blob: 76e004ce0ceb116c68d5368e1734d50d69539de6 [file] [log] [blame]
//===-- RegisterContext_x86.h -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_REGISTERCONTEXT_X86_H
#define LLDB_SOURCE_PLUGINS_PROCESS_UTILITY_REGISTERCONTEXT_X86_H
#include <cstddef>
#include <cstdint>
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/Support/Compiler.h"
namespace lldb_private {
// i386 ehframe, dwarf regnums
// Register numbers seen in eh_frame (eRegisterKindEHFrame) on i386 systems
// (non-Darwin)
//
enum {
ehframe_eax_i386 = 0,
ehframe_ecx_i386,
ehframe_edx_i386,
ehframe_ebx_i386,
// on Darwin esp & ebp are reversed in the eh_frame section for i386 (versus
// dwarf's reg numbering).
// To be specific:
// i386+darwin eh_frame: 4 is ebp, 5 is esp
// i386+everyone else eh_frame: 4 is esp, 5 is ebp
// i386 dwarf: 4 is esp, 5 is ebp
// lldb will get the darwin-specific eh_frame reg numberings from debugserver,
// or the ABI, so we
// only encode the generally correct 4 == esp, 5 == ebp numbers in this
// generic header.
ehframe_esp_i386,
ehframe_ebp_i386,
ehframe_esi_i386,
ehframe_edi_i386,
ehframe_eip_i386,
ehframe_eflags_i386,
ehframe_st0_i386 = 12,
ehframe_st1_i386,
ehframe_st2_i386,
ehframe_st3_i386,
ehframe_st4_i386,
ehframe_st5_i386,
ehframe_st6_i386,
ehframe_st7_i386,
ehframe_xmm0_i386 = 21,
ehframe_xmm1_i386,
ehframe_xmm2_i386,
ehframe_xmm3_i386,
ehframe_xmm4_i386,
ehframe_xmm5_i386,
ehframe_xmm6_i386,
ehframe_xmm7_i386,
ehframe_mm0_i386 = 29,
ehframe_mm1_i386,
ehframe_mm2_i386,
ehframe_mm3_i386,
ehframe_mm4_i386,
ehframe_mm5_i386,
ehframe_mm6_i386,
ehframe_mm7_i386,
};
// DWARF register numbers (eRegisterKindDWARF)
// Intel's x86 or IA-32
enum {
// General Purpose Registers.
dwarf_eax_i386 = 0,
dwarf_ecx_i386,
dwarf_edx_i386,
dwarf_ebx_i386,
dwarf_esp_i386,
dwarf_ebp_i386,
dwarf_esi_i386,
dwarf_edi_i386,
dwarf_eip_i386,
dwarf_eflags_i386,
// Floating Point Registers
dwarf_st0_i386 = 11,
dwarf_st1_i386,
dwarf_st2_i386,
dwarf_st3_i386,
dwarf_st4_i386,
dwarf_st5_i386,
dwarf_st6_i386,
dwarf_st7_i386,
// SSE Registers
dwarf_xmm0_i386 = 21,
dwarf_xmm1_i386,
dwarf_xmm2_i386,
dwarf_xmm3_i386,
dwarf_xmm4_i386,
dwarf_xmm5_i386,
dwarf_xmm6_i386,
dwarf_xmm7_i386,
// MMX Registers
dwarf_mm0_i386 = 29,
dwarf_mm1_i386,
dwarf_mm2_i386,
dwarf_mm3_i386,
dwarf_mm4_i386,
dwarf_mm5_i386,
dwarf_mm6_i386,
dwarf_mm7_i386,
dwarf_fctrl_i386 = 37, // x87 control word
dwarf_fstat_i386 = 38, // x87 status word
dwarf_mxcsr_i386 = 39,
dwarf_es_i386 = 40,
dwarf_cs_i386 = 41,
dwarf_ss_i386 = 42,
dwarf_ds_i386 = 43,
dwarf_fs_i386 = 44,
dwarf_gs_i386 = 45,
// I believe the ymm registers use the dwarf_xmm%_i386 register numbers and
// then differentiate based on size of the register.
dwarf_bnd0_i386 = 101,
dwarf_bnd1_i386,
dwarf_bnd2_i386,
dwarf_bnd3_i386,
};
// AMD x86_64, AMD64, Intel EM64T, or Intel 64 ehframe, dwarf regnums
// EHFrame and DWARF Register numbers (eRegisterKindEHFrame &
// eRegisterKindDWARF)
// This is the spec I used (as opposed to x86-64-abi-0.99.pdf):
// http://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
enum {
// GP Registers
dwarf_rax_x86_64 = 0,
dwarf_rdx_x86_64,
dwarf_rcx_x86_64,
dwarf_rbx_x86_64,
dwarf_rsi_x86_64,
dwarf_rdi_x86_64,
dwarf_rbp_x86_64,
dwarf_rsp_x86_64,
// Extended GP Registers
dwarf_r8_x86_64 = 8,
dwarf_r9_x86_64,
dwarf_r10_x86_64,
dwarf_r11_x86_64,
dwarf_r12_x86_64,
dwarf_r13_x86_64,
dwarf_r14_x86_64,
dwarf_r15_x86_64,
// Return Address (RA) mapped to RIP
dwarf_rip_x86_64 = 16,
// SSE Vector Registers
dwarf_xmm0_x86_64 = 17,
dwarf_xmm1_x86_64,
dwarf_xmm2_x86_64,
dwarf_xmm3_x86_64,
dwarf_xmm4_x86_64,
dwarf_xmm5_x86_64,
dwarf_xmm6_x86_64,
dwarf_xmm7_x86_64,
dwarf_xmm8_x86_64,
dwarf_xmm9_x86_64,
dwarf_xmm10_x86_64,
dwarf_xmm11_x86_64,
dwarf_xmm12_x86_64,
dwarf_xmm13_x86_64,
dwarf_xmm14_x86_64,
dwarf_xmm15_x86_64,
// Floating Point Registers
dwarf_st0_x86_64 = 33,
dwarf_st1_x86_64,
dwarf_st2_x86_64,
dwarf_st3_x86_64,
dwarf_st4_x86_64,
dwarf_st5_x86_64,
dwarf_st6_x86_64,
dwarf_st7_x86_64,
// MMX Registers
dwarf_mm0_x86_64 = 41,
dwarf_mm1_x86_64,
dwarf_mm2_x86_64,
dwarf_mm3_x86_64,
dwarf_mm4_x86_64,
dwarf_mm5_x86_64,
dwarf_mm6_x86_64,
dwarf_mm7_x86_64,
// Control and Status Flags Register
dwarf_rflags_x86_64 = 49,
// selector registers
dwarf_es_x86_64 = 50,
dwarf_cs_x86_64,
dwarf_ss_x86_64,
dwarf_ds_x86_64,
dwarf_fs_x86_64,
dwarf_gs_x86_64,
// Floating point control registers
dwarf_mxcsr_x86_64 = 64, // Media Control and Status
dwarf_fctrl_x86_64, // x87 control word
dwarf_fstat_x86_64, // x87 status word
// Upper Vector Registers
dwarf_ymm0h_x86_64 = 67,
dwarf_ymm1h_x86_64,
dwarf_ymm2h_x86_64,
dwarf_ymm3h_x86_64,
dwarf_ymm4h_x86_64,
dwarf_ymm5h_x86_64,
dwarf_ymm6h_x86_64,
dwarf_ymm7h_x86_64,
dwarf_ymm8h_x86_64,
dwarf_ymm9h_x86_64,
dwarf_ymm10h_x86_64,
dwarf_ymm11h_x86_64,
dwarf_ymm12h_x86_64,
dwarf_ymm13h_x86_64,
dwarf_ymm14h_x86_64,
dwarf_ymm15h_x86_64,
// MPX registers
dwarf_bnd0_x86_64 = 126,
dwarf_bnd1_x86_64,
dwarf_bnd2_x86_64,
dwarf_bnd3_x86_64,
// AVX2 Vector Mask Registers
// dwarf_k0_x86_64 = 118,
// dwarf_k1_x86_64,
// dwarf_k2_x86_64,
// dwarf_k3_x86_64,
// dwarf_k4_x86_64,
// dwarf_k5_x86_64,
// dwarf_k6_x86_64,
// dwarf_k7_x86_64,
};
// Generic floating-point registers
LLVM_PACKED_START
struct MMSRegComp {
uint64_t mantissa;
uint16_t sign_exp;
};
struct MMSReg {
union {
uint8_t bytes[10];
MMSRegComp comp;
};
uint8_t pad[6];
};
LLVM_PACKED_END
static_assert(sizeof(MMSRegComp) == 10, "MMSRegComp is not 10 bytes of size");
static_assert(sizeof(MMSReg) == 16, "MMSReg is not 16 bytes of size");
struct XMMReg {
uint8_t bytes[16]; // 128-bits for each XMM register
};
// i387_fxsave_struct
struct FXSAVE {
uint16_t fctrl; // FPU Control Word (fcw)
uint16_t fstat; // FPU Status Word (fsw)
uint16_t ftag; // FPU Tag Word (ftw)
uint16_t fop; // Last Instruction Opcode (fop)
union {
struct {
uint64_t fip; // Instruction Pointer
uint64_t fdp; // Data Pointer
} x86_64;
struct {
uint32_t fioff; // FPU IP Offset (fip)
uint32_t fiseg; // FPU IP Selector (fcs)
uint32_t fooff; // FPU Operand Pointer Offset (foo)
uint32_t foseg; // FPU Operand Pointer Selector (fos)
} i386_; // Added _ in the end to avoid error with gcc defining i386 in some
// cases
} ptr;
uint32_t mxcsr; // MXCSR Register State
uint32_t mxcsrmask; // MXCSR Mask
MMSReg stmm[8]; // 8*16 bytes for each FP-reg = 128 bytes
XMMReg xmm[16]; // 16*16 bytes for each XMM-reg = 256 bytes
uint8_t padding1[48];
uint64_t xcr0;
uint8_t padding2[40];
};
// Extended floating-point registers
struct YMMHReg {
uint8_t bytes[16]; // 16 * 8 bits for the high bytes of each YMM register
};
struct YMMReg {
uint8_t bytes[32]; // 16 * 16 bits for each YMM register
};
struct YMM {
YMMReg ymm[16]; // assembled from ymmh and xmm registers
};
struct MPXReg {
uint8_t bytes[16]; // MPX 128 bit bound registers
};
struct MPXCsr {
uint8_t bytes[8]; // MPX 64 bit bndcfgu and bndstatus registers (collectively
// BNDCSR state)
};
struct MPX {
MPXReg mpxr[4];
MPXCsr mpxc[2];
};
LLVM_PACKED_START
struct XSAVE_HDR {
enum class XFeature : uint64_t {
FP = 1,
SSE = FP << 1,
YMM = SSE << 1,
BNDREGS = YMM << 1,
BNDCSR = BNDREGS << 1,
OPMASK = BNDCSR << 1,
ZMM_Hi256 = OPMASK << 1,
Hi16_ZMM = ZMM_Hi256 << 1,
PT = Hi16_ZMM << 1,
PKRU = PT << 1,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue*/ PKRU)
};
XFeature xstate_bv; // OS enabled xstate mask to determine the extended states
// supported by the processor
XFeature xcomp_bv; // Mask to indicate the format of the XSAVE area and of
// the XRSTOR instruction
uint64_t reserved1[1];
uint64_t reserved2[5];
};
static_assert(sizeof(XSAVE_HDR) == 64, "XSAVE_HDR layout incorrect");
LLVM_PACKED_END
// x86 extensions to FXSAVE (i.e. for AVX and MPX processors)
LLVM_PACKED_START
struct XSAVE {
FXSAVE i387; // floating point registers typical in i387_fxsave_struct
XSAVE_HDR header; // The xsave_hdr_struct can be used to determine if the
// following extensions are usable
YMMHReg ymmh[16]; // High 16 bytes of each of 16 YMM registers (the low bytes
// are in FXSAVE.xmm for compatibility with SSE)
uint64_t reserved3[16];
MPXReg mpxr[4]; // MPX BNDREG state, containing 128-bit bound registers
MPXCsr mpxc[2]; // MPX BNDCSR state, containing 64-bit BNDCFGU and
// BNDSTATUS registers
};
LLVM_PACKED_END
// Floating-point registers
union FPR {
FXSAVE fxsave; // Generic floating-point registers.
XSAVE xsave; // x86 extended processor state.
};
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
// Convenience function to combine YMM register data from XSAVE-style input.
inline YMMReg XStateToYMM(const void* xmm_bytes, const void* ymmh_bytes) {
YMMReg ret;
::memcpy(ret.bytes, xmm_bytes, sizeof(XMMReg));
::memcpy(ret.bytes + sizeof(XMMReg), ymmh_bytes, sizeof(YMMHReg));
return ret;
}
// Convenience function to copy YMM register data into XSAVE-style output.
inline void YMMToXState(const YMMReg& input, void* xmm_bytes, void* ymmh_bytes) {
::memcpy(xmm_bytes, input.bytes, sizeof(XMMReg));
::memcpy(ymmh_bytes, input.bytes + sizeof(XMMReg), sizeof(YMMHReg));
}
uint16_t AbridgedToFullTagWord(uint8_t abridged_tw, uint16_t sw,
llvm::ArrayRef<MMSReg> st_regs);
uint8_t FullToAbridgedTagWord(uint16_t tw);
} // namespace lldb_private
#endif