blob: 9410c9bd83ec4a7e6f5c96fb0d9ecaa327da9ef5 [file] [log] [blame]
//===-- GDBRemoteRegisterContext.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GDBRemoteRegisterContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/StreamString.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"
#include "lldb/Utility/StringExtractorGDBRemote.h"
#include <memory>
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;
// GDBRemoteRegisterContext constructor
GDBRemoteRegisterContext::GDBRemoteRegisterContext(
ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once,
bool write_all_at_once)
: RegisterContext(thread, concrete_frame_idx),
m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(),
m_read_all_at_once(read_all_at_once),
m_write_all_at_once(write_all_at_once), m_gpacket_cached(false) {
// Resize our vector of bools to contain one bool for every register. We will
// use these boolean values to know when a register value is valid in
// m_reg_data.
m_reg_valid.resize(m_reg_info_sp->GetNumRegisters());
// Make a heap based buffer that is big enough to store all registers
DataBufferSP reg_data_sp(
new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0));
m_reg_data.SetData(reg_data_sp);
m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}
// Destructor
GDBRemoteRegisterContext::~GDBRemoteRegisterContext() = default;
void GDBRemoteRegisterContext::InvalidateAllRegisters() {
SetAllRegisterValid(false);
}
void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
m_gpacket_cached = b;
std::vector<bool>::iterator pos, end = m_reg_valid.end();
for (pos = m_reg_valid.begin(); pos != end; ++pos)
*pos = b;
}
size_t GDBRemoteRegisterContext::GetRegisterCount() {
return m_reg_info_sp->GetNumRegisters();
}
const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
return m_reg_info_sp->GetRegisterInfoAtIndex(reg);
}
size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
return m_reg_info_sp->GetNumRegisterSets();
}
const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
return m_reg_info_sp->GetRegisterSet(reg_set);
}
bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &value) {
// Read the register
if (ReadRegisterBytes(reg_info)) {
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (m_reg_valid[reg] == false)
return false;
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM &&
reg_info->value_regs[1] != LLDB_INVALID_REGNUM) {
std::vector<char> combined_data;
uint32_t offset = 0;
for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
const RegisterInfo *parent_reg = GetRegisterInfo(
eRegisterKindLLDB, reg_info->value_regs[i]);
if (!parent_reg)
return false;
combined_data.resize(offset + parent_reg->byte_size);
if (m_reg_data.CopyData(parent_reg->byte_offset, parent_reg->byte_size,
combined_data.data() + offset) !=
parent_reg->byte_size)
return false;
offset += parent_reg->byte_size;
}
Status error;
return value.SetFromMemoryData(
reg_info, combined_data.data(), combined_data.size(),
m_reg_data.GetByteOrder(), error) == combined_data.size();
} else {
const bool partial_data_ok = false;
Status error(value.SetValueFromData(
reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
return error.Success();
}
}
return false;
}
bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
uint32_t reg, llvm::ArrayRef<uint8_t> data) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
if (reg_info == nullptr)
return false;
// Invalidate if needed
InvalidateIfNeeded(false);
const size_t reg_byte_size = reg_info->byte_size;
memcpy(const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
data.data(), std::min(data.size(), reg_byte_size));
bool success = data.size() >= reg_byte_size;
if (success) {
SetRegisterIsValid(reg, true);
} else if (data.size() > 0) {
// Only set register is valid to false if we copied some bytes, else leave
// it as it was.
SetRegisterIsValid(reg, false);
}
return success;
}
bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
uint64_t new_reg_val) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
if (reg_info == nullptr)
return false;
// Early in process startup, we can get a thread that has an invalid byte
// order because the process hasn't been completely set up yet (see the ctor
// where the byte order is setfrom the process). If that's the case, we
// can't set the value here.
if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
return false;
}
// Invalidate if needed
InvalidateIfNeeded(false);
DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
// If our register context and our register info disagree, which should never
// happen, don't overwrite past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == nullptr)
return false;
if (data.CopyByteOrderedData(0, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
SetRegisterIsValid(reg, true);
return true;
}
return false;
}
// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool GDBRemoteRegisterContext::GetPrimordialRegister(
const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
if (DataBufferSP buffer_sp =
gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
return PrivateSetRegisterValue(
lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
buffer_sp->GetByteSize()));
return false;
}
bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
InvalidateIfNeeded(false);
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (!GetRegisterIsValid(reg)) {
if (m_read_all_at_once && !m_gpacket_cached) {
if (DataBufferSP buffer_sp =
gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
buffer_sp->GetBytes(),
std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
SetAllRegisterValid(true);
return true;
} else if (buffer_sp->GetByteSize() > 0) {
for (auto x : llvm::enumerate(m_reg_info_sp->registers())) {
const struct RegisterInfo &reginfo = x.value();
m_reg_valid[x.index()] =
(reginfo.byte_offset + reginfo.byte_size <=
buffer_sp->GetByteSize());
}
m_gpacket_cached = true;
if (GetRegisterIsValid(reg))
return true;
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
LLDB_LOGF(
log,
"error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
"to read the "
"entire register context at once, expected at least %" PRId64
" bytes "
"but only got %" PRId64 " bytes.",
m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
return false;
}
}
}
if (reg_info->value_regs) {
// Process this composite register request by delegating to the
// constituent primordial registers.
// Index of the primordial register.
bool success = true;
for (uint32_t idx = 0; success; ++idx) {
const uint32_t prim_reg = reg_info->value_regs[idx];
if (prim_reg == LLDB_INVALID_REGNUM)
break;
// We have a valid primordial register as our constituent. Grab the
// corresponding register info.
const RegisterInfo *prim_reg_info =
GetRegisterInfo(eRegisterKindLLDB, prim_reg);
if (prim_reg_info == nullptr)
success = false;
else {
// Read the containing register if it hasn't already been read
if (!GetRegisterIsValid(prim_reg))
success = GetPrimordialRegister(prim_reg_info, gdb_comm);
}
}
if (success) {
// If we reach this point, all primordial register requests have
// succeeded. Validate this composite register.
SetRegisterIsValid(reg_info, true);
}
} else {
// Get each register individually
GetPrimordialRegister(reg_info, gdb_comm);
}
// Make sure we got a valid register value after reading it
if (!GetRegisterIsValid(reg))
return false;
}
return true;
}
bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue &value) {
DataExtractor data;
if (value.GetData(data)) {
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM &&
reg_info->value_regs[1] != LLDB_INVALID_REGNUM) {
uint32_t combined_size = 0;
for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
const RegisterInfo *parent_reg = GetRegisterInfo(
eRegisterKindLLDB, reg_info->value_regs[i]);
if (!parent_reg)
return false;
combined_size += parent_reg->byte_size;
}
if (data.GetByteSize() < combined_size)
return false;
uint32_t offset = 0;
for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
const RegisterInfo *parent_reg = GetRegisterInfo(
eRegisterKindLLDB, reg_info->value_regs[i]);
assert(parent_reg);
DataExtractor parent_data{data, offset, parent_reg->byte_size};
if (!WriteRegisterBytes(parent_reg, parent_data, 0))
return false;
offset += parent_reg->byte_size;
}
assert(offset == combined_size);
return true;
} else
return WriteRegisterBytes(reg_info, data, 0);
}
return false;
}
// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool GDBRemoteRegisterContext::SetPrimordialRegister(
const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
StreamString packet;
StringExtractorGDBRemote response;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
// Invalidate just this register
SetRegisterIsValid(reg, false);
return gdb_comm.WriteRegister(
m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
{m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
reg_info->byte_size});
}
bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
DataExtractor &data,
uint32_t data_offset) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
assert(m_reg_data.GetByteSize() >=
reg_info->byte_offset + reg_info->byte_size);
// If our register context and our register info disagree, which should never
// happen, don't overwrite past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == nullptr)
return false;
// Code below is specific to AArch64 target in SVE state
// If vector granule (vg) register is being written then thread's
// register context reconfiguration is triggered on success.
bool do_reconfigure_arm64_sve = false;
const ArchSpec &arch = process->GetTarget().GetArchitecture();
if (arch.IsValid() && arch.GetTriple().isAArch64())
if (strcmp(reg_info->name, "vg") == 0)
do_reconfigure_arm64_sve = true;
if (data.CopyByteOrderedData(data_offset, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
GDBRemoteClientBase::Lock lock(gdb_comm);
if (lock) {
if (m_write_all_at_once) {
// Invalidate all register values
InvalidateIfNeeded(true);
// Set all registers in one packet
if (gdb_comm.WriteAllRegisters(
m_thread.GetProtocolID(),
{m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
{
SetAllRegisterValid(false);
if (do_reconfigure_arm64_sve)
AArch64SVEReconfigure();
return true;
}
} else {
bool success = true;
if (reg_info->value_regs) {
// This register is part of another register. In this case we read
// the actual register data for any "value_regs", and once all that
// data is read, we will have enough data in our register context
// bytes for the value of this register
// Invalidate this composite register first.
for (uint32_t idx = 0; success; ++idx) {
const uint32_t reg = reg_info->value_regs[idx];
if (reg == LLDB_INVALID_REGNUM)
break;
// We have a valid primordial register as our constituent. Grab the
// corresponding register info.
const RegisterInfo *value_reg_info =
GetRegisterInfo(eRegisterKindLLDB, reg);
if (value_reg_info == nullptr)
success = false;
else
success = SetPrimordialRegister(value_reg_info, gdb_comm);
}
} else {
// This is an actual register, write it
success = SetPrimordialRegister(reg_info, gdb_comm);
if (success && do_reconfigure_arm64_sve)
AArch64SVEReconfigure();
}
// Check if writing this register will invalidate any other register
// values? If so, invalidate them
if (reg_info->invalidate_regs) {
for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
reg != LLDB_INVALID_REGNUM;
reg = reg_info->invalidate_regs[++idx])
SetRegisterIsValid(ConvertRegisterKindToRegisterNumber(
eRegisterKindLLDB, reg),
false);
}
return success;
}
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
gdb_comm.DumpHistory(strm);
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write register for \"%s\":\n%s",
reg_info->name, strm.GetData());
} else
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write register for \"%s\"",
reg_info->name);
}
}
}
return false;
}
bool GDBRemoteRegisterContext::ReadAllRegisterValues(
RegisterCheckpoint &reg_checkpoint) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
uint32_t save_id = 0;
if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
reg_checkpoint.SetID(save_id);
reg_checkpoint.GetData().reset();
return true;
} else {
reg_checkpoint.SetID(0); // Invalid save ID is zero
return ReadAllRegisterValues(reg_checkpoint.GetData());
}
}
bool GDBRemoteRegisterContext::WriteAllRegisterValues(
const RegisterCheckpoint &reg_checkpoint) {
uint32_t save_id = reg_checkpoint.GetID();
if (save_id != 0) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
} else {
return WriteAllRegisterValues(reg_checkpoint.GetData());
}
}
bool GDBRemoteRegisterContext::ReadAllRegisterValues(
lldb::DataBufferSP &data_sp) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
const bool use_g_packet =
!gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
GDBRemoteClientBase::Lock lock(gdb_comm);
if (lock) {
if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
InvalidateAllRegisters();
if (use_g_packet &&
(data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
return true;
// We're going to read each register
// individually and store them as binary data in a buffer.
const RegisterInfo *reg_info;
for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
i++) {
if (reg_info
->value_regs) // skip registers that are slices of real registers
continue;
ReadRegisterBytes(reg_info);
// ReadRegisterBytes saves the contents of the register in to the
// m_reg_data buffer
}
data_sp = std::make_shared<DataBufferHeap>(
m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize());
return true;
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
gdb_comm.DumpHistory(strm);
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"read all registers:\n%s",
strm.GetData());
} else
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"read all registers");
}
}
data_sp.reset();
return false;
}
bool GDBRemoteRegisterContext::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
return false;
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
const bool use_g_packet =
!gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
GDBRemoteClientBase::Lock lock(gdb_comm);
if (lock) {
// The data_sp contains the G response packet.
if (use_g_packet) {
if (gdb_comm.WriteAllRegisters(
m_thread.GetProtocolID(),
{data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
return true;
uint32_t num_restored = 0;
// We need to manually go through all of the registers and restore them
// manually
DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
m_reg_data.GetAddressByteSize());
const RegisterInfo *reg_info;
// The g packet contents may either include the slice registers
// (registers defined in terms of other registers, e.g. eax is a subset
// of rax) or not. The slice registers should NOT be in the g packet,
// but some implementations may incorrectly include them.
//
// If the slice registers are included in the packet, we must step over
// the slice registers when parsing the packet -- relying on the
// RegisterInfo byte_offset field would be incorrect. If the slice
// registers are not included, then using the byte_offset values into the
// data buffer is the best way to find individual register values.
uint64_t size_including_slice_registers = 0;
uint64_t size_not_including_slice_registers = 0;
uint64_t size_by_highest_offset = 0;
for (uint32_t reg_idx = 0;
(reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
size_including_slice_registers += reg_info->byte_size;
if (reg_info->value_regs == nullptr)
size_not_including_slice_registers += reg_info->byte_size;
if (reg_info->byte_offset >= size_by_highest_offset)
size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
}
bool use_byte_offset_into_buffer;
if (size_by_highest_offset == restore_data.GetByteSize()) {
// The size of the packet agrees with the highest offset: + size in the
// register file
use_byte_offset_into_buffer = true;
} else if (size_not_including_slice_registers ==
restore_data.GetByteSize()) {
// The size of the packet is the same as concatenating all of the
// registers sequentially, skipping the slice registers
use_byte_offset_into_buffer = true;
} else if (size_including_slice_registers == restore_data.GetByteSize()) {
// The slice registers are present in the packet (when they shouldn't
// be). Don't try to use the RegisterInfo byte_offset into the
// restore_data, it will point to the wrong place.
use_byte_offset_into_buffer = false;
} else {
// None of our expected sizes match the actual g packet data we're
// looking at. The most conservative approach here is to use the
// running total byte offset.
use_byte_offset_into_buffer = false;
}
// In case our register definitions don't include the correct offsets,
// keep track of the size of each reg & compute offset based on that.
uint32_t running_byte_offset = 0;
for (uint32_t reg_idx = 0;
(reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
++reg_idx, running_byte_offset += reg_info->byte_size) {
// Skip composite aka slice registers (e.g. eax is a slice of rax).
if (reg_info->value_regs)
continue;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
uint32_t register_offset;
if (use_byte_offset_into_buffer) {
register_offset = reg_info->byte_offset;
} else {
register_offset = running_byte_offset;
}
const uint32_t reg_byte_size = reg_info->byte_size;
const uint8_t *restore_src =
restore_data.PeekData(register_offset, reg_byte_size);
if (restore_src) {
SetRegisterIsValid(reg, false);
if (gdb_comm.WriteRegister(
m_thread.GetProtocolID(),
reg_info->kinds[eRegisterKindProcessPlugin],
{restore_src, reg_byte_size}))
++num_restored;
}
}
return num_restored > 0;
} else {
// For the use_g_packet == false case, we're going to write each register
// individually. The data buffer is binary data in this case, instead of
// ascii characters.
bool arm64_debugserver = false;
if (m_thread.GetProcess().get()) {
const ArchSpec &arch =
m_thread.GetProcess()->GetTarget().GetArchitecture();
if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 ||
arch.GetMachine() == llvm::Triple::aarch64_32) &&
arch.GetTriple().getVendor() == llvm::Triple::Apple &&
arch.GetTriple().getOS() == llvm::Triple::IOS) {
arm64_debugserver = true;
}
}
uint32_t num_restored = 0;
const RegisterInfo *reg_info;
for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
i++) {
if (reg_info->value_regs) // skip registers that are slices of real
// registers
continue;
// Skip the fpsr and fpcr floating point status/control register
// writing to work around a bug in an older version of debugserver that
// would lead to register context corruption when writing fpsr/fpcr.
if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
strcmp(reg_info->name, "fpcr") == 0)) {
continue;
}
SetRegisterIsValid(reg_info, false);
if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
reg_info->kinds[eRegisterKindProcessPlugin],
{data_sp->GetBytes() + reg_info->byte_offset,
reg_info->byte_size}))
++num_restored;
}
return num_restored > 0;
}
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
gdb_comm.DumpHistory(strm);
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write all registers:\n%s",
strm.GetData());
} else
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write all registers");
}
}
return false;
}
uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
lldb::RegisterKind kind, uint32_t num) {
return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num);
}
bool GDBRemoteRegisterContext::AArch64SVEReconfigure() {
if (!m_reg_info_sp)
return false;
const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("vg");
if (!reg_info)
return false;
uint64_t fail_value = LLDB_INVALID_ADDRESS;
uint32_t vg_reg_num = reg_info->kinds[eRegisterKindLLDB];
uint64_t vg_reg_value = ReadRegisterAsUnsigned(vg_reg_num, fail_value);
if (vg_reg_value != fail_value && vg_reg_value <= 32) {
const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("p0");
if (!reg_info || vg_reg_value == reg_info->byte_size)
return false;
if (m_reg_info_sp->UpdateARM64SVERegistersInfos(vg_reg_value)) {
// Make a heap based buffer that is big enough to store all registers
m_reg_data.SetData(std::make_shared<DataBufferHeap>(
m_reg_info_sp->GetRegisterDataByteSize(), 0));
m_reg_data.SetByteOrder(GetByteOrder());
InvalidateAllRegisters();
return true;
}
}
return false;
}
bool GDBRemoteDynamicRegisterInfo::UpdateARM64SVERegistersInfos(uint64_t vg) {
// SVE Z register size is vg x 8 bytes.
uint32_t z_reg_byte_size = vg * 8;
// SVE vector length has changed, accordingly set size of Z, P and FFR
// registers. Also invalidate register offsets it will be recalculated
// after SVE register size update.
for (auto &reg : m_regs) {
if (reg.value_regs == nullptr) {
if (reg.name[0] == 'z' && isdigit(reg.name[1]))
reg.byte_size = z_reg_byte_size;
else if (reg.name[0] == 'p' && isdigit(reg.name[1]))
reg.byte_size = vg;
else if (strcmp(reg.name, "ffr") == 0)
reg.byte_size = vg;
}
reg.byte_offset = LLDB_INVALID_INDEX32;
}
// Re-calculate register offsets
ConfigureOffsets();
return true;
}