|  | //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs global common subexpression elimination on machine | 
|  | // instructions using a scoped hash table based value numbering scheme. It | 
|  | // must be run while the machine function is still in SSA form. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachineCSE.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/ScopedHashTable.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/MC/MCRegister.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/RecyclingAllocator.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "machine-cse" | 
|  |  | 
|  | STATISTIC(NumCoalesces, "Number of copies coalesced"); | 
|  | STATISTIC(NumCSEs,      "Number of common subexpression eliminated"); | 
|  | STATISTIC(NumPREs,      "Number of partial redundant expression" | 
|  | " transformed to fully redundant"); | 
|  | STATISTIC(NumPhysCSEs, | 
|  | "Number of physreg referencing common subexpr eliminated"); | 
|  | STATISTIC(NumCrossBBCSEs, | 
|  | "Number of cross-MBB physreg referencing CS eliminated"); | 
|  | STATISTIC(NumCommutes,  "Number of copies coalesced after commuting"); | 
|  |  | 
|  | // Threshold to avoid excessive cost to compute isProfitableToCSE. | 
|  | static cl::opt<int> | 
|  | CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024), | 
|  | cl::desc("Threshold for the size of CSUses")); | 
|  |  | 
|  | static cl::opt<bool> AggressiveMachineCSE( | 
|  | "aggressive-machine-cse", cl::Hidden, cl::init(false), | 
|  | cl::desc("Override the profitability heuristics for Machine CSE")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MachineCSEImpl { | 
|  | const TargetInstrInfo *TII = nullptr; | 
|  | const TargetRegisterInfo *TRI = nullptr; | 
|  | MachineDominatorTree *DT = nullptr; | 
|  | MachineRegisterInfo *MRI = nullptr; | 
|  | MachineBlockFrequencyInfo *MBFI = nullptr; | 
|  |  | 
|  | public: | 
|  | MachineCSEImpl(MachineDominatorTree *DT, MachineBlockFrequencyInfo *MBFI) | 
|  | : DT(DT), MBFI(MBFI) {} | 
|  | bool run(MachineFunction &MF); | 
|  |  | 
|  | private: | 
|  | using AllocatorTy = | 
|  | RecyclingAllocator<BumpPtrAllocator, | 
|  | ScopedHashTableVal<MachineInstr *, unsigned>>; | 
|  | using ScopedHTType = | 
|  | ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, | 
|  | AllocatorTy>; | 
|  | using ScopeType = ScopedHTType::ScopeTy; | 
|  | using PhysDefVector = SmallVector<std::pair<unsigned, Register>, 2>; | 
|  |  | 
|  | unsigned LookAheadLimit = 0; | 
|  | DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; | 
|  | DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> | 
|  | PREMap; | 
|  | ScopedHTType VNT; | 
|  | SmallVector<MachineInstr *, 64> Exps; | 
|  | unsigned CurrVN = 0; | 
|  |  | 
|  | bool PerformTrivialCopyPropagation(MachineInstr *MI, MachineBasicBlock *MBB); | 
|  | bool isPhysDefTriviallyDead(MCRegister Reg, | 
|  | MachineBasicBlock::const_iterator I, | 
|  | MachineBasicBlock::const_iterator E) const; | 
|  | bool hasLivePhysRegDefUses(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | SmallSet<MCRegister, 8> &PhysRefs, | 
|  | PhysDefVector &PhysDefs, bool &PhysUseDef) const; | 
|  | bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, | 
|  | const SmallSet<MCRegister, 8> &PhysRefs, | 
|  | const PhysDefVector &PhysDefs, bool &NonLocal) const; | 
|  | bool isCSECandidate(MachineInstr *MI); | 
|  | bool isProfitableToCSE(Register CSReg, Register Reg, MachineBasicBlock *CSBB, | 
|  | MachineInstr *MI); | 
|  | void EnterScope(MachineBasicBlock *MBB); | 
|  | void ExitScope(MachineBasicBlock *MBB); | 
|  | bool ProcessBlockCSE(MachineBasicBlock *MBB); | 
|  | void ExitScopeIfDone(MachineDomTreeNode *Node, | 
|  | DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren); | 
|  | bool PerformCSE(MachineDomTreeNode *Node); | 
|  |  | 
|  | bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs); | 
|  | bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); | 
|  | bool PerformSimplePRE(MachineDominatorTree *DT); | 
|  | /// Heuristics to see if it's profitable to move common computations of MBB | 
|  | /// and MBB1 to CandidateBB. | 
|  | bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, | 
|  | MachineBasicBlock *MBB, MachineBasicBlock *MBB1); | 
|  | void releaseMemory(); | 
|  | }; | 
|  |  | 
|  | class MachineCSELegacy : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  |  | 
|  | MachineCSELegacy() : MachineFunctionPass(ID) { | 
|  | initializeMachineCSELegacyPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | AU.addPreservedID(MachineLoopInfoID); | 
|  | AU.addRequired<MachineDominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<MachineDominatorTreeWrapperPass>(); | 
|  | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().setIsSSA(); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char MachineCSELegacy::ID = 0; | 
|  |  | 
|  | char &llvm::MachineCSELegacyID = MachineCSELegacy::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MachineCSELegacy, DEBUG_TYPE, | 
|  | "Machine Common Subexpression Elimination", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(MachineCSELegacy, DEBUG_TYPE, | 
|  | "Machine Common Subexpression Elimination", false, false) | 
|  |  | 
|  | /// The source register of a COPY machine instruction can be propagated to all | 
|  | /// its users, and this propagation could increase the probability of finding | 
|  | /// common subexpressions. If the COPY has only one user, the COPY itself can | 
|  | /// be removed. | 
|  | bool MachineCSEImpl::PerformTrivialCopyPropagation(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) { | 
|  | bool Changed = false; | 
|  | for (MachineOperand &MO : MI->all_uses()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg.isVirtual()) | 
|  | continue; | 
|  | bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); | 
|  | MachineInstr *DefMI = MRI->getVRegDef(Reg); | 
|  | if (!DefMI || !DefMI->isCopy()) | 
|  | continue; | 
|  | Register SrcReg = DefMI->getOperand(1).getReg(); | 
|  | if (!SrcReg.isVirtual()) | 
|  | continue; | 
|  | // FIXME: We should trivially coalesce subregister copies to expose CSE | 
|  | // opportunities on instructions with truncated operands (see | 
|  | // cse-add-with-overflow.ll). This can be done here as follows: | 
|  | // if (SrcSubReg) | 
|  | //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, | 
|  | //                                     SrcSubReg); | 
|  | // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); | 
|  | // | 
|  | // The 2-addr pass has been updated to handle coalesced subregs. However, | 
|  | // some machine-specific code still can't handle it. | 
|  | // To handle it properly we also need a way find a constrained subregister | 
|  | // class given a super-reg class and subreg index. | 
|  | if (DefMI->getOperand(1).getSubReg()) | 
|  | continue; | 
|  | if (!MRI->constrainRegAttrs(SrcReg, Reg)) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); | 
|  | LLVM_DEBUG(dbgs() << "***     to: " << *MI); | 
|  |  | 
|  | // Propagate SrcReg of copies to MI. | 
|  | MO.setReg(SrcReg); | 
|  | MRI->clearKillFlags(SrcReg); | 
|  | // Coalesce single use copies. | 
|  | if (OnlyOneUse) { | 
|  | // If (and only if) we've eliminated all uses of the copy, also | 
|  | // copy-propagate to any debug-users of MI, or they'll be left using | 
|  | // an undefined value. | 
|  | DefMI->changeDebugValuesDefReg(SrcReg); | 
|  |  | 
|  | DefMI->eraseFromParent(); | 
|  | ++NumCoalesces; | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::isPhysDefTriviallyDead( | 
|  | MCRegister Reg, MachineBasicBlock::const_iterator I, | 
|  | MachineBasicBlock::const_iterator E) const { | 
|  | unsigned LookAheadLeft = LookAheadLimit; | 
|  | while (LookAheadLeft) { | 
|  | // Skip over dbg_value's. | 
|  | I = skipDebugInstructionsForward(I, E); | 
|  |  | 
|  | if (I == E) | 
|  | // Reached end of block, we don't know if register is dead or not. | 
|  | return false; | 
|  |  | 
|  | bool SeenDef = false; | 
|  | for (const MachineOperand &MO : I->operands()) { | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) | 
|  | SeenDef = true; | 
|  | if (!MO.isReg() || !MO.getReg()) | 
|  | continue; | 
|  | if (!TRI->regsOverlap(MO.getReg(), Reg)) | 
|  | continue; | 
|  | if (MO.isUse()) | 
|  | // Found a use! | 
|  | return false; | 
|  | SeenDef = true; | 
|  | } | 
|  | if (SeenDef) | 
|  | // See a def of Reg (or an alias) before encountering any use, it's | 
|  | // trivially dead. | 
|  | return true; | 
|  |  | 
|  | --LookAheadLeft; | 
|  | ++I; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, | 
|  | const MachineOperand &MO, | 
|  | const MachineFunction &MF, | 
|  | const TargetRegisterInfo &TRI, | 
|  | const TargetInstrInfo &TII) { | 
|  | // MachineRegisterInfo::isConstantPhysReg directly called by | 
|  | // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the | 
|  | // reserved registers to be frozen. That doesn't cause a problem  post-ISel as | 
|  | // most (if not all) targets freeze reserved registers right after ISel. | 
|  | // | 
|  | // It does cause issues mid-GlobalISel, however, hence the additional | 
|  | // reservedRegsFrozen check. | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) || | 
|  | (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); | 
|  | } | 
|  |  | 
|  | /// hasLivePhysRegDefUses - Return true if the specified instruction read/write | 
|  | /// physical registers (except for dead defs of physical registers). It also | 
|  | /// returns the physical register def by reference if it's the only one and the | 
|  | /// instruction does not uses a physical register. | 
|  | bool MachineCSEImpl::hasLivePhysRegDefUses(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | SmallSet<MCRegister, 8> &PhysRefs, | 
|  | PhysDefVector &PhysDefs, | 
|  | bool &PhysUseDef) const { | 
|  | // First, add all uses to PhysRefs. | 
|  | for (const MachineOperand &MO : MI->all_uses()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | if (Reg.isVirtual()) | 
|  | continue; | 
|  | // Reading either caller preserved or constant physregs is ok. | 
|  | if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI, | 
|  | *TII)) | 
|  | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) | 
|  | PhysRefs.insert(*AI); | 
|  | } | 
|  |  | 
|  | // Next, collect all defs into PhysDefs.  If any is already in PhysRefs | 
|  | // (which currently contains only uses), set the PhysUseDef flag. | 
|  | PhysUseDef = false; | 
|  | MachineBasicBlock::const_iterator I = MI; I = std::next(I); | 
|  | for (const auto &MOP : llvm::enumerate(MI->operands())) { | 
|  | const MachineOperand &MO = MOP.value(); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | if (Reg.isVirtual()) | 
|  | continue; | 
|  | // Check against PhysRefs even if the def is "dead". | 
|  | if (PhysRefs.count(Reg.asMCReg())) | 
|  | PhysUseDef = true; | 
|  | // If the def is dead, it's ok. But the def may not marked "dead". That's | 
|  | // common since this pass is run before livevariables. We can scan | 
|  | // forward a few instructions and check if it is obviously dead. | 
|  | if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) | 
|  | PhysDefs.emplace_back(MOP.index(), Reg); | 
|  | } | 
|  |  | 
|  | // Finally, add all defs to PhysRefs as well. | 
|  | for (const auto &Def : PhysDefs) | 
|  | for (MCRegAliasIterator AI(Def.second, TRI, true); AI.isValid(); ++AI) | 
|  | PhysRefs.insert(*AI); | 
|  |  | 
|  | return !PhysRefs.empty(); | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, | 
|  | const SmallSet<MCRegister, 8> &PhysRefs, | 
|  | const PhysDefVector &PhysDefs, | 
|  | bool &NonLocal) const { | 
|  | // For now conservatively returns false if the common subexpression is | 
|  | // not in the same basic block as the given instruction. The only exception | 
|  | // is if the common subexpression is in the sole predecessor block. | 
|  | const MachineBasicBlock *MBB = MI->getParent(); | 
|  | const MachineBasicBlock *CSMBB = CSMI->getParent(); | 
|  |  | 
|  | bool CrossMBB = false; | 
|  | if (CSMBB != MBB) { | 
|  | if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) | 
|  | return false; | 
|  |  | 
|  | for (const auto &PhysDef : PhysDefs) { | 
|  | if (MRI->isAllocatable(PhysDef.second) || MRI->isReserved(PhysDef.second)) | 
|  | // Avoid extending live range of physical registers if they are | 
|  | //allocatable or reserved. | 
|  | return false; | 
|  | } | 
|  | CrossMBB = true; | 
|  | } | 
|  | MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); | 
|  | MachineBasicBlock::const_iterator E = MI; | 
|  | MachineBasicBlock::const_iterator EE = CSMBB->end(); | 
|  | unsigned LookAheadLeft = LookAheadLimit; | 
|  | while (LookAheadLeft) { | 
|  | // Skip over dbg_value's. | 
|  | while (I != E && I != EE && I->isDebugInstr()) | 
|  | ++I; | 
|  |  | 
|  | if (I == EE) { | 
|  | assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); | 
|  | (void)CrossMBB; | 
|  | CrossMBB = false; | 
|  | NonLocal = true; | 
|  | I = MBB->begin(); | 
|  | EE = MBB->end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (I == E) | 
|  | return true; | 
|  |  | 
|  | for (const MachineOperand &MO : I->operands()) { | 
|  | // RegMasks go on instructions like calls that clobber lots of physregs. | 
|  | // Don't attempt to CSE across such an instruction. | 
|  | if (MO.isRegMask()) | 
|  | return false; | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register MOReg = MO.getReg(); | 
|  | if (MOReg.isVirtual()) | 
|  | continue; | 
|  | if (PhysRefs.count(MOReg.asMCReg())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | --LookAheadLeft; | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::isCSECandidate(MachineInstr *MI) { | 
|  | if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || | 
|  | MI->isInlineAsm() || MI->isDebugInstr() || MI->isJumpTableDebugInfo() || | 
|  | MI->isFakeUse()) | 
|  | return false; | 
|  |  | 
|  | // Ignore copies. | 
|  | if (MI->isCopyLike()) | 
|  | return false; | 
|  |  | 
|  | // Ignore stuff that we obviously can't move. | 
|  | if (MI->mayStore() || MI->isCall() || MI->isTerminator() || | 
|  | MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | if (MI->mayLoad()) { | 
|  | // Okay, this instruction does a load. As a refinement, we allow the target | 
|  | // to decide whether the loaded value is actually a constant. If so, we can | 
|  | // actually use it as a load. | 
|  | if (!MI->isDereferenceableInvariantLoad()) | 
|  | // FIXME: we should be able to hoist loads with no other side effects if | 
|  | // there are no other instructions which can change memory in this loop. | 
|  | // This is a trivial form of alias analysis. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Ignore stack guard loads, otherwise the register that holds CSEed value may | 
|  | // be spilled and get loaded back with corrupted data. | 
|  | if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a | 
|  | /// common expression that defines Reg. CSBB is basic block where CSReg is | 
|  | /// defined. | 
|  | bool MachineCSEImpl::isProfitableToCSE(Register CSReg, Register Reg, | 
|  | MachineBasicBlock *CSBB, | 
|  | MachineInstr *MI) { | 
|  | if (AggressiveMachineCSE) | 
|  | return true; | 
|  |  | 
|  | // FIXME: Heuristics that works around the lack the live range splitting. | 
|  |  | 
|  | // If CSReg is used at all uses of Reg, CSE should not increase register | 
|  | // pressure of CSReg. | 
|  | bool MayIncreasePressure = true; | 
|  | if (CSReg.isVirtual() && Reg.isVirtual()) { | 
|  | MayIncreasePressure = false; | 
|  | SmallPtrSet<MachineInstr*, 8> CSUses; | 
|  | int NumOfUses = 0; | 
|  | for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { | 
|  | CSUses.insert(&MI); | 
|  | // Too costly to compute if NumOfUses is very large. Conservatively assume | 
|  | // MayIncreasePressure to avoid spending too much time here. | 
|  | if (++NumOfUses > CSUsesThreshold) { | 
|  | MayIncreasePressure = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!MayIncreasePressure) | 
|  | for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { | 
|  | if (!CSUses.count(&MI)) { | 
|  | MayIncreasePressure = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!MayIncreasePressure) return true; | 
|  |  | 
|  | // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in | 
|  | // an immediate predecessor. We don't want to increase register pressure and | 
|  | // end up causing other computation to be spilled. | 
|  | if (TII->isAsCheapAsAMove(*MI)) { | 
|  | MachineBasicBlock *BB = MI->getParent(); | 
|  | if (CSBB != BB && !CSBB->isSuccessor(BB)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Heuristics #2: If the expression doesn't not use a vr and the only use | 
|  | // of the redundant computation are copies, do not cse. | 
|  | bool HasVRegUse = false; | 
|  | for (const MachineOperand &MO : MI->all_uses()) { | 
|  | if (MO.getReg().isVirtual()) { | 
|  | HasVRegUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasVRegUse) { | 
|  | bool HasNonCopyUse = false; | 
|  | for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { | 
|  | // Ignore copies. | 
|  | if (!MI.isCopyLike()) { | 
|  | HasNonCopyUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasNonCopyUse) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Heuristics #3: If the common subexpression is used by PHIs, do not reuse | 
|  | // it unless the defined value is already used in the BB of the new use. | 
|  | bool HasPHI = false; | 
|  | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { | 
|  | HasPHI |= UseMI.isPHI(); | 
|  | if (UseMI.getParent() == MI->getParent()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return !HasPHI; | 
|  | } | 
|  |  | 
|  | void MachineCSEImpl::EnterScope(MachineBasicBlock *MBB) { | 
|  | LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); | 
|  | ScopeType *Scope = new ScopeType(VNT); | 
|  | ScopeMap[MBB] = Scope; | 
|  | } | 
|  |  | 
|  | void MachineCSEImpl::ExitScope(MachineBasicBlock *MBB) { | 
|  | LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); | 
|  | DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); | 
|  | assert(SI != ScopeMap.end()); | 
|  | delete SI->second; | 
|  | ScopeMap.erase(SI); | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::ProcessBlockCSE(MachineBasicBlock *MBB) { | 
|  | bool Changed = false; | 
|  |  | 
|  | SmallVector<std::pair<Register, Register>, 8> CSEPairs; | 
|  | SmallVector<unsigned, 2> ImplicitDefsToUpdate; | 
|  | SmallVector<Register, 2> ImplicitDefs; | 
|  | for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { | 
|  | if (!isCSECandidate(&MI)) | 
|  | continue; | 
|  |  | 
|  | bool FoundCSE = VNT.count(&MI); | 
|  | if (!FoundCSE) { | 
|  | // Using trivial copy propagation to find more CSE opportunities. | 
|  | if (PerformTrivialCopyPropagation(&MI, MBB)) { | 
|  | Changed = true; | 
|  |  | 
|  | // After coalescing MI itself may become a copy. | 
|  | if (MI.isCopyLike()) | 
|  | continue; | 
|  |  | 
|  | // Try again to see if CSE is possible. | 
|  | FoundCSE = VNT.count(&MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Commute commutable instructions. | 
|  | bool Commuted = false; | 
|  | if (!FoundCSE && MI.isCommutable()) { | 
|  | if (MachineInstr *NewMI = TII->commuteInstruction(MI)) { | 
|  | Commuted = true; | 
|  | FoundCSE = VNT.count(NewMI); | 
|  | if (NewMI != &MI) { | 
|  | // New instruction. It doesn't need to be kept. | 
|  | NewMI->eraseFromParent(); | 
|  | Changed = true; | 
|  | } else if (!FoundCSE) | 
|  | // MI was changed but it didn't help, commute it back! | 
|  | (void)TII->commuteInstruction(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the instruction defines physical registers and the values *may* be | 
|  | // used, then it's not safe to replace it with a common subexpression. | 
|  | // It's also not safe if the instruction uses physical registers. | 
|  | bool CrossMBBPhysDef = false; | 
|  | SmallSet<MCRegister, 8> PhysRefs; | 
|  | PhysDefVector PhysDefs; | 
|  | bool PhysUseDef = false; | 
|  | if (FoundCSE && | 
|  | hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) { | 
|  | FoundCSE = false; | 
|  |  | 
|  | // ... Unless the CS is local or is in the sole predecessor block | 
|  | // and it also defines the physical register which is not clobbered | 
|  | // in between and the physical register uses were not clobbered. | 
|  | // This can never be the case if the instruction both uses and | 
|  | // defines the same physical register, which was detected above. | 
|  | if (!PhysUseDef) { | 
|  | unsigned CSVN = VNT.lookup(&MI); | 
|  | MachineInstr *CSMI = Exps[CSVN]; | 
|  | if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) | 
|  | FoundCSE = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FoundCSE) { | 
|  | VNT.insert(&MI, CurrVN++); | 
|  | Exps.push_back(&MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Found a common subexpression, eliminate it. | 
|  | unsigned CSVN = VNT.lookup(&MI); | 
|  | MachineInstr *CSMI = Exps[CSVN]; | 
|  | LLVM_DEBUG(dbgs() << "Examining: " << MI); | 
|  | LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); | 
|  |  | 
|  | // Prevent CSE-ing non-local convergent instructions. | 
|  | // LLVM's current definition of `isConvergent` does not necessarily prove | 
|  | // that non-local CSE is illegal. The following check extends the definition | 
|  | // of `isConvergent` to assume a convergent instruction is dependent not | 
|  | // only on additional conditions, but also on fewer conditions. LLVM does | 
|  | // not have a MachineInstr attribute which expresses this extended | 
|  | // definition, so it's necessary to use `isConvergent` to prevent illegally | 
|  | // CSE-ing the subset of `isConvergent` instructions which do fall into this | 
|  | // extended definition. | 
|  | if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) { | 
|  | LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " | 
|  | "different BBs, avoid CSE!\n"); | 
|  | VNT.insert(&MI, CurrVN++); | 
|  | Exps.push_back(&MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check if it's profitable to perform this CSE. | 
|  | bool DoCSE = true; | 
|  | unsigned NumDefs = MI.getNumDefs(); | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register OldReg = MO.getReg(); | 
|  | Register NewReg = CSMI->getOperand(i).getReg(); | 
|  |  | 
|  | // Go through implicit defs of CSMI and MI, if a def is not dead at MI, | 
|  | // we should make sure it is not dead at CSMI. | 
|  | if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) | 
|  | ImplicitDefsToUpdate.push_back(i); | 
|  |  | 
|  | // Keep track of implicit defs of CSMI and MI, to clear possibly | 
|  | // made-redundant kill flags. | 
|  | if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) | 
|  | ImplicitDefs.push_back(OldReg); | 
|  |  | 
|  | if (OldReg == NewReg) { | 
|  | --NumDefs; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(OldReg.isVirtual() && NewReg.isVirtual() && | 
|  | "Do not CSE physical register defs!"); | 
|  |  | 
|  | if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) { | 
|  | LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); | 
|  | DoCSE = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Don't perform CSE if the result of the new instruction cannot exist | 
|  | // within the constraints (register class, bank, or low-level type) of | 
|  | // the old instruction. | 
|  | if (!MRI->constrainRegAttrs(NewReg, OldReg)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "*** Not the same register constraints, avoid CSE!\n"); | 
|  | DoCSE = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | CSEPairs.emplace_back(OldReg, NewReg); | 
|  | --NumDefs; | 
|  | } | 
|  |  | 
|  | // Actually perform the elimination. | 
|  | if (DoCSE) { | 
|  | for (const std::pair<Register, Register> &CSEPair : CSEPairs) { | 
|  | Register OldReg = CSEPair.first; | 
|  | Register NewReg = CSEPair.second; | 
|  | // OldReg may have been unused but is used now, clear the Dead flag | 
|  | MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); | 
|  | assert(Def != nullptr && "CSEd register has no unique definition?"); | 
|  | Def->clearRegisterDeads(NewReg); | 
|  | // Replace with NewReg and clear kill flags which may be wrong now. | 
|  | MRI->replaceRegWith(OldReg, NewReg); | 
|  | MRI->clearKillFlags(NewReg); | 
|  | } | 
|  |  | 
|  | // Go through implicit defs of CSMI and MI, if a def is not dead at MI, | 
|  | // we should make sure it is not dead at CSMI. | 
|  | for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) | 
|  | CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); | 
|  | for (const auto &PhysDef : PhysDefs) | 
|  | if (!MI.getOperand(PhysDef.first).isDead()) | 
|  | CSMI->getOperand(PhysDef.first).setIsDead(false); | 
|  |  | 
|  | // Go through implicit defs of CSMI and MI, and clear the kill flags on | 
|  | // their uses in all the instructions between CSMI and MI. | 
|  | // We might have made some of the kill flags redundant, consider: | 
|  | //   subs  ... implicit-def %nzcv    <- CSMI | 
|  | //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore | 
|  | //   subs  ... implicit-def %nzcv    <- MI, to be eliminated | 
|  | //   csinc ... implicit killed %nzcv | 
|  | // Since we eliminated MI, and reused a register imp-def'd by CSMI | 
|  | // (here %nzcv), that register, if it was killed before MI, should have | 
|  | // that kill flag removed, because it's lifetime was extended. | 
|  | if (CSMI->getParent() == MI.getParent()) { | 
|  | for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II) | 
|  | for (auto ImplicitDef : ImplicitDefs) | 
|  | if (MachineOperand *MO = II->findRegisterUseOperand( | 
|  | ImplicitDef, TRI, /*isKill=*/true)) | 
|  | MO->setIsKill(false); | 
|  | } else { | 
|  | // If the instructions aren't in the same BB, bail out and clear the | 
|  | // kill flag on all uses of the imp-def'd register. | 
|  | for (auto ImplicitDef : ImplicitDefs) | 
|  | MRI->clearKillFlags(ImplicitDef); | 
|  | } | 
|  |  | 
|  | if (CrossMBBPhysDef) { | 
|  | // Add physical register defs now coming in from a predecessor to MBB | 
|  | // livein list. | 
|  | while (!PhysDefs.empty()) { | 
|  | auto LiveIn = PhysDefs.pop_back_val(); | 
|  | if (!MBB->isLiveIn(LiveIn.second)) | 
|  | MBB->addLiveIn(LiveIn.second); | 
|  | } | 
|  | ++NumCrossBBCSEs; | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | ++NumCSEs; | 
|  | if (!PhysRefs.empty()) | 
|  | ++NumPhysCSEs; | 
|  | if (Commuted) | 
|  | ++NumCommutes; | 
|  | Changed = true; | 
|  | } else { | 
|  | VNT.insert(&MI, CurrVN++); | 
|  | Exps.push_back(&MI); | 
|  | } | 
|  | CSEPairs.clear(); | 
|  | ImplicitDefsToUpdate.clear(); | 
|  | ImplicitDefs.clear(); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given | 
|  | /// dominator tree node if its a leaf or all of its children are done. Walk | 
|  | /// up the dominator tree to destroy ancestors which are now done. | 
|  | void MachineCSEImpl::ExitScopeIfDone( | 
|  | MachineDomTreeNode *Node, | 
|  | DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren) { | 
|  | if (OpenChildren[Node]) | 
|  | return; | 
|  |  | 
|  | // Pop scope. | 
|  | ExitScope(Node->getBlock()); | 
|  |  | 
|  | // Now traverse upwards to pop ancestors whose offsprings are all done. | 
|  | while (MachineDomTreeNode *Parent = Node->getIDom()) { | 
|  | unsigned Left = --OpenChildren[Parent]; | 
|  | if (Left != 0) | 
|  | break; | 
|  | ExitScope(Parent->getBlock()); | 
|  | Node = Parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::PerformCSE(MachineDomTreeNode *Node) { | 
|  | SmallVector<MachineDomTreeNode*, 32> Scopes; | 
|  | SmallVector<MachineDomTreeNode*, 8> WorkList; | 
|  | DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; | 
|  |  | 
|  | CurrVN = 0; | 
|  |  | 
|  | // Perform a DFS walk to determine the order of visit. | 
|  | WorkList.push_back(Node); | 
|  | do { | 
|  | Node = WorkList.pop_back_val(); | 
|  | Scopes.push_back(Node); | 
|  | OpenChildren[Node] = Node->getNumChildren(); | 
|  | append_range(WorkList, Node->children()); | 
|  | } while (!WorkList.empty()); | 
|  |  | 
|  | // Now perform CSE. | 
|  | bool Changed = false; | 
|  | for (MachineDomTreeNode *Node : Scopes) { | 
|  | MachineBasicBlock *MBB = Node->getBlock(); | 
|  | EnterScope(MBB); | 
|  | Changed |= ProcessBlockCSE(MBB); | 
|  | // If it's a leaf node, it's done. Traverse upwards to pop ancestors. | 
|  | ExitScopeIfDone(Node, OpenChildren); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // We use stronger checks for PRE candidate rather than for CSE ones to embrace | 
|  | // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps | 
|  | // to exclude instrs created by PRE that won't be CSEed later. | 
|  | bool MachineCSEImpl::isPRECandidate(MachineInstr *MI, | 
|  | SmallSet<MCRegister, 8> &PhysRefs) { | 
|  | if (!isCSECandidate(MI) || | 
|  | MI->isNotDuplicable() || | 
|  | MI->mayLoad() || | 
|  | TII->isAsCheapAsAMove(*MI) || | 
|  | MI->getNumDefs() != 1 || | 
|  | MI->getNumExplicitDefs() != 1) | 
|  | return false; | 
|  |  | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && !MO.getReg().isVirtual()) { | 
|  | if (MO.isDef()) | 
|  | return false; | 
|  | else | 
|  | PhysRefs.insert(MO.getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::ProcessBlockPRE(MachineDominatorTree *DT, | 
|  | MachineBasicBlock *MBB) { | 
|  | bool Changed = false; | 
|  | for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { | 
|  | SmallSet<MCRegister, 8> PhysRefs; | 
|  | if (!isPRECandidate(&MI, PhysRefs)) | 
|  | continue; | 
|  |  | 
|  | auto [It, Inserted] = PREMap.try_emplace(&MI, MBB); | 
|  | if (Inserted) | 
|  | continue; | 
|  |  | 
|  | auto *MBB1 = It->second; | 
|  | assert( | 
|  | !DT->properlyDominates(MBB, MBB1) && | 
|  | "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); | 
|  | auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); | 
|  | if (!CMBB->isLegalToHoistInto()) | 
|  | continue; | 
|  |  | 
|  | if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) | 
|  | continue; | 
|  |  | 
|  | // Two instrs are partial redundant if their basic blocks are reachable | 
|  | // from one to another but one doesn't dominate another. | 
|  | if (CMBB != MBB1) { | 
|  | auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); | 
|  | if (BB != nullptr && BB1 != nullptr && | 
|  | (isPotentiallyReachable(BB1, BB) || | 
|  | isPotentiallyReachable(BB, BB1))) { | 
|  | // The following check extends the definition of `isConvergent` to | 
|  | // assume a convergent instruction is dependent not only on additional | 
|  | // conditions, but also on fewer conditions. LLVM does not have a | 
|  | // MachineInstr attribute which expresses this extended definition, so | 
|  | // it's necessary to use `isConvergent` to prevent illegally PRE-ing the | 
|  | // subset of `isConvergent` instructions which do fall into this | 
|  | // extended definition. | 
|  | if (MI.isConvergent() && CMBB != MBB) | 
|  | continue; | 
|  |  | 
|  | // If this instruction uses physical registers then we can only do PRE | 
|  | // if it's using the value that is live at the place we're hoisting to. | 
|  | bool NonLocal; | 
|  | PhysDefVector PhysDefs; | 
|  | if (!PhysRefs.empty() && | 
|  | !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs, | 
|  | PhysDefs, NonLocal)) | 
|  | continue; | 
|  |  | 
|  | assert(MI.getOperand(0).isDef() && | 
|  | "First operand of instr with one explicit def must be this def"); | 
|  | Register VReg = MI.getOperand(0).getReg(); | 
|  | Register NewReg = MRI->cloneVirtualRegister(VReg); | 
|  | if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI)) | 
|  | continue; | 
|  | MachineInstr &NewMI = | 
|  | TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI); | 
|  |  | 
|  | // When hoisting, make sure we don't carry the debug location of | 
|  | // the original instruction, as that's not correct and can cause | 
|  | // unexpected jumps when debugging optimized code. | 
|  | auto EmptyDL = DebugLoc(); | 
|  | NewMI.setDebugLoc(EmptyDL); | 
|  |  | 
|  | NewMI.getOperand(0).setReg(NewReg); | 
|  |  | 
|  | PREMap[&MI] = CMBB; | 
|  | ++NumPREs; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // This simple PRE (partial redundancy elimination) pass doesn't actually | 
|  | // eliminate partial redundancy but transforms it to full redundancy, | 
|  | // anticipating that the next CSE step will eliminate this created redundancy. | 
|  | // If CSE doesn't eliminate this, than created instruction will remain dead | 
|  | // and eliminated later by Remove Dead Machine Instructions pass. | 
|  | bool MachineCSEImpl::PerformSimplePRE(MachineDominatorTree *DT) { | 
|  | SmallVector<MachineDomTreeNode *, 32> BBs; | 
|  |  | 
|  | PREMap.clear(); | 
|  | bool Changed = false; | 
|  | BBs.push_back(DT->getRootNode()); | 
|  | do { | 
|  | auto Node = BBs.pop_back_val(); | 
|  | append_range(BBs, Node->children()); | 
|  |  | 
|  | MachineBasicBlock *MBB = Node->getBlock(); | 
|  | Changed |= ProcessBlockPRE(DT, MBB); | 
|  |  | 
|  | } while (!BBs.empty()); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *MBB1) { | 
|  | if (CandidateBB->getParent()->getFunction().hasMinSize()) | 
|  | return true; | 
|  | assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); | 
|  | assert(DT->dominates(CandidateBB, MBB1) && | 
|  | "CandidateBB should dominate MBB1"); | 
|  | return MBFI->getBlockFreq(CandidateBB) <= | 
|  | MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); | 
|  | } | 
|  |  | 
|  | void MachineCSEImpl::releaseMemory() { | 
|  | ScopeMap.clear(); | 
|  | PREMap.clear(); | 
|  | Exps.clear(); | 
|  | } | 
|  |  | 
|  | bool MachineCSEImpl::run(MachineFunction &MF) { | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  | TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | LookAheadLimit = TII->getMachineCSELookAheadLimit(); | 
|  | bool ChangedPRE, ChangedCSE; | 
|  | ChangedPRE = PerformSimplePRE(DT); | 
|  | ChangedCSE = PerformCSE(DT->getRootNode()); | 
|  | releaseMemory(); | 
|  | return ChangedPRE || ChangedCSE; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses MachineCSEPass::run(MachineFunction &MF, | 
|  | MachineFunctionAnalysisManager &MFAM) { | 
|  | MFPropsModifier _(*this, MF); | 
|  |  | 
|  | MachineDominatorTree &MDT = MFAM.getResult<MachineDominatorTreeAnalysis>(MF); | 
|  | MachineBlockFrequencyInfo &MBFI = | 
|  | MFAM.getResult<MachineBlockFrequencyAnalysis>(MF); | 
|  | MachineCSEImpl Impl(&MDT, &MBFI); | 
|  | bool Changed = Impl.run(MF); | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getMachineFunctionPassPreservedAnalyses(); | 
|  | PA.preserve<MachineLoopAnalysis>(); | 
|  | PA.preserve<MachineDominatorTreeAnalysis>(); | 
|  | PA.preserve<MachineBlockFrequencyAnalysis>(); | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | bool MachineCSELegacy::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | MachineDominatorTree &MDT = | 
|  | getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); | 
|  | MachineBlockFrequencyInfo &MBFI = | 
|  | getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); | 
|  | MachineCSEImpl Impl(&MDT, &MBFI); | 
|  | return Impl.run(MF); | 
|  | } |