blob: ceb501e1c05fbea7c5579fd9e37e3661ce6ceaa3 [file] [log] [blame]
//===-- CompactUnwindInfo.h -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_SYMBOL_COMPACTUNWINDINFO_H
#define LLDB_SYMBOL_COMPACTUNWINDINFO_H
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RangeMap.h"
#include "lldb/lldb-private.h"
#include <mutex>
#include <vector>
namespace lldb_private {
// Compact Unwind info is an unwind format used on Darwin. The unwind
// instructions for typical compiler-generated functions can be expressed in a
// 32-bit encoding. The format includes a two-level index so the unwind
// information for a function can be found by two binary searches in the
// section. It can represent both stack frames that use a frame-pointer
// register and frameless functions, on i386/x86_64 for instance. When a
// function is too complex to be represented in the compact unwind format, it
// calls out to eh_frame unwind instructions.
// On Mac OS X / iOS, a function will have either a compact unwind
// representation or an eh_frame representation. If lldb is going to benefit
// from the compiler's description about saved register locations, it must be
// able to read both sources of information.
class CompactUnwindInfo {
public:
CompactUnwindInfo(ObjectFile &objfile, lldb::SectionSP &section);
~CompactUnwindInfo();
bool GetUnwindPlan(Target &target, Address addr, UnwindPlan &unwind_plan);
bool IsValid(const lldb::ProcessSP &process_sp);
private:
// The top level index entries of the compact unwind info
// (internal representation of struct
// unwind_info_section_header_index_entry)
// There are relatively few of these (one per 500/1000 functions, depending
// on format) so creating them on first scan will not be too costly.
struct UnwindIndex {
uint32_t function_offset = 0; // The offset of the first function covered by
// this index
uint32_t second_level = 0; // The offset (inside unwind_info sect) to the
// second level page for this index
// (either UNWIND_SECOND_LEVEL_REGULAR or UNWIND_SECOND_LEVEL_COMPRESSED)
uint32_t lsda_array_start = 0; // The offset (inside unwind_info sect) LSDA
// array for this index
uint32_t lsda_array_end =
0; // The offset to the LSDA array for the NEXT index
bool sentinal_entry = false; // There is an empty index at the end which
// provides the upper bound of
// function addresses that are described
UnwindIndex() = default;
bool operator<(const CompactUnwindInfo::UnwindIndex &rhs) const {
return function_offset < rhs.function_offset;
}
bool operator==(const CompactUnwindInfo::UnwindIndex &rhs) const {
return function_offset == rhs.function_offset;
}
};
// An internal object used to store the information we retrieve about a
// function -- the encoding bits and possibly the LSDA/personality function.
struct FunctionInfo {
uint32_t encoding = 0; // compact encoding 32-bit value for this function
Address lsda_address; // the address of the LSDA data for this function
Address personality_ptr_address; // the address where the personality
// routine addr can be found
uint32_t valid_range_offset_start = 0; // first offset that this encoding is
// valid for (start of the function)
uint32_t valid_range_offset_end =
0; // the offset of the start of the next function
FunctionInfo() : lsda_address(), personality_ptr_address() {}
};
struct UnwindHeader {
uint32_t version;
uint32_t common_encodings_array_offset = 0;
uint32_t common_encodings_array_count = 0;
uint32_t personality_array_offset = 0;
uint32_t personality_array_count = 0;
UnwindHeader() = default;
};
void ScanIndex(const lldb::ProcessSP &process_sp);
bool GetCompactUnwindInfoForFunction(Target &target, Address address,
FunctionInfo &unwind_info);
lldb::offset_t
BinarySearchRegularSecondPage(uint32_t entry_page_offset,
uint32_t entry_count, uint32_t function_offset,
uint32_t *entry_func_start_offset,
uint32_t *entry_func_end_offset);
uint32_t BinarySearchCompressedSecondPage(uint32_t entry_page_offset,
uint32_t entry_count,
uint32_t function_offset_to_find,
uint32_t function_offset_base,
uint32_t *entry_func_start_offset,
uint32_t *entry_func_end_offset);
uint32_t GetLSDAForFunctionOffset(uint32_t lsda_offset, uint32_t lsda_count,
uint32_t function_offset);
bool CreateUnwindPlan_x86_64(Target &target, FunctionInfo &function_info,
UnwindPlan &unwind_plan,
Address pc_or_function_start);
bool CreateUnwindPlan_i386(Target &target, FunctionInfo &function_info,
UnwindPlan &unwind_plan,
Address pc_or_function_start);
bool CreateUnwindPlan_arm64(Target &target, FunctionInfo &function_info,
UnwindPlan &unwind_plan,
Address pc_or_function_start);
bool CreateUnwindPlan_armv7(Target &target, FunctionInfo &function_info,
UnwindPlan &unwind_plan,
Address pc_or_function_start);
ObjectFile &m_objfile;
lldb::SectionSP m_section_sp;
lldb::DataBufferSP m_section_contents_if_encrypted; // if the binary is
// encrypted, read the
// sect contents
// out of live memory and cache them here
std::mutex m_mutex;
std::vector<UnwindIndex> m_indexes;
LazyBool m_indexes_computed; // eLazyBoolYes once we've tried to parse the
// unwind info
// eLazyBoolNo means we cannot parse the unwind info & should not retry
// eLazyBoolCalculate means we haven't tried to parse it yet
DataExtractor m_unwindinfo_data;
bool m_unwindinfo_data_computed; // true once we've mapped in the unwindinfo
// data
UnwindHeader m_unwind_header;
};
} // namespace lldb_private
#endif // LLDB_SYMBOL_COMPACTUNWINDINFO_H