| //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that NVPTX uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "NVPTXISelLowering.h" |
| #include "MCTargetDesc/NVPTXBaseInfo.h" |
| #include "NVPTX.h" |
| #include "NVPTXISelDAGToDAG.h" |
| #include "NVPTXSubtarget.h" |
| #include "NVPTXTargetMachine.h" |
| #include "NVPTXTargetObjectFile.h" |
| #include "NVPTXUtilities.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetCallingConv.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/CodeGenTypes/MachineValueType.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/FPEnv.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/NVPTXAddrSpace.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstdint> |
| #include <iterator> |
| #include <optional> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "nvptx-lower" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> sched4reg( |
| "nvptx-sched4reg", |
| cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); |
| |
| static cl::opt<unsigned> FMAContractLevelOpt( |
| "nvptx-fma-level", cl::Hidden, |
| cl::desc("NVPTX Specific: FMA contraction (0: don't do it" |
| " 1: do it 2: do it aggressively"), |
| cl::init(2)); |
| |
| static cl::opt<NVPTX::DivPrecisionLevel> UsePrecDivF32( |
| "nvptx-prec-divf32", cl::Hidden, |
| cl::desc( |
| "NVPTX Specific: Override the precision of the lowering for f32 fdiv"), |
| cl::values( |
| clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"), |
| clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"), |
| clEnumValN(NVPTX::DivPrecisionLevel::IEEE754, "2", |
| "Use IEEE Compliant F32 div.rnd if available (default)"), |
| clEnumValN(NVPTX::DivPrecisionLevel::IEEE754_NoFTZ, "3", |
| "Use IEEE Compliant F32 div.rnd if available, no FTZ")), |
| cl::init(NVPTX::DivPrecisionLevel::IEEE754)); |
| |
| static cl::opt<bool> UsePrecSqrtF32( |
| "nvptx-prec-sqrtf32", cl::Hidden, |
| cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), |
| cl::init(true)); |
| |
| /// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it |
| /// does NOT use lg2.approx for log2, so this is disabled by default. |
| static cl::opt<bool> UseApproxLog2F32( |
| "nvptx-approx-log2f32", |
| cl::desc("NVPTX Specific: whether to use lg2.approx for log2"), |
| cl::init(false)); |
| |
| static cl::opt<bool> ForceMinByValParamAlign( |
| "nvptx-force-min-byval-param-align", cl::Hidden, |
| cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" |
| " params of device functions."), |
| cl::init(false)); |
| |
| NVPTX::DivPrecisionLevel |
| NVPTXTargetLowering::getDivF32Level(const MachineFunction &MF, |
| const SDNode &N) const { |
| // If nvptx-prec-div32=N is used on the command-line, always honor it |
| if (UsePrecDivF32.getNumOccurrences() > 0) |
| return UsePrecDivF32; |
| |
| const SDNodeFlags Flags = N.getFlags(); |
| if (Flags.hasApproximateFuncs()) |
| return NVPTX::DivPrecisionLevel::Approx; |
| |
| return NVPTX::DivPrecisionLevel::IEEE754; |
| } |
| |
| bool NVPTXTargetLowering::usePrecSqrtF32(const SDNode *N) const { |
| // If nvptx-prec-sqrtf32 is used on the command-line, always honor it |
| if (UsePrecSqrtF32.getNumOccurrences() > 0) |
| return UsePrecSqrtF32; |
| |
| if (N) { |
| const SDNodeFlags Flags = N->getFlags(); |
| if (Flags.hasApproximateFuncs()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { |
| return MF.getDenormalMode(APFloat::IEEEsingle()).Output == |
| DenormalMode::PreserveSign; |
| } |
| |
| static bool IsPTXVectorType(MVT VT) { |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::v2i1: |
| case MVT::v4i1: |
| case MVT::v2i8: |
| case MVT::v4i8: |
| case MVT::v8i8: // <2 x i8x4> |
| case MVT::v16i8: // <4 x i8x4> |
| case MVT::v2i16: |
| case MVT::v4i16: |
| case MVT::v8i16: // <4 x i16x2> |
| case MVT::v2i32: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v2f16: |
| case MVT::v4f16: |
| case MVT::v8f16: // <4 x f16x2> |
| case MVT::v2bf16: |
| case MVT::v4bf16: |
| case MVT::v8bf16: // <4 x bf16x2> |
| case MVT::v2f32: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| case MVT::v4i64: |
| case MVT::v4f64: |
| case MVT::v8i32: |
| case MVT::v8f32: |
| case MVT::v16f16: // <8 x f16x2> |
| case MVT::v16bf16: // <8 x bf16x2> |
| case MVT::v16i16: // <8 x i16x2> |
| case MVT::v32i8: // <8 x i8x4> |
| return true; |
| } |
| } |
| |
| // When legalizing vector loads/stores, this function is called, which does two |
| // things: |
| // 1. Determines Whether the vector is something we want to custom lower, |
| // std::nullopt is returned if we do not want to custom lower it. |
| // 2. If we do want to handle it, returns two parameters: |
| // - unsigned int NumElts - The number of elements in the final vector |
| // - EVT EltVT - The type of the elements in the final vector |
| static std::optional<std::pair<unsigned int, MVT>> |
| getVectorLoweringShape(EVT VectorEVT, const NVPTXSubtarget &STI, |
| unsigned AddressSpace) { |
| if (!VectorEVT.isSimple()) |
| return std::nullopt; |
| const MVT VectorVT = VectorEVT.getSimpleVT(); |
| |
| if (!VectorVT.isVector()) { |
| if (VectorVT == MVT::i128 || VectorVT == MVT::f128) |
| return {{2, MVT::i64}}; |
| return std::nullopt; |
| } |
| |
| const MVT EltVT = VectorVT.getVectorElementType(); |
| const unsigned NumElts = VectorVT.getVectorNumElements(); |
| |
| // The size of the PTX virtual register that holds a packed type. |
| unsigned PackRegSize; |
| |
| bool CanLowerTo256Bit = STI.has256BitVectorLoadStore(AddressSpace); |
| |
| // We only handle "native" vector sizes for now, e.g. <4 x double> is not |
| // legal. We can (and should) split that into 2 stores of <2 x double> here |
| // but I'm leaving that as a TODO for now. |
| switch (VectorVT.SimpleTy) { |
| default: |
| return std::nullopt; |
| case MVT::v4i64: |
| case MVT::v4f64: |
| case MVT::v8i32: |
| // This is a "native" vector type iff the address space is global |
| // and the target supports 256-bit loads/stores |
| if (!CanLowerTo256Bit) |
| return std::nullopt; |
| LLVM_FALLTHROUGH; |
| case MVT::v2i8: |
| case MVT::v2i32: |
| case MVT::v2i64: |
| case MVT::v2f64: |
| case MVT::v4i32: |
| // This is a "native" vector type |
| return std::pair(NumElts, EltVT); |
| case MVT::v16f16: // <8 x f16x2> |
| case MVT::v16bf16: // <8 x bf16x2> |
| case MVT::v16i16: // <8 x i16x2> |
| case MVT::v32i8: // <8 x i8x4> |
| // This can be upsized into a "native" vector type iff the address space is |
| // global and the target supports 256-bit loads/stores. |
| if (!CanLowerTo256Bit) |
| return std::nullopt; |
| LLVM_FALLTHROUGH; |
| case MVT::v2i16: // <1 x i16x2> |
| case MVT::v2f16: // <1 x f16x2> |
| case MVT::v2bf16: // <1 x bf16x2> |
| case MVT::v4i8: // <1 x i8x4> |
| case MVT::v4i16: // <2 x i16x2> |
| case MVT::v4f16: // <2 x f16x2> |
| case MVT::v4bf16: // <2 x bf16x2> |
| case MVT::v8i8: // <2 x i8x4> |
| case MVT::v8f16: // <4 x f16x2> |
| case MVT::v8bf16: // <4 x bf16x2> |
| case MVT::v8i16: // <4 x i16x2> |
| case MVT::v16i8: // <4 x i8x4> |
| PackRegSize = 32; |
| break; |
| case MVT::v8f32: // <4 x f32x2> |
| if (!CanLowerTo256Bit) |
| return std::nullopt; |
| LLVM_FALLTHROUGH; |
| case MVT::v2f32: // <1 x f32x2> |
| case MVT::v4f32: // <2 x f32x2> |
| if (!STI.hasF32x2Instructions()) |
| return std::pair(NumElts, EltVT); |
| PackRegSize = 64; |
| break; |
| } |
| |
| // If we reach here, then we can pack 2 or more elements into a single 32-bit |
| // or 64-bit PTX register and treat the vector as a new vector containing |
| // packed elements. |
| |
| // Number of elements to pack in one word. |
| const unsigned NPerReg = PackRegSize / EltVT.getSizeInBits(); |
| |
| return std::pair(NumElts / NPerReg, MVT::getVectorVT(EltVT, NPerReg)); |
| } |
| |
| /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive |
| /// legal-ish MVTs that compose it. Unlike ComputeValueVTs, this will legalize |
| /// the types as required by the calling convention (with special handling for |
| /// i8s). |
| /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the |
| /// same number of types as the Ins/Outs arrays in LowerFormalArguments, |
| /// LowerCall, and LowerReturn. |
| static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, |
| LLVMContext &Ctx, CallingConv::ID CallConv, |
| Type *Ty, SmallVectorImpl<EVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> &Offsets, |
| uint64_t StartingOffset = 0) { |
| SmallVector<EVT, 16> TempVTs; |
| SmallVector<uint64_t, 16> TempOffsets; |
| ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset); |
| |
| for (const auto [VT, Off] : zip(TempVTs, TempOffsets)) { |
| MVT RegisterVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT); |
| unsigned NumRegs = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT); |
| |
| // Since we actually can load/store b8, we need to ensure that we'll use |
| // the original sized type for any i8s or i8 vectors. |
| if (VT.getScalarType() == MVT::i8) { |
| if (RegisterVT == MVT::i16) |
| RegisterVT = MVT::i8; |
| else if (RegisterVT == MVT::v2i16) |
| RegisterVT = MVT::v2i8; |
| else |
| assert(RegisterVT == MVT::v4i8 && |
| "Expected v4i8, v2i16, or i16 for i8 RegisterVT"); |
| } |
| |
| // TODO: This is horribly incorrect for cases where the vector elements are |
| // not a multiple of bytes (ex i1) and legal or i8. However, this problem |
| // has existed for as long as NVPTX has and no one has complained, so we'll |
| // leave it for now. |
| for (unsigned I : seq(NumRegs)) { |
| ValueVTs.push_back(RegisterVT); |
| Offsets.push_back(Off + I * RegisterVT.getStoreSize()); |
| } |
| } |
| } |
| |
| // We return an EVT that can hold N VTs |
| // If the VT is a vector, the resulting EVT is a flat vector with the same |
| // element type as VT's element type. |
| static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C) { |
| if (N == 1) |
| return VT; |
| |
| return VT.isVector() ? EVT::getVectorVT(C, VT.getScalarType(), |
| VT.getVectorNumElements() * N) |
| : EVT::getVectorVT(C, VT, N); |
| } |
| |
| static SDValue getExtractVectorizedValue(SDValue V, unsigned I, EVT VT, |
| const SDLoc &dl, SelectionDAG &DAG) { |
| if (V.getValueType() == VT) { |
| assert(I == 0 && "Index must be 0 for scalar value"); |
| return V; |
| } |
| |
| if (!VT.isVector()) |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, V, |
| DAG.getVectorIdxConstant(I, dl)); |
| |
| return DAG.getNode( |
| ISD::EXTRACT_SUBVECTOR, dl, VT, V, |
| DAG.getVectorIdxConstant(I * VT.getVectorNumElements(), dl)); |
| } |
| |
| template <typename T> |
| static inline SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl, |
| SelectionDAG &DAG, T GetElement) { |
| if (N == 1) |
| return GetElement(0); |
| |
| SmallVector<SDValue, 8> Values; |
| for (const unsigned I : llvm::seq(N)) { |
| SDValue Val = GetElement(I); |
| if (Val.getValueType().isVector()) |
| DAG.ExtractVectorElements(Val, Values); |
| else |
| Values.push_back(Val); |
| } |
| |
| EVT VT = EVT::getVectorVT(*DAG.getContext(), Values[0].getValueType(), |
| Values.size()); |
| return DAG.getBuildVector(VT, dl, Values); |
| } |
| |
| /// PromoteScalarIntegerPTX |
| /// Used to make sure the arguments/returns are suitable for passing |
| /// and promote them to a larger size if they're not. |
| /// |
| /// The promoted type is placed in \p PromoteVT if the function returns true. |
| static EVT promoteScalarIntegerPTX(const EVT VT) { |
| if (VT.isScalarInteger()) { |
| switch (PowerOf2Ceil(VT.getFixedSizeInBits())) { |
| default: |
| llvm_unreachable( |
| "Promotion is not suitable for scalars of size larger than 64-bits"); |
| case 1: |
| return MVT::i1; |
| case 2: |
| case 4: |
| case 8: |
| return MVT::i8; |
| case 16: |
| return MVT::i16; |
| case 32: |
| return MVT::i32; |
| case 64: |
| return MVT::i64; |
| } |
| } |
| return VT; |
| } |
| |
| // Check whether we can merge loads/stores of some of the pieces of a |
| // flattened function parameter or return value into a single vector |
| // load/store. |
| // |
| // The flattened parameter is represented as a list of EVTs and |
| // offsets, and the whole structure is aligned to ParamAlignment. This |
| // function determines whether we can load/store pieces of the |
| // parameter starting at index Idx using a single vectorized op of |
| // size AccessSize. If so, it returns the number of param pieces |
| // covered by the vector op. Otherwise, it returns 1. |
| template <typename T> |
| static unsigned canMergeParamLoadStoresStartingAt( |
| unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs, |
| const SmallVectorImpl<T> &Offsets, Align ParamAlignment) { |
| |
| // Can't vectorize if param alignment is not sufficient. |
| if (ParamAlignment < AccessSize) |
| return 1; |
| // Can't vectorize if offset is not aligned. |
| if (Offsets[Idx] & (AccessSize - 1)) |
| return 1; |
| |
| EVT EltVT = ValueVTs[Idx]; |
| unsigned EltSize = EltVT.getStoreSize(); |
| |
| // Element is too large to vectorize. |
| if (EltSize >= AccessSize) |
| return 1; |
| |
| unsigned NumElts = AccessSize / EltSize; |
| // Can't vectorize if AccessBytes if not a multiple of EltSize. |
| if (AccessSize != EltSize * NumElts) |
| return 1; |
| |
| // We don't have enough elements to vectorize. |
| if (Idx + NumElts > ValueVTs.size()) |
| return 1; |
| |
| // PTX ISA can only deal with 2- and 4-element vector ops. |
| if (NumElts != 4 && NumElts != 2) |
| return 1; |
| |
| for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { |
| // Types do not match. |
| if (ValueVTs[j] != EltVT) |
| return 1; |
| |
| // Elements are not contiguous. |
| if (Offsets[j] - Offsets[j - 1] != EltSize) |
| return 1; |
| } |
| // OK. We can vectorize ValueVTs[i..i+NumElts) |
| return NumElts; |
| } |
| |
| // Computes whether and how we can vectorize the loads/stores of a |
| // flattened function parameter or return value. |
| // |
| // The flattened parameter is represented as the list of ValueVTs and |
| // Offsets, and is aligned to ParamAlignment bytes. We return a vector |
| // of the same size as ValueVTs indicating how each piece should be |
| // loaded/stored (i.e. as a scalar, or as part of a vector |
| // load/store). |
| template <typename T> |
| static SmallVector<unsigned, 16> |
| VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs, |
| const SmallVectorImpl<T> &Offsets, Align ParamAlignment, |
| bool IsVAArg = false) { |
| // Set vector size to match ValueVTs and mark all elements as |
| // scalars by default. |
| |
| if (IsVAArg) |
| return SmallVector<unsigned>(ValueVTs.size(), 1); |
| |
| SmallVector<unsigned, 16> VectorInfo; |
| |
| const auto GetNumElts = [&](unsigned I) -> unsigned { |
| for (const unsigned AccessSize : {16, 8, 4, 2}) { |
| const unsigned NumElts = canMergeParamLoadStoresStartingAt( |
| I, AccessSize, ValueVTs, Offsets, ParamAlignment); |
| assert((NumElts == 1 || NumElts == 2 || NumElts == 4) && |
| "Unexpected vectorization size"); |
| if (NumElts != 1) |
| return NumElts; |
| } |
| return 1; |
| }; |
| |
| // Check what we can vectorize using 128/64/32-bit accesses. |
| for (unsigned I = 0, E = ValueVTs.size(); I != E;) { |
| const unsigned NumElts = GetNumElts(I); |
| VectorInfo.push_back(NumElts); |
| I += NumElts; |
| } |
| assert(std::accumulate(VectorInfo.begin(), VectorInfo.end(), 0u) == |
| ValueVTs.size()); |
| return VectorInfo; |
| } |
| |
| // NVPTXTargetLowering Constructor. |
| NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, |
| const NVPTXSubtarget &STI) |
| : TargetLowering(TM), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) { |
| // always lower memset, memcpy, and memmove intrinsics to load/store |
| // instructions, rather |
| // then generating calls to memset, mempcy or memmove. |
| MaxStoresPerMemset = MaxStoresPerMemsetOptSize = (unsigned)0xFFFFFFFF; |
| MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = (unsigned) 0xFFFFFFFF; |
| MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = (unsigned) 0xFFFFFFFF; |
| |
| setBooleanContents(ZeroOrNegativeOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // Jump is Expensive. Don't create extra control flow for 'and', 'or' |
| // condition branches. |
| setJumpIsExpensive(true); |
| |
| // Wide divides are _very_ slow. Try to reduce the width of the divide if |
| // possible. |
| addBypassSlowDiv(64, 32); |
| |
| // By default, use the Source scheduling |
| if (sched4reg) |
| setSchedulingPreference(Sched::RegPressure); |
| else |
| setSchedulingPreference(Sched::Source); |
| |
| auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoF16Action) { |
| bool IsOpSupported = STI.allowFP16Math(); |
| switch (Op) { |
| // Several FP16 instructions are available on sm_80 only. |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXIMUM: |
| case ISD::FMINIMUM: |
| IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70; |
| break; |
| case ISD::FEXP2: |
| IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70; |
| break; |
| } |
| setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action); |
| }; |
| |
| auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoBF16Action) { |
| bool IsOpSupported = STI.hasNativeBF16Support(Op); |
| setOperationAction( |
| Op, VT, IsOpSupported ? Action : NoBF16Action); |
| }; |
| |
| auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoI16x2Action) { |
| bool IsOpSupported = false; |
| // instructions are available on sm_90 only |
| switch (Op) { |
| case ISD::ADD: |
| case ISD::SMAX: |
| case ISD::SMIN: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80; |
| break; |
| } |
| setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action); |
| }; |
| |
| addRegisterClass(MVT::i1, &NVPTX::B1RegClass); |
| addRegisterClass(MVT::i16, &NVPTX::B16RegClass); |
| addRegisterClass(MVT::v2i16, &NVPTX::B32RegClass); |
| addRegisterClass(MVT::v4i8, &NVPTX::B32RegClass); |
| addRegisterClass(MVT::i32, &NVPTX::B32RegClass); |
| addRegisterClass(MVT::i64, &NVPTX::B64RegClass); |
| addRegisterClass(MVT::f32, &NVPTX::B32RegClass); |
| addRegisterClass(MVT::f64, &NVPTX::B64RegClass); |
| addRegisterClass(MVT::f16, &NVPTX::B16RegClass); |
| addRegisterClass(MVT::v2f16, &NVPTX::B32RegClass); |
| addRegisterClass(MVT::bf16, &NVPTX::B16RegClass); |
| addRegisterClass(MVT::v2bf16, &NVPTX::B32RegClass); |
| |
| if (STI.hasF32x2Instructions()) |
| addRegisterClass(MVT::v2f32, &NVPTX::B64RegClass); |
| |
| // Conversion to/from FP16/FP16x2 is always legal. |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand); |
| |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
| if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31) |
| setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal); |
| |
| setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); |
| |
| // Conversion to/from BFP16/BFP16x2 is always legal. |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2bf16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2bf16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2bf16, Expand); |
| |
| setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand); |
| setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote); |
| if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote) |
| AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32); |
| |
| // Conversion to/from i16/i16x2 is always legal. |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i16, Expand); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom); |
| |
| // No support for these operations with v2f32. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Expand); |
| // Need custom lowering in case the index is dynamic. |
| if (STI.hasF32x2Instructions()) |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom); |
| |
| // Custom conversions to/from v2i8. |
| setOperationAction(ISD::BITCAST, MVT::v2i8, Custom); |
| |
| // Only logical ops can be done on v4i8 directly, others must be done |
| // elementwise. |
| setOperationAction( |
| {ISD::ABS, ISD::ADD, ISD::ADDC, ISD::ADDE, |
| ISD::BITREVERSE, ISD::CTLZ, ISD::CTPOP, ISD::CTTZ, |
| ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FSHL, ISD::FSHR, |
| ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::PARITY, |
| ISD::ROTL, ISD::ROTR, ISD::SADDO, ISD::SADDO_CARRY, |
| ISD::SADDSAT, ISD::SDIV, ISD::SDIVREM, ISD::SELECT_CC, |
| ISD::SETCC, ISD::SHL, ISD::SINT_TO_FP, ISD::SMAX, |
| ISD::SMIN, ISD::SMULO, ISD::SMUL_LOHI, ISD::SRA, |
| ISD::SREM, ISD::SRL, ISD::SSHLSAT, ISD::SSUBO, |
| ISD::SSUBO_CARRY, ISD::SSUBSAT, ISD::SUB, ISD::SUBC, |
| ISD::SUBE, ISD::UADDO, ISD::UADDO_CARRY, ISD::UADDSAT, |
| ISD::UDIV, ISD::UDIVREM, ISD::UINT_TO_FP, ISD::UMAX, |
| ISD::UMIN, ISD::UMULO, ISD::UMUL_LOHI, ISD::UREM, |
| ISD::USHLSAT, ISD::USUBO, ISD::USUBO_CARRY, ISD::VSELECT, |
| ISD::USUBSAT}, |
| MVT::v4i8, Expand); |
| |
| // Operations not directly supported by NVPTX. |
| for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32, |
| MVT::v2f32, MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, |
| MVT::v4i8, MVT::i32, MVT::i64}) { |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::BR_CC, VT, Expand); |
| } |
| |
| // Not directly supported. TLI would attempt to expand operations like |
| // FMINIMUM(v2f32) using invalid SETCC and VSELECT nodes. |
| setOperationAction(ISD::VSELECT, MVT::v2f32, Expand); |
| |
| // Some SIGN_EXTEND_INREG can be done using cvt instruction. |
| // For others we will expand to a SHL/SRA pair. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom); |
| |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| |
| setOperationAction({ISD::ROTL, ISD::ROTR}, |
| {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64}, |
| Expand); |
| |
| if (STI.hasHWROT32()) { |
| setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Legal); |
| setOperationAction({ISD::ROTL, ISD::ROTR, ISD::FSHL, ISD::FSHR}, MVT::i64, |
| Custom); |
| } |
| |
| setOperationAction(ISD::BSWAP, MVT::i16, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| |
| // We want to legalize constant related memmove and memcopy |
| // intrinsics. |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| |
| // FP extload/truncstore is not legal in PTX. We need to expand all these. |
| for (auto FloatVTs : |
| {MVT::fp_valuetypes(), MVT::fp_fixedlen_vector_valuetypes()}) { |
| for (MVT ValVT : FloatVTs) { |
| for (MVT MemVT : FloatVTs) { |
| setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Expand); |
| setTruncStoreAction(ValVT, MemVT, Expand); |
| } |
| } |
| } |
| |
| // To improve CodeGen we'll legalize any-extend loads to zext loads. This is |
| // how they'll be lowered in ISel anyway, and by doing this a little earlier |
| // we allow for more DAG combine opportunities. |
| for (auto IntVTs : |
| {MVT::integer_valuetypes(), MVT::integer_fixedlen_vector_valuetypes()}) |
| for (MVT ValVT : IntVTs) |
| for (MVT MemVT : IntVTs) |
| if (isTypeLegal(ValVT)) |
| setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Custom); |
| |
| // PTX does not support load / store predicate registers |
| setOperationAction({ISD::LOAD, ISD::STORE}, MVT::i1, Custom); |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}, VT, MVT::i1, |
| Promote); |
| setTruncStoreAction(VT, MVT::i1, Expand); |
| } |
| |
| // Register custom handling for illegal type loads/stores. We'll try to custom |
| // lower almost all illegal types and logic in the lowering will discard cases |
| // we can't handle. |
| setOperationAction({ISD::LOAD, ISD::STORE}, {MVT::i128, MVT::f128}, Custom); |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) |
| if (!isTypeLegal(VT) && VT.getStoreSizeInBits() <= 256) |
| setOperationAction({ISD::STORE, ISD::LOAD}, VT, Custom); |
| |
| // Custom legalization for LDU intrinsics. |
| // TODO: The logic to lower these is not very robust and we should rewrite it. |
| // Perhaps LDU should not be represented as an intrinsic at all. |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) |
| if (IsPTXVectorType(VT)) |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom); |
| |
| setCondCodeAction({ISD::SETNE, ISD::SETEQ, ISD::SETUGE, ISD::SETULE, |
| ISD::SETUGT, ISD::SETULT, ISD::SETGT, ISD::SETLT, |
| ISD::SETGE, ISD::SETLE}, |
| MVT::i1, Expand); |
| |
| // This is legal in NVPTX |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f16, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, {MVT::i32, MVT::i64}, Custom); |
| setOperationAction({ISD::STACKRESTORE, ISD::STACKSAVE}, MVT::Other, Custom); |
| |
| // TRAP can be lowered to PTX trap |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| // DEBUGTRAP can be lowered to PTX brkpt |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| |
| // Support varargs. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| setOperationAction({ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, |
| {MVT::i16, MVT::i32, MVT::i64}, Legal); |
| |
| setOperationAction({ISD::CTPOP, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i16, |
| Promote); |
| setOperationAction({ISD::CTPOP, ISD::CTLZ}, MVT::i32, Legal); |
| setOperationAction({ISD::CTPOP, ISD::CTLZ}, MVT::i64, Custom); |
| |
| setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand); |
| setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand); |
| |
| setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom); |
| setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom); |
| |
| // Other arithmetic and logic ops are unsupported. |
| setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SRA, ISD::SRL, ISD::MULHS, |
| ISD::MULHU, ISD::FP_TO_SINT, ISD::FP_TO_UINT, |
| ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::SETCC}, |
| MVT::v2i16, Expand); |
| |
| setOperationAction(ISD::ADDC, MVT::i32, Legal); |
| setOperationAction(ISD::ADDE, MVT::i32, Legal); |
| setOperationAction(ISD::SUBC, MVT::i32, Legal); |
| setOperationAction(ISD::SUBE, MVT::i32, Legal); |
| if (STI.getPTXVersion() >= 43) { |
| setOperationAction(ISD::ADDC, MVT::i64, Legal); |
| setOperationAction(ISD::ADDE, MVT::i64, Legal); |
| setOperationAction(ISD::SUBC, MVT::i64, Legal); |
| setOperationAction(ISD::SUBE, MVT::i64, Legal); |
| } |
| |
| setOperationAction(ISD::CTTZ, MVT::i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v2i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i64, Expand); |
| |
| // PTX does not directly support SELP of i1, so promote to i32 first |
| setOperationAction(ISD::SELECT, MVT::i1, Custom); |
| |
| // PTX cannot multiply two i64s in a single instruction. |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| |
| // We have some custom DAG combine patterns for these nodes |
| setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::EXTRACT_VECTOR_ELT, ISD::FADD, |
| ISD::MUL, ISD::SHL, ISD::SREM, ISD::UREM, ISD::VSELECT, |
| ISD::BUILD_VECTOR, ISD::ADDRSPACECAST, ISD::LOAD, |
| ISD::STORE, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}); |
| |
| // setcc for f16x2 and bf16x2 needs special handling to prevent |
| // legalizer's attempt to scalarize it due to v2i1 not being legal. |
| if (STI.allowFP16Math() || STI.hasBF16Math()) |
| setTargetDAGCombine(ISD::SETCC); |
| |
| // Vector reduction operations. These may be turned into shuffle or tree |
| // reductions depending on what instructions are available for each type. |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) { |
| MVT EltVT = VT.getVectorElementType(); |
| if (EltVT == MVT::f32 || EltVT == MVT::f64) { |
| setOperationAction({ISD::VECREDUCE_FMAX, ISD::VECREDUCE_FMIN, |
| ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM}, |
| VT, Custom); |
| } |
| } |
| |
| // Promote fp16 arithmetic if fp16 hardware isn't available or the |
| // user passed --nvptx-no-fp16-math. The flag is useful because, |
| // although sm_53+ GPUs have some sort of FP16 support in |
| // hardware, only sm_53 and sm_60 have full implementation. Others |
| // only have token amount of hardware and are likely to run faster |
| // by using fp32 units instead. |
| for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { |
| setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| // bf16 must be promoted to f32. |
| setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| if (getOperationAction(Op, MVT::bf16) == Promote) |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| setOperationAction(Op, MVT::v2f32, |
| STI.hasF32x2Instructions() ? Legal : Expand); |
| } |
| |
| // On SM80, we select add/mul/sub as fma to avoid promotion to float |
| for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) { |
| for (const auto &VT : {MVT::bf16, MVT::v2bf16}) { |
| if (!STI.hasNativeBF16Support(Op) && STI.hasNativeBF16Support(ISD::FMA)) { |
| setOperationAction(Op, VT, Custom); |
| } |
| } |
| } |
| |
| // f16/f16x2 neg was introduced in PTX 60, SM_53. |
| const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 && |
| STI.getPTXVersion() >= 60 && |
| STI.allowFP16Math(); |
| for (const auto &VT : {MVT::f16, MVT::v2f16}) |
| setOperationAction(ISD::FNEG, VT, |
| IsFP16FP16x2NegAvailable ? Legal : Expand); |
| |
| setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand); |
| setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand); |
| setOperationAction(ISD::FNEG, MVT::v2f32, Expand); |
| // (would be) Library functions. |
| |
| // These map to conversion instructions for scalar FP types. |
| for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, |
| ISD::FROUNDEVEN, ISD::FTRUNC}) { |
| setOperationAction(Op, MVT::f16, Legal); |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setOperationAction(Op, MVT::v2f16, Expand); |
| setOperationAction(Op, MVT::v2bf16, Expand); |
| setOperationAction(Op, MVT::v2f32, Expand); |
| setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| if (getOperationAction(Op, MVT::bf16) == Promote) |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| } |
| |
| if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) { |
| setOperationAction(ISD::BF16_TO_FP, MVT::f32, Expand); |
| } |
| if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) { |
| setOperationAction(ISD::FP_EXTEND, VT, Custom); |
| setOperationAction(ISD::FP_ROUND, VT, Custom); |
| } |
| } |
| |
| // Expand v2f32 = fp_extend |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); |
| // Expand v2[b]f16 = fp_round v2f32 |
| setOperationAction(ISD::FP_ROUND, {MVT::v2bf16, MVT::v2f16}, Expand); |
| |
| // sm_80 only has conversions between f32 and bf16. Custom lower all other |
| // bf16 conversions. |
| if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) { |
| setOperationAction( |
| {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| VT, Custom); |
| } |
| setOperationAction( |
| {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| MVT::bf16, Custom); |
| } |
| |
| setOperationAction(ISD::FROUND, MVT::f16, Promote); |
| setOperationAction(ISD::FROUND, MVT::v2f16, Expand); |
| setOperationAction(ISD::FROUND, MVT::v2bf16, Expand); |
| setOperationAction(ISD::FROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FROUND, MVT::f64, Custom); |
| setOperationAction(ISD::FROUND, MVT::bf16, Promote); |
| AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32); |
| |
| // 'Expand' implements FCOPYSIGN without calling an external library. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2bf16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| |
| // These map to corresponding instructions for f32/f64. f16 must be |
| // promoted to f32. v2f16 is expanded to f16, which is then promoted |
| // to f32. |
| for (const auto &Op : |
| {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FTANH}) { |
| setOperationAction(Op, MVT::f16, Promote); |
| setOperationAction(Op, MVT::f32, Legal); |
| // only div/rem/sqrt are legal for f64 |
| if (Op == ISD::FDIV || Op == ISD::FREM || Op == ISD::FSQRT) { |
| setOperationAction(Op, MVT::f64, Legal); |
| } |
| setOperationAction(Op, {MVT::v2f16, MVT::v2bf16, MVT::v2f32}, Expand); |
| setOperationAction(Op, MVT::bf16, Promote); |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| } |
| setOperationAction(ISD::FREM, {MVT::f32, MVT::f64}, Custom); |
| |
| setOperationAction(ISD::FABS, {MVT::f32, MVT::f64}, Legal); |
| setOperationAction(ISD::FABS, MVT::v2f32, Expand); |
| if (STI.getPTXVersion() >= 65) { |
| setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand); |
| } else { |
| setOperationAction(ISD::FABS, MVT::f16, Promote); |
| setOperationAction(ISD::FABS, MVT::v2f16, Expand); |
| } |
| setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand); |
| setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote); |
| if (getOperationAction(ISD::FABS, MVT::bf16) == Promote) |
| AddPromotedToType(ISD::FABS, MVT::bf16, MVT::f32); |
| |
| for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) { |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| if (getOperationAction(Op, MVT::bf16) == Promote) |
| AddPromotedToType(Op, MVT::bf16, MVT::f32); |
| setOperationAction(Op, MVT::v2f32, Expand); |
| } |
| bool SupportsF32MinMaxNaN = |
| STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70; |
| for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) { |
| setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand); |
| setFP16OperationAction(Op, MVT::f16, Legal, Expand); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::bf16, Legal, Expand); |
| setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| setOperationAction(Op, MVT::v2f32, Expand); |
| } |
| |
| // Custom lowering for inline asm with 128-bit operands |
| setOperationAction(ISD::CopyToReg, MVT::i128, Custom); |
| setOperationAction(ISD::CopyFromReg, MVT::i128, Custom); |
| |
| // FEXP2 support: |
| // - f32 |
| // - f16/f16x2 (sm_70+, PTX 7.0+) |
| // - bf16/bf16x2 (sm_90+, PTX 7.8+) |
| // When f16/bf16 types aren't supported, they are promoted/expanded to f32. |
| setOperationAction(ISD::FEXP2, MVT::f32, Legal); |
| setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); |
| setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand); |
| setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote); |
| setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand); |
| |
| // FLOG2 supports f32 only |
| // f16/bf16 types aren't supported, but they are promoted/expanded to f32. |
| if (UseApproxLog2F32) { |
| setOperationAction(ISD::FLOG2, MVT::f32, Legal); |
| setOperationPromotedToType(ISD::FLOG2, MVT::f16, MVT::f32); |
| setOperationPromotedToType(ISD::FLOG2, MVT::bf16, MVT::f32); |
| setOperationAction(ISD::FLOG2, {MVT::v2f16, MVT::v2bf16, MVT::v2f32}, |
| Expand); |
| } |
| |
| setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); |
| |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, {MVT::i32, MVT::i64}, Expand); |
| // No FPOW or FREM in PTX. |
| |
| // Now deduce the information based on the above mentioned |
| // actions |
| computeRegisterProperties(STI.getRegisterInfo()); |
| |
| // PTX support for 16-bit CAS is emulated. Only use 32+ |
| setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits()); |
| setMaxAtomicSizeInBitsSupported(64); |
| setMaxDivRemBitWidthSupported(64); |
| |
| // Custom lowering for tcgen05.ld vector operands |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, |
| {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32, |
| MVT::v32i32, MVT::v64i32, MVT::v128i32}, |
| Custom); |
| |
| // Custom lowering for tcgen05.st vector operands |
| setOperationAction(ISD::INTRINSIC_VOID, |
| {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32, |
| MVT::v32i32, MVT::v64i32, MVT::v128i32}, |
| Custom); |
| |
| // Enable custom lowering for the following: |
| // * MVT::i128 - clusterlaunchcontrol |
| // * MVT::i32 - prmt |
| // * MVT::Other - internal.addrspace.wrap |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, {MVT::i32, MVT::i128, MVT::Other}, |
| Custom); |
| } |
| |
| const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| |
| #define MAKE_CASE(V) \ |
| case V: \ |
| return #V; |
| |
| switch ((NVPTXISD::NodeType)Opcode) { |
| case NVPTXISD::FIRST_NUMBER: |
| break; |
| |
| MAKE_CASE(NVPTXISD::RET_GLUE) |
| MAKE_CASE(NVPTXISD::DeclareArrayParam) |
| MAKE_CASE(NVPTXISD::DeclareScalarParam) |
| MAKE_CASE(NVPTXISD::CALL) |
| MAKE_CASE(NVPTXISD::MoveParam) |
| MAKE_CASE(NVPTXISD::UNPACK_VECTOR) |
| MAKE_CASE(NVPTXISD::BUILD_VECTOR) |
| MAKE_CASE(NVPTXISD::CallPrototype) |
| MAKE_CASE(NVPTXISD::ProxyReg) |
| MAKE_CASE(NVPTXISD::LoadV2) |
| MAKE_CASE(NVPTXISD::LoadV4) |
| MAKE_CASE(NVPTXISD::LoadV8) |
| MAKE_CASE(NVPTXISD::LDUV2) |
| MAKE_CASE(NVPTXISD::LDUV4) |
| MAKE_CASE(NVPTXISD::StoreV2) |
| MAKE_CASE(NVPTXISD::StoreV4) |
| MAKE_CASE(NVPTXISD::StoreV8) |
| MAKE_CASE(NVPTXISD::FSHL_CLAMP) |
| MAKE_CASE(NVPTXISD::FSHR_CLAMP) |
| MAKE_CASE(NVPTXISD::BFI) |
| MAKE_CASE(NVPTXISD::PRMT) |
| MAKE_CASE(NVPTXISD::FCOPYSIGN) |
| MAKE_CASE(NVPTXISD::FMAXNUM3) |
| MAKE_CASE(NVPTXISD::FMINNUM3) |
| MAKE_CASE(NVPTXISD::FMAXIMUM3) |
| MAKE_CASE(NVPTXISD::FMINIMUM3) |
| MAKE_CASE(NVPTXISD::DYNAMIC_STACKALLOC) |
| MAKE_CASE(NVPTXISD::STACKRESTORE) |
| MAKE_CASE(NVPTXISD::STACKSAVE) |
| MAKE_CASE(NVPTXISD::SETP_F16X2) |
| MAKE_CASE(NVPTXISD::SETP_BF16X2) |
| MAKE_CASE(NVPTXISD::MUL_WIDE_SIGNED) |
| MAKE_CASE(NVPTXISD::MUL_WIDE_UNSIGNED) |
| MAKE_CASE(NVPTXISD::BrxEnd) |
| MAKE_CASE(NVPTXISD::BrxItem) |
| MAKE_CASE(NVPTXISD::BrxStart) |
| MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED) |
| MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X) |
| MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y) |
| MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z) |
| } |
| return nullptr; |
| |
| #undef MAKE_CASE |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { |
| if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| VT.getScalarType() == MVT::i1) |
| return TypeSplitVector; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, |
| int Enabled, int &ExtraSteps, |
| bool &UseOneConst, |
| bool Reciprocal) const { |
| if (!(Enabled == ReciprocalEstimate::Enabled || |
| (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32()))) |
| return SDValue(); |
| |
| if (ExtraSteps == ReciprocalEstimate::Unspecified) |
| ExtraSteps = 0; |
| |
| SDLoc DL(Operand); |
| EVT VT = Operand.getValueType(); |
| bool Ftz = useF32FTZ(DAG.getMachineFunction()); |
| |
| auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(IID, DL, MVT::i32), Operand); |
| }; |
| |
| // The sqrt and rsqrt refinement processes assume we always start out with an |
| // approximation of the rsqrt. Therefore, if we're going to do any refinement |
| // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing |
| // any refinement, we must return a regular sqrt. |
| if (Reciprocal || ExtraSteps > 0) { |
| if (VT == MVT::f32) |
| return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f |
| : Intrinsic::nvvm_rsqrt_approx_f); |
| else if (VT == MVT::f64) |
| return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); |
| else |
| return SDValue(); |
| } else { |
| if (VT == MVT::f32) |
| return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f |
| : Intrinsic::nvvm_sqrt_approx_f); |
| else { |
| // There's no sqrt.approx.f64 instruction, so we emit |
| // reciprocal(rsqrt(x)). This is faster than |
| // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain |
| // x * rsqrt(x).) |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32), |
| MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); |
| } |
| } |
| } |
| |
| std::string NVPTXTargetLowering::getPrototype( |
| const DataLayout &DL, Type *RetTy, const ArgListTy &Args, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| std::optional<unsigned> FirstVAArg, const CallBase &CB, |
| unsigned UniqueCallSite) const { |
| auto PtrVT = getPointerTy(DL); |
| |
| std::string Prototype; |
| raw_string_ostream O(Prototype); |
| O << "prototype_" << UniqueCallSite << " : .callprototype "; |
| |
| if (RetTy->isVoidTy()) { |
| O << "()"; |
| } else { |
| O << "("; |
| if (shouldPassAsArray(RetTy)) { |
| const Align RetAlign = getArgumentAlignment(&CB, RetTy, 0, DL); |
| O << ".param .align " << RetAlign.value() << " .b8 _[" |
| << DL.getTypeAllocSize(RetTy) << "]"; |
| } else if (RetTy->isFloatingPointTy() || RetTy->isIntegerTy()) { |
| unsigned size = 0; |
| if (auto *ITy = dyn_cast<IntegerType>(RetTy)) { |
| size = ITy->getBitWidth(); |
| } else { |
| assert(RetTy->isFloatingPointTy() && |
| "Floating point type expected here"); |
| size = RetTy->getPrimitiveSizeInBits(); |
| } |
| // PTX ABI requires all scalar return values to be at least 32 |
| // bits in size. fp16 normally uses .b16 as its storage type in |
| // PTX, so its size must be adjusted here, too. |
| size = promoteScalarArgumentSize(size); |
| |
| O << ".param .b" << size << " _"; |
| } else if (isa<PointerType>(RetTy)) { |
| O << ".param .b" << PtrVT.getSizeInBits() << " _"; |
| } else { |
| llvm_unreachable("Unknown return type"); |
| } |
| O << ") "; |
| } |
| O << "_ ("; |
| |
| bool first = true; |
| |
| const unsigned NumArgs = FirstVAArg.value_or(Args.size()); |
| auto AllOuts = ArrayRef(Outs); |
| for (const unsigned I : llvm::seq(NumArgs)) { |
| const auto ArgOuts = |
| AllOuts.take_while([I](auto O) { return O.OrigArgIndex == I; }); |
| AllOuts = AllOuts.drop_front(ArgOuts.size()); |
| |
| Type *Ty = Args[I].Ty; |
| if (!first) { |
| O << ", "; |
| } |
| first = false; |
| |
| if (ArgOuts[0].Flags.isByVal()) { |
| // Indirect calls need strict ABI alignment so we disable optimizations by |
| // not providing a function to optimize. |
| Type *ETy = Args[I].IndirectType; |
| Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign(); |
| Align ParamByValAlign = |
| getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL); |
| |
| O << ".param .align " << ParamByValAlign.value() << " .b8 _[" |
| << ArgOuts[0].Flags.getByValSize() << "]"; |
| } else { |
| if (shouldPassAsArray(Ty)) { |
| Align ParamAlign = |
| getArgumentAlignment(&CB, Ty, I + AttributeList::FirstArgIndex, DL); |
| O << ".param .align " << ParamAlign.value() << " .b8 _[" |
| << DL.getTypeAllocSize(Ty) << "]"; |
| continue; |
| } |
| // i8 types in IR will be i16 types in SDAG |
| assert((getValueType(DL, Ty) == ArgOuts[0].VT || |
| (getValueType(DL, Ty) == MVT::i8 && ArgOuts[0].VT == MVT::i16)) && |
| "type mismatch between callee prototype and arguments"); |
| // scalar type |
| unsigned sz = 0; |
| if (auto *ITy = dyn_cast<IntegerType>(Ty)) { |
| sz = promoteScalarArgumentSize(ITy->getBitWidth()); |
| } else if (isa<PointerType>(Ty)) { |
| sz = PtrVT.getSizeInBits(); |
| } else { |
| sz = Ty->getPrimitiveSizeInBits(); |
| } |
| O << ".param .b" << sz << " _"; |
| } |
| } |
| |
| if (FirstVAArg) |
| O << (first ? "" : ",") << " .param .align " |
| << STI.getMaxRequiredAlignment() << " .b8 _[]"; |
| O << ")"; |
| if (shouldEmitPTXNoReturn(&CB, *nvTM)) |
| O << " .noreturn"; |
| O << ";"; |
| |
| return Prototype; |
| } |
| |
| Align NVPTXTargetLowering::getFunctionArgumentAlignment( |
| const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const { |
| return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL)); |
| } |
| |
| Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty, |
| unsigned Idx, |
| const DataLayout &DL) const { |
| if (!CB) { |
| // CallSite is zero, fallback to ABI type alignment |
| return DL.getABITypeAlign(Ty); |
| } |
| |
| const Function *DirectCallee = CB->getCalledFunction(); |
| |
| if (!DirectCallee) { |
| // We don't have a direct function symbol, but that may be because of |
| // constant cast instructions in the call. |
| |
| // With bitcast'd call targets, the instruction will be the call |
| if (const auto *CI = dyn_cast<CallInst>(CB)) { |
| // Check if we have call alignment metadata |
| if (MaybeAlign StackAlign = getAlign(*CI, Idx)) |
| return StackAlign.value(); |
| } |
| DirectCallee = getMaybeBitcastedCallee(CB); |
| } |
| |
| // Check for function alignment information if we found that the |
| // ultimate target is a Function |
| if (DirectCallee) |
| return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL); |
| |
| // Call is indirect, fall back to the ABI type alignment |
| return DL.getABITypeAlign(Ty); |
| } |
| |
| static bool shouldConvertToIndirectCall(const CallBase *CB, |
| const GlobalAddressSDNode *Func) { |
| if (!Func) |
| return false; |
| if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal())) |
| return CB->getFunctionType() != CalleeFunc->getFunctionType(); |
| return false; |
| } |
| |
| static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, |
| const DataLayout &DL, |
| const TargetLowering &TL) { |
| if (Ptr->getOpcode() == ISD::FrameIndex) { |
| auto Ty = TL.getPointerTy(DL, ADDRESS_SPACE_LOCAL); |
| Ptr = DAG.getAddrSpaceCast(SDLoc(), Ty, Ptr, ADDRESS_SPACE_GENERIC, |
| ADDRESS_SPACE_LOCAL); |
| |
| return MachinePointerInfo(ADDRESS_SPACE_LOCAL); |
| } |
| |
| // Peel of an addrspacecast to generic and load directly from the specific |
| // address space. |
| if (Ptr->getOpcode() == ISD::ADDRSPACECAST) { |
| const auto *ASC = cast<AddrSpaceCastSDNode>(Ptr); |
| if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) { |
| Ptr = ASC->getOperand(0); |
| return MachinePointerInfo(ASC->getSrcAddressSpace()); |
| } |
| } |
| |
| return MachinePointerInfo(); |
| } |
| |
| static ISD::NodeType getExtOpcode(const ISD::ArgFlagsTy &Flags) { |
| if (Flags.isSExt()) |
| return ISD::SIGN_EXTEND; |
| if (Flags.isZExt()) |
| return ISD::ZERO_EXTEND; |
| return ISD::ANY_EXTEND; |
| } |
| |
| static SDValue correctParamType(SDValue V, EVT ExpectedVT, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| SDLoc dl) { |
| const EVT ActualVT = V.getValueType(); |
| assert((ActualVT == ExpectedVT || |
| (ExpectedVT.isInteger() && ActualVT.isInteger())) && |
| "Non-integer argument type size mismatch"); |
| if (ExpectedVT.bitsGT(ActualVT)) |
| return DAG.getNode(getExtOpcode(Flags), dl, ExpectedVT, V); |
| if (ExpectedVT.bitsLT(ActualVT)) |
| return DAG.getNode(ISD::TRUNCATE, dl, ExpectedVT, V); |
| |
| return V; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30)) |
| report_fatal_error( |
| "Support for variadic functions (unsized array parameter) introduced " |
| "in PTX ISA version 6.0 and requires target sm_30."); |
| |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc dl = CLI.DL; |
| const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Callee = CLI.Callee; |
| ArgListTy &Args = CLI.getArgs(); |
| Type *RetTy = CLI.RetTy; |
| const CallBase *CB = CLI.CB; |
| const DataLayout &DL = DAG.getDataLayout(); |
| LLVMContext &Ctx = *DAG.getContext(); |
| |
| const auto GetI32 = [&](const unsigned I) { |
| return DAG.getConstant(I, dl, MVT::i32); |
| }; |
| |
| const unsigned UniqueCallSite = GlobalUniqueCallSite++; |
| const SDValue CallChain = CLI.Chain; |
| const SDValue StartChain = |
| DAG.getCALLSEQ_START(CallChain, UniqueCallSite, 0, dl); |
| SDValue DeclareGlue = StartChain.getValue(1); |
| |
| SmallVector<SDValue, 16> CallPrereqs{StartChain}; |
| |
| const auto MakeDeclareScalarParam = [&](SDValue Symbol, unsigned Size) { |
| // PTX ABI requires integral types to be at least 32 bits in size. FP16 is |
| // loaded/stored using i16, so it's handled here as well. |
| const unsigned SizeBits = promoteScalarArgumentSize(Size * 8); |
| SDValue Declare = |
| DAG.getNode(NVPTXISD::DeclareScalarParam, dl, {MVT::Other, MVT::Glue}, |
| {StartChain, Symbol, GetI32(SizeBits), DeclareGlue}); |
| CallPrereqs.push_back(Declare); |
| DeclareGlue = Declare.getValue(1); |
| return Declare; |
| }; |
| |
| const auto MakeDeclareArrayParam = [&](SDValue Symbol, Align Align, |
| unsigned Size) { |
| SDValue Declare = DAG.getNode( |
| NVPTXISD::DeclareArrayParam, dl, {MVT::Other, MVT::Glue}, |
| {StartChain, Symbol, GetI32(Align.value()), GetI32(Size), DeclareGlue}); |
| CallPrereqs.push_back(Declare); |
| DeclareGlue = Declare.getValue(1); |
| return Declare; |
| }; |
| |
| // Variadic arguments. |
| // |
| // Normally, for each argument, we declare a param scalar or a param |
| // byte array in the .param space, and store the argument value to that |
| // param scalar or array starting at offset 0. |
| // |
| // In the case of the first variadic argument, we declare a vararg byte array |
| // with size 0. The exact size of this array isn't known at this point, so |
| // it'll be patched later. All the variadic arguments will be stored to this |
| // array at a certain offset (which gets tracked by 'VAOffset'). The offset is |
| // initially set to 0, so it can be used for non-variadic arguments (which use |
| // 0 offset) to simplify the code. |
| // |
| // After all vararg is processed, 'VAOffset' holds the size of the |
| // vararg byte array. |
| assert((CLI.IsVarArg || CLI.Args.size() == CLI.NumFixedArgs) && |
| "Non-VarArg function with extra arguments"); |
| |
| const unsigned FirstVAArg = CLI.NumFixedArgs; // position of first variadic |
| unsigned VAOffset = 0; // current offset in the param array |
| |
| const SDValue VADeclareParam = |
| CLI.Args.size() > FirstVAArg |
| ? MakeDeclareArrayParam(getCallParamSymbol(DAG, FirstVAArg, MVT::i32), |
| Align(STI.getMaxRequiredAlignment()), 0) |
| : SDValue(); |
| |
| // Args.size() and Outs.size() need not match. |
| // Outs.size() will be larger |
| // * if there is an aggregate argument with multiple fields (each field |
| // showing up separately in Outs) |
| // * if there is a vector argument with more than typical vector-length |
| // elements (generally if more than 4) where each vector element is |
| // individually present in Outs. |
| // So a different index should be used for indexing into Outs/OutVals. |
| // See similar issue in LowerFormalArguments. |
| auto AllOuts = ArrayRef(CLI.Outs); |
| auto AllOutVals = ArrayRef(CLI.OutVals); |
| assert(AllOuts.size() == AllOutVals.size() && |
| "Outs and OutVals must be the same size"); |
| // Declare the .params or .reg need to pass values |
| // to the function |
| for (const auto E : llvm::enumerate(Args)) { |
| const auto ArgI = E.index(); |
| const auto Arg = E.value(); |
| const auto ArgOuts = |
| AllOuts.take_while([&](auto O) { return O.OrigArgIndex == ArgI; }); |
| const auto ArgOutVals = AllOutVals.take_front(ArgOuts.size()); |
| AllOuts = AllOuts.drop_front(ArgOuts.size()); |
| AllOutVals = AllOutVals.drop_front(ArgOuts.size()); |
| |
| const bool IsVAArg = (ArgI >= FirstVAArg); |
| const bool IsByVal = Arg.IsByVal; |
| |
| const SDValue ParamSymbol = |
| getCallParamSymbol(DAG, IsVAArg ? FirstVAArg : ArgI, MVT::i32); |
| |
| assert((!IsByVal || Arg.IndirectType) && |
| "byval arg must have indirect type"); |
| Type *ETy = (IsByVal ? Arg.IndirectType : Arg.Ty); |
| |
| const Align ArgAlign = [&]() { |
| if (IsByVal) { |
| // The ByValAlign in the Outs[OIdx].Flags is always set at this point, |
| // so we don't need to worry whether it's naturally aligned or not. |
| // See TargetLowering::LowerCallTo(). |
| const Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign(); |
| return getFunctionByValParamAlign(CB->getCalledFunction(), ETy, |
| InitialAlign, DL); |
| } |
| return getArgumentAlignment(CB, Arg.Ty, ArgI + 1, DL); |
| }(); |
| |
| const unsigned TySize = DL.getTypeAllocSize(ETy); |
| assert((!IsByVal || TySize == ArgOuts[0].Flags.getByValSize()) && |
| "type size mismatch"); |
| |
| const SDValue ArgDeclare = [&]() { |
| if (IsVAArg) |
| return VADeclareParam; |
| |
| if (IsByVal || shouldPassAsArray(Arg.Ty)) |
| return MakeDeclareArrayParam(ParamSymbol, ArgAlign, TySize); |
| |
| assert(ArgOuts.size() == 1 && "We must pass only one value as non-array"); |
| assert((ArgOuts[0].VT.isInteger() || ArgOuts[0].VT.isFloatingPoint()) && |
| "Only int and float types are supported as non-array arguments"); |
| |
| return MakeDeclareScalarParam(ParamSymbol, TySize); |
| }(); |
| |
| if (IsByVal) { |
| assert(ArgOutVals.size() == 1 && "We must pass only one value as byval"); |
| SDValue SrcPtr = ArgOutVals[0]; |
| const auto PointerInfo = refinePtrAS(SrcPtr, DAG, DL, *this); |
| const Align BaseSrcAlign = ArgOuts[0].Flags.getNonZeroByValAlign(); |
| |
| if (IsVAArg) |
| VAOffset = alignTo(VAOffset, ArgAlign); |
| |
| SmallVector<EVT, 4> ValueVTs, MemVTs; |
| SmallVector<TypeSize, 4> Offsets; |
| ComputeValueVTs(*this, DL, ETy, ValueVTs, &MemVTs, &Offsets); |
| |
| unsigned J = 0; |
| const auto VI = VectorizePTXValueVTs(MemVTs, Offsets, ArgAlign, IsVAArg); |
| for (const unsigned NumElts : VI) { |
| EVT LoadVT = getVectorizedVT(MemVTs[J], NumElts, Ctx); |
| Align SrcAlign = commonAlignment(BaseSrcAlign, Offsets[J]); |
| SDValue SrcAddr = DAG.getObjectPtrOffset(dl, SrcPtr, Offsets[J]); |
| SDValue SrcLoad = |
| DAG.getLoad(LoadVT, dl, CallChain, SrcAddr, PointerInfo, SrcAlign); |
| |
| TypeSize ParamOffset = Offsets[J].getWithIncrement(VAOffset); |
| Align ParamAlign = commonAlignment(ArgAlign, ParamOffset); |
| SDValue ParamAddr = |
| DAG.getObjectPtrOffset(dl, ParamSymbol, ParamOffset); |
| SDValue StoreParam = |
| DAG.getStore(ArgDeclare, dl, SrcLoad, ParamAddr, |
| MachinePointerInfo(ADDRESS_SPACE_PARAM), ParamAlign); |
| CallPrereqs.push_back(StoreParam); |
| |
| J += NumElts; |
| } |
| if (IsVAArg) |
| VAOffset += TySize; |
| } else { |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, Arg.Ty, VTs, Offsets, |
| VAOffset); |
| assert(VTs.size() == Offsets.size() && "Size mismatch"); |
| assert(VTs.size() == ArgOuts.size() && "Size mismatch"); |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter |
| // than 32-bits are sign extended or zero extended, depending on |
| // whether they are signed or unsigned types. This case applies |
| // only to scalar parameters and not to aggregate values. |
| const bool ExtendIntegerParam = |
| Arg.Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Arg.Ty) < 32; |
| |
| const auto GetStoredValue = [&](const unsigned I) { |
| SDValue StVal = ArgOutVals[I]; |
| assert(promoteScalarIntegerPTX(StVal.getValueType()) == |
| StVal.getValueType() && |
| "OutVal type should always be legal"); |
| |
| const EVT VTI = promoteScalarIntegerPTX(VTs[I]); |
| const EVT StoreVT = |
| ExtendIntegerParam ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI); |
| |
| return correctParamType(StVal, StoreVT, ArgOuts[I].Flags, DAG, dl); |
| }; |
| |
| unsigned J = 0; |
| const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg); |
| for (const unsigned NumElts : VI) { |
| const EVT EltVT = promoteScalarIntegerPTX(VTs[J]); |
| |
| unsigned Offset; |
| if (IsVAArg) { |
| // TODO: We may need to support vector types that can be passed |
| // as scalars in variadic arguments. |
| assert(NumElts == 1 && |
| "Vectorization should be disabled for vaargs."); |
| |
| // Align each part of the variadic argument to their type. |
| VAOffset = alignTo(VAOffset, DAG.getEVTAlign(EltVT)); |
| Offset = VAOffset; |
| |
| const EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT; |
| VAOffset += DL.getTypeAllocSize(TheStoreType.getTypeForEVT(Ctx)); |
| } else { |
| assert(VAOffset == 0 && "VAOffset must be 0 for non-VA args"); |
| Offset = Offsets[J]; |
| } |
| |
| SDValue Ptr = |
| DAG.getObjectPtrOffset(dl, ParamSymbol, TypeSize::getFixed(Offset)); |
| |
| const MaybeAlign CurrentAlign = ExtendIntegerParam |
| ? MaybeAlign(std::nullopt) |
| : commonAlignment(ArgAlign, Offset); |
| |
| SDValue Val = |
| getBuildVectorizedValue(NumElts, dl, DAG, [&](unsigned K) { |
| return GetStoredValue(J + K); |
| }); |
| |
| SDValue StoreParam = |
| DAG.getStore(ArgDeclare, dl, Val, Ptr, |
| MachinePointerInfo(ADDRESS_SPACE_PARAM), CurrentAlign); |
| CallPrereqs.push_back(StoreParam); |
| |
| J += NumElts; |
| } |
| } |
| } |
| |
| // Handle Result |
| if (!Ins.empty()) { |
| const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32); |
| const unsigned ResultSize = DL.getTypeAllocSize(RetTy); |
| if (shouldPassAsArray(RetTy)) { |
| const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL); |
| MakeDeclareArrayParam(RetSymbol, RetAlign, ResultSize); |
| } else { |
| MakeDeclareScalarParam(RetSymbol, ResultSize); |
| } |
| } |
| |
| // Set the size of the vararg param byte array if the callee is a variadic |
| // function and the variadic part is not empty. |
| if (VADeclareParam) { |
| SDValue DeclareParamOps[] = {VADeclareParam.getOperand(0), |
| VADeclareParam.getOperand(1), |
| VADeclareParam.getOperand(2), GetI32(VAOffset), |
| VADeclareParam.getOperand(4)}; |
| DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(), |
| VADeclareParam->getVTList(), DeclareParamOps); |
| } |
| |
| const auto *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode()); |
| // If the type of the callsite does not match that of the function, convert |
| // the callsite to an indirect call. |
| const bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func); |
| |
| // Both indirect calls and libcalls have nullptr Func. In order to distinguish |
| // between them we must rely on the call site value which is valid for |
| // indirect calls but is always null for libcalls. |
| const bool IsIndirectCall = (!Func && CB) || ConvertToIndirectCall; |
| |
| if (isa<ExternalSymbolSDNode>(Callee)) { |
| Function* CalleeFunc = nullptr; |
| |
| // Try to find the callee in the current module. |
| Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc); |
| assert(CalleeFunc != nullptr && "Libcall callee must be set."); |
| |
| // Set the "libcall callee" attribute to indicate that the function |
| // must always have a declaration. |
| CalleeFunc->addFnAttr("nvptx-libcall-callee", "true"); |
| } |
| |
| if (IsIndirectCall) { |
| // This is indirect function call case : PTX requires a prototype of the |
| // form |
| // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); |
| // to be emitted, and the label has to used as the last arg of call |
| // instruction. |
| // The prototype is embedded in a string and put as the operand for a |
| // CallPrototype SDNode which will print out to the value of the string. |
| const bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs); |
| std::string Proto = |
| getPrototype(DL, RetTy, Args, CLI.Outs, |
| HasVAArgs ? std::optional(FirstVAArg) : std::nullopt, *CB, |
| UniqueCallSite); |
| const char *ProtoStr = nvTM->getStrPool().save(Proto).data(); |
| const SDValue PrototypeDeclare = DAG.getNode( |
| NVPTXISD::CallPrototype, dl, MVT::Other, |
| {StartChain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32)}); |
| CallPrereqs.push_back(PrototypeDeclare); |
| } |
| |
| const unsigned Proto = IsIndirectCall ? UniqueCallSite : 0; |
| const unsigned NumArgs = |
| std::min<unsigned>(CLI.NumFixedArgs + 1, Args.size()); |
| /// CALL(Chain, IsConvergent, IsIndirectCall/IsUniform, NumReturns, |
| /// NumParams, Callee, Proto) |
| const SDValue CallToken = DAG.getTokenFactor(dl, CallPrereqs); |
| const SDValue Call = DAG.getNode( |
| NVPTXISD::CALL, dl, MVT::Other, |
| {CallToken, GetI32(CLI.IsConvergent), GetI32(IsIndirectCall), |
| GetI32(Ins.empty() ? 0 : 1), GetI32(NumArgs), Callee, GetI32(Proto)}); |
| |
| SmallVector<SDValue, 16> LoadChains{Call}; |
| SmallVector<SDValue, 16> ProxyRegOps; |
| if (!Ins.empty()) { |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, RetTy, VTs, Offsets); |
| assert(VTs.size() == Ins.size() && "Bad value decomposition"); |
| |
| const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL); |
| const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32); |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| // 32-bits are sign extended or zero extended, depending on whether |
| // they are signed or unsigned types. |
| const bool ExtendIntegerRetVal = |
| RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; |
| |
| unsigned I = 0; |
| const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign); |
| for (const unsigned NumElts : VI) { |
| const MaybeAlign CurrentAlign = |
| ExtendIntegerRetVal ? MaybeAlign(std::nullopt) |
| : commonAlignment(RetAlign, Offsets[I]); |
| |
| const EVT VTI = promoteScalarIntegerPTX(VTs[I]); |
| const EVT LoadVT = |
| ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI); |
| const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx); |
| SDValue Ptr = |
| DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I])); |
| |
| SDValue R = |
| DAG.getLoad(VecVT, dl, Call, Ptr, |
| MachinePointerInfo(ADDRESS_SPACE_PARAM), CurrentAlign); |
| |
| LoadChains.push_back(R.getValue(1)); |
| for (const unsigned J : llvm::seq(NumElts)) |
| ProxyRegOps.push_back(getExtractVectorizedValue(R, J, LoadVT, dl, DAG)); |
| I += NumElts; |
| } |
| } |
| |
| const SDValue EndToken = DAG.getTokenFactor(dl, LoadChains); |
| const SDValue CallEnd = DAG.getCALLSEQ_END(EndToken, UniqueCallSite, |
| UniqueCallSite + 1, SDValue(), dl); |
| |
| // Append ProxyReg instructions to the chain to make sure that `callseq_end` |
| // will not get lost. Otherwise, during libcalls expansion, the nodes can become |
| // dangling. |
| for (const auto [I, Reg] : llvm::enumerate(ProxyRegOps)) { |
| SDValue Proxy = |
| DAG.getNode(NVPTXISD::ProxyReg, dl, Reg.getValueType(), {CallEnd, Reg}); |
| SDValue Ret = correctParamType(Proxy, Ins[I].VT, Ins[I].Flags, DAG, dl); |
| InVals.push_back(Ret); |
| } |
| |
| // set IsTailCall to false for now, until we figure out how to express |
| // tail call optimization in PTX |
| CLI.IsTailCall = false; |
| return CallEnd; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DAG.getContext()->diagnose(DiagnosticInfoUnsupported( |
| Fn, |
| "Support for dynamic alloca introduced in PTX ISA version 7.3 and " |
| "requires target sm_52.", |
| SDLoc(Op).getDebugLoc())); |
| auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), |
| Op.getOperand(0)}; |
| return DAG.getMergeValues(Ops, SDLoc()); |
| } |
| |
| SDLoc DL(Op.getNode()); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| uint64_t Align = Op.getConstantOperandVal(2); |
| |
| // The alignment on a ISD::DYNAMIC_STACKALLOC node may be 0 to indicate that |
| // the default stack alignment should be used. |
| if (Align == 0) |
| Align = DAG.getSubtarget().getFrameLowering()->getStackAlign().value(); |
| |
| // The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32. |
| const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL); |
| |
| SDValue Alloc = |
| DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, {LocalVT, MVT::Other}, |
| {Chain, DAG.getZExtOrTrunc(Size, DL, LocalVT), |
| DAG.getTargetConstant(Align, DL, MVT::i32)}); |
| |
| SDValue ASC = DAG.getAddrSpaceCast( |
| DL, Op.getValueType(), Alloc, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC); |
| |
| return DAG.getMergeValues({ASC, SDValue(Alloc.getNode(), 1)}, DL); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTACKRESTORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op.getNode()); |
| if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DAG.getContext()->diagnose(DiagnosticInfoUnsupported( |
| Fn, |
| "Support for stackrestore requires PTX ISA version >= 7.3 and target " |
| ">= sm_52.", |
| DL.getDebugLoc())); |
| return Op.getOperand(0); |
| } |
| |
| const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Ptr = Op.getOperand(1); |
| SDValue ASC = DAG.getAddrSpaceCast(DL, LocalVT, Ptr, ADDRESS_SPACE_GENERIC, |
| ADDRESS_SPACE_LOCAL); |
| return DAG.getNode(NVPTXISD::STACKRESTORE, DL, MVT::Other, {Chain, ASC}); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTACKSAVE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op.getNode()); |
| if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DAG.getContext()->diagnose(DiagnosticInfoUnsupported( |
| Fn, |
| "Support for stacksave requires PTX ISA version >= 7.3 and target >= " |
| "sm_52.", |
| DL.getDebugLoc())); |
| auto Ops = {DAG.getConstant(0, DL, Op.getValueType()), Op.getOperand(0)}; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL); |
| SDValue Chain = Op.getOperand(0); |
| SDValue SS = |
| DAG.getNode(NVPTXISD::STACKSAVE, DL, {LocalVT, MVT::Other}, Chain); |
| SDValue ASC = DAG.getAddrSpaceCast( |
| DL, Op.getValueType(), SS, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC); |
| return DAG.getMergeValues({ASC, SDValue(SS.getNode(), 1)}, DL); |
| } |
| |
| // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() |
| // (see LegalizeDAG.cpp). This is slow and uses local memory. |
| // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 |
| SDValue |
| NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| SmallVector<SDValue, 8> Ops; |
| unsigned NumOperands = Node->getNumOperands(); |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| SDValue SubOp = Node->getOperand(i); |
| EVT VVT = SubOp.getNode()->getValueType(0); |
| EVT EltVT = VVT.getVectorElementType(); |
| unsigned NumSubElem = VVT.getVectorNumElements(); |
| for (unsigned j = 0; j < NumSubElem; ++j) { |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, |
| DAG.getIntPtrConstant(j, dl))); |
| } |
| } |
| return DAG.getBuildVector(Node->getValueType(0), dl, Ops); |
| } |
| |
| static SDValue getPRMT(SDValue A, SDValue B, SDValue Selector, SDLoc DL, |
| SelectionDAG &DAG, |
| unsigned Mode = NVPTX::PTXPrmtMode::NONE) { |
| assert(A.getValueType() == MVT::i32 && B.getValueType() == MVT::i32 && |
| Selector.getValueType() == MVT::i32 && "PRMT must have i32 operands"); |
| return DAG.getNode(NVPTXISD::PRMT, DL, MVT::i32, |
| {A, B, Selector, DAG.getConstant(Mode, DL, MVT::i32)}); |
| } |
| |
| static SDValue getPRMT(SDValue A, SDValue B, uint64_t Selector, SDLoc DL, |
| SelectionDAG &DAG, |
| unsigned Mode = NVPTX::PTXPrmtMode::NONE) { |
| return getPRMT(A, B, DAG.getConstant(Selector, DL, MVT::i32), DL, DAG, Mode); |
| } |
| |
| /// Reduces the elements using the scalar operations provided. The operations |
| /// are sorted descending in number of inputs they take. The flags on the |
| /// original reduction operation will be propagated to each scalar operation. |
| /// Nearby elements are grouped in tree reduction, unlike the shuffle reduction |
| /// used in ExpandReductions and SelectionDAG. |
| static SDValue buildTreeReduction( |
| const SmallVector<SDValue> &Elements, EVT EltTy, |
| ArrayRef<std::pair<unsigned /*NodeType*/, unsigned /*NumInputs*/>> Ops, |
| const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG) { |
| // Build the reduction tree at each level, starting with all the elements. |
| SmallVector<SDValue> Level = Elements; |
| |
| unsigned OpIdx = 0; |
| while (Level.size() > 1) { |
| // Try to reduce this level using the current operator. |
| const auto [Op, NumInputs] = Ops[OpIdx]; |
| |
| // Build the next level by partially reducing all elements. |
| SmallVector<SDValue> ReducedLevel; |
| unsigned I = 0, E = Level.size(); |
| for (; I + NumInputs <= E; I += NumInputs) { |
| // Reduce elements in groups of [NumInputs], as much as possible. |
| ReducedLevel.push_back(DAG.getNode( |
| Op, DL, EltTy, ArrayRef<SDValue>(Level).slice(I, NumInputs), Flags)); |
| } |
| |
| if (I < E) { |
| // Handle leftover elements. |
| |
| if (ReducedLevel.empty()) { |
| // We didn't reduce anything at this level. We need to pick a smaller |
| // operator. |
| ++OpIdx; |
| assert(OpIdx < Ops.size() && "no smaller operators for reduction"); |
| continue; |
| } |
| |
| // We reduced some things but there's still more left, meaning the |
| // operator's number of inputs doesn't evenly divide this level size. Move |
| // these elements to the next level. |
| for (; I < E; ++I) |
| ReducedLevel.push_back(Level[I]); |
| } |
| |
| // Process the next level. |
| Level = ReducedLevel; |
| } |
| |
| return *Level.begin(); |
| } |
| |
| // Get scalar reduction opcode |
| static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode) { |
| switch (ReductionOpcode) { |
| case ISD::VECREDUCE_FMAX: |
| return ISD::FMAXNUM; |
| case ISD::VECREDUCE_FMIN: |
| return ISD::FMINNUM; |
| case ISD::VECREDUCE_FMAXIMUM: |
| return ISD::FMAXIMUM; |
| case ISD::VECREDUCE_FMINIMUM: |
| return ISD::FMINIMUM; |
| default: |
| llvm_unreachable("unhandled reduction opcode"); |
| } |
| } |
| |
| /// Get 3-input scalar reduction opcode |
| static std::optional<NVPTXISD::NodeType> |
| getScalar3OpcodeForReduction(unsigned ReductionOpcode) { |
| switch (ReductionOpcode) { |
| case ISD::VECREDUCE_FMAX: |
| return NVPTXISD::FMAXNUM3; |
| case ISD::VECREDUCE_FMIN: |
| return NVPTXISD::FMINNUM3; |
| case ISD::VECREDUCE_FMAXIMUM: |
| return NVPTXISD::FMAXIMUM3; |
| case ISD::VECREDUCE_FMINIMUM: |
| return NVPTXISD::FMINIMUM3; |
| default: |
| return std::nullopt; |
| } |
| } |
| |
| /// Lower reductions to either a sequence of operations or a tree if |
| /// reassociations are allowed. This method will use larger operations like |
| /// max3/min3 when the target supports them. |
| SDValue NVPTXTargetLowering::LowerVECREDUCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const SDNodeFlags Flags = Op->getFlags(); |
| SDValue Vector = Op.getOperand(0); |
| |
| const unsigned Opcode = Op->getOpcode(); |
| const EVT EltTy = Vector.getValueType().getVectorElementType(); |
| |
| // Whether we can use 3-input min/max when expanding the reduction. |
| const bool CanUseMinMax3 = |
| EltTy == MVT::f32 && STI.getSmVersion() >= 100 && |
| STI.getPTXVersion() >= 88 && |
| (Opcode == ISD::VECREDUCE_FMAX || Opcode == ISD::VECREDUCE_FMIN || |
| Opcode == ISD::VECREDUCE_FMAXIMUM || Opcode == ISD::VECREDUCE_FMINIMUM); |
| |
| // A list of SDNode opcodes with equivalent semantics, sorted descending by |
| // number of inputs they take. |
| SmallVector<std::pair<unsigned /*Op*/, unsigned /*NumIn*/>, 2> ScalarOps; |
| |
| if (auto Opcode3Elem = getScalar3OpcodeForReduction(Opcode); |
| CanUseMinMax3 && Opcode3Elem) |
| ScalarOps.push_back({*Opcode3Elem, 3}); |
| ScalarOps.push_back({getScalarOpcodeForReduction(Opcode), 2}); |
| |
| SmallVector<SDValue> Elements; |
| DAG.ExtractVectorElements(Vector, Elements); |
| |
| return buildTreeReduction(Elements, EltTy, ScalarOps, DL, Flags, DAG); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { |
| // Handle bitcasting from v2i8 without hitting the default promotion |
| // strategy which goes through stack memory. |
| EVT FromVT = Op->getOperand(0)->getValueType(0); |
| if (FromVT != MVT::v2i8) { |
| return Op; |
| } |
| |
| // Pack vector elements into i16 and bitcast to final type |
| SDLoc DL(Op); |
| SDValue Vec0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, |
| Op->getOperand(0), DAG.getIntPtrConstant(0, DL)); |
| SDValue Vec1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, |
| Op->getOperand(0), DAG.getIntPtrConstant(1, DL)); |
| SDValue Extend0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec0); |
| SDValue Extend1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec1); |
| SDValue Const8 = DAG.getConstant(8, DL, MVT::i16); |
| SDValue AsInt = DAG.getNode( |
| ISD::OR, DL, MVT::i16, |
| {Extend0, DAG.getNode(ISD::SHL, DL, MVT::i16, {Extend1, Const8})}); |
| EVT ToVT = Op->getValueType(0); |
| return DAG.getBitcast(ToVT, AsInt); |
| } |
| |
| // We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it |
| // would get lowered as two constant loads and vector-packing move. |
| // Instead we want just a constant move: |
| // mov.b32 %r2, 0x40003C00 |
| SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op->getValueType(0); |
| if (!(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector())) |
| return Op; |
| SDLoc DL(Op); |
| |
| if (!llvm::all_of(Op->ops(), [](SDValue Operand) { |
| return Operand->isUndef() || isa<ConstantSDNode>(Operand) || |
| isa<ConstantFPSDNode>(Operand); |
| })) { |
| if (VT != MVT::v4i8) |
| return Op; |
| // Lower non-const v4i8 vector as byte-wise constructed i32, which allows us |
| // to optimize calculation of constant parts. |
| auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast, |
| uint64_t SelectionValue) -> SDValue { |
| SDValue L = Left; |
| SDValue R = Right; |
| if (Cast) { |
| L = DAG.getAnyExtOrTrunc(L, DL, MVT::i32); |
| R = DAG.getAnyExtOrTrunc(R, DL, MVT::i32); |
| } |
| return getPRMT(L, R, SelectionValue, DL, DAG); |
| }; |
| auto PRMT__10 = GetPRMT(Op->getOperand(0), Op->getOperand(1), true, 0x3340); |
| auto PRMT__32 = GetPRMT(Op->getOperand(2), Op->getOperand(3), true, 0x3340); |
| auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410); |
| return DAG.getBitcast(VT, PRMT3210); |
| } |
| |
| // Get value or the Nth operand as an APInt(32). Undef values treated as 0. |
| auto GetOperand = [](SDValue Op, int N) -> APInt { |
| const SDValue &Operand = Op->getOperand(N); |
| EVT VT = Op->getValueType(0); |
| if (Operand->isUndef()) |
| return APInt(32, 0); |
| APInt Value; |
| if (VT == MVT::v2f16 || VT == MVT::v2bf16) |
| Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt(); |
| else if (VT == MVT::v2i16 || VT == MVT::v4i8) |
| Value = Operand->getAsAPIntVal(); |
| else |
| llvm_unreachable("Unsupported type"); |
| // i8 values are carried around as i16, so we need to zero out upper bits, |
| // so they do not get in the way of combining individual byte values |
| if (VT == MVT::v4i8) |
| Value = Value.trunc(8); |
| return Value.zext(32); |
| }; |
| |
| // Construct a 32-bit constant by shifting into place smaller values |
| // (elements of the vector type VT). |
| // For example, if VT has 2 elements, then N == 2: |
| // ShiftAmount = 32 / N = 16 |
| // Value |= Op0 (b16) << 0 |
| // Value |= Op1 (b16) << 16 |
| // If N == 4: |
| // ShiftAmount = 32 / N = 8 |
| // Value |= Op0 (b8) << 0 |
| // Value |= Op1 (b8) << 8 |
| // Value |= Op2 (b8) << 16 |
| // Value |= Op3 (b8) << 24 |
| // ...etc |
| APInt Value(32, 0); |
| const unsigned NumElements = VT.getVectorNumElements(); |
| assert(32 % NumElements == 0 && "must evenly divide bit length"); |
| const unsigned ShiftAmount = 32 / NumElements; |
| for (unsigned ElementNo : seq(NumElements)) |
| Value |= GetOperand(Op, ElementNo).shl(ElementNo * ShiftAmount); |
| SDValue Const = DAG.getConstant(Value, DL, MVT::i32); |
| return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), Const); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Index = Op->getOperand(1); |
| SDValue Vector = Op->getOperand(0); |
| SDLoc DL(Op); |
| EVT VectorVT = Vector.getValueType(); |
| |
| if (VectorVT == MVT::v4i8) { |
| SDValue Selector = DAG.getNode(ISD::OR, DL, MVT::i32, |
| DAG.getZExtOrTrunc(Index, DL, MVT::i32), |
| DAG.getConstant(0x7770, DL, MVT::i32)); |
| SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, Vector), |
| DAG.getConstant(0, DL, MVT::i32), Selector, DL, DAG); |
| SDValue Ext = DAG.getAnyExtOrTrunc(PRMT, DL, Op->getValueType(0)); |
| SDNodeFlags Flags; |
| Flags.setNoSignedWrap(Ext.getScalarValueSizeInBits() > 8); |
| Flags.setNoUnsignedWrap(Ext.getScalarValueSizeInBits() >= 8); |
| Ext->setFlags(Flags); |
| return Ext; |
| } |
| |
| // Constant index will be matched by tablegen. |
| if (isa<ConstantSDNode>(Index.getNode())) |
| return Op; |
| |
| // Extract individual elements and select one of them. |
| assert(NVPTX::isPackedVectorTy(VectorVT) && |
| VectorVT.getVectorNumElements() == 2 && "Unexpected vector type."); |
| EVT EltVT = VectorVT.getVectorElementType(); |
| |
| SDLoc dl(Op.getNode()); |
| SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, |
| DAG.getIntPtrConstant(0, dl)); |
| SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, |
| DAG.getIntPtrConstant(1, dl)); |
| return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1, |
| ISD::CondCode::SETEQ); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vector = Op->getOperand(0); |
| EVT VectorVT = Vector.getValueType(); |
| |
| if (VectorVT != MVT::v4i8) |
| return Op; |
| SDLoc DL(Op); |
| SDValue Value = Op->getOperand(1); |
| if (Value->isUndef()) |
| return Vector; |
| |
| SDValue Index = Op->getOperand(2); |
| |
| SDValue BFI = |
| DAG.getNode(NVPTXISD::BFI, DL, MVT::i32, |
| {DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector, |
| DAG.getNode(ISD::MUL, DL, MVT::i32, |
| DAG.getZExtOrTrunc(Index, DL, MVT::i32), |
| DAG.getConstant(8, DL, MVT::i32)), |
| DAG.getConstant(8, DL, MVT::i32)}); |
| return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue V1 = Op.getOperand(0); |
| EVT VectorVT = V1.getValueType(); |
| if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8) |
| return Op; |
| |
| // Lower shuffle to PRMT instruction. |
| const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| SDValue V2 = Op.getOperand(1); |
| uint32_t Selector = 0; |
| for (auto I : llvm::enumerate(SVN->getMask())) { |
| if (I.value() != -1) // -1 is a placeholder for undef. |
| Selector |= (I.value() << (I.index() * 4)); |
| } |
| |
| SDLoc DL(Op); |
| SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, V1), |
| DAG.getBitcast(MVT::i32, V2), Selector, DL, DAG); |
| return DAG.getBitcast(Op.getValueType(), PRMT); |
| } |
| /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which |
| /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| /// amount, or |
| /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| /// amount. |
| SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| // {dHi, dLo} = {aHi, aLo} >> Amt |
| // dHi = aHi >> Amt |
| // dLo = shf.r.clamp aLo, aHi, Amt |
| |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = |
| DAG.getNode(NVPTXISD::FSHR_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| else { |
| // {dHi, dLo} = {aHi, aLo} >> Amt |
| // - if (Amt>=size) then |
| // dLo = aHi >> (Amt-size) |
| // dHi = aHi >> Amt (this is either all 0 or all 1) |
| // else |
| // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) |
| // dHi = aHi >> Amt |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| |
| SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ISD::SETGE); |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which |
| /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| /// amount, or |
| /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| /// amount. |
| SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| |
| if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| // {dHi, dLo} = {aHi, aLo} << Amt |
| // dHi = shf.l.clamp aLo, aHi, Amt |
| // dLo = aLo << Amt |
| |
| SDValue Hi = |
| DAG.getNode(NVPTXISD::FSHL_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| else { |
| // {dHi, dLo} = {aHi, aLo} << Amt |
| // - if (Amt>=size) then |
| // dLo = aLo << Amt (all 0) |
| // dLo = aLo << (Amt-size) |
| // else |
| // dLo = aLo << Amt |
| // dHi = (aHi << Amt) | (aLo >> (size-Amt)) |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ISD::SETGE); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| } |
| |
| /// If the types match, convert the generic copysign to the NVPTXISD version, |
| /// otherwise bail ensuring that mismatched cases are properly expaned. |
| SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| |
| SDValue In1 = Op.getOperand(0); |
| SDValue In2 = Op.getOperand(1); |
| EVT SrcVT = In2.getValueType(); |
| |
| if (!SrcVT.bitsEq(VT)) |
| return SDValue(); |
| |
| return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::f32) |
| return LowerFROUND32(Op, DAG); |
| |
| if (VT == MVT::f64) |
| return LowerFROUND64(Op, DAG); |
| |
| llvm_unreachable("unhandled type"); |
| } |
| |
| // This is the the rounding method used in CUDA libdevice in C like code: |
| // float roundf(float A) |
| // { |
| // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); |
| // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| // } |
| SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue A = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); |
| |
| // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) |
| SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A); |
| const unsigned SignBitMask = 0x80000000; |
| SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast, |
| DAG.getConstant(SignBitMask, SL, MVT::i32)); |
| const unsigned PointFiveInBits = 0x3F000000; |
| SDValue PointFiveWithSignRaw = |
| DAG.getNode(ISD::OR, SL, MVT::i32, Sign, |
| DAG.getConstant(PointFiveInBits, SL, MVT::i32)); |
| SDValue PointFiveWithSign = |
| DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw); |
| SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign); |
| SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); |
| |
| // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue IsLarge = |
| DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT), |
| ISD::SETOGT); |
| RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); |
| |
| // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); |
| SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A); |
| return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA); |
| } |
| |
| // The implementation of round(double) is similar to that of round(float) in |
| // that they both separate the value range into three regions and use a method |
| // specific to the region to round the values. However, round(double) first |
| // calculates the round of the absolute value and then adds the sign back while |
| // round(float) directly rounds the value with sign. |
| SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue A = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); |
| |
| // double RoundedA = (double) (int) (abs(A) + 0.5f); |
| SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT)); |
| SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); |
| |
| // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); |
| RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall, |
| DAG.getConstantFP(0, SL, VT), |
| RoundedA); |
| |
| // Add sign to rounded_A |
| RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A); |
| DAG.getNode(ISD::FTRUNC, SL, VT, A); |
| |
| // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; |
| SDValue IsLarge = |
| DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT), |
| ISD::SETOGT); |
| return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); |
| } |
| |
| static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| EVT NVT = MVT::f32; |
| if (VT.isVector()) { |
| NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); |
| } |
| SDLoc DL(N); |
| SDValue Tmp0 = DAG.getFPExtendOrRound(N->getOperand(0), DL, NVT); |
| SDValue Tmp1 = DAG.getFPExtendOrRound(N->getOperand(1), DL, NVT); |
| SDValue Res = DAG.getNode(N->getOpcode(), DL, NVT, Tmp0, Tmp1, N->getFlags()); |
| return DAG.getFPExtendOrRound(Res, DL, VT); |
| } |
| |
| SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (useF32FTZ(DAG.getMachineFunction())) { |
| return PromoteBinOpToF32(Op.getNode(), DAG); |
| } |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78); |
| |
| if (Op.getValueType() == MVT::bf16) { |
| SDLoc Loc(Op); |
| return DAG.getNode( |
| ISD::FP_ROUND, Loc, MVT::bf16, |
| DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)), |
| DAG.getIntPtrConstant(0, Loc, /*isTarget=*/true)); |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78); |
| |
| if (Op.getOperand(0).getValueType() == MVT::bf16) { |
| SDLoc Loc(Op); |
| return DAG.getNode( |
| Op.getOpcode(), Loc, Op.getValueType(), |
| DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0))); |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT NarrowVT = Op.getValueType(); |
| SDValue Wide = Op.getOperand(0); |
| EVT WideVT = Wide.getValueType(); |
| if (NarrowVT.getScalarType() == MVT::bf16) { |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) { |
| return TLI->expandFP_ROUND(Op.getNode(), DAG); |
| } |
| if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| // This combination was the first to support f32 -> bf16. |
| if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) { |
| if (WideVT.getScalarType() == MVT::f32) { |
| return Op; |
| } |
| if (WideVT.getScalarType() == MVT::f64) { |
| SDLoc Loc(Op); |
| // Round-inexact-to-odd f64 to f32, then do the final rounding using |
| // the hardware f32 -> bf16 instruction. |
| SDValue rod = TLI->expandRoundInexactToOdd( |
| WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32) |
| : MVT::f32, |
| Wide, Loc, DAG); |
| return DAG.getFPExtendOrRound(rod, Loc, NarrowVT); |
| } |
| } |
| return TLI->expandFP_ROUND(Op.getNode(), DAG); |
| } |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Narrow = Op.getOperand(0); |
| EVT NarrowVT = Narrow.getValueType(); |
| EVT WideVT = Op.getValueType(); |
| if (NarrowVT.getScalarType() == MVT::bf16) { |
| if (WideVT.getScalarType() == MVT::f32 && |
| (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) { |
| SDLoc Loc(Op); |
| return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow); |
| } |
| if (WideVT.getScalarType() == MVT::f64 && |
| (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) { |
| EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32) |
| : MVT::f32; |
| SDLoc Loc(Op); |
| if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) { |
| Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow); |
| } else { |
| Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow); |
| } |
| return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op); |
| } |
| } |
| |
| // Everything else is considered legal. |
| return Op; |
| } |
| |
| static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| if (Op.getValueType() != MVT::v2i16) |
| return Op; |
| EVT EltVT = Op.getValueType().getVectorElementType(); |
| SmallVector<SDValue> VecElements; |
| for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) { |
| SmallVector<SDValue> ScalarArgs; |
| llvm::transform(Op->ops(), std::back_inserter(ScalarArgs), |
| [&](const SDUse &O) { |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, |
| O.get(), DAG.getIntPtrConstant(I, DL)); |
| }); |
| VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs)); |
| } |
| SDValue V = |
| DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements); |
| return V; |
| } |
| |
| static SDValue LowerTcgen05St(SDValue Op, SelectionDAG &DAG) { |
| SDNode *N = Op.getNode(); |
| SDLoc DL(N); |
| SmallVector<SDValue, 32> Ops; |
| |
| // split the vector argument |
| for (size_t I = 0; I < N->getNumOperands(); I++) { |
| SDValue Val = N->getOperand(I); |
| EVT ValVT = Val.getValueType(); |
| if (ValVT.isVector()) { |
| EVT EltVT = ValVT.getVectorElementType(); |
| for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++) |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val, |
| DAG.getIntPtrConstant(J, DL))); |
| } else |
| Ops.push_back(Val); |
| } |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| SDValue Tcgen05StNode = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, N->getVTList(), Ops, |
| MemSD->getMemoryVT(), MemSD->getMemOperand()); |
| |
| return Tcgen05StNode; |
| } |
| |
| static SDValue LowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG) { |
| SDNode *N = Op.getNode(); |
| SDValue Intrin = N->getOperand(1); |
| |
| // Get the intrinsic ID |
| unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue(); |
| switch (IntrinNo) { |
| default: |
| break; |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| return LowerTcgen05St(Op, DAG); |
| } |
| return Op; |
| } |
| |
| static SDValue LowerClusterLaunchControlQueryCancel(SDValue Op, |
| SelectionDAG &DAG) { |
| |
| SDNode *N = Op.getNode(); |
| if (N->getOperand(1).getValueType() != MVT::i128) { |
| // return, if the operand is already lowered |
| return SDValue(); |
| } |
| |
| unsigned IID = |
| cast<ConstantSDNode>(N->getOperand(0).getNode())->getZExtValue(); |
| auto Opcode = [&]() { |
| switch (IID) { |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled: |
| return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED; |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x: |
| return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X; |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y: |
| return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y; |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z: |
| return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z; |
| default: |
| llvm_unreachable("unsupported/unhandled intrinsic"); |
| } |
| }(); |
| |
| SDLoc DL(N); |
| SDValue TryCancelResponse = N->getOperand(1); |
| SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TryCancelResponse); |
| SDValue TryCancelResponse0 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue TryCancelResponse1 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| return DAG.getNode(Opcode, DL, N->getVTList(), |
| {TryCancelResponse0, TryCancelResponse1}); |
| } |
| |
| static SDValue lowerPrmtIntrinsic(SDValue Op, SelectionDAG &DAG) { |
| const unsigned Mode = [&]() { |
| switch (Op->getConstantOperandVal(0)) { |
| case Intrinsic::nvvm_prmt: |
| return NVPTX::PTXPrmtMode::NONE; |
| case Intrinsic::nvvm_prmt_b4e: |
| return NVPTX::PTXPrmtMode::B4E; |
| case Intrinsic::nvvm_prmt_ecl: |
| return NVPTX::PTXPrmtMode::ECL; |
| case Intrinsic::nvvm_prmt_ecr: |
| return NVPTX::PTXPrmtMode::ECR; |
| case Intrinsic::nvvm_prmt_f4e: |
| return NVPTX::PTXPrmtMode::F4E; |
| case Intrinsic::nvvm_prmt_rc16: |
| return NVPTX::PTXPrmtMode::RC16; |
| case Intrinsic::nvvm_prmt_rc8: |
| return NVPTX::PTXPrmtMode::RC8; |
| default: |
| llvm_unreachable("unsupported/unhandled intrinsic"); |
| } |
| }(); |
| SDLoc DL(Op); |
| SDValue A = Op->getOperand(1); |
| SDValue B = Op.getNumOperands() == 4 ? Op.getOperand(2) |
| : DAG.getConstant(0, DL, MVT::i32); |
| SDValue Selector = (Op->op_end() - 1)->get(); |
| return getPRMT(A, B, Selector, DL, DAG, Mode); |
| } |
| static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG) { |
| switch (Op->getConstantOperandVal(0)) { |
| default: |
| return Op; |
| case Intrinsic::nvvm_prmt: |
| case Intrinsic::nvvm_prmt_b4e: |
| case Intrinsic::nvvm_prmt_ecl: |
| case Intrinsic::nvvm_prmt_ecr: |
| case Intrinsic::nvvm_prmt_f4e: |
| case Intrinsic::nvvm_prmt_rc16: |
| case Intrinsic::nvvm_prmt_rc8: |
| return lowerPrmtIntrinsic(Op, DAG); |
| case Intrinsic::nvvm_internal_addrspace_wrap: |
| return Op.getOperand(1); |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled: |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x: |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y: |
| case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z: |
| return LowerClusterLaunchControlQueryCancel(Op, DAG); |
| } |
| } |
| |
| // In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value. |
| // Lower these into a node returning the correct type which is zero-extended |
| // back to the correct size. |
| static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG) { |
| SDValue V = Op->getOperand(0); |
| assert(V.getValueType() == MVT::i64 && |
| "Unexpected CTLZ/CTPOP type to legalize"); |
| |
| SDLoc DL(Op); |
| SDValue CT = DAG.getNode(Op->getOpcode(), DL, MVT::i32, V); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CT, SDNodeFlags::NonNeg); |
| } |
| |
| static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, |
| unsigned Opcode, SelectionDAG &DAG) { |
| assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64); |
| |
| const auto *AmtConst = dyn_cast<ConstantSDNode>(ShiftAmount); |
| if (!AmtConst) |
| return SDValue(); |
| const auto Amt = AmtConst->getZExtValue() & 63; |
| |
| SDValue UnpackA = |
| DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, A); |
| SDValue UnpackB = |
| DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, B); |
| |
| // Arch is Little endiain: 0 = low bits, 1 = high bits |
| SDValue ALo = UnpackA.getValue(0); |
| SDValue AHi = UnpackA.getValue(1); |
| SDValue BLo = UnpackB.getValue(0); |
| SDValue BHi = UnpackB.getValue(1); |
| |
| // The bitfeild consists of { AHi : ALo : BHi : BLo } |
| // |
| // * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi } |
| // * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo } |
| // * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo } |
| // * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi } |
| // |
| // Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts |
| // are not needed at all. Amt = 0 is a no-op producing either A or B depending |
| // on the direction. Amt = 32 can be implemented by a packing and unpacking |
| // move to select and arrange the 32bit values. For simplicity, these cases |
| // are not handled here explicitly and instead we rely on DAGCombiner to |
| // remove the no-op funnel shifts we insert. |
| auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32)) |
| ? std::make_tuple(AHi, ALo, BHi) |
| : std::make_tuple(ALo, BHi, BLo); |
| |
| SDValue NewAmt = DAG.getConstant(Amt & 31, DL, MVT::i32); |
| SDValue RHi = DAG.getNode(Opcode, DL, MVT::i32, {High, Mid, NewAmt}); |
| SDValue RLo = DAG.getNode(Opcode, DL, MVT::i32, {Mid, Low, NewAmt}); |
| |
| return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64, {RLo, RHi}); |
| } |
| |
| static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG) { |
| return expandFSH64(Op->getOperand(0), Op->getOperand(1), Op->getOperand(2), |
| SDLoc(Op), Op->getOpcode(), DAG); |
| } |
| |
| static SDValue lowerROT(SDValue Op, SelectionDAG &DAG) { |
| unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR; |
| return expandFSH64(Op->getOperand(0), Op->getOperand(0), Op->getOperand(1), |
| SDLoc(Op), Opcode, DAG); |
| } |
| |
| static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG) { |
| // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)), |
| // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches |
| // the semantics of LLVM's frem. |
| SDLoc DL(Op); |
| SDValue X = Op->getOperand(0); |
| SDValue Y = Op->getOperand(1); |
| EVT Ty = Op.getValueType(); |
| SDNodeFlags Flags = Op->getFlags(); |
| |
| SDValue Div = DAG.getNode(ISD::FDIV, DL, Ty, X, Y, Flags); |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, Ty, Div, Flags); |
| SDValue Mul = DAG.getNode(ISD::FMUL, DL, Ty, Trunc, Y, |
| Flags | SDNodeFlags::AllowContract); |
| SDValue Sub = DAG.getNode(ISD::FSUB, DL, Ty, X, Mul, |
| Flags | SDNodeFlags::AllowContract); |
| |
| if (Flags.hasNoInfs()) |
| return Sub; |
| |
| // If Y is infinite, return X |
| SDValue AbsY = DAG.getNode(ISD::FABS, DL, Ty, Y); |
| SDValue Inf = |
| DAG.getConstantFP(APFloat::getInf(Ty.getFltSemantics()), DL, Ty); |
| SDValue IsInf = DAG.getSetCC(DL, MVT::i1, AbsY, Inf, ISD::SETEQ); |
| return DAG.getSelect(DL, Ty, IsInf, X, Sub); |
| } |
| |
| static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"); |
| |
| SDValue Cond = Op->getOperand(0); |
| SDValue TrueVal = Op->getOperand(1); |
| SDValue FalseVal = Op->getOperand(2); |
| SDLoc DL(Op); |
| |
| // If both operands are truncated, we push the select through the truncates. |
| if (TrueVal.getOpcode() == ISD::TRUNCATE && |
| FalseVal.getOpcode() == ISD::TRUNCATE) { |
| TrueVal = TrueVal.getOperand(0); |
| FalseVal = FalseVal.getOperand(0); |
| |
| EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType()) |
| ? TrueVal.getValueType() |
| : FalseVal.getValueType(); |
| TrueVal = DAG.getAnyExtOrTrunc(TrueVal, DL, VT); |
| FalseVal = DAG.getAnyExtOrTrunc(FalseVal, DL, VT); |
| SDValue Select = DAG.getSelect(DL, VT, Cond, TrueVal, FalseVal); |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select); |
| } |
| |
| // Otherwise, expand the select into a series of logical operations. These |
| // often can be folded into other operations either by us or ptxas. |
| TrueVal = DAG.getFreeze(TrueVal); |
| FalseVal = DAG.getFreeze(FalseVal); |
| SDValue And1 = DAG.getNode(ISD::AND, DL, MVT::i1, Cond, TrueVal); |
| SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); |
| SDValue And2 = DAG.getNode(ISD::AND, DL, MVT::i1, NotCond, FalseVal); |
| SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i1, And1, And2); |
| return Or; |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| case ISD::RETURNADDR: |
| return SDValue(); |
| case ISD::FRAMEADDR: |
| return SDValue(); |
| case ISD::ADDRSPACECAST: |
| return LowerADDRSPACECAST(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: |
| return Op; |
| case ISD::INTRINSIC_WO_CHAIN: |
| return lowerIntrinsicWOChain(Op, DAG); |
| case ISD::INTRINSIC_VOID: |
| return LowerIntrinsicVoid(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::BITCAST: |
| return LowerBITCAST(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: |
| return Op; |
| case ISD::EXTRACT_VECTOR_ELT: |
| return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::CONCAT_VECTORS: |
| return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: |
| case ISD::VECREDUCE_FMAXIMUM: |
| case ISD::VECREDUCE_FMINIMUM: |
| return LowerVECREDUCE(Op, DAG); |
| case ISD::STORE: |
| return LowerSTORE(Op, DAG); |
| case ISD::LOAD: |
| return LowerLOAD(Op, DAG); |
| case ISD::SHL_PARTS: |
| return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| return LowerShiftRightParts(Op, DAG); |
| case ISD::SELECT: |
| return lowerSELECT(Op, DAG); |
| case ISD::FROUND: |
| return LowerFROUND(Op, DAG); |
| case ISD::FCOPYSIGN: |
| return LowerFCOPYSIGN(Op, DAG); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return LowerFP_TO_INT(Op, DAG); |
| case ISD::FP_ROUND: |
| return LowerFP_ROUND(Op, DAG); |
| case ISD::FP_EXTEND: |
| return LowerFP_EXTEND(Op, DAG); |
| case ISD::BR_JT: |
| return LowerBR_JT(Op, DAG); |
| case ISD::VAARG: |
| return LowerVAARG(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::FSHL: |
| case ISD::FSHR: |
| return lowerFSH(Op, DAG); |
| case ISD::ROTL: |
| case ISD::ROTR: |
| return lowerROT(Op, DAG); |
| case ISD::ABS: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SHL: |
| case ISD::SREM: |
| case ISD::UREM: |
| return LowerVectorArith(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::STACKRESTORE: |
| return LowerSTACKRESTORE(Op, DAG); |
| case ISD::STACKSAVE: |
| return LowerSTACKSAVE(Op, DAG); |
| case ISD::CopyToReg: |
| return LowerCopyToReg_128(Op, DAG); |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| // Used only for bf16 on SM80, where we select fma for non-ftz operation |
| return PromoteBinOpIfF32FTZ(Op, DAG); |
| case ISD::CTPOP: |
| case ISD::CTLZ: |
| return lowerCTLZCTPOP(Op, DAG); |
| case ISD::FREM: |
| return lowerFREM(Op, DAG); |
| |
| default: |
| llvm_unreachable("Custom lowering not defined for operation"); |
| } |
| } |
| |
| SDValue NVPTXTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Chain = Op.getOperand(0); |
| const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); |
| SDValue Index = Op.getOperand(2); |
| |
| unsigned JId = JT->getIndex(); |
| MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); |
| ArrayRef<MachineBasicBlock *> MBBs = MJTI->getJumpTables()[JId].MBBs; |
| |
| SDValue IdV = DAG.getConstant(JId, DL, MVT::i32); |
| |
| // Generate BrxStart node |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(NVPTXISD::BrxStart, DL, VTs, Chain, IdV); |
| |
| // Generate BrxItem nodes |
| assert(!MBBs.empty()); |
| for (MachineBasicBlock *MBB : MBBs.drop_back()) |
| Chain = DAG.getNode(NVPTXISD::BrxItem, DL, VTs, Chain.getValue(0), |
| DAG.getBasicBlock(MBB), Chain.getValue(1)); |
| |
| // Generate BrxEnd nodes |
| SDValue EndOps[] = {Chain.getValue(0), DAG.getBasicBlock(MBBs.back()), Index, |
| IdV, Chain.getValue(1)}; |
| SDValue BrxEnd = DAG.getNode(NVPTXISD::BrxEnd, DL, VTs, EndOps); |
| |
| return BrxEnd; |
| } |
| |
| // This will prevent AsmPrinter from trying to print the jump tables itself. |
| unsigned NVPTXTargetLowering::getJumpTableEncoding() const { |
| return MachineJumpTableInfo::EK_Inline; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op, |
| SelectionDAG &DAG) const { |
| AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Op.getNode()); |
| unsigned SrcAS = N->getSrcAddressSpace(); |
| unsigned DestAS = N->getDestAddressSpace(); |
| if (SrcAS != llvm::ADDRESS_SPACE_GENERIC && |
| DestAS != llvm::ADDRESS_SPACE_GENERIC) { |
| // Shared and SharedCluster can be converted to each other through generic |
| // space |
| if ((SrcAS == llvm::ADDRESS_SPACE_SHARED && |
| DestAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER) || |
| (SrcAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER && |
| DestAS == llvm::ADDRESS_SPACE_SHARED)) { |
| SDLoc DL(Op.getNode()); |
| const MVT GenerictVT = |
| getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_GENERIC); |
| SDValue GenericConversion = DAG.getAddrSpaceCast( |
| DL, GenerictVT, Op.getOperand(0), SrcAS, ADDRESS_SPACE_GENERIC); |
| SDValue SharedClusterConversion = |
| DAG.getAddrSpaceCast(DL, Op.getValueType(), GenericConversion, |
| ADDRESS_SPACE_GENERIC, DestAS); |
| return SharedClusterConversion; |
| } |
| |
| return DAG.getUNDEF(Op.getValueType()); |
| } |
| |
| return Op; |
| } |
| |
| // This function is almost a copy of SelectionDAG::expandVAArg(). |
| // The only diff is that this one produces loads from local address space. |
| SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| SDLoc DL(Op); |
| |
| SDNode *Node = Op.getNode(); |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| EVT VT = Node->getValueType(0); |
| auto *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| SDValue Tmp1 = Node->getOperand(0); |
| SDValue Tmp2 = Node->getOperand(1); |
| const MaybeAlign MA(Node->getConstantOperandVal(3)); |
| |
| SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL, |
| Tmp1, Tmp2, MachinePointerInfo(V)); |
| SDValue VAList = VAListLoad; |
| |
| if (MA && *MA > TLI->getMinStackArgumentAlignment()) { |
| VAList = DAG.getNode( |
| ISD::ADD, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(MA->value() - 1, DL, VAList.getValueType())); |
| |
| VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, |
| DAG.getSignedConstant(-(int64_t)MA->value(), DL, |
| VAList.getValueType())); |
| } |
| |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, |
| DAG.getConstant(DAG.getDataLayout().getTypeAllocSize(Ty), |
| DL, VAList.getValueType())); |
| |
| // Store the incremented VAList to the legalized pointer |
| Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2, |
| MachinePointerInfo(V)); |
| |
| const Value *SrcV = Constant::getNullValue( |
| PointerType::get(*DAG.getContext(), ADDRESS_SPACE_LOCAL)); |
| |
| // Load the actual argument out of the pointer VAList |
| return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV)); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| SDLoc DL(Op); |
| EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout()); |
| |
| // Store the address of unsized array <function>_vararg[] in the ap object. |
| SDValue VAReg = getParamSymbol(DAG, /* vararg */ -1, PtrVT); |
| |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| static void replaceLoadVector(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results, |
| const NVPTXSubtarget &STI); |
| |
| // v = ld i1* addr |
| // => |
| // v1 = ld i8* addr (-> i16) |
| // v = trunc i16 to i1 |
| static SDValue lowerLOADi1(LoadSDNode *LD, SelectionDAG &DAG) { |
| SDLoc dl(LD); |
| assert(LD->getExtensionType() == ISD::NON_EXTLOAD); |
| assert(LD->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only"); |
| SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(), |
| LD->getBasePtr(), LD->getPointerInfo(), |
| MVT::i8, LD->getAlign(), |
| LD->getMemOperand()->getFlags()); |
| SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD); |
| // The legalizer (the caller) is expecting two values from the legalized |
| // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() |
| // in LegalizeDAG.cpp which also uses MergeValues. |
| return DAG.getMergeValues({result, LD->getChain()}, dl); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| |
| if (Op.getValueType() == MVT::i1) |
| return lowerLOADi1(LD, DAG); |
| |
| // To improve CodeGen we'll legalize any-extend loads to zext loads. This is |
| // how they'll be lowered in ISel anyway, and by doing this a little earlier |
| // we allow for more DAG combine opportunities. |
| if (LD->getExtensionType() == ISD::EXTLOAD) { |
| assert(LD->getValueType(0).isInteger() && LD->getMemoryVT().isInteger() && |
| "Unexpected fpext-load"); |
| return DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Op), Op.getValueType(), |
| LD->getChain(), LD->getBasePtr(), LD->getMemoryVT(), |
| LD->getMemOperand()); |
| } |
| |
| llvm_unreachable("Unexpected custom lowering for load"); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| EVT VT = Store->getMemoryVT(); |
| |
| if (VT == MVT::i1) |
| return LowerSTOREi1(Op, DAG); |
| |
| // Lower store of any other vector type, including v2f32 as we want to break |
| // it apart since this is not a widely-supported type. |
| return LowerSTOREVector(Op, DAG); |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { |
| MemSDNode *N = cast<MemSDNode>(Op.getNode()); |
| SDValue Val = N->getOperand(1); |
| SDLoc DL(N); |
| const EVT ValVT = Val.getValueType(); |
| const EVT MemVT = N->getMemoryVT(); |
| |
| // If we're truncating as part of the store, avoid lowering to a StoreV node. |
| // TODO: consider relaxing this restriction. |
| if (ValVT != MemVT) |
| return SDValue(); |
| |
| const auto NumEltsAndEltVT = |
| getVectorLoweringShape(ValVT, STI, N->getAddressSpace()); |
| if (!NumEltsAndEltVT) |
| return SDValue(); |
| const auto [NumElts, EltVT] = NumEltsAndEltVT.value(); |
| |
| const DataLayout &TD = DAG.getDataLayout(); |
| |
| Align Alignment = N->getAlign(); |
| Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext())); |
| if (Alignment < PrefAlign) { |
| // This store is not sufficiently aligned, so bail out and let this vector |
| // store be scalarized. Note that we may still be able to emit smaller |
| // vector stores. For example, if we are storing a <4 x float> with an |
| // alignment of 8, this check will fail but the legalizer will try again |
| // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| return SDValue(); |
| } |
| |
| unsigned Opcode; |
| switch (NumElts) { |
| default: |
| return SDValue(); |
| case 2: |
| Opcode = NVPTXISD::StoreV2; |
| break; |
| case 4: |
| Opcode = NVPTXISD::StoreV4; |
| break; |
| case 8: |
| Opcode = NVPTXISD::StoreV8; |
| break; |
| } |
| |
| SmallVector<SDValue, 8> Ops; |
| |
| // First is the chain |
| Ops.push_back(N->getOperand(0)); |
| |
| // Then the split values |
| if (EltVT.isVector()) { |
| assert(EVT(EltVT.getVectorElementType()) == ValVT.getVectorElementType()); |
| assert(NumElts * EltVT.getVectorNumElements() == |
| ValVT.getVectorNumElements()); |
| // Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be |
| // stored as b32s |
| const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements(); |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SmallVector<SDValue, 4> SubVectorElts; |
| DAG.ExtractVectorElements(Val, SubVectorElts, I * NumEltsPerSubVector, |
| NumEltsPerSubVector); |
| Ops.push_back(DAG.getBuildVector(EltVT, DL, SubVectorElts)); |
| } |
| } else { |
| SDValue V = DAG.getBitcast(MVT::getVectorVT(EltVT, NumElts), Val); |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, V, |
| DAG.getIntPtrConstant(I, DL)); |
| |
| // Since StoreV2 is a target node, we cannot rely on DAG type |
| // legalization. Therefore, we must ensure the type is legal. For i1 and |
| // i8, we set the stored type to i16 and propagate the "real" type as the |
| // memory type. |
| if (EltVT.getSizeInBits() < 16) |
| ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal); |
| Ops.push_back(ExtVal); |
| } |
| } |
| |
| // Then any remaining arguments |
| Ops.append(N->op_begin() + 2, N->op_end()); |
| |
| SDValue NewSt = |
| DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops, |
| N->getMemoryVT(), N->getMemOperand()); |
| |
| // return DCI.CombineTo(N, NewSt, true); |
| return NewSt; |
| } |
| |
| // st i1 v, addr |
| // => |
| // v1 = zxt v to i16 |
| // st.u8 i16, addr |
| SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| SDValue Tmp1 = ST->getChain(); |
| SDValue Tmp2 = ST->getBasePtr(); |
| SDValue Tmp3 = ST->getValue(); |
| assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"); |
| Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3); |
| SDValue Result = |
| DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8, |
| ST->getAlign(), ST->getMemOperand()->getFlags()); |
| return Result; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Change the CopyToReg to take in two 64-bit operands instead of a 128-bit |
| // operand so that it can pass the legalization. |
| |
| assert(Op.getOperand(1).getValueType() == MVT::i128 && |
| "Custom lowering for 128-bit CopyToReg only"); |
| |
| SDNode *Node = Op.getNode(); |
| SDLoc DL(Node); |
| |
| SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2)); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast, |
| DAG.getIntPtrConstant(1, DL)); |
| |
| SmallVector<SDValue, 5> NewOps(Op->getNumOperands() + 1); |
| SmallVector<EVT, 3> ResultsType(Node->values()); |
| |
| NewOps[0] = Op->getOperand(0); // Chain |
| NewOps[1] = Op->getOperand(1); // Dst Reg |
| NewOps[2] = Lo; // Lower 64-bit |
| NewOps[3] = Hi; // Higher 64-bit |
| if (Op.getNumOperands() == 4) |
| NewOps[4] = Op->getOperand(3); // Glue if exists |
| |
| return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps); |
| } |
| |
| unsigned NVPTXTargetLowering::getNumRegisters( |
| LLVMContext &Context, EVT VT, |
| std::optional<MVT> RegisterVT = std::nullopt) const { |
| if (VT == MVT::i128 && RegisterVT == MVT::i128) |
| return 1; |
| return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT); |
| } |
| |
| bool NVPTXTargetLowering::splitValueIntoRegisterParts( |
| SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| if (Val.getValueType() == MVT::i128 && NumParts == 1) { |
| Parts[0] = Val; |
| return true; |
| } |
| return false; |
| } |
| |
| // This creates target external symbol for a function parameter. |
| // Name of the symbol is composed from its index and the function name. |
| // Negative index corresponds to special parameter (unsized array) used for |
| // passing variable arguments. |
| SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int I, |
| EVT T) const { |
| StringRef SavedStr = nvTM->getStrPool().save( |
| getParamName(&DAG.getMachineFunction().getFunction(), I)); |
| return DAG.getExternalSymbol(SavedStr.data(), T); |
| } |
| |
| SDValue NVPTXTargetLowering::getCallParamSymbol(SelectionDAG &DAG, int I, |
| EVT T) const { |
| const StringRef SavedStr = nvTM->getStrPool().save("param" + Twine(I)); |
| return DAG.getExternalSymbol(SavedStr.data(), T); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| const DataLayout &DL = DAG.getDataLayout(); |
| LLVMContext &Ctx = *DAG.getContext(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| |
| SDValue Root = DAG.getRoot(); |
| SmallVector<SDValue, 16> OutChains; |
| |
| // argTypes.size() (or theArgs.size()) and Ins.size() need not match. |
| // Ins.size() will be larger |
| // * if there is an aggregate argument with multiple fields (each field |
| // showing up separately in Ins) |
| // * if there is a vector argument with more than typical vector-length |
| // elements (generally if more than 4) where each vector element is |
| // individually present in Ins. |
| // So a different index should be used for indexing into Ins. |
| // See similar issue in LowerCall. |
| |
| auto AllIns = ArrayRef(Ins); |
| for (const auto &Arg : F.args()) { |
| const auto ArgIns = AllIns.take_while( |
| [&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); }); |
| AllIns = AllIns.drop_front(ArgIns.size()); |
| |
| Type *Ty = Arg.getType(); |
| |
| if (ArgIns.empty()) |
| report_fatal_error("Empty parameter types are not supported"); |
| |
| if (Arg.use_empty()) { |
| // argument is dead |
| for (const auto &In : ArgIns) { |
| assert(!In.Used && "Arg.use_empty() is true but Arg is used?"); |
| InVals.push_back(DAG.getUNDEF(In.VT)); |
| } |
| continue; |
| } |
| |
| SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT); |
| |
| // In the following cases, assign a node order of "i+1" |
| // to newly created nodes. The SDNodes for params have to |
| // appear in the same order as their order of appearance |
| // in the original function. "i+1" holds that order. |
| if (Arg.hasByValAttr()) { |
| // Param has ByVal attribute |
| // Return MoveParam(param symbol). |
| // Ideally, the param symbol can be returned directly, |
| // but when SDNode builder decides to use it in a CopyToReg(), |
| // machine instruction fails because TargetExternalSymbol |
| // (not lowered) is target dependent, and CopyToReg assumes |
| // the source is lowered. |
| assert(ArgIns.size() == 1 && "ByVal argument must be a pointer"); |
| const auto &ByvalIn = ArgIns[0]; |
| assert(getValueType(DL, Ty) == ByvalIn.VT && |
| "Ins type did not match function type"); |
| assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer"); |
| |
| SDValue P; |
| if (isKernelFunction(F)) { |
| P = ArgSymbol; |
| P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| } else { |
| P = DAG.getNode(NVPTXISD::MoveParam, dl, ByvalIn.VT, ArgSymbol); |
| P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| P = DAG.getAddrSpaceCast(dl, ByvalIn.VT, P, ADDRESS_SPACE_LOCAL, |
| ADDRESS_SPACE_GENERIC); |
| } |
| InVals.push_back(P); |
| } else { |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, Ctx, CallConv, Ty, VTs, Offsets); |
| assert(VTs.size() == ArgIns.size() && "Size mismatch"); |
| assert(VTs.size() == Offsets.size() && "Size mismatch"); |
| |
| const Align ArgAlign = getFunctionArgumentAlignment( |
| &F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex, DL); |
| |
| unsigned I = 0; |
| const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign); |
| for (const unsigned NumElts : VI) { |
| // i1 is loaded/stored as i8 |
| const EVT LoadVT = VTs[I] == MVT::i1 ? MVT::i8 : VTs[I]; |
| const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx); |
| |
| SDValue VecAddr = DAG.getObjectPtrOffset( |
| dl, ArgSymbol, TypeSize::getFixed(Offsets[I])); |
| |
| const Align PartAlign = commonAlignment(ArgAlign, Offsets[I]); |
| SDValue P = |
| DAG.getLoad(VecVT, dl, Root, VecAddr, |
| MachinePointerInfo(ADDRESS_SPACE_PARAM), PartAlign, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| for (const unsigned J : llvm::seq(NumElts)) { |
| SDValue Elt = getExtractVectorizedValue(P, J, LoadVT, dl, DAG); |
| |
| Elt = correctParamType(Elt, ArgIns[I + J].VT, ArgIns[I + J].Flags, |
| DAG, dl); |
| InVals.push_back(Elt); |
| } |
| I += NumElts; |
| } |
| } |
| } |
| |
| if (!OutChains.empty()) |
| DAG.setRoot(DAG.getTokenFactor(dl, OutChains)); |
| |
| return Chain; |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| Type *RetTy = F.getReturnType(); |
| |
| if (RetTy->isVoidTy()) { |
| assert(OutVals.empty() && Outs.empty() && "Return value expected for void"); |
| return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain); |
| } |
| |
| const DataLayout &DL = DAG.getDataLayout(); |
| LLVMContext &Ctx = *DAG.getContext(); |
| |
| const SDValue RetSymbol = DAG.getExternalSymbol("func_retval0", MVT::i32); |
| const auto RetAlign = getFunctionParamOptimizedAlign(&F, RetTy, DL); |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| // 32-bits are sign extended or zero extended, depending on whether |
| // they are signed or unsigned types. |
| const bool ExtendIntegerRetVal = |
| RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; |
| |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, Ctx, CallConv, RetTy, VTs, Offsets); |
| assert(VTs.size() == OutVals.size() && "Bad return value decomposition"); |
| |
| const auto GetRetVal = [&](unsigned I) -> SDValue { |
| SDValue RetVal = OutVals[I]; |
| assert(promoteScalarIntegerPTX(RetVal.getValueType()) == |
| RetVal.getValueType() && |
| "OutVal type should always be legal"); |
| |
| const EVT VTI = promoteScalarIntegerPTX(VTs[I]); |
| const EVT StoreVT = |
| ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI); |
| return correctParamType(RetVal, StoreVT, Outs[I].Flags, DAG, dl); |
| }; |
| |
| unsigned I = 0; |
| const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign); |
| for (const unsigned NumElts : VI) { |
| const MaybeAlign CurrentAlign = ExtendIntegerRetVal |
| ? MaybeAlign(std::nullopt) |
| : commonAlignment(RetAlign, Offsets[I]); |
| |
| SDValue Val = getBuildVectorizedValue( |
| NumElts, dl, DAG, [&](unsigned K) { return GetRetVal(I + K); }); |
| |
| SDValue Ptr = |
| DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I])); |
| |
| Chain = DAG.getStore(Chain, dl, Val, Ptr, |
| MachinePointerInfo(ADDRESS_SPACE_PARAM), CurrentAlign); |
| |
| I += NumElts; |
| } |
| |
| return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain); |
| } |
| |
| void NVPTXTargetLowering::LowerAsmOperandForConstraint( |
| SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| if (Constraint.size() > 1) |
| return; |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as |
| // TgtMemIntrinsic |
| // because we need the information that is only available in the "Value" type |
| // of destination |
| // pointer. In particular, the address space information. |
| bool NVPTXTargetLowering::getTgtMemIntrinsic( |
| IntrinsicInfo &Info, const CallInst &I, |
| MachineFunction &MF, unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| default: |
| return false; |
| case Intrinsic::nvvm_match_all_sync_i32p: |
| case Intrinsic::nvvm_match_all_sync_i64p: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute |
| // in order to model data exchange with other threads, but perform no real |
| // memory accesses. |
| Info.memVT = MVT::i1; |
| |
| // Our result depends on both our and other thread's arguments. |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| return true; |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8f16; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row: |
| |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(4); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4f16; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8f32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64: |
| case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride: |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::f64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2f64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v4f16; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v8f32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row: |
| case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_b16: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_trans_b16: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x2_trans_b8: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(8); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col: |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride: |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row: |
| case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v2f64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_b16: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_trans_b16: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x1_trans_b8: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(4); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_b16: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_trans_b16: |
| case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x4_trans_b8: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align = Align(16); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_atomic_add_gen_f_cta: |
| case Intrinsic::nvvm_atomic_add_gen_f_sys: |
| case Intrinsic::nvvm_atomic_add_gen_i_cta: |
| case Intrinsic::nvvm_atomic_add_gen_i_sys: |
| case Intrinsic::nvvm_atomic_and_gen_i_cta: |
| case Intrinsic::nvvm_atomic_and_gen_i_sys: |
| case Intrinsic::nvvm_atomic_cas_gen_i_cta: |
| case Intrinsic::nvvm_atomic_cas_gen_i_sys: |
| case Intrinsic::nvvm_atomic_dec_gen_i_cta: |
| case Intrinsic::nvvm_atomic_dec_gen_i_sys: |
| case Intrinsic::nvvm_atomic_inc_gen_i_cta: |
| case Intrinsic::nvvm_atomic_inc_gen_i_sys: |
| case Intrinsic::nvvm_atomic_max_gen_i_cta: |
| case Intrinsic::nvvm_atomic_max_gen_i_sys: |
| case Intrinsic::nvvm_atomic_min_gen_i_cta: |
| case Intrinsic::nvvm_atomic_min_gen_i_sys: |
| case Intrinsic::nvvm_atomic_or_gen_i_cta: |
| case Intrinsic::nvvm_atomic_or_gen_i_sys: |
| case Intrinsic::nvvm_atomic_exch_gen_i_cta: |
| case Intrinsic::nvvm_atomic_exch_gen_i_sys: |
| case Intrinsic::nvvm_atomic_xor_gen_i_cta: |
| case Intrinsic::nvvm_atomic_xor_gen_i_sys: { |
| auto &DL = I.getDataLayout(); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = getValueType(DL, I.getType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_prefetch_tensormap: { |
| auto &DL = I.getDataLayout(); |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = getPointerTy(DL); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = |
| MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_ldu_global_i: |
| case Intrinsic::nvvm_ldu_global_f: |
| case Intrinsic::nvvm_ldu_global_p: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = getValueType(I.getDataLayout(), I.getType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); |
| |
| return true; |
| } |
| case Intrinsic::nvvm_tex_1d_v4f32_s32: |
| case Intrinsic::nvvm_tex_1d_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_1d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_v4f32_s32: |
| case Intrinsic::nvvm_tex_2d_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_2d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_3d_v4f32_s32: |
| case Intrinsic::nvvm_tex_3d_v4f32_f32: |
| case Intrinsic::nvvm_tex_3d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: |
| case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: |
| case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4f32; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_tex_1d_v4s32_s32: |
| case Intrinsic::nvvm_tex_1d_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_1d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_v4s32_s32: |
| case Intrinsic::nvvm_tex_2d_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_2d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_3d_v4s32_s32: |
| case Intrinsic::nvvm_tex_3d_v4s32_f32: |
| case Intrinsic::nvvm_tex_3d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_cube_v4u32_f32: |
| case Intrinsic::nvvm_tex_cube_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_cube_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_v4u32_s32: |
| case Intrinsic::nvvm_tex_1d_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_1d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_v4u32_s32: |
| case Intrinsic::nvvm_tex_2d_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_2d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_3d_v4u32_s32: |
| case Intrinsic::nvvm_tex_3d_v4u32_f32: |
| case Intrinsic::nvvm_tex_3d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: |
| case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: |
| case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32: |
| case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: |
| case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: |
| case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i8_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i8_clamp: |
| case Intrinsic::nvvm_suld_1d_v4i8_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i8_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: |
| case Intrinsic::nvvm_suld_2d_i8_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i8_clamp: |
| case Intrinsic::nvvm_suld_2d_v4i8_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i8_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: |
| case Intrinsic::nvvm_suld_3d_i8_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i8_clamp: |
| case Intrinsic::nvvm_suld_3d_v4i8_clamp: |
| case Intrinsic::nvvm_suld_1d_i8_trap: |
| case Intrinsic::nvvm_suld_1d_v2i8_trap: |
| case Intrinsic::nvvm_suld_1d_v4i8_trap: |
| case Intrinsic::nvvm_suld_1d_array_i8_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i8_trap: |
| case Intrinsic::nvvm_suld_1d_array_v4i8_trap: |
| case Intrinsic::nvvm_suld_2d_i8_trap: |
| case Intrinsic::nvvm_suld_2d_v2i8_trap: |
| case Intrinsic::nvvm_suld_2d_v4i8_trap: |
| case Intrinsic::nvvm_suld_2d_array_i8_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i8_trap: |
| case Intrinsic::nvvm_suld_2d_array_v4i8_trap: |
| case Intrinsic::nvvm_suld_3d_i8_trap: |
| case Intrinsic::nvvm_suld_3d_v2i8_trap: |
| case Intrinsic::nvvm_suld_3d_v4i8_trap: |
| case Intrinsic::nvvm_suld_1d_i8_zero: |
| case Intrinsic::nvvm_suld_1d_v2i8_zero: |
| case Intrinsic::nvvm_suld_1d_v4i8_zero: |
| case Intrinsic::nvvm_suld_1d_array_i8_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i8_zero: |
| case Intrinsic::nvvm_suld_1d_array_v4i8_zero: |
| case Intrinsic::nvvm_suld_2d_i8_zero: |
| case Intrinsic::nvvm_suld_2d_v2i8_zero: |
| case Intrinsic::nvvm_suld_2d_v4i8_zero: |
| case Intrinsic::nvvm_suld_2d_array_i8_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i8_zero: |
| case Intrinsic::nvvm_suld_2d_array_v4i8_zero: |
| case Intrinsic::nvvm_suld_3d_i8_zero: |
| case Intrinsic::nvvm_suld_3d_v2i8_zero: |
| case Intrinsic::nvvm_suld_3d_v4i8_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i8; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i16_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i16_clamp: |
| case Intrinsic::nvvm_suld_1d_v4i16_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i16_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: |
| case Intrinsic::nvvm_suld_2d_i16_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i16_clamp: |
| case Intrinsic::nvvm_suld_2d_v4i16_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i16_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: |
| case Intrinsic::nvvm_suld_3d_i16_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i16_clamp: |
| case Intrinsic::nvvm_suld_3d_v4i16_clamp: |
| case Intrinsic::nvvm_suld_1d_i16_trap: |
| case Intrinsic::nvvm_suld_1d_v2i16_trap: |
| case Intrinsic::nvvm_suld_1d_v4i16_trap: |
| case Intrinsic::nvvm_suld_1d_array_i16_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i16_trap: |
| case Intrinsic::nvvm_suld_1d_array_v4i16_trap: |
| case Intrinsic::nvvm_suld_2d_i16_trap: |
| case Intrinsic::nvvm_suld_2d_v2i16_trap: |
| case Intrinsic::nvvm_suld_2d_v4i16_trap: |
| case Intrinsic::nvvm_suld_2d_array_i16_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i16_trap: |
| case Intrinsic::nvvm_suld_2d_array_v4i16_trap: |
| case Intrinsic::nvvm_suld_3d_i16_trap: |
| case Intrinsic::nvvm_suld_3d_v2i16_trap: |
| case Intrinsic::nvvm_suld_3d_v4i16_trap: |
| case Intrinsic::nvvm_suld_1d_i16_zero: |
| case Intrinsic::nvvm_suld_1d_v2i16_zero: |
| case Intrinsic::nvvm_suld_1d_v4i16_zero: |
| case Intrinsic::nvvm_suld_1d_array_i16_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i16_zero: |
| case Intrinsic::nvvm_suld_1d_array_v4i16_zero: |
| case Intrinsic::nvvm_suld_2d_i16_zero: |
| case Intrinsic::nvvm_suld_2d_v2i16_zero: |
| case Intrinsic::nvvm_suld_2d_v4i16_zero: |
| case Intrinsic::nvvm_suld_2d_array_i16_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i16_zero: |
| case Intrinsic::nvvm_suld_2d_array_v4i16_zero: |
| case Intrinsic::nvvm_suld_3d_i16_zero: |
| case Intrinsic::nvvm_suld_3d_v2i16_zero: |
| case Intrinsic::nvvm_suld_3d_v4i16_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i16; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i32_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i32_clamp: |
| case Intrinsic::nvvm_suld_1d_v4i32_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i32_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: |
| case Intrinsic::nvvm_suld_2d_i32_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i32_clamp: |
| case Intrinsic::nvvm_suld_2d_v4i32_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i32_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: |
| case Intrinsic::nvvm_suld_3d_i32_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i32_clamp: |
| case Intrinsic::nvvm_suld_3d_v4i32_clamp: |
| case Intrinsic::nvvm_suld_1d_i32_trap: |
| case Intrinsic::nvvm_suld_1d_v2i32_trap: |
| case Intrinsic::nvvm_suld_1d_v4i32_trap: |
| case Intrinsic::nvvm_suld_1d_array_i32_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i32_trap: |
| case Intrinsic::nvvm_suld_1d_array_v4i32_trap: |
| case Intrinsic::nvvm_suld_2d_i32_trap: |
| case Intrinsic::nvvm_suld_2d_v2i32_trap: |
| case Intrinsic::nvvm_suld_2d_v4i32_trap: |
| case Intrinsic::nvvm_suld_2d_array_i32_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i32_trap: |
| case Intrinsic::nvvm_suld_2d_array_v4i32_trap: |
| case Intrinsic::nvvm_suld_3d_i32_trap: |
| case Intrinsic::nvvm_suld_3d_v2i32_trap: |
| case Intrinsic::nvvm_suld_3d_v4i32_trap: |
| case Intrinsic::nvvm_suld_1d_i32_zero: |
| case Intrinsic::nvvm_suld_1d_v2i32_zero: |
| case Intrinsic::nvvm_suld_1d_v4i32_zero: |
| case Intrinsic::nvvm_suld_1d_array_i32_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i32_zero: |
| case Intrinsic::nvvm_suld_1d_array_v4i32_zero: |
| case Intrinsic::nvvm_suld_2d_i32_zero: |
| case Intrinsic::nvvm_suld_2d_v2i32_zero: |
| case Intrinsic::nvvm_suld_2d_v4i32_zero: |
| case Intrinsic::nvvm_suld_2d_array_i32_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i32_zero: |
| case Intrinsic::nvvm_suld_2d_array_v4i32_zero: |
| case Intrinsic::nvvm_suld_3d_i32_zero: |
| case Intrinsic::nvvm_suld_3d_v2i32_zero: |
| case Intrinsic::nvvm_suld_3d_v4i32_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_suld_1d_i64_clamp: |
| case Intrinsic::nvvm_suld_1d_v2i64_clamp: |
| case Intrinsic::nvvm_suld_1d_array_i64_clamp: |
| case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: |
| case Intrinsic::nvvm_suld_2d_i64_clamp: |
| case Intrinsic::nvvm_suld_2d_v2i64_clamp: |
| case Intrinsic::nvvm_suld_2d_array_i64_clamp: |
| case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: |
| case Intrinsic::nvvm_suld_3d_i64_clamp: |
| case Intrinsic::nvvm_suld_3d_v2i64_clamp: |
| case Intrinsic::nvvm_suld_1d_i64_trap: |
| case Intrinsic::nvvm_suld_1d_v2i64_trap: |
| case Intrinsic::nvvm_suld_1d_array_i64_trap: |
| case Intrinsic::nvvm_suld_1d_array_v2i64_trap: |
| case Intrinsic::nvvm_suld_2d_i64_trap: |
| case Intrinsic::nvvm_suld_2d_v2i64_trap: |
| case Intrinsic::nvvm_suld_2d_array_i64_trap: |
| case Intrinsic::nvvm_suld_2d_array_v2i64_trap: |
| case Intrinsic::nvvm_suld_3d_i64_trap: |
| case Intrinsic::nvvm_suld_3d_v2i64_trap: |
| case Intrinsic::nvvm_suld_1d_i64_zero: |
| case Intrinsic::nvvm_suld_1d_v2i64_zero: |
| case Intrinsic::nvvm_suld_1d_array_i64_zero: |
| case Intrinsic::nvvm_suld_1d_array_v2i64_zero: |
| case Intrinsic::nvvm_suld_2d_i64_zero: |
| case Intrinsic::nvvm_suld_2d_v2i64_zero: |
| case Intrinsic::nvvm_suld_2d_array_i64_zero: |
| case Intrinsic::nvvm_suld_2d_array_v2i64_zero: |
| case Intrinsic::nvvm_suld_3d_i64_zero: |
| case Intrinsic::nvvm_suld_3d_v2i64_zero: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = nullptr; |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align = Align(16); |
| return true; |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v1i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v16i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v32i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v64i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::v128i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOLoad; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v2i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v4i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v8i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v16i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v32i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v64i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::v128i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.flags = MachineMemOperand::MOStore; |
| Info.align.reset(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// getFunctionParamOptimizedAlign - since function arguments are passed via |
| /// .param space, we may want to increase their alignment in a way that |
| /// ensures that we can effectively vectorize their loads & stores. We can |
| /// increase alignment only if the function has internal or has private |
| /// linkage as for other linkage types callers may already rely on default |
| /// alignment. To allow using 128-bit vectorized loads/stores, this function |
| /// ensures that alignment is 16 or greater. |
| Align NVPTXTargetLowering::getFunctionParamOptimizedAlign( |
| const Function *F, Type *ArgTy, const DataLayout &DL) const { |
| // Capping the alignment to 128 bytes as that is the maximum alignment |
| // supported by PTX. |
| const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy)); |
| |
| // If a function has linkage different from internal or private, we |
| // must use default ABI alignment as external users rely on it. Same |
| // for a function that may be called from a function pointer. |
| if (!F || !F->hasLocalLinkage() || |
| F->hasAddressTaken(/*Users=*/nullptr, |
| /*IgnoreCallbackUses=*/false, |
| /*IgnoreAssumeLikeCalls=*/true, |
| /*IgnoreLLVMUsed=*/true)) |
| return ABITypeAlign; |
| |
| assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage"); |
| return std::max(Align(16), ABITypeAlign); |
| } |
| |
| /// Helper for computing alignment of a device function byval parameter. |
| Align NVPTXTargetLowering::getFunctionByValParamAlign( |
| const Function *F, Type *ArgTy, Align InitialAlign, |
| const DataLayout &DL) const { |
| Align ArgAlign = InitialAlign; |
| // Try to increase alignment to enhance vectorization options. |
| if (F) |
| ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL)); |
| |
| // Old ptx versions have a bug. When PTX code takes address of |
| // byval parameter with alignment < 4, ptxas generates code to |
| // spill argument into memory. Alas on sm_50+ ptxas generates |
| // SASS code that fails with misaligned access. To work around |
| // the problem, make sure that we align byval parameters by at |
| // least 4. This bug seems to be fixed at least starting from |
| // ptxas > 9.0. |
| // TODO: remove this after verifying the bug is not reproduced |
| // on non-deprecated ptxas versions. |
| if (ForceMinByValParamAlign) |
| ArgAlign = std::max(ArgAlign, Align(4)); |
| |
| return ArgAlign; |
| } |
| |
| // Helper for getting a function parameter name. Name is composed from |
| // its index and the function name. Negative index corresponds to special |
| // parameter (unsized array) used for passing variable arguments. |
| std::string NVPTXTargetLowering::getParamName(const Function *F, |
| int Idx) const { |
| std::string ParamName; |
| raw_string_ostream ParamStr(ParamName); |
| |
| ParamStr << getTargetMachine().getSymbol(F)->getName(); |
| if (Idx < 0) |
| ParamStr << "_vararg"; |
| else |
| ParamStr << "_param_" << Idx; |
| |
| return ParamName; |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| /// Used to guide target specific optimizations, like loop strength reduction |
| /// (LoopStrengthReduce.cpp) and memory optimization for address mode |
| /// (CodeGenPrepare.cpp) |
| bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| // AddrMode - This represents an addressing mode of: |
| // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg |
| // |
| // The legal address modes are |
| // - [avar] |
| // - [areg] |
| // - [areg+immoff] |
| // - [immAddr] |
| |
| // immoff must fit in a signed 32-bit int |
| if (!APInt(64, AM.BaseOffs).isSignedIntN(32)) |
| return false; |
| |
| if (AM.BaseGV) |
| return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale; |
| |
| switch (AM.Scale) { |
| case 0: // "r", "r+i" or "i" is allowed |
| break; |
| case 1: |
| if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. |
| return false; |
| // Otherwise we have r+i. |
| break; |
| default: |
| // No scale > 1 is allowed |
| return false; |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| NVPTXTargetLowering::ConstraintType |
| NVPTXTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'b': |
| case 'r': |
| case 'h': |
| case 'c': |
| case 'l': |
| case 'f': |
| case 'd': |
| case 'q': |
| case '0': |
| case 'N': |
| return C_RegisterClass; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'b': |
| return std::make_pair(0U, &NVPTX::B1RegClass); |
| case 'c': |
| case 'h': |
| return std::make_pair(0U, &NVPTX::B16RegClass); |
| case 'r': |
| case 'f': |
| return std::make_pair(0U, &NVPTX::B32RegClass); |
| case 'l': |
| case 'N': |
| case 'd': |
| return std::make_pair(0U, &NVPTX::B64RegClass); |
| case 'q': { |
| if (STI.getSmVersion() < 70) |
| report_fatal_error("Inline asm with 128 bit operands is only " |
| "supported for sm_70 and higher!"); |
| return std::make_pair(0U, &NVPTX::B128RegClass); |
| } |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX DAG Combining |
| //===----------------------------------------------------------------------===// |
| |
| bool NVPTXTargetLowering::allowFMA(MachineFunction &MF, |
| CodeGenOptLevel OptLevel) const { |
| // Always honor command-line argument |
| if (FMAContractLevelOpt.getNumOccurrences() > 0) |
| return FMAContractLevelOpt > 0; |
| |
| // Do not contract if we're not optimizing the code. |
| if (OptLevel == CodeGenOptLevel::None) |
| return false; |
| |
| // Honor TargetOptions flags that explicitly say fusion is okay. |
| if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isConstZero(const SDValue &Operand) { |
| const auto *Const = dyn_cast<ConstantSDNode>(Operand); |
| return Const && Const->getZExtValue() == 0; |
| } |
| |
| /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with |
| /// operands N0 and N1. This is a helper for PerformADDCombine that is |
| /// called with the default operands, and if that fails, with commuted |
| /// operands. |
| static SDValue |
| PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| EVT VT = N0.getValueType(); |
| |
| // Since integer multiply-add costs the same as integer multiply |
| // but is more costly than integer add, do the fusion only when |
| // the mul is only used in the add. |
| // TODO: this may not be true for later architectures, consider relaxing this |
| if (!N0.getNode()->hasOneUse()) |
| return SDValue(); |
| |
| // fold (add (select cond, 0, (mul a, b)), c) |
| // -> (select cond, c, (add (mul a, b), c)) |
| // |
| if (N0.getOpcode() == ISD::SELECT) { |
| unsigned ZeroOpNum; |
| if (isConstZero(N0->getOperand(1))) |
| ZeroOpNum = 1; |
| else if (isConstZero(N0->getOperand(2))) |
| ZeroOpNum = 2; |
| else |
| return SDValue(); |
| |
| SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1); |
| if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue Mul = |
| DCI.DAG.getNode(ISD::MUL, DL, VT, M->getOperand(0), M->getOperand(1)); |
| SDValue MAD = DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, N1); |
| return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0), |
| ((ZeroOpNum == 1) ? N1 : MAD), |
| ((ZeroOpNum == 1) ? MAD : N1)); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue |
| PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| EVT VT = N0.getValueType(); |
| if (N0.getOpcode() == ISD::FMUL) { |
| const auto *TLI = static_cast<const NVPTXTargetLowering *>( |
| &DCI.DAG.getTargetLoweringInfo()); |
| if (!(TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel) || |
| (N->getFlags().hasAllowContract() && |
| N0->getFlags().hasAllowContract()))) |
| return SDValue(); |
| |
| // For floating point: |
| // Do the fusion only when the mul has less than 5 uses and all |
| // are add. |
| // The heuristic is that if a use is not an add, then that use |
| // cannot be fused into fma, therefore mul is still needed anyway. |
| // If there are more than 4 uses, even if they are all add, fusing |
| // them will increase register pressue. |
| // |
| int numUses = 0; |
| int nonAddCount = 0; |
| for (const SDNode *User : N0.getNode()->users()) { |
| numUses++; |
| if (User->getOpcode() != ISD::FADD) |
| ++nonAddCount; |
| if (numUses >= 5) |
| return SDValue(); |
| } |
| if (nonAddCount) { |
| int orderNo = N->getIROrder(); |
| int orderNo2 = N0.getNode()->getIROrder(); |
| // simple heuristics here for considering potential register |
| // pressure, the logics here is that the differnce are used |
| // to measure the distance between def and use, the longer distance |
| // more likely cause register pressure. |
| if (orderNo - orderNo2 < 500) |
| return SDValue(); |
| |
| // Now, check if at least one of the FMUL's operands is live beyond the |
| // node N, which guarantees that the FMA will not increase register |
| // pressure at node N. |
| bool opIsLive = false; |
| const SDNode *left = N0.getOperand(0).getNode(); |
| const SDNode *right = N0.getOperand(1).getNode(); |
| |
| if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right)) |
| opIsLive = true; |
| |
| if (!opIsLive) |
| for (const SDNode *User : left->users()) { |
| int orderNo3 = User->getIROrder(); |
| if (orderNo3 > orderNo) { |
| opIsLive = true; |
| break; |
| } |
| } |
| |
| if (!opIsLive) |
| for (const SDNode *User : right->users()) { |
| int orderNo3 = User->getIROrder(); |
| if (orderNo3 > orderNo) { |
| opIsLive = true; |
| break; |
| } |
| } |
| |
| if (!opIsLive) |
| return SDValue(); |
| } |
| |
| return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0), |
| N0.getOperand(1), N1); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Fold unpacking movs into a load by increasing the number of return values. |
| /// |
| /// ex: |
| /// L: v2f16,ch = load <p> |
| /// a: f16 = extractelt L:0, 0 |
| /// b: f16 = extractelt L:0, 1 |
| /// use(a, b) |
| /// |
| /// ...is turned into... |
| /// |
| /// L: f16,f16,ch = LoadV2 <p> |
| /// use(L:0, L:1) |
| static SDValue |
| combineUnpackingMovIntoLoad(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| // Don't run this optimization before the legalizer |
| if (!DCI.isAfterLegalizeDAG()) |
| return SDValue(); |
| |
| EVT ElementVT = N->getValueType(0); |
| // Avoid non-packed types and v4i8 |
| if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8) |
| return SDValue(); |
| |
| SmallVector<SDNode *> DeadCopyToRegs; |
| |
| // Check whether all outputs are either used by an extractelt or are |
| // glue/chain nodes |
| if (!all_of(N->uses(), [&](SDUse &U) { |
| // Skip glue, chain nodes |
| if (U.getValueType() == MVT::Glue || U.getValueType() == MVT::Other) |
| return true; |
| if (U.getUser()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| if (N->getOpcode() != ISD::LOAD) |
| return true; |
| // Since this is an ISD::LOAD, check all extractelts are used. If |
| // any are not used, we don't want to defeat another optimization that |
| // will narrow the load. |
| // |
| // For example: |
| // |
| // L: v2f16,ch = load <p> |
| // e0: f16 = extractelt L:0, 0 |
| // e1: f16 = extractelt L:0, 1 <-- unused |
| // store e0 |
| // |
| // Can be optimized by DAGCombiner to: |
| // |
| // L: f16,ch = load <p> |
| // store L:0 |
| return !U.getUser()->use_empty(); |
| } |
| |
| // Otherwise, this use prevents us from splitting a value. |
| return false; |
| })) |
| return SDValue(); |
| |
| auto *LD = cast<MemSDNode>(N); |
| SDLoc DL(LD); |
| |
| // the new opcode after we double the number of operands |
| NVPTXISD::NodeType Opcode; |
| SmallVector<SDValue> Operands(LD->ops()); |
| unsigned OldNumOutputs; // non-glue, non-chain outputs |
| switch (LD->getOpcode()) { |
| case ISD::LOAD: |
| OldNumOutputs = 1; |
| // Any packed type is legal, so the legalizer will not have lowered |
| // ISD::LOAD -> NVPTXISD::Load (unless it's under-aligned). We have to do it |
| // here. |
| Opcode = NVPTXISD::LoadV2; |
| Operands.push_back(DCI.DAG.getIntPtrConstant( |
| cast<LoadSDNode>(LD)->getExtensionType(), DL)); |
| break; |
| case NVPTXISD::LoadV2: |
| OldNumOutputs = 2; |
| Opcode = NVPTXISD::LoadV4; |
| break; |
| case NVPTXISD::LoadV4: |
| // V8 is only supported for f32. Don't forget, we're not changing the load |
| // size here. This is already a 256-bit load. |
| if (ElementVT != MVT::v2f32) |
| return SDValue(); |
| OldNumOutputs = 4; |
| Opcode = NVPTXISD::LoadV8; |
| break; |
| case NVPTXISD::LoadV8: |
| // PTX doesn't support the next doubling of outputs |
| return SDValue(); |
| } |
| |
| // the non-glue, non-chain outputs in the new load |
| const unsigned NewNumOutputs = OldNumOutputs * 2; |
| SmallVector<EVT> NewVTs(NewNumOutputs, ElementVT.getVectorElementType()); |
| // add remaining chain and glue values |
| NewVTs.append(LD->value_begin() + OldNumOutputs, LD->value_end()); |
| |
| // Create the new load |
| SDValue NewLoad = DCI.DAG.getMemIntrinsicNode( |
| Opcode, DL, DCI.DAG.getVTList(NewVTs), Operands, LD->getMemoryVT(), |
| LD->getMemOperand()); |
| |
| // Now we use a combination of BUILD_VECTORs and a MERGE_VALUES node to keep |
| // the outputs the same. These nodes will be optimized away in later |
| // DAGCombiner iterations. |
| SmallVector<SDValue> Results; |
| for (unsigned I : seq(OldNumOutputs)) |
| Results.push_back(DCI.DAG.getBuildVector( |
| ElementVT, DL, {NewLoad.getValue(I * 2), NewLoad.getValue(I * 2 + 1)})); |
| // Add remaining chain and glue nodes |
| for (unsigned I : seq(NewLoad->getNumValues() - NewNumOutputs)) |
| Results.push_back(NewLoad.getValue(NewNumOutputs + I)); |
| |
| return DCI.DAG.getMergeValues(Results, DL); |
| } |
| |
| /// Fold packing movs into a store. |
| /// |
| /// ex: |
| /// v1: v2f16 = BUILD_VECTOR a:f16, b:f16 |
| /// v2: v2f16 = BUILD_VECTOR c:f16, d:f16 |
| /// StoreV2 v1, v2 |
| /// |
| /// ...is turned into... |
| /// |
| /// StoreV4 a, b, c, d |
| static SDValue combinePackingMovIntoStore(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| unsigned Front, unsigned Back) { |
| // We want to run this as late as possible since other optimizations may |
| // eliminate the BUILD_VECTORs. |
| if (!DCI.isAfterLegalizeDAG()) |
| return SDValue(); |
| |
| // Get the type of the operands being stored. |
| EVT ElementVT = N->getOperand(Front).getValueType(); |
| |
| // Avoid non-packed types and v4i8 |
| if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8) |
| return SDValue(); |
| |
| auto *ST = cast<MemSDNode>(N); |
| |
| // The new opcode after we double the number of operands. |
| NVPTXISD::NodeType Opcode; |
| switch (N->getOpcode()) { |
| case ISD::STORE: |
| // Any packed type is legal, so the legalizer will not have lowered |
| // ISD::STORE -> NVPTXISD::Store (unless it's under-aligned). We have to do |
| // it here. |
| Opcode = NVPTXISD::StoreV2; |
| break; |
| case NVPTXISD::StoreV2: |
| Opcode = NVPTXISD::StoreV4; |
| break; |
| case NVPTXISD::StoreV4: |
| // V8 is only supported for f32. Don't forget, we're not changing the store |
| // size here. This is already a 256-bit store. |
| if (ElementVT != MVT::v2f32) |
| return SDValue(); |
| Opcode = NVPTXISD::StoreV8; |
| break; |
| case NVPTXISD::StoreV8: |
| // PTX doesn't support the next doubling of operands |
| return SDValue(); |
| default: |
| llvm_unreachable("Unhandled store opcode"); |
| } |
| |
| // Scan the operands and if they're all BUILD_VECTORs, we'll have gathered |
| // their elements. |
| SmallVector<SDValue, 4> Operands(N->ops().take_front(Front)); |
| for (SDValue BV : N->ops().drop_front(Front).drop_back(Back)) { |
| if (BV.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| // If the operand has multiple uses, this optimization can increase register |
| // pressure. |
| if (!BV.hasOneUse()) |
| return SDValue(); |
| |
| // DAGCombiner visits nodes bottom-up. Check the BUILD_VECTOR operands for |
| // any signs they may be folded by some other pattern or rule. |
| for (SDValue Op : BV->ops()) { |
| // Peek through bitcasts |
| if (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| |
| // This may be folded into a PRMT. |
| if (Op.getValueType() == MVT::i16 && Op.getOpcode() == ISD::TRUNCATE && |
| Op->getOperand(0).getValueType() == MVT::i32) |
| return SDValue(); |
| |
| // This may be folded into cvt.bf16x2 |
| if (Op.getOpcode() == ISD::FP_ROUND) |
| return SDValue(); |
| } |
| Operands.append({BV.getOperand(0), BV.getOperand(1)}); |
| } |
| Operands.append(N->op_end() - Back, N->op_end()); |
| |
| // Now we replace the store |
| return DCI.DAG.getMemIntrinsicNode(Opcode, SDLoc(N), N->getVTList(), Operands, |
| ST->getMemoryVT(), ST->getMemOperand()); |
| } |
| |
| static SDValue PerformStoreCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| return combinePackingMovIntoStore(N, DCI, 1, 2); |
| } |
| |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| /// |
| static SDValue PerformADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel == CodeGenOptLevel::None) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // Skip non-integer, non-scalar case |
| EVT VT = N0.getValueType(); |
| if (VT.isVector() || VT != MVT::i32) |
| return SDValue(); |
| |
| // First try with the default operand order. |
| if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI)) |
| return Result; |
| |
| // If that didn't work, try again with the operands commuted. |
| return PerformADDCombineWithOperands(N, N1, N0, DCI); |
| } |
| |
| /// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD. |
| /// |
| static SDValue PerformFADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| EVT VT = N0.getValueType(); |
| if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64)) |
| return SDValue(); |
| |
| // First try with the default operand order. |
| if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel)) |
| return Result; |
| |
| // If that didn't work, try again with the operands commuted. |
| return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel); |
| } |
| |
| static SDValue PerformREMCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM); |
| |
| // Don't do anything at less than -O2. |
| if (OptLevel < CodeGenOptLevel::Default) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| bool IsSigned = N->getOpcode() == ISD::SREM; |
| unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV; |
| |
| const SDValue &Num = N->getOperand(0); |
| const SDValue &Den = N->getOperand(1); |
| |
| for (const SDNode *U : Num->users()) { |
| if (U->getOpcode() == DivOpc && U->getOperand(0) == Num && |
| U->getOperand(1) == Den) { |
| // Num % Den -> Num - (Num / Den) * Den |
| return DAG.getNode(ISD::SUB, DL, VT, Num, |
| DAG.getNode(ISD::MUL, DL, VT, |
| DAG.getNode(DivOpc, DL, VT, Num, Den), |
| Den)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| // (sign_extend|zero_extend (mul|shl) x, y) -> (mul.wide x, y) |
| static SDValue combineMulWide(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel == CodeGenOptLevel::None) |
| return SDValue(); |
| |
| SDValue Op = N->getOperand(0); |
| if (!Op.hasOneUse()) |
| return SDValue(); |
| EVT ToVT = N->getValueType(0); |
| EVT FromVT = Op.getValueType(); |
| if (!((ToVT == MVT::i32 && FromVT == MVT::i16) || |
| (ToVT == MVT::i64 && FromVT == MVT::i32))) |
| return SDValue(); |
| if (!(Op.getOpcode() == ISD::MUL || |
| (Op.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Op.getOperand(1))))) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| unsigned ExtOpcode = N->getOpcode(); |
| unsigned Opcode = 0; |
| if (ExtOpcode == ISD::SIGN_EXTEND && Op->getFlags().hasNoSignedWrap()) |
| Opcode = NVPTXISD::MUL_WIDE_SIGNED; |
| else if (ExtOpcode == ISD::ZERO_EXTEND && Op->getFlags().hasNoUnsignedWrap()) |
| Opcode = NVPTXISD::MUL_WIDE_UNSIGNED; |
| else |
| return SDValue(); |
| SDValue RHS = Op.getOperand(1); |
| if (Op.getOpcode() == ISD::SHL) { |
| const auto ShiftAmt = Op.getConstantOperandVal(1); |
| const auto MulVal = APInt(ToVT.getSizeInBits(), 1) << ShiftAmt; |
| RHS = DCI.DAG.getConstant(MulVal, DL, ToVT); |
| } |
| return DCI.DAG.getNode(Opcode, DL, ToVT, Op.getOperand(0), RHS); |
| } |
| |
| enum OperandSignedness { |
| Signed = 0, |
| Unsigned, |
| Unknown |
| }; |
| |
| /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand |
| /// that can be demoted to \p OptSize bits without loss of information. The |
| /// signedness of the operand, if determinable, is placed in \p S. |
| static bool IsMulWideOperandDemotable(SDValue Op, |
| unsigned OptSize, |
| OperandSignedness &S) { |
| S = Unknown; |
| |
| if (Op.getOpcode() == ISD::SIGN_EXTEND || |
| Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| EVT OrigVT = Op.getOperand(0).getValueType(); |
| if (OrigVT.getFixedSizeInBits() <= OptSize) { |
| S = Signed; |
| return true; |
| } |
| } else if (Op.getOpcode() == ISD::ZERO_EXTEND) { |
| EVT OrigVT = Op.getOperand(0).getValueType(); |
| if (OrigVT.getFixedSizeInBits() <= OptSize) { |
| S = Unsigned; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can |
| /// be demoted to \p OptSize bits without loss of information. If the operands |
| /// contain a constant, it should appear as the RHS operand. The signedness of |
| /// the operands is placed in \p IsSigned. |
| static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, |
| unsigned OptSize, |
| bool &IsSigned) { |
| OperandSignedness LHSSign; |
| |
| // The LHS operand must be a demotable op |
| if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign)) |
| return false; |
| |
| // We should have been able to determine the signedness from the LHS |
| if (LHSSign == Unknown) |
| return false; |
| |
| IsSigned = (LHSSign == Signed); |
| |
| // The RHS can be a demotable op or a constant |
| if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) { |
| const APInt &Val = CI->getAPIntValue(); |
| if (LHSSign == Unsigned) { |
| return Val.isIntN(OptSize); |
| } else { |
| return Val.isSignedIntN(OptSize); |
| } |
| } else { |
| OperandSignedness RHSSign; |
| if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign)) |
| return false; |
| |
| return LHSSign == RHSSign; |
| } |
| } |
| |
| /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply |
| /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform |
| /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift |
| /// amount. |
| static SDValue TryMULWIDECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| EVT MulType = N->getValueType(0); |
| if (MulType != MVT::i32 && MulType != MVT::i64) { |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| unsigned OptSize = MulType.getSizeInBits() >> 1; |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // Canonicalize the multiply so the constant (if any) is on the right |
| if (N->getOpcode() == ISD::MUL) { |
| if (isa<ConstantSDNode>(LHS)) { |
| std::swap(LHS, RHS); |
| } |
| } |
| |
| // If we have a SHL, determine the actual multiply amount |
| if (N->getOpcode() == ISD::SHL) { |
| ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (!ShlRHS) { |
| return SDValue(); |
| } |
| |
| APInt ShiftAmt = ShlRHS->getAPIntValue(); |
| unsigned BitWidth = MulType.getSizeInBits(); |
| if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) { |
| APInt MulVal = APInt(BitWidth, 1) << ShiftAmt; |
| RHS = DCI.DAG.getConstant(MulVal, DL, MulType); |
| } else { |
| return SDValue(); |
| } |
| } |
| |
| bool Signed; |
| // Verify that our operands are demotable |
| if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) { |
| return SDValue(); |
| } |
| |
| EVT DemotedVT; |
| if (MulType == MVT::i32) { |
| DemotedVT = MVT::i16; |
| } else { |
| DemotedVT = MVT::i32; |
| } |
| |
| // Truncate the operands to the correct size. Note that these are just for |
| // type consistency and will (likely) be eliminated in later phases. |
| SDValue TruncLHS = |
| DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS); |
| SDValue TruncRHS = |
| DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS); |
| |
| unsigned Opc; |
| if (Signed) { |
| Opc = NVPTXISD::MUL_WIDE_SIGNED; |
| } else { |
| Opc = NVPTXISD::MUL_WIDE_UNSIGNED; |
| } |
| |
| return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS); |
| } |
| |
| static bool isConstOne(const SDValue &Operand) { |
| const auto *Const = dyn_cast<ConstantSDNode>(Operand); |
| return Const && Const->getZExtValue() == 1; |
| } |
| |
| static SDValue matchMADConstOnePattern(SDValue Add) { |
| if (Add->getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| if (isConstOne(Add->getOperand(0))) |
| return Add->getOperand(1); |
| |
| if (isConstOne(Add->getOperand(1))) |
| return Add->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| if (SDValue Y = matchMADConstOnePattern(Add)) { |
| SDValue Mul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y); |
| return DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, X); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, |
| SDLoc DL, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (Select->getOpcode() != ISD::SELECT) |
| return SDValue(); |
| |
| SDValue Cond = Select->getOperand(0); |
| |
| unsigned ConstOpNo; |
| if (isConstOne(Select->getOperand(1))) |
| ConstOpNo = 1; |
| else if (isConstOne(Select->getOperand(2))) |
| ConstOpNo = 2; |
| else |
| return SDValue(); |
| |
| SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1); |
| |
| // Do not combine if the resulting sequence is not obviously profitable. |
| if (!matchMADConstOnePattern(Y)) |
| return SDValue(); |
| |
| SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y); |
| |
| return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| (ConstOpNo == 1) ? X : NewMul, |
| (ConstOpNo == 1) ? NewMul : X); |
| } |
| |
| static SDValue |
| PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| EVT VT = N0.getValueType(); |
| if (VT.isVector()) |
| return SDValue(); |
| |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // (mul x, (add y, 1)) -> (add (mul x, y), x) |
| if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI)) |
| return Res; |
| if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI)) |
| return Res; |
| |
| // (mul x, (select y, 1)) -> (select (mul x, y), x) |
| if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI)) |
| return Res; |
| if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes. |
| static SDValue PerformMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel == CodeGenOptLevel::None) |
| return SDValue(); |
| |
| if (SDValue Ret = TryMULWIDECombine(N, DCI)) |
| return Ret; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| return PerformMULCombineWithOperands(N, N0, N1, DCI); |
| } |
| |
| /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes. |
| static SDValue PerformSHLCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel > CodeGenOptLevel::None) { |
| // Try mul.wide combining at OptLevel > 0 |
| if (SDValue Ret = TryMULWIDECombine(N, DCI)) |
| return Ret; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformSETCCCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| unsigned int SmVersion) { |
| EVT CCType = N->getValueType(0); |
| SDValue A = N->getOperand(0); |
| SDValue B = N->getOperand(1); |
| |
| EVT AType = A.getValueType(); |
| if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16))) |
| return SDValue(); |
| |
| if (A.getValueType() == MVT::v2bf16 && SmVersion < 90) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| // setp.f16x2 returns two scalar predicates, which we need to |
| // convert back to v2i1. The returned result will be scalarized by |
| // the legalizer, but the comparison will remain a single vector |
| // instruction. |
| SDValue CCNode = DCI.DAG.getNode( |
| A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2 |
| : NVPTXISD::SETP_BF16X2, |
| DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)}); |
| return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0), |
| CCNode.getValue(1)); |
| } |
| |
| static SDValue PerformEXTRACTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue Vector = N->getOperand(0); |
| if (Vector->getOpcode() == ISD::FREEZE) |
| Vector = Vector->getOperand(0); |
| SDLoc DL(N); |
| EVT VectorVT = Vector.getValueType(); |
| if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() && |
| IsPTXVectorType(VectorVT.getSimpleVT())) |
| return SDValue(); // Native vector loads already combine nicely w/ |
| // extract_vector_elt. |
| // Don't mess with singletons or packed types (v2f32, v2*16, v4i8 and v8i8), |
| // we already handle them OK. |
| if (VectorVT.getVectorNumElements() == 1 || |
| NVPTX::isPackedVectorTy(VectorVT) || VectorVT == MVT::v8i8) |
| return SDValue(); |
| |
| // Don't mess with undef values as sra may be simplified to 0, not undef. |
| if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode())) |
| return SDValue(); |
| |
| uint64_t VectorBits = VectorVT.getSizeInBits(); |
| // We only handle the types we can extract in-register. |
| if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64)) |
| return SDValue(); |
| |
| ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| // Index == 0 is handled by generic DAG combiner. |
| if (!Index || Index->getZExtValue() == 0) |
| return SDValue(); |
| |
| MVT IVT = MVT::getIntegerVT(VectorBits); |
| EVT EltVT = VectorVT.getVectorElementType(); |
| EVT EltIVT = EltVT.changeTypeToInteger(); |
| uint64_t EltBits = EltVT.getScalarSizeInBits(); |
| |
| SDValue Result = DCI.DAG.getNode( |
| ISD::TRUNCATE, DL, EltIVT, |
| DCI.DAG.getNode( |
| ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector), |
| DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT))); |
| |
| // If element has non-integer type, bitcast it back to the expected type. |
| if (EltVT != EltIVT) |
| Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result); |
| // Past legalizer, we may need to extent i8 -> i16 to match the register type. |
| if (EltVT != N->getValueType(0)) |
| Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result); |
| |
| return Result; |
| } |
| |
| static SDValue PerformVSELECTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue VA = N->getOperand(1); |
| EVT VectorVT = VA.getValueType(); |
| if (VectorVT != MVT::v4i8) |
| return SDValue(); |
| |
| // We need to split vselect into individual per-element operations Because we |
| // use BFE/BFI instruction for byte extraction/insertion, we do end up with |
| // 32-bit values, so we may as well do comparison as i32 to avoid conversions |
| // to/from i16 normally used for i8 values. |
| SmallVector<SDValue, 4> E; |
| SDLoc DL(N); |
| SDValue VCond = N->getOperand(0); |
| SDValue VB = N->getOperand(2); |
| for (int I = 0; I < 4; ++I) { |
| SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond, |
| DCI.DAG.getConstant(I, DL, MVT::i32)); |
| SDValue EA = DCI.DAG.getAnyExtOrTrunc( |
| DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA, |
| DCI.DAG.getConstant(I, DL, MVT::i32)), |
| DL, MVT::i32); |
| SDValue EB = DCI.DAG.getAnyExtOrTrunc( |
| DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB, |
| DCI.DAG.getConstant(I, DL, MVT::i32)), |
| DL, MVT::i32); |
| E.push_back(DCI.DAG.getAnyExtOrTrunc( |
| DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8)); |
| } |
| return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E); |
| } |
| |
| static SDValue |
| PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| auto VT = N->getValueType(0); |
| if (!DCI.isAfterLegalizeDAG() || |
| // only process v2*16 types |
| !(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector() && |
| VT.getVectorNumElements() == 2)) |
| return SDValue(); |
| |
| auto Op0 = N->getOperand(0); |
| auto Op1 = N->getOperand(1); |
| |
| // Start out by assuming we want to take the lower 2 bytes of each i32 |
| // operand. |
| uint64_t Op0Bytes = 0x10; |
| uint64_t Op1Bytes = 0x54; |
| |
| std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes}, |
| {&Op1, &Op1Bytes}}; |
| |
| // Check that each operand is an i16, truncated from an i32 operand. We'll |
| // select individual bytes from those original operands. Optionally, fold in a |
| // shift right of that original operand. |
| for (auto &[Op, OpBytes] : OpData) { |
| // Eat up any bitcast |
| if (Op->getOpcode() == ISD::BITCAST) |
| *Op = Op->getOperand(0); |
| |
| if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE && |
| Op->getOperand(0).getValueType() == MVT::i32)) |
| return SDValue(); |
| |
| // If the truncate has multiple uses, this optimization can increase |
| // register pressure |
| if (!Op->hasOneUse()) |
| return SDValue(); |
| |
| *Op = Op->getOperand(0); |
| |
| // Optionally, fold in a shift-right of the original operand and let permute |
| // pick the two higher bytes of the original value directly. |
| if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Op->getOperand(1))) { |
| if (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue() == 16) { |
| // Shift the PRMT byte selector to pick upper bytes from each respective |
| // value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76 |
| assert((*OpBytes == 0x10 || *OpBytes == 0x54) && |
| "PRMT selector values out of range"); |
| *OpBytes += 0x22; |
| *Op = Op->getOperand(0); |
| } |
| } |
| } |
| |
| SDLoc DL(N); |
| auto &DAG = DCI.DAG; |
| |
| auto PRMT = |
| getPRMT(DAG.getBitcast(MVT::i32, Op0), DAG.getBitcast(MVT::i32, Op1), |
| (Op1Bytes << 8) | Op0Bytes, DL, DAG); |
| return DAG.getBitcast(VT, PRMT); |
| } |
| |
| static SDValue combineADDRSPACECAST(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| auto *ASCN1 = cast<AddrSpaceCastSDNode>(N); |
| |
| if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(ASCN1->getOperand(0))) { |
| assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace()); |
| |
| // Fold asc[B -> A](asc[A -> B](x)) -> x |
| if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace()) |
| return ASCN2->getOperand(0); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Given a constant selector value and a prmt mode, return the selector value |
| // normalized to the generic prmt mode. See the PTX ISA documentation for more |
| // details: |
| // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prmt |
| static APInt getPRMTSelector(const APInt &Selector, unsigned Mode) { |
| assert(Selector.getBitWidth() == 32 && "PRMT must have i32 operands"); |
| |
| if (Mode == NVPTX::PTXPrmtMode::NONE) |
| return Selector; |
| |
| const unsigned V = Selector.trunc(2).getZExtValue(); |
| |
| const auto GetSelector = [](unsigned S0, unsigned S1, unsigned S2, |
| unsigned S3) { |
| return APInt(32, S0 | (S1 << 4) | (S2 << 8) | (S3 << 12)); |
| }; |
| |
| switch (Mode) { |
| case NVPTX::PTXPrmtMode::F4E: |
| return GetSelector(V, V + 1, V + 2, V + 3); |
| case NVPTX::PTXPrmtMode::B4E: |
| return GetSelector(V, (V - 1) & 7, (V - 2) & 7, (V - 3) & 7); |
| case NVPTX::PTXPrmtMode::RC8: |
| return GetSelector(V, V, V, V); |
| case NVPTX::PTXPrmtMode::ECL: |
| return GetSelector(V, std::max(V, 1U), std::max(V, 2U), 3U); |
| case NVPTX::PTXPrmtMode::ECR: |
| return GetSelector(0, std::min(V, 1U), std::min(V, 2U), V); |
| case NVPTX::PTXPrmtMode::RC16: { |
| unsigned V1 = (V & 1) << 1; |
| return GetSelector(V1, V1 + 1, V1, V1 + 1); |
| } |
| default: |
| llvm_unreachable("Invalid PRMT mode"); |
| } |
| } |
| |
| static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode) { |
| assert(A.getBitWidth() == 32 && B.getBitWidth() == 32 && |
| Selector.getBitWidth() == 32 && "PRMT must have i32 operands"); |
| // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}} |
| APInt BitField = B.concat(A); |
| APInt SelectorVal = getPRMTSelector(Selector, Mode); |
| APInt Result(32, 0); |
| for (unsigned I : llvm::seq(4U)) { |
| APInt Sel = SelectorVal.extractBits(4, I * 4); |
| unsigned Idx = Sel.getLoBits(3).getZExtValue(); |
| unsigned Sign = Sel.getHiBits(1).getZExtValue(); |
| APInt Byte = BitField.extractBits(8, Idx * 8); |
| if (Sign) |
| Byte = Byte.ashr(8); |
| Result.insertBits(Byte, I * 8); |
| } |
| return Result; |
| } |
| |
| static SDValue combinePRMT(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, |
| CodeGenOptLevel OptLevel) { |
| if (OptLevel == CodeGenOptLevel::None) |
| return SDValue(); |
| |
| // Constant fold PRMT |
| if (isa<ConstantSDNode>(N->getOperand(0)) && |
| isa<ConstantSDNode>(N->getOperand(1)) && |
| isa<ConstantSDNode>(N->getOperand(2))) |
| return DCI.DAG.getConstant(computePRMT(N->getConstantOperandAPInt(0), |
| N->getConstantOperandAPInt(1), |
| N->getConstantOperandAPInt(2), |
| N->getConstantOperandVal(3)), |
| SDLoc(N), N->getValueType(0)); |
| return SDValue(); |
| } |
| |
| // During call lowering we wrap the return values in a ProxyReg node which |
| // depend on the chain value produced by the completed call. This ensures that |
| // the full call is emitted in cases where libcalls are used to legalize |
| // operations. To improve the functioning of other DAG combines we pull all |
| // operations we can through one of these nodes, ensuring that the ProxyReg |
| // directly wraps a load. That is: |
| // |
| // (ProxyReg (zext (load retval0))) => (zext (ProxyReg (load retval0))) |
| // |
| static SDValue sinkProxyReg(SDValue R, SDValue Chain, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| switch (R.getOpcode()) { |
| case ISD::TRUNCATE: |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::BITCAST: { |
| if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI)) |
| return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), V); |
| return SDValue(); |
| } |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::OR: { |
| if (SDValue A = sinkProxyReg(R.getOperand(0), Chain, DCI)) |
| if (SDValue B = sinkProxyReg(R.getOperand(1), Chain, DCI)) |
| return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), A, B); |
| return SDValue(); |
| } |
| case ISD::Constant: |
| return R; |
| case ISD::LOAD: |
| case NVPTXISD::LoadV2: |
| case NVPTXISD::LoadV4: { |
| return DCI.DAG.getNode(NVPTXISD::ProxyReg, SDLoc(R), R.getValueType(), |
| {Chain, R}); |
| } |
| case ISD::BUILD_VECTOR: { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| SmallVector<SDValue, 16> Ops; |
| for (auto &Op : R->ops()) { |
| SDValue V = sinkProxyReg(Op, Chain, DCI); |
| if (!V) |
| return SDValue(); |
| Ops.push_back(V); |
| } |
| return DCI.DAG.getNode(ISD::BUILD_VECTOR, SDLoc(R), R.getValueType(), Ops); |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI)) |
| return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(R), |
| R.getValueType(), V, R.getOperand(1)); |
| return SDValue(); |
| } |
| default: |
| return SDValue(); |
| } |
| } |
| |
| static SDValue combineProxyReg(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| SDValue Chain = N->getOperand(0); |
| SDValue Reg = N->getOperand(1); |
| |
| // If the ProxyReg is not wrapping a load, try to pull the operations through |
| // the ProxyReg. |
| if (Reg.getOpcode() != ISD::LOAD) { |
| if (SDValue V = sinkProxyReg(Reg, Chain, DCI)) |
| return V; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| CodeGenOptLevel OptLevel = getTargetMachine().getOptLevel(); |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::ADD: |
| return PerformADDCombine(N, DCI, OptLevel); |
| case ISD::ADDRSPACECAST: |
| return combineADDRSPACECAST(N, DCI); |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| return combineMulWide(N, DCI, OptLevel); |
| case ISD::BUILD_VECTOR: |
| return PerformBUILD_VECTORCombine(N, DCI); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return PerformEXTRACTCombine(N, DCI); |
| case ISD::FADD: |
| return PerformFADDCombine(N, DCI, OptLevel); |
| case ISD::LOAD: |
| case NVPTXISD::LoadV2: |
| case NVPTXISD::LoadV4: |
| return combineUnpackingMovIntoLoad(N, DCI); |
| case ISD::MUL: |
| return PerformMULCombine(N, DCI, OptLevel); |
| case NVPTXISD::PRMT: |
| return combinePRMT(N, DCI, OptLevel); |
| case NVPTXISD::ProxyReg: |
| return combineProxyReg(N, DCI); |
| case ISD::SETCC: |
| return PerformSETCCCombine(N, DCI, STI.getSmVersion()); |
| case ISD::SHL: |
| return PerformSHLCombine(N, DCI, OptLevel); |
| case ISD::SREM: |
| case ISD::UREM: |
| return PerformREMCombine(N, DCI, OptLevel); |
| case ISD::STORE: |
| case NVPTXISD::StoreV2: |
| case NVPTXISD::StoreV4: |
| return PerformStoreCombine(N, DCI); |
| case ISD::VSELECT: |
| return PerformVSELECTCombine(N, DCI); |
| } |
| return SDValue(); |
| } |
| |
| static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| // Handle bitcasting to v2i8 without hitting the default promotion |
| // strategy which goes through stack memory. |
| SDValue Op(Node, 0); |
| EVT ToVT = Op->getValueType(0); |
| if (ToVT != MVT::v2i8) { |
| return; |
| } |
| |
| // Bitcast to i16 and unpack elements into a vector |
| SDLoc DL(Node); |
| SDValue AsInt = DAG.getBitcast(MVT::i16, Op->getOperand(0)); |
| SDValue Vec0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, AsInt); |
| SDValue Const8 = DAG.getConstant(8, DL, MVT::i16); |
| SDValue Vec1 = |
| DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, |
| DAG.getNode(ISD::SRL, DL, MVT::i16, {AsInt, Const8})); |
| Results.push_back( |
| DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i8, {Vec0, Vec1})); |
| } |
| |
| /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads. |
| static void replaceLoadVector(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results, |
| const NVPTXSubtarget &STI) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| const EVT ResVT = LD->getValueType(0); |
| const EVT MemVT = LD->getMemoryVT(); |
| |
| // If we're doing sign/zero extension as part of the load, avoid lowering to |
| // a LoadV node. TODO: consider relaxing this restriction. |
| if (ResVT != MemVT) |
| return; |
| |
| const auto NumEltsAndEltVT = |
| getVectorLoweringShape(ResVT, STI, LD->getAddressSpace()); |
| if (!NumEltsAndEltVT) |
| return; |
| const auto [NumElts, EltVT] = NumEltsAndEltVT.value(); |
| |
| Align Alignment = LD->getAlign(); |
| const auto &TD = DAG.getDataLayout(); |
| Align PrefAlign = TD.getPrefTypeAlign(MemVT.getTypeForEVT(*DAG.getContext())); |
| if (Alignment < PrefAlign) { |
| // This load is not sufficiently aligned, so bail out and let this vector |
| // load be scalarized. Note that we may still be able to emit smaller |
| // vector loads. For example, if we are loading a <4 x float> with an |
| // alignment of 8, this check will fail but the legalizer will try again |
| // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| return; |
| } |
| |
| // Since LoadV2 is a target node, we cannot rely on DAG type legalization. |
| // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| // loaded type to i16 and propagate the "real" type as the memory type. |
| const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT; |
| |
| unsigned Opcode; |
| switch (NumElts) { |
| default: |
| return; |
| case 2: |
| Opcode = NVPTXISD::LoadV2; |
| break; |
| case 4: |
| Opcode = NVPTXISD::LoadV4; |
| break; |
| case 8: |
| Opcode = NVPTXISD::LoadV8; |
| break; |
| } |
| auto ListVTs = SmallVector<EVT, 9>(NumElts, LoadEltVT); |
| ListVTs.push_back(MVT::Other); |
| SDVTList LdResVTs = DAG.getVTList(ListVTs); |
| |
| SDLoc DL(LD); |
| |
| // Copy regular operands |
| SmallVector<SDValue, 8> OtherOps(LD->ops()); |
| |
| // The select routine does not have access to the LoadSDNode instance, so |
| // pass along the extension information |
| OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL)); |
| |
| SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, |
| LD->getMemoryVT(), |
| LD->getMemOperand()); |
| |
| SmallVector<SDValue> ScalarRes; |
| if (EltVT.isVector()) { |
| assert(EVT(EltVT.getVectorElementType()) == ResVT.getVectorElementType()); |
| assert(NumElts * EltVT.getVectorNumElements() == |
| ResVT.getVectorNumElements()); |
| // Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back |
| // into individual elements. |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SDValue SubVector = NewLD.getValue(I); |
| DAG.ExtractVectorElements(SubVector, ScalarRes); |
| } |
| } else { |
| for (const unsigned I : llvm::seq(NumElts)) { |
| SDValue Res = NewLD.getValue(I); |
| if (LoadEltVT != EltVT) |
| Res = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res); |
| ScalarRes.push_back(Res); |
| } |
| } |
| |
| SDValue LoadChain = NewLD.getValue(NumElts); |
| |
| const MVT BuildVecVT = |
| MVT::getVectorVT(EltVT.getScalarType(), ScalarRes.size()); |
| SDValue BuildVec = DAG.getBuildVector(BuildVecVT, DL, ScalarRes); |
| SDValue LoadValue = DAG.getBitcast(ResVT, BuildVec); |
| |
| Results.append({LoadValue, LoadChain}); |
| } |
| |
| // Lower vector return type of tcgen05.ld intrinsics |
| static void ReplaceTcgen05Ld(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results, |
| bool hasOffset = false) { |
| SDLoc DL(N); |
| EVT ResVT = N->getValueType(0); |
| if (!ResVT.isVector()) |
| return; // already legalized. |
| |
| const unsigned NumElts = ResVT.getVectorNumElements(); |
| |
| // Create the return type of the instructions |
| SmallVector<EVT, 5> ListVTs; |
| for (unsigned i = 0; i < NumElts; ++i) |
| ListVTs.push_back(MVT::i32); |
| |
| ListVTs.push_back(N->getValueType(1)); // Chain |
| |
| SDVTList ResVTs = DAG.getVTList(ListVTs); |
| |
| SmallVector<SDValue, 8> Ops{N->getOperand(0), N->getOperand(1), |
| N->getOperand(2)}; |
| |
| if (hasOffset) { |
| Ops.push_back(N->getOperand(3)); // offset |
| Ops.push_back(N->getOperand(4)); // Pack flag |
| } else |
| Ops.push_back(N->getOperand(3)); // Pack flag |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| SDValue NewNode = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, ResVTs, Ops, |
| MemSD->getMemoryVT(), MemSD->getMemOperand()); |
| |
| // split the vector result |
| SmallVector<SDValue, 4> ScalarRes; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue Res = NewNode.getValue(i); |
| ScalarRes.push_back(Res); |
| } |
| |
| SDValue Chain = NewNode.getValue(NumElts); |
| SDValue BuildVector = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes); |
| Results.push_back(BuildVector); // Build Vector |
| Results.push_back(Chain); // Chain |
| } |
| |
| static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Chain = N->getOperand(0); |
| SDValue Intrin = N->getOperand(1); |
| SDLoc DL(N); |
| |
| // Get the intrinsic ID |
| unsigned IntrinNo = Intrin.getNode()->getAsZExtVal(); |
| switch (IntrinNo) { |
| default: |
| return; |
| case Intrinsic::nvvm_ldu_global_i: |
| case Intrinsic::nvvm_ldu_global_f: |
| case Intrinsic::nvvm_ldu_global_p: { |
| EVT ResVT = N->getValueType(0); |
| |
| if (ResVT.isVector()) { |
| // Vector LDG/LDU |
| |
| unsigned NumElts = ResVT.getVectorNumElements(); |
| EVT EltVT = ResVT.getVectorElementType(); |
| |
| // Since LDU/LDG are target nodes, we cannot rely on DAG type |
| // legalization. |
| // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| // loaded type to i16 and propagate the "real" type as the memory type. |
| bool NeedTrunc = false; |
| if (EltVT.getSizeInBits() < 16) { |
| EltVT = MVT::i16; |
| NeedTrunc = true; |
| } |
| |
| unsigned Opcode = 0; |
| SDVTList LdResVTs; |
| |
| switch (NumElts) { |
| default: |
| return; |
| case 2: |
| Opcode = NVPTXISD::LDUV2; |
| LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); |
| break; |
| case 4: { |
| Opcode = NVPTXISD::LDUV4; |
| EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; |
| LdResVTs = DAG.getVTList(ListVTs); |
| break; |
| } |
| } |
| |
| SmallVector<SDValue, 8> OtherOps; |
| |
| // Copy regular operands |
| |
| OtherOps.push_back(Chain); // Chain |
| // Skip operand 1 (intrinsic ID) |
| // Others |
| OtherOps.append(N->op_begin() + 2, N->op_end()); |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| |
| SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, |
| MemSD->getMemoryVT(), |
| MemSD->getMemOperand()); |
| |
| SmallVector<SDValue, 4> ScalarRes; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue Res = NewLD.getValue(i); |
| if (NeedTrunc) |
| Res = |
| DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); |
| ScalarRes.push_back(Res); |
| } |
| |
| SDValue LoadChain = NewLD.getValue(NumElts); |
| |
| SDValue BuildVec = |
| DAG.getBuildVector(ResVT, DL, ScalarRes); |
| |
| Results.push_back(BuildVec); |
| Results.push_back(LoadChain); |
| } else { |
| // i8 LDG/LDU |
| assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && |
| "Custom handling of non-i8 ldu/ldg?"); |
| |
| // Just copy all operands as-is |
| SmallVector<SDValue, 4> Ops(N->ops()); |
| |
| // Force output to i16 |
| SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other); |
| |
| MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N); |
| |
| // We make sure the memory type is i8, which will be used during isel |
| // to select the proper instruction. |
| SDValue NewLD = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops, |
| MVT::i8, MemSD->getMemOperand()); |
| |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, |
| NewLD.getValue(0))); |
| Results.push_back(NewLD.getValue(1)); |
| } |
| return; |
| } |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| return ReplaceTcgen05Ld(N, DAG, Results); |
| |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: |
| case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: |
| return ReplaceTcgen05Ld(N, DAG, Results, /* Offset */ true); |
| } |
| } |
| |
| static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) { |
| // Change the CopyFromReg to output 2 64-bit results instead of a 128-bit |
| // result so that it can pass the legalization |
| SDLoc DL(N); |
| SDValue Chain = N->getOperand(0); |
| SDValue Reg = N->getOperand(1); |
| SDValue Glue = N->getOperand(2); |
| |
| assert(Reg.getValueType() == MVT::i128 && |
| "Custom lowering for CopyFromReg with 128-bit reg only"); |
| SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1), |
| N->getValueType(2)}; |
| SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue}; |
| |
| SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps); |
| SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, |
| {NewValue.getValue(0), NewValue.getValue(1)}); |
| |
| Results.push_back(Pair); |
| Results.push_back(NewValue.getValue(2)); |
| Results.push_back(NewValue.getValue(3)); |
| } |
| |
| static void replaceProxyReg(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| SmallVectorImpl<SDValue> &Results) { |
| SDValue Chain = N->getOperand(0); |
| SDValue Reg = N->getOperand(1); |
| |
| MVT VT = TLI.getRegisterType(*DAG.getContext(), Reg.getValueType()); |
| |
| SDValue NewReg = DAG.getAnyExtOrTrunc(Reg, SDLoc(N), VT); |
| SDValue NewProxy = |
| DAG.getNode(NVPTXISD::ProxyReg, SDLoc(N), VT, {Chain, NewReg}); |
| SDValue Res = DAG.getAnyExtOrTrunc(NewProxy, SDLoc(N), N->getValueType(0)); |
| |
| Results.push_back(Res); |
| } |
| |
| void NVPTXTargetLowering::ReplaceNodeResults( |
| SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| default: |
| report_fatal_error("Unhandled custom legalization"); |
| case ISD::BITCAST: |
| ReplaceBITCAST(N, DAG, Results); |
| return; |
| case ISD::LOAD: |
| replaceLoadVector(N, DAG, Results, STI); |
| return; |
| case ISD::INTRINSIC_W_CHAIN: |
| ReplaceINTRINSIC_W_CHAIN(N, DAG, Results); |
| return; |
| case ISD::CopyFromReg: |
| ReplaceCopyFromReg_128(N, DAG, Results); |
| return; |
| case NVPTXISD::ProxyReg: |
| replaceProxyReg(N, DAG, *this, Results); |
| return; |
| } |
| } |
| |
| NVPTXTargetLowering::AtomicExpansionKind |
| NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| Type *Ty = AI->getValOperand()->getType(); |
| |
| if (AI->isFloatingPointOperation()) { |
| if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) { |
| if (Ty->isHalfTy() && STI.getSmVersion() >= 70 && |
| STI.getPTXVersion() >= 63) |
| return AtomicExpansionKind::None; |
| if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 && |
| STI.getPTXVersion() >= 78) |
| return AtomicExpansionKind::None; |
| if (Ty->isFloatTy()) |
| return AtomicExpansionKind::None; |
| if (Ty->isDoubleTy() && STI.hasAtomAddF64()) |
| return AtomicExpansionKind::None; |
| } |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| assert(Ty->isIntegerTy() && "Ty should be integer at this point"); |
| auto ITy = cast<llvm::IntegerType>(Ty); |
| |
| switch (AI->getOperation()) { |
| default: |
| return AtomicExpansionKind::CmpXChg; |
| case AtomicRMWInst::BinOp::And: |
| case AtomicRMWInst::BinOp::Or: |
| case AtomicRMWInst::BinOp::Xor: |
| case AtomicRMWInst::BinOp::Xchg: |
| switch (ITy->getBitWidth()) { |
| case 8: |
| case 16: |
| return AtomicExpansionKind::CmpXChg; |
| case 32: |
| return AtomicExpansionKind::None; |
| case 64: |
| if (STI.hasAtomBitwise64()) |
| return AtomicExpansionKind::None; |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| llvm_unreachable("unsupported width encountered"); |
| } |
| case AtomicRMWInst::BinOp::Add: |
| case AtomicRMWInst::BinOp::Sub: |
| case AtomicRMWInst::BinOp::Max: |
| case AtomicRMWInst::BinOp::Min: |
| case AtomicRMWInst::BinOp::UMax: |
| case AtomicRMWInst::BinOp::UMin: |
| switch (ITy->getBitWidth()) { |
| case 8: |
| case 16: |
| return AtomicExpansionKind::CmpXChg; |
| case 32: |
| return AtomicExpansionKind::None; |
| case 64: |
| if (STI.hasAtomMinMax64()) |
| return AtomicExpansionKind::None; |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| llvm_unreachable("unsupported width encountered"); |
| } |
| case AtomicRMWInst::BinOp::UIncWrap: |
| case AtomicRMWInst::BinOp::UDecWrap: |
| switch (ITy->getBitWidth()) { |
| case 32: |
| return AtomicExpansionKind::None; |
| case 8: |
| case 16: |
| case 64: |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| llvm_unreachable("unsupported width encountered"); |
| } |
| } |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| bool NVPTXTargetLowering::shouldInsertFencesForAtomic( |
| const Instruction *I) const { |
| auto *CI = dyn_cast<AtomicCmpXchgInst>(I); |
| // When CAS bitwidth is not supported on the hardware, the CAS is emulated |
| // using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce |
| // the memory order using explicit fences around the retry loop. |
| // The memory order of natively supported CAS operations can be enforced |
| // by lowering to an atom.cas with the right memory synchronizing effect. |
| // However, atom.cas only supports relaxed, acquire, release and acq_rel. |
| // So we also use explicit fences for enforcing memory order for |
| // seq_cast CAS with natively-supported bitwidths. |
| return CI && |
| (cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() < |
| STI.getMinCmpXchgSizeInBits() || |
| CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent); |
| } |
| |
| AtomicOrdering NVPTXTargetLowering::atomicOperationOrderAfterFenceSplit( |
| const Instruction *I) const { |
| auto *CI = dyn_cast<AtomicCmpXchgInst>(I); |
| bool BitwidthSupportedAndIsSeqCst = |
| CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent && |
| cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() >= |
| STI.getMinCmpXchgSizeInBits(); |
| return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire |
| : AtomicOrdering::Monotonic; |
| } |
| |
| Instruction *NVPTXTargetLowering::emitLeadingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (!isa<AtomicCmpXchgInst>(Inst)) |
| return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord); |
| |
| // Specialize for cmpxchg |
| // Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated |
| SyncScope::ID SSID = cast<AtomicCmpXchgInst>(Inst)->getSyncScopeID(); |
| if (isReleaseOrStronger(Ord)) |
| return Builder.CreateFence(Ord == AtomicOrdering::SequentiallyConsistent |
| ? Ord |
| : AtomicOrdering::Release, |
| SSID); |
| |
| return nullptr; |
| } |
| |
| Instruction *NVPTXTargetLowering::emitTrailingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| // Specialize for cmpxchg |
| if (!isa<AtomicCmpXchgInst>(Inst)) |
| return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord); |
| |
| auto *CI = cast<AtomicCmpXchgInst>(Inst); |
| auto CASWidth = |
| cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth(); |
| SyncScope::ID SSID = CI->getSyncScopeID(); |
| // Do not emit a trailing fence for cmpxchg seq_cst which are not emulated |
| if (isAcquireOrStronger(Ord) && |
| (Ord != AtomicOrdering::SequentiallyConsistent || |
| CASWidth < STI.getMinCmpXchgSizeInBits())) |
| return Builder.CreateFence(AtomicOrdering::Acquire, SSID); |
| |
| return nullptr; |
| } |
| |
| // Rather than default to SINT when both UINT and SINT are custom, we only |
| // change the opcode when UINT is not legal and SINT is. UINT is preferred when |
| // both are custom since unsigned CVT instructions can lead to slightly better |
| // SASS code with fewer instructions. |
| unsigned NVPTXTargetLowering::getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, |
| EVT ToVT) const { |
| if (isOperationLegal(Op, ToVT)) |
| return Op; |
| switch (Op) { |
| case ISD::FP_TO_UINT: |
| if (isOperationLegal(ISD::FP_TO_SINT, ToVT)) |
| return ISD::FP_TO_SINT; |
| break; |
| case ISD::STRICT_FP_TO_UINT: |
| if (isOperationLegal(ISD::STRICT_FP_TO_SINT, ToVT)) |
| return ISD::STRICT_FP_TO_SINT; |
| break; |
| case ISD::VP_FP_TO_UINT: |
| if (isOperationLegal(ISD::VP_FP_TO_SINT, ToVT)) |
| return ISD::VP_FP_TO_SINT; |
| break; |
| default: |
| break; |
| } |
| return Op; |
| } |
| |
| // Pin NVPTXTargetObjectFile's vtables to this file. |
| NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default; |
| |
| MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal( |
| const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { |
| return getDataSection(); |
| } |
| |
| static void computeKnownBitsForPRMT(const SDValue Op, KnownBits &Known, |
| const SelectionDAG &DAG, unsigned Depth) { |
| SDValue A = Op.getOperand(0); |
| SDValue B = Op.getOperand(1); |
| ConstantSDNode *Selector = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| unsigned Mode = Op.getConstantOperandVal(3); |
| |
| if (!Selector) |
| return; |
| |
| KnownBits AKnown = DAG.computeKnownBits(A, Depth); |
| KnownBits BKnown = DAG.computeKnownBits(B, Depth); |
| |
| // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}} |
| assert(AKnown.getBitWidth() == 32 && BKnown.getBitWidth() == 32 && |
| "PRMT must have i32 operands"); |
| assert(Known.getBitWidth() == 32 && "PRMT must have i32 result"); |
| KnownBits BitField = BKnown.concat(AKnown); |
| |
| APInt SelectorVal = getPRMTSelector(Selector->getAPIntValue(), Mode); |
| for (unsigned I : llvm::seq(4)) { |
| APInt Sel = SelectorVal.extractBits(4, I * 4); |
| unsigned Idx = Sel.getLoBits(3).getZExtValue(); |
| unsigned Sign = Sel.getHiBits(1).getZExtValue(); |
| KnownBits Byte = BitField.extractBits(8, Idx * 8); |
| if (Sign) |
| Byte = KnownBits::ashr(Byte, 8); |
| Known.insertBits(Byte, I * 8); |
| } |
| } |
| |
| static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known) { |
| MemSDNode *LD = cast<MemSDNode>(Op); |
| |
| // We can't do anything without knowing the sign bit. |
| auto ExtType = LD->getConstantOperandVal(LD->getNumOperands() - 1); |
| if (ExtType == ISD::SEXTLOAD) |
| return; |
| |
| // ExtLoading to vector types is weird and may not work well with known bits. |
| auto DestVT = LD->getValueType(0); |
| if (DestVT.isVector()) |
| return; |
| |
| assert(Known.getBitWidth() == DestVT.getSizeInBits()); |
| auto ElementBitWidth = NVPTXDAGToDAGISel::getFromTypeWidthForLoad(LD); |
| Known.Zero.setHighBits(Known.getBitWidth() - ElementBitWidth); |
| } |
| |
| void NVPTXTargetLowering::computeKnownBitsForTargetNode( |
| const SDValue Op, KnownBits &Known, const APInt &DemandedElts, |
| const SelectionDAG &DAG, unsigned Depth) const { |
| Known.resetAll(); |
| |
| switch (Op.getOpcode()) { |
| case NVPTXISD::PRMT: |
| computeKnownBitsForPRMT(Op, Known, DAG, Depth); |
| break; |
| case NVPTXISD::LoadV2: |
| case NVPTXISD::LoadV4: |
| case NVPTXISD::LoadV8: |
| computeKnownBitsForLoadV(Op, Known); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static std::pair<APInt, APInt> getPRMTDemandedBits(const APInt &SelectorVal, |
| const APInt &DemandedBits) { |
| APInt DemandedLHS = APInt(32, 0); |
| APInt DemandedRHS = APInt(32, 0); |
| |
| for (unsigned I : llvm::seq(4)) { |
| if (DemandedBits.extractBits(8, I * 8).isZero()) |
| continue; |
| |
| APInt Sel = SelectorVal.extractBits(4, I * 4); |
| unsigned Idx = Sel.getLoBits(3).getZExtValue(); |
| unsigned Sign = Sel.getHiBits(1).getZExtValue(); |
| |
| APInt &Src = Idx < 4 ? DemandedLHS : DemandedRHS; |
| unsigned ByteStart = (Idx % 4) * 8; |
| if (Sign) |
| Src.setBit(ByteStart + 7); |
| else |
| Src.setBits(ByteStart, ByteStart + 8); |
| } |
| |
| return {DemandedLHS, DemandedRHS}; |
| } |
| |
| // Replace undef with 0 as this is easier for other optimizations such as |
| // known bits. |
| static SDValue canonicalizePRMTInput(SDValue Op, SelectionDAG &DAG) { |
| if (!Op) |
| return SDValue(); |
| if (Op.isUndef()) |
| return DAG.getConstant(0, SDLoc(), MVT::i32); |
| return Op; |
| } |
| |
| static SDValue simplifyDemandedBitsForPRMT(SDValue PRMT, |
| const APInt &DemandedBits, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| unsigned Depth) { |
| assert(PRMT.getOpcode() == NVPTXISD::PRMT); |
| SDValue Op0 = PRMT.getOperand(0); |
| SDValue Op1 = PRMT.getOperand(1); |
| auto *SelectorConst = dyn_cast<ConstantSDNode>(PRMT.getOperand(2)); |
| if (!SelectorConst) |
| return SDValue(); |
| |
| unsigned Mode = PRMT.getConstantOperandVal(3); |
| const APInt Selector = getPRMTSelector(SelectorConst->getAPIntValue(), Mode); |
| |
| // Try to simplify the PRMT to one of the inputs if the used bytes are all |
| // from the same input in the correct order. |
| const unsigned LeadingBytes = DemandedBits.countLeadingZeros() / 8; |
| const unsigned SelBits = (4 - LeadingBytes) * 4; |
| if (Selector.getLoBits(SelBits) == APInt(32, 0x3210).getLoBits(SelBits)) |
| return Op0; |
| if (Selector.getLoBits(SelBits) == APInt(32, 0x7654).getLoBits(SelBits)) |
| return Op1; |
| |
| auto [DemandedLHS, DemandedRHS] = getPRMTDemandedBits(Selector, DemandedBits); |
| |
| // Attempt to avoid multi-use ops if we don't need anything from them. |
| SDValue DemandedOp0 = |
| TLI.SimplifyMultipleUseDemandedBits(Op0, DemandedLHS, DAG, Depth + 1); |
| SDValue DemandedOp1 = |
| TLI.SimplifyMultipleUseDemandedBits(Op1, DemandedRHS, DAG, Depth + 1); |
| |
| DemandedOp0 = canonicalizePRMTInput(DemandedOp0, DAG); |
| DemandedOp1 = canonicalizePRMTInput(DemandedOp1, DAG); |
| if ((DemandedOp0 && DemandedOp0 != Op0) || |
| (DemandedOp1 && DemandedOp1 != Op1)) { |
| Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
| Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
| return getPRMT(Op0, Op1, Selector.getZExtValue(), SDLoc(PRMT), DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| bool NVPTXTargetLowering::SimplifyDemandedBitsForTargetNode( |
| SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
| KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { |
| Known.resetAll(); |
| |
| switch (Op.getOpcode()) { |
| case NVPTXISD::PRMT: |
| if (SDValue Result = simplifyDemandedBitsForPRMT(Op, DemandedBits, TLO.DAG, |
| *this, Depth)) { |
| TLO.CombineTo(Op, Result); |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); |
| return false; |
| } |