ2GOffset: |
| case AArch64::STGPi: |
| // Unscaled instructions. |
| case AArch64::STURSi: |
| case AArch64::STURDi: |
| case AArch64::STURQi: |
| case AArch64::STURWi: |
| case AArch64::STURXi: |
| case AArch64::LDURSi: |
| case AArch64::LDURDi: |
| case AArch64::LDURQi: |
| case AArch64::LDURWi: |
| case AArch64::LDURXi: |
| // Paired instructions. |
| case AArch64::LDPSi: |
| case AArch64::LDPSWi: |
| case AArch64::LDPDi: |
| case AArch64::LDPQi: |
| case AArch64::LDPWi: |
| case AArch64::LDPXi: |
| case AArch64::STPSi: |
| case AArch64::STPDi: |
| case AArch64::STPQi: |
| case AArch64::STPWi: |
| case AArch64::STPXi: |
| // Make sure this is a reg+imm (as opposed to an address reloc). |
| if (!getLdStOffsetOp(MI).isImm()) |
| return false; |
| |
| return true; |
| } |
| } |
| |
| MachineBasicBlock::iterator |
| AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator MergeMI, |
| const LdStPairFlags &Flags) { |
| assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && |
| "Expected promotable zero stores."); |
| |
| MachineBasicBlock::iterator E = I->getParent()->end(); |
| MachineBasicBlock::iterator NextI = next_nodbg(I, E); |
| // If NextI is the second of the two instructions to be merged, we need |
| // to skip one further. Either way we merge will invalidate the iterator, |
| // and we don't need to scan the new instruction, as it's a pairwise |
| // instruction, which we're not considering for further action anyway. |
| if (NextI == MergeMI) |
| NextI = next_nodbg(NextI, E); |
| |
| unsigned Opc = I->getOpcode(); |
| bool IsScaled = !TII->hasUnscaledLdStOffset(Opc); |
| int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); |
| |
| bool MergeForward = Flags.getMergeForward(); |
| // Insert our new paired instruction after whichever of the paired |
| // instructions MergeForward indicates. |
| MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; |
| // Also based on MergeForward is from where we copy the base register operand |
| // so we get the flags compatible with the input code. |
| const MachineOperand &BaseRegOp = |
| MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); |
| |
| // Which register is Rt and which is Rt2 depends on the offset order. |
| MachineInstr *RtMI; |
| if (getLdStOffsetOp(*I).getImm() == |
| getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) |
| RtMI = &*MergeMI; |
| else |
| RtMI = &*I; |
| |
| int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); |
| // Change the scaled offset from small to large type. |
| if (IsScaled) { |
| assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); |
| OffsetImm /= 2; |
| } |
| |
| // Construct the new instruction. |
| DebugLoc DL = I->getDebugLoc(); |
| MachineBasicBlock *MBB = I->getParent(); |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) |
| .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) |
| .add(BaseRegOp) |
| .addImm(OffsetImm) |
| .cloneMergedMemRefs({&*I, &*MergeMI}) |
| .setMIFlags(I->mergeFlagsWith(*MergeMI)); |
| (void)MIB; |
| |
| LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); |
| LLVM_DEBUG(I->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " "); |
| LLVM_DEBUG(MergeMI->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " with instruction:\n "); |
| LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| // Erase the old instructions. |
| I->eraseFromParent(); |
| MergeMI->eraseFromParent(); |
| return NextI; |
| } |
| |
| // Apply Fn to all instructions between MI and the beginning of the block, until |
| // a def for DefReg is reached. Returns true, iff Fn returns true for all |
| // visited instructions. Stop after visiting Limit iterations. |
| static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, |
| const TargetRegisterInfo *TRI, unsigned Limit, |
| std::function<bool(MachineInstr &, bool)> &Fn) { |
| auto MBB = MI.getParent(); |
| for (MachineInstr &I : |
| instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { |
| if (!Limit) |
| return false; |
| --Limit; |
| |
| bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { |
| return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && |
| TRI->regsOverlap(MOP.getReg(), DefReg); |
| }); |
| if (!Fn(I, isDef)) |
| return false; |
| if (isDef) |
| break; |
| } |
| return true; |
| } |
| |
| static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, |
| const TargetRegisterInfo *TRI) { |
| |
| for (const MachineOperand &MOP : phys_regs_and_masks(MI)) |
| if (MOP.isReg() && MOP.isKill()) |
| Units.removeReg(MOP.getReg()); |
| |
| for (const MachineOperand &MOP : phys_regs_and_masks(MI)) |
| if (MOP.isReg() && !MOP.isKill()) |
| Units.addReg(MOP.getReg()); |
| } |
| |
| MachineBasicBlock::iterator |
| AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator Paired, |
| const LdStPairFlags &Flags) { |
| MachineBasicBlock::iterator E = I->getParent()->end(); |
| MachineBasicBlock::iterator NextI = next_nodbg(I, E); |
| // If NextI is the second of the two instructions to be merged, we need |
| // to skip one further. Either way we merge will invalidate the iterator, |
| // and we don't need to scan the new instruction, as it's a pairwise |
| // instruction, which we're not considering for further action anyway. |
| if (NextI == Paired) |
| NextI = next_nodbg(NextI, E); |
| |
| int SExtIdx = Flags.getSExtIdx(); |
| unsigned Opc = |
| SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); |
| bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc); |
| int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; |
| |
| bool MergeForward = Flags.getMergeForward(); |
| |
| Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); |
| if (MergeForward && RenameReg) { |
| MCRegister RegToRename = getLdStRegOp(*I).getReg(); |
| DefinedInBB.addReg(*RenameReg); |
| |
| // Return the sub/super register for RenameReg, matching the size of |
| // OriginalReg. |
| auto GetMatchingSubReg = [this, |
| RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { |
| for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) |
| if (TRI->getMinimalPhysRegClass(OriginalReg) == |
| TRI->getMinimalPhysRegClass(SubOrSuper)) |
| return SubOrSuper; |
| llvm_unreachable("Should have found matching sub or super register!"); |
| }; |
| |
| std::function<bool(MachineInstr &, bool)> UpdateMIs = |
| [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { |
| if (IsDef) { |
| bool SeenDef = false; |
| for (auto &MOP : MI.operands()) { |
| // Rename the first explicit definition and all implicit |
| // definitions matching RegToRename. |
| if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && |
| (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && |
| TRI->regsOverlap(MOP.getReg(), RegToRename)) { |
| assert((MOP.isImplicit() || |
| (MOP.isRenamable() && !MOP.isEarlyClobber())) && |
| "Need renamable operands"); |
| MOP.setReg(GetMatchingSubReg(MOP.getReg())); |
| SeenDef = true; |
| } |
| } |
| } else { |
| for (auto &MOP : MI.operands()) { |
| if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && |
| TRI->regsOverlap(MOP.getReg(), RegToRename)) { |
| assert((MOP.isImplicit() || |
| (MOP.isRenamable() && !MOP.isEarlyClobber())) && |
| "Need renamable operands"); |
| MOP.setReg(GetMatchingSubReg(MOP.getReg())); |
| } |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); |
| return true; |
| }; |
| forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); |
| |
| #if !defined(NDEBUG) |
| // Make sure the register used for renaming is not used between the paired |
| // instructions. That would trash the content before the new paired |
| // instruction. |
| for (auto &MI : |
| iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( |
| std::next(I), std::next(Paired))) |
| assert(all_of(MI.operands(), |
| [this, &RenameReg](const MachineOperand &MOP) { |
| return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || |
| !TRI->regsOverlap(MOP.getReg(), *RenameReg); |
| }) && |
| "Rename register used between paired instruction, trashing the " |
| "content"); |
| #endif |
| } |
| |
| // Insert our new paired instruction after whichever of the paired |
| // instructions MergeForward indicates. |
| MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; |
| // Also based on MergeForward is from where we copy the base register operand |
| // so we get the flags compatible with the input code. |
| const MachineOperand &BaseRegOp = |
| MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); |
| |
| int Offset = getLdStOffsetOp(*I).getImm(); |
| int PairedOffset = getLdStOffsetOp(*Paired).getImm(); |
| bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode()); |
| if (IsUnscaled != PairedIsUnscaled) { |
| // We're trying to pair instructions that differ in how they are scaled. If |
| // I is scaled then scale the offset of Paired accordingly. Otherwise, do |
| // the opposite (i.e., make Paired's offset unscaled). |
| int MemSize = TII->getMemScale(*Paired); |
| if (PairedIsUnscaled) { |
| // If the unscaled offset isn't a multiple of the MemSize, we can't |
| // pair the operations together. |
| assert(!(PairedOffset % TII->getMemScale(*Paired)) && |
| "Offset should be a multiple of the stride!"); |
| PairedOffset /= MemSize; |
| } else { |
| PairedOffset *= MemSize; |
| } |
| } |
| |
| // Which register is Rt and which is Rt2 depends on the offset order. |
| // However, for pre load/stores the Rt should be the one of the pre |
| // load/store. |
| MachineInstr *RtMI, *Rt2MI; |
| if (Offset == PairedOffset + OffsetStride && |
| !AArch64InstrInfo::isPreLdSt(*I)) { |
| RtMI = &*Paired; |
| Rt2MI = &*I; |
| // Here we swapped the assumption made for SExtIdx. |
| // I.e., we turn ldp I, Paired into ldp Paired, I. |
| // Update the index accordingly. |
| if (SExtIdx != -1) |
| SExtIdx = (SExtIdx + 1) % 2; |
| } else { |
| RtMI = &*I; |
| Rt2MI = &*Paired; |
| } |
| int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); |
| // Scale the immediate offset, if necessary. |
| if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) { |
| assert(!(OffsetImm % TII->getMemScale(*RtMI)) && |
| "Unscaled offset cannot be scaled."); |
| OffsetImm /= TII->getMemScale(*RtMI); |
| } |
| |
| // Construct the new instruction. |
| MachineInstrBuilder MIB; |
| DebugLoc DL = I->getDebugLoc(); |
| MachineBasicBlock *MBB = I->getParent(); |
| MachineOperand RegOp0 = getLdStRegOp(*RtMI); |
| MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); |
| // Kill flags may become invalid when moving stores for pairing. |
| if (RegOp0.isUse()) { |
| if (!MergeForward) { |
| // Clear kill flags on store if moving upwards. Example: |
| // STRWui %w0, ... |
| // USE %w1 |
| // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards |
| RegOp0.setIsKill(false); |
| RegOp1.setIsKill(false); |
| } else { |
| // Clear kill flags of the first stores register. Example: |
| // STRWui %w1, ... |
| // USE kill %w1 ; need to clear kill flag when moving STRWui downwards |
| // STRW %w0 |
| Register Reg = getLdStRegOp(*I).getReg(); |
| for (MachineInstr &MI : make_range(std::next(I), Paired)) |
| MI.clearRegisterKills(Reg, TRI); |
| } |
| } |
| |
| unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc); |
| MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode)); |
| |
| // Adds the pre-index operand for pre-indexed ld/st pairs. |
| if (AArch64InstrInfo::isPreLdSt(*RtMI)) |
| MIB.addReg(BaseRegOp.getReg(), RegState::Define); |
| |
| MIB.add(RegOp0) |
| .add(RegOp1) |
| .add(BaseRegOp) |
| .addImm(OffsetImm) |
| .cloneMergedMemRefs({&*I, &*Paired}) |
| .setMIFlags(I->mergeFlagsWith(*Paired)); |
| |
| (void)MIB; |
| |
| LLVM_DEBUG( |
| dbgs() << "Creating pair load/store. Replacing instructions:\n "); |
| LLVM_DEBUG(I->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " "); |
| LLVM_DEBUG(Paired->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " with instruction:\n "); |
| if (SExtIdx != -1) { |
| // Generate the sign extension for the proper result of the ldp. |
| // I.e., with X1, that would be: |
| // %w1 = KILL %w1, implicit-def %x1 |
| // %x1 = SBFMXri killed %x1, 0, 31 |
| MachineOperand &DstMO = MIB->getOperand(SExtIdx); |
| // Right now, DstMO has the extended register, since it comes from an |
| // extended opcode. |
| Register DstRegX = DstMO.getReg(); |
| // Get the W variant of that register. |
| Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); |
| // Update the result of LDP to use the W instead of the X variant. |
| DstMO.setReg(DstRegW); |
| LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\n"); |
| // Make the machine verifier happy by providing a definition for |
| // the X register. |
| // Insert this definition right after the generated LDP, i.e., before |
| // InsertionPoint. |
| MachineInstrBuilder MIBKill = |
| BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) |
| .addReg(DstRegW) |
| .addReg(DstRegX, RegState::Define); |
| MIBKill->getOperand(2).setImplicit(); |
| // Create the sign extension. |
| MachineInstrBuilder MIBSXTW = |
| BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) |
| .addReg(DstRegX) |
| .addImm(0) |
| .addImm(31); |
| (void)MIBSXTW; |
| LLVM_DEBUG(dbgs() << " Extend operand:\n "); |
| LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); |
| } else { |
| LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); |
| } |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| if (MergeForward) |
| for (const MachineOperand &MOP : phys_regs_and_masks(*I)) |
| if (MOP.isReg() && MOP.isKill()) |
| DefinedInBB.addReg(MOP.getReg()); |
| |
| // Erase the old instructions. |
| I->eraseFromParent(); |
| Paired->eraseFromParent(); |
| |
| return NextI; |
| } |
| |
| MachineBasicBlock::iterator |
| AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, |
| MachineBasicBlock::iterator StoreI) { |
| MachineBasicBlock::iterator NextI = |
| next_nodbg(LoadI, LoadI->getParent()->end()); |
| |
| int LoadSize = TII->getMemScale(*LoadI); |
| int StoreSize = TII->getMemScale(*StoreI); |
| Register LdRt = getLdStRegOp(*LoadI).getReg(); |
| const MachineOperand &StMO = getLdStRegOp(*StoreI); |
| Register StRt = getLdStRegOp(*StoreI).getReg(); |
| bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); |
| |
| assert((IsStoreXReg || |
| TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && |
| "Unexpected RegClass"); |
| |
| MachineInstr *BitExtMI; |
| if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { |
| // Remove the load, if the destination register of the loads is the same |
| // register for stored value. |
| if (StRt == LdRt && LoadSize == 8) { |
| for (MachineInstr &MI : make_range(StoreI->getIterator(), |
| LoadI->getIterator())) { |
| if (MI.killsRegister(StRt, TRI)) { |
| MI.clearRegisterKills(StRt, TRI); |
| break; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); |
| LLVM_DEBUG(LoadI->print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\n"); |
| LoadI->eraseFromParent(); |
| return NextI; |
| } |
| // Replace the load with a mov if the load and store are in the same size. |
| BitExtMI = |
| BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), |
| TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) |
| .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) |
| .add(StMO) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) |
| .setMIFlags(LoadI->getFlags()); |
| } else { |
| // FIXME: Currently we disable this transformation in big-endian targets as |
| // performance and correctness are verified only in little-endian. |
| if (!Subtarget->isLittleEndian()) |
| return NextI; |
| bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI); |
| assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) && |
| "Unsupported ld/st match"); |
| assert(LoadSize <= StoreSize && "Invalid load size"); |
| int UnscaledLdOffset = IsUnscaled |
| ? getLdStOffsetOp(*LoadI).getImm() |
| : getLdStOffsetOp(*LoadI).getImm() * LoadSize; |
| int UnscaledStOffset = IsUnscaled |
| ? getLdStOffsetOp(*StoreI).getImm() |
| : getLdStOffsetOp(*StoreI).getImm() * StoreSize; |
| int Width = LoadSize * 8; |
| unsigned DestReg = |
| IsStoreXReg ? Register(TRI->getMatchingSuperReg( |
| LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) |
| : LdRt; |
| |
| assert((UnscaledLdOffset >= UnscaledStOffset && |
| (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && |
| "Invalid offset"); |
| |
| int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); |
| int Imms = Immr + Width - 1; |
| if (UnscaledLdOffset == UnscaledStOffset) { |
| uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N |
| | ((Immr) << 6) // immr |
| | ((Imms) << 0) // imms |
| ; |
| |
| BitExtMI = |
| BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), |
| TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), |
| DestReg) |
| .add(StMO) |
| .addImm(AndMaskEncoded) |
| .setMIFlags(LoadI->getFlags()); |
| } else { |
| BitExtMI = |
| BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), |
| TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), |
| DestReg) |
| .add(StMO) |
| .addImm(Immr) |
| .addImm(Imms) |
| .setMIFlags(LoadI->getFlags()); |
| } |
| } |
| |
| // Clear kill flags between store and load. |
| for (MachineInstr &MI : make_range(StoreI->getIterator(), |
| BitExtMI->getIterator())) |
| if (MI.killsRegister(StRt, TRI)) { |
| MI.clearRegisterKills(StRt, TRI); |
| break; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); |
| LLVM_DEBUG(StoreI->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " "); |
| LLVM_DEBUG(LoadI->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " with instructions:\n "); |
| LLVM_DEBUG(StoreI->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " "); |
| LLVM_DEBUG((BitExtMI)->print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| // Erase the old instructions. |
| LoadI->eraseFromParent(); |
| return NextI; |
| } |
| |
| static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { |
| // Convert the byte-offset used by unscaled into an "element" offset used |
| // by the scaled pair load/store instructions. |
| if (IsUnscaled) { |
| // If the byte-offset isn't a multiple of the stride, there's no point |
| // trying to match it. |
| if (Offset % OffsetStride) |
| return false; |
| Offset /= OffsetStride; |
| } |
| return Offset <= 63 && Offset >= -64; |
| } |
| |
| // Do alignment, specialized to power of 2 and for signed ints, |
| // avoiding having to do a C-style cast from uint_64t to int when |
| // using alignTo from include/llvm/Support/MathExtras.h. |
| // FIXME: Move this function to include/MathExtras.h? |
| static int alignTo(int Num, int PowOf2) { |
| return (Num + PowOf2 - 1) & ~(PowOf2 - 1); |
| } |
| |
| static bool mayAlias(MachineInstr &MIa, |
| SmallVectorImpl<MachineInstr *> &MemInsns, |
| AliasAnalysis *AA) { |
| for (MachineInstr *MIb : MemInsns) |
| if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) |
| return true; |
| |
| return false; |
| } |
| |
| bool AArch64LoadStoreOpt::findMatchingStore( |
| MachineBasicBlock::iterator I, unsigned Limit, |
| MachineBasicBlock::iterator &StoreI) { |
| MachineBasicBlock::iterator B = I->getParent()->begin(); |
| MachineBasicBlock::iterator MBBI = I; |
| MachineInstr &LoadMI = *I; |
| Register BaseReg = getLdStBaseOp(LoadMI).getReg(); |
| |
| // If the load is the first instruction in the block, there's obviously |
| // not any matching store. |
| if (MBBI == B) |
| return false; |
| |
| // Track which register units have been modified and used between the first |
| // insn and the second insn. |
| ModifiedRegUnits.clear(); |
| UsedRegUnits.clear(); |
| |
| unsigned Count = 0; |
| do { |
| MBBI = prev_nodbg(MBBI, B); |
| MachineInstr &MI = *MBBI; |
| |
| // Don't count transient instructions towards the search limit since there |
| // may be different numbers of them if e.g. debug information is present. |
| if (!MI.isTransient()) |
| ++Count; |
| |
| // If the load instruction reads directly from the address to which the |
| // store instruction writes and the stored value is not modified, we can |
| // promote the load. Since we do not handle stores with pre-/post-index, |
| // it's unnecessary to check if BaseReg is modified by the store itself. |
| // Also we can't handle stores without an immediate offset operand, |
| // while the operand might be the address for a global variable. |
| if (MI.mayStore() && isMatchingStore(LoadMI, MI) && |
| BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() && |
| isLdOffsetInRangeOfSt(LoadMI, MI, TII) && |
| ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { |
| StoreI = MBBI; |
| return true; |
| } |
| |
| if (MI.isCall()) |
| return false; |
| |
| // Update modified / uses register units. |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); |
| |
| // Otherwise, if the base register is modified, we have no match, so |
| // return early. |
| if (!ModifiedRegUnits.available(BaseReg)) |
| return false; |
| |
| // If we encounter a store aliased with the load, return early. |
| if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) |
| return false; |
| } while (MBBI != B && Count < Limit); |
| return false; |
| } |
| |
| // Returns true if FirstMI and MI are candidates for merging or pairing. |
| // Otherwise, returns false. |
| static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, |
| LdStPairFlags &Flags, |
| const AArch64InstrInfo *TII) { |
| // If this is volatile or if pairing is suppressed, not a candidate. |
| if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) |
| return false; |
| |
| // We should have already checked FirstMI for pair suppression and volatility. |
| assert(!FirstMI.hasOrderedMemoryRef() && |
| !TII->isLdStPairSuppressed(FirstMI) && |
| "FirstMI shouldn't get here if either of these checks are true."); |
| |
| unsigned OpcA = FirstMI.getOpcode(); |
| unsigned OpcB = MI.getOpcode(); |
| |
| // Opcodes match: If the opcodes are pre ld/st there is nothing more to check. |
| if (OpcA == OpcB) |
| return !AArch64InstrInfo::isPreLdSt(FirstMI); |
| |
| // Try to match a sign-extended load/store with a zero-extended load/store. |
| bool IsValidLdStrOpc, PairIsValidLdStrOpc; |
| unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); |
| assert(IsValidLdStrOpc && |
| "Given Opc should be a Load or Store with an immediate"); |
| // OpcA will be the first instruction in the pair. |
| if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { |
| Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); |
| return true; |
| } |
| |
| // If the second instruction isn't even a mergable/pairable load/store, bail |
| // out. |
| if (!PairIsValidLdStrOpc) |
| return false; |
| |
| // FIXME: We don't support merging narrow stores with mixed scaled/unscaled |
| // offsets. |
| if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) |
| return false; |
| |
| // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and |
| // LDR<S,D,Q,W,X>pre-LDR<S,D,Q,W,X>ui |
| // are candidate pairs that can be merged. |
| if (isPreLdStPairCandidate(FirstMI, MI)) |
| return true; |
| |
| // Try to match an unscaled load/store with a scaled load/store. |
| return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) && |
| getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); |
| |
| // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? |
| } |
| |
| static bool |
| canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, |
| SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, |
| const TargetRegisterInfo *TRI) { |
| if (!FirstMI.mayStore()) |
| return false; |
| |
| // Check if we can find an unused register which we can use to rename |
| // the register used by the first load/store. |
| auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); |
| MachineFunction &MF = *FirstMI.getParent()->getParent(); |
| if (!RegClass || !MF.getRegInfo().tracksLiveness()) |
| return false; |
| |
| auto RegToRename = getLdStRegOp(FirstMI).getReg(); |
| // For now, we only rename if the store operand gets killed at the store. |
| if (!getLdStRegOp(FirstMI).isKill() && |
| !any_of(FirstMI.operands(), |
| [TRI, RegToRename](const MachineOperand &MOP) { |
| return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && |
| MOP.isImplicit() && MOP.isKill() && |
| TRI->regsOverlap(RegToRename, MOP.getReg()); |
| })) { |
| LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); |
| return false; |
| } |
| auto canRenameMOP = [TRI](const MachineOperand &MOP) { |
| if (MOP.isReg()) { |
| auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); |
| // Renaming registers with multiple disjunct sub-registers (e.g. the |
| // result of a LD3) means that all sub-registers are renamed, potentially |
| // impacting other instructions we did not check. Bail out. |
| // Note that this relies on the structure of the AArch64 register file. In |
| // particular, a subregister cannot be written without overwriting the |
| // whole register. |
| if (RegClass->HasDisjunctSubRegs) { |
| LLVM_DEBUG( |
| dbgs() |
| << " Cannot rename operands with multiple disjunct subregisters (" |
| << MOP << ")\n"); |
| return false; |
| } |
| } |
| return MOP.isImplicit() || |
| (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); |
| }; |
| |
| bool FoundDef = false; |
| |
| // For each instruction between FirstMI and the previous def for RegToRename, |
| // we |
| // * check if we can rename RegToRename in this instruction |
| // * collect the registers used and required register classes for RegToRename. |
| std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, |
| bool IsDef) { |
| LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); |
| // Currently we do not try to rename across frame-setup instructions. |
| if (MI.getFlag(MachineInstr::FrameSetup)) { |
| LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" |
| << MI << ")\n"); |
| return false; |
| } |
| |
| UsedInBetween.accumulate(MI); |
| |
| // For a definition, check that we can rename the definition and exit the |
| // loop. |
| FoundDef = IsDef; |
| |
| // For defs, check if we can rename the first def of RegToRename. |
| if (FoundDef) { |
| // For some pseudo instructions, we might not generate code in the end |
| // (e.g. KILL) and we would end up without a correct def for the rename |
| // register. |
| // TODO: This might be overly conservative and we could handle those cases |
| // in multiple ways: |
| // 1. Insert an extra copy, to materialize the def. |
| // 2. Skip pseudo-defs until we find an non-pseudo def. |
| if (MI.isPseudo()) { |
| LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI |
| << "\n"); |
| return false; |
| } |
| |
| for (auto &MOP : MI.operands()) { |
| if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || |
| !TRI->regsOverlap(MOP.getReg(), RegToRename)) |
| continue; |
| if (!canRenameMOP(MOP)) { |
| LLVM_DEBUG(dbgs() |
| << " Cannot rename " << MOP << " in " << MI << "\n"); |
| return false; |
| } |
| RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); |
| } |
| return true; |
| } else { |
| for (auto &MOP : MI.operands()) { |
| if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || |
| !TRI->regsOverlap(MOP.getReg(), RegToRename)) |
| continue; |
| |
| if (!canRenameMOP(MOP)) { |
| LLVM_DEBUG(dbgs() |
| << " Cannot rename " << MOP << " in " << MI << "\n"); |
| return false; |
| } |
| RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); |
| } |
| } |
| return true; |
| }; |
| |
| if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) |
| return false; |
| |
| if (!FoundDef) { |
| LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| // Check if we can find a physical register for renaming. This register must: |
| // * not be defined up to FirstMI (checking DefinedInBB) |
| // * not used between the MI and the defining instruction of the register to |
| // rename (checked using UsedInBetween). |
| // * is available in all used register classes (checked using RequiredClasses). |
| static Optional<MCPhysReg> tryToFindRegisterToRename( |
| MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, |
| LiveRegUnits &UsedInBetween, |
| SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, |
| const TargetRegisterInfo *TRI) { |
| auto &MF = *FirstMI.getParent()->getParent(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| |
| // Checks if any sub- or super-register of PR is callee saved. |
| auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { |
| return any_of(TRI->sub_and_superregs_inclusive(PR), |
| [&MF, TRI](MCPhysReg SubOrSuper) { |
| return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); |
| }); |
| }; |
| |
| // Check if PR or one of its sub- or super-registers can be used for all |
| // required register classes. |
| auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { |
| return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { |
| return any_of(TRI->sub_and_superregs_inclusive(PR), |
| [C, TRI](MCPhysReg SubOrSuper) { |
| return C == TRI->getMinimalPhysRegClass(SubOrSuper); |
| }); |
| }); |
| }; |
| |
| auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); |
| for (const MCPhysReg &PR : *RegClass) { |
| if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && |
| !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && |
| CanBeUsedForAllClasses(PR)) { |
| DefinedInBB.addReg(PR); |
| LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) |
| << "\n"); |
| return {PR}; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "No rename register found from " |
| << TRI->getRegClassName(RegClass) << "\n"); |
| return None; |
| } |
| |
| /// Scan the instructions looking for a load/store that can be combined with the |
| /// current instruction into a wider equivalent or a load/store pair. |
| MachineBasicBlock::iterator |
| AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, |
| LdStPairFlags &Flags, unsigned Limit, |
| bool FindNarrowMerge) { |
| MachineBasicBlock::iterator E = I->getParent()->end(); |
| MachineBasicBlock::iterator MBBI = I; |
| MachineBasicBlock::iterator MBBIWithRenameReg; |
| MachineInstr &FirstMI = *I; |
| MBBI = next_nodbg(MBBI, E); |
| |
| bool MayLoad = FirstMI.mayLoad(); |
| bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI); |
| Register Reg = getLdStRegOp(FirstMI).getReg(); |
| Register BaseReg = getLdStBaseOp(FirstMI).getReg(); |
| int Offset = getLdStOffsetOp(FirstMI).getImm(); |
| int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; |
| bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); |
| |
| Optional<bool> MaybeCanRename = None; |
| if (!EnableRenaming) |
| MaybeCanRename = {false}; |
| |
| SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; |
| LiveRegUnits UsedInBetween; |
| UsedInBetween.init(*TRI); |
| |
| Flags.clearRenameReg(); |
| |
| // Track which register units have been modified and used between the first |
| // insn (inclusive) and the second insn. |
| ModifiedRegUnits.clear(); |
| UsedRegUnits.clear(); |
| |
| // Remember any instructions that read/write memory between FirstMI and MI. |
| SmallVector<MachineInstr *, 4> MemInsns; |
| |
| for (unsigned Count = 0; MBBI != E && Count < Limit; |
| MBBI = next_nodbg(MBBI, E)) { |
| MachineInstr &MI = *MBBI; |
| |
| UsedInBetween.accumulate(MI); |
| |
| // Don't count transient instructions towards the search limit since there |
| // may be different numbers of them if e.g. debug information is present. |
| if (!MI.isTransient()) |
| ++Count; |
| |
| Flags.setSExtIdx(-1); |
| if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && |
| getLdStOffsetOp(MI).isImm()) { |
| assert(MI.mayLoadOrStore() && "Expected memory operation."); |
| // If we've found another instruction with the same opcode, check to see |
| // if the base and offset are compatible with our starting instruction. |
| // These instructions all have scaled immediate operands, so we just |
| // check for +1/-1. Make sure to check the new instruction offset is |
| // actually an immediate and not a symbolic reference destined for |
| // a relocation. |
| Register MIBaseReg = getLdStBaseOp(MI).getReg(); |
| int MIOffset = getLdStOffsetOp(MI).getImm(); |
| bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI); |
| if (IsUnscaled != MIIsUnscaled) { |
| // We're trying to pair instructions that differ in how they are scaled. |
| // If FirstMI is scaled then scale the offset of MI accordingly. |
| // Otherwise, do the opposite (i.e., make MI's offset unscaled). |
| int MemSize = TII->getMemScale(MI); |
| if (MIIsUnscaled) { |
| // If the unscaled offset isn't a multiple of the MemSize, we can't |
| // pair the operations together: bail and keep looking. |
| if (MIOffset % MemSize) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, |
| UsedRegUnits, TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| MIOffset /= MemSize; |
| } else { |
| MIOffset *= MemSize; |
| } |
| } |
| |
| bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI); |
| |
| if (BaseReg == MIBaseReg) { |
| // If the offset of the second ld/st is not equal to the size of the |
| // destination register it can’t be paired with a pre-index ld/st |
| // pair. Additionally if the base reg is used or modified the operations |
| // can't be paired: bail and keep looking. |
| if (IsPreLdSt) { |
| bool IsOutOfBounds = MIOffset != TII->getMemScale(MI); |
| bool IsBaseRegUsed = |
| !UsedRegUnits.available(getLdStBaseOp(MI).getReg()); |
| bool IsBaseRegModified = |
| !ModifiedRegUnits.available(getLdStBaseOp(MI).getReg()); |
| // If the stored value and the address of the second instruction is |
| // the same, it needs to be using the updated register and therefore |
| // it must not be folded. |
| bool IsMIRegTheSame = TRI->regsOverlap(getLdStRegOp(MI).getReg(), |
| getLdStBaseOp(MI).getReg()); |
| if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified || |
| IsMIRegTheSame) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, |
| UsedRegUnits, TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| } else { |
| if ((Offset != MIOffset + OffsetStride) && |
| (Offset + OffsetStride != MIOffset)) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, |
| UsedRegUnits, TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| } |
| |
| int MinOffset = Offset < MIOffset ? Offset : MIOffset; |
| if (FindNarrowMerge) { |
| // If the alignment requirements of the scaled wide load/store |
| // instruction can't express the offset of the scaled narrow input, |
| // bail and keep looking. For promotable zero stores, allow only when |
| // the stored value is the same (i.e., WZR). |
| if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || |
| (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, |
| UsedRegUnits, TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| } else { |
| // Pairwise instructions have a 7-bit signed offset field. Single |
| // insns have a 12-bit unsigned offset field. If the resultant |
| // immediate offset of merging these instructions is out of range for |
| // a pairwise instruction, bail and keep looking. |
| if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, |
| UsedRegUnits, TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| // If the alignment requirements of the paired (scaled) instruction |
| // can't express the offset of the unscaled input, bail and keep |
| // looking. |
| if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, |
| UsedRegUnits, TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| } |
| // If the destination register of one load is the same register or a |
| // sub/super register of the other load, bail and keep looking. A |
| // load-pair instruction with both destination registers the same is |
| // UNPREDICTABLE and will result in an exception. |
| if (MayLoad && |
| TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, |
| TRI); |
| MemInsns.push_back(&MI); |
| continue; |
| } |
| |
| // If the BaseReg has been modified, then we cannot do the optimization. |
| // For example, in the following pattern |
| // ldr x1 [x2] |
| // ldr x2 [x3] |
| // ldr x4 [x2, #8], |
| // the first and third ldr cannot be converted to ldp x1, x4, [x2] |
| if (!ModifiedRegUnits.available(BaseReg)) |
| return E; |
| |
| // If the Rt of the second instruction was not modified or used between |
| // the two instructions and none of the instructions between the second |
| // and first alias with the second, we can combine the second into the |
| // first. |
| if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && |
| !(MI.mayLoad() && |
| !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && |
| !mayAlias(MI, MemInsns, AA)) { |
| |
| Flags.setMergeForward(false); |
| Flags.clearRenameReg(); |
| return MBBI; |
| } |
| |
| // Likewise, if the Rt of the first instruction is not modified or used |
| // between the two instructions and none of the instructions between the |
| // first and the second alias with the first, we can combine the first |
| // into the second. |
| if (!(MayLoad && |
| !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && |
| !mayAlias(FirstMI, MemInsns, AA)) { |
| |
| if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { |
| Flags.setMergeForward(true); |
| Flags.clearRenameReg(); |
| return MBBI; |
| } |
| |
| if (DebugCounter::shouldExecute(RegRenamingCounter)) { |
| if (!MaybeCanRename) |
| MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, |
| RequiredClasses, TRI)}; |
| |
| if (*MaybeCanRename) { |
| Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( |
| FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, |
| TRI); |
| if (MaybeRenameReg) { |
| Flags.setRenameReg(*MaybeRenameReg); |
| Flags.setMergeForward(true); |
| MBBIWithRenameReg = MBBI; |
| } |
| } |
| } |
| } |
| // Unable to combine these instructions due to interference in between. |
| // Keep looking. |
| } |
| } |
| |
| if (Flags.getRenameReg()) |
| return MBBIWithRenameReg; |
| |
| // If the instruction wasn't a matching load or store. Stop searching if we |
| // encounter a call instruction that might modify memory. |
| if (MI.isCall()) |
| return E; |
| |
| // Update modified / uses register units. |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); |
| |
| // Otherwise, if the base register is modified, we have no match, so |
| // return early. |
| if (!ModifiedRegUnits.available(BaseReg)) |
| return E; |
| |
| // Update list of instructions that read/write memory. |
| if (MI.mayLoadOrStore()) |
| MemInsns.push_back(&MI); |
| } |
| return E; |
| } |
| |
| MachineBasicBlock::iterator |
| AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator Update, |
| bool IsPreIdx) { |
| assert((Update->getOpcode() == AArch64::ADDXri || |
| Update->getOpcode() == AArch64::SUBXri) && |
| "Unexpected base register update instruction to merge!"); |
| MachineBasicBlock::iterator E = I->getParent()->end(); |
| MachineBasicBlock::iterator NextI = next_nodbg(I, E); |
| // Return the instruction following the merged instruction, which is |
| // the instruction following our unmerged load. Unless that's the add/sub |
| // instruction we're merging, in which case it's the one after that. |
| if (NextI == Update) |
| NextI = next_nodbg(NextI, E); |
| |
| int Value = Update->getOperand(2).getImm(); |
| assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && |
| "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); |
| if (Update->getOpcode() == AArch64::SUBXri) |
| Value = -Value; |
| |
| unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) |
| : getPostIndexedOpcode(I->getOpcode()); |
| MachineInstrBuilder MIB; |
| int Scale, MinOffset, MaxOffset; |
| getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); |
| if (!isPairedLdSt(*I)) { |
| // Non-paired instruction. |
| MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) |
| .add(getLdStRegOp(*Update)) |
| .add(getLdStRegOp(*I)) |
| .add(getLdStBaseOp(*I)) |
| .addImm(Value / Scale) |
| .setMemRefs(I->memoperands()) |
| .setMIFlags(I->mergeFlagsWith(*Update)); |
| } else { |
| // Paired instruction. |
| MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) |
| .add(getLdStRegOp(*Update)) |
| .add(getLdStRegOp(*I, 0)) |
| .add(getLdStRegOp(*I, 1)) |
| .add(getLdStBaseOp(*I)) |
| .addImm(Value / Scale) |
| .setMemRefs(I->memoperands()) |
| .setMIFlags(I->mergeFlagsWith(*Update)); |
| } |
| (void)MIB; |
| |
| if (IsPreIdx) { |
| ++NumPreFolded; |
| LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); |
| } else { |
| ++NumPostFolded; |
| LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); |
| } |
| LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); |
| LLVM_DEBUG(I->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " "); |
| LLVM_DEBUG(Update->print(dbgs())); |
| LLVM_DEBUG(dbgs() << " with instruction:\n "); |
| LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| // Erase the old instructions for the block. |
| I->eraseFromParent(); |
| Update->eraseFromParent(); |
| |
| return NextI; |
| } |
| |
| bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, |
| MachineInstr &MI, |
| unsigned BaseReg, int Offset) { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case AArch64::SUBXri: |
| case AArch64::ADDXri: |
| // Make sure it's a vanilla immediate operand, not a relocation or |
| // anything else we can't handle. |
| if (!MI.getOperand(2).isImm()) |
| break; |
| // Watch out for 1 << 12 shifted value. |
| if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) |
| break; |
| |
| // The update instruction source and destination register must be the |
| // same as the load/store base register. |
| if (MI.getOperand(0).getReg() != BaseReg || |
| MI.getOperand(1).getReg() != BaseReg) |
| break; |
| |
| int UpdateOffset = MI.getOperand(2).getImm(); |
| if (MI.getOpcode() == AArch64::SUBXri) |
| UpdateOffset = -UpdateOffset; |
| |
| // The immediate must be a multiple of the scaling factor of the pre/post |
| // indexed instruction. |
| int Scale, MinOffset, MaxOffset; |
| getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); |
| if (UpdateOffset % Scale != 0) |
| break; |
| |
| // Scaled offset must fit in the instruction immediate. |
| int ScaledOffset = UpdateOffset / Scale; |
| if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) |
| break; |
| |
| // If we have a non-zero Offset, we check that it matches the amount |
| // we're adding to the register. |
| if (!Offset || Offset == UpdateOffset) |
| return true; |
| break; |
| } |
| return false; |
| } |
| |
| static bool needsWinCFI(const MachineFunction *MF) { |
| return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && |
| MF->getFunction().needsUnwindTableEntry(); |
| } |
| |
| MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( |
| MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { |
| MachineBasicBlock::iterator E = I->getParent()->end(); |
| MachineInstr &MemMI = *I; |
| MachineBasicBlock::iterator MBBI = I; |
| |
| Register BaseReg = getLdStBaseOp(MemMI).getReg(); |
| int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); |
| |
| // Scan forward looking for post-index opportunities. Updating instructions |
| // can't be formed if the memory instruction doesn't have the offset we're |
| // looking for. |
| if (MIUnscaledOffset != UnscaledOffset) |
| return E; |
| |
| // If the base register overlaps a source/destination register, we can't |
| // merge the update. This does not apply to tag store instructions which |
| // ignore the address part of the source register. |
| // This does not apply to STGPi as well, which does not have unpredictable |
| // behavior in this case unlike normal stores, and always performs writeback |
| // after reading the source register value. |
| if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { |
| bool IsPairedInsn = isPairedLdSt(MemMI); |
| for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { |
| Register DestReg = getLdStRegOp(MemMI, i).getReg(); |
| if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) |
| return E; |
| } |
| } |
| |
| // Track which register units have been modified and used between the first |
| // insn (inclusive) and the second insn. |
| ModifiedRegUnits.clear(); |
| UsedRegUnits.clear(); |
| MBBI = next_nodbg(MBBI, E); |
| |
| // We can't post-increment the stack pointer if any instruction between |
| // the memory access (I) and the increment (MBBI) can access the memory |
| // region defined by [SP, MBBI]. |
| const bool BaseRegSP = BaseReg == AArch64::SP; |
| if (BaseRegSP && needsWinCFI(I->getMF())) { |
| // FIXME: For now, we always block the optimization over SP in windows |
| // targets as it requires to adjust the unwind/debug info, messing up |
| // the unwind info can actually cause a miscompile. |
| return E; |
| } |
| |
| for (unsigned Count = 0; MBBI != E && Count < Limit; |
| MBBI = next_nodbg(MBBI, E)) { |
| MachineInstr &MI = *MBBI; |
| |
| // Don't count transient instructions towards the search limit since there |
| // may be different numbers of them if e.g. debug information is present. |
| if (!MI.isTransient()) |
| ++Count; |
| |
| // If we found a match, return it. |
| if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) |
| return MBBI; |
| |
| // Update the status of what the instruction clobbered and used. |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); |
| |
| // Otherwise, if the base register is used or modified, we have no match, so |
| // return early. |
| // If we are optimizing SP, do not allow instructions that may load or store |
| // in between the load and the optimized value update. |
| if (!ModifiedRegUnits.available(BaseReg) || |
| !UsedRegUnits.available(BaseReg) || |
| (BaseRegSP && MBBI->mayLoadOrStore())) |
| return E; |
| } |
| return E; |
| } |
| |
| MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( |
| MachineBasicBlock::iterator I, unsigned Limit) { |
| MachineBasicBlock::iterator B = I->getParent()->begin(); |
| MachineBasicBlock::iterator E = I->getParent()->end(); |
| MachineInstr &MemMI = *I; |
| MachineBasicBlock::iterator MBBI = I; |
| MachineFunction &MF = *MemMI.getMF(); |
| |
| Register BaseReg = getLdStBaseOp(MemMI).getReg(); |
| int Offset = getLdStOffsetOp(MemMI).getImm(); |
| |
| // If the load/store is the first instruction in the block, there's obviously |
| // not any matching update. Ditto if the memory offset isn't zero. |
| if (MBBI == B || Offset != 0) |
| return E; |
| // If the base register overlaps a destination register, we can't |
| // merge the update. |
| if (!isTagStore(MemMI)) { |
| bool IsPairedInsn = isPairedLdSt(MemMI); |
| for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { |
| Register DestReg = getLdStRegOp(MemMI, i).getReg(); |
| if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) |
| return E; |
| } |
| } |
| |
| const bool BaseRegSP = BaseReg == AArch64::SP; |
| if (BaseRegSP && needsWinCFI(I->getMF())) { |
| // FIXME: For now, we always block the optimization over SP in windows |
| // targets as it requires to adjust the unwind/debug info, messing up |
| // the unwind info can actually cause a miscompile. |
| return E; |
| } |
| |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| unsigned RedZoneSize = |
| Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); |
| |
| // Track which register units have been modified and used between the first |
| // insn (inclusive) and the second insn. |
| ModifiedRegUnits.clear(); |
| UsedRegUnits.clear(); |
| unsigned Count = 0; |
| bool MemAcessBeforeSPPreInc = false; |
| do { |
| MBBI = prev_nodbg(MBBI, B); |
| MachineInstr &MI = *MBBI; |
| |
| // Don't count transient instructions towards the search limit since there |
| // may be different numbers of them if e.g. debug information is present. |
| if (!MI.isTransient()) |
| ++Count; |
| |
| // If we found a match, return it. |
| if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { |
| // Check that the update value is within our red zone limit (which may be |
| // zero). |
| if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) |
| return E; |
| return MBBI; |
| } |
| |
| // Update the status of what the instruction clobbered and used. |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); |
| |
| // Otherwise, if the base register is used or modified, we have no match, so |
| // return early. |
| if (!ModifiedRegUnits.available(BaseReg) || |
| !UsedRegUnits.available(BaseReg)) |
| return E; |
| // Keep track if we have a memory access before an SP pre-increment, in this |
| // case we need to validate later that the update amount respects the red |
| // zone. |
| if (BaseRegSP && MBBI->mayLoadOrStore()) |
| MemAcessBeforeSPPreInc = true; |
| } while (MBBI != B && Count < Limit); |
| return E; |
| } |
| |
| bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( |
| MachineBasicBlock::iterator &MBBI) { |
| MachineInstr &MI = *MBBI; |
| // If this is a volatile load, don't mess with it. |
| if (MI.hasOrderedMemoryRef()) |
| return false; |
| |
| // Make sure this is a reg+imm. |
| // FIXME: It is possible to extend it to handle reg+reg cases. |
| if (!getLdStOffsetOp(MI).isImm()) |
| return false; |
| |
| // Look backward up to LdStLimit instructions. |
| MachineBasicBlock::iterator StoreI; |
| if (findMatchingStore(MBBI, LdStLimit, StoreI)) { |
| ++NumLoadsFromStoresPromoted; |
| // Promote the load. Keeping the iterator straight is a |
| // pain, so we let the merge routine tell us what the next instruction |
| // is after it's done mucking about. |
| MBBI = promoteLoadFromStore(MBBI, StoreI); |
| return true; |
| } |
| return false; |
| } |
| |
| // Merge adjacent zero stores into a wider store. |
| bool AArch64LoadStoreOpt::tryToMergeZeroStInst( |
| MachineBasicBlock::iterator &MBBI) { |
| assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); |
| MachineInstr &MI = *MBBI; |
| MachineBasicBlock::iterator E = MI.getParent()->end(); |
| |
| if (!TII->isCandidateToMergeOrPair(MI)) |
| return false; |
| |
| // Look ahead up to LdStLimit instructions for a mergable instruction. |
| LdStPairFlags Flags; |
| MachineBasicBlock::iterator MergeMI = |
| findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); |
| if (MergeMI != E) { |
| ++NumZeroStoresPromoted; |
| |
| // Keeping the iterator straight is a pain, so we let the merge routine tell |
| // us what the next instruction is after it's done mucking about. |
| MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); |
| return true; |
| } |
| return false; |
| } |
| |
| // Find loads and stores that can be merged into a single load or store pair |
| // instruction. |
| bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { |
| MachineInstr &MI = *MBBI; |
| MachineBasicBlock::iterator E = MI.getParent()->end(); |
| |
| if (!TII->isCandidateToMergeOrPair(MI)) |
| return false; |
| |
| // Early exit if the offset is not possible to match. (6 bits of positive |
| // range, plus allow an extra one in case we find a later insn that matches |
| // with Offset-1) |
| bool IsUnscaled = TII->hasUnscaledLdStOffset(MI); |
| int Offset = getLdStOffsetOp(MI).getImm(); |
| int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; |
| // Allow one more for offset. |
| if (Offset > 0) |
| Offset -= OffsetStride; |
| if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) |
| return false; |
| |
| // Look ahead up to LdStLimit instructions for a pairable instruction. |
| LdStPairFlags Flags; |
| MachineBasicBlock::iterator Paired = |
| findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); |
| if (Paired != E) { |
| ++NumPairCreated; |
| if (TII->hasUnscaledLdStOffset(MI)) |
| ++NumUnscaledPairCreated; |
| // Keeping the iterator straight is a pain, so we let the merge routine tell |
| // us what the next instruction is after it's done mucking about. |
| auto Prev = std::prev(MBBI); |
| MBBI = mergePairedInsns(MBBI, Paired, Flags); |
| // Collect liveness info for instructions between Prev and the new position |
| // MBBI. |
| for (auto I = std::next(Prev); I != MBBI; I++) |
| updateDefinedRegisters(*I, DefinedInBB, TRI); |
| |
| return true; |
| } |
| return false; |
| } |
| |
| bool AArch64LoadStoreOpt::tryToMergeLdStUpdate |
| (MachineBasicBlock::iterator &MBBI) { |
| MachineInstr &MI = *MBBI; |
| MachineBasicBlock::iterator E = MI.getParent()->end(); |
| MachineBasicBlock::iterator Update; |
| |
| // Look forward to try to form a post-index instruction. For example, |
| // ldr x0, [x20] |
| // add x20, x20, #32 |
| // merged into: |
| // ldr x0, [x20], #32 |
| Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); |
| if (Update != E) { |
| // Merge the update into the ld/st. |
| MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); |
| return true; |
| } |
| |
| // Don't know how to handle unscaled pre/post-index versions below, so bail. |
| if (TII->hasUnscaledLdStOffset(MI.getOpcode())) |
| return false; |
| |
| // Look back to try to find a pre-index instruction. For example, |
| // add x0, x0, #8 |
| // ldr x1, [x0] |
| // merged into: |
| // ldr x1, [x0, #8]! |
| Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); |
| if (Update != E) { |
| // Merge the update into the ld/st. |
| MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); |
| return true; |
| } |
| |
| // The immediate in the load/store is scaled by the size of the memory |
| // operation. The immediate in the add we're looking for, |
| // however, is not, so adjust here. |
| int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); |
| |
| // Look forward to try to find a pre-index instruction. For example, |
| // ldr x1, [x0, #64] |
| // add x0, x0, #64 |
| // merged into: |
| // ldr x1, [x0, #64]! |
| Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); |
| if (Update != E) { |
| // Merge the update into the ld/st. |
| MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, |
| bool EnableNarrowZeroStOpt) { |
| |
| bool Modified = false; |
| // Four tranformations to do here: |
| // 1) Find loads that directly read from stores and promote them by |
| // replacing with mov instructions. If the store is wider than the load, |
| // the load will be replaced with a bitfield extract. |
| // e.g., |
| // str w1, [x0, #4] |
| // ldrh w2, [x0, #6] |
| // ; becomes |
| // str w1, [x0, #4] |
| // lsr w2, w1, #16 |
| for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); |
| MBBI != E;) { |
| if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) |
| Modified = true; |
| else |
| ++MBBI; |
| } |
| // 2) Merge adjacent zero stores into a wider store. |
| // e.g., |
| // strh wzr, [x0] |
| // strh wzr, [x0, #2] |
| // ; becomes |
| // str wzr, [x0] |
| // e.g., |
| // str wzr, [x0] |
| // str wzr, [x0, #4] |
| // ; becomes |
| // str xzr, [x0] |
| if (EnableNarrowZeroStOpt) |
| for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); |
| MBBI != E;) { |
| if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) |
| Modified = true; |
| else |
| ++MBBI; |
| } |
| // 3) Find loads and stores that can be merged into a single load or store |
| // pair instruction. |
| // e.g., |
| // ldr x0, [x2] |
| // ldr x1, [x2, #8] |
| // ; becomes |
| // ldp x0, x1, [x2] |
| |
| if (MBB.getParent()->getRegInfo().tracksLiveness()) { |
| DefinedInBB.clear(); |
| DefinedInBB.addLiveIns(MBB); |
| } |
| |
| for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); |
| MBBI != E;) { |
| // Track currently live registers up to this point, to help with |
| // searching for a rename register on demand. |
| updateDefinedRegisters(*MBBI, DefinedInBB, TRI); |
| if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) |
| Modified = true; |
| else |
| ++MBBI; |
| } |
| // 4) Find base register updates that can be merged into the load or store |
| // as a base-reg writeback. |
| // e.g., |
| // ldr x0, [x2] |
| // add x2, x2, #4 |
| // ; becomes |
| // ldr x0, [x2], #4 |
| for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); |
| MBBI != E;) { |
| if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) |
| Modified = true; |
| else |
| ++MBBI; |
| } |
| |
| return Modified; |
| } |
| |
| bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { |
| if (skipFunction(Fn.getFunction())) |
| return false; |
| |
| Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); |
| TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); |
| TRI = Subtarget->getRegisterInfo(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| |
| // Resize the modified and used register unit trackers. We do this once |
| // per function and then clear the register units each time we optimize a load |
| // or store. |
| ModifiedRegUnits.init(*TRI); |
| UsedRegUnits.init(*TRI); |
| DefinedInBB.init(*TRI); |
| |
| bool Modified = false; |
| bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); |
| for (auto &MBB : Fn) { |
| auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); |
| Modified |= M; |
| } |
| |
| return Modified; |
| } |
| |
| // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and |
| // stores near one another? Note: The pre-RA instruction scheduler already has |
| // hooks to try and schedule pairable loads/stores together to improve pairing |
| // opportunities. Thus, pre-RA pairing pass may not be worth the effort. |
| |
| // FIXME: When pairing store instructions it's very possible for this pass to |
| // hoist a store with a KILL marker above another use (without a KILL marker). |
| // The resulting IR is invalid, but nothing uses the KILL markers after this |
| // pass, so it's never caused a problem in practice. |
| |
| /// createAArch64LoadStoreOptimizationPass - returns an instance of the |
| /// load / store optimization pass. |
| FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { |
| return new AArch64LoadStoreOpt(); |
| } |