| //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the SelectionDAG class, and transitively defines the |
| // SDNode class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_SELECTIONDAG_H |
| #define LLVM_CODEGEN_SELECTIONDAG_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/CodeGen/DAGCombine.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachinePassManager.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/CodeGenTypes/MachineValueType.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/RuntimeLibcalls.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/ArrayRecycler.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/RecyclingAllocator.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <map> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| namespace llvm { |
| |
| class DIExpression; |
| class DILabel; |
| class DIVariable; |
| class Function; |
| class Pass; |
| class Type; |
| template <class GraphType> struct GraphTraits; |
| template <typename T, unsigned int N> class SmallSetVector; |
| template <typename T, typename Enable> struct FoldingSetTrait; |
| class AAResults; |
| class BlockAddress; |
| class BlockFrequencyInfo; |
| class Constant; |
| class ConstantFP; |
| class ConstantInt; |
| class DataLayout; |
| struct fltSemantics; |
| class FunctionLoweringInfo; |
| class FunctionVarLocs; |
| class GlobalValue; |
| struct KnownBits; |
| class LLVMContext; |
| class MachineBasicBlock; |
| class MachineConstantPoolValue; |
| class MachineModuleInfo; |
| class MCSymbol; |
| class OptimizationRemarkEmitter; |
| class ProfileSummaryInfo; |
| class SDDbgValue; |
| class SDDbgOperand; |
| class SDDbgLabel; |
| class SelectionDAG; |
| class SelectionDAGTargetInfo; |
| class TargetLibraryInfo; |
| class TargetLowering; |
| class TargetMachine; |
| class TargetSubtargetInfo; |
| class Value; |
| |
| template <typename T> class GenericSSAContext; |
| using SSAContext = GenericSSAContext<Function>; |
| template <typename T> class GenericUniformityInfo; |
| using UniformityInfo = GenericUniformityInfo<SSAContext>; |
| |
| class SDVTListNode : public FoldingSetNode { |
| friend struct FoldingSetTrait<SDVTListNode>; |
| |
| /// A reference to an Interned FoldingSetNodeID for this node. |
| /// The Allocator in SelectionDAG holds the data. |
| /// SDVTList contains all types which are frequently accessed in SelectionDAG. |
| /// The size of this list is not expected to be big so it won't introduce |
| /// a memory penalty. |
| FoldingSetNodeIDRef FastID; |
| const EVT *VTs; |
| unsigned int NumVTs; |
| /// The hash value for SDVTList is fixed, so cache it to avoid |
| /// hash calculation. |
| unsigned HashValue; |
| |
| public: |
| SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) : |
| FastID(ID), VTs(VT), NumVTs(Num) { |
| HashValue = ID.ComputeHash(); |
| } |
| |
| SDVTList getSDVTList() { |
| SDVTList result = {VTs, NumVTs}; |
| return result; |
| } |
| }; |
| |
| /// Specialize FoldingSetTrait for SDVTListNode |
| /// to avoid computing temp FoldingSetNodeID and hash value. |
| template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> { |
| static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) { |
| ID = X.FastID; |
| } |
| |
| static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, |
| unsigned IDHash, FoldingSetNodeID &TempID) { |
| if (X.HashValue != IDHash) |
| return false; |
| return ID == X.FastID; |
| } |
| |
| static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) { |
| return X.HashValue; |
| } |
| }; |
| |
| template <> struct ilist_alloc_traits<SDNode> { |
| static void deleteNode(SDNode *) { |
| llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!"); |
| } |
| }; |
| |
| /// Keeps track of dbg_value information through SDISel. We do |
| /// not build SDNodes for these so as not to perturb the generated code; |
| /// instead the info is kept off to the side in this structure. Each SDNode may |
| /// have one or more associated dbg_value entries. This information is kept in |
| /// DbgValMap. |
| /// Byval parameters are handled separately because they don't use alloca's, |
| /// which busts the normal mechanism. There is good reason for handling all |
| /// parameters separately: they may not have code generated for them, they |
| /// should always go at the beginning of the function regardless of other code |
| /// motion, and debug info for them is potentially useful even if the parameter |
| /// is unused. Right now only byval parameters are handled separately. |
| class SDDbgInfo { |
| BumpPtrAllocator Alloc; |
| SmallVector<SDDbgValue*, 32> DbgValues; |
| SmallVector<SDDbgValue*, 32> ByvalParmDbgValues; |
| SmallVector<SDDbgLabel*, 4> DbgLabels; |
| using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>; |
| DbgValMapType DbgValMap; |
| |
| public: |
| SDDbgInfo() = default; |
| SDDbgInfo(const SDDbgInfo &) = delete; |
| SDDbgInfo &operator=(const SDDbgInfo &) = delete; |
| |
| void add(SDDbgValue *V, bool isParameter); |
| |
| void add(SDDbgLabel *L) { DbgLabels.push_back(L); } |
| |
| /// Invalidate all DbgValues attached to the node and remove |
| /// it from the Node-to-DbgValues map. |
| void erase(const SDNode *Node); |
| |
| void clear() { |
| DbgValMap.clear(); |
| DbgValues.clear(); |
| ByvalParmDbgValues.clear(); |
| DbgLabels.clear(); |
| Alloc.Reset(); |
| } |
| |
| BumpPtrAllocator &getAlloc() { return Alloc; } |
| |
| bool empty() const { |
| return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty(); |
| } |
| |
| ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const { |
| auto I = DbgValMap.find(Node); |
| if (I != DbgValMap.end()) |
| return I->second; |
| return ArrayRef<SDDbgValue*>(); |
| } |
| |
| using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator; |
| using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator; |
| |
| DbgIterator DbgBegin() { return DbgValues.begin(); } |
| DbgIterator DbgEnd() { return DbgValues.end(); } |
| DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); } |
| DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); } |
| DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); } |
| DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); } |
| }; |
| |
| void checkForCycles(const SelectionDAG *DAG, bool force = false); |
| |
| /// This is used to represent a portion of an LLVM function in a low-level |
| /// Data Dependence DAG representation suitable for instruction selection. |
| /// This DAG is constructed as the first step of instruction selection in order |
| /// to allow implementation of machine specific optimizations |
| /// and code simplifications. |
| /// |
| /// The representation used by the SelectionDAG is a target-independent |
| /// representation, which has some similarities to the GCC RTL representation, |
| /// but is significantly more simple, powerful, and is a graph form instead of a |
| /// linear form. |
| /// |
| class SelectionDAG { |
| const TargetMachine &TM; |
| const SelectionDAGTargetInfo *TSI = nullptr; |
| const TargetLowering *TLI = nullptr; |
| const TargetLibraryInfo *LibInfo = nullptr; |
| const FunctionVarLocs *FnVarLocs = nullptr; |
| MachineFunction *MF; |
| MachineFunctionAnalysisManager *MFAM = nullptr; |
| Pass *SDAGISelPass = nullptr; |
| LLVMContext *Context; |
| CodeGenOptLevel OptLevel; |
| |
| UniformityInfo *UA = nullptr; |
| FunctionLoweringInfo * FLI = nullptr; |
| |
| /// The function-level optimization remark emitter. Used to emit remarks |
| /// whenever manipulating the DAG. |
| OptimizationRemarkEmitter *ORE; |
| |
| ProfileSummaryInfo *PSI = nullptr; |
| BlockFrequencyInfo *BFI = nullptr; |
| MachineModuleInfo *MMI = nullptr; |
| |
| /// Extended EVTs used for single value VTLists. |
| std::set<EVT, EVT::compareRawBits> EVTs; |
| |
| /// List of non-single value types. |
| FoldingSet<SDVTListNode> VTListMap; |
| |
| /// Pool allocation for misc. objects that are created once per SelectionDAG. |
| BumpPtrAllocator Allocator; |
| |
| /// The starting token. |
| SDNode EntryNode; |
| |
| /// The root of the entire DAG. |
| SDValue Root; |
| |
| /// A linked list of nodes in the current DAG. |
| ilist<SDNode> AllNodes; |
| |
| /// The AllocatorType for allocating SDNodes. We use |
| /// pool allocation with recycling. |
| using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode, |
| sizeof(LargestSDNode), |
| alignof(MostAlignedSDNode)>; |
| |
| /// Pool allocation for nodes. |
| NodeAllocatorType NodeAllocator; |
| |
| /// This structure is used to memoize nodes, automatically performing |
| /// CSE with existing nodes when a duplicate is requested. |
| FoldingSet<SDNode> CSEMap; |
| |
| /// Pool allocation for machine-opcode SDNode operands. |
| BumpPtrAllocator OperandAllocator; |
| ArrayRecycler<SDUse> OperandRecycler; |
| |
| /// Tracks dbg_value and dbg_label information through SDISel. |
| SDDbgInfo *DbgInfo; |
| |
| using CallSiteInfo = MachineFunction::CallSiteInfo; |
| |
| struct NodeExtraInfo { |
| CallSiteInfo CSInfo; |
| MDNode *HeapAllocSite = nullptr; |
| MDNode *PCSections = nullptr; |
| MDNode *MMRA = nullptr; |
| bool NoMerge = false; |
| }; |
| /// Out-of-line extra information for SDNodes. |
| DenseMap<const SDNode *, NodeExtraInfo> SDEI; |
| |
| /// PersistentId counter to be used when inserting the next |
| /// SDNode to this SelectionDAG. We do not place that under |
| /// `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` intentionally because |
| /// it adds unneeded complexity without noticeable |
| /// benefits (see discussion with @thakis in D120714). |
| uint16_t NextPersistentId = 0; |
| |
| public: |
| /// Clients of various APIs that cause global effects on |
| /// the DAG can optionally implement this interface. This allows the clients |
| /// to handle the various sorts of updates that happen. |
| /// |
| /// A DAGUpdateListener automatically registers itself with DAG when it is |
| /// constructed, and removes itself when destroyed in RAII fashion. |
| struct DAGUpdateListener { |
| DAGUpdateListener *const Next; |
| SelectionDAG &DAG; |
| |
| explicit DAGUpdateListener(SelectionDAG &D) |
| : Next(D.UpdateListeners), DAG(D) { |
| DAG.UpdateListeners = this; |
| } |
| |
| virtual ~DAGUpdateListener() { |
| assert(DAG.UpdateListeners == this && |
| "DAGUpdateListeners must be destroyed in LIFO order"); |
| DAG.UpdateListeners = Next; |
| } |
| |
| /// The node N that was deleted and, if E is not null, an |
| /// equivalent node E that replaced it. |
| virtual void NodeDeleted(SDNode *N, SDNode *E); |
| |
| /// The node N that was updated. |
| virtual void NodeUpdated(SDNode *N); |
| |
| /// The node N that was inserted. |
| virtual void NodeInserted(SDNode *N); |
| }; |
| |
| struct DAGNodeDeletedListener : public DAGUpdateListener { |
| std::function<void(SDNode *, SDNode *)> Callback; |
| |
| DAGNodeDeletedListener(SelectionDAG &DAG, |
| std::function<void(SDNode *, SDNode *)> Callback) |
| : DAGUpdateListener(DAG), Callback(std::move(Callback)) {} |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); } |
| |
| private: |
| virtual void anchor(); |
| }; |
| |
| struct DAGNodeInsertedListener : public DAGUpdateListener { |
| std::function<void(SDNode *)> Callback; |
| |
| DAGNodeInsertedListener(SelectionDAG &DAG, |
| std::function<void(SDNode *)> Callback) |
| : DAGUpdateListener(DAG), Callback(std::move(Callback)) {} |
| |
| void NodeInserted(SDNode *N) override { Callback(N); } |
| |
| private: |
| virtual void anchor(); |
| }; |
| |
| /// Help to insert SDNodeFlags automatically in transforming. Use |
| /// RAII to save and resume flags in current scope. |
| class FlagInserter { |
| SelectionDAG &DAG; |
| SDNodeFlags Flags; |
| FlagInserter *LastInserter; |
| |
| public: |
| FlagInserter(SelectionDAG &SDAG, SDNodeFlags Flags) |
| : DAG(SDAG), Flags(Flags), |
| LastInserter(SDAG.getFlagInserter()) { |
| SDAG.setFlagInserter(this); |
| } |
| FlagInserter(SelectionDAG &SDAG, SDNode *N) |
| : FlagInserter(SDAG, N->getFlags()) {} |
| |
| FlagInserter(const FlagInserter &) = delete; |
| FlagInserter &operator=(const FlagInserter &) = delete; |
| ~FlagInserter() { DAG.setFlagInserter(LastInserter); } |
| |
| SDNodeFlags getFlags() const { return Flags; } |
| }; |
| |
| /// When true, additional steps are taken to |
| /// ensure that getConstant() and similar functions return DAG nodes that |
| /// have legal types. This is important after type legalization since |
| /// any illegally typed nodes generated after this point will not experience |
| /// type legalization. |
| bool NewNodesMustHaveLegalTypes = false; |
| |
| private: |
| /// DAGUpdateListener is a friend so it can manipulate the listener stack. |
| friend struct DAGUpdateListener; |
| |
| /// Linked list of registered DAGUpdateListener instances. |
| /// This stack is maintained by DAGUpdateListener RAII. |
| DAGUpdateListener *UpdateListeners = nullptr; |
| |
| /// Implementation of setSubgraphColor. |
| /// Return whether we had to truncate the search. |
| bool setSubgraphColorHelper(SDNode *N, const char *Color, |
| DenseSet<SDNode *> &visited, |
| int level, bool &printed); |
| |
| template <typename SDNodeT, typename... ArgTypes> |
| SDNodeT *newSDNode(ArgTypes &&... Args) { |
| return new (NodeAllocator.template Allocate<SDNodeT>()) |
| SDNodeT(std::forward<ArgTypes>(Args)...); |
| } |
| |
| /// Build a synthetic SDNodeT with the given args and extract its subclass |
| /// data as an integer (e.g. for use in a folding set). |
| /// |
| /// The args to this function are the same as the args to SDNodeT's |
| /// constructor, except the second arg (assumed to be a const DebugLoc&) is |
| /// omitted. |
| template <typename SDNodeT, typename... ArgTypes> |
| static uint16_t getSyntheticNodeSubclassData(unsigned IROrder, |
| ArgTypes &&... Args) { |
| // The compiler can reduce this expression to a constant iff we pass an |
| // empty DebugLoc. Thankfully, the debug location doesn't have any bearing |
| // on the subclass data. |
| return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...) |
| .getRawSubclassData(); |
| } |
| |
| template <typename SDNodeTy> |
| static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order, |
| SDVTList VTs, EVT MemoryVT, |
| MachineMemOperand *MMO) { |
| return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO) |
| .getRawSubclassData(); |
| } |
| |
| void createOperands(SDNode *Node, ArrayRef<SDValue> Vals); |
| |
| void removeOperands(SDNode *Node) { |
| if (!Node->OperandList) |
| return; |
| OperandRecycler.deallocate( |
| ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands), |
| Node->OperandList); |
| Node->NumOperands = 0; |
| Node->OperandList = nullptr; |
| } |
| void CreateTopologicalOrder(std::vector<SDNode*>& Order); |
| |
| public: |
| // Maximum depth for recursive analysis such as computeKnownBits, etc. |
| static constexpr unsigned MaxRecursionDepth = 6; |
| |
| // Returns the maximum steps for SDNode->hasPredecessor() like searches. |
| static unsigned getHasPredecessorMaxSteps(); |
| |
| explicit SelectionDAG(const TargetMachine &TM, CodeGenOptLevel); |
| SelectionDAG(const SelectionDAG &) = delete; |
| SelectionDAG &operator=(const SelectionDAG &) = delete; |
| ~SelectionDAG(); |
| |
| /// Prepare this SelectionDAG to process code in the given MachineFunction. |
| void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, |
| Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, |
| UniformityInfo *UA, ProfileSummaryInfo *PSIin, |
| BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, |
| FunctionVarLocs const *FnVarLocs); |
| |
| void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, |
| MachineFunctionAnalysisManager &AM, |
| const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, |
| ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, |
| MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs) { |
| init(NewMF, NewORE, nullptr, LibraryInfo, UA, PSIin, BFIin, MMI, FnVarLocs); |
| MFAM = &AM; |
| } |
| |
| void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) { |
| FLI = FuncInfo; |
| } |
| |
| /// Clear state and free memory necessary to make this |
| /// SelectionDAG ready to process a new block. |
| void clear(); |
| |
| MachineFunction &getMachineFunction() const { return *MF; } |
| const Pass *getPass() const { return SDAGISelPass; } |
| MachineFunctionAnalysisManager *getMFAM() { return MFAM; } |
| |
| CodeGenOptLevel getOptLevel() const { return OptLevel; } |
| const DataLayout &getDataLayout() const { return MF->getDataLayout(); } |
| const TargetMachine &getTarget() const { return TM; } |
| const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); } |
| template <typename STC> const STC &getSubtarget() const { |
| return MF->getSubtarget<STC>(); |
| } |
| const TargetLowering &getTargetLoweringInfo() const { return *TLI; } |
| const TargetLibraryInfo &getLibInfo() const { return *LibInfo; } |
| const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; } |
| const UniformityInfo *getUniformityInfo() const { return UA; } |
| /// Returns the result of the AssignmentTrackingAnalysis pass if it's |
| /// available, otherwise return nullptr. |
| const FunctionVarLocs *getFunctionVarLocs() const { return FnVarLocs; } |
| LLVMContext *getContext() const { return Context; } |
| OptimizationRemarkEmitter &getORE() const { return *ORE; } |
| ProfileSummaryInfo *getPSI() const { return PSI; } |
| BlockFrequencyInfo *getBFI() const { return BFI; } |
| MachineModuleInfo *getMMI() const { return MMI; } |
| |
| FlagInserter *getFlagInserter() { return Inserter; } |
| void setFlagInserter(FlagInserter *FI) { Inserter = FI; } |
| |
| /// Just dump dot graph to a user-provided path and title. |
| /// This doesn't open the dot viewer program and |
| /// helps visualization when outside debugging session. |
| /// FileName expects absolute path. If provided |
| /// without any path separators then the file |
| /// will be created in the current directory. |
| /// Error will be emitted if the path is insane. |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title); |
| #endif |
| |
| /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'. |
| void viewGraph(const std::string &Title); |
| void viewGraph(); |
| |
| #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| std::map<const SDNode *, std::string> NodeGraphAttrs; |
| #endif |
| |
| /// Clear all previously defined node graph attributes. |
| /// Intended to be used from a debugging tool (eg. gdb). |
| void clearGraphAttrs(); |
| |
| /// Set graph attributes for a node. (eg. "color=red".) |
| void setGraphAttrs(const SDNode *N, const char *Attrs); |
| |
| /// Get graph attributes for a node. (eg. "color=red".) |
| /// Used from getNodeAttributes. |
| std::string getGraphAttrs(const SDNode *N) const; |
| |
| /// Convenience for setting node color attribute. |
| void setGraphColor(const SDNode *N, const char *Color); |
| |
| /// Convenience for setting subgraph color attribute. |
| void setSubgraphColor(SDNode *N, const char *Color); |
| |
| using allnodes_const_iterator = ilist<SDNode>::const_iterator; |
| |
| allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } |
| allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } |
| |
| using allnodes_iterator = ilist<SDNode>::iterator; |
| |
| allnodes_iterator allnodes_begin() { return AllNodes.begin(); } |
| allnodes_iterator allnodes_end() { return AllNodes.end(); } |
| |
| ilist<SDNode>::size_type allnodes_size() const { |
| return AllNodes.size(); |
| } |
| |
| iterator_range<allnodes_iterator> allnodes() { |
| return make_range(allnodes_begin(), allnodes_end()); |
| } |
| iterator_range<allnodes_const_iterator> allnodes() const { |
| return make_range(allnodes_begin(), allnodes_end()); |
| } |
| |
| /// Return the root tag of the SelectionDAG. |
| const SDValue &getRoot() const { return Root; } |
| |
| /// Return the token chain corresponding to the entry of the function. |
| SDValue getEntryNode() const { |
| return SDValue(const_cast<SDNode *>(&EntryNode), 0); |
| } |
| |
| /// Set the current root tag of the SelectionDAG. |
| /// |
| const SDValue &setRoot(SDValue N) { |
| assert((!N.getNode() || N.getValueType() == MVT::Other) && |
| "DAG root value is not a chain!"); |
| if (N.getNode()) |
| checkForCycles(N.getNode(), this); |
| Root = N; |
| if (N.getNode()) |
| checkForCycles(this); |
| return Root; |
| } |
| |
| #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| void VerifyDAGDivergence(); |
| #endif |
| |
| /// This iterates over the nodes in the SelectionDAG, folding |
| /// certain types of nodes together, or eliminating superfluous nodes. The |
| /// Level argument controls whether Combine is allowed to produce nodes and |
| /// types that are illegal on the target. |
| void Combine(CombineLevel Level, AAResults *AA, CodeGenOptLevel OptLevel); |
| |
| /// This transforms the SelectionDAG into a SelectionDAG that |
| /// only uses types natively supported by the target. |
| /// Returns "true" if it made any changes. |
| /// |
| /// Note that this is an involved process that may invalidate pointers into |
| /// the graph. |
| bool LegalizeTypes(); |
| |
| /// This transforms the SelectionDAG into a SelectionDAG that is |
| /// compatible with the target instruction selector, as indicated by the |
| /// TargetLowering object. |
| /// |
| /// Note that this is an involved process that may invalidate pointers into |
| /// the graph. |
| void Legalize(); |
| |
| /// Transforms a SelectionDAG node and any operands to it into a node |
| /// that is compatible with the target instruction selector, as indicated by |
| /// the TargetLowering object. |
| /// |
| /// \returns true if \c N is a valid, legal node after calling this. |
| /// |
| /// This essentially runs a single recursive walk of the \c Legalize process |
| /// over the given node (and its operands). This can be used to incrementally |
| /// legalize the DAG. All of the nodes which are directly replaced, |
| /// potentially including N, are added to the output parameter \c |
| /// UpdatedNodes so that the delta to the DAG can be understood by the |
| /// caller. |
| /// |
| /// When this returns false, N has been legalized in a way that make the |
| /// pointer passed in no longer valid. It may have even been deleted from the |
| /// DAG, and so it shouldn't be used further. When this returns true, the |
| /// N passed in is a legal node, and can be immediately processed as such. |
| /// This may still have done some work on the DAG, and will still populate |
| /// UpdatedNodes with any new nodes replacing those originally in the DAG. |
| bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes); |
| |
| /// This transforms the SelectionDAG into a SelectionDAG |
| /// that only uses vector math operations supported by the target. This is |
| /// necessary as a separate step from Legalize because unrolling a vector |
| /// operation can introduce illegal types, which requires running |
| /// LegalizeTypes again. |
| /// |
| /// This returns true if it made any changes; in that case, LegalizeTypes |
| /// is called again before Legalize. |
| /// |
| /// Note that this is an involved process that may invalidate pointers into |
| /// the graph. |
| bool LegalizeVectors(); |
| |
| /// This method deletes all unreachable nodes in the SelectionDAG. |
| void RemoveDeadNodes(); |
| |
| /// Remove the specified node from the system. This node must |
| /// have no referrers. |
| void DeleteNode(SDNode *N); |
| |
| /// Return an SDVTList that represents the list of values specified. |
| SDVTList getVTList(EVT VT); |
| SDVTList getVTList(EVT VT1, EVT VT2); |
| SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3); |
| SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4); |
| SDVTList getVTList(ArrayRef<EVT> VTs); |
| |
| //===--------------------------------------------------------------------===// |
| // Node creation methods. |
| |
| /// Create a ConstantSDNode wrapping a constant value. |
| /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. |
| /// |
| /// If only legal types can be produced, this does the necessary |
| /// transformations (e.g., if the vector element type is illegal). |
| /// @{ |
| SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| |
| SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| |
| SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false, |
| bool IsOpaque = false); |
| |
| SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, |
| bool isTarget = false); |
| SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL); |
| SDValue getShiftAmountConstant(const APInt &Val, EVT VT, const SDLoc &DL); |
| SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, |
| bool isTarget = false); |
| |
| SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getConstant(Val, DL, VT, true, isOpaque); |
| } |
| SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getConstant(Val, DL, VT, true, isOpaque); |
| } |
| SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getConstant(Val, DL, VT, true, isOpaque); |
| } |
| SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getSignedConstant(Val, DL, VT, true, isOpaque); |
| } |
| |
| /// Create a true or false constant of type \p VT using the target's |
| /// BooleanContent for type \p OpVT. |
| SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT); |
| /// @} |
| |
| /// Create a ConstantFPSDNode wrapping a constant value. |
| /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. |
| /// |
| /// If only legal types can be produced, this does the necessary |
| /// transformations (e.g., if the vector element type is illegal). |
| /// The forms that take a double should only be used for simple constants |
| /// that can be exactly represented in VT. No checks are made. |
| /// @{ |
| SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false); |
| SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false); |
| SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT, |
| bool isTarget = false); |
| SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) { |
| return getConstantFP(Val, DL, VT, true); |
| } |
| SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) { |
| return getConstantFP(Val, DL, VT, true); |
| } |
| SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) { |
| return getConstantFP(Val, DL, VT, true); |
| } |
| /// @} |
| |
| SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, |
| int64_t offset = 0, bool isTargetGA = false, |
| unsigned TargetFlags = 0); |
| SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, |
| int64_t offset = 0, unsigned TargetFlags = 0) { |
| return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags); |
| } |
| SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false); |
| SDValue getTargetFrameIndex(int FI, EVT VT) { |
| return getFrameIndex(FI, VT, true); |
| } |
| SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false, |
| unsigned TargetFlags = 0); |
| SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) { |
| return getJumpTable(JTI, VT, true, TargetFlags); |
| } |
| SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL); |
| SDValue getConstantPool(const Constant *C, EVT VT, |
| MaybeAlign Align = std::nullopt, int Offs = 0, |
| bool isT = false, unsigned TargetFlags = 0); |
| SDValue getTargetConstantPool(const Constant *C, EVT VT, |
| MaybeAlign Align = std::nullopt, int Offset = 0, |
| unsigned TargetFlags = 0) { |
| return getConstantPool(C, VT, Align, Offset, true, TargetFlags); |
| } |
| SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT, |
| MaybeAlign Align = std::nullopt, int Offs = 0, |
| bool isT = false, unsigned TargetFlags = 0); |
| SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, |
| MaybeAlign Align = std::nullopt, int Offset = 0, |
| unsigned TargetFlags = 0) { |
| return getConstantPool(C, VT, Align, Offset, true, TargetFlags); |
| } |
| // When generating a branch to a BB, we don't in general know enough |
| // to provide debug info for the BB at that time, so keep this one around. |
| SDValue getBasicBlock(MachineBasicBlock *MBB); |
| SDValue getExternalSymbol(const char *Sym, EVT VT); |
| SDValue getTargetExternalSymbol(const char *Sym, EVT VT, |
| unsigned TargetFlags = 0); |
| SDValue getMCSymbol(MCSymbol *Sym, EVT VT); |
| |
| SDValue getValueType(EVT); |
| SDValue getRegister(Register Reg, EVT VT); |
| SDValue getRegisterMask(const uint32_t *RegMask); |
| SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label); |
| SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, |
| MCSymbol *Label); |
| SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0, |
| bool isTarget = false, unsigned TargetFlags = 0); |
| SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, |
| int64_t Offset = 0, unsigned TargetFlags = 0) { |
| return getBlockAddress(BA, VT, Offset, true, TargetFlags); |
| } |
| |
| SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, |
| SDValue N) { |
| return getNode(ISD::CopyToReg, dl, MVT::Other, Chain, |
| getRegister(Reg, N.getValueType()), N); |
| } |
| |
| // This version of the getCopyToReg method takes an extra operand, which |
| // indicates that there is potentially an incoming glue value (if Glue is not |
| // null) and that there should be a glue result. |
| SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N, |
| SDValue Glue) { |
| SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue }; |
| return getNode(ISD::CopyToReg, dl, VTs, |
| ArrayRef(Ops, Glue.getNode() ? 4 : 3)); |
| } |
| |
| // Similar to last getCopyToReg() except parameter Reg is a SDValue |
| SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, |
| SDValue Glue) { |
| SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, Reg, N, Glue }; |
| return getNode(ISD::CopyToReg, dl, VTs, |
| ArrayRef(Ops, Glue.getNode() ? 4 : 3)); |
| } |
| |
| SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT) { |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| SDValue Ops[] = { Chain, getRegister(Reg, VT) }; |
| return getNode(ISD::CopyFromReg, dl, VTs, Ops); |
| } |
| |
| // This version of the getCopyFromReg method takes an extra operand, which |
| // indicates that there is potentially an incoming glue value (if Glue is not |
| // null) and that there should be a glue result. |
| SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT, |
| SDValue Glue) { |
| SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue }; |
| return getNode(ISD::CopyFromReg, dl, VTs, |
| ArrayRef(Ops, Glue.getNode() ? 3 : 2)); |
| } |
| |
| SDValue getCondCode(ISD::CondCode Cond); |
| |
| /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT, |
| /// which must be a vector type, must match the number of mask elements |
| /// NumElts. An integer mask element equal to -1 is treated as undefined. |
| SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, |
| ArrayRef<int> Mask); |
| |
| /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, |
| /// which must be a vector type, must match the number of operands in Ops. |
| /// The operands must have the same type as (or, for integers, a type wider |
| /// than) VT's element type. |
| SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) { |
| // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
| return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
| } |
| |
| /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, |
| /// which must be a vector type, must match the number of operands in Ops. |
| /// The operands must have the same type as (or, for integers, a type wider |
| /// than) VT's element type. |
| SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) { |
| // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
| return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
| } |
| |
| /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all |
| /// elements. VT must be a vector type. Op's type must be the same as (or, |
| /// for integers, a type wider than) VT's element type. |
| SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) { |
| // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
| if (Op.getOpcode() == ISD::UNDEF) { |
| assert((VT.getVectorElementType() == Op.getValueType() || |
| (VT.isInteger() && |
| VT.getVectorElementType().bitsLE(Op.getValueType()))) && |
| "A splatted value must have a width equal or (for integers) " |
| "greater than the vector element type!"); |
| return getNode(ISD::UNDEF, SDLoc(), VT); |
| } |
| |
| SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op); |
| return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
| } |
| |
| // Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all |
| // elements. |
| SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op) { |
| if (Op.getOpcode() == ISD::UNDEF) { |
| assert((VT.getVectorElementType() == Op.getValueType() || |
| (VT.isInteger() && |
| VT.getVectorElementType().bitsLE(Op.getValueType()))) && |
| "A splatted value must have a width equal or (for integers) " |
| "greater than the vector element type!"); |
| return getNode(ISD::UNDEF, SDLoc(), VT); |
| } |
| return getNode(ISD::SPLAT_VECTOR, DL, VT, Op); |
| } |
| |
| /// Returns a node representing a splat of one value into all lanes |
| /// of the provided vector type. This is a utility which returns |
| /// either a BUILD_VECTOR or SPLAT_VECTOR depending on the |
| /// scalability of the desired vector type. |
| SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op) { |
| assert(VT.isVector() && "Can't splat to non-vector type"); |
| return VT.isScalableVector() ? |
| getSplatVector(VT, DL, Op) : getSplatBuildVector(VT, DL, Op); |
| } |
| |
| /// Returns a vector of type ResVT whose elements contain the linear sequence |
| /// <0, Step, Step * 2, Step * 3, ...> |
| SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal); |
| |
| /// Returns a vector of type ResVT whose elements contain the linear sequence |
| /// <0, 1, 2, 3, ...> |
| SDValue getStepVector(const SDLoc &DL, EVT ResVT); |
| |
| /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to |
| /// the shuffle node in input but with swapped operands. |
| /// |
| /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3> |
| SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV); |
| |
| /// Convert Op, which must be of float type, to the |
| /// float type VT, by either extending or rounding (by truncation). |
| SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be a STRICT operation of float type, to the |
| /// float type VT, by either extending or rounding (by truncation). |
| std::pair<SDValue, SDValue> |
| getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT); |
| |
| /// Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode. |
| static unsigned getOpcode_EXTEND(unsigned Opcode) { |
| switch (Opcode) { |
| case ISD::ANY_EXTEND: |
| case ISD::ANY_EXTEND_VECTOR_INREG: |
| return ISD::ANY_EXTEND; |
| case ISD::ZERO_EXTEND: |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| return ISD::ZERO_EXTEND; |
| case ISD::SIGN_EXTEND: |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| return ISD::SIGN_EXTEND; |
| } |
| llvm_unreachable("Unknown opcode"); |
| } |
| |
| /// Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode. |
| static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) { |
| switch (Opcode) { |
| case ISD::ANY_EXTEND: |
| case ISD::ANY_EXTEND_VECTOR_INREG: |
| return ISD::ANY_EXTEND_VECTOR_INREG; |
| case ISD::ZERO_EXTEND: |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| return ISD::ZERO_EXTEND_VECTOR_INREG; |
| case ISD::SIGN_EXTEND: |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| return ISD::SIGN_EXTEND_VECTOR_INREG; |
| } |
| llvm_unreachable("Unknown opcode"); |
| } |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either any-extending or truncating it. |
| SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either sign-extending or truncating it. |
| SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either zero-extending or truncating it. |
| SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either any/sign/zero-extending (depending on IsAny / |
| /// IsSigned) or truncating it. |
| SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, |
| EVT VT, unsigned Opcode) { |
| switch(Opcode) { |
| case ISD::ANY_EXTEND: |
| return getAnyExtOrTrunc(Op, DL, VT); |
| case ISD::ZERO_EXTEND: |
| return getZExtOrTrunc(Op, DL, VT); |
| case ISD::SIGN_EXTEND: |
| return getSExtOrTrunc(Op, DL, VT); |
| } |
| llvm_unreachable("Unsupported opcode"); |
| } |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either sign/zero-extending (depending on IsSigned) or |
| /// truncating it. |
| SDValue getExtOrTrunc(bool IsSigned, SDValue Op, const SDLoc &DL, EVT VT) { |
| return IsSigned ? getSExtOrTrunc(Op, DL, VT) : getZExtOrTrunc(Op, DL, VT); |
| } |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by first bitcasting (from potential vector) to |
| /// corresponding scalar type then either any-extending or truncating it. |
| SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by first bitcasting (from potential vector) to |
| /// corresponding scalar type then either sign-extending or truncating it. |
| SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by first bitcasting (from potential vector) to |
| /// corresponding scalar type then either zero-extending or truncating it. |
| SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Return the expression required to zero extend the Op |
| /// value assuming it was the smaller SrcTy value. |
| SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Return the expression required to zero extend the Op |
| /// value assuming it was the smaller SrcTy value. |
| SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, |
| const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the integer type VT, by |
| /// either truncating it or performing either zero or sign extension as |
| /// appropriate extension for the pointer's semantics. |
| SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Return the expression required to extend the Op as a pointer value |
| /// assuming it was the smaller SrcTy value. This may be either a zero extend |
| /// or a sign extend. |
| SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the integer type VT, |
| /// by using an extension appropriate for the target's |
| /// BooleanContent for type OpVT or truncating it. |
| SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT); |
| |
| /// Create negative operation as (SUB 0, Val). |
| SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT); |
| |
| /// Create a bitwise NOT operation as (XOR Val, -1). |
| SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT); |
| |
| /// Create a logical NOT operation as (XOR Val, BooleanOne). |
| SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT); |
| |
| /// Create a vector-predicated logical NOT operation as (VP_XOR Val, |
| /// BooleanOne, Mask, EVL). |
| SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, |
| SDValue EVL, EVT VT); |
| |
| /// Convert a vector-predicated Op, which must be an integer vector, to the |
| /// vector-type VT, by performing either vector-predicated zext or truncating |
| /// it. The Op will be returned as-is if Op and VT are vectors containing |
| /// integer with same width. |
| SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, |
| SDValue EVL); |
| |
| /// Convert a vector-predicated Op, which must be of integer type, to the |
| /// vector-type integer type VT, by either truncating it or performing either |
| /// vector-predicated zero or sign extension as appropriate extension for the |
| /// pointer's semantics. This function just redirects to getVPZExtOrTrunc |
| /// right now. |
| SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, |
| SDValue EVL); |
| |
| /// Returns sum of the base pointer and offset. |
| /// Unlike getObjectPtrOffset this does not set NoUnsignedWrap by default. |
| SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, |
| const SDNodeFlags Flags = SDNodeFlags()); |
| SDValue getMemBasePlusOffset(SDValue Base, SDValue Offset, const SDLoc &DL, |
| const SDNodeFlags Flags = SDNodeFlags()); |
| |
| /// Create an add instruction with appropriate flags when used for |
| /// addressing some offset of an object. i.e. if a load is split into multiple |
| /// components, create an add nuw from the base pointer to the offset. |
| SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset) { |
| return getMemBasePlusOffset(Ptr, Offset, SL, SDNodeFlags::NoUnsignedWrap); |
| } |
| |
| SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset) { |
| // The object itself can't wrap around the address space, so it shouldn't be |
| // possible for the adds of the offsets to the split parts to overflow. |
| return getMemBasePlusOffset(Ptr, Offset, SL, SDNodeFlags::NoUnsignedWrap); |
| } |
| |
| /// Return a new CALLSEQ_START node, that starts new call frame, in which |
| /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and |
| /// OutSize specifies part of the frame set up prior to the sequence. |
| SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, |
| const SDLoc &DL) { |
| SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, |
| getIntPtrConstant(InSize, DL, true), |
| getIntPtrConstant(OutSize, DL, true) }; |
| return getNode(ISD::CALLSEQ_START, DL, VTs, Ops); |
| } |
| |
| /// Return a new CALLSEQ_END node, which always must have a |
| /// glue result (to ensure it's not CSE'd). |
| /// CALLSEQ_END does not have a useful SDLoc. |
| SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, |
| SDValue InGlue, const SDLoc &DL) { |
| SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 4> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Op1); |
| Ops.push_back(Op2); |
| if (InGlue.getNode()) |
| Ops.push_back(InGlue); |
| return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops); |
| } |
| |
| SDValue getCALLSEQ_END(SDValue Chain, uint64_t Size1, uint64_t Size2, |
| SDValue Glue, const SDLoc &DL) { |
| return getCALLSEQ_END( |
| Chain, getIntPtrConstant(Size1, DL, /*isTarget=*/true), |
| getIntPtrConstant(Size2, DL, /*isTarget=*/true), Glue, DL); |
| } |
| |
| /// Return true if the result of this operation is always undefined. |
| bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops); |
| |
| /// Return an UNDEF node. UNDEF does not have a useful SDLoc. |
| SDValue getUNDEF(EVT VT) { |
| return getNode(ISD::UNDEF, SDLoc(), VT); |
| } |
| |
| /// Return a node that represents the runtime scaling 'MulImm * RuntimeVL'. |
| SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, |
| bool ConstantFold = true); |
| |
| SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, |
| bool ConstantFold = true); |
| |
| /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc. |
| SDValue getGLOBAL_OFFSET_TABLE(EVT VT) { |
| return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT); |
| } |
| |
| /// Gets or creates the specified node. |
| /// |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDUse> Ops); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, const SDNodeFlags Flags); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys, |
| ArrayRef<SDValue> Ops); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| ArrayRef<SDValue> Ops, const SDNodeFlags Flags); |
| |
| // Use flags from current flag inserter. |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| ArrayRef<SDValue> Ops); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3); |
| |
| // Specialize based on number of operands. |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand, |
| const SDNodeFlags Flags); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, const SDNodeFlags Flags); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, const SDNodeFlags Flags); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4, const SDNodeFlags Flags); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4, SDValue N5); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4, SDValue N5, |
| const SDNodeFlags Flags); |
| |
| // Specialize again based on number of operands for nodes with a VTList |
| // rather than a single VT. |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2, SDValue N3); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4, SDValue N5); |
| |
| /// Compute a TokenFactor to force all the incoming stack arguments to be |
| /// loaded from the stack. This is used in tail call lowering to protect |
| /// stack arguments from being clobbered. |
| SDValue getStackArgumentTokenFactor(SDValue Chain); |
| |
| /* \p CI if not null is the memset call being lowered. |
| * \p OverrideTailCall is an optional parameter that can be used to override |
| * the tail call optimization decision. */ |
| SDValue |
| getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
| SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, |
| const CallInst *CI, std::optional<bool> OverrideTailCall, |
| MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, |
| const AAMDNodes &AAInfo = AAMDNodes(), AAResults *AA = nullptr); |
| |
| /* \p CI if not null is the memset call being lowered. |
| * \p OverrideTailCall is an optional parameter that can be used to override |
| * the tail call optimization decision. */ |
| SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
| SDValue Size, Align Alignment, bool isVol, |
| const CallInst *CI, std::optional<bool> OverrideTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo, |
| const AAMDNodes &AAInfo = AAMDNodes(), |
| AAResults *AA = nullptr); |
| |
| SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
| SDValue Size, Align Alignment, bool isVol, |
| bool AlwaysInline, const CallInst *CI, |
| MachinePointerInfo DstPtrInfo, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| |
| SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| SDValue Src, SDValue Size, Type *SizeTy, |
| unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo); |
| |
| SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| SDValue Src, SDValue Size, Type *SizeTy, |
| unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo); |
| |
| SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| SDValue Value, SDValue Size, Type *SizeTy, |
| unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo); |
| |
| /// Helper function to make it easier to build SetCC's if you just have an |
| /// ISD::CondCode instead of an SDValue. |
| SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, |
| ISD::CondCode Cond, SDValue Chain = SDValue(), |
| bool IsSignaling = false) { |
| assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() && |
| "Vector/scalar operand type mismatch for setcc"); |
| assert(LHS.getValueType().isVector() == VT.isVector() && |
| "Vector/scalar result type mismatch for setcc"); |
| assert(Cond != ISD::SETCC_INVALID && |
| "Cannot create a setCC of an invalid node."); |
| if (Chain) |
| return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL, |
| {VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)}); |
| return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond)); |
| } |
| |
| /// Helper function to make it easier to build VP_SETCCs if you just have an |
| /// ISD::CondCode instead of an SDValue. |
| SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, |
| ISD::CondCode Cond, SDValue Mask, SDValue EVL) { |
| assert(LHS.getValueType().isVector() && RHS.getValueType().isVector() && |
| "Cannot compare scalars"); |
| assert(Cond != ISD::SETCC_INVALID && |
| "Cannot create a setCC of an invalid node."); |
| return getNode(ISD::VP_SETCC, DL, VT, LHS, RHS, getCondCode(Cond), Mask, |
| EVL); |
| } |
| |
| /// Helper function to make it easier to build Select's if you just have |
| /// operands and don't want to check for vector. |
| SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, |
| SDValue RHS, SDNodeFlags Flags = SDNodeFlags()) { |
| assert(LHS.getValueType() == VT && RHS.getValueType() == VT && |
| "Cannot use select on differing types"); |
| auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; |
| return getNode(Opcode, DL, VT, Cond, LHS, RHS, Flags); |
| } |
| |
| /// Helper function to make it easier to build SelectCC's if you just have an |
| /// ISD::CondCode instead of an SDValue. |
| SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, |
| SDValue False, ISD::CondCode Cond) { |
| return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True, |
| False, getCondCode(Cond)); |
| } |
| |
| /// Try to simplify a select/vselect into 1 of its operands or a constant. |
| SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal); |
| |
| /// Try to simplify a shift into 1 of its operands or a constant. |
| SDValue simplifyShift(SDValue X, SDValue Y); |
| |
| /// Try to simplify a floating-point binary operation into 1 of its operands |
| /// or a constant. |
| SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, |
| SDNodeFlags Flags); |
| |
| /// VAArg produces a result and token chain, and takes a pointer |
| /// and a source value as input. |
| SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| SDValue SV, unsigned Align); |
| |
| /// Gets a node for an atomic cmpxchg op. There are two |
| /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a |
| /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded, |
| /// a success flag (initially i1), and a chain. |
| SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDVTList VTs, SDValue Chain, SDValue Ptr, |
| SDValue Cmp, SDValue Swp, MachineMemOperand *MMO); |
| |
| /// Gets a node for an atomic op, produces result (if relevant) |
| /// and chain and takes 2 operands. |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, |
| SDValue Ptr, SDValue Val, MachineMemOperand *MMO); |
| |
| /// Gets a node for an atomic op, produces result and chain and |
| /// takes 1 operand. |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT, |
| SDValue Chain, SDValue Ptr, MachineMemOperand *MMO); |
| |
| /// Gets a node for an atomic op, produces result and chain and takes N |
| /// operands. |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDVTList VTList, ArrayRef<SDValue> Ops, |
| MachineMemOperand *MMO); |
| |
| /// Creates a MemIntrinsicNode that may produce a |
| /// result and takes a list of operands. Opcode may be INTRINSIC_VOID, |
| /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not |
| /// less than FIRST_TARGET_MEMORY_OPCODE. |
| SDValue getMemIntrinsicNode( |
| unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, |
| EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, |
| MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore, |
| LocationSize Size = 0, const AAMDNodes &AAInfo = AAMDNodes()); |
| |
| inline SDValue getMemIntrinsicNode( |
| unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, |
| EVT MemVT, MachinePointerInfo PtrInfo, |
| MaybeAlign Alignment = std::nullopt, |
| MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore, |
| LocationSize Size = 0, const AAMDNodes &AAInfo = AAMDNodes()) { |
| // Ensure that codegen never sees alignment 0 |
| return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, PtrInfo, |
| Alignment.value_or(getEVTAlign(MemVT)), Flags, |
| Size, AAInfo); |
| } |
| |
| SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, |
| ArrayRef<SDValue> Ops, EVT MemVT, |
| MachineMemOperand *MMO); |
| |
| /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends |
| /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between |
| /// offsets `Offset` and `Offset + Size`. |
| SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, |
| int FrameIndex, int64_t Size, int64_t Offset = -1); |
| |
| /// Creates a PseudoProbeSDNode with function GUID `Guid` and |
| /// the index of the block `Index` it is probing, as well as the attributes |
| /// `attr` of the probe. |
| SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, |
| uint64_t Index, uint32_t Attr); |
| |
| /// Create a MERGE_VALUES node from the given operands. |
| SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl); |
| |
| /// Loads are not normal binary operators: their result type is not |
| /// determined by their operands, and they produce a value AND a token chain. |
| /// |
| /// This function will set the MOLoad flag on MMOFlags, but you can set it if |
| /// you want. The MOStore flag must not be set. |
| SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| MachinePointerInfo PtrInfo, |
| MaybeAlign Alignment = MaybeAlign(), |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes(), |
| const MDNode *Ranges = nullptr); |
| SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| MachineMemOperand *MMO); |
| SDValue |
| getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, |
| SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, |
| MaybeAlign Alignment = MaybeAlign(), |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
| SDValue Chain, SDValue Ptr, EVT MemVT, |
| MachineMemOperand *MMO); |
| SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes(), |
| const MDNode *Ranges = nullptr); |
| inline SDValue getLoad( |
| ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, |
| SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo, |
| EVT MemVT, MaybeAlign Alignment = MaybeAlign(), |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr) { |
| // Ensures that codegen never sees a None Alignment. |
| return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT, |
| Alignment.value_or(getEVTAlign(MemVT)), MMOFlags, AAInfo, |
| Ranges); |
| } |
| SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| EVT MemVT, MachineMemOperand *MMO); |
| |
| /// Helper function to build ISD::STORE nodes. |
| /// |
| /// This function will set the MOStore flag on MMOFlags, but you can set it if |
| /// you want. The MOLoad and MOInvariant flags must not be set. |
| |
| SDValue |
| getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachinePointerInfo PtrInfo, Align Alignment, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| inline SDValue |
| getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(), |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()) { |
| return getStore(Chain, dl, Val, Ptr, PtrInfo, |
| Alignment.value_or(getEVTAlign(Val.getValueType())), |
| MMOFlags, AAInfo); |
| } |
| SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachineMemOperand *MMO); |
| SDValue |
| getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| inline SDValue |
| getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachinePointerInfo PtrInfo, EVT SVT, |
| MaybeAlign Alignment = MaybeAlign(), |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()) { |
| return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT, |
| Alignment.value_or(getEVTAlign(SVT)), MMOFlags, |
| AAInfo); |
| } |
| SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, EVT SVT, MachineMemOperand *MMO); |
| SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| |
| SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, |
| EVT MemVT, Align Alignment, |
| MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, |
| const MDNode *Ranges = nullptr, bool IsExpanding = false); |
| inline SDValue |
| getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, |
| MaybeAlign Alignment = MaybeAlign(), |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes(), |
| const MDNode *Ranges = nullptr, bool IsExpanding = false) { |
| // Ensures that codegen never sees a None Alignment. |
| return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, |
| PtrInfo, MemVT, Alignment.value_or(getEVTAlign(MemVT)), |
| MMOFlags, AAInfo, Ranges, IsExpanding); |
| } |
| SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| SDValue Mask, SDValue EVL, EVT MemVT, |
| MachineMemOperand *MMO, bool IsExpanding = false); |
| SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, |
| MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo, const MDNode *Ranges = nullptr, |
| bool IsExpanding = false); |
| SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| SDValue Mask, SDValue EVL, MachineMemOperand *MMO, |
| bool IsExpanding = false); |
| SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
| SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, |
| MachinePointerInfo PtrInfo, EVT MemVT, |
| MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo, bool IsExpanding = false); |
| SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
| SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, |
| EVT MemVT, MachineMemOperand *MMO, |
| bool IsExpanding = false); |
| SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, |
| MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
| bool IsTruncating = false, bool IsCompressing = false); |
| SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, SDValue Mask, SDValue EVL, |
| MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, |
| MachineMemOperand::Flags MMOFlags, |
| const AAMDNodes &AAInfo, bool IsCompressing = false); |
| SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, SDValue Mask, SDValue EVL, EVT SVT, |
| MachineMemOperand *MMO, bool IsCompressing = false); |
| SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| |
| SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
| EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, |
| SDValue Offset, SDValue Stride, SDValue Mask, |
| SDValue EVL, EVT MemVT, MachineMemOperand *MMO, |
| bool IsExpanding = false); |
| SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, |
| SDValue Stride, SDValue Mask, SDValue EVL, |
| MachineMemOperand *MMO, bool IsExpanding = false); |
| SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, |
| SDValue Chain, SDValue Ptr, SDValue Stride, |
| SDValue Mask, SDValue EVL, EVT MemVT, |
| MachineMemOperand *MMO, bool IsExpanding = false); |
| SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, |
| SDValue Ptr, SDValue Offset, SDValue Stride, |
| SDValue Mask, SDValue EVL, EVT MemVT, |
| MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
| bool IsTruncating = false, |
| bool IsCompressing = false); |
| SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, |
| SDValue Ptr, SDValue Stride, SDValue Mask, |
| SDValue EVL, EVT SVT, MachineMemOperand *MMO, |
| bool IsCompressing = false); |
| |
| SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
| ISD::MemIndexType IndexType); |
| SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
| ISD::MemIndexType IndexType); |
| |
| SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, |
| SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, |
| MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
| ISD::LoadExtType, bool IsExpanding = false); |
| SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, |
| MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
| bool IsTruncating = false, bool IsCompressing = false); |
| SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, |
| SDValue Base, SDValue Offset, |
| ISD::MemIndexedMode AM); |
| SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
| ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy); |
| SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
| ISD::MemIndexType IndexType, |
| bool IsTruncating = false); |
| SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
| ISD::MemIndexType IndexType); |
| |
| SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, |
| MachineMemOperand *MMO); |
| SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, |
| MachineMemOperand *MMO); |
| |
| /// Construct a node to track a Value* through the backend. |
| SDValue getSrcValue(const Value *v); |
| |
| /// Return an MDNodeSDNode which holds an MDNode. |
| SDValue getMDNode(const MDNode *MD); |
| |
| /// Return a bitcast using the SDLoc of the value operand, and casting to the |
| /// provided type. Use getNode to set a custom SDLoc. |
| SDValue getBitcast(EVT VT, SDValue V); |
| |
| /// Return an AddrSpaceCastSDNode. |
| SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, |
| unsigned DestAS); |
| |
| /// Return a freeze using the SDLoc of the value operand. |
| SDValue getFreeze(SDValue V); |
| |
| /// Return an AssertAlignSDNode. |
| SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A); |
| |
| /// Swap N1 and N2 if Opcode is a commutative binary opcode |
| /// and the canonical form expects the opposite order. |
| void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, |
| SDValue &N2) const; |
| |
| /// Return the specified value casted to |
| /// the target's desired shift amount type. |
| SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op); |
| |
| /// Create the DAG equivalent of vector_partial_reduce where Op1 and Op2 are |
| /// its operands and ReducedTY is the intrinsic's return type. |
| SDValue getPartialReduceAdd(SDLoc DL, EVT ReducedTy, SDValue Op1, |
| SDValue Op2); |
| |
| /// Expands a node with multiple results to an FP or vector libcall. The |
| /// libcall is expected to take all the operands of the \p Node followed by |
| /// output pointers for each of the results. \p CallRetResNo can be optionally |
| /// set to indicate that one of the results comes from the libcall's return |
| /// value. |
| bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, |
| SmallVectorImpl<SDValue> &Results, |
| std::optional<unsigned> CallRetResNo = {}); |
| |
| /// Expand the specified \c ISD::VAARG node as the Legalize pass would. |
| SDValue expandVAArg(SDNode *Node); |
| |
| /// Expand the specified \c ISD::VACOPY node as the Legalize pass would. |
| SDValue expandVACopy(SDNode *Node); |
| |
| /// Return a GlobalAddress of the function from the current module with |
| /// name matching the given ExternalSymbol. Additionally can provide the |
| /// matched function. |
| /// Panic if the function doesn't exist. |
| SDValue getSymbolFunctionGlobalAddress(SDValue Op, |
| Function **TargetFunction = nullptr); |
| |
| /// *Mutate* the specified node in-place to have the |
| /// specified operands. If the resultant node already exists in the DAG, |
| /// this does not modify the specified node, instead it returns the node that |
| /// already exists. If the resultant node does not exist in the DAG, the |
| /// input node is returned. As a degenerate case, if you specify the same |
| /// input operands as the node already has, the input node is returned. |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4, SDValue Op5); |
| SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops); |
| |
| /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k |
| /// values or more, move values into new TokenFactors in 64k-1 blocks, until |
| /// the final TokenFactor has less than 64k operands. |
| SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals); |
| |
| /// *Mutate* the specified machine node's memory references to the provided |
| /// list. |
| void setNodeMemRefs(MachineSDNode *N, |
| ArrayRef<MachineMemOperand *> NewMemRefs); |
| |
| // Calculate divergence of node \p N based on its operands. |
| bool calculateDivergence(SDNode *N); |
| |
| // Propagates the change in divergence to users |
| void updateDivergence(SDNode * N); |
| |
| /// These are used for target selectors to *mutate* the |
| /// specified node to have the specified return type, Target opcode, and |
| /// operands. Note that target opcodes are stored as |
| /// ~TargetOpcode in the node opcode field. The resultant node is returned. |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
| SDValue Op1, SDValue Op2); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
| SDValue Op1, SDValue Op2, SDValue Op3); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
| ArrayRef<SDValue> Ops); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
| EVT VT2, ArrayRef<SDValue> Ops); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
| EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
| EVT VT2, SDValue Op1, SDValue Op2); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs, |
| ArrayRef<SDValue> Ops); |
| |
| /// This *mutates* the specified node to have the specified |
| /// return type, opcode, and operands. |
| SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, |
| ArrayRef<SDValue> Ops); |
| |
| /// Mutate the specified strict FP node to its non-strict equivalent, |
| /// unlinking the node from its chain and dropping the metadata arguments. |
| /// The node must be a strict FP node. |
| SDNode *mutateStrictFPToFP(SDNode *Node); |
| |
| /// These are used for target selectors to create a new node |
| /// with specified return type(s), MachineInstr opcode, and operands. |
| /// |
| /// Note that getMachineNode returns the resultant node. If there is already |
| /// a node of the specified opcode and operands, it returns that node instead |
| /// of the current one. |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| SDValue Op1); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| SDValue Op1, SDValue Op2); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| SDValue Op1, SDValue Op2, SDValue Op3); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, SDValue Op1, SDValue Op2); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, EVT VT3, SDValue Op1, SDValue Op2); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, |
| SDValue Op3); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, |
| ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs, |
| ArrayRef<SDValue> Ops); |
| |
| /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes. |
| SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
| SDValue Operand); |
| |
| /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes. |
| SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
| SDValue Operand, SDValue Subreg); |
| |
| /// Get the specified node if it's already available, or else return NULL. |
| SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, |
| ArrayRef<SDValue> Ops, const SDNodeFlags Flags); |
| SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, |
| ArrayRef<SDValue> Ops); |
| |
| /// Check if a node exists without modifying its flags. |
| bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops); |
| |
| /// Creates a SDDbgValue node. |
| SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, |
| unsigned R, bool IsIndirect, const DebugLoc &DL, |
| unsigned O); |
| |
| /// Creates a constant SDDbgValue node. |
| SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr, |
| const Value *C, const DebugLoc &DL, |
| unsigned O); |
| |
| /// Creates a FrameIndex SDDbgValue node. |
| SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, |
| unsigned FI, bool IsIndirect, |
| const DebugLoc &DL, unsigned O); |
| |
| /// Creates a FrameIndex SDDbgValue node. |
| SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, |
| unsigned FI, |
| ArrayRef<SDNode *> Dependencies, |
| bool IsIndirect, const DebugLoc &DL, |
| unsigned O); |
| |
| /// Creates a VReg SDDbgValue node. |
| SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr, |
| unsigned VReg, bool IsIndirect, |
| const DebugLoc &DL, unsigned O); |
| |
| /// Creates a SDDbgValue node from a list of locations. |
| SDDbgValue *getDbgValueList(DIVariable *Var, DIExpression *Expr, |
| ArrayRef<SDDbgOperand> Locs, |
| ArrayRef<SDNode *> Dependencies, bool IsIndirect, |
| const DebugLoc &DL, unsigned O, bool IsVariadic); |
| |
| /// Creates a SDDbgLabel node. |
| SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O); |
| |
| /// Transfer debug values from one node to another, while optionally |
| /// generating fragment expressions for split-up values. If \p InvalidateDbg |
| /// is set, debug values are invalidated after they are transferred. |
| void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0, |
| unsigned SizeInBits = 0, bool InvalidateDbg = true); |
| |
| /// Remove the specified node from the system. If any of its |
| /// operands then becomes dead, remove them as well. Inform UpdateListener |
| /// for each node deleted. |
| void RemoveDeadNode(SDNode *N); |
| |
| /// This method deletes the unreachable nodes in the |
| /// given list, and any nodes that become unreachable as a result. |
| void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes); |
| |
| /// Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. Use the first |
| /// version if 'From' is known to have a single result, use the second |
| /// if you have two nodes with identical results (or if 'To' has a superset |
| /// of the results of 'From'), use the third otherwise. |
| /// |
| /// These methods all take an optional UpdateListener, which (if not null) is |
| /// informed about nodes that are deleted and modified due to recursive |
| /// changes in the dag. |
| /// |
| /// These functions only replace all existing uses. It's possible that as |
| /// these replacements are being performed, CSE may cause the From node |
| /// to be given new uses. These new uses of From are left in place, and |
| /// not automatically transferred to To. |
| /// |
| void ReplaceAllUsesWith(SDValue From, SDValue To); |
| void ReplaceAllUsesWith(SDNode *From, SDNode *To); |
| void ReplaceAllUsesWith(SDNode *From, const SDValue *To); |
| |
| /// Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getNode() alone. |
| void ReplaceAllUsesOfValueWith(SDValue From, SDValue To); |
| |
| /// Like ReplaceAllUsesOfValueWith, but for multiple values at once. |
| /// This correctly handles the case where |
| /// there is an overlap between the From values and the To values. |
| void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, |
| unsigned Num); |
| |
| /// If an existing load has uses of its chain, create a token factor node with |
| /// that chain and the new memory node's chain and update users of the old |
| /// chain to the token factor. This ensures that the new memory node will have |
| /// the same relative memory dependency position as the old load. Returns the |
| /// new merged load chain. |
| SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain); |
| |
| /// If an existing load has uses of its chain, create a token factor node with |
| /// that chain and the new memory node's chain and update users of the old |
| /// chain to the token factor. This ensures that the new memory node will have |
| /// the same relative memory dependency position as the old load. Returns the |
| /// new merged load chain. |
| SDValue makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, SDValue NewMemOp); |
| |
| /// Topological-sort the AllNodes list and a |
| /// assign a unique node id for each node in the DAG based on their |
| /// topological order. Returns the number of nodes. |
| unsigned AssignTopologicalOrder(); |
| |
| /// Move node N in the AllNodes list to be immediately |
| /// before the given iterator Position. This may be used to update the |
| /// topological ordering when the list of nodes is modified. |
| void RepositionNode(allnodes_iterator Position, SDNode *N) { |
| AllNodes.insert(Position, AllNodes.remove(N)); |
| } |
| |
| /// Add a dbg_value SDNode. If SD is non-null that means the |
| /// value is produced by SD. |
| void AddDbgValue(SDDbgValue *DB, bool isParameter); |
| |
| /// Add a dbg_label SDNode. |
| void AddDbgLabel(SDDbgLabel *DB); |
| |
| /// Get the debug values which reference the given SDNode. |
| ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const { |
| return DbgInfo->getSDDbgValues(SD); |
| } |
| |
| public: |
| /// Return true if there are any SDDbgValue nodes associated |
| /// with this SelectionDAG. |
| bool hasDebugValues() const { return !DbgInfo->empty(); } |
| |
| SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); } |
| SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); } |
| |
| SDDbgInfo::DbgIterator ByvalParmDbgBegin() const { |
| return DbgInfo->ByvalParmDbgBegin(); |
| } |
| SDDbgInfo::DbgIterator ByvalParmDbgEnd() const { |
| return DbgInfo->ByvalParmDbgEnd(); |
| } |
| |
| SDDbgInfo::DbgLabelIterator DbgLabelBegin() const { |
| return DbgInfo->DbgLabelBegin(); |
| } |
| SDDbgInfo::DbgLabelIterator DbgLabelEnd() const { |
| return DbgInfo->DbgLabelEnd(); |
| } |
| |
| /// To be invoked on an SDNode that is slated to be erased. This |
| /// function mirrors \c llvm::salvageDebugInfo. |
| void salvageDebugInfo(SDNode &N); |
| |
| void dump() const; |
| |
| /// In most cases this function returns the ABI alignment for a given type, |
| /// except for illegal vector types where the alignment exceeds that of the |
| /// stack. In such cases we attempt to break the vector down to a legal type |
| /// and return the ABI alignment for that instead. |
| Align getReducedAlign(EVT VT, bool UseABI); |
| |
| /// Create a stack temporary based on the size in bytes and the alignment |
| SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment); |
| |
| /// Create a stack temporary, suitable for holding the specified value type. |
| /// If minAlign is specified, the slot size will have at least that alignment. |
| SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1); |
| |
| /// Create a stack temporary suitable for holding either of the specified |
| /// value types. |
| SDValue CreateStackTemporary(EVT VT1, EVT VT2); |
| |
| SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, |
| const GlobalAddressSDNode *GA, |
| const SDNode *N2); |
| |
| SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, |
| SDNodeFlags Flags = SDNodeFlags()); |
| |
| /// Fold floating-point operations when all operands are constants and/or |
| /// undefined. |
| SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops); |
| |
| /// Constant fold a setcc to true or false. |
| SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, |
| const SDLoc &dl); |
| |
| /// Return true if the sign bit of Op is known to be zero. |
| /// We use this predicate to simplify operations downstream. |
| bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Return true if 'Op & Mask' is known to be zero. We |
| /// use this predicate to simplify operations downstream. Op and Mask are |
| /// known to be the same type. |
| bool MaskedValueIsZero(SDValue Op, const APInt &Mask, |
| unsigned Depth = 0) const; |
| |
| /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We |
| /// use this predicate to simplify operations downstream. Op and Mask are |
| /// known to be the same type. |
| bool MaskedValueIsZero(SDValue Op, const APInt &Mask, |
| const APInt &DemandedElts, unsigned Depth = 0) const; |
| |
| /// Return true if 'Op' is known to be zero in DemandedElts. We |
| /// use this predicate to simplify operations downstream. |
| bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Return true if '(Op & Mask) == Mask'. |
| /// Op and Mask are known to be the same type. |
| bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, |
| unsigned Depth = 0) const; |
| |
| /// For each demanded element of a vector, see if it is known to be zero. |
| APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. For vectors, the known bits are those that are shared by |
| /// every vector element. |
| /// Targets can implement the computeKnownBitsForTargetNode method in the |
| /// TargetLowering class to allow target nodes to be understood. |
| KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. The DemandedElts argument allows us to only collect the |
| /// known bits that are shared by the requested vector elements. |
| /// Targets can implement the computeKnownBitsForTargetNode method in the |
| /// TargetLowering class to allow target nodes to be understood. |
| KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Used to represent the possible overflow behavior of an operation. |
| /// Never: the operation cannot overflow. |
| /// Always: the operation will always overflow. |
| /// Sometime: the operation may or may not overflow. |
| enum OverflowKind { |
| OFK_Never, |
| OFK_Sometime, |
| OFK_Always, |
| }; |
| |
| /// Determine if the result of the signed addition of 2 nodes can overflow. |
| OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const; |
| |
| /// Determine if the result of the unsigned addition of 2 nodes can overflow. |
| OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const; |
| |
| /// Determine if the result of the addition of 2 nodes can overflow. |
| OverflowKind computeOverflowForAdd(bool IsSigned, SDValue N0, |
| SDValue N1) const { |
| return IsSigned ? computeOverflowForSignedAdd(N0, N1) |
| : computeOverflowForUnsignedAdd(N0, N1); |
| } |
| |
| /// Determine if the result of the addition of 2 nodes can never overflow. |
| bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const { |
| return computeOverflowForAdd(IsSigned, N0, N1) == OFK_Never; |
| } |
| |
| /// Determine if the result of the signed sub of 2 nodes can overflow. |
| OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const; |
| |
| /// Determine if the result of the unsigned sub of 2 nodes can overflow. |
| OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const; |
| |
| /// Determine if the result of the sub of 2 nodes can overflow. |
| OverflowKind computeOverflowForSub(bool IsSigned, SDValue N0, |
| SDValue N1) const { |
| return IsSigned ? computeOverflowForSignedSub(N0, N1) |
| : computeOverflowForUnsignedSub(N0, N1); |
| } |
| |
| /// Determine if the result of the sub of 2 nodes can never overflow. |
| bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const { |
| return computeOverflowForSub(IsSigned, N0, N1) == OFK_Never; |
| } |
| |
| /// Determine if the result of the signed mul of 2 nodes can overflow. |
| OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const; |
| |
| /// Determine if the result of the unsigned mul of 2 nodes can overflow. |
| OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const; |
| |
| /// Determine if the result of the mul of 2 nodes can overflow. |
| OverflowKind computeOverflowForMul(bool IsSigned, SDValue N0, |
| SDValue N1) const { |
| return IsSigned ? computeOverflowForSignedMul(N0, N1) |
| : computeOverflowForUnsignedMul(N0, N1); |
| } |
| |
| /// Determine if the result of the mul of 2 nodes can never overflow. |
| bool willNotOverflowMul(bool IsSigned, SDValue N0, SDValue N1) const { |
| return computeOverflowForMul(IsSigned, N0, N1) == OFK_Never; |
| } |
| |
| /// Test if the given value is known to have exactly one bit set. This differs |
| /// from computeKnownBits in that it doesn't necessarily determine which bit |
| /// is set. |
| bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth = 0) const; |
| |
| /// Test if the given _fp_ value is known to be an integer power-of-2, either |
| /// positive or negative. |
| bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth = 0) const; |
| |
| /// Return the number of times the sign bit of the register is replicated into |
| /// the other bits. We know that at least 1 bit is always equal to the sign |
| /// bit (itself), but other cases can give us information. For example, |
| /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal |
| /// to each other, so we return 3. Targets can implement the |
| /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow |
| /// target nodes to be understood. |
| unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Return the number of times the sign bit of the register is replicated into |
| /// the other bits. We know that at least 1 bit is always equal to the sign |
| /// bit (itself), but other cases can give us information. For example, |
| /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal |
| /// to each other, so we return 3. The DemandedElts argument allows |
| /// us to only collect the minimum sign bits of the requested vector elements. |
| /// Targets can implement the ComputeNumSignBitsForTarget method in the |
| /// TargetLowering class to allow target nodes to be understood. |
| unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Get the upper bound on bit size for this Value \p Op as a signed integer. |
| /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)). |
| /// Similar to the APInt::getSignificantBits function. |
| /// Helper wrapper to ComputeNumSignBits. |
| unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Get the upper bound on bit size for this Value \p Op as a signed integer. |
| /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)). |
| /// Similar to the APInt::getSignificantBits function. |
| /// Helper wrapper to ComputeNumSignBits. |
| unsigned ComputeMaxSignificantBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Return true if this function can prove that \p Op is never poison |
| /// and, if \p PoisonOnly is false, does not have undef bits. |
| bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly = false, |
| unsigned Depth = 0) const; |
| |
| /// Return true if this function can prove that \p Op is never poison |
| /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts |
| /// argument limits the check to the requested vector elements. |
| bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, const APInt &DemandedElts, |
| bool PoisonOnly = false, |
| unsigned Depth = 0) const; |
| |
| /// Return true if this function can prove that \p Op is never poison. |
| bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth = 0) const { |
| return isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ true, Depth); |
| } |
| |
| /// Return true if this function can prove that \p Op is never poison. The |
| /// DemandedElts argument limits the check to the requested vector elements. |
| bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const { |
| return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, |
| /*PoisonOnly*/ true, Depth); |
| } |
| |
| /// Return true if Op can create undef or poison from non-undef & non-poison |
| /// operands. The DemandedElts argument limits the check to the requested |
| /// vector elements. |
| /// |
| /// \p ConsiderFlags controls whether poison producing flags on the |
| /// instruction are considered. This can be used to see if the instruction |
| /// could still introduce undef or poison even without poison generating flags |
| /// which might be on the instruction. (i.e. could the result of |
| /// Op->dropPoisonGeneratingFlags() still create poison or undef) |
| bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, |
| bool PoisonOnly = false, |
| bool ConsiderFlags = true, |
| unsigned Depth = 0) const; |
| |
| /// Return true if Op can create undef or poison from non-undef & non-poison |
| /// operands. |
| /// |
| /// \p ConsiderFlags controls whether poison producing flags on the |
| /// instruction are considered. This can be used to see if the instruction |
| /// could still introduce undef or poison even without poison generating flags |
| /// which might be on the instruction. (i.e. could the result of |
| /// Op->dropPoisonGeneratingFlags() still create poison or undef) |
| bool canCreateUndefOrPoison(SDValue Op, bool PoisonOnly = false, |
| bool ConsiderFlags = true, |
| unsigned Depth = 0) const; |
| |
| /// Return true if the specified operand is an ISD::OR or ISD::XOR node |
| /// that can be treated as an ISD::ADD node. |
| /// or(x,y) == add(x,y) iff haveNoCommonBitsSet(x,y) |
| /// xor(x,y) == add(x,y) iff isMinSignedConstant(y) && !NoWrap |
| /// If \p NoWrap is true, this will not match ISD::XOR. |
| bool isADDLike(SDValue Op, bool NoWrap = false) const; |
| |
| /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode |
| /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that |
| /// is guaranteed to have the same semantics as an ADD. This handles the |
| /// equivalence: |
| /// X|Cst == X+Cst iff X&Cst = 0. |
| bool isBaseWithConstantOffset(SDValue Op) const; |
| |
| /// Test whether the given SDValue (or all elements of it, if it is a |
| /// vector) is known to never be NaN. If \p SNaN is true, returns if \p Op is |
| /// known to never be a signaling NaN (it may still be a qNaN). |
| bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const; |
| |
| /// \returns true if \p Op is known to never be a signaling NaN. |
| bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const { |
| return isKnownNeverNaN(Op, true, Depth); |
| } |
| |
| /// Test whether the given floating point SDValue is known to never be |
| /// positive or negative zero. |
| bool isKnownNeverZeroFloat(SDValue Op) const; |
| |
| /// Test whether the given SDValue is known to contain non-zero value(s). |
| bool isKnownNeverZero(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Test whether the given float value is known to be positive. +0.0, +inf and |
| /// +nan are considered positive, -0.0, -inf and -nan are not. |
| bool cannotBeOrderedNegativeFP(SDValue Op) const; |
| |
| /// Test whether two SDValues are known to compare equal. This |
| /// is true if they are the same value, or if one is negative zero and the |
| /// other positive zero. |
| bool isEqualTo(SDValue A, SDValue B) const; |
| |
| /// Return true if A and B have no common bits set. As an example, this can |
| /// allow an 'add' to be transformed into an 'or'. |
| bool haveNoCommonBitsSet(SDValue A, SDValue B) const; |
| |
| /// Test whether \p V has a splatted value for all the demanded elements. |
| /// |
| /// On success \p UndefElts will indicate the elements that have UNDEF |
| /// values instead of the splat value, this is only guaranteed to be correct |
| /// for \p DemandedElts. |
| /// |
| /// NOTE: The function will return true for a demanded splat of UNDEF values. |
| bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, |
| unsigned Depth = 0) const; |
| |
| /// Test whether \p V has a splatted value. |
| bool isSplatValue(SDValue V, bool AllowUndefs = false) const; |
| |
| /// If V is a splatted value, return the source vector and its splat index. |
| SDValue getSplatSourceVector(SDValue V, int &SplatIndex); |
| |
| /// If V is a splat vector, return its scalar source operand by extracting |
| /// that element from the source vector. If LegalTypes is true, this method |
| /// may only return a legally-typed splat value. If it cannot legalize the |
| /// splatted value it will return SDValue(). |
| SDValue getSplatValue(SDValue V, bool LegalTypes = false); |
| |
| /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the |
| /// element bit-width of the shift node, return the valid constant range. |
| std::optional<ConstantRange> |
| getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, |
| unsigned Depth) const; |
| |
| /// If a SHL/SRA/SRL node \p V has a uniform shift amount |
| /// that is less than the element bit-width of the shift node, return it. |
| std::optional<uint64_t> getValidShiftAmount(SDValue V, |
| const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// If a SHL/SRA/SRL node \p V has a uniform shift amount |
| /// that is less than the element bit-width of the shift node, return it. |
| std::optional<uint64_t> getValidShiftAmount(SDValue V, |
| unsigned Depth = 0) const; |
| |
| /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the |
| /// element bit-width of the shift node, return the minimum possible value. |
| std::optional<uint64_t> getValidMinimumShiftAmount(SDValue V, |
| const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the |
| /// element bit-width of the shift node, return the minimum possible value. |
| std::optional<uint64_t> getValidMinimumShiftAmount(SDValue V, |
| unsigned Depth = 0) const; |
| |
| /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the |
| /// element bit-width of the shift node, return the maximum possible value. |
| std::optional<uint64_t> getValidMaximumShiftAmount(SDValue V, |
| const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the |
| /// element bit-width of the shift node, return the maximum possible value. |
| std::optional<uint64_t> getValidMaximumShiftAmount(SDValue V, |
| unsigned Depth = 0) const; |
| |
| /// Match a binop + shuffle pyramid that represents a horizontal reduction |
| /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p |
| /// Extract. The reduction must use one of the opcodes listed in /p |
| /// CandidateBinOps and on success /p BinOp will contain the matching opcode. |
| /// Returns the vector that is being reduced on, or SDValue() if a reduction |
| /// was not matched. If \p AllowPartials is set then in the case of a |
| /// reduction pattern that only matches the first few stages, the extracted |
| /// subvector of the start of the reduction is returned. |
| SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, |
| ArrayRef<ISD::NodeType> CandidateBinOps, |
| bool AllowPartials = false); |
| |
| /// Utility function used by legalize and lowering to |
| /// "unroll" a vector operation by splitting out the scalars and operating |
| /// on each element individually. If the ResNE is 0, fully unroll the vector |
| /// op. If ResNE is less than the width of the vector op, unroll up to ResNE. |
| /// If the ResNE is greater than the width of the vector op, unroll the |
| /// vector op and fill the end of the resulting vector with UNDEFS. |
| SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0); |
| |
| /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes. |
| /// This is a separate function because those opcodes have two results. |
| std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N, |
| unsigned ResNE = 0); |
| |
| /// Return true if loads are next to each other and can be |
| /// merged. Check that both are nonvolatile and if LD is loading |
| /// 'Bytes' bytes from a location that is 'Dist' units away from the |
| /// location that the 'Base' load is loading from. |
| bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, |
| unsigned Bytes, int Dist) const; |
| |
| /// Infer alignment of a load / store address. Return std::nullopt if it |
| /// cannot be inferred. |
| MaybeAlign InferPtrAlign(SDValue Ptr) const; |
| |
| /// Split the scalar node with EXTRACT_ELEMENT using the provided VTs and |
| /// return the low/high part. |
| std::pair<SDValue, SDValue> SplitScalar(const SDValue &N, const SDLoc &DL, |
| const EVT &LoVT, const EVT &HiVT); |
| |
| /// Compute the VTs needed for the low/hi parts of a type |
| /// which is split (or expanded) into two not necessarily identical pieces. |
| std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const; |
| |
| /// Compute the VTs needed for the low/hi parts of a type, dependent on an |
| /// enveloping VT that has been split into two identical pieces. Sets the |
| /// HisIsEmpty flag when hi type has zero storage size. |
| std::pair<EVT, EVT> GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, |
| bool *HiIsEmpty) const; |
| |
| /// Split the vector with EXTRACT_SUBVECTOR using the provided |
| /// VTs and return the low/high part. |
| std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL, |
| const EVT &LoVT, const EVT &HiVT); |
| |
| /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part. |
| std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) { |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType()); |
| return SplitVector(N, DL, LoVT, HiVT); |
| } |
| |
| /// Split the explicit vector length parameter of a VP operation. |
| std::pair<SDValue, SDValue> SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL); |
| |
| /// Split the node's operand with EXTRACT_SUBVECTOR and |
| /// return the low/high part. |
| std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo) |
| { |
| return SplitVector(N->getOperand(OpNo), SDLoc(N)); |
| } |
| |
| /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. |
| SDValue WidenVector(const SDValue &N, const SDLoc &DL); |
| |
| /// Append the extracted elements from Start to Count out of the vector Op in |
| /// Args. If Count is 0, all of the elements will be extracted. The extracted |
| /// elements will have type EVT if it is provided, and otherwise their type |
| /// will be Op's element type. |
| void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args, |
| unsigned Start = 0, unsigned Count = 0, |
| EVT EltVT = EVT()); |
| |
| /// Compute the default alignment value for the given type. |
| Align getEVTAlign(EVT MemoryVT) const; |
| |
| /// Test whether the given value is a constant int or similar node. |
| bool isConstantIntBuildVectorOrConstantInt(SDValue N, |
| bool AllowOpaques = true) const; |
| |
| /// Test whether the given value is a constant FP or similar node. |
| bool isConstantFPBuildVectorOrConstantFP(SDValue N) const; |
| |
| /// \returns true if \p N is any kind of constant or build_vector of |
| /// constants, int or float. If a vector, it may not necessarily be a splat. |
| inline bool isConstantValueOfAnyType(SDValue N) const { |
| return isConstantIntBuildVectorOrConstantInt(N) || |
| isConstantFPBuildVectorOrConstantFP(N); |
| } |
| |
| /// Check if a value \op N is a constant using the target's BooleanContent for |
| /// its type. |
| std::optional<bool> isBoolConstant(SDValue N, |
| bool AllowTruncation = false) const; |
| |
| /// Set CallSiteInfo to be associated with Node. |
| void addCallSiteInfo(const SDNode *Node, CallSiteInfo &&CallInfo) { |
| SDEI[Node].CSInfo = std::move(CallInfo); |
| } |
| /// Return CallSiteInfo associated with Node, or a default if none exists. |
| CallSiteInfo getCallSiteInfo(const SDNode *Node) { |
| auto I = SDEI.find(Node); |
| return I != SDEI.end() ? std::move(I->second).CSInfo : CallSiteInfo(); |
| } |
| /// Set HeapAllocSite to be associated with Node. |
| void addHeapAllocSite(const SDNode *Node, MDNode *MD) { |
| SDEI[Node].HeapAllocSite = MD; |
| } |
| /// Return HeapAllocSite associated with Node, or nullptr if none exists. |
| MDNode *getHeapAllocSite(const SDNode *Node) const { |
| auto I = SDEI.find(Node); |
| return I != SDEI.end() ? I->second.HeapAllocSite : nullptr; |
| } |
| /// Set PCSections to be associated with Node. |
| void addPCSections(const SDNode *Node, MDNode *MD) { |
| SDEI[Node].PCSections = MD; |
| } |
| /// Set MMRAMetadata to be associated with Node. |
| void addMMRAMetadata(const SDNode *Node, MDNode *MMRA) { |
| SDEI[Node].MMRA = MMRA; |
| } |
| /// Return PCSections associated with Node, or nullptr if none exists. |
| MDNode *getPCSections(const SDNode *Node) const { |
| auto It = SDEI.find(Node); |
| return It != SDEI.end() ? It->second.PCSections : nullptr; |
| } |
| /// Return the MMRA MDNode associated with Node, or nullptr if none |
| /// exists. |
| MDNode *getMMRAMetadata(const SDNode *Node) const { |
| auto It = SDEI.find(Node); |
| return It != SDEI.end() ? It->second.MMRA : nullptr; |
| } |
| /// Set NoMergeSiteInfo to be associated with Node if NoMerge is true. |
| void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge) { |
| if (NoMerge) |
| SDEI[Node].NoMerge = NoMerge; |
| } |
| /// Return NoMerge info associated with Node. |
| bool getNoMergeSiteInfo(const SDNode *Node) const { |
| auto I = SDEI.find(Node); |
| return I != SDEI.end() ? I->second.NoMerge : false; |
| } |
| |
| /// Copy extra info associated with one node to another. |
| void copyExtraInfo(SDNode *From, SDNode *To); |
| |
| /// Return the current function's default denormal handling kind for the given |
| /// floating point type. |
| DenormalMode getDenormalMode(EVT VT) const { |
| return MF->getDenormalMode(VT.getFltSemantics()); |
| } |
| |
| bool shouldOptForSize() const; |
| |
| /// Get the (commutative) neutral element for the given opcode, if it exists. |
| SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDNodeFlags Flags); |
| |
| /// Some opcodes may create immediate undefined behavior when used with some |
| /// values (integer division-by-zero for example). Therefore, these operations |
| /// are not generally safe to move around or change. |
| bool isSafeToSpeculativelyExecute(unsigned Opcode) const { |
| switch (Opcode) { |
| case ISD::SDIV: |
| case ISD::SREM: |
| case ISD::SDIVREM: |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::UDIVREM: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /// Check if the provided node is save to speculatively executed given its |
| /// current arguments. So, while `udiv` the opcode is not safe to |
| /// speculatively execute, a given `udiv` node may be if the denominator is |
| /// known nonzero. |
| bool isSafeToSpeculativelyExecuteNode(const SDNode *N) const { |
| switch (N->getOpcode()) { |
| case ISD::UDIV: |
| return isKnownNeverZero(N->getOperand(1)); |
| default: |
| return isSafeToSpeculativelyExecute(N->getOpcode()); |
| } |
| } |
| |
| SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, |
| const SDLoc &DLoc); |
| |
| private: |
| void InsertNode(SDNode *N); |
| bool RemoveNodeFromCSEMaps(SDNode *N); |
| void AddModifiedNodeToCSEMaps(SDNode *N); |
| SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos); |
| SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, |
| void *&InsertPos); |
| SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, |
| void *&InsertPos); |
| SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc); |
| |
| void DeleteNodeNotInCSEMaps(SDNode *N); |
| void DeallocateNode(SDNode *N); |
| |
| void allnodes_clear(); |
| |
| /// Look up the node specified by ID in CSEMap. If it exists, return it. If |
| /// not, return the insertion token that will make insertion faster. This |
| /// overload is for nodes other than Constant or ConstantFP, use the other one |
| /// for those. |
| SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); |
| |
| /// Look up the node specified by ID in CSEMap. If it exists, return it. If |
| /// not, return the insertion token that will make insertion faster. Performs |
| /// additional processing for constant nodes. |
| SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL, |
| void *&InsertPos); |
| |
| /// Maps to auto-CSE operations. |
| std::vector<CondCodeSDNode*> CondCodeNodes; |
| |
| std::vector<SDNode*> ValueTypeNodes; |
| std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes; |
| StringMap<SDNode*> ExternalSymbols; |
| |
| std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols; |
| DenseMap<MCSymbol *, SDNode *> MCSymbols; |
| |
| FlagInserter *Inserter = nullptr; |
| }; |
| |
| template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> { |
| using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>; |
| |
| static nodes_iterator nodes_begin(SelectionDAG *G) { |
| return nodes_iterator(G->allnodes_begin()); |
| } |
| |
| static nodes_iterator nodes_end(SelectionDAG *G) { |
| return nodes_iterator(G->allnodes_end()); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_SELECTIONDAG_H |