blob: d29445cc004f413a1e77ab2bf128902b1af88089 [file] [log] [blame]
//===-- TraceHTR.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TraceHTR.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "llvm/Support/JSON.h"
#include <sstream>
#include <string>
using namespace lldb_private;
using namespace lldb;
size_t HTRBlockMetadata::GetNumInstructions() const {
return m_num_instructions;
}
llvm::Optional<llvm::StringRef>
HTRBlockMetadata::GetMostFrequentlyCalledFunction() const {
size_t max_ncalls = 0;
llvm::Optional<llvm::StringRef> max_name = llvm::None;
for (const auto &it : m_func_calls) {
ConstString name = it.first;
size_t ncalls = it.second;
if (ncalls > max_ncalls) {
max_ncalls = ncalls;
max_name = name.GetStringRef();
}
}
return max_name;
}
llvm::DenseMap<ConstString, size_t> const &
HTRBlockMetadata::GetFunctionCalls() const {
return m_func_calls;
}
lldb::addr_t HTRBlockMetadata::GetFirstInstructionLoadAddress() const {
return m_first_instruction_load_address;
}
size_t HTRBlock::GetOffset() const { return m_offset; }
size_t HTRBlock::GetSize() const { return m_size; }
HTRBlockMetadata const &HTRBlock::GetMetadata() const { return m_metadata; }
llvm::ArrayRef<HTRBlockLayerUP> TraceHTR::GetBlockLayers() const {
return m_block_layer_ups;
}
HTRInstructionLayer const &TraceHTR::GetInstructionLayer() const {
return *m_instruction_layer_up;
}
void TraceHTR::AddNewBlockLayer(HTRBlockLayerUP &&block_layer) {
m_block_layer_ups.emplace_back(std::move(block_layer));
}
size_t IHTRLayer::GetLayerId() const { return m_layer_id; }
void HTRBlockLayer::AppendNewBlock(size_t block_id, HTRBlock &&block) {
m_block_id_trace.emplace_back(block_id);
m_block_defs.emplace(block_id, block);
}
void HTRBlockLayer::AppendRepeatedBlock(size_t block_id) {
m_block_id_trace.emplace_back(block_id);
}
llvm::ArrayRef<lldb::addr_t> HTRInstructionLayer::GetInstructionTrace() const {
return m_instruction_trace;
}
void HTRInstructionLayer::AddCallInstructionMetadata(
lldb::addr_t load_addr, llvm::Optional<ConstString> func_name) {
m_call_isns.emplace(load_addr, func_name);
}
void HTRInstructionLayer::AppendInstruction(lldb::addr_t load_addr) {
m_instruction_trace.emplace_back(load_addr);
}
HTRBlock const *HTRBlockLayer::GetBlockById(size_t block_id) const {
auto block_it = m_block_defs.find(block_id);
if (block_it == m_block_defs.end())
return nullptr;
else
return &block_it->second;
}
llvm::ArrayRef<size_t> HTRBlockLayer::GetBlockIdTrace() const {
return m_block_id_trace;
}
size_t HTRBlockLayer::GetNumUnits() const { return m_block_id_trace.size(); }
HTRBlockMetadata HTRInstructionLayer::GetMetadataByIndex(size_t index) const {
lldb::addr_t instruction_load_address = m_instruction_trace[index];
llvm::DenseMap<ConstString, size_t> func_calls;
auto func_name_it = m_call_isns.find(instruction_load_address);
if (func_name_it != m_call_isns.end()) {
if (llvm::Optional<ConstString> func_name = func_name_it->second) {
func_calls[*func_name] = 1;
}
}
return {instruction_load_address, 1, std::move(func_calls)};
}
size_t HTRInstructionLayer::GetNumUnits() const {
return m_instruction_trace.size();
}
HTRBlockMetadata HTRBlockLayer::GetMetadataByIndex(size_t index) const {
size_t block_id = m_block_id_trace[index];
HTRBlock block = m_block_defs.find(block_id)->second;
return block.GetMetadata();
}
TraceHTR::TraceHTR(Thread &thread, TraceCursor &cursor)
: m_instruction_layer_up(std::make_unique<HTRInstructionLayer>(0)) {
// Move cursor to the first instruction in the trace
cursor.SetForwards(true);
cursor.Seek(0, TraceCursor::SeekType::Set);
Target &target = thread.GetProcess()->GetTarget();
auto function_name_from_load_address =
[&](lldb::addr_t load_address) -> llvm::Optional<ConstString> {
lldb_private::Address pc_addr;
SymbolContext sc;
if (target.ResolveLoadAddress(load_address, pc_addr) &&
pc_addr.CalculateSymbolContext(&sc))
return sc.GetFunctionName()
? llvm::Optional<ConstString>(sc.GetFunctionName())
: llvm::None;
else
return llvm::None;
};
bool more_data_in_trace = true;
while (more_data_in_trace) {
if (cursor.IsError()) {
// Append a load address of 0 for all instructions that an error occured
// while decoding.
// TODO: Make distinction between errors by storing the error messages.
// Currently, all errors are treated the same.
m_instruction_layer_up->AppendInstruction(0);
more_data_in_trace = cursor.Next();
} else {
lldb::addr_t current_instruction_load_address = cursor.GetLoadAddress();
lldb::TraceInstructionControlFlowType current_instruction_type =
cursor.GetInstructionControlFlowType();
m_instruction_layer_up->AppendInstruction(
current_instruction_load_address);
more_data_in_trace = cursor.Next();
if (current_instruction_type &
lldb::eTraceInstructionControlFlowTypeCall) {
if (more_data_in_trace && !cursor.IsError()) {
m_instruction_layer_up->AddCallInstructionMetadata(
current_instruction_load_address,
function_name_from_load_address(cursor.GetLoadAddress()));
} else {
// Next instruction is not known - pass None to indicate the name
// of the function being called is not known
m_instruction_layer_up->AddCallInstructionMetadata(
current_instruction_load_address, llvm::None);
}
}
}
}
}
void HTRBlockMetadata::MergeMetadata(
HTRBlockMetadata &merged_metadata,
HTRBlockMetadata const &metadata_to_merge) {
merged_metadata.m_num_instructions += metadata_to_merge.m_num_instructions;
for (const auto &it : metadata_to_merge.m_func_calls) {
ConstString name = it.first;
size_t num_calls = it.second;
merged_metadata.m_func_calls[name] += num_calls;
}
}
HTRBlock IHTRLayer::MergeUnits(size_t start_unit_index, size_t num_units) {
// TODO: make this function take `end_unit_index` as a parameter instead of
// unit and merge the range [start_unit_indx, end_unit_index] inclusive.
HTRBlockMetadata merged_metadata = GetMetadataByIndex(start_unit_index);
for (size_t i = start_unit_index + 1; i < start_unit_index + num_units; i++) {
// merge the new metadata into merged_metadata
HTRBlockMetadata::MergeMetadata(merged_metadata, GetMetadataByIndex(i));
}
return {start_unit_index, num_units, merged_metadata};
}
void TraceHTR::ExecutePasses() {
auto are_passes_done = [](IHTRLayer &l1, IHTRLayer &l2) {
return l1.GetNumUnits() == l2.GetNumUnits();
};
HTRBlockLayerUP current_block_layer_up =
BasicSuperBlockMerge(*m_instruction_layer_up);
HTRBlockLayer &current_block_layer = *current_block_layer_up;
if (are_passes_done(*m_instruction_layer_up, *current_block_layer_up))
return;
AddNewBlockLayer(std::move(current_block_layer_up));
while (true) {
HTRBlockLayerUP new_block_layer_up =
BasicSuperBlockMerge(current_block_layer);
if (are_passes_done(current_block_layer, *new_block_layer_up))
return;
current_block_layer = *new_block_layer_up;
AddNewBlockLayer(std::move(new_block_layer_up));
}
}
llvm::Error TraceHTR::Export(std::string outfile) {
std::error_code ec;
llvm::raw_fd_ostream os(outfile, ec, llvm::sys::fs::OF_Text);
if (ec) {
return llvm::make_error<llvm::StringError>(
"unable to open destination file: " + outfile, os.error());
} else {
os << toJSON(*this);
os.close();
if (os.has_error()) {
return llvm::make_error<llvm::StringError>(
"unable to write to destination file: " + outfile, os.error());
}
}
return llvm::Error::success();
}
HTRBlockLayerUP lldb_private::BasicSuperBlockMerge(IHTRLayer &layer) {
std::unique_ptr<HTRBlockLayer> new_block_layer =
std::make_unique<HTRBlockLayer>(layer.GetLayerId() + 1);
if (layer.GetNumUnits()) {
// Future Improvement: split this into two functions - one for finding heads
// and tails, one for merging/creating the next layer A 'head' is defined to
// be a block whose occurrences in the trace do not have a unique preceding
// block.
std::unordered_set<size_t> heads;
// The load address of the first instruction of a block is the unique ID for
// that block (i.e. blocks with the same first instruction load address are
// the same block)
// Future Improvement: no need to store all its preceding block ids, all we
// care about is that there is more than one preceding block id, so an enum
// could be used
std::unordered_map<lldb::addr_t, std::unordered_set<lldb::addr_t>> head_map;
lldb::addr_t prev_id =
layer.GetMetadataByIndex(0).GetFirstInstructionLoadAddress();
size_t num_units = layer.GetNumUnits();
// This excludes the first unit since it has no previous unit
for (size_t i = 1; i < num_units; i++) {
lldb::addr_t current_id =
layer.GetMetadataByIndex(i).GetFirstInstructionLoadAddress();
head_map[current_id].insert(prev_id);
prev_id = current_id;
}
for (const auto &it : head_map) {
// ID of 0 represents an error - errors can't be heads or tails
lldb::addr_t id = it.first;
const std::unordered_set<lldb::addr_t> predecessor_set = it.second;
if (id && predecessor_set.size() > 1)
heads.insert(id);
}
// Future Improvement: identify heads and tails in the same loop
// A 'tail' is defined to be a block whose occurrences in the trace do
// not have a unique succeeding block.
std::unordered_set<lldb::addr_t> tails;
std::unordered_map<lldb::addr_t, std::unordered_set<lldb::addr_t>> tail_map;
// This excludes the last unit since it has no next unit
for (size_t i = 0; i < num_units - 1; i++) {
lldb::addr_t current_id =
layer.GetMetadataByIndex(i).GetFirstInstructionLoadAddress();
lldb::addr_t next_id =
layer.GetMetadataByIndex(i + 1).GetFirstInstructionLoadAddress();
tail_map[current_id].insert(next_id);
}
// Mark last block as tail so the algorithm stops gracefully
lldb::addr_t last_id = layer.GetMetadataByIndex(num_units - 1)
.GetFirstInstructionLoadAddress();
tails.insert(last_id);
for (const auto &it : tail_map) {
lldb::addr_t id = it.first;
const std::unordered_set<lldb::addr_t> successor_set = it.second;
// ID of 0 represents an error - errors can't be heads or tails
if (id && successor_set.size() > 1)
tails.insert(id);
}
// Need to keep track of size of string since things we push are variable
// length
size_t superblock_size = 0;
// Each super block always has the same first unit (we call this the
// super block head) This gurantee allows us to use the super block head as
// the unique key mapping to the super block it begins
llvm::Optional<size_t> superblock_head = llvm::None;
auto construct_next_layer = [&](size_t merge_start, size_t n) -> void {
if (!superblock_head)
return;
if (new_block_layer->GetBlockById(*superblock_head)) {
new_block_layer->AppendRepeatedBlock(*superblock_head);
} else {
HTRBlock new_block = layer.MergeUnits(merge_start, n);
new_block_layer->AppendNewBlock(*superblock_head, std::move(new_block));
}
};
for (size_t i = 0; i < num_units; i++) {
lldb::addr_t unit_id =
layer.GetMetadataByIndex(i).GetFirstInstructionLoadAddress();
auto isHead = heads.count(unit_id) > 0;
auto isTail = tails.count(unit_id) > 0;
if (isHead && isTail) {
// Head logic
if (superblock_size) { // this handles (tail, head) adjacency -
// otherwise an empty
// block is created
// End previous super block
construct_next_layer(i - superblock_size, superblock_size);
}
// Current id is first in next super block since it's a head
superblock_head = unit_id;
superblock_size = 1;
// Tail logic
construct_next_layer(i - superblock_size + 1, superblock_size);
// Reset the block_head since the prev super block has come to and end
superblock_head = llvm::None;
superblock_size = 0;
} else if (isHead) {
if (superblock_size) { // this handles (tail, head) adjacency -
// otherwise an empty
// block is created
// End previous super block
construct_next_layer(i - superblock_size, superblock_size);
}
// Current id is first in next super block since it's a head
superblock_head = unit_id;
superblock_size = 1;
} else if (isTail) {
if (!superblock_head)
superblock_head = unit_id;
superblock_size++;
// End previous super block
construct_next_layer(i - superblock_size + 1, superblock_size);
// Reset the block_head since the prev super block has come to and end
superblock_head = llvm::None;
superblock_size = 0;
} else {
if (!superblock_head)
superblock_head = unit_id;
superblock_size++;
}
}
}
return new_block_layer;
}
llvm::json::Value lldb_private::toJSON(const TraceHTR &htr) {
std::vector<llvm::json::Value> layers_as_json;
for (size_t i = 0; i < htr.GetInstructionLayer().GetInstructionTrace().size();
i++) {
size_t layer_id = htr.GetInstructionLayer().GetLayerId();
HTRBlockMetadata metadata = htr.GetInstructionLayer().GetMetadataByIndex(i);
lldb::addr_t load_address = metadata.GetFirstInstructionLoadAddress();
std::string display_name;
std::stringstream stream;
stream << "0x" << std::hex << load_address;
std::string load_address_hex_string(stream.str());
display_name.assign(load_address_hex_string);
// name: load address of the first instruction of the block and the name
// of the most frequently called function from the block (if applicable)
// ph: the event type - 'X' for Complete events (see link to documentation
// below)
// Since trace timestamps aren't yet supported in HTR, the ts (timestamp) is
// based on the instruction's offset in the trace and the dur (duration) is
// 1 since this layer contains single instructions. Using the instruction
// offset and a duration of 1 oversimplifies the true timing information of
// the trace, nonetheless, these approximate timestamps/durations provide an
// clear visualization of the trace.
// ts: offset from the beginning of the trace for the first instruction in
// the block
// dur: 1 since this layer contains single instructions.
// pid: the ID of the HTR layer the blocks belong to
// See
// https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview#heading=h.j75x71ritcoy
// for documentation on the Trace Event Format
layers_as_json.emplace_back(llvm::json::Object{
{"name", display_name},
{"ph", "X"},
{"ts", (int64_t)i},
{"dur", 1},
{"pid", (int64_t)layer_id},
});
}
for (const auto &layer : htr.GetBlockLayers()) {
size_t start_ts = 0;
std::vector<size_t> block_id_trace = layer->GetBlockIdTrace();
for (size_t i = 0; i < block_id_trace.size(); i++) {
size_t id = block_id_trace[i];
// Guranteed that this ID is valid, so safe to dereference here.
HTRBlock block = *layer->GetBlockById(id);
llvm::json::Value block_json = toJSON(block);
size_t layer_id = layer->GetLayerId();
HTRBlockMetadata metadata = block.GetMetadata();
llvm::Optional<llvm::StringRef> most_freq_func =
metadata.GetMostFrequentlyCalledFunction();
std::stringstream stream;
stream << "0x" << std::hex << metadata.GetFirstInstructionLoadAddress();
std::string offset_hex_string(stream.str());
std::string display_name =
most_freq_func ? offset_hex_string + ": " + most_freq_func->str()
: offset_hex_string;
// Since trace timestamps aren't yet supported in HTR, the ts (timestamp)
// and dur (duration) are based on the block's offset in the trace and
// number of instructions in the block, respectively. Using the block
// offset and the number of instructions oversimplifies the true timing
// information of the trace, nonetheless, these approximate
// timestamps/durations provide an understandable visualization of the
// trace.
auto duration = metadata.GetNumInstructions();
layers_as_json.emplace_back(llvm::json::Object{
{"name", display_name},
{"ph", "X"},
{"ts", (int64_t)start_ts},
{"dur", (int64_t)duration},
{"pid", (int64_t)layer_id},
{"args", block_json},
});
start_ts += duration;
}
}
return layers_as_json;
}
llvm::json::Value lldb_private::toJSON(const HTRBlock &block) {
return llvm::json::Value(
llvm::json::Object{{"Metadata", block.GetMetadata()}});
}
llvm::json::Value lldb_private::toJSON(const HTRBlockMetadata &metadata) {
std::vector<llvm::json::Value> function_calls;
for (const auto &it : metadata.GetFunctionCalls()) {
ConstString name = it.first;
size_t n_calls = it.second;
function_calls.emplace_back(llvm::formatv("({0}: {1})", name, n_calls));
}
return llvm::json::Value(llvm::json::Object{
{"Number of Instructions", (ssize_t)metadata.GetNumInstructions()},
{"Functions", function_calls}});
}