| //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run | 
 | // both before and after the DAG is legalized. | 
 | // | 
 | // This pass is not a substitute for the LLVM IR instcombine pass. This pass is | 
 | // primarily intended to handle simplification opportunities that are implicit | 
 | // in the LLVM IR and exposed by the various codegen lowering phases. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/APFloat.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/IntervalMap.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallBitVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/Analysis/TargetLibraryInfo.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/Analysis/VectorUtils.h" | 
 | #include "llvm/CodeGen/ByteProvider.h" | 
 | #include "llvm/CodeGen/DAGCombine.h" | 
 | #include "llvm/CodeGen/ISDOpcodes.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/SDPatternMatch.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" | 
 | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
 | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/CodeGen/ValueTypes.h" | 
 | #include "llvm/CodeGenTypes/MachineValueType.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/Metadata.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CodeGen.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/DebugCounter.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/KnownBits.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <functional> | 
 | #include <iterator> | 
 | #include <optional> | 
 | #include <string> | 
 | #include <tuple> | 
 | #include <utility> | 
 | #include <variant> | 
 |  | 
 | #include "MatchContext.h" | 
 |  | 
 | using namespace llvm; | 
 | using namespace llvm::SDPatternMatch; | 
 |  | 
 | #define DEBUG_TYPE "dagcombine" | 
 |  | 
 | STATISTIC(NodesCombined   , "Number of dag nodes combined"); | 
 | STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); | 
 | STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); | 
 | STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed"); | 
 | STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int"); | 
 | STATISTIC(SlicedLoads, "Number of load sliced"); | 
 | STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); | 
 |  | 
 | DEBUG_COUNTER(DAGCombineCounter, "dagcombine", | 
 |               "Controls whether a DAG combine is performed for a node"); | 
 |  | 
 | static cl::opt<bool> | 
 | CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, | 
 |                  cl::desc("Enable DAG combiner's use of IR alias analysis")); | 
 |  | 
 | static cl::opt<bool> | 
 | UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), | 
 |         cl::desc("Enable DAG combiner's use of TBAA")); | 
 |  | 
 | #ifndef NDEBUG | 
 | static cl::opt<std::string> | 
 | CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, | 
 |                    cl::desc("Only use DAG-combiner alias analysis in this" | 
 |                             " function")); | 
 | #endif | 
 |  | 
 | /// Hidden option to stress test load slicing, i.e., when this option | 
 | /// is enabled, load slicing bypasses most of its profitability guards. | 
 | static cl::opt<bool> | 
 | StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, | 
 |                   cl::desc("Bypass the profitability model of load slicing"), | 
 |                   cl::init(false)); | 
 |  | 
 | static cl::opt<bool> | 
 |   MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), | 
 |                     cl::desc("DAG combiner may split indexing from loads")); | 
 |  | 
 | static cl::opt<bool> | 
 |     EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), | 
 |                        cl::desc("DAG combiner enable merging multiple stores " | 
 |                                 "into a wider store")); | 
 |  | 
 | static cl::opt<unsigned> TokenFactorInlineLimit( | 
 |     "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), | 
 |     cl::desc("Limit the number of operands to inline for Token Factors")); | 
 |  | 
 | static cl::opt<unsigned> StoreMergeDependenceLimit( | 
 |     "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), | 
 |     cl::desc("Limit the number of times for the same StoreNode and RootNode " | 
 |              "to bail out in store merging dependence check")); | 
 |  | 
 | static cl::opt<bool> EnableReduceLoadOpStoreWidth( | 
 |     "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), | 
 |     cl::desc("DAG combiner enable reducing the width of load/op/store " | 
 |              "sequence")); | 
 | static cl::opt<bool> ReduceLoadOpStoreWidthForceNarrowingProfitable( | 
 |     "combiner-reduce-load-op-store-width-force-narrowing-profitable", | 
 |     cl::Hidden, cl::init(false), | 
 |     cl::desc("DAG combiner force override the narrowing profitable check when " | 
 |              "reducing the width of load/op/store sequences")); | 
 |  | 
 | static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( | 
 |     "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), | 
 |     cl::desc("DAG combiner enable load/<replace bytes>/store with " | 
 |              "a narrower store")); | 
 |  | 
 | namespace { | 
 |  | 
 |   class DAGCombiner { | 
 |     SelectionDAG &DAG; | 
 |     const TargetLowering &TLI; | 
 |     const SelectionDAGTargetInfo *STI; | 
 |     CombineLevel Level = BeforeLegalizeTypes; | 
 |     CodeGenOptLevel OptLevel; | 
 |     bool LegalDAG = false; | 
 |     bool LegalOperations = false; | 
 |     bool LegalTypes = false; | 
 |     bool ForCodeSize; | 
 |     bool DisableGenericCombines; | 
 |  | 
 |     /// Worklist of all of the nodes that need to be simplified. | 
 |     /// | 
 |     /// This must behave as a stack -- new nodes to process are pushed onto the | 
 |     /// back and when processing we pop off of the back. | 
 |     /// | 
 |     /// The worklist will not contain duplicates but may contain null entries | 
 |     /// due to nodes being deleted from the underlying DAG. For fast lookup and | 
 |     /// deduplication, the index of the node in this vector is stored in the | 
 |     /// node in SDNode::CombinerWorklistIndex. | 
 |     SmallVector<SDNode *, 64> Worklist; | 
 |  | 
 |     /// This records all nodes attempted to be added to the worklist since we | 
 |     /// considered a new worklist entry. As we keep do not add duplicate nodes | 
 |     /// in the worklist, this is different from the tail of the worklist. | 
 |     SmallSetVector<SDNode *, 32> PruningList; | 
 |  | 
 |     /// Map from candidate StoreNode to the pair of RootNode and count. | 
 |     /// The count is used to track how many times we have seen the StoreNode | 
 |     /// with the same RootNode bail out in dependence check. If we have seen | 
 |     /// the bail out for the same pair many times over a limit, we won't | 
 |     /// consider the StoreNode with the same RootNode as store merging | 
 |     /// candidate again. | 
 |     DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; | 
 |  | 
 |     // BatchAA - Used for DAG load/store alias analysis. | 
 |     BatchAAResults *BatchAA; | 
 |  | 
 |     /// This caches all chains that have already been processed in | 
 |     /// DAGCombiner::getStoreMergeCandidates() and found to have no mergeable | 
 |     /// stores candidates. | 
 |     SmallPtrSet<SDNode *, 4> ChainsWithoutMergeableStores; | 
 |  | 
 |     /// When an instruction is simplified, add all users of the instruction to | 
 |     /// the work lists because they might get more simplified now. | 
 |     void AddUsersToWorklist(SDNode *N) { | 
 |       for (SDNode *Node : N->users()) | 
 |         AddToWorklist(Node); | 
 |     } | 
 |  | 
 |     /// Convenient shorthand to add a node and all of its user to the worklist. | 
 |     void AddToWorklistWithUsers(SDNode *N) { | 
 |       AddUsersToWorklist(N); | 
 |       AddToWorklist(N); | 
 |     } | 
 |  | 
 |     // Prune potentially dangling nodes. This is called after | 
 |     // any visit to a node, but should also be called during a visit after any | 
 |     // failed combine which may have created a DAG node. | 
 |     void clearAddedDanglingWorklistEntries() { | 
 |       // Check any nodes added to the worklist to see if they are prunable. | 
 |       while (!PruningList.empty()) { | 
 |         auto *N = PruningList.pop_back_val(); | 
 |         if (N->use_empty()) | 
 |           recursivelyDeleteUnusedNodes(N); | 
 |       } | 
 |     } | 
 |  | 
 |     SDNode *getNextWorklistEntry() { | 
 |       // Before we do any work, remove nodes that are not in use. | 
 |       clearAddedDanglingWorklistEntries(); | 
 |       SDNode *N = nullptr; | 
 |       // The Worklist holds the SDNodes in order, but it may contain null | 
 |       // entries. | 
 |       while (!N && !Worklist.empty()) { | 
 |         N = Worklist.pop_back_val(); | 
 |       } | 
 |  | 
 |       if (N) { | 
 |         assert(N->getCombinerWorklistIndex() >= 0 && | 
 |                "Found a worklist entry without a corresponding map entry!"); | 
 |         // Set to -2 to indicate that we combined the node. | 
 |         N->setCombinerWorklistIndex(-2); | 
 |       } | 
 |       return N; | 
 |     } | 
 |  | 
 |     /// Call the node-specific routine that folds each particular type of node. | 
 |     SDValue visit(SDNode *N); | 
 |  | 
 |   public: | 
 |     DAGCombiner(SelectionDAG &D, BatchAAResults *BatchAA, CodeGenOptLevel OL) | 
 |         : DAG(D), TLI(D.getTargetLoweringInfo()), | 
 |           STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL), | 
 |           BatchAA(BatchAA) { | 
 |       ForCodeSize = DAG.shouldOptForSize(); | 
 |       DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); | 
 |  | 
 |       MaximumLegalStoreInBits = 0; | 
 |       // We use the minimum store size here, since that's all we can guarantee | 
 |       // for the scalable vector types. | 
 |       for (MVT VT : MVT::all_valuetypes()) | 
 |         if (EVT(VT).isSimple() && VT != MVT::Other && | 
 |             TLI.isTypeLegal(EVT(VT)) && | 
 |             VT.getSizeInBits().getKnownMinValue() >= MaximumLegalStoreInBits) | 
 |           MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinValue(); | 
 |     } | 
 |  | 
 |     void ConsiderForPruning(SDNode *N) { | 
 |       // Mark this for potential pruning. | 
 |       PruningList.insert(N); | 
 |     } | 
 |  | 
 |     /// Add to the worklist making sure its instance is at the back (next to be | 
 |     /// processed.) | 
 |     void AddToWorklist(SDNode *N, bool IsCandidateForPruning = true, | 
 |                        bool SkipIfCombinedBefore = false) { | 
 |       assert(N->getOpcode() != ISD::DELETED_NODE && | 
 |              "Deleted Node added to Worklist"); | 
 |  | 
 |       // Skip handle nodes as they can't usefully be combined and confuse the | 
 |       // zero-use deletion strategy. | 
 |       if (N->getOpcode() == ISD::HANDLENODE) | 
 |         return; | 
 |  | 
 |       if (SkipIfCombinedBefore && N->getCombinerWorklistIndex() == -2) | 
 |         return; | 
 |  | 
 |       if (IsCandidateForPruning) | 
 |         ConsiderForPruning(N); | 
 |  | 
 |       if (N->getCombinerWorklistIndex() < 0) { | 
 |         N->setCombinerWorklistIndex(Worklist.size()); | 
 |         Worklist.push_back(N); | 
 |       } | 
 |     } | 
 |  | 
 |     /// Remove all instances of N from the worklist. | 
 |     void removeFromWorklist(SDNode *N) { | 
 |       PruningList.remove(N); | 
 |       StoreRootCountMap.erase(N); | 
 |  | 
 |       int WorklistIndex = N->getCombinerWorklistIndex(); | 
 |       // If not in the worklist, the index might be -1 or -2 (was combined | 
 |       // before). As the node gets deleted anyway, there's no need to update | 
 |       // the index. | 
 |       if (WorklistIndex < 0) | 
 |         return; // Not in the worklist. | 
 |  | 
 |       // Null out the entry rather than erasing it to avoid a linear operation. | 
 |       Worklist[WorklistIndex] = nullptr; | 
 |       N->setCombinerWorklistIndex(-1); | 
 |     } | 
 |  | 
 |     void deleteAndRecombine(SDNode *N); | 
 |     bool recursivelyDeleteUnusedNodes(SDNode *N); | 
 |  | 
 |     /// Replaces all uses of the results of one DAG node with new values. | 
 |     SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
 |                       bool AddTo = true); | 
 |  | 
 |     /// Replaces all uses of the results of one DAG node with new values. | 
 |     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { | 
 |       return CombineTo(N, &Res, 1, AddTo); | 
 |     } | 
 |  | 
 |     /// Replaces all uses of the results of one DAG node with new values. | 
 |     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, | 
 |                       bool AddTo = true) { | 
 |       SDValue To[] = { Res0, Res1 }; | 
 |       return CombineTo(N, To, 2, AddTo); | 
 |     } | 
 |  | 
 |     void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); | 
 |  | 
 |   private: | 
 |     unsigned MaximumLegalStoreInBits; | 
 |  | 
 |     /// Check the specified integer node value to see if it can be simplified or | 
 |     /// if things it uses can be simplified by bit propagation. | 
 |     /// If so, return true. | 
 |     bool SimplifyDemandedBits(SDValue Op) { | 
 |       unsigned BitWidth = Op.getScalarValueSizeInBits(); | 
 |       APInt DemandedBits = APInt::getAllOnes(BitWidth); | 
 |       return SimplifyDemandedBits(Op, DemandedBits); | 
 |     } | 
 |  | 
 |     bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { | 
 |       EVT VT = Op.getValueType(); | 
 |       APInt DemandedElts = VT.isFixedLengthVector() | 
 |                                ? APInt::getAllOnes(VT.getVectorNumElements()) | 
 |                                : APInt(1, 1); | 
 |       return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, false); | 
 |     } | 
 |  | 
 |     /// Check the specified vector node value to see if it can be simplified or | 
 |     /// if things it uses can be simplified as it only uses some of the | 
 |     /// elements. If so, return true. | 
 |     bool SimplifyDemandedVectorElts(SDValue Op) { | 
 |       // TODO: For now just pretend it cannot be simplified. | 
 |       if (Op.getValueType().isScalableVector()) | 
 |         return false; | 
 |  | 
 |       unsigned NumElts = Op.getValueType().getVectorNumElements(); | 
 |       APInt DemandedElts = APInt::getAllOnes(NumElts); | 
 |       return SimplifyDemandedVectorElts(Op, DemandedElts); | 
 |     } | 
 |  | 
 |     bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, | 
 |                               const APInt &DemandedElts, | 
 |                               bool AssumeSingleUse = false); | 
 |     bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, | 
 |                                     bool AssumeSingleUse = false); | 
 |  | 
 |     bool CombineToPreIndexedLoadStore(SDNode *N); | 
 |     bool CombineToPostIndexedLoadStore(SDNode *N); | 
 |     SDValue SplitIndexingFromLoad(LoadSDNode *LD); | 
 |     bool SliceUpLoad(SDNode *N); | 
 |  | 
 |     // Looks up the chain to find a unique (unaliased) store feeding the passed | 
 |     // load. If no such store is found, returns a nullptr. | 
 |     // Note: This will look past a CALLSEQ_START if the load is chained to it so | 
 |     //       so that it can find stack stores for byval params. | 
 |     StoreSDNode *getUniqueStoreFeeding(LoadSDNode *LD, int64_t &Offset); | 
 |     // Scalars have size 0 to distinguish from singleton vectors. | 
 |     SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); | 
 |     bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); | 
 |     bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); | 
 |  | 
 |     void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); | 
 |     SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); | 
 |     SDValue SExtPromoteOperand(SDValue Op, EVT PVT); | 
 |     SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); | 
 |     SDValue PromoteIntBinOp(SDValue Op); | 
 |     SDValue PromoteIntShiftOp(SDValue Op); | 
 |     SDValue PromoteExtend(SDValue Op); | 
 |     bool PromoteLoad(SDValue Op); | 
 |  | 
 |     SDValue foldShiftToAvg(SDNode *N); | 
 |  | 
 |     SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, | 
 |                                 SDValue RHS, SDValue True, SDValue False, | 
 |                                 ISD::CondCode CC); | 
 |  | 
 |     /// Call the node-specific routine that knows how to fold each | 
 |     /// particular type of node. If that doesn't do anything, try the | 
 |     /// target-specific DAG combines. | 
 |     SDValue combine(SDNode *N); | 
 |  | 
 |     // Visitation implementation - Implement dag node combining for different | 
 |     // node types.  The semantics are as follows: | 
 |     // Return Value: | 
 |     //   SDValue.getNode() == 0 - No change was made | 
 |     //   SDValue.getNode() == N - N was replaced, is dead and has been handled. | 
 |     //   otherwise              - N should be replaced by the returned Operand. | 
 |     // | 
 |     SDValue visitTokenFactor(SDNode *N); | 
 |     SDValue visitMERGE_VALUES(SDNode *N); | 
 |     SDValue visitADD(SDNode *N); | 
 |     SDValue visitADDLike(SDNode *N); | 
 |     SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); | 
 |     SDValue visitSUB(SDNode *N); | 
 |     SDValue visitADDSAT(SDNode *N); | 
 |     SDValue visitSUBSAT(SDNode *N); | 
 |     SDValue visitADDC(SDNode *N); | 
 |     SDValue visitADDO(SDNode *N); | 
 |     SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); | 
 |     SDValue visitSUBC(SDNode *N); | 
 |     SDValue visitSUBO(SDNode *N); | 
 |     SDValue visitADDE(SDNode *N); | 
 |     SDValue visitUADDO_CARRY(SDNode *N); | 
 |     SDValue visitSADDO_CARRY(SDNode *N); | 
 |     SDValue visitUADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, | 
 |                                  SDNode *N); | 
 |     SDValue visitSADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, | 
 |                                  SDNode *N); | 
 |     SDValue visitSUBE(SDNode *N); | 
 |     SDValue visitUSUBO_CARRY(SDNode *N); | 
 |     SDValue visitSSUBO_CARRY(SDNode *N); | 
 |     template <class MatchContextClass> SDValue visitMUL(SDNode *N); | 
 |     SDValue visitMULFIX(SDNode *N); | 
 |     SDValue useDivRem(SDNode *N); | 
 |     SDValue visitSDIV(SDNode *N); | 
 |     SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); | 
 |     SDValue visitUDIV(SDNode *N); | 
 |     SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); | 
 |     SDValue visitREM(SDNode *N); | 
 |     SDValue visitMULHU(SDNode *N); | 
 |     SDValue visitMULHS(SDNode *N); | 
 |     SDValue visitAVG(SDNode *N); | 
 |     SDValue visitABD(SDNode *N); | 
 |     SDValue visitSMUL_LOHI(SDNode *N); | 
 |     SDValue visitUMUL_LOHI(SDNode *N); | 
 |     SDValue visitMULO(SDNode *N); | 
 |     SDValue visitIMINMAX(SDNode *N); | 
 |     SDValue visitAND(SDNode *N); | 
 |     SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); | 
 |     SDValue visitOR(SDNode *N); | 
 |     SDValue visitORLike(SDValue N0, SDValue N1, const SDLoc &DL); | 
 |     SDValue visitXOR(SDNode *N); | 
 |     SDValue SimplifyVCastOp(SDNode *N, const SDLoc &DL); | 
 |     SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL); | 
 |     SDValue visitSHL(SDNode *N); | 
 |     SDValue visitSRA(SDNode *N); | 
 |     SDValue visitSRL(SDNode *N); | 
 |     SDValue visitFunnelShift(SDNode *N); | 
 |     SDValue visitSHLSAT(SDNode *N); | 
 |     SDValue visitRotate(SDNode *N); | 
 |     SDValue visitABS(SDNode *N); | 
 |     SDValue visitBSWAP(SDNode *N); | 
 |     SDValue visitBITREVERSE(SDNode *N); | 
 |     SDValue visitCTLZ(SDNode *N); | 
 |     SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); | 
 |     SDValue visitCTTZ(SDNode *N); | 
 |     SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); | 
 |     SDValue visitCTPOP(SDNode *N); | 
 |     SDValue visitSELECT(SDNode *N); | 
 |     SDValue visitVSELECT(SDNode *N); | 
 |     SDValue visitVP_SELECT(SDNode *N); | 
 |     SDValue visitSELECT_CC(SDNode *N); | 
 |     SDValue visitSETCC(SDNode *N); | 
 |     SDValue visitSETCCCARRY(SDNode *N); | 
 |     SDValue visitSIGN_EXTEND(SDNode *N); | 
 |     SDValue visitZERO_EXTEND(SDNode *N); | 
 |     SDValue visitANY_EXTEND(SDNode *N); | 
 |     SDValue visitAssertExt(SDNode *N); | 
 |     SDValue visitAssertAlign(SDNode *N); | 
 |     SDValue visitSIGN_EXTEND_INREG(SDNode *N); | 
 |     SDValue visitEXTEND_VECTOR_INREG(SDNode *N); | 
 |     SDValue visitTRUNCATE(SDNode *N); | 
 |     SDValue visitTRUNCATE_USAT_U(SDNode *N); | 
 |     SDValue visitBITCAST(SDNode *N); | 
 |     SDValue visitFREEZE(SDNode *N); | 
 |     SDValue visitBUILD_PAIR(SDNode *N); | 
 |     SDValue visitFADD(SDNode *N); | 
 |     SDValue visitVP_FADD(SDNode *N); | 
 |     SDValue visitVP_FSUB(SDNode *N); | 
 |     SDValue visitSTRICT_FADD(SDNode *N); | 
 |     SDValue visitFSUB(SDNode *N); | 
 |     SDValue visitFMUL(SDNode *N); | 
 |     template <class MatchContextClass> SDValue visitFMA(SDNode *N); | 
 |     SDValue visitFMAD(SDNode *N); | 
 |     SDValue visitFDIV(SDNode *N); | 
 |     SDValue visitFREM(SDNode *N); | 
 |     SDValue visitFSQRT(SDNode *N); | 
 |     SDValue visitFCOPYSIGN(SDNode *N); | 
 |     SDValue visitFPOW(SDNode *N); | 
 |     SDValue visitFCANONICALIZE(SDNode *N); | 
 |     SDValue visitSINT_TO_FP(SDNode *N); | 
 |     SDValue visitUINT_TO_FP(SDNode *N); | 
 |     SDValue visitFP_TO_SINT(SDNode *N); | 
 |     SDValue visitFP_TO_UINT(SDNode *N); | 
 |     SDValue visitXROUND(SDNode *N); | 
 |     SDValue visitFP_ROUND(SDNode *N); | 
 |     SDValue visitFP_EXTEND(SDNode *N); | 
 |     SDValue visitFNEG(SDNode *N); | 
 |     SDValue visitFABS(SDNode *N); | 
 |     SDValue visitFCEIL(SDNode *N); | 
 |     SDValue visitFTRUNC(SDNode *N); | 
 |     SDValue visitFFREXP(SDNode *N); | 
 |     SDValue visitFFLOOR(SDNode *N); | 
 |     SDValue visitFMinMax(SDNode *N); | 
 |     SDValue visitBRCOND(SDNode *N); | 
 |     SDValue visitBR_CC(SDNode *N); | 
 |     SDValue visitLOAD(SDNode *N); | 
 |  | 
 |     SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); | 
 |     SDValue replaceStoreOfFPConstant(StoreSDNode *ST); | 
 |     SDValue replaceStoreOfInsertLoad(StoreSDNode *ST); | 
 |  | 
 |     bool refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(SDNode *N); | 
 |  | 
 |     SDValue visitSTORE(SDNode *N); | 
 |     SDValue visitATOMIC_STORE(SDNode *N); | 
 |     SDValue visitLIFETIME_END(SDNode *N); | 
 |     SDValue visitINSERT_VECTOR_ELT(SDNode *N); | 
 |     SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); | 
 |     SDValue visitBUILD_VECTOR(SDNode *N); | 
 |     SDValue visitCONCAT_VECTORS(SDNode *N); | 
 |     SDValue visitEXTRACT_SUBVECTOR(SDNode *N); | 
 |     SDValue visitVECTOR_SHUFFLE(SDNode *N); | 
 |     SDValue visitSCALAR_TO_VECTOR(SDNode *N); | 
 |     SDValue visitINSERT_SUBVECTOR(SDNode *N); | 
 |     SDValue visitVECTOR_COMPRESS(SDNode *N); | 
 |     SDValue visitMLOAD(SDNode *N); | 
 |     SDValue visitMSTORE(SDNode *N); | 
 |     SDValue visitMGATHER(SDNode *N); | 
 |     SDValue visitMSCATTER(SDNode *N); | 
 |     SDValue visitMHISTOGRAM(SDNode *N); | 
 |     SDValue visitPARTIAL_REDUCE_MLA(SDNode *N); | 
 |     SDValue visitVPGATHER(SDNode *N); | 
 |     SDValue visitVPSCATTER(SDNode *N); | 
 |     SDValue visitVP_STRIDED_LOAD(SDNode *N); | 
 |     SDValue visitVP_STRIDED_STORE(SDNode *N); | 
 |     SDValue visitFP_TO_FP16(SDNode *N); | 
 |     SDValue visitFP16_TO_FP(SDNode *N); | 
 |     SDValue visitFP_TO_BF16(SDNode *N); | 
 |     SDValue visitBF16_TO_FP(SDNode *N); | 
 |     SDValue visitVECREDUCE(SDNode *N); | 
 |     SDValue visitVPOp(SDNode *N); | 
 |     SDValue visitGET_FPENV_MEM(SDNode *N); | 
 |     SDValue visitSET_FPENV_MEM(SDNode *N); | 
 |  | 
 |     template <class MatchContextClass> | 
 |     SDValue visitFADDForFMACombine(SDNode *N); | 
 |     template <class MatchContextClass> | 
 |     SDValue visitFSUBForFMACombine(SDNode *N); | 
 |     SDValue visitFMULForFMADistributiveCombine(SDNode *N); | 
 |  | 
 |     SDValue XformToShuffleWithZero(SDNode *N); | 
 |     bool reassociationCanBreakAddressingModePattern(unsigned Opc, | 
 |                                                     const SDLoc &DL, | 
 |                                                     SDNode *N, | 
 |                                                     SDValue N0, | 
 |                                                     SDValue N1); | 
 |     SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, | 
 |                                       SDValue N1, SDNodeFlags Flags); | 
 |     SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, | 
 |                            SDValue N1, SDNodeFlags Flags); | 
 |     SDValue reassociateReduction(unsigned RedOpc, unsigned Opc, const SDLoc &DL, | 
 |                                  EVT VT, SDValue N0, SDValue N1, | 
 |                                  SDNodeFlags Flags = SDNodeFlags()); | 
 |  | 
 |     SDValue visitShiftByConstant(SDNode *N); | 
 |  | 
 |     SDValue foldSelectOfConstants(SDNode *N); | 
 |     SDValue foldVSelectOfConstants(SDNode *N); | 
 |     SDValue foldBinOpIntoSelect(SDNode *BO); | 
 |     bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); | 
 |     SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); | 
 |     SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); | 
 |     SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, | 
 |                              SDValue N2, SDValue N3, ISD::CondCode CC, | 
 |                              bool NotExtCompare = false); | 
 |     SDValue convertSelectOfFPConstantsToLoadOffset( | 
 |         const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, | 
 |         ISD::CondCode CC); | 
 |     SDValue foldSignChangeInBitcast(SDNode *N); | 
 |     SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, | 
 |                                    SDValue N2, SDValue N3, ISD::CondCode CC); | 
 |     SDValue foldSelectOfBinops(SDNode *N); | 
 |     SDValue foldSextSetcc(SDNode *N); | 
 |     SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, | 
 |                               const SDLoc &DL); | 
 |     SDValue foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL); | 
 |     SDValue foldABSToABD(SDNode *N, const SDLoc &DL); | 
 |     SDValue foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True, | 
 |                             SDValue False, ISD::CondCode CC, const SDLoc &DL); | 
 |     SDValue unfoldMaskedMerge(SDNode *N); | 
 |     SDValue unfoldExtremeBitClearingToShifts(SDNode *N); | 
 |     SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, | 
 |                           const SDLoc &DL, bool foldBooleans); | 
 |     SDValue rebuildSetCC(SDValue N); | 
 |  | 
 |     bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
 |                            SDValue &CC, bool MatchStrict = false) const; | 
 |     bool isOneUseSetCC(SDValue N) const; | 
 |  | 
 |     SDValue foldAddToAvg(SDNode *N, const SDLoc &DL); | 
 |     SDValue foldSubToAvg(SDNode *N, const SDLoc &DL); | 
 |  | 
 |     SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
 |                                          unsigned HiOp); | 
 |     SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); | 
 |     SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, | 
 |                                  const TargetLowering &TLI); | 
 |  | 
 |     SDValue CombineExtLoad(SDNode *N); | 
 |     SDValue CombineZExtLogicopShiftLoad(SDNode *N); | 
 |     SDValue combineRepeatedFPDivisors(SDNode *N); | 
 |     SDValue combineFMulOrFDivWithIntPow2(SDNode *N); | 
 |     SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf); | 
 |     SDValue mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex); | 
 |     SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); | 
 |     SDValue combineInsertEltToLoad(SDNode *N, unsigned InsIndex); | 
 |     SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); | 
 |     SDValue BuildSDIV(SDNode *N); | 
 |     SDValue BuildSDIVPow2(SDNode *N); | 
 |     SDValue BuildUDIV(SDNode *N); | 
 |     SDValue BuildSREMPow2(SDNode *N); | 
 |     SDValue buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N); | 
 |     SDValue BuildLogBase2(SDValue V, const SDLoc &DL, | 
 |                           bool KnownNeverZero = false, | 
 |                           bool InexpensiveOnly = false, | 
 |                           std::optional<EVT> OutVT = std::nullopt); | 
 |     SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); | 
 |     SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); | 
 |     SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); | 
 |     SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); | 
 |     SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, | 
 |                                 SDNodeFlags Flags, bool Reciprocal); | 
 |     SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, | 
 |                                 SDNodeFlags Flags, bool Reciprocal); | 
 |     SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
 |                                bool DemandHighBits = true); | 
 |     SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); | 
 |     SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, | 
 |                               SDValue InnerPos, SDValue InnerNeg, bool FromAdd, | 
 |                               bool HasPos, unsigned PosOpcode, | 
 |                               unsigned NegOpcode, const SDLoc &DL); | 
 |     SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, | 
 |                               SDValue InnerPos, SDValue InnerNeg, bool FromAdd, | 
 |                               bool HasPos, unsigned PosOpcode, | 
 |                               unsigned NegOpcode, const SDLoc &DL); | 
 |     SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL, | 
 |                         bool FromAdd); | 
 |     SDValue MatchLoadCombine(SDNode *N); | 
 |     SDValue mergeTruncStores(StoreSDNode *N); | 
 |     SDValue reduceLoadWidth(SDNode *N); | 
 |     SDValue ReduceLoadOpStoreWidth(SDNode *N); | 
 |     SDValue splitMergedValStore(StoreSDNode *ST); | 
 |     SDValue TransformFPLoadStorePair(SDNode *N); | 
 |     SDValue convertBuildVecZextToZext(SDNode *N); | 
 |     SDValue convertBuildVecZextToBuildVecWithZeros(SDNode *N); | 
 |     SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); | 
 |     SDValue reduceBuildVecTruncToBitCast(SDNode *N); | 
 |     SDValue reduceBuildVecToShuffle(SDNode *N); | 
 |     SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, | 
 |                                   ArrayRef<int> VectorMask, SDValue VecIn1, | 
 |                                   SDValue VecIn2, unsigned LeftIdx, | 
 |                                   bool DidSplitVec); | 
 |     SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); | 
 |  | 
 |     /// Walk up chain skipping non-aliasing memory nodes, | 
 |     /// looking for aliasing nodes and adding them to the Aliases vector. | 
 |     void GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
 |                           SmallVectorImpl<SDValue> &Aliases); | 
 |  | 
 |     /// Return true if there is any possibility that the two addresses overlap. | 
 |     bool mayAlias(SDNode *Op0, SDNode *Op1) const; | 
 |  | 
 |     /// Walk up chain skipping non-aliasing memory nodes, looking for a better | 
 |     /// chain (aliasing node.) | 
 |     SDValue FindBetterChain(SDNode *N, SDValue Chain); | 
 |  | 
 |     /// Try to replace a store and any possibly adjacent stores on | 
 |     /// consecutive chains with better chains. Return true only if St is | 
 |     /// replaced. | 
 |     /// | 
 |     /// Notice that other chains may still be replaced even if the function | 
 |     /// returns false. | 
 |     bool findBetterNeighborChains(StoreSDNode *St); | 
 |  | 
 |     // Helper for findBetterNeighborChains. Walk up store chain add additional | 
 |     // chained stores that do not overlap and can be parallelized. | 
 |     bool parallelizeChainedStores(StoreSDNode *St); | 
 |  | 
 |     /// Holds a pointer to an LSBaseSDNode as well as information on where it | 
 |     /// is located in a sequence of memory operations connected by a chain. | 
 |     struct MemOpLink { | 
 |       // Ptr to the mem node. | 
 |       LSBaseSDNode *MemNode; | 
 |  | 
 |       // Offset from the base ptr. | 
 |       int64_t OffsetFromBase; | 
 |  | 
 |       MemOpLink(LSBaseSDNode *N, int64_t Offset) | 
 |           : MemNode(N), OffsetFromBase(Offset) {} | 
 |     }; | 
 |  | 
 |     // Classify the origin of a stored value. | 
 |     enum class StoreSource { Unknown, Constant, Extract, Load }; | 
 |     StoreSource getStoreSource(SDValue StoreVal) { | 
 |       switch (StoreVal.getOpcode()) { | 
 |       case ISD::Constant: | 
 |       case ISD::ConstantFP: | 
 |         return StoreSource::Constant; | 
 |       case ISD::BUILD_VECTOR: | 
 |         if (ISD::isBuildVectorOfConstantSDNodes(StoreVal.getNode()) || | 
 |             ISD::isBuildVectorOfConstantFPSDNodes(StoreVal.getNode())) | 
 |           return StoreSource::Constant; | 
 |         return StoreSource::Unknown; | 
 |       case ISD::EXTRACT_VECTOR_ELT: | 
 |       case ISD::EXTRACT_SUBVECTOR: | 
 |         return StoreSource::Extract; | 
 |       case ISD::LOAD: | 
 |         return StoreSource::Load; | 
 |       default: | 
 |         return StoreSource::Unknown; | 
 |       } | 
 |     } | 
 |  | 
 |     /// This is a helper function for visitMUL to check the profitability | 
 |     /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | 
 |     /// MulNode is the original multiply, AddNode is (add x, c1), | 
 |     /// and ConstNode is c2. | 
 |     bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode, | 
 |                                      SDValue ConstNode); | 
 |  | 
 |     /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns | 
 |     /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns | 
 |     /// the type of the loaded value to be extended. | 
 |     bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | 
 |                           EVT LoadResultTy, EVT &ExtVT); | 
 |  | 
 |     /// Helper function to calculate whether the given Load/Store can have its | 
 |     /// width reduced to ExtVT. | 
 |     bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, | 
 |                            EVT &MemVT, unsigned ShAmt = 0); | 
 |  | 
 |     /// Used by BackwardsPropagateMask to find suitable loads. | 
 |     bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, | 
 |                            SmallPtrSetImpl<SDNode*> &NodesWithConsts, | 
 |                            ConstantSDNode *Mask, SDNode *&NodeToMask); | 
 |     /// Attempt to propagate a given AND node back to load leaves so that they | 
 |     /// can be combined into narrow loads. | 
 |     bool BackwardsPropagateMask(SDNode *N); | 
 |  | 
 |     /// Helper function for mergeConsecutiveStores which merges the component | 
 |     /// store chains. | 
 |     SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                 unsigned NumStores); | 
 |  | 
 |     /// Helper function for mergeConsecutiveStores which checks if all the store | 
 |     /// nodes have the same underlying object. We can still reuse the first | 
 |     /// store's pointer info if all the stores are from the same object. | 
 |     bool hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes); | 
 |  | 
 |     /// This is a helper function for mergeConsecutiveStores. When the source | 
 |     /// elements of the consecutive stores are all constants or all extracted | 
 |     /// vector elements, try to merge them into one larger store introducing | 
 |     /// bitcasts if necessary.  \return True if a merged store was created. | 
 |     bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                          EVT MemVT, unsigned NumStores, | 
 |                                          bool IsConstantSrc, bool UseVector, | 
 |                                          bool UseTrunc); | 
 |  | 
 |     /// This is a helper function for mergeConsecutiveStores. Stores that | 
 |     /// potentially may be merged with St are placed in StoreNodes. On success, | 
 |     /// returns a chain predecessor to all store candidates. | 
 |     SDNode *getStoreMergeCandidates(StoreSDNode *St, | 
 |                                     SmallVectorImpl<MemOpLink> &StoreNodes); | 
 |  | 
 |     /// Helper function for mergeConsecutiveStores. Checks if candidate stores | 
 |     /// have indirect dependency through their operands. RootNode is the | 
 |     /// predecessor to all stores calculated by getStoreMergeCandidates and is | 
 |     /// used to prune the dependency check. \return True if safe to merge. | 
 |     bool checkMergeStoreCandidatesForDependencies( | 
 |         SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, | 
 |         SDNode *RootNode); | 
 |  | 
 |     /// Helper function for tryStoreMergeOfLoads. Checks if the load/store | 
 |     /// chain has a call in it. \return True if a call is found. | 
 |     bool hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld); | 
 |  | 
 |     /// This is a helper function for mergeConsecutiveStores. Given a list of | 
 |     /// store candidates, find the first N that are consecutive in memory. | 
 |     /// Returns 0 if there are not at least 2 consecutive stores to try merging. | 
 |     unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                   int64_t ElementSizeBytes) const; | 
 |  | 
 |     /// This is a helper function for mergeConsecutiveStores. It is used for | 
 |     /// store chains that are composed entirely of constant values. | 
 |     bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                   unsigned NumConsecutiveStores, | 
 |                                   EVT MemVT, SDNode *Root, bool AllowVectors); | 
 |  | 
 |     /// This is a helper function for mergeConsecutiveStores. It is used for | 
 |     /// store chains that are composed entirely of extracted vector elements. | 
 |     /// When extracting multiple vector elements, try to store them in one | 
 |     /// vector store rather than a sequence of scalar stores. | 
 |     bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                  unsigned NumConsecutiveStores, EVT MemVT, | 
 |                                  SDNode *Root); | 
 |  | 
 |     /// This is a helper function for mergeConsecutiveStores. It is used for | 
 |     /// store chains that are composed entirely of loaded values. | 
 |     bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                               unsigned NumConsecutiveStores, EVT MemVT, | 
 |                               SDNode *Root, bool AllowVectors, | 
 |                               bool IsNonTemporalStore, bool IsNonTemporalLoad); | 
 |  | 
 |     /// Merge consecutive store operations into a wide store. | 
 |     /// This optimization uses wide integers or vectors when possible. | 
 |     /// \return true if stores were merged. | 
 |     bool mergeConsecutiveStores(StoreSDNode *St); | 
 |  | 
 |     /// Try to transform a truncation where C is a constant: | 
 |     ///     (trunc (and X, C)) -> (and (trunc X), (trunc C)) | 
 |     /// | 
 |     /// \p N needs to be a truncation and its first operand an AND. Other | 
 |     /// requirements are checked by the function (e.g. that trunc is | 
 |     /// single-use) and if missed an empty SDValue is returned. | 
 |     SDValue distributeTruncateThroughAnd(SDNode *N); | 
 |  | 
 |     /// Helper function to determine whether the target supports operation | 
 |     /// given by \p Opcode for type \p VT, that is, whether the operation | 
 |     /// is legal or custom before legalizing operations, and whether is | 
 |     /// legal (but not custom) after legalization. | 
 |     bool hasOperation(unsigned Opcode, EVT VT) { | 
 |       return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); | 
 |     } | 
 |  | 
 |     bool hasUMin(EVT VT) const { | 
 |       auto LK = TLI.getTypeConversion(*DAG.getContext(), VT); | 
 |       return (LK.first == TargetLoweringBase::TypeLegal || | 
 |               LK.first == TargetLoweringBase::TypePromoteInteger) && | 
 |              TLI.isOperationLegal(ISD::UMIN, LK.second); | 
 |     } | 
 |  | 
 |   public: | 
 |     /// Runs the dag combiner on all nodes in the work list | 
 |     void Run(CombineLevel AtLevel); | 
 |  | 
 |     SelectionDAG &getDAG() const { return DAG; } | 
 |  | 
 |     /// Convenience wrapper around TargetLowering::getShiftAmountTy. | 
 |     EVT getShiftAmountTy(EVT LHSTy) { | 
 |       return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout()); | 
 |     } | 
 |  | 
 |     /// This method returns true if we are running before type legalization or | 
 |     /// if the specified VT is legal. | 
 |     bool isTypeLegal(const EVT &VT) { | 
 |       if (!LegalTypes) return true; | 
 |       return TLI.isTypeLegal(VT); | 
 |     } | 
 |  | 
 |     /// Convenience wrapper around TargetLowering::getSetCCResultType | 
 |     EVT getSetCCResultType(EVT VT) const { | 
 |       return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
 |     } | 
 |  | 
 |     void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | 
 |                          SDValue OrigLoad, SDValue ExtLoad, | 
 |                          ISD::NodeType ExtType); | 
 |   }; | 
 |  | 
 | /// This class is a DAGUpdateListener that removes any deleted | 
 | /// nodes from the worklist. | 
 | class WorklistRemover : public SelectionDAG::DAGUpdateListener { | 
 |   DAGCombiner &DC; | 
 |  | 
 | public: | 
 |   explicit WorklistRemover(DAGCombiner &dc) | 
 |     : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} | 
 |  | 
 |   void NodeDeleted(SDNode *N, SDNode *E) override { | 
 |     DC.removeFromWorklist(N); | 
 |   } | 
 | }; | 
 |  | 
 | class WorklistInserter : public SelectionDAG::DAGUpdateListener { | 
 |   DAGCombiner &DC; | 
 |  | 
 | public: | 
 |   explicit WorklistInserter(DAGCombiner &dc) | 
 |       : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} | 
 |  | 
 |   // FIXME: Ideally we could add N to the worklist, but this causes exponential | 
 |   //        compile time costs in large DAGs, e.g. Halide. | 
 |   void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  TargetLowering::DAGCombinerInfo implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { | 
 |   ((DAGCombiner*)DC)->AddToWorklist(N); | 
 | } | 
 |  | 
 | SDValue TargetLowering::DAGCombinerInfo:: | 
 | CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { | 
 |   return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); | 
 | } | 
 |  | 
 | SDValue TargetLowering::DAGCombinerInfo:: | 
 | CombineTo(SDNode *N, SDValue Res, bool AddTo) { | 
 |   return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); | 
 | } | 
 |  | 
 | SDValue TargetLowering::DAGCombinerInfo:: | 
 | CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { | 
 |   return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); | 
 | } | 
 |  | 
 | bool TargetLowering::DAGCombinerInfo:: | 
 | recursivelyDeleteUnusedNodes(SDNode *N) { | 
 |   return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); | 
 | } | 
 |  | 
 | void TargetLowering::DAGCombinerInfo:: | 
 | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
 |   return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Helper Functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void DAGCombiner::deleteAndRecombine(SDNode *N) { | 
 |   removeFromWorklist(N); | 
 |  | 
 |   // If the operands of this node are only used by the node, they will now be | 
 |   // dead. Make sure to re-visit them and recursively delete dead nodes. | 
 |   for (const SDValue &Op : N->ops()) | 
 |     // For an operand generating multiple values, one of the values may | 
 |     // become dead allowing further simplification (e.g. split index | 
 |     // arithmetic from an indexed load). | 
 |     if (Op->hasOneUse() || Op->getNumValues() > 1) | 
 |       AddToWorklist(Op.getNode()); | 
 |  | 
 |   DAG.DeleteNode(N); | 
 | } | 
 |  | 
 | // APInts must be the same size for most operations, this helper | 
 | // function zero extends the shorter of the pair so that they match. | 
 | // We provide an Offset so that we can create bitwidths that won't overflow. | 
 | static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { | 
 |   unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); | 
 |   LHS = LHS.zext(Bits); | 
 |   RHS = RHS.zext(Bits); | 
 | } | 
 |  | 
 | // Return true if this node is a setcc, or is a select_cc | 
 | // that selects between the target values used for true and false, making it | 
 | // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to | 
 | // the appropriate nodes based on the type of node we are checking. This | 
 | // simplifies life a bit for the callers. | 
 | bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, | 
 |                                     SDValue &CC, bool MatchStrict) const { | 
 |   if (N.getOpcode() == ISD::SETCC) { | 
 |     LHS = N.getOperand(0); | 
 |     RHS = N.getOperand(1); | 
 |     CC  = N.getOperand(2); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (MatchStrict && | 
 |       (N.getOpcode() == ISD::STRICT_FSETCC || | 
 |        N.getOpcode() == ISD::STRICT_FSETCCS)) { | 
 |     LHS = N.getOperand(1); | 
 |     RHS = N.getOperand(2); | 
 |     CC  = N.getOperand(3); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) || | 
 |       !TLI.isConstFalseVal(N.getOperand(3))) | 
 |     return false; | 
 |  | 
 |   if (TLI.getBooleanContents(N.getValueType()) == | 
 |       TargetLowering::UndefinedBooleanContent) | 
 |     return false; | 
 |  | 
 |   LHS = N.getOperand(0); | 
 |   RHS = N.getOperand(1); | 
 |   CC  = N.getOperand(4); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Return true if this is a SetCC-equivalent operation with only one use. | 
 | /// If this is true, it allows the users to invert the operation for free when | 
 | /// it is profitable to do so. | 
 | bool DAGCombiner::isOneUseSetCC(SDValue N) const { | 
 |   SDValue N0, N1, N2; | 
 |   if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse()) | 
 |     return true; | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { | 
 |   if (!ScalarTy.isSimple()) | 
 |     return false; | 
 |  | 
 |   uint64_t MaskForTy = 0ULL; | 
 |   switch (ScalarTy.getSimpleVT().SimpleTy) { | 
 |   case MVT::i8: | 
 |     MaskForTy = 0xFFULL; | 
 |     break; | 
 |   case MVT::i16: | 
 |     MaskForTy = 0xFFFFULL; | 
 |     break; | 
 |   case MVT::i32: | 
 |     MaskForTy = 0xFFFFFFFFULL; | 
 |     break; | 
 |   default: | 
 |     return false; | 
 |     break; | 
 |   } | 
 |  | 
 |   APInt Val; | 
 |   if (ISD::isConstantSplatVector(N, Val)) | 
 |     return Val.getLimitedValue() == MaskForTy; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Determines if it is a constant integer or a splat/build vector of constant | 
 | // integers (and undefs). | 
 | // Do not permit build vector implicit truncation. | 
 | static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { | 
 |   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) | 
 |     return !(Const->isOpaque() && NoOpaques); | 
 |   if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) | 
 |     return false; | 
 |   unsigned BitWidth = N.getScalarValueSizeInBits(); | 
 |   for (const SDValue &Op : N->op_values()) { | 
 |     if (Op.isUndef()) | 
 |       continue; | 
 |     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); | 
 |     if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || | 
 |         (Const->isOpaque() && NoOpaques)) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with | 
 | // undef's. | 
 | static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { | 
 |   if (V.getOpcode() != ISD::BUILD_VECTOR) | 
 |     return false; | 
 |   return isConstantOrConstantVector(V, NoOpaques) || | 
 |          ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); | 
 | } | 
 |  | 
 | // Determine if this an indexed load with an opaque target constant index. | 
 | static bool canSplitIdx(LoadSDNode *LD) { | 
 |   return MaySplitLoadIndex && | 
 |          (LD->getOperand(2).getOpcode() != ISD::TargetConstant || | 
 |           !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); | 
 | } | 
 |  | 
 | bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, | 
 |                                                              const SDLoc &DL, | 
 |                                                              SDNode *N, | 
 |                                                              SDValue N0, | 
 |                                                              SDValue N1) { | 
 |   // Currently this only tries to ensure we don't undo the GEP splits done by | 
 |   // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, | 
 |   // we check if the following transformation would be problematic: | 
 |   // (load/store (add, (add, x, offset1), offset2)) -> | 
 |   // (load/store (add, x, offset1+offset2)). | 
 |  | 
 |   // (load/store (add, (add, x, y), offset2)) -> | 
 |   // (load/store (add, (add, x, offset2), y)). | 
 |  | 
 |   if (N0.getOpcode() != ISD::ADD) | 
 |     return false; | 
 |  | 
 |   // Check for vscale addressing modes. | 
 |   // (load/store (add/sub (add x, y), vscale)) | 
 |   // (load/store (add/sub (add x, y), (lsl vscale, C))) | 
 |   // (load/store (add/sub (add x, y), (mul vscale, C))) | 
 |   if ((N1.getOpcode() == ISD::VSCALE || | 
 |        ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::MUL) && | 
 |         N1.getOperand(0).getOpcode() == ISD::VSCALE && | 
 |         isa<ConstantSDNode>(N1.getOperand(1)))) && | 
 |       N1.getValueType().getFixedSizeInBits() <= 64) { | 
 |     int64_t ScalableOffset = N1.getOpcode() == ISD::VSCALE | 
 |                                  ? N1.getConstantOperandVal(0) | 
 |                                  : (N1.getOperand(0).getConstantOperandVal(0) * | 
 |                                     (N1.getOpcode() == ISD::SHL | 
 |                                          ? (1LL << N1.getConstantOperandVal(1)) | 
 |                                          : N1.getConstantOperandVal(1))); | 
 |     if (Opc == ISD::SUB) | 
 |       ScalableOffset = -ScalableOffset; | 
 |     if (all_of(N->users(), [&](SDNode *Node) { | 
 |           if (auto *LoadStore = dyn_cast<MemSDNode>(Node); | 
 |               LoadStore && LoadStore->getBasePtr().getNode() == N) { | 
 |             TargetLoweringBase::AddrMode AM; | 
 |             AM.HasBaseReg = true; | 
 |             AM.ScalableOffset = ScalableOffset; | 
 |             EVT VT = LoadStore->getMemoryVT(); | 
 |             unsigned AS = LoadStore->getAddressSpace(); | 
 |             Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); | 
 |             return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, | 
 |                                              AS); | 
 |           } | 
 |           return false; | 
 |         })) | 
 |       return true; | 
 |   } | 
 |  | 
 |   if (Opc != ISD::ADD) | 
 |     return false; | 
 |  | 
 |   auto *C2 = dyn_cast<ConstantSDNode>(N1); | 
 |   if (!C2) | 
 |     return false; | 
 |  | 
 |   const APInt &C2APIntVal = C2->getAPIntValue(); | 
 |   if (C2APIntVal.getSignificantBits() > 64) | 
 |     return false; | 
 |  | 
 |   if (auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
 |     if (N0.hasOneUse()) | 
 |       return false; | 
 |  | 
 |     const APInt &C1APIntVal = C1->getAPIntValue(); | 
 |     const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; | 
 |     if (CombinedValueIntVal.getSignificantBits() > 64) | 
 |       return false; | 
 |     const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); | 
 |  | 
 |     for (SDNode *Node : N->users()) { | 
 |       if (auto *LoadStore = dyn_cast<MemSDNode>(Node)) { | 
 |         // Is x[offset2] already not a legal addressing mode? If so then | 
 |         // reassociating the constants breaks nothing (we test offset2 because | 
 |         // that's the one we hope to fold into the load or store). | 
 |         TargetLoweringBase::AddrMode AM; | 
 |         AM.HasBaseReg = true; | 
 |         AM.BaseOffs = C2APIntVal.getSExtValue(); | 
 |         EVT VT = LoadStore->getMemoryVT(); | 
 |         unsigned AS = LoadStore->getAddressSpace(); | 
 |         Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); | 
 |         if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) | 
 |           continue; | 
 |  | 
 |         // Would x[offset1+offset2] still be a legal addressing mode? | 
 |         AM.BaseOffs = CombinedValue; | 
 |         if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) | 
 |           return true; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (auto *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(1))) | 
 |       if (GA->getOpcode() == ISD::GlobalAddress && TLI.isOffsetFoldingLegal(GA)) | 
 |         return false; | 
 |  | 
 |     for (SDNode *Node : N->users()) { | 
 |       auto *LoadStore = dyn_cast<MemSDNode>(Node); | 
 |       if (!LoadStore) | 
 |         return false; | 
 |  | 
 |       // Is x[offset2] a legal addressing mode? If so then | 
 |       // reassociating the constants breaks address pattern | 
 |       TargetLoweringBase::AddrMode AM; | 
 |       AM.HasBaseReg = true; | 
 |       AM.BaseOffs = C2APIntVal.getSExtValue(); | 
 |       EVT VT = LoadStore->getMemoryVT(); | 
 |       unsigned AS = LoadStore->getAddressSpace(); | 
 |       Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); | 
 |       if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Helper for DAGCombiner::reassociateOps. Try to reassociate (Opc N0, N1) if | 
 | /// \p N0 is the same kind of operation as \p Opc. | 
 | SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, | 
 |                                                SDValue N0, SDValue N1, | 
 |                                                SDNodeFlags Flags) { | 
 |   EVT VT = N0.getValueType(); | 
 |  | 
 |   if (N0.getOpcode() != Opc) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N00 = N0.getOperand(0); | 
 |   SDValue N01 = N0.getOperand(1); | 
 |  | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N01)) { | 
 |     SDNodeFlags NewFlags; | 
 |     if (N0.getOpcode() == ISD::ADD && N0->getFlags().hasNoUnsignedWrap() && | 
 |         Flags.hasNoUnsignedWrap()) | 
 |       NewFlags |= SDNodeFlags::NoUnsignedWrap; | 
 |  | 
 |     if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { | 
 |       // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) | 
 |       if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) { | 
 |         NewFlags.setDisjoint(Flags.hasDisjoint() && | 
 |                              N0->getFlags().hasDisjoint()); | 
 |         return DAG.getNode(Opc, DL, VT, N00, OpNode, NewFlags); | 
 |       } | 
 |       return SDValue(); | 
 |     } | 
 |     if (TLI.isReassocProfitable(DAG, N0, N1)) { | 
 |       // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) | 
 |       //              iff (op x, c1) has one use | 
 |       SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, NewFlags); | 
 |       return DAG.getNode(Opc, DL, VT, OpNode, N01, NewFlags); | 
 |     } | 
 |   } | 
 |  | 
 |   // Check for repeated operand logic simplifications. | 
 |   if (Opc == ISD::AND || Opc == ISD::OR) { | 
 |     // (N00 & N01) & N00 --> N00 & N01 | 
 |     // (N00 & N01) & N01 --> N00 & N01 | 
 |     // (N00 | N01) | N00 --> N00 | N01 | 
 |     // (N00 | N01) | N01 --> N00 | N01 | 
 |     if (N1 == N00 || N1 == N01) | 
 |       return N0; | 
 |   } | 
 |   if (Opc == ISD::XOR) { | 
 |     // (N00 ^ N01) ^ N00 --> N01 | 
 |     if (N1 == N00) | 
 |       return N01; | 
 |     // (N00 ^ N01) ^ N01 --> N00 | 
 |     if (N1 == N01) | 
 |       return N00; | 
 |   } | 
 |  | 
 |   if (TLI.isReassocProfitable(DAG, N0, N1)) { | 
 |     if (N1 != N01) { | 
 |       // Reassociate if (op N00, N1) already exist | 
 |       if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N00, N1})) { | 
 |         // if Op (Op N00, N1), N01 already exist | 
 |         // we need to stop reassciate to avoid dead loop | 
 |         if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N01})) | 
 |           return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N01); | 
 |       } | 
 |     } | 
 |  | 
 |     if (N1 != N00) { | 
 |       // Reassociate if (op N01, N1) already exist | 
 |       if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N01, N1})) { | 
 |         // if Op (Op N01, N1), N00 already exist | 
 |         // we need to stop reassciate to avoid dead loop | 
 |         if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N00})) | 
 |           return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N00); | 
 |       } | 
 |     } | 
 |  | 
 |     // Reassociate the operands from (OR/AND (OR/AND(N00, N001)), N1) to (OR/AND | 
 |     // (OR/AND(N00, N1)), N01) when N00 and N1 are comparisons with the same | 
 |     // predicate or to (OR/AND (OR/AND(N1, N01)), N00) when N01 and N1 are | 
 |     // comparisons with the same predicate. This enables optimizations as the | 
 |     // following one: | 
 |     // CMP(A,C)||CMP(B,C) => CMP(MIN/MAX(A,B), C) | 
 |     // CMP(A,C)&&CMP(B,C) => CMP(MIN/MAX(A,B), C) | 
 |     if (Opc == ISD::AND || Opc == ISD::OR) { | 
 |       if (N1->getOpcode() == ISD::SETCC && N00->getOpcode() == ISD::SETCC && | 
 |           N01->getOpcode() == ISD::SETCC) { | 
 |         ISD::CondCode CC1 = cast<CondCodeSDNode>(N1.getOperand(2))->get(); | 
 |         ISD::CondCode CC00 = cast<CondCodeSDNode>(N00.getOperand(2))->get(); | 
 |         ISD::CondCode CC01 = cast<CondCodeSDNode>(N01.getOperand(2))->get(); | 
 |         if (CC1 == CC00 && CC1 != CC01) { | 
 |           SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, Flags); | 
 |           return DAG.getNode(Opc, DL, VT, OpNode, N01, Flags); | 
 |         } | 
 |         if (CC1 == CC01 && CC1 != CC00) { | 
 |           SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N01, N1, Flags); | 
 |           return DAG.getNode(Opc, DL, VT, OpNode, N00, Flags); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Try to reassociate commutative (Opc N0, N1) if either \p N0 or \p N1 is the | 
 | /// same kind of operation as \p Opc. | 
 | SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, | 
 |                                     SDValue N1, SDNodeFlags Flags) { | 
 |   assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); | 
 |  | 
 |   // Floating-point reassociation is not allowed without loose FP math. | 
 |   if (N0.getValueType().isFloatingPoint() || | 
 |       N1.getValueType().isFloatingPoint()) | 
 |     if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) | 
 |       return SDValue(); | 
 |  | 
 |   if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1, Flags)) | 
 |     return Combined; | 
 |   if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0, Flags)) | 
 |     return Combined; | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Try to fold Opc(vecreduce(x), vecreduce(y)) -> vecreduce(Opc(x, y)) | 
 | // Note that we only expect Flags to be passed from FP operations. For integer | 
 | // operations they need to be dropped. | 
 | SDValue DAGCombiner::reassociateReduction(unsigned RedOpc, unsigned Opc, | 
 |                                           const SDLoc &DL, EVT VT, SDValue N0, | 
 |                                           SDValue N1, SDNodeFlags Flags) { | 
 |   if (N0.getOpcode() == RedOpc && N1.getOpcode() == RedOpc && | 
 |       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && | 
 |       N0->hasOneUse() && N1->hasOneUse() && | 
 |       TLI.isOperationLegalOrCustom(Opc, N0.getOperand(0).getValueType()) && | 
 |       TLI.shouldReassociateReduction(RedOpc, N0.getOperand(0).getValueType())) { | 
 |     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); | 
 |     return DAG.getNode(RedOpc, DL, VT, | 
 |                        DAG.getNode(Opc, DL, N0.getOperand(0).getValueType(), | 
 |                                    N0.getOperand(0), N1.getOperand(0))); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, | 
 |                                bool AddTo) { | 
 |   assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); | 
 |   ++NodesCombined; | 
 |   LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; | 
 |              To[0].dump(&DAG); | 
 |              dbgs() << " and " << NumTo - 1 << " other values\n"); | 
 |   for (unsigned i = 0, e = NumTo; i != e; ++i) | 
 |     assert((!To[i].getNode() || | 
 |             N->getValueType(i) == To[i].getValueType()) && | 
 |            "Cannot combine value to value of different type!"); | 
 |  | 
 |   WorklistRemover DeadNodes(*this); | 
 |   DAG.ReplaceAllUsesWith(N, To); | 
 |   if (AddTo) { | 
 |     // Push the new nodes and any users onto the worklist | 
 |     for (unsigned i = 0, e = NumTo; i != e; ++i) { | 
 |       if (To[i].getNode()) | 
 |         AddToWorklistWithUsers(To[i].getNode()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Finally, if the node is now dead, remove it from the graph.  The node | 
 |   // may not be dead if the replacement process recursively simplified to | 
 |   // something else needing this node. | 
 |   if (N->use_empty()) | 
 |     deleteAndRecombine(N); | 
 |   return SDValue(N, 0); | 
 | } | 
 |  | 
 | void DAGCombiner:: | 
 | CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { | 
 |   // Replace the old value with the new one. | 
 |   ++NodesCombined; | 
 |   LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG); | 
 |              dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n'); | 
 |  | 
 |   // Replace all uses. | 
 |   DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); | 
 |  | 
 |   // Push the new node and any (possibly new) users onto the worklist. | 
 |   AddToWorklistWithUsers(TLO.New.getNode()); | 
 |  | 
 |   // Finally, if the node is now dead, remove it from the graph. | 
 |   recursivelyDeleteUnusedNodes(TLO.Old.getNode()); | 
 | } | 
 |  | 
 | /// Check the specified integer node value to see if it can be simplified or if | 
 | /// things it uses can be simplified by bit propagation. If so, return true. | 
 | bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, | 
 |                                        const APInt &DemandedElts, | 
 |                                        bool AssumeSingleUse) { | 
 |   TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | 
 |   KnownBits Known; | 
 |   if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, | 
 |                                 AssumeSingleUse)) | 
 |     return false; | 
 |  | 
 |   // Revisit the node. | 
 |   AddToWorklist(Op.getNode()); | 
 |  | 
 |   CommitTargetLoweringOpt(TLO); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check the specified vector node value to see if it can be simplified or | 
 | /// if things it uses can be simplified as it only uses some of the elements. | 
 | /// If so, return true. | 
 | bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, | 
 |                                              const APInt &DemandedElts, | 
 |                                              bool AssumeSingleUse) { | 
 |   TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); | 
 |   APInt KnownUndef, KnownZero; | 
 |   if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, | 
 |                                       TLO, 0, AssumeSingleUse)) | 
 |     return false; | 
 |  | 
 |   // Revisit the node. | 
 |   AddToWorklist(Op.getNode()); | 
 |  | 
 |   CommitTargetLoweringOpt(TLO); | 
 |   return true; | 
 | } | 
 |  | 
 | void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { | 
 |   SDLoc DL(Load); | 
 |   EVT VT = Load->getValueType(0); | 
 |   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; | 
 |              Trunc.dump(&DAG); dbgs() << '\n'); | 
 |  | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); | 
 |  | 
 |   AddToWorklist(Trunc.getNode()); | 
 |   recursivelyDeleteUnusedNodes(Load); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { | 
 |   Replace = false; | 
 |   SDLoc DL(Op); | 
 |   if (ISD::isUNINDEXEDLoad(Op.getNode())) { | 
 |     LoadSDNode *LD = cast<LoadSDNode>(Op); | 
 |     EVT MemVT = LD->getMemoryVT(); | 
 |     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD | 
 |                                                       : LD->getExtensionType(); | 
 |     Replace = true; | 
 |     return DAG.getExtLoad(ExtType, DL, PVT, | 
 |                           LD->getChain(), LD->getBasePtr(), | 
 |                           MemVT, LD->getMemOperand()); | 
 |   } | 
 |  | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   switch (Opc) { | 
 |   default: break; | 
 |   case ISD::AssertSext: | 
 |     if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) | 
 |       return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); | 
 |     break; | 
 |   case ISD::AssertZext: | 
 |     if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) | 
 |       return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); | 
 |     break; | 
 |   case ISD::Constant: { | 
 |     unsigned ExtOpc = | 
 |       Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
 |     return DAG.getNode(ExtOpc, DL, PVT, Op); | 
 |   } | 
 |   } | 
 |  | 
 |   if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) | 
 |     return SDValue(); | 
 |   return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { | 
 |   if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) | 
 |     return SDValue(); | 
 |   EVT OldVT = Op.getValueType(); | 
 |   SDLoc DL(Op); | 
 |   bool Replace = false; | 
 |   SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
 |   if (!NewOp.getNode()) | 
 |     return SDValue(); | 
 |   AddToWorklist(NewOp.getNode()); | 
 |  | 
 |   if (Replace) | 
 |     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
 |   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, | 
 |                      DAG.getValueType(OldVT)); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { | 
 |   EVT OldVT = Op.getValueType(); | 
 |   SDLoc DL(Op); | 
 |   bool Replace = false; | 
 |   SDValue NewOp = PromoteOperand(Op, PVT, Replace); | 
 |   if (!NewOp.getNode()) | 
 |     return SDValue(); | 
 |   AddToWorklist(NewOp.getNode()); | 
 |  | 
 |   if (Replace) | 
 |     ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); | 
 |   return DAG.getZeroExtendInReg(NewOp, DL, OldVT); | 
 | } | 
 |  | 
 | /// Promote the specified integer binary operation if the target indicates it is | 
 | /// beneficial. e.g. On x86, it's usually better to promote i16 operations to | 
 | /// i32 since i16 instructions are longer. | 
 | SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { | 
 |   if (!LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = Op.getValueType(); | 
 |   if (VT.isVector() || !VT.isInteger()) | 
 |     return SDValue(); | 
 |  | 
 |   // If operation type is 'undesirable', e.g. i16 on x86, consider | 
 |   // promoting it. | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   if (TLI.isTypeDesirableForOp(Opc, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   EVT PVT = VT; | 
 |   // Consult target whether it is a good idea to promote this operation and | 
 |   // what's the right type to promote it to. | 
 |   if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
 |     assert(PVT != VT && "Don't know what type to promote to!"); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); | 
 |  | 
 |     bool Replace0 = false; | 
 |     SDValue N0 = Op.getOperand(0); | 
 |     SDValue NN0 = PromoteOperand(N0, PVT, Replace0); | 
 |  | 
 |     bool Replace1 = false; | 
 |     SDValue N1 = Op.getOperand(1); | 
 |     SDValue NN1 = PromoteOperand(N1, PVT, Replace1); | 
 |     SDLoc DL(Op); | 
 |  | 
 |     SDValue RV = | 
 |         DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); | 
 |  | 
 |     // We are always replacing N0/N1's use in N and only need additional | 
 |     // replacements if there are additional uses. | 
 |     // Note: We are checking uses of the *nodes* (SDNode) rather than values | 
 |     //       (SDValue) here because the node may reference multiple values | 
 |     //       (for example, the chain value of a load node). | 
 |     Replace0 &= !N0->hasOneUse(); | 
 |     Replace1 &= (N0 != N1) && !N1->hasOneUse(); | 
 |  | 
 |     // Combine Op here so it is preserved past replacements. | 
 |     CombineTo(Op.getNode(), RV); | 
 |  | 
 |     // If operands have a use ordering, make sure we deal with | 
 |     // predecessor first. | 
 |     if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) { | 
 |       std::swap(N0, N1); | 
 |       std::swap(NN0, NN1); | 
 |     } | 
 |  | 
 |     if (Replace0) { | 
 |       AddToWorklist(NN0.getNode()); | 
 |       ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); | 
 |     } | 
 |     if (Replace1) { | 
 |       AddToWorklist(NN1.getNode()); | 
 |       ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); | 
 |     } | 
 |     return Op; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Promote the specified integer shift operation if the target indicates it is | 
 | /// beneficial. e.g. On x86, it's usually better to promote i16 operations to | 
 | /// i32 since i16 instructions are longer. | 
 | SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { | 
 |   if (!LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = Op.getValueType(); | 
 |   if (VT.isVector() || !VT.isInteger()) | 
 |     return SDValue(); | 
 |  | 
 |   // If operation type is 'undesirable', e.g. i16 on x86, consider | 
 |   // promoting it. | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   if (TLI.isTypeDesirableForOp(Opc, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   EVT PVT = VT; | 
 |   // Consult target whether it is a good idea to promote this operation and | 
 |   // what's the right type to promote it to. | 
 |   if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
 |     assert(PVT != VT && "Don't know what type to promote to!"); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); | 
 |  | 
 |     bool Replace = false; | 
 |     SDValue N0 = Op.getOperand(0); | 
 |     if (Opc == ISD::SRA) | 
 |       N0 = SExtPromoteOperand(N0, PVT); | 
 |     else if (Opc == ISD::SRL) | 
 |       N0 = ZExtPromoteOperand(N0, PVT); | 
 |     else | 
 |       N0 = PromoteOperand(N0, PVT, Replace); | 
 |  | 
 |     if (!N0.getNode()) | 
 |       return SDValue(); | 
 |  | 
 |     SDLoc DL(Op); | 
 |     SDValue N1 = Op.getOperand(1); | 
 |     SDValue RV = | 
 |         DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); | 
 |  | 
 |     if (Replace) | 
 |       ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); | 
 |  | 
 |     // Deal with Op being deleted. | 
 |     if (Op && Op.getOpcode() != ISD::DELETED_NODE) | 
 |       return RV; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::PromoteExtend(SDValue Op) { | 
 |   if (!LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = Op.getValueType(); | 
 |   if (VT.isVector() || !VT.isInteger()) | 
 |     return SDValue(); | 
 |  | 
 |   // If operation type is 'undesirable', e.g. i16 on x86, consider | 
 |   // promoting it. | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   if (TLI.isTypeDesirableForOp(Opc, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   EVT PVT = VT; | 
 |   // Consult target whether it is a good idea to promote this operation and | 
 |   // what's the right type to promote it to. | 
 |   if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
 |     assert(PVT != VT && "Don't know what type to promote to!"); | 
 |     // fold (aext (aext x)) -> (aext x) | 
 |     // fold (aext (zext x)) -> (zext x) | 
 |     // fold (aext (sext x)) -> (sext x) | 
 |     LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG)); | 
 |     return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | bool DAGCombiner::PromoteLoad(SDValue Op) { | 
 |   if (!LegalOperations) | 
 |     return false; | 
 |  | 
 |   if (!ISD::isUNINDEXEDLoad(Op.getNode())) | 
 |     return false; | 
 |  | 
 |   EVT VT = Op.getValueType(); | 
 |   if (VT.isVector() || !VT.isInteger()) | 
 |     return false; | 
 |  | 
 |   // If operation type is 'undesirable', e.g. i16 on x86, consider | 
 |   // promoting it. | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   if (TLI.isTypeDesirableForOp(Opc, VT)) | 
 |     return false; | 
 |  | 
 |   EVT PVT = VT; | 
 |   // Consult target whether it is a good idea to promote this operation and | 
 |   // what's the right type to promote it to. | 
 |   if (TLI.IsDesirableToPromoteOp(Op, PVT)) { | 
 |     assert(PVT != VT && "Don't know what type to promote to!"); | 
 |  | 
 |     SDLoc DL(Op); | 
 |     SDNode *N = Op.getNode(); | 
 |     LoadSDNode *LD = cast<LoadSDNode>(N); | 
 |     EVT MemVT = LD->getMemoryVT(); | 
 |     ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD | 
 |                                                       : LD->getExtensionType(); | 
 |     SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, | 
 |                                    LD->getChain(), LD->getBasePtr(), | 
 |                                    MemVT, LD->getMemOperand()); | 
 |     SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; | 
 |                Result.dump(&DAG); dbgs() << '\n'); | 
 |  | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); | 
 |  | 
 |     AddToWorklist(Result.getNode()); | 
 |     recursivelyDeleteUnusedNodes(N); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Recursively delete a node which has no uses and any operands for | 
 | /// which it is the only use. | 
 | /// | 
 | /// Note that this both deletes the nodes and removes them from the worklist. | 
 | /// It also adds any nodes who have had a user deleted to the worklist as they | 
 | /// may now have only one use and subject to other combines. | 
 | bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { | 
 |   if (!N->use_empty()) | 
 |     return false; | 
 |  | 
 |   SmallSetVector<SDNode *, 16> Nodes; | 
 |   Nodes.insert(N); | 
 |   do { | 
 |     N = Nodes.pop_back_val(); | 
 |     if (!N) | 
 |       continue; | 
 |  | 
 |     if (N->use_empty()) { | 
 |       for (const SDValue &ChildN : N->op_values()) | 
 |         Nodes.insert(ChildN.getNode()); | 
 |  | 
 |       removeFromWorklist(N); | 
 |       DAG.DeleteNode(N); | 
 |     } else { | 
 |       AddToWorklist(N); | 
 |     } | 
 |   } while (!Nodes.empty()); | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Main DAG Combiner implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void DAGCombiner::Run(CombineLevel AtLevel) { | 
 |   // set the instance variables, so that the various visit routines may use it. | 
 |   Level = AtLevel; | 
 |   LegalDAG = Level >= AfterLegalizeDAG; | 
 |   LegalOperations = Level >= AfterLegalizeVectorOps; | 
 |   LegalTypes = Level >= AfterLegalizeTypes; | 
 |  | 
 |   WorklistInserter AddNodes(*this); | 
 |  | 
 |   // Add all the dag nodes to the worklist. | 
 |   // | 
 |   // Note: All nodes are not added to PruningList here, this is because the only | 
 |   // nodes which can be deleted are those which have no uses and all other nodes | 
 |   // which would otherwise be added to the worklist by the first call to | 
 |   // getNextWorklistEntry are already present in it. | 
 |   for (SDNode &Node : DAG.allnodes()) | 
 |     AddToWorklist(&Node, /* IsCandidateForPruning */ Node.use_empty()); | 
 |  | 
 |   // Create a dummy node (which is not added to allnodes), that adds a reference | 
 |   // to the root node, preventing it from being deleted, and tracking any | 
 |   // changes of the root. | 
 |   HandleSDNode Dummy(DAG.getRoot()); | 
 |  | 
 |   // While we have a valid worklist entry node, try to combine it. | 
 |   while (SDNode *N = getNextWorklistEntry()) { | 
 |     // If N has no uses, it is dead.  Make sure to revisit all N's operands once | 
 |     // N is deleted from the DAG, since they too may now be dead or may have a | 
 |     // reduced number of uses, allowing other xforms. | 
 |     if (recursivelyDeleteUnusedNodes(N)) | 
 |       continue; | 
 |  | 
 |     WorklistRemover DeadNodes(*this); | 
 |  | 
 |     // If this combine is running after legalizing the DAG, re-legalize any | 
 |     // nodes pulled off the worklist. | 
 |     if (LegalDAG) { | 
 |       SmallSetVector<SDNode *, 16> UpdatedNodes; | 
 |       bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); | 
 |  | 
 |       for (SDNode *LN : UpdatedNodes) | 
 |         AddToWorklistWithUsers(LN); | 
 |  | 
 |       if (!NIsValid) | 
 |         continue; | 
 |     } | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); | 
 |  | 
 |     // Add any operands of the new node which have not yet been combined to the | 
 |     // worklist as well. getNextWorklistEntry flags nodes that have been | 
 |     // combined before. Because the worklist uniques things already, this won't | 
 |     // repeatedly process the same operand. | 
 |     for (const SDValue &ChildN : N->op_values()) | 
 |       AddToWorklist(ChildN.getNode(), /*IsCandidateForPruning=*/true, | 
 |                     /*SkipIfCombinedBefore=*/true); | 
 |  | 
 |     SDValue RV = combine(N); | 
 |  | 
 |     if (!RV.getNode()) | 
 |       continue; | 
 |  | 
 |     ++NodesCombined; | 
 |  | 
 |     // Invalidate cached info. | 
 |     ChainsWithoutMergeableStores.clear(); | 
 |  | 
 |     // If we get back the same node we passed in, rather than a new node or | 
 |     // zero, we know that the node must have defined multiple values and | 
 |     // CombineTo was used.  Since CombineTo takes care of the worklist | 
 |     // mechanics for us, we have no work to do in this case. | 
 |     if (RV.getNode() == N) | 
 |       continue; | 
 |  | 
 |     assert(N->getOpcode() != ISD::DELETED_NODE && | 
 |            RV.getOpcode() != ISD::DELETED_NODE && | 
 |            "Node was deleted but visit returned new node!"); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG)); | 
 |  | 
 |     if (N->getNumValues() == RV->getNumValues()) | 
 |       DAG.ReplaceAllUsesWith(N, RV.getNode()); | 
 |     else { | 
 |       assert(N->getValueType(0) == RV.getValueType() && | 
 |              N->getNumValues() == 1 && "Type mismatch"); | 
 |       DAG.ReplaceAllUsesWith(N, &RV); | 
 |     } | 
 |  | 
 |     // Push the new node and any users onto the worklist.  Omit this if the | 
 |     // new node is the EntryToken (e.g. if a store managed to get optimized | 
 |     // out), because re-visiting the EntryToken and its users will not uncover | 
 |     // any additional opportunities, but there may be a large number of such | 
 |     // users, potentially causing compile time explosion. | 
 |     if (RV.getOpcode() != ISD::EntryToken) | 
 |       AddToWorklistWithUsers(RV.getNode()); | 
 |  | 
 |     // Finally, if the node is now dead, remove it from the graph.  The node | 
 |     // may not be dead if the replacement process recursively simplified to | 
 |     // something else needing this node. This will also take care of adding any | 
 |     // operands which have lost a user to the worklist. | 
 |     recursivelyDeleteUnusedNodes(N); | 
 |   } | 
 |  | 
 |   // If the root changed (e.g. it was a dead load, update the root). | 
 |   DAG.setRoot(Dummy.getValue()); | 
 |   DAG.RemoveDeadNodes(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visit(SDNode *N) { | 
 |   // clang-format off | 
 |   switch (N->getOpcode()) { | 
 |   default: break; | 
 |   case ISD::TokenFactor:        return visitTokenFactor(N); | 
 |   case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); | 
 |   case ISD::ADD:                return visitADD(N); | 
 |   case ISD::SUB:                return visitSUB(N); | 
 |   case ISD::SADDSAT: | 
 |   case ISD::UADDSAT:            return visitADDSAT(N); | 
 |   case ISD::SSUBSAT: | 
 |   case ISD::USUBSAT:            return visitSUBSAT(N); | 
 |   case ISD::ADDC:               return visitADDC(N); | 
 |   case ISD::SADDO: | 
 |   case ISD::UADDO:              return visitADDO(N); | 
 |   case ISD::SUBC:               return visitSUBC(N); | 
 |   case ISD::SSUBO: | 
 |   case ISD::USUBO:              return visitSUBO(N); | 
 |   case ISD::ADDE:               return visitADDE(N); | 
 |   case ISD::UADDO_CARRY:        return visitUADDO_CARRY(N); | 
 |   case ISD::SADDO_CARRY:        return visitSADDO_CARRY(N); | 
 |   case ISD::SUBE:               return visitSUBE(N); | 
 |   case ISD::USUBO_CARRY:        return visitUSUBO_CARRY(N); | 
 |   case ISD::SSUBO_CARRY:        return visitSSUBO_CARRY(N); | 
 |   case ISD::SMULFIX: | 
 |   case ISD::SMULFIXSAT: | 
 |   case ISD::UMULFIX: | 
 |   case ISD::UMULFIXSAT:         return visitMULFIX(N); | 
 |   case ISD::MUL:                return visitMUL<EmptyMatchContext>(N); | 
 |   case ISD::SDIV:               return visitSDIV(N); | 
 |   case ISD::UDIV:               return visitUDIV(N); | 
 |   case ISD::SREM: | 
 |   case ISD::UREM:               return visitREM(N); | 
 |   case ISD::MULHU:              return visitMULHU(N); | 
 |   case ISD::MULHS:              return visitMULHS(N); | 
 |   case ISD::AVGFLOORS: | 
 |   case ISD::AVGFLOORU: | 
 |   case ISD::AVGCEILS: | 
 |   case ISD::AVGCEILU:           return visitAVG(N); | 
 |   case ISD::ABDS: | 
 |   case ISD::ABDU:               return visitABD(N); | 
 |   case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); | 
 |   case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); | 
 |   case ISD::SMULO: | 
 |   case ISD::UMULO:              return visitMULO(N); | 
 |   case ISD::SMIN: | 
 |   case ISD::SMAX: | 
 |   case ISD::UMIN: | 
 |   case ISD::UMAX:               return visitIMINMAX(N); | 
 |   case ISD::AND:                return visitAND(N); | 
 |   case ISD::OR:                 return visitOR(N); | 
 |   case ISD::XOR:                return visitXOR(N); | 
 |   case ISD::SHL:                return visitSHL(N); | 
 |   case ISD::SRA:                return visitSRA(N); | 
 |   case ISD::SRL:                return visitSRL(N); | 
 |   case ISD::ROTR: | 
 |   case ISD::ROTL:               return visitRotate(N); | 
 |   case ISD::FSHL: | 
 |   case ISD::FSHR:               return visitFunnelShift(N); | 
 |   case ISD::SSHLSAT: | 
 |   case ISD::USHLSAT:            return visitSHLSAT(N); | 
 |   case ISD::ABS:                return visitABS(N); | 
 |   case ISD::BSWAP:              return visitBSWAP(N); | 
 |   case ISD::BITREVERSE:         return visitBITREVERSE(N); | 
 |   case ISD::CTLZ:               return visitCTLZ(N); | 
 |   case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N); | 
 |   case ISD::CTTZ:               return visitCTTZ(N); | 
 |   case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N); | 
 |   case ISD::CTPOP:              return visitCTPOP(N); | 
 |   case ISD::SELECT:             return visitSELECT(N); | 
 |   case ISD::VSELECT:            return visitVSELECT(N); | 
 |   case ISD::SELECT_CC:          return visitSELECT_CC(N); | 
 |   case ISD::SETCC:              return visitSETCC(N); | 
 |   case ISD::SETCCCARRY:         return visitSETCCCARRY(N); | 
 |   case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); | 
 |   case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); | 
 |   case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); | 
 |   case ISD::AssertSext: | 
 |   case ISD::AssertZext:         return visitAssertExt(N); | 
 |   case ISD::AssertAlign:        return visitAssertAlign(N); | 
 |   case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); | 
 |   case ISD::SIGN_EXTEND_VECTOR_INREG: | 
 |   case ISD::ZERO_EXTEND_VECTOR_INREG: | 
 |   case ISD::ANY_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N); | 
 |   case ISD::TRUNCATE:           return visitTRUNCATE(N); | 
 |   case ISD::TRUNCATE_USAT_U:    return visitTRUNCATE_USAT_U(N); | 
 |   case ISD::BITCAST:            return visitBITCAST(N); | 
 |   case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); | 
 |   case ISD::FADD:               return visitFADD(N); | 
 |   case ISD::STRICT_FADD:        return visitSTRICT_FADD(N); | 
 |   case ISD::FSUB:               return visitFSUB(N); | 
 |   case ISD::FMUL:               return visitFMUL(N); | 
 |   case ISD::FMA:                return visitFMA<EmptyMatchContext>(N); | 
 |   case ISD::FMAD:               return visitFMAD(N); | 
 |   case ISD::FDIV:               return visitFDIV(N); | 
 |   case ISD::FREM:               return visitFREM(N); | 
 |   case ISD::FSQRT:              return visitFSQRT(N); | 
 |   case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); | 
 |   case ISD::FPOW:               return visitFPOW(N); | 
 |   case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); | 
 |   case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); | 
 |   case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); | 
 |   case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); | 
 |   case ISD::LROUND: | 
 |   case ISD::LLROUND: | 
 |   case ISD::LRINT: | 
 |   case ISD::LLRINT:             return visitXROUND(N); | 
 |   case ISD::FP_ROUND:           return visitFP_ROUND(N); | 
 |   case ISD::FP_EXTEND:          return visitFP_EXTEND(N); | 
 |   case ISD::FNEG:               return visitFNEG(N); | 
 |   case ISD::FABS:               return visitFABS(N); | 
 |   case ISD::FFLOOR:             return visitFFLOOR(N); | 
 |   case ISD::FMINNUM: | 
 |   case ISD::FMAXNUM: | 
 |   case ISD::FMINIMUM: | 
 |   case ISD::FMAXIMUM: | 
 |   case ISD::FMINIMUMNUM: | 
 |   case ISD::FMAXIMUMNUM:       return visitFMinMax(N); | 
 |   case ISD::FCEIL:              return visitFCEIL(N); | 
 |   case ISD::FTRUNC:             return visitFTRUNC(N); | 
 |   case ISD::FFREXP:             return visitFFREXP(N); | 
 |   case ISD::BRCOND:             return visitBRCOND(N); | 
 |   case ISD::BR_CC:              return visitBR_CC(N); | 
 |   case ISD::LOAD:               return visitLOAD(N); | 
 |   case ISD::STORE:              return visitSTORE(N); | 
 |   case ISD::ATOMIC_STORE:       return visitATOMIC_STORE(N); | 
 |   case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); | 
 |   case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); | 
 |   case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); | 
 |   case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); | 
 |   case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N); | 
 |   case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); | 
 |   case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N); | 
 |   case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N); | 
 |   case ISD::MGATHER:            return visitMGATHER(N); | 
 |   case ISD::MLOAD:              return visitMLOAD(N); | 
 |   case ISD::MSCATTER:           return visitMSCATTER(N); | 
 |   case ISD::MSTORE:             return visitMSTORE(N); | 
 |   case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM: return visitMHISTOGRAM(N); | 
 |   case ISD::PARTIAL_REDUCE_SMLA: | 
 |   case ISD::PARTIAL_REDUCE_UMLA: | 
 |                                 return visitPARTIAL_REDUCE_MLA(N); | 
 |   case ISD::VECTOR_COMPRESS:    return visitVECTOR_COMPRESS(N); | 
 |   case ISD::LIFETIME_END:       return visitLIFETIME_END(N); | 
 |   case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N); | 
 |   case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N); | 
 |   case ISD::FP_TO_BF16:         return visitFP_TO_BF16(N); | 
 |   case ISD::BF16_TO_FP:         return visitBF16_TO_FP(N); | 
 |   case ISD::FREEZE:             return visitFREEZE(N); | 
 |   case ISD::GET_FPENV_MEM:      return visitGET_FPENV_MEM(N); | 
 |   case ISD::SET_FPENV_MEM:      return visitSET_FPENV_MEM(N); | 
 |   case ISD::FCANONICALIZE:      return visitFCANONICALIZE(N); | 
 |   case ISD::VECREDUCE_FADD: | 
 |   case ISD::VECREDUCE_FMUL: | 
 |   case ISD::VECREDUCE_ADD: | 
 |   case ISD::VECREDUCE_MUL: | 
 |   case ISD::VECREDUCE_AND: | 
 |   case ISD::VECREDUCE_OR: | 
 |   case ISD::VECREDUCE_XOR: | 
 |   case ISD::VECREDUCE_SMAX: | 
 |   case ISD::VECREDUCE_SMIN: | 
 |   case ISD::VECREDUCE_UMAX: | 
 |   case ISD::VECREDUCE_UMIN: | 
 |   case ISD::VECREDUCE_FMAX: | 
 |   case ISD::VECREDUCE_FMIN: | 
 |   case ISD::VECREDUCE_FMAXIMUM: | 
 |   case ISD::VECREDUCE_FMINIMUM:     return visitVECREDUCE(N); | 
 | #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC: | 
 | #include "llvm/IR/VPIntrinsics.def" | 
 |     return visitVPOp(N); | 
 |   } | 
 |   // clang-format on | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::combine(SDNode *N) { | 
 |   if (!DebugCounter::shouldExecute(DAGCombineCounter)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue RV; | 
 |   if (!DisableGenericCombines) | 
 |     RV = visit(N); | 
 |  | 
 |   // If nothing happened, try a target-specific DAG combine. | 
 |   if (!RV.getNode()) { | 
 |     assert(N->getOpcode() != ISD::DELETED_NODE && | 
 |            "Node was deleted but visit returned NULL!"); | 
 |  | 
 |     if (N->getOpcode() >= ISD::BUILTIN_OP_END || | 
 |         TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { | 
 |  | 
 |       // Expose the DAG combiner to the target combiner impls. | 
 |       TargetLowering::DAGCombinerInfo | 
 |         DagCombineInfo(DAG, Level, false, this); | 
 |  | 
 |       RV = TLI.PerformDAGCombine(N, DagCombineInfo); | 
 |     } | 
 |   } | 
 |  | 
 |   // If nothing happened still, try promoting the operation. | 
 |   if (!RV.getNode()) { | 
 |     switch (N->getOpcode()) { | 
 |     default: break; | 
 |     case ISD::ADD: | 
 |     case ISD::SUB: | 
 |     case ISD::MUL: | 
 |     case ISD::AND: | 
 |     case ISD::OR: | 
 |     case ISD::XOR: | 
 |       RV = PromoteIntBinOp(SDValue(N, 0)); | 
 |       break; | 
 |     case ISD::SHL: | 
 |     case ISD::SRA: | 
 |     case ISD::SRL: | 
 |       RV = PromoteIntShiftOp(SDValue(N, 0)); | 
 |       break; | 
 |     case ISD::SIGN_EXTEND: | 
 |     case ISD::ZERO_EXTEND: | 
 |     case ISD::ANY_EXTEND: | 
 |       RV = PromoteExtend(SDValue(N, 0)); | 
 |       break; | 
 |     case ISD::LOAD: | 
 |       if (PromoteLoad(SDValue(N, 0))) | 
 |         RV = SDValue(N, 0); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If N is a commutative binary node, try to eliminate it if the commuted | 
 |   // version is already present in the DAG. | 
 |   if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode())) { | 
 |     SDValue N0 = N->getOperand(0); | 
 |     SDValue N1 = N->getOperand(1); | 
 |  | 
 |     // Constant operands are canonicalized to RHS. | 
 |     if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { | 
 |       SDValue Ops[] = {N1, N0}; | 
 |       SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, | 
 |                                             N->getFlags()); | 
 |       if (CSENode) | 
 |         return SDValue(CSENode, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   return RV; | 
 | } | 
 |  | 
 | /// Given a node, return its input chain if it has one, otherwise return a null | 
 | /// sd operand. | 
 | static SDValue getInputChainForNode(SDNode *N) { | 
 |   if (unsigned NumOps = N->getNumOperands()) { | 
 |     if (N->getOperand(0).getValueType() == MVT::Other) | 
 |       return N->getOperand(0); | 
 |     if (N->getOperand(NumOps-1).getValueType() == MVT::Other) | 
 |       return N->getOperand(NumOps-1); | 
 |     for (unsigned i = 1; i < NumOps-1; ++i) | 
 |       if (N->getOperand(i).getValueType() == MVT::Other) | 
 |         return N->getOperand(i); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFCANONICALIZE(SDNode *N) { | 
 |   SDValue Operand = N->getOperand(0); | 
 |   EVT VT = Operand.getValueType(); | 
 |   SDLoc dl(N); | 
 |  | 
 |   // Canonicalize undef to quiet NaN. | 
 |   if (Operand.isUndef()) { | 
 |     APFloat CanonicalQNaN = APFloat::getQNaN(VT.getFltSemantics()); | 
 |     return DAG.getConstantFP(CanonicalQNaN, dl, VT); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitTokenFactor(SDNode *N) { | 
 |   // If N has two operands, where one has an input chain equal to the other, | 
 |   // the 'other' chain is redundant. | 
 |   if (N->getNumOperands() == 2) { | 
 |     if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) | 
 |       return N->getOperand(0); | 
 |     if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) | 
 |       return N->getOperand(1); | 
 |   } | 
 |  | 
 |   // Don't simplify token factors if optnone. | 
 |   if (OptLevel == CodeGenOptLevel::None) | 
 |     return SDValue(); | 
 |  | 
 |   // Don't simplify the token factor if the node itself has too many operands. | 
 |   if (N->getNumOperands() > TokenFactorInlineLimit) | 
 |     return SDValue(); | 
 |  | 
 |   // If the sole user is a token factor, we should make sure we have a | 
 |   // chance to merge them together. This prevents TF chains from inhibiting | 
 |   // optimizations. | 
 |   if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::TokenFactor) | 
 |     AddToWorklist(*(N->user_begin())); | 
 |  | 
 |   SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. | 
 |   SmallVector<SDValue, 8> Ops;      // Ops for replacing token factor. | 
 |   SmallPtrSet<SDNode*, 16> SeenOps; | 
 |   bool Changed = false;             // If we should replace this token factor. | 
 |  | 
 |   // Start out with this token factor. | 
 |   TFs.push_back(N); | 
 |  | 
 |   // Iterate through token factors.  The TFs grows when new token factors are | 
 |   // encountered. | 
 |   for (unsigned i = 0; i < TFs.size(); ++i) { | 
 |     // Limit number of nodes to inline, to avoid quadratic compile times. | 
 |     // We have to add the outstanding Token Factors to Ops, otherwise we might | 
 |     // drop Ops from the resulting Token Factors. | 
 |     if (Ops.size() > TokenFactorInlineLimit) { | 
 |       for (unsigned j = i; j < TFs.size(); j++) | 
 |         Ops.emplace_back(TFs[j], 0); | 
 |       // Drop unprocessed Token Factors from TFs, so we do not add them to the | 
 |       // combiner worklist later. | 
 |       TFs.resize(i); | 
 |       break; | 
 |     } | 
 |  | 
 |     SDNode *TF = TFs[i]; | 
 |     // Check each of the operands. | 
 |     for (const SDValue &Op : TF->op_values()) { | 
 |       switch (Op.getOpcode()) { | 
 |       case ISD::EntryToken: | 
 |         // Entry tokens don't need to be added to the list. They are | 
 |         // redundant. | 
 |         Changed = true; | 
 |         break; | 
 |  | 
 |       case ISD::TokenFactor: | 
 |         if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { | 
 |           // Queue up for processing. | 
 |           TFs.push_back(Op.getNode()); | 
 |           Changed = true; | 
 |           break; | 
 |         } | 
 |         [[fallthrough]]; | 
 |  | 
 |       default: | 
 |         // Only add if it isn't already in the list. | 
 |         if (SeenOps.insert(Op.getNode()).second) | 
 |           Ops.push_back(Op); | 
 |         else | 
 |           Changed = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Re-visit inlined Token Factors, to clean them up in case they have been | 
 |   // removed. Skip the first Token Factor, as this is the current node. | 
 |   for (unsigned i = 1, e = TFs.size(); i < e; i++) | 
 |     AddToWorklist(TFs[i]); | 
 |  | 
 |   // Remove Nodes that are chained to another node in the list. Do so | 
 |   // by walking up chains breath-first stopping when we've seen | 
 |   // another operand. In general we must climb to the EntryNode, but we can exit | 
 |   // early if we find all remaining work is associated with just one operand as | 
 |   // no further pruning is possible. | 
 |  | 
 |   // List of nodes to search through and original Ops from which they originate. | 
 |   SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; | 
 |   SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. | 
 |   SmallPtrSet<SDNode *, 16> SeenChains; | 
 |   bool DidPruneOps = false; | 
 |  | 
 |   unsigned NumLeftToConsider = 0; | 
 |   for (const SDValue &Op : Ops) { | 
 |     Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); | 
 |     OpWorkCount.push_back(1); | 
 |   } | 
 |  | 
 |   auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { | 
 |     // If this is an Op, we can remove the op from the list. Remark any | 
 |     // search associated with it as from the current OpNumber. | 
 |     if (SeenOps.contains(Op)) { | 
 |       Changed = true; | 
 |       DidPruneOps = true; | 
 |       unsigned OrigOpNumber = 0; | 
 |       while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) | 
 |         OrigOpNumber++; | 
 |       assert((OrigOpNumber != Ops.size()) && | 
 |              "expected to find TokenFactor Operand"); | 
 |       // Re-mark worklist from OrigOpNumber to OpNumber | 
 |       for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { | 
 |         if (Worklist[i].second == OrigOpNumber) { | 
 |           Worklist[i].second = OpNumber; | 
 |         } | 
 |       } | 
 |       OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; | 
 |       OpWorkCount[OrigOpNumber] = 0; | 
 |       NumLeftToConsider--; | 
 |     } | 
 |     // Add if it's a new chain | 
 |     if (SeenChains.insert(Op).second) { | 
 |       OpWorkCount[OpNumber]++; | 
 |       Worklist.push_back(std::make_pair(Op, OpNumber)); | 
 |     } | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { | 
 |     // We need at least be consider at least 2 Ops to prune. | 
 |     if (NumLeftToConsider <= 1) | 
 |       break; | 
 |     auto CurNode = Worklist[i].first; | 
 |     auto CurOpNumber = Worklist[i].second; | 
 |     assert((OpWorkCount[CurOpNumber] > 0) && | 
 |            "Node should not appear in worklist"); | 
 |     switch (CurNode->getOpcode()) { | 
 |     case ISD::EntryToken: | 
 |       // Hitting EntryToken is the only way for the search to terminate without | 
 |       // hitting | 
 |       // another operand's search. Prevent us from marking this operand | 
 |       // considered. | 
 |       NumLeftToConsider++; | 
 |       break; | 
 |     case ISD::TokenFactor: | 
 |       for (const SDValue &Op : CurNode->op_values()) | 
 |         AddToWorklist(i, Op.getNode(), CurOpNumber); | 
 |       break; | 
 |     case ISD::LIFETIME_START: | 
 |     case ISD::LIFETIME_END: | 
 |     case ISD::CopyFromReg: | 
 |     case ISD::CopyToReg: | 
 |       AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); | 
 |       break; | 
 |     default: | 
 |       if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) | 
 |         AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); | 
 |       break; | 
 |     } | 
 |     OpWorkCount[CurOpNumber]--; | 
 |     if (OpWorkCount[CurOpNumber] == 0) | 
 |       NumLeftToConsider--; | 
 |   } | 
 |  | 
 |   // If we've changed things around then replace token factor. | 
 |   if (Changed) { | 
 |     SDValue Result; | 
 |     if (Ops.empty()) { | 
 |       // The entry token is the only possible outcome. | 
 |       Result = DAG.getEntryNode(); | 
 |     } else { | 
 |       if (DidPruneOps) { | 
 |         SmallVector<SDValue, 8> PrunedOps; | 
 |         // | 
 |         for (const SDValue &Op : Ops) { | 
 |           if (SeenChains.count(Op.getNode()) == 0) | 
 |             PrunedOps.push_back(Op); | 
 |         } | 
 |         Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); | 
 |       } else { | 
 |         Result = DAG.getTokenFactor(SDLoc(N), Ops); | 
 |       } | 
 |     } | 
 |     return Result; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// MERGE_VALUES can always be eliminated. | 
 | SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { | 
 |   WorklistRemover DeadNodes(*this); | 
 |   // Replacing results may cause a different MERGE_VALUES to suddenly | 
 |   // be CSE'd with N, and carry its uses with it. Iterate until no | 
 |   // uses remain, to ensure that the node can be safely deleted. | 
 |   // First add the users of this node to the work list so that they | 
 |   // can be tried again once they have new operands. | 
 |   AddUsersToWorklist(N); | 
 |   do { | 
 |     // Do as a single replacement to avoid rewalking use lists. | 
 |     SmallVector<SDValue, 8> Ops(N->ops()); | 
 |     DAG.ReplaceAllUsesWith(N, Ops.data()); | 
 |   } while (!N->use_empty()); | 
 |   deleteAndRecombine(N); | 
 |   return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 | } | 
 |  | 
 | /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a | 
 | /// ConstantSDNode pointer else nullptr. | 
 | static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { | 
 |   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); | 
 |   return Const != nullptr && !Const->isOpaque() ? Const : nullptr; | 
 | } | 
 |  | 
 | // isTruncateOf - If N is a truncate of some other value, return true, record | 
 | // the value being truncated in Op and which of Op's bits are zero/one in Known. | 
 | // This function computes KnownBits to avoid a duplicated call to | 
 | // computeKnownBits in the caller. | 
 | static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, | 
 |                          KnownBits &Known) { | 
 |   if (N->getOpcode() == ISD::TRUNCATE) { | 
 |     Op = N->getOperand(0); | 
 |     Known = DAG.computeKnownBits(Op); | 
 |     if (N->getFlags().hasNoUnsignedWrap()) | 
 |       Known.Zero.setBitsFrom(N.getScalarValueSizeInBits()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (N.getValueType().getScalarType() != MVT::i1 || | 
 |       !sd_match( | 
 |           N, m_c_SetCC(m_Value(Op), m_Zero(), m_SpecificCondCode(ISD::SETNE)))) | 
 |     return false; | 
 |  | 
 |   Known = DAG.computeKnownBits(Op); | 
 |   return (Known.Zero | 1).isAllOnes(); | 
 | } | 
 |  | 
 | /// Return true if 'Use' is a load or a store that uses N as its base pointer | 
 | /// and that N may be folded in the load / store addressing mode. | 
 | static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, | 
 |                                     const TargetLowering &TLI) { | 
 |   EVT VT; | 
 |   unsigned AS; | 
 |  | 
 |   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { | 
 |     if (LD->isIndexed() || LD->getBasePtr().getNode() != N) | 
 |       return false; | 
 |     VT = LD->getMemoryVT(); | 
 |     AS = LD->getAddressSpace(); | 
 |   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { | 
 |     if (ST->isIndexed() || ST->getBasePtr().getNode() != N) | 
 |       return false; | 
 |     VT = ST->getMemoryVT(); | 
 |     AS = ST->getAddressSpace(); | 
 |   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) { | 
 |     if (LD->isIndexed() || LD->getBasePtr().getNode() != N) | 
 |       return false; | 
 |     VT = LD->getMemoryVT(); | 
 |     AS = LD->getAddressSpace(); | 
 |   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) { | 
 |     if (ST->isIndexed() || ST->getBasePtr().getNode() != N) | 
 |       return false; | 
 |     VT = ST->getMemoryVT(); | 
 |     AS = ST->getAddressSpace(); | 
 |   } else { | 
 |     return false; | 
 |   } | 
 |  | 
 |   TargetLowering::AddrMode AM; | 
 |   if (N->getOpcode() == ISD::ADD) { | 
 |     AM.HasBaseReg = true; | 
 |     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |     if (Offset) | 
 |       // [reg +/- imm] | 
 |       AM.BaseOffs = Offset->getSExtValue(); | 
 |     else | 
 |       // [reg +/- reg] | 
 |       AM.Scale = 1; | 
 |   } else if (N->getOpcode() == ISD::SUB) { | 
 |     AM.HasBaseReg = true; | 
 |     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |     if (Offset) | 
 |       // [reg +/- imm] | 
 |       AM.BaseOffs = -Offset->getSExtValue(); | 
 |     else | 
 |       // [reg +/- reg] | 
 |       AM.Scale = 1; | 
 |   } else { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, | 
 |                                    VT.getTypeForEVT(*DAG.getContext()), AS); | 
 | } | 
 |  | 
 | /// This inverts a canonicalization in IR that replaces a variable select arm | 
 | /// with an identity constant. Codegen improves if we re-use the variable | 
 | /// operand rather than load a constant. This can also be converted into a | 
 | /// masked vector operation if the target supports it. | 
 | static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG, | 
 |                                               bool ShouldCommuteOperands) { | 
 |   // Match a select as operand 1. The identity constant that we are looking for | 
 |   // is only valid as operand 1 of a non-commutative binop. | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (ShouldCommuteOperands) | 
 |     std::swap(N0, N1); | 
 |  | 
 |   // TODO: Should this apply to scalar select too? | 
 |   if (N1.getOpcode() != ISD::VSELECT || !N1.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // We can't hoist all instructions because of immediate UB (not speculatable). | 
 |   // For example div/rem by zero. | 
 |   if (!DAG.isSafeToSpeculativelyExecuteNode(N)) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue Cond = N1.getOperand(0); | 
 |   SDValue TVal = N1.getOperand(1); | 
 |   SDValue FVal = N1.getOperand(2); | 
 |  | 
 |   // This transform increases uses of N0, so freeze it to be safe. | 
 |   // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal) | 
 |   unsigned OpNo = ShouldCommuteOperands ? 0 : 1; | 
 |   if (isNeutralConstant(Opcode, N->getFlags(), TVal, OpNo)) { | 
 |     SDValue F0 = DAG.getFreeze(N0); | 
 |     SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags()); | 
 |     return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO); | 
 |   } | 
 |   // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0 | 
 |   if (isNeutralConstant(Opcode, N->getFlags(), FVal, OpNo)) { | 
 |     SDValue F0 = DAG.getFreeze(N0); | 
 |     SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags()); | 
 |     return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { | 
 |   assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && | 
 |          "Unexpected binary operator"); | 
 |  | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   auto BinOpcode = BO->getOpcode(); | 
 |   EVT VT = BO->getValueType(0); | 
 |   if (TLI.shouldFoldSelectWithIdentityConstant(BinOpcode, VT)) { | 
 |     if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false)) | 
 |       return Sel; | 
 |  | 
 |     if (TLI.isCommutativeBinOp(BO->getOpcode())) | 
 |       if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true)) | 
 |         return Sel; | 
 |   } | 
 |  | 
 |   // Don't do this unless the old select is going away. We want to eliminate the | 
 |   // binary operator, not replace a binop with a select. | 
 |   // TODO: Handle ISD::SELECT_CC. | 
 |   unsigned SelOpNo = 0; | 
 |   SDValue Sel = BO->getOperand(0); | 
 |   if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { | 
 |     SelOpNo = 1; | 
 |     Sel = BO->getOperand(1); | 
 |  | 
 |     // Peek through trunc to shift amount type. | 
 |     if ((BinOpcode == ISD::SHL || BinOpcode == ISD::SRA || | 
 |          BinOpcode == ISD::SRL) && Sel.hasOneUse()) { | 
 |       // This is valid when the truncated bits of x are already zero. | 
 |       SDValue Op; | 
 |       KnownBits Known; | 
 |       if (isTruncateOf(DAG, Sel, Op, Known) && | 
 |           Known.countMaxActiveBits() < Sel.getScalarValueSizeInBits()) | 
 |         Sel = Op; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue CT = Sel.getOperand(1); | 
 |   if (!isConstantOrConstantVector(CT, true) && | 
 |       !DAG.isConstantFPBuildVectorOrConstantFP(CT)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue CF = Sel.getOperand(2); | 
 |   if (!isConstantOrConstantVector(CF, true) && | 
 |       !DAG.isConstantFPBuildVectorOrConstantFP(CF)) | 
 |     return SDValue(); | 
 |  | 
 |   // Bail out if any constants are opaque because we can't constant fold those. | 
 |   // The exception is "and" and "or" with either 0 or -1 in which case we can | 
 |   // propagate non constant operands into select. I.e.: | 
 |   // and (select Cond, 0, -1), X --> select Cond, 0, X | 
 |   // or X, (select Cond, -1, 0) --> select Cond, -1, X | 
 |   bool CanFoldNonConst = | 
 |       (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && | 
 |       ((isNullOrNullSplat(CT) && isAllOnesOrAllOnesSplat(CF)) || | 
 |        (isNullOrNullSplat(CF) && isAllOnesOrAllOnesSplat(CT))); | 
 |  | 
 |   SDValue CBO = BO->getOperand(SelOpNo ^ 1); | 
 |   if (!CanFoldNonConst && | 
 |       !isConstantOrConstantVector(CBO, true) && | 
 |       !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(Sel); | 
 |   SDValue NewCT, NewCF; | 
 |  | 
 |   if (CanFoldNonConst) { | 
 |     // If CBO is an opaque constant, we can't rely on getNode to constant fold. | 
 |     if ((BinOpcode == ISD::AND && isNullOrNullSplat(CT)) || | 
 |         (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CT))) | 
 |       NewCT = CT; | 
 |     else | 
 |       NewCT = CBO; | 
 |  | 
 |     if ((BinOpcode == ISD::AND && isNullOrNullSplat(CF)) || | 
 |         (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CF))) | 
 |       NewCF = CF; | 
 |     else | 
 |       NewCF = CBO; | 
 |   } else { | 
 |     // We have a select-of-constants followed by a binary operator with a | 
 |     // constant. Eliminate the binop by pulling the constant math into the | 
 |     // select. Example: add (select Cond, CT, CF), CBO --> select Cond, CT + | 
 |     // CBO, CF + CBO | 
 |     NewCT = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CT}) | 
 |                     : DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CT, CBO}); | 
 |     if (!NewCT) | 
 |       return SDValue(); | 
 |  | 
 |     NewCF = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CF}) | 
 |                     : DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CF, CBO}); | 
 |     if (!NewCF) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); | 
 |   SelectOp->setFlags(BO->getFlags()); | 
 |   return SelectOp; | 
 | } | 
 |  | 
 | static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, const SDLoc &DL, | 
 |                                          SelectionDAG &DAG) { | 
 |   assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && | 
 |          "Expecting add or sub"); | 
 |  | 
 |   // Match a constant operand and a zext operand for the math instruction: | 
 |   // add Z, C | 
 |   // sub C, Z | 
 |   bool IsAdd = N->getOpcode() == ISD::ADD; | 
 |   SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); | 
 |   SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); | 
 |   auto *CN = dyn_cast<ConstantSDNode>(C); | 
 |   if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) | 
 |     return SDValue(); | 
 |  | 
 |   // Match the zext operand as a setcc of a boolean. | 
 |   if (Z.getOperand(0).getValueType() != MVT::i1) | 
 |     return SDValue(); | 
 |  | 
 |   // Match the compare as: setcc (X & 1), 0, eq. | 
 |   if (!sd_match(Z.getOperand(0), m_SetCC(m_And(m_Value(), m_One()), m_Zero(), | 
 |                                          m_SpecificCondCode(ISD::SETEQ)))) | 
 |     return SDValue(); | 
 |  | 
 |   // We are adding/subtracting a constant and an inverted low bit. Turn that | 
 |   // into a subtract/add of the low bit with incremented/decremented constant: | 
 |   // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) | 
 |   // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) | 
 |   EVT VT = C.getValueType(); | 
 |   SDValue LowBit = DAG.getZExtOrTrunc(Z.getOperand(0).getOperand(0), DL, VT); | 
 |   SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) | 
 |                      : DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); | 
 |   return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); | 
 | } | 
 |  | 
 | // Attempt to form avgceil(A, B) from (A | B) - ((A ^ B) >> 1) | 
 | SDValue DAGCombiner::foldSubToAvg(SDNode *N, const SDLoc &DL) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDValue A, B; | 
 |  | 
 |   if ((!LegalOperations || hasOperation(ISD::AVGCEILU, VT)) && | 
 |       sd_match(N, m_Sub(m_Or(m_Value(A), m_Value(B)), | 
 |                         m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) { | 
 |     return DAG.getNode(ISD::AVGCEILU, DL, VT, A, B); | 
 |   } | 
 |   if ((!LegalOperations || hasOperation(ISD::AVGCEILS, VT)) && | 
 |       sd_match(N, m_Sub(m_Or(m_Value(A), m_Value(B)), | 
 |                         m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) { | 
 |     return DAG.getNode(ISD::AVGCEILS, DL, VT, A, B); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into | 
 | /// a shift and add with a different constant. | 
 | static SDValue foldAddSubOfSignBit(SDNode *N, const SDLoc &DL, | 
 |                                    SelectionDAG &DAG) { | 
 |   assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && | 
 |          "Expecting add or sub"); | 
 |  | 
 |   // We need a constant operand for the add/sub, and the other operand is a | 
 |   // logical shift right: add (srl), C or sub C, (srl). | 
 |   bool IsAdd = N->getOpcode() == ISD::ADD; | 
 |   SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); | 
 |   SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); | 
 |   if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || | 
 |       ShiftOp.getOpcode() != ISD::SRL) | 
 |     return SDValue(); | 
 |  | 
 |   // The shift must be of a 'not' value. | 
 |   SDValue Not = ShiftOp.getOperand(0); | 
 |   if (!Not.hasOneUse() || !isBitwiseNot(Not)) | 
 |     return SDValue(); | 
 |  | 
 |   // The shift must be moving the sign bit to the least-significant-bit. | 
 |   EVT VT = ShiftOp.getValueType(); | 
 |   SDValue ShAmt = ShiftOp.getOperand(1); | 
 |   ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); | 
 |   if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) | 
 |     return SDValue(); | 
 |  | 
 |   // Eliminate the 'not' by adjusting the shift and add/sub constant: | 
 |   // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) | 
 |   // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) | 
 |   if (SDValue NewC = DAG.FoldConstantArithmetic( | 
 |           IsAdd ? ISD::ADD : ISD::SUB, DL, VT, | 
 |           {ConstantOp, DAG.getConstant(1, DL, VT)})) { | 
 |     SDValue NewShift = DAG.getNode(IsAdd ? ISD::SRA : ISD::SRL, DL, VT, | 
 |                                    Not.getOperand(0), ShAmt); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static bool | 
 | areBitwiseNotOfEachother(SDValue Op0, SDValue Op1) { | 
 |   return (isBitwiseNot(Op0) && Op0.getOperand(0) == Op1) || | 
 |          (isBitwiseNot(Op1) && Op1.getOperand(0) == Op0); | 
 | } | 
 |  | 
 | /// Try to fold a node that behaves like an ADD (note that N isn't necessarily | 
 | /// an ISD::ADD here, it could for example be an ISD::OR if we know that there | 
 | /// are no common bits set in the operands). | 
 | SDValue DAGCombiner::visitADDLike(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (add x, undef) -> undef | 
 |   if (N0.isUndef()) | 
 |     return N0; | 
 |   if (N1.isUndef()) | 
 |     return N1; | 
 |  | 
 |   // fold (add c1, c2) -> c1+c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N1, N0); | 
 |  | 
 |   if (areBitwiseNotOfEachother(N0, N1)) | 
 |     return DAG.getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (add x, 0) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return N0; | 
 |   } | 
 |  | 
 |   // fold (add x, 0) -> x | 
 |   if (isNullConstant(N1)) | 
 |     return N0; | 
 |  | 
 |   if (N0.getOpcode() == ISD::SUB) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     SDValue N01 = N0.getOperand(1); | 
 |  | 
 |     // fold ((A-c1)+c2) -> (A+(c2-c1)) | 
 |     if (SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N01})) | 
 |       return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); | 
 |  | 
 |     // fold ((c1-A)+c2) -> (c1+c2)-A | 
 |     if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N00})) | 
 |       return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); | 
 |   } | 
 |  | 
 |   // add (sext i1 X), 1 -> zext (not i1 X) | 
 |   // We don't transform this pattern: | 
 |   //   add (zext i1 X), -1 -> sext (not i1 X) | 
 |   // because most (?) targets generate better code for the zext form. | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && | 
 |       isOneOrOneSplat(N1)) { | 
 |     SDValue X = N0.getOperand(0); | 
 |     if ((!LegalOperations || | 
 |          (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && | 
 |           TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && | 
 |         X.getScalarValueSizeInBits() == 1) { | 
 |       SDValue Not = DAG.getNOT(DL, X, X.getValueType()); | 
 |       return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) | 
 |   // iff (or x, c0) is equivalent to (add x, c0). | 
 |   // Fold (add (xor x, c0), c1) -> (add x, (c0 + c1)) | 
 |   // iff (xor x, c0) is equivalent to (add x, c0). | 
 |   if (DAG.isADDLike(N0)) { | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N01})) | 
 |       return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add); | 
 |   } | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // reassociate add | 
 |   if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N, N0, N1)) { | 
 |     if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) | 
 |       return RADD; | 
 |  | 
 |     // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is | 
 |     // equivalent to (add x, c). | 
 |     // Reassociate (add (xor x, c), y) -> (add add(x, y), c)) if (xor x, c) is | 
 |     // equivalent to (add x, c). | 
 |     // Do this optimization only when adding c does not introduce instructions | 
 |     // for adding carries. | 
 |     auto ReassociateAddOr = [&](SDValue N0, SDValue N1) { | 
 |       if (DAG.isADDLike(N0) && N0.hasOneUse() && | 
 |           isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { | 
 |         // If N0's type does not split or is a sign mask, it does not introduce | 
 |         // add carry. | 
 |         auto TyActn = TLI.getTypeAction(*DAG.getContext(), N0.getValueType()); | 
 |         bool NoAddCarry = TyActn == TargetLoweringBase::TypeLegal || | 
 |                           TyActn == TargetLoweringBase::TypePromoteInteger || | 
 |                           isMinSignedConstant(N0.getOperand(1)); | 
 |         if (NoAddCarry) | 
 |           return DAG.getNode( | 
 |               ISD::ADD, DL, VT, | 
 |               DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), | 
 |               N0.getOperand(1)); | 
 |       } | 
 |       return SDValue(); | 
 |     }; | 
 |     if (SDValue Add = ReassociateAddOr(N0, N1)) | 
 |       return Add; | 
 |     if (SDValue Add = ReassociateAddOr(N1, N0)) | 
 |       return Add; | 
 |  | 
 |     // Fold add(vecreduce(x), vecreduce(y)) -> vecreduce(add(x, y)) | 
 |     if (SDValue SD = | 
 |             reassociateReduction(ISD::VECREDUCE_ADD, ISD::ADD, DL, VT, N0, N1)) | 
 |       return SD; | 
 |   } | 
 |  | 
 |   SDValue A, B, C, D; | 
 |  | 
 |   // fold ((0-A) + B) -> B-A | 
 |   if (sd_match(N0, m_Neg(m_Value(A)))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N1, A); | 
 |  | 
 |   // fold (A + (0-B)) -> A-B | 
 |   if (sd_match(N1, m_Neg(m_Value(B)))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N0, B); | 
 |  | 
 |   // fold (A+(B-A)) -> B | 
 |   if (sd_match(N1, m_Sub(m_Value(B), m_Specific(N0)))) | 
 |     return B; | 
 |  | 
 |   // fold ((B-A)+A) -> B | 
 |   if (sd_match(N0, m_Sub(m_Value(B), m_Specific(N1)))) | 
 |     return B; | 
 |  | 
 |   // fold ((A-B)+(C-A)) -> (C-B) | 
 |   if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) && | 
 |       sd_match(N1, m_Sub(m_Value(C), m_Specific(A)))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, C, B); | 
 |  | 
 |   // fold ((A-B)+(B-C)) -> (A-C) | 
 |   if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) && | 
 |       sd_match(N1, m_Sub(m_Specific(B), m_Value(C)))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, A, C); | 
 |  | 
 |   // fold (A+(B-(A+C))) to (B-C) | 
 |   // fold (A+(B-(C+A))) to (B-C) | 
 |   if (sd_match(N1, m_Sub(m_Value(B), m_Add(m_Specific(N0), m_Value(C))))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, B, C); | 
 |  | 
 |   // fold (A+((B-A)+or-C)) to (B+or-C) | 
 |   if (sd_match(N1, | 
 |                m_AnyOf(m_Add(m_Sub(m_Value(B), m_Specific(N0)), m_Value(C)), | 
 |                        m_Sub(m_Sub(m_Value(B), m_Specific(N0)), m_Value(C))))) | 
 |     return DAG.getNode(N1.getOpcode(), DL, VT, B, C); | 
 |  | 
 |   // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant | 
 |   if (sd_match(N0, m_OneUse(m_Sub(m_Value(A), m_Value(B)))) && | 
 |       sd_match(N1, m_OneUse(m_Sub(m_Value(C), m_Value(D)))) && | 
 |       (isConstantOrConstantVector(A) || isConstantOrConstantVector(C))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, | 
 |                        DAG.getNode(ISD::ADD, SDLoc(N0), VT, A, C), | 
 |                        DAG.getNode(ISD::ADD, SDLoc(N1), VT, B, D)); | 
 |  | 
 |   // fold (add (umax X, C), -C) --> (usubsat X, C) | 
 |   if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { | 
 |     auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { | 
 |       return (!Max && !Op) || | 
 |              (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, | 
 |                                   /*AllowUndefs*/ true)) | 
 |       return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), | 
 |                          N0.getOperand(1)); | 
 |   } | 
 |  | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   if (isOneOrOneSplat(N1)) { | 
 |     // fold (add (xor a, -1), 1) -> (sub 0, a) | 
 |     if (isBitwiseNot(N0)) | 
 |       return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | 
 |                          N0.getOperand(0)); | 
 |  | 
 |     // fold (add (add (xor a, -1), b), 1) -> (sub b, a) | 
 |     if (N0.getOpcode() == ISD::ADD) { | 
 |       SDValue A, Xor; | 
 |  | 
 |       if (isBitwiseNot(N0.getOperand(0))) { | 
 |         A = N0.getOperand(1); | 
 |         Xor = N0.getOperand(0); | 
 |       } else if (isBitwiseNot(N0.getOperand(1))) { | 
 |         A = N0.getOperand(0); | 
 |         Xor = N0.getOperand(1); | 
 |       } | 
 |  | 
 |       if (Xor) | 
 |         return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); | 
 |     } | 
 |  | 
 |     // Look for: | 
 |     //   add (add x, y), 1 | 
 |     // And if the target does not like this form then turn into: | 
 |     //   sub y, (xor x, -1) | 
 |     if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD && | 
 |         N0.hasOneUse() && | 
 |         // Limit this to after legalization if the add has wrap flags | 
 |         (Level >= AfterLegalizeDAG || (!N->getFlags().hasNoUnsignedWrap() && | 
 |                                        !N->getFlags().hasNoSignedWrap()))) { | 
 |       SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); | 
 |       return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); | 
 |     } | 
 |   } | 
 |  | 
 |   // (x - y) + -1  ->  add (xor y, -1), x | 
 |   if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && | 
 |       isAllOnesOrAllOnesSplat(N1, /*AllowUndefs=*/true)) { | 
 |     SDValue Not = DAG.getNOT(DL, N0.getOperand(1), VT); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Not, N0.getOperand(0)); | 
 |   } | 
 |  | 
 |   // Fold add(mul(add(A, CA), CM), CB) -> add(mul(A, CM), CM*CA+CB). | 
 |   // This can help if the inner add has multiple uses. | 
 |   APInt CM, CA; | 
 |   if (ConstantSDNode *CB = dyn_cast<ConstantSDNode>(N1)) { | 
 |     if (VT.getScalarSizeInBits() <= 64) { | 
 |       if (sd_match(N0, m_OneUse(m_Mul(m_Add(m_Value(A), m_ConstInt(CA)), | 
 |                                       m_ConstInt(CM)))) && | 
 |           TLI.isLegalAddImmediate( | 
 |               (CA * CM + CB->getAPIntValue()).getSExtValue())) { | 
 |         SDNodeFlags Flags; | 
 |         // If all the inputs are nuw, the outputs can be nuw. If all the input | 
 |         // are _also_ nsw the outputs can be too. | 
 |         if (N->getFlags().hasNoUnsignedWrap() && | 
 |             N0->getFlags().hasNoUnsignedWrap() && | 
 |             N0.getOperand(0)->getFlags().hasNoUnsignedWrap()) { | 
 |           Flags |= SDNodeFlags::NoUnsignedWrap; | 
 |           if (N->getFlags().hasNoSignedWrap() && | 
 |               N0->getFlags().hasNoSignedWrap() && | 
 |               N0.getOperand(0)->getFlags().hasNoSignedWrap()) | 
 |             Flags |= SDNodeFlags::NoSignedWrap; | 
 |         } | 
 |         SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A, | 
 |                                   DAG.getConstant(CM, DL, VT), Flags); | 
 |         return DAG.getNode( | 
 |             ISD::ADD, DL, VT, Mul, | 
 |             DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags); | 
 |       } | 
 |       // Also look in case there is an intermediate add. | 
 |       if (sd_match(N0, m_OneUse(m_Add( | 
 |                            m_OneUse(m_Mul(m_Add(m_Value(A), m_ConstInt(CA)), | 
 |                                           m_ConstInt(CM))), | 
 |                            m_Value(B)))) && | 
 |           TLI.isLegalAddImmediate( | 
 |               (CA * CM + CB->getAPIntValue()).getSExtValue())) { | 
 |         SDNodeFlags Flags; | 
 |         // If all the inputs are nuw, the outputs can be nuw. If all the input | 
 |         // are _also_ nsw the outputs can be too. | 
 |         SDValue OMul = | 
 |             N0.getOperand(0) == B ? N0.getOperand(1) : N0.getOperand(0); | 
 |         if (N->getFlags().hasNoUnsignedWrap() && | 
 |             N0->getFlags().hasNoUnsignedWrap() && | 
 |             OMul->getFlags().hasNoUnsignedWrap() && | 
 |             OMul.getOperand(0)->getFlags().hasNoUnsignedWrap()) { | 
 |           Flags |= SDNodeFlags::NoUnsignedWrap; | 
 |           if (N->getFlags().hasNoSignedWrap() && | 
 |               N0->getFlags().hasNoSignedWrap() && | 
 |               OMul->getFlags().hasNoSignedWrap() && | 
 |               OMul.getOperand(0)->getFlags().hasNoSignedWrap()) | 
 |             Flags |= SDNodeFlags::NoSignedWrap; | 
 |         } | 
 |         SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A, | 
 |                                   DAG.getConstant(CM, DL, VT), Flags); | 
 |         SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N1), VT, Mul, B, Flags); | 
 |         return DAG.getNode( | 
 |             ISD::ADD, DL, VT, Add, | 
 |             DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) | 
 |     return Combined; | 
 |  | 
 |   if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) | 
 |     return Combined; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Attempt to form avgfloor(A, B) from (A & B) + ((A ^ B) >> 1) | 
 | SDValue DAGCombiner::foldAddToAvg(SDNode *N, const SDLoc &DL) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDValue A, B; | 
 |  | 
 |   if ((!LegalOperations || hasOperation(ISD::AVGFLOORU, VT)) && | 
 |       sd_match(N, m_Add(m_And(m_Value(A), m_Value(B)), | 
 |                         m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) { | 
 |     return DAG.getNode(ISD::AVGFLOORU, DL, VT, A, B); | 
 |   } | 
 |   if ((!LegalOperations || hasOperation(ISD::AVGFLOORS, VT)) && | 
 |       sd_match(N, m_Add(m_And(m_Value(A), m_Value(B)), | 
 |                         m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) { | 
 |     return DAG.getNode(ISD::AVGFLOORS, DL, VT, A, B); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitADD(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (SDValue Combined = visitADDLike(N)) | 
 |     return Combined; | 
 |  | 
 |   if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldAddSubOfSignBit(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = MatchRotate(N0, N1, SDLoc(N), /*FromAdd=*/true)) | 
 |     return V; | 
 |  | 
 |   // Try to match AVGFLOOR fixedwidth pattern | 
 |   if (SDValue V = foldAddToAvg(N, DL)) | 
 |     return V; | 
 |  | 
 |   // fold (a+b) -> (a|b) iff a and b share no bits. | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && | 
 |       DAG.haveNoCommonBitsSet(N0, N1)) | 
 |     return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint); | 
 |  | 
 |   // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). | 
 |   if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { | 
 |     const APInt &C0 = N0->getConstantOperandAPInt(0); | 
 |     const APInt &C1 = N1->getConstantOperandAPInt(0); | 
 |     return DAG.getVScale(DL, VT, C0 + C1); | 
 |   } | 
 |  | 
 |   // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) | 
 |   if (N0.getOpcode() == ISD::ADD && | 
 |       N0.getOperand(1).getOpcode() == ISD::VSCALE && | 
 |       N1.getOpcode() == ISD::VSCALE) { | 
 |     const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); | 
 |     const APInt &VS1 = N1->getConstantOperandAPInt(0); | 
 |     SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); | 
 |   } | 
 |  | 
 |   // Fold (add step_vector(c1), step_vector(c2)  to step_vector(c1+c2)) | 
 |   if (N0.getOpcode() == ISD::STEP_VECTOR && | 
 |       N1.getOpcode() == ISD::STEP_VECTOR) { | 
 |     const APInt &C0 = N0->getConstantOperandAPInt(0); | 
 |     const APInt &C1 = N1->getConstantOperandAPInt(0); | 
 |     APInt NewStep = C0 + C1; | 
 |     return DAG.getStepVector(DL, VT, NewStep); | 
 |   } | 
 |  | 
 |   // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2) | 
 |   if (N0.getOpcode() == ISD::ADD && | 
 |       N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR && | 
 |       N1.getOpcode() == ISD::STEP_VECTOR) { | 
 |     const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0); | 
 |     const APInt &SV1 = N1->getConstantOperandAPInt(0); | 
 |     APInt NewStep = SV0 + SV1; | 
 |     SDValue SV = DAG.getStepVector(DL, VT, NewStep); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitADDSAT(SDNode *N) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   bool IsSigned = Opcode == ISD::SADDSAT; | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (add_sat x, undef) -> -1 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getAllOnesConstant(DL, VT); | 
 |  | 
 |   // fold (add_sat c1, c2) -> c3 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(Opcode, DL, VT, N1, N0); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (add_sat x, 0) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return N0; | 
 |   } | 
 |  | 
 |   // fold (add_sat x, 0) -> x | 
 |   if (isNullConstant(N1)) | 
 |     return N0; | 
 |  | 
 |   // If it cannot overflow, transform into an add. | 
 |   if (DAG.willNotOverflowAdd(IsSigned, N0, N1)) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, N1); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue getAsCarry(const TargetLowering &TLI, SDValue V, | 
 |                           bool ForceCarryReconstruction = false) { | 
 |   bool Masked = false; | 
 |  | 
 |   // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. | 
 |   while (true) { | 
 |     if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { | 
 |       V = V.getOperand(0); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { | 
 |       if (ForceCarryReconstruction) | 
 |         return V; | 
 |  | 
 |       Masked = true; | 
 |       V = V.getOperand(0); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (ForceCarryReconstruction && V.getValueType() == MVT::i1) | 
 |       return V; | 
 |  | 
 |     break; | 
 |   } | 
 |  | 
 |   // If this is not a carry, return. | 
 |   if (V.getResNo() != 1) | 
 |     return SDValue(); | 
 |  | 
 |   if (V.getOpcode() != ISD::UADDO_CARRY && V.getOpcode() != ISD::USUBO_CARRY && | 
 |       V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = V->getValueType(0); | 
 |   if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // If the result is masked, then no matter what kind of bool it is we can | 
 |   // return. If it isn't, then we need to make sure the bool type is either 0 or | 
 |   // 1 and not other values. | 
 |   if (Masked || | 
 |       TLI.getBooleanContents(V.getValueType()) == | 
 |           TargetLoweringBase::ZeroOrOneBooleanContent) | 
 |     return V; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Given the operands of an add/sub operation, see if the 2nd operand is a | 
 | /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert | 
 | /// the opcode and bypass the mask operation. | 
 | static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, | 
 |                                  SelectionDAG &DAG, const SDLoc &DL) { | 
 |   if (N1.getOpcode() == ISD::ZERO_EXTEND) | 
 |     N1 = N1.getOperand(0); | 
 |  | 
 |   if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N0.getValueType(); | 
 |   SDValue N10 = N1.getOperand(0); | 
 |   if (N10.getValueType() != VT && N10.getOpcode() == ISD::TRUNCATE) | 
 |     N10 = N10.getOperand(0); | 
 |  | 
 |   if (N10.getValueType() != VT) | 
 |     return SDValue(); | 
 |  | 
 |   if (DAG.ComputeNumSignBits(N10) != VT.getScalarSizeInBits()) | 
 |     return SDValue(); | 
 |  | 
 |   // add N0, (and (AssertSext X, i1), 1) --> sub N0, X | 
 |   // sub N0, (and (AssertSext X, i1), 1) --> add N0, X | 
 |   return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N10); | 
 | } | 
 |  | 
 | /// Helper for doing combines based on N0 and N1 being added to each other. | 
 | SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, | 
 |                                              SDNode *LocReference) { | 
 |   EVT VT = N0.getValueType(); | 
 |   SDLoc DL(LocReference); | 
 |  | 
 |   // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) | 
 |   SDValue Y, N; | 
 |   if (sd_match(N1, m_Shl(m_Neg(m_Value(Y)), m_Value(N)))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N0, | 
 |                        DAG.getNode(ISD::SHL, DL, VT, Y, N)); | 
 |  | 
 |   if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) | 
 |     return V; | 
 |  | 
 |   // Look for: | 
 |   //   add (add x, 1), y | 
 |   // And if the target does not like this form then turn into: | 
 |   //   sub y, (xor x, -1) | 
 |   if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD && | 
 |       N0.hasOneUse() && isOneOrOneSplat(N0.getOperand(1)) && | 
 |       // Limit this to after legalization if the add has wrap flags | 
 |       (Level >= AfterLegalizeDAG || (!N0->getFlags().hasNoUnsignedWrap() && | 
 |                                      !N0->getFlags().hasNoSignedWrap()))) { | 
 |     SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N1, Not); | 
 |   } | 
 |  | 
 |   if (N0.getOpcode() == ISD::SUB && N0.hasOneUse()) { | 
 |     // Hoist one-use subtraction by non-opaque constant: | 
 |     //   (x - C) + y  ->  (x + y) - C | 
 |     // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. | 
 |     if (isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { | 
 |       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); | 
 |       return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); | 
 |     } | 
 |     // Hoist one-use subtraction from non-opaque constant: | 
 |     //   (C - x) + y  ->  (y - x) + C | 
 |     if (isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { | 
 |       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); | 
 |       return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); | 
 |     } | 
 |   } | 
 |  | 
 |   // add (mul x, C), x -> mul x, C+1 | 
 |   if (N0.getOpcode() == ISD::MUL && N0.getOperand(0) == N1 && | 
 |       isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true) && | 
 |       N0.hasOneUse()) { | 
 |     SDValue NewC = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), | 
 |                                DAG.getConstant(1, DL, VT)); | 
 |     return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), NewC); | 
 |   } | 
 |  | 
 |   // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' | 
 |   // rather than 'add 0/-1' (the zext should get folded). | 
 |   // add (sext i1 Y), X --> sub X, (zext i1 Y) | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND && | 
 |       N0.getOperand(0).getScalarValueSizeInBits() == 1 && | 
 |       TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { | 
 |     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); | 
 |   } | 
 |  | 
 |   // add X, (sextinreg Y i1) -> sub X, (and Y 1) | 
 |   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
 |     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | 
 |     if (TN->getVT() == MVT::i1) { | 
 |       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | 
 |                                  DAG.getConstant(1, DL, VT)); | 
 |       return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); | 
 |     } | 
 |   } | 
 |  | 
 |   // (add X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry) | 
 |   if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1)) && | 
 |       N1.getResNo() == 0) | 
 |     return DAG.getNode(ISD::UADDO_CARRY, DL, N1->getVTList(), | 
 |                        N0, N1.getOperand(0), N1.getOperand(2)); | 
 |  | 
 |   // (add X, Carry) -> (uaddo_carry X, 0, Carry) | 
 |   if (TLI.isOperationLegalOrCustom(ISD::UADDO_CARRY, VT)) | 
 |     if (SDValue Carry = getAsCarry(TLI, N1)) | 
 |       return DAG.getNode(ISD::UADDO_CARRY, DL, | 
 |                          DAG.getVTList(VT, Carry.getValueType()), N0, | 
 |                          DAG.getConstant(0, DL, VT), Carry); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitADDC(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // If the flag result is dead, turn this into an ADD. | 
 |   if (!N->hasAnyUseOfValue(1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
 |                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
 |   if (N0C && !N1C) | 
 |     return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   // fold (addc x, 0) -> x + no carry out | 
 |   if (isNullConstant(N1)) | 
 |     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, | 
 |                                         DL, MVT::Glue)); | 
 |  | 
 |   // If it cannot overflow, transform into an add. | 
 |   if (DAG.computeOverflowForUnsignedAdd(N0, N1) == SelectionDAG::OFK_Never) | 
 |     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
 |                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /** | 
 |  * Flips a boolean if it is cheaper to compute. If the Force parameters is set, | 
 |  * then the flip also occurs if computing the inverse is the same cost. | 
 |  * This function returns an empty SDValue in case it cannot flip the boolean | 
 |  * without increasing the cost of the computation. If you want to flip a boolean | 
 |  * no matter what, use DAG.getLogicalNOT. | 
 |  */ | 
 | static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, | 
 |                                   const TargetLowering &TLI, | 
 |                                   bool Force) { | 
 |   if (Force && isa<ConstantSDNode>(V)) | 
 |     return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); | 
 |  | 
 |   if (V.getOpcode() != ISD::XOR) | 
 |     return SDValue(); | 
 |  | 
 |   if (DAG.isBoolConstant(V.getOperand(1)) == true) | 
 |     return V.getOperand(0); | 
 |   if (Force && isConstOrConstSplat(V.getOperand(1), false)) | 
 |     return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitADDO(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   bool IsSigned = (ISD::SADDO == N->getOpcode()); | 
 |  | 
 |   EVT CarryVT = N->getValueType(1); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // If the flag result is dead, turn this into an ADD. | 
 |   if (!N->hasAnyUseOfValue(1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
 |                      DAG.getUNDEF(CarryVT)); | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); | 
 |  | 
 |   // fold (addo x, 0) -> x + no carry out | 
 |   if (isNullOrNullSplat(N1)) | 
 |     return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   // If it cannot overflow, transform into an add. | 
 |   if (DAG.willNotOverflowAdd(IsSigned, N0, N1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   if (IsSigned) { | 
 |     // fold (saddo (xor a, -1), 1) -> (ssub 0, a). | 
 |     if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) | 
 |       return DAG.getNode(ISD::SSUBO, DL, N->getVTList(), | 
 |                          DAG.getConstant(0, DL, VT), N0.getOperand(0)); | 
 |   } else { | 
 |     // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. | 
 |     if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { | 
 |       SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), | 
 |                                 DAG.getConstant(0, DL, VT), N0.getOperand(0)); | 
 |       return CombineTo( | 
 |           N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); | 
 |     } | 
 |  | 
 |     if (SDValue Combined = visitUADDOLike(N0, N1, N)) | 
 |       return Combined; | 
 |  | 
 |     if (SDValue Combined = visitUADDOLike(N1, N0, N)) | 
 |       return Combined; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { | 
 |   EVT VT = N0.getValueType(); | 
 |   if (VT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // (uaddo X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry) | 
 |   // If Y + 1 cannot overflow. | 
 |   if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1))) { | 
 |     SDValue Y = N1.getOperand(0); | 
 |     SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); | 
 |     if (DAG.computeOverflowForUnsignedAdd(Y, One) == SelectionDAG::OFK_Never) | 
 |       return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0, Y, | 
 |                          N1.getOperand(2)); | 
 |   } | 
 |  | 
 |   // (uaddo X, Carry) -> (uaddo_carry X, 0, Carry) | 
 |   if (TLI.isOperationLegalOrCustom(ISD::UADDO_CARRY, VT)) | 
 |     if (SDValue Carry = getAsCarry(TLI, N1)) | 
 |       return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0, | 
 |                          DAG.getConstant(0, SDLoc(N), VT), Carry); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitADDE(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue CarryIn = N->getOperand(2); | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
 |   if (N0C && !N1C) | 
 |     return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), | 
 |                        N1, N0, CarryIn); | 
 |  | 
 |   // fold (adde x, y, false) -> (addc x, y) | 
 |   if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
 |     return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUADDO_CARRY(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue CarryIn = N->getOperand(2); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
 |   if (N0C && !N1C) | 
 |     return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); | 
 |  | 
 |   // fold (uaddo_carry x, y, false) -> (uaddo x, y) | 
 |   if (isNullConstant(CarryIn)) { | 
 |     if (!LegalOperations || | 
 |         TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) | 
 |       return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); | 
 |   } | 
 |  | 
 |   // fold (uaddo_carry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. | 
 |   if (isNullConstant(N0) && isNullConstant(N1)) { | 
 |     EVT VT = N0.getValueType(); | 
 |     EVT CarryVT = CarryIn.getValueType(); | 
 |     SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); | 
 |     AddToWorklist(CarryExt.getNode()); | 
 |     return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, | 
 |                                     DAG.getConstant(1, DL, VT)), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |   } | 
 |  | 
 |   if (SDValue Combined = visitUADDO_CARRYLike(N0, N1, CarryIn, N)) | 
 |     return Combined; | 
 |  | 
 |   if (SDValue Combined = visitUADDO_CARRYLike(N1, N0, CarryIn, N)) | 
 |     return Combined; | 
 |  | 
 |   // We want to avoid useless duplication. | 
 |   // TODO: This is done automatically for binary operations. As UADDO_CARRY is | 
 |   // not a binary operation, this is not really possible to leverage this | 
 |   // existing mechanism for it. However, if more operations require the same | 
 |   // deduplication logic, then it may be worth generalize. | 
 |   SDValue Ops[] = {N1, N0, CarryIn}; | 
 |   SDNode *CSENode = | 
 |       DAG.getNodeIfExists(ISD::UADDO_CARRY, N->getVTList(), Ops, N->getFlags()); | 
 |   if (CSENode) | 
 |     return SDValue(CSENode, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /** | 
 |  * If we are facing some sort of diamond carry propagation pattern try to | 
 |  * break it up to generate something like: | 
 |  *   (uaddo_carry X, 0, (uaddo_carry A, B, Z):Carry) | 
 |  * | 
 |  * The end result is usually an increase in operation required, but because the | 
 |  * carry is now linearized, other transforms can kick in and optimize the DAG. | 
 |  * | 
 |  * Patterns typically look something like | 
 |  *                (uaddo A, B) | 
 |  *                /          \ | 
 |  *             Carry         Sum | 
 |  *               |             \ | 
 |  *               | (uaddo_carry *, 0, Z) | 
 |  *               |       / | 
 |  *                \   Carry | 
 |  *                 |   / | 
 |  * (uaddo_carry X, *, *) | 
 |  * | 
 |  * But numerous variation exist. Our goal is to identify A, B, X and Z and | 
 |  * produce a combine with a single path for carry propagation. | 
 |  */ | 
 | static SDValue combineUADDO_CARRYDiamond(DAGCombiner &Combiner, | 
 |                                          SelectionDAG &DAG, SDValue X, | 
 |                                          SDValue Carry0, SDValue Carry1, | 
 |                                          SDNode *N) { | 
 |   if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) | 
 |     return SDValue(); | 
 |   if (Carry1.getOpcode() != ISD::UADDO) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Z; | 
 |  | 
 |   /** | 
 |    * First look for a suitable Z. It will present itself in the form of | 
 |    * (uaddo_carry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true | 
 |    */ | 
 |   if (Carry0.getOpcode() == ISD::UADDO_CARRY && | 
 |       isNullConstant(Carry0.getOperand(1))) { | 
 |     Z = Carry0.getOperand(2); | 
 |   } else if (Carry0.getOpcode() == ISD::UADDO && | 
 |              isOneConstant(Carry0.getOperand(1))) { | 
 |     EVT VT = Carry0->getValueType(1); | 
 |     Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); | 
 |   } else { | 
 |     // We couldn't find a suitable Z. | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |  | 
 |   auto cancelDiamond = [&](SDValue A,SDValue B) { | 
 |     SDLoc DL(N); | 
 |     SDValue NewY = | 
 |         DAG.getNode(ISD::UADDO_CARRY, DL, Carry0->getVTList(), A, B, Z); | 
 |     Combiner.AddToWorklist(NewY.getNode()); | 
 |     return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), X, | 
 |                        DAG.getConstant(0, DL, X.getValueType()), | 
 |                        NewY.getValue(1)); | 
 |   }; | 
 |  | 
 |   /** | 
 |    *         (uaddo A, B) | 
 |    *              | | 
 |    *             Sum | 
 |    *              | | 
 |    * (uaddo_carry *, 0, Z) | 
 |    */ | 
 |   if (Carry0.getOperand(0) == Carry1.getValue(0)) { | 
 |     return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); | 
 |   } | 
 |  | 
 |   /** | 
 |    * (uaddo_carry A, 0, Z) | 
 |    *         | | 
 |    *        Sum | 
 |    *         | | 
 |    *  (uaddo *, B) | 
 |    */ | 
 |   if (Carry1.getOperand(0) == Carry0.getValue(0)) { | 
 |     return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); | 
 |   } | 
 |  | 
 |   if (Carry1.getOperand(1) == Carry0.getValue(0)) { | 
 |     return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // If we are facing some sort of diamond carry/borrow in/out pattern try to | 
 | // match patterns like: | 
 | // | 
 | //          (uaddo A, B)            CarryIn | 
 | //            |  \                     | | 
 | //            |   \                    | | 
 | //    PartialSum   PartialCarryOutX   / | 
 | //            |        |             / | 
 | //            |    ____|____________/ | 
 | //            |   /    | | 
 | //     (uaddo *, *)    \________ | 
 | //       |  \                   \ | 
 | //       |   \                   | | 
 | //       |    PartialCarryOutY   | | 
 | //       |        \              | | 
 | //       |         \            / | 
 | //   AddCarrySum    |    ______/ | 
 | //                  |   / | 
 | //   CarryOut = (or *, *) | 
 | // | 
 | // And generate UADDO_CARRY (or USUBO_CARRY) with two result values: | 
 | // | 
 | //    {AddCarrySum, CarryOut} = (uaddo_carry A, B, CarryIn) | 
 | // | 
 | // Our goal is to identify A, B, and CarryIn and produce UADDO_CARRY/USUBO_CARRY | 
 | // with a single path for carry/borrow out propagation. | 
 | static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI, | 
 |                                    SDValue N0, SDValue N1, SDNode *N) { | 
 |   SDValue Carry0 = getAsCarry(TLI, N0); | 
 |   if (!Carry0) | 
 |     return SDValue(); | 
 |   SDValue Carry1 = getAsCarry(TLI, N1); | 
 |   if (!Carry1) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned Opcode = Carry0.getOpcode(); | 
 |   if (Opcode != Carry1.getOpcode()) | 
 |     return SDValue(); | 
 |   if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) | 
 |     return SDValue(); | 
 |   // Guarantee identical type of CarryOut | 
 |   EVT CarryOutType = N->getValueType(0); | 
 |   if (CarryOutType != Carry0.getValue(1).getValueType() || | 
 |       CarryOutType != Carry1.getValue(1).getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   // Canonicalize the add/sub of A and B (the top node in the above ASCII art) | 
 |   // as Carry0 and the add/sub of the carry in as Carry1 (the middle node). | 
 |   if (Carry1.getNode()->isOperandOf(Carry0.getNode())) | 
 |     std::swap(Carry0, Carry1); | 
 |  | 
 |   // Check if nodes are connected in expected way. | 
 |   if (Carry1.getOperand(0) != Carry0.getValue(0) && | 
 |       Carry1.getOperand(1) != Carry0.getValue(0)) | 
 |     return SDValue(); | 
 |  | 
 |   // The carry in value must be on the righthand side for subtraction. | 
 |   unsigned CarryInOperandNum = | 
 |       Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; | 
 |   if (Opcode == ISD::USUBO && CarryInOperandNum != 1) | 
 |     return SDValue(); | 
 |   SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); | 
 |  | 
 |   unsigned NewOp = Opcode == ISD::UADDO ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; | 
 |   if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) | 
 |     return SDValue(); | 
 |  | 
 |   // Verify that the carry/borrow in is plausibly a carry/borrow bit. | 
 |   CarryIn = getAsCarry(TLI, CarryIn, true); | 
 |   if (!CarryIn) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   CarryIn = DAG.getBoolExtOrTrunc(CarryIn, DL, Carry1->getValueType(1), | 
 |                                   Carry1->getValueType(0)); | 
 |   SDValue Merged = | 
 |       DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), | 
 |                   Carry0.getOperand(1), CarryIn); | 
 |  | 
 |   // Please note that because we have proven that the result of the UADDO/USUBO | 
 |   // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can | 
 |   // therefore prove that if the first UADDO/USUBO overflows, the second | 
 |   // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the | 
 |   // maximum value. | 
 |   // | 
 |   //   0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry | 
 |   //   0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) | 
 |   // | 
 |   // This is important because it means that OR and XOR can be used to merge | 
 |   // carry flags; and that AND can return a constant zero. | 
 |   // | 
 |   // TODO: match other operations that can merge flags (ADD, etc) | 
 |   DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); | 
 |   if (N->getOpcode() == ISD::AND) | 
 |     return DAG.getConstant(0, DL, CarryOutType); | 
 |   return Merged.getValue(1); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUADDO_CARRYLike(SDValue N0, SDValue N1, | 
 |                                           SDValue CarryIn, SDNode *N) { | 
 |   // fold (uaddo_carry (xor a, -1), b, c) -> (usubo_carry b, a, !c) and flip | 
 |   // carry. | 
 |   if (isBitwiseNot(N0)) | 
 |     if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { | 
 |       SDLoc DL(N); | 
 |       SDValue Sub = DAG.getNode(ISD::USUBO_CARRY, DL, N->getVTList(), N1, | 
 |                                 N0.getOperand(0), NotC); | 
 |       return CombineTo( | 
 |           N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); | 
 |     } | 
 |  | 
 |   // Iff the flag result is dead: | 
 |   // (uaddo_carry (add|uaddo X, Y), 0, Carry) -> (uaddo_carry X, Y, Carry) | 
 |   // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo | 
 |   // or the dependency between the instructions. | 
 |   if ((N0.getOpcode() == ISD::ADD || | 
 |        (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && | 
 |         N0.getValue(1) != CarryIn)) && | 
 |       isNullConstant(N1) && !N->hasAnyUseOfValue(1)) | 
 |     return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), | 
 |                        N0.getOperand(0), N0.getOperand(1), CarryIn); | 
 |  | 
 |   /** | 
 |    * When one of the uaddo_carry argument is itself a carry, we may be facing | 
 |    * a diamond carry propagation. In which case we try to transform the DAG | 
 |    * to ensure linear carry propagation if that is possible. | 
 |    */ | 
 |   if (auto Y = getAsCarry(TLI, N1)) { | 
 |     // Because both are carries, Y and Z can be swapped. | 
 |     if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) | 
 |       return R; | 
 |     if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) | 
 |       return R; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSADDO_CARRYLike(SDValue N0, SDValue N1, | 
 |                                           SDValue CarryIn, SDNode *N) { | 
 |   // fold (saddo_carry (xor a, -1), b, c) -> (ssubo_carry b, a, !c) | 
 |   if (isBitwiseNot(N0)) { | 
 |     if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) | 
 |       return DAG.getNode(ISD::SSUBO_CARRY, SDLoc(N), N->getVTList(), N1, | 
 |                          N0.getOperand(0), NotC); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue CarryIn = N->getOperand(2); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
 |   if (N0C && !N1C) | 
 |     return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn); | 
 |  | 
 |   // fold (saddo_carry x, y, false) -> (saddo x, y) | 
 |   if (isNullConstant(CarryIn)) { | 
 |     if (!LegalOperations || | 
 |         TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0))) | 
 |       return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1); | 
 |   } | 
 |  | 
 |   if (SDValue Combined = visitSADDO_CARRYLike(N0, N1, CarryIn, N)) | 
 |     return Combined; | 
 |  | 
 |   if (SDValue Combined = visitSADDO_CARRYLike(N1, N0, CarryIn, N)) | 
 |     return Combined; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a | 
 | // clamp/truncation if necessary. | 
 | static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, | 
 |                                    SDValue RHS, SelectionDAG &DAG, | 
 |                                    const SDLoc &DL) { | 
 |   assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && | 
 |          "Illegal truncation"); | 
 |  | 
 |   if (DstVT == SrcVT) | 
 |     return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); | 
 |  | 
 |   // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by | 
 |   // clamping RHS. | 
 |   APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(), | 
 |                                           DstVT.getScalarSizeInBits()); | 
 |   if (!DAG.MaskedValueIsZero(LHS, UpperBits)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue SatLimit = | 
 |       DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(), | 
 |                                            DstVT.getScalarSizeInBits()), | 
 |                       DL, SrcVT); | 
 |   RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit); | 
 |   RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS); | 
 |   LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS); | 
 |   return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS); | 
 | } | 
 |  | 
 | // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to | 
 | // usubsat(a,b), optionally as a truncated type. | 
 | SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL) { | 
 |   if (N->getOpcode() != ISD::SUB || | 
 |       !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT))) | 
 |     return SDValue(); | 
 |  | 
 |   EVT SubVT = N->getValueType(0); | 
 |   SDValue Op0 = N->getOperand(0); | 
 |   SDValue Op1 = N->getOperand(1); | 
 |  | 
 |   // Try to find umax(a,b) - b or a - umin(a,b) patterns | 
 |   // they may be converted to usubsat(a,b). | 
 |   if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { | 
 |     SDValue MaxLHS = Op0.getOperand(0); | 
 |     SDValue MaxRHS = Op0.getOperand(1); | 
 |     if (MaxLHS == Op1) | 
 |       return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, DL); | 
 |     if (MaxRHS == Op1) | 
 |       return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, DL); | 
 |   } | 
 |  | 
 |   if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) { | 
 |     SDValue MinLHS = Op1.getOperand(0); | 
 |     SDValue MinRHS = Op1.getOperand(1); | 
 |     if (MinLHS == Op0) | 
 |       return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, DL); | 
 |     if (MinRHS == Op0) | 
 |       return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, DL); | 
 |   } | 
 |  | 
 |   // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit))) | 
 |   if (Op1.getOpcode() == ISD::TRUNCATE && | 
 |       Op1.getOperand(0).getOpcode() == ISD::UMIN && | 
 |       Op1.getOperand(0).hasOneUse()) { | 
 |     SDValue MinLHS = Op1.getOperand(0).getOperand(0); | 
 |     SDValue MinRHS = Op1.getOperand(0).getOperand(1); | 
 |     if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0) | 
 |       return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS, | 
 |                                  DAG, DL); | 
 |     if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0) | 
 |       return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS, | 
 |                                  DAG, DL); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Refinement of DAG/Type Legalisation (promotion) when CTLZ is used for | 
 | // counting leading ones. Broadly, it replaces the substraction with a left | 
 | // shift. | 
 | // | 
 | // * DAG Legalisation Pattern: | 
 | // | 
 | //     (sub (ctlz (zeroextend (not Src))) | 
 | //          BitWidthDiff) | 
 | // | 
 | //       if BitWidthDiff == BitWidth(Node) - BitWidth(Src) | 
 | //       --> | 
 | // | 
 | //     (ctlz_zero_undef (not (shl (anyextend Src) | 
 | //                                BitWidthDiff))) | 
 | // | 
 | // * Type Legalisation Pattern: | 
 | // | 
 | //     (sub (ctlz (and (xor Src XorMask) | 
 | //                     AndMask)) | 
 | //          BitWidthDiff) | 
 | // | 
 | //       if AndMask has only trailing ones | 
 | //       and MaskBitWidth(AndMask) == BitWidth(Node) - BitWidthDiff | 
 | //       and XorMask has more trailing ones than AndMask | 
 | //       --> | 
 | // | 
 | //     (ctlz_zero_undef (not (shl Src BitWidthDiff))) | 
 | template <class MatchContextClass> | 
 | static SDValue foldSubCtlzNot(SDNode *N, SelectionDAG &DAG) { | 
 |   const SDLoc DL(N); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |  | 
 |   MatchContextClass Matcher(DAG, DAG.getTargetLoweringInfo(), N); | 
 |  | 
 |   APInt AndMask; | 
 |   APInt XorMask; | 
 |   APInt BitWidthDiff; | 
 |  | 
 |   SDValue CtlzOp; | 
 |   SDValue Src; | 
 |  | 
 |   if (!sd_context_match( | 
 |           N, Matcher, m_Sub(m_Ctlz(m_Value(CtlzOp)), m_ConstInt(BitWidthDiff)))) | 
 |     return SDValue(); | 
 |  | 
 |   if (sd_context_match(CtlzOp, Matcher, m_ZExt(m_Not(m_Value(Src))))) { | 
 |     // DAG Legalisation Pattern: | 
 |     // (sub (ctlz (zero_extend (not Op)) BitWidthDiff)) | 
 |     if ((BitWidth - Src.getValueType().getScalarSizeInBits()) != BitWidthDiff) | 
 |       return SDValue(); | 
 |  | 
 |     Src = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Src); | 
 |   } else if (sd_context_match(CtlzOp, Matcher, | 
 |                               m_And(m_Xor(m_Value(Src), m_ConstInt(XorMask)), | 
 |                                     m_ConstInt(AndMask)))) { | 
 |     // Type Legalisation Pattern: | 
 |     // (sub (ctlz (and (xor Op XorMask) AndMask)) BitWidthDiff) | 
 |     unsigned AndMaskWidth = BitWidth - BitWidthDiff.getZExtValue(); | 
 |     if (!(AndMask.isMask(AndMaskWidth) && XorMask.countr_one() >= AndMaskWidth)) | 
 |       return SDValue(); | 
 |   } else | 
 |     return SDValue(); | 
 |  | 
 |   SDValue ShiftConst = DAG.getShiftAmountConstant(BitWidthDiff, VT, DL); | 
 |   SDValue LShift = Matcher.getNode(ISD::SHL, DL, VT, Src, ShiftConst); | 
 |   SDValue Not = | 
 |       Matcher.getNode(ISD::XOR, DL, VT, LShift, DAG.getAllOnesConstant(DL, VT)); | 
 |  | 
 |   return Matcher.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, Not); | 
 | } | 
 |  | 
 | // Fold sub(x, mul(divrem(x,y)[0], y)) to divrem(x, y)[1] | 
 | static SDValue foldRemainderIdiom(SDNode *N, SelectionDAG &DAG, | 
 |                                   const SDLoc &DL) { | 
 |   assert(N->getOpcode() == ISD::SUB && "Node must be a SUB"); | 
 |   SDValue Sub0 = N->getOperand(0); | 
 |   SDValue Sub1 = N->getOperand(1); | 
 |  | 
 |   auto CheckAndFoldMulCase = [&](SDValue DivRem, SDValue MaybeY) -> SDValue { | 
 |     if ((DivRem.getOpcode() == ISD::SDIVREM || | 
 |          DivRem.getOpcode() == ISD::UDIVREM) && | 
 |         DivRem.getResNo() == 0 && DivRem.getOperand(0) == Sub0 && | 
 |         DivRem.getOperand(1) == MaybeY) { | 
 |       return SDValue(DivRem.getNode(), 1); | 
 |     } | 
 |     return SDValue(); | 
 |   }; | 
 |  | 
 |   if (Sub1.getOpcode() == ISD::MUL) { | 
 |     // (sub x, (mul divrem(x,y)[0], y)) | 
 |     SDValue Mul0 = Sub1.getOperand(0); | 
 |     SDValue Mul1 = Sub1.getOperand(1); | 
 |  | 
 |     if (SDValue Res = CheckAndFoldMulCase(Mul0, Mul1)) | 
 |       return Res; | 
 |  | 
 |     if (SDValue Res = CheckAndFoldMulCase(Mul1, Mul0)) | 
 |       return Res; | 
 |  | 
 |   } else if (Sub1.getOpcode() == ISD::SHL) { | 
 |     // Handle (sub x, (shl divrem(x,y)[0], C)) where y = 1 << C | 
 |     SDValue Shl0 = Sub1.getOperand(0); | 
 |     SDValue Shl1 = Sub1.getOperand(1); | 
 |     // Check if Shl0 is divrem(x, Y)[0] | 
 |     if ((Shl0.getOpcode() == ISD::SDIVREM || | 
 |          Shl0.getOpcode() == ISD::UDIVREM) && | 
 |         Shl0.getResNo() == 0 && Shl0.getOperand(0) == Sub0) { | 
 |  | 
 |       SDValue Divisor = Shl0.getOperand(1); | 
 |  | 
 |       ConstantSDNode *DivC = isConstOrConstSplat(Divisor); | 
 |       ConstantSDNode *ShC = isConstOrConstSplat(Shl1); | 
 |       if (!DivC || !ShC) | 
 |         return SDValue(); | 
 |  | 
 |       if (DivC->getAPIntValue().isPowerOf2() && | 
 |           DivC->getAPIntValue().logBase2() == ShC->getAPIntValue()) | 
 |         return SDValue(Shl0.getNode(), 1); | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Since it may not be valid to emit a fold to zero for vector initializers | 
 | // check if we can before folding. | 
 | static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, | 
 |                              SelectionDAG &DAG, bool LegalOperations) { | 
 |   if (!VT.isVector()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |   if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSUB(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   auto PeekThroughFreeze = [](SDValue N) { | 
 |     if (N->getOpcode() == ISD::FREEZE && N.hasOneUse()) | 
 |       return N->getOperand(0); | 
 |     return N; | 
 |   }; | 
 |  | 
 |   if (SDValue V = foldSubCtlzNot<EmptyMatchContext>(N, DAG)) | 
 |     return V; | 
 |  | 
 |   // fold (sub x, x) -> 0 | 
 |   // FIXME: Refactor this and xor and other similar operations together. | 
 |   if (PeekThroughFreeze(N0) == PeekThroughFreeze(N1)) | 
 |     return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
 |  | 
 |   // fold (sub c1, c2) -> c3 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (sub x, 0) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return N0; | 
 |   } | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // fold (sub x, c) -> (add x, -c) | 
 |   if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, | 
 |                        DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); | 
 |  | 
 |   if (isNullOrNullSplat(N0)) { | 
 |     // Right-shifting everything out but the sign bit followed by negation is | 
 |     // the same as flipping arithmetic/logical shift type without the negation: | 
 |     // -(X >>u 31) -> (X >>s 31) | 
 |     // -(X >>s 31) -> (X >>u 31) | 
 |     if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { | 
 |       ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); | 
 |       if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { | 
 |         auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; | 
 |         if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) | 
 |           return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); | 
 |       } | 
 |     } | 
 |  | 
 |     // 0 - X --> 0 if the sub is NUW. | 
 |     if (N->getFlags().hasNoUnsignedWrap()) | 
 |       return N0; | 
 |  | 
 |     if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { | 
 |       // N1 is either 0 or the minimum signed value. If the sub is NSW, then | 
 |       // N1 must be 0 because negating the minimum signed value is undefined. | 
 |       if (N->getFlags().hasNoSignedWrap()) | 
 |         return N0; | 
 |  | 
 |       // 0 - X --> X if X is 0 or the minimum signed value. | 
 |       return N1; | 
 |     } | 
 |  | 
 |     // Convert 0 - abs(x). | 
 |     if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() && | 
 |         !TLI.isOperationLegalOrCustom(ISD::ABS, VT)) | 
 |       if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true)) | 
 |         return Result; | 
 |  | 
 |     // Similar to the previous rule, but this time targeting an expanded abs. | 
 |     // (sub 0, (max X, (sub 0, X))) --> (min X, (sub 0, X)) | 
 |     // as well as | 
 |     // (sub 0, (min X, (sub 0, X))) --> (max X, (sub 0, X)) | 
 |     // Note that these two are applicable to both signed and unsigned min/max. | 
 |     SDValue X; | 
 |     SDValue S0; | 
 |     auto NegPat = m_AllOf(m_Neg(m_Deferred(X)), m_Value(S0)); | 
 |     if (sd_match(N1, m_OneUse(m_AnyOf(m_SMax(m_Value(X), NegPat), | 
 |                                       m_UMax(m_Value(X), NegPat), | 
 |                                       m_SMin(m_Value(X), NegPat), | 
 |                                       m_UMin(m_Value(X), NegPat))))) { | 
 |       unsigned NewOpc = ISD::getInverseMinMaxOpcode(N1->getOpcode()); | 
 |       if (hasOperation(NewOpc, VT)) | 
 |         return DAG.getNode(NewOpc, DL, VT, X, S0); | 
 |     } | 
 |  | 
 |     // Fold neg(splat(neg(x)) -> splat(x) | 
 |     if (VT.isVector()) { | 
 |       SDValue N1S = DAG.getSplatValue(N1, true); | 
 |       if (N1S && N1S.getOpcode() == ISD::SUB && | 
 |           isNullConstant(N1S.getOperand(0))) | 
 |         return DAG.getSplat(VT, DL, N1S.getOperand(1)); | 
 |     } | 
 |  | 
 |     // sub 0, (and x, 1)  -->  SIGN_EXTEND_INREG x, i1 | 
 |     if (N1.getOpcode() == ISD::AND && N1.hasOneUse() && | 
 |         isOneOrOneSplat(N1->getOperand(1))) { | 
 |       EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), 1); | 
 |       if (VT.isVector()) | 
 |         ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, | 
 |                                  VT.getVectorElementCount()); | 
 |       if (TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == | 
 |           TargetLowering::Legal) { | 
 |         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N1->getOperand(0), | 
 |                            DAG.getValueType(ExtVT)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) | 
 |   if (isAllOnesOrAllOnesSplat(N0)) | 
 |     return DAG.getNode(ISD::XOR, DL, VT, N1, N0); | 
 |  | 
 |   // fold (A - (0-B)) -> A+B | 
 |   if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); | 
 |  | 
 |   // fold A-(A-B) -> B | 
 |   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) | 
 |     return N1.getOperand(1); | 
 |  | 
 |   // fold (A+B)-A -> B | 
 |   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) | 
 |     return N0.getOperand(1); | 
 |  | 
 |   // fold (A+B)-B -> A | 
 |   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) | 
 |     return N0.getOperand(0); | 
 |  | 
 |   // fold (A+C1)-C2 -> A+(C1-C2) | 
 |   if (N0.getOpcode() == ISD::ADD) { | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N01, N1})) | 
 |       return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); | 
 |   } | 
 |  | 
 |   // fold C2-(A+C1) -> (C2-C1)-A | 
 |   if (N1.getOpcode() == ISD::ADD) { | 
 |     SDValue N11 = N1.getOperand(1); | 
 |     if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11})) | 
 |       return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); | 
 |   } | 
 |  | 
 |   // fold (A-C1)-C2 -> A-(C1+C2) | 
 |   if (N0.getOpcode() == ISD::SUB) { | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N01, N1})) | 
 |       return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); | 
 |   } | 
 |  | 
 |   // fold (c1-A)-c2 -> (c1-c2)-A | 
 |   if (N0.getOpcode() == ISD::SUB) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N00, N1})) | 
 |       return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); | 
 |   } | 
 |  | 
 |   SDValue A, B, C; | 
 |  | 
 |   // fold ((A+(B+C))-B) -> A+C | 
 |   if (sd_match(N0, m_Add(m_Value(A), m_Add(m_Specific(N1), m_Value(C))))) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, A, C); | 
 |  | 
 |   // fold ((A+(B-C))-B) -> A-C | 
 |   if (sd_match(N0, m_Add(m_Value(A), m_Sub(m_Specific(N1), m_Value(C))))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, A, C); | 
 |  | 
 |   // fold ((A-(B-C))-C) -> A-B | 
 |   if (sd_match(N0, m_Sub(m_Value(A), m_Sub(m_Value(B), m_Specific(N1))))) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, A, B); | 
 |  | 
 |   // fold (A-(B-C)) -> A+(C-B) | 
 |   if (sd_match(N1, m_OneUse(m_Sub(m_Value(B), m_Value(C))))) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, | 
 |                        DAG.getNode(ISD::SUB, DL, VT, C, B)); | 
 |  | 
 |   // A - (A & B)  ->  A & (~B) | 
 |   if (sd_match(N1, m_And(m_Specific(N0), m_Value(B))) && | 
 |       (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) | 
 |     return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getNOT(DL, B, VT)); | 
 |  | 
 |   // fold (A - (-B * C)) -> (A + (B * C)) | 
 |   if (sd_match(N1, m_OneUse(m_Mul(m_Neg(m_Value(B)), m_Value(C))))) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, | 
 |                        DAG.getNode(ISD::MUL, DL, VT, B, C)); | 
 |  | 
 |   // If either operand of a sub is undef, the result is undef | 
 |   if (N0.isUndef()) | 
 |     return N0; | 
 |   if (N1.isUndef()) | 
 |     return N1; | 
 |  | 
 |   if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldAddSubOfSignBit(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   // Try to match AVGCEIL fixedwidth pattern | 
 |   if (SDValue V = foldSubToAvg(N, DL)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, DL)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldSubToUSubSat(VT, N, DL)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldRemainderIdiom(N, DAG, DL)) | 
 |     return V; | 
 |  | 
 |   // (A - B) - 1  ->  add (xor B, -1), A | 
 |   if (sd_match(N, m_Sub(m_OneUse(m_Sub(m_Value(A), m_Value(B))), m_One()))) | 
 |     return DAG.getNode(ISD::ADD, DL, VT, A, DAG.getNOT(DL, B, VT)); | 
 |  | 
 |   // Look for: | 
 |   //   sub y, (xor x, -1) | 
 |   // And if the target does not like this form then turn into: | 
 |   //   add (add x, y), 1 | 
 |   if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { | 
 |     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); | 
 |   } | 
 |  | 
 |   // Hoist one-use addition by non-opaque constant: | 
 |   //   (x + C) - y  ->  (x - y) + C | 
 |   if (!reassociationCanBreakAddressingModePattern(ISD::SUB, DL, N, N0, N1) && | 
 |       N0.getOpcode() == ISD::ADD && N0.hasOneUse() && | 
 |       isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { | 
 |     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); | 
 |   } | 
 |   // y - (x + C)  ->  (y - x) - C | 
 |   if (N1.getOpcode() == ISD::ADD && N1.hasOneUse() && | 
 |       isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { | 
 |     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); | 
 |     return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); | 
 |   } | 
 |   // (x - C) - y  ->  (x - y) - C | 
 |   // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. | 
 |   if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && | 
 |       isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { | 
 |     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); | 
 |     return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); | 
 |   } | 
 |   // (C - x) - y  ->  C - (x + y) | 
 |   if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && | 
 |       isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { | 
 |     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); | 
 |   } | 
 |  | 
 |   // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' | 
 |   // rather than 'sub 0/1' (the sext should get folded). | 
 |   // sub X, (zext i1 Y) --> add X, (sext i1 Y) | 
 |   if (N1.getOpcode() == ISD::ZERO_EXTEND && | 
 |       N1.getOperand(0).getScalarValueSizeInBits() == 1 && | 
 |       TLI.getBooleanContents(VT) == | 
 |           TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
 |     SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); | 
 |   } | 
 |  | 
 |   // fold B = sra (A, size(A)-1); sub (xor (A, B), B) -> (abs A) | 
 |   if ((!LegalOperations || hasOperation(ISD::ABS, VT)) && | 
 |       sd_match(N1, m_Sra(m_Value(A), m_SpecificInt(BitWidth - 1))) && | 
 |       sd_match(N0, m_Xor(m_Specific(A), m_Specific(N1)))) | 
 |     return DAG.getNode(ISD::ABS, DL, VT, A); | 
 |  | 
 |   // If the relocation model supports it, consider symbol offsets. | 
 |   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) | 
 |     if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { | 
 |       // fold (sub Sym+c1, Sym+c2) -> c1-c2 | 
 |       if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) | 
 |         if (GA->getGlobal() == GB->getGlobal()) | 
 |           return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), | 
 |                                  DL, VT); | 
 |     } | 
 |  | 
 |   // sub X, (sextinreg Y i1) -> add X, (and Y 1) | 
 |   if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
 |     VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); | 
 |     if (TN->getVT() == MVT::i1) { | 
 |       SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), | 
 |                                  DAG.getConstant(1, DL, VT)); | 
 |       return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); | 
 |     } | 
 |   } | 
 |  | 
 |   // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) | 
 |   if (N1.getOpcode() == ISD::VSCALE && N1.hasOneUse()) { | 
 |     const APInt &IntVal = N1.getConstantOperandAPInt(0); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); | 
 |   } | 
 |  | 
 |   // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C)) | 
 |   if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) { | 
 |     APInt NewStep = -N1.getConstantOperandAPInt(0); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0, | 
 |                        DAG.getStepVector(DL, VT, NewStep)); | 
 |   } | 
 |  | 
 |   // Prefer an add for more folding potential and possibly better codegen: | 
 |   // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) | 
 |   if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { | 
 |     SDValue ShAmt = N1.getOperand(1); | 
 |     ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); | 
 |     if (ShAmtC && ShAmtC->getAPIntValue() == (BitWidth - 1)) { | 
 |       SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); | 
 |       return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); | 
 |     } | 
 |   } | 
 |  | 
 |   // As with the previous fold, prefer add for more folding potential. | 
 |   // Subtracting SMIN/0 is the same as adding SMIN/0: | 
 |   // N0 - (X << BW-1) --> N0 + (X << BW-1) | 
 |   if (N1.getOpcode() == ISD::SHL) { | 
 |     ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1)); | 
 |     if (ShlC && ShlC->getAPIntValue() == (BitWidth - 1)) | 
 |       return DAG.getNode(ISD::ADD, DL, VT, N1, N0); | 
 |   } | 
 |  | 
 |   // (sub (usubo_carry X, 0, Carry), Y) -> (usubo_carry X, Y, Carry) | 
 |   if (N0.getOpcode() == ISD::USUBO_CARRY && isNullConstant(N0.getOperand(1)) && | 
 |       N0.getResNo() == 0 && N0.hasOneUse()) | 
 |     return DAG.getNode(ISD::USUBO_CARRY, DL, N0->getVTList(), | 
 |                        N0.getOperand(0), N1, N0.getOperand(2)); | 
 |  | 
 |   if (TLI.isOperationLegalOrCustom(ISD::UADDO_CARRY, VT)) { | 
 |     // (sub Carry, X)  ->  (uaddo_carry (sub 0, X), 0, Carry) | 
 |     if (SDValue Carry = getAsCarry(TLI, N0)) { | 
 |       SDValue X = N1; | 
 |       SDValue Zero = DAG.getConstant(0, DL, VT); | 
 |       SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); | 
 |       return DAG.getNode(ISD::UADDO_CARRY, DL, | 
 |                          DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, | 
 |                          Carry); | 
 |     } | 
 |   } | 
 |  | 
 |   // If there's no chance of borrowing from adjacent bits, then sub is xor: | 
 |   // sub C0, X --> xor X, C0 | 
 |   if (ConstantSDNode *C0 = isConstOrConstSplat(N0)) { | 
 |     if (!C0->isOpaque()) { | 
 |       const APInt &C0Val = C0->getAPIntValue(); | 
 |       const APInt &MaybeOnes = ~DAG.computeKnownBits(N1).Zero; | 
 |       if ((C0Val - MaybeOnes) == (C0Val ^ MaybeOnes)) | 
 |         return DAG.getNode(ISD::XOR, DL, VT, N1, N0); | 
 |     } | 
 |   } | 
 |  | 
 |   // smax(a,b) - smin(a,b) --> abds(a,b) | 
 |   if ((!LegalOperations || hasOperation(ISD::ABDS, VT)) && | 
 |       sd_match(N0, m_SMaxLike(m_Value(A), m_Value(B))) && | 
 |       sd_match(N1, m_SMinLike(m_Specific(A), m_Specific(B)))) | 
 |     return DAG.getNode(ISD::ABDS, DL, VT, A, B); | 
 |  | 
 |   // smin(a,b) - smax(a,b) --> neg(abds(a,b)) | 
 |   if (hasOperation(ISD::ABDS, VT) && | 
 |       sd_match(N0, m_SMinLike(m_Value(A), m_Value(B))) && | 
 |       sd_match(N1, m_SMaxLike(m_Specific(A), m_Specific(B)))) | 
 |     return DAG.getNegative(DAG.getNode(ISD::ABDS, DL, VT, A, B), DL, VT); | 
 |  | 
 |   // umax(a,b) - umin(a,b) --> abdu(a,b) | 
 |   if ((!LegalOperations || hasOperation(ISD::ABDU, VT)) && | 
 |       sd_match(N0, m_UMaxLike(m_Value(A), m_Value(B))) && | 
 |       sd_match(N1, m_UMinLike(m_Specific(A), m_Specific(B)))) | 
 |     return DAG.getNode(ISD::ABDU, DL, VT, A, B); | 
 |  | 
 |   // umin(a,b) - umax(a,b) --> neg(abdu(a,b)) | 
 |   if (hasOperation(ISD::ABDU, VT) && | 
 |       sd_match(N0, m_UMinLike(m_Value(A), m_Value(B))) && | 
 |       sd_match(N1, m_UMaxLike(m_Specific(A), m_Specific(B)))) | 
 |     return DAG.getNegative(DAG.getNode(ISD::ABDU, DL, VT, A, B), DL, VT); | 
 |  | 
 |   // (sub x, (select (ult x, y), 0, y)) -> (umin x, (sub x, y)) | 
 |   // (sub x, (select (uge x, y), y, 0)) -> (umin x, (sub x, y)) | 
 |   if (hasUMin(VT)) { | 
 |     SDValue Y; | 
 |     if (sd_match(N1, m_OneUse(m_Select(m_SetCC(m_Specific(N0), m_Value(Y), | 
 |                                                m_SpecificCondCode(ISD::SETULT)), | 
 |                                        m_Zero(), m_Deferred(Y)))) || | 
 |         sd_match(N1, m_OneUse(m_Select(m_SetCC(m_Specific(N0), m_Value(Y), | 
 |                                                m_SpecificCondCode(ISD::SETUGE)), | 
 |                                        m_Deferred(Y), m_Zero())))) | 
 |       return DAG.getNode(ISD::UMIN, DL, VT, N0, | 
 |                          DAG.getNode(ISD::SUB, DL, VT, N0, Y)); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSUBSAT(SDNode *N) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   bool IsSigned = Opcode == ISD::SSUBSAT; | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (sub_sat x, undef) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (sub_sat x, x) -> 0 | 
 |   if (N0 == N1) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (sub_sat c1, c2) -> c3 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (sub_sat x, 0) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return N0; | 
 |   } | 
 |  | 
 |   // fold (sub_sat x, 0) -> x | 
 |   if (isNullConstant(N1)) | 
 |     return N0; | 
 |  | 
 |   // If it cannot overflow, transform into an sub. | 
 |   if (DAG.willNotOverflowSub(IsSigned, N0, N1)) | 
 |     return DAG.getNode(ISD::SUB, DL, VT, N0, N1); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSUBC(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // If the flag result is dead, turn this into an SUB. | 
 |   if (!N->hasAnyUseOfValue(1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | 
 |                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
 |  | 
 |   // fold (subc x, x) -> 0 + no borrow | 
 |   if (N0 == N1) | 
 |     return CombineTo(N, DAG.getConstant(0, DL, VT), | 
 |                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
 |  | 
 |   // fold (subc x, 0) -> x + no borrow | 
 |   if (isNullConstant(N1)) | 
 |     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
 |  | 
 |   // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow | 
 |   if (isAllOnesConstant(N0)) | 
 |     return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | 
 |                      DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSUBO(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   bool IsSigned = (ISD::SSUBO == N->getOpcode()); | 
 |  | 
 |   EVT CarryVT = N->getValueType(1); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // If the flag result is dead, turn this into an SUB. | 
 |   if (!N->hasAnyUseOfValue(1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | 
 |                      DAG.getUNDEF(CarryVT)); | 
 |  | 
 |   // fold (subo x, x) -> 0 + no borrow | 
 |   if (N0 == N1) | 
 |     return CombineTo(N, DAG.getConstant(0, DL, VT), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   // fold (subox, c) -> (addo x, -c) | 
 |   if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) | 
 |     if (IsSigned && !N1C->isMinSignedValue()) | 
 |       return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, | 
 |                          DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); | 
 |  | 
 |   // fold (subo x, 0) -> x + no borrow | 
 |   if (isNullOrNullSplat(N1)) | 
 |     return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   // If it cannot overflow, transform into an sub. | 
 |   if (DAG.willNotOverflowSub(IsSigned, N0, N1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow | 
 |   if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) | 
 |     return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSUBE(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue CarryIn = N->getOperand(2); | 
 |  | 
 |   // fold (sube x, y, false) -> (subc x, y) | 
 |   if (CarryIn.getOpcode() == ISD::CARRY_FALSE) | 
 |     return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUSUBO_CARRY(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue CarryIn = N->getOperand(2); | 
 |  | 
 |   // fold (usubo_carry x, y, false) -> (usubo x, y) | 
 |   if (isNullConstant(CarryIn)) { | 
 |     if (!LegalOperations || | 
 |         TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) | 
 |       return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue CarryIn = N->getOperand(2); | 
 |  | 
 |   // fold (ssubo_carry x, y, false) -> (ssubo x, y) | 
 |   if (isNullConstant(CarryIn)) { | 
 |     if (!LegalOperations || | 
 |         TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0))) | 
 |       return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and | 
 | // UMULFIXSAT here. | 
 | SDValue DAGCombiner::visitMULFIX(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue Scale = N->getOperand(2); | 
 |   EVT VT = N0.getValueType(); | 
 |  | 
 |   // fold (mulfix x, undef, scale) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, SDLoc(N), VT); | 
 |  | 
 |   // Canonicalize constant to RHS (vector doesn't have to splat) | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |      !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); | 
 |  | 
 |   // fold (mulfix x, 0, scale) -> 0 | 
 |   if (isNullConstant(N1)) | 
 |     return DAG.getConstant(0, SDLoc(N), VT); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | template <class MatchContextClass> SDValue DAGCombiner::visitMUL(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |   SDLoc DL(N); | 
 |   bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>; | 
 |   MatchContextClass Matcher(DAG, TLI, N); | 
 |  | 
 |   // fold (mul x, undef) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (mul c1, c2) -> c1*c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS (vector doesn't have to splat) | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return Matcher.getNode(ISD::MUL, DL, VT, N1, N0); | 
 |  | 
 |   bool N1IsConst = false; | 
 |   bool N1IsOpaqueConst = false; | 
 |   APInt ConstValue1; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     // TODO: Change this to use SimplifyVBinOp when it supports VP op. | 
 |     if (!UseVP) | 
 |       if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |         return FoldedVOp; | 
 |  | 
 |     N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); | 
 |     assert((!N1IsConst || ConstValue1.getBitWidth() == BitWidth) && | 
 |            "Splat APInt should be element width"); | 
 |   } else { | 
 |     N1IsConst = isa<ConstantSDNode>(N1); | 
 |     if (N1IsConst) { | 
 |       ConstValue1 = N1->getAsAPIntVal(); | 
 |       N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (mul x, 0) -> 0 | 
 |   if (N1IsConst && ConstValue1.isZero()) | 
 |     return N1; | 
 |  | 
 |   // fold (mul x, 1) -> x | 
 |   if (N1IsConst && ConstValue1.isOne()) | 
 |     return N0; | 
 |  | 
 |   if (!UseVP) | 
 |     if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |       return NewSel; | 
 |  | 
 |   // fold (mul x, -1) -> 0-x | 
 |   if (N1IsConst && ConstValue1.isAllOnes()) | 
 |     return Matcher.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); | 
 |  | 
 |   // fold (mul x, (1 << c)) -> x << c | 
 |   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && | 
 |       (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { | 
 |     if (SDValue LogBase2 = BuildLogBase2(N1, DL)) { | 
 |       EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | 
 |       SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); | 
 |       return Matcher.getNode(ISD::SHL, DL, VT, N0, Trunc); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c | 
 |   if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) { | 
 |     unsigned Log2Val = (-ConstValue1).logBase2(); | 
 |  | 
 |     // FIXME: If the input is something that is easily negated (e.g. a | 
 |     // single-use add), we should put the negate there. | 
 |     return Matcher.getNode( | 
 |         ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | 
 |         Matcher.getNode(ISD::SHL, DL, VT, N0, | 
 |                         DAG.getShiftAmountConstant(Log2Val, VT, DL))); | 
 |   } | 
 |  | 
 |   // Attempt to reuse an existing umul_lohi/smul_lohi node, but only if the | 
 |   // hi result is in use in case we hit this mid-legalization. | 
 |   if (!UseVP) { | 
 |     for (unsigned LoHiOpc : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) { | 
 |       if (!LegalOperations || TLI.isOperationLegalOrCustom(LoHiOpc, VT)) { | 
 |         SDVTList LoHiVT = DAG.getVTList(VT, VT); | 
 |         // TODO: Can we match commutable operands with getNodeIfExists? | 
 |         if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N0, N1})) | 
 |           if (LoHi->hasAnyUseOfValue(1)) | 
 |             return SDValue(LoHi, 0); | 
 |         if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N1, N0})) | 
 |           if (LoHi->hasAnyUseOfValue(1)) | 
 |             return SDValue(LoHi, 0); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Try to transform: | 
 |   // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. | 
 |   // mul x, (2^N + 1) --> add (shl x, N), x | 
 |   // mul x, (2^N - 1) --> sub (shl x, N), x | 
 |   // Examples: x * 33 --> (x << 5) + x | 
 |   //           x * 15 --> (x << 4) - x | 
 |   //           x * -33 --> -((x << 5) + x) | 
 |   //           x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) | 
 |   // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. | 
 |   // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) | 
 |   // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) | 
 |   // Examples: x * 0x8800 --> (x << 15) + (x << 11) | 
 |   //           x * 0xf800 --> (x << 16) - (x << 11) | 
 |   //           x * -0x8800 --> -((x << 15) + (x << 11)) | 
 |   //           x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) | 
 |   if (!UseVP && N1IsConst && | 
 |       TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { | 
 |     // TODO: We could handle more general decomposition of any constant by | 
 |     //       having the target set a limit on number of ops and making a | 
 |     //       callback to determine that sequence (similar to sqrt expansion). | 
 |     unsigned MathOp = ISD::DELETED_NODE; | 
 |     APInt MulC = ConstValue1.abs(); | 
 |     // The constant `2` should be treated as (2^0 + 1). | 
 |     unsigned TZeros = MulC == 2 ? 0 : MulC.countr_zero(); | 
 |     MulC.lshrInPlace(TZeros); | 
 |     if ((MulC - 1).isPowerOf2()) | 
 |       MathOp = ISD::ADD; | 
 |     else if ((MulC + 1).isPowerOf2()) | 
 |       MathOp = ISD::SUB; | 
 |  | 
 |     if (MathOp != ISD::DELETED_NODE) { | 
 |       unsigned ShAmt = | 
 |           MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); | 
 |       ShAmt += TZeros; | 
 |       assert(ShAmt < BitWidth && | 
 |              "multiply-by-constant generated out of bounds shift"); | 
 |       SDValue Shl = | 
 |           DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); | 
 |       SDValue R = | 
 |           TZeros ? DAG.getNode(MathOp, DL, VT, Shl, | 
 |                                DAG.getNode(ISD::SHL, DL, VT, N0, | 
 |                                            DAG.getConstant(TZeros, DL, VT))) | 
 |                  : DAG.getNode(MathOp, DL, VT, Shl, N0); | 
 |       if (ConstValue1.isNegative()) | 
 |         R = DAG.getNegative(R, DL, VT); | 
 |       return R; | 
 |     } | 
 |   } | 
 |  | 
 |   // (mul (shl X, c1), c2) -> (mul X, c2 << c1) | 
 |   if (sd_context_match(N0, Matcher, m_Opc(ISD::SHL))) { | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (SDValue C3 = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N1, N01})) | 
 |       return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), C3); | 
 |   } | 
 |  | 
 |   // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one | 
 |   // use. | 
 |   { | 
 |     SDValue Sh, Y; | 
 |  | 
 |     // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). | 
 |     if (sd_context_match(N0, Matcher, m_OneUse(m_Opc(ISD::SHL))) && | 
 |         isConstantOrConstantVector(N0.getOperand(1))) { | 
 |       Sh = N0; Y = N1; | 
 |     } else if (sd_context_match(N1, Matcher, m_OneUse(m_Opc(ISD::SHL))) && | 
 |                isConstantOrConstantVector(N1.getOperand(1))) { | 
 |       Sh = N1; Y = N0; | 
 |     } | 
 |  | 
 |     if (Sh.getNode()) { | 
 |       SDValue Mul = Matcher.getNode(ISD::MUL, DL, VT, Sh.getOperand(0), Y); | 
 |       return Matcher.getNode(ISD::SHL, DL, VT, Mul, Sh.getOperand(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) | 
 |   if (sd_context_match(N0, Matcher, m_Opc(ISD::ADD)) && | 
 |       DAG.isConstantIntBuildVectorOrConstantInt(N1) && | 
 |       DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && | 
 |       isMulAddWithConstProfitable(N, N0, N1)) | 
 |     return Matcher.getNode( | 
 |         ISD::ADD, DL, VT, | 
 |         Matcher.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1), | 
 |         Matcher.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1)); | 
 |  | 
 |   // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). | 
 |   ConstantSDNode *NC1 = isConstOrConstSplat(N1); | 
 |   if (!UseVP && N0.getOpcode() == ISD::VSCALE && NC1) { | 
 |     const APInt &C0 = N0.getConstantOperandAPInt(0); | 
 |     const APInt &C1 = NC1->getAPIntValue(); | 
 |     return DAG.getVScale(DL, VT, C0 * C1); | 
 |   } | 
 |  | 
 |   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). | 
 |   APInt MulVal; | 
 |   if (!UseVP && N0.getOpcode() == ISD::STEP_VECTOR && | 
 |       ISD::isConstantSplatVector(N1.getNode(), MulVal)) { | 
 |     const APInt &C0 = N0.getConstantOperandAPInt(0); | 
 |     APInt NewStep = C0 * MulVal; | 
 |     return DAG.getStepVector(DL, VT, NewStep); | 
 |   } | 
 |  | 
 |   // Fold Y = sra (X, size(X)-1); mul (or (Y, 1), X) -> (abs X) | 
 |   SDValue X; | 
 |   if (!UseVP && (!LegalOperations || hasOperation(ISD::ABS, VT)) && | 
 |       sd_context_match( | 
 |           N, Matcher, | 
 |           m_Mul(m_Or(m_Sra(m_Value(X), m_SpecificInt(BitWidth - 1)), m_One()), | 
 |                 m_Deferred(X)))) { | 
 |     return Matcher.getNode(ISD::ABS, DL, VT, X); | 
 |   } | 
 |  | 
 |   // Fold ((mul x, 0/undef) -> 0, | 
 |   //       (mul x, 1) -> x) -> x) | 
 |   // -> and(x, mask) | 
 |   // We can replace vectors with '0' and '1' factors with a clearing mask. | 
 |   if (VT.isFixedLengthVector()) { | 
 |     unsigned NumElts = VT.getVectorNumElements(); | 
 |     SmallBitVector ClearMask; | 
 |     ClearMask.reserve(NumElts); | 
 |     auto IsClearMask = [&ClearMask](ConstantSDNode *V) { | 
 |       if (!V || V->isZero()) { | 
 |         ClearMask.push_back(true); | 
 |         return true; | 
 |       } | 
 |       ClearMask.push_back(false); | 
 |       return V->isOne(); | 
 |     }; | 
 |     if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) && | 
 |         ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) { | 
 |       assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"); | 
 |       EVT LegalSVT = N1.getOperand(0).getValueType(); | 
 |       SDValue Zero = DAG.getConstant(0, DL, LegalSVT); | 
 |       SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT); | 
 |       SmallVector<SDValue, 16> Mask(NumElts, AllOnes); | 
 |       for (unsigned I = 0; I != NumElts; ++I) | 
 |         if (ClearMask[I]) | 
 |           Mask[I] = Zero; | 
 |       return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask)); | 
 |     } | 
 |   } | 
 |  | 
 |   // reassociate mul | 
 |   // TODO: Change reassociateOps to support vp ops. | 
 |   if (!UseVP) | 
 |     if (SDValue RMUL = reassociateOps(ISD::MUL, DL, N0, N1, N->getFlags())) | 
 |       return RMUL; | 
 |  | 
 |   // Fold mul(vecreduce(x), vecreduce(y)) -> vecreduce(mul(x, y)) | 
 |   // TODO: Change reassociateReduction to support vp ops. | 
 |   if (!UseVP) | 
 |     if (SDValue SD = | 
 |             reassociateReduction(ISD::VECREDUCE_MUL, ISD::MUL, DL, VT, N0, N1)) | 
 |       return SD; | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Return true if divmod libcall is available. | 
 | static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, | 
 |                                      const TargetLowering &TLI) { | 
 |   RTLIB::Libcall LC; | 
 |   EVT NodeType = Node->getValueType(0); | 
 |   if (!NodeType.isSimple()) | 
 |     return false; | 
 |   switch (NodeType.getSimpleVT().SimpleTy) { | 
 |   default: return false; // No libcall for vector types. | 
 |   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; | 
 |   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; | 
 |   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; | 
 |   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; | 
 |   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; | 
 |   } | 
 |  | 
 |   return TLI.getLibcallName(LC) != nullptr; | 
 | } | 
 |  | 
 | /// Issue divrem if both quotient and remainder are needed. | 
 | SDValue DAGCombiner::useDivRem(SDNode *Node) { | 
 |   if (Node->use_empty()) | 
 |     return SDValue(); // This is a dead node, leave it alone. | 
 |  | 
 |   unsigned Opcode = Node->getOpcode(); | 
 |   bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); | 
 |   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; | 
 |  | 
 |   // DivMod lib calls can still work on non-legal types if using lib-calls. | 
 |   EVT VT = Node->getValueType(0); | 
 |   if (VT.isVector() || !VT.isInteger()) | 
 |     return SDValue(); | 
 |  | 
 |   if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // If DIVREM is going to get expanded into a libcall, | 
 |   // but there is no libcall available, then don't combine. | 
 |   if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && | 
 |       !isDivRemLibcallAvailable(Node, isSigned, TLI)) | 
 |     return SDValue(); | 
 |  | 
 |   // If div is legal, it's better to do the normal expansion | 
 |   unsigned OtherOpcode = 0; | 
 |   if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { | 
 |     OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; | 
 |     if (TLI.isOperationLegalOrCustom(Opcode, VT)) | 
 |       return SDValue(); | 
 |   } else { | 
 |     OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | 
 |     if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   SDValue Op0 = Node->getOperand(0); | 
 |   SDValue Op1 = Node->getOperand(1); | 
 |   SDValue combined; | 
 |   for (SDNode *User : Op0->users()) { | 
 |     if (User == Node || User->getOpcode() == ISD::DELETED_NODE || | 
 |         User->use_empty()) | 
 |       continue; | 
 |     // Convert the other matching node(s), too; | 
 |     // otherwise, the DIVREM may get target-legalized into something | 
 |     // target-specific that we won't be able to recognize. | 
 |     unsigned UserOpc = User->getOpcode(); | 
 |     if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && | 
 |         User->getOperand(0) == Op0 && | 
 |         User->getOperand(1) == Op1) { | 
 |       if (!combined) { | 
 |         if (UserOpc == OtherOpcode) { | 
 |           SDVTList VTs = DAG.getVTList(VT, VT); | 
 |           combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); | 
 |         } else if (UserOpc == DivRemOpc) { | 
 |           combined = SDValue(User, 0); | 
 |         } else { | 
 |           assert(UserOpc == Opcode); | 
 |           continue; | 
 |         } | 
 |       } | 
 |       if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) | 
 |         CombineTo(User, combined); | 
 |       else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) | 
 |         CombineTo(User, combined.getValue(1)); | 
 |     } | 
 |   } | 
 |   return combined; | 
 | } | 
 |  | 
 | static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   unsigned Opc = N->getOpcode(); | 
 |   bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |  | 
 |   // X / undef -> undef | 
 |   // X % undef -> undef | 
 |   // X / 0 -> undef | 
 |   // X % 0 -> undef | 
 |   // NOTE: This includes vectors where any divisor element is zero/undef. | 
 |   if (DAG.isUndef(Opc, {N0, N1})) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // undef / X -> 0 | 
 |   // undef % X -> 0 | 
 |   if (N0.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // 0 / X -> 0 | 
 |   // 0 % X -> 0 | 
 |   ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
 |   if (N0C && N0C->isZero()) | 
 |     return N0; | 
 |  | 
 |   // X / X -> 1 | 
 |   // X % X -> 0 | 
 |   if (N0 == N1) | 
 |     return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); | 
 |  | 
 |   // X / 1 -> X | 
 |   // X % 1 -> 0 | 
 |   // If this is a boolean op (single-bit element type), we can't have | 
 |   // division-by-zero or remainder-by-zero, so assume the divisor is 1. | 
 |   // TODO: Similarly, if we're zero-extending a boolean divisor, then assume | 
 |   // it's a 1. | 
 |   if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) | 
 |     return IsDiv ? N0 : DAG.getConstant(0, DL, VT); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSDIV(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT CCVT = getSetCCResultType(VT); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (sdiv c1, c2) -> c1/c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // fold (sdiv X, -1) -> 0-X | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |   if (N1C && N1C->isAllOnes()) | 
 |     return DAG.getNegative(N0, DL, VT); | 
 |  | 
 |   // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) | 
 |   if (N1C && N1C->isMinSignedValue()) | 
 |     return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), | 
 |                          DAG.getConstant(1, DL, VT), | 
 |                          DAG.getConstant(0, DL, VT)); | 
 |  | 
 |   if (SDValue V = simplifyDivRem(N, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // If we know the sign bits of both operands are zero, strength reduce to a | 
 |   // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 | 
 |   if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
 |     return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); | 
 |  | 
 |   if (SDValue V = visitSDIVLike(N0, N1, N)) { | 
 |     // If the corresponding remainder node exists, update its users with | 
 |     // (Dividend - (Quotient * Divisor). | 
 |     if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), | 
 |                                               { N0, N1 })) { | 
 |       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); | 
 |       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
 |       AddToWorklist(Mul.getNode()); | 
 |       AddToWorklist(Sub.getNode()); | 
 |       CombineTo(RemNode, Sub); | 
 |     } | 
 |     return V; | 
 |   } | 
 |  | 
 |   // sdiv, srem -> sdivrem | 
 |   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is | 
 |   // true.  Otherwise, we break the simplification logic in visitREM(). | 
 |   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
 |   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
 |     if (SDValue DivRem = useDivRem(N)) | 
 |         return DivRem; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static bool isDivisorPowerOfTwo(SDValue Divisor) { | 
 |   // Helper for determining whether a value is a power-2 constant scalar or a | 
 |   // vector of such elements. | 
 |   auto IsPowerOfTwo = [](ConstantSDNode *C) { | 
 |     if (C->isZero() || C->isOpaque()) | 
 |       return false; | 
 |     if (C->getAPIntValue().isPowerOf2()) | 
 |       return true; | 
 |     if (C->getAPIntValue().isNegatedPowerOf2()) | 
 |       return true; | 
 |     return false; | 
 |   }; | 
 |  | 
 |   return ISD::matchUnaryPredicate(Divisor, IsPowerOfTwo); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT CCVT = getSetCCResultType(VT); | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |  | 
 |   // fold (sdiv X, pow2) -> simple ops after legalize | 
 |   // FIXME: We check for the exact bit here because the generic lowering gives | 
 |   // better results in that case. The target-specific lowering should learn how | 
 |   // to handle exact sdivs efficiently. | 
 |   if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1)) { | 
 |     // Target-specific implementation of sdiv x, pow2. | 
 |     if (SDValue Res = BuildSDIVPow2(N)) | 
 |       return Res; | 
 |  | 
 |     // Create constants that are functions of the shift amount value. | 
 |     EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); | 
 |     SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); | 
 |     SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); | 
 |     C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); | 
 |     SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); | 
 |     if (!isConstantOrConstantVector(Inexact)) | 
 |       return SDValue(); | 
 |  | 
 |     // Splat the sign bit into the register | 
 |     SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, | 
 |                                DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); | 
 |     AddToWorklist(Sign.getNode()); | 
 |  | 
 |     // Add (N0 < 0) ? abs2 - 1 : 0; | 
 |     SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); | 
 |     AddToWorklist(Srl.getNode()); | 
 |     SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); | 
 |     AddToWorklist(Add.getNode()); | 
 |     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); | 
 |     AddToWorklist(Sra.getNode()); | 
 |  | 
 |     // Special case: (sdiv X, 1) -> X | 
 |     // Special Case: (sdiv X, -1) -> 0-X | 
 |     SDValue One = DAG.getConstant(1, DL, VT); | 
 |     SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); | 
 |     SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); | 
 |     SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); | 
 |     SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); | 
 |     Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); | 
 |  | 
 |     // If dividing by a positive value, we're done. Otherwise, the result must | 
 |     // be negated. | 
 |     SDValue Zero = DAG.getConstant(0, DL, VT); | 
 |     SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); | 
 |  | 
 |     // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. | 
 |     SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); | 
 |     SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); | 
 |     return Res; | 
 |   } | 
 |  | 
 |   // If integer divide is expensive and we satisfy the requirements, emit an | 
 |   // alternate sequence.  Targets may check function attributes for size/speed | 
 |   // trade-offs. | 
 |   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
 |   if (isConstantOrConstantVector(N1) && | 
 |       !TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
 |     if (SDValue Op = BuildSDIV(N)) | 
 |       return Op; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUDIV(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT CCVT = getSetCCResultType(VT); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (udiv c1, c2) -> c1/c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // fold (udiv X, -1) -> select(X == -1, 1, 0) | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |   if (N1C && N1C->isAllOnes() && CCVT.isVector() == VT.isVector()) { | 
 |     return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), | 
 |                          DAG.getConstant(1, DL, VT), | 
 |                          DAG.getConstant(0, DL, VT)); | 
 |   } | 
 |  | 
 |   if (SDValue V = simplifyDivRem(N, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   if (SDValue V = visitUDIVLike(N0, N1, N)) { | 
 |     // If the corresponding remainder node exists, update its users with | 
 |     // (Dividend - (Quotient * Divisor). | 
 |     if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), | 
 |                                               { N0, N1 })) { | 
 |       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); | 
 |       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
 |       AddToWorklist(Mul.getNode()); | 
 |       AddToWorklist(Sub.getNode()); | 
 |       CombineTo(RemNode, Sub); | 
 |     } | 
 |     return V; | 
 |   } | 
 |  | 
 |   // sdiv, srem -> sdivrem | 
 |   // If the divisor is constant, then return DIVREM only if isIntDivCheap() is | 
 |   // true.  Otherwise, we break the simplification logic in visitREM(). | 
 |   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
 |   if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
 |     if (SDValue DivRem = useDivRem(N)) | 
 |         return DivRem; | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   // We don't have demanded bits support for UDIV so this just enables constant | 
 |   // folding based on known bits. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // fold (udiv x, (1 << c)) -> x >>u c | 
 |   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true)) { | 
 |     if (SDValue LogBase2 = BuildLogBase2(N1, DL)) { | 
 |       AddToWorklist(LogBase2.getNode()); | 
 |  | 
 |       EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | 
 |       SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); | 
 |       AddToWorklist(Trunc.getNode()); | 
 |       return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | 
 |   if (N1.getOpcode() == ISD::SHL) { | 
 |     SDValue N10 = N1.getOperand(0); | 
 |     if (isConstantOrConstantVector(N10, /*NoOpaques*/ true)) { | 
 |       if (SDValue LogBase2 = BuildLogBase2(N10, DL)) { | 
 |         AddToWorklist(LogBase2.getNode()); | 
 |  | 
 |         EVT ADDVT = N1.getOperand(1).getValueType(); | 
 |         SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); | 
 |         AddToWorklist(Trunc.getNode()); | 
 |         SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); | 
 |         AddToWorklist(Add.getNode()); | 
 |         return DAG.getNode(ISD::SRL, DL, VT, N0, Add); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (udiv x, c) -> alternate | 
 |   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
 |   if (isConstantOrConstantVector(N1) && | 
 |       !TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
 |     if (SDValue Op = BuildUDIV(N)) | 
 |       return Op; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N) { | 
 |   if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1) && | 
 |       !DAG.doesNodeExist(ISD::SDIV, N->getVTList(), {N0, N1})) { | 
 |     // Target-specific implementation of srem x, pow2. | 
 |     if (SDValue Res = BuildSREMPow2(N)) | 
 |       return Res; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // handles ISD::SREM and ISD::UREM | 
 | SDValue DAGCombiner::visitREM(SDNode *N) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT CCVT = getSetCCResultType(VT); | 
 |  | 
 |   bool isSigned = (Opcode == ISD::SREM); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (rem c1, c2) -> c1%c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold (urem X, -1) -> select(FX == -1, 0, FX) | 
 |   // Freeze the numerator to avoid a miscompile with an undefined value. | 
 |   if (!isSigned && llvm::isAllOnesOrAllOnesSplat(N1, /*AllowUndefs*/ false) && | 
 |       CCVT.isVector() == VT.isVector()) { | 
 |     SDValue F0 = DAG.getFreeze(N0); | 
 |     SDValue EqualsNeg1 = DAG.getSetCC(DL, CCVT, F0, N1, ISD::SETEQ); | 
 |     return DAG.getSelect(DL, VT, EqualsNeg1, DAG.getConstant(0, DL, VT), F0); | 
 |   } | 
 |  | 
 |   if (SDValue V = simplifyDivRem(N, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   if (isSigned) { | 
 |     // If we know the sign bits of both operands are zero, strength reduce to a | 
 |     // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 | 
 |     if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) | 
 |       return DAG.getNode(ISD::UREM, DL, VT, N0, N1); | 
 |   } else { | 
 |     if (DAG.isKnownToBeAPowerOfTwo(N1)) { | 
 |       // fold (urem x, pow2) -> (and x, pow2-1) | 
 |       SDValue NegOne = DAG.getAllOnesConstant(DL, VT); | 
 |       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); | 
 |       AddToWorklist(Add.getNode()); | 
 |       return DAG.getNode(ISD::AND, DL, VT, N0, Add); | 
 |     } | 
 |     // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) | 
 |     // fold (urem x, (lshr pow2, y)) -> (and x, (add (lshr pow2, y), -1)) | 
 |     // TODO: We should sink the following into isKnownToBePowerOfTwo | 
 |     // using a OrZero parameter analogous to our handling in ValueTracking. | 
 |     if ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) && | 
 |         DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { | 
 |       SDValue NegOne = DAG.getAllOnesConstant(DL, VT); | 
 |       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); | 
 |       AddToWorklist(Add.getNode()); | 
 |       return DAG.getNode(ISD::AND, DL, VT, N0, Add); | 
 |     } | 
 |   } | 
 |  | 
 |   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
 |  | 
 |   // If X/C can be simplified by the division-by-constant logic, lower | 
 |   // X%C to the equivalent of X-X/C*C. | 
 |   // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the | 
 |   // speculative DIV must not cause a DIVREM conversion.  We guard against this | 
 |   // by skipping the simplification if isIntDivCheap().  When div is not cheap, | 
 |   // combine will not return a DIVREM.  Regardless, checking cheapness here | 
 |   // makes sense since the simplification results in fatter code. | 
 |   if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { | 
 |     if (isSigned) { | 
 |       // check if we can build faster implementation for srem | 
 |       if (SDValue OptimizedRem = buildOptimizedSREM(N0, N1, N)) | 
 |         return OptimizedRem; | 
 |     } | 
 |  | 
 |     SDValue OptimizedDiv = | 
 |         isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); | 
 |     if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) { | 
 |       // If the equivalent Div node also exists, update its users. | 
 |       unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; | 
 |       if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), | 
 |                                                 { N0, N1 })) | 
 |         CombineTo(DivNode, OptimizedDiv); | 
 |       SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); | 
 |       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); | 
 |       AddToWorklist(OptimizedDiv.getNode()); | 
 |       AddToWorklist(Mul.getNode()); | 
 |       return Sub; | 
 |     } | 
 |   } | 
 |  | 
 |   // sdiv, srem -> sdivrem | 
 |   if (SDValue DivRem = useDivRem(N)) | 
 |     return DivRem.getValue(1); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMULHS(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (mulhs c1, c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (mulhs x, 0) -> 0 | 
 |     // do not return N1, because undef node may exist. | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return DAG.getConstant(0, DL, VT); | 
 |   } | 
 |  | 
 |   // fold (mulhs x, 0) -> 0 | 
 |   if (isNullConstant(N1)) | 
 |     return N1; | 
 |  | 
 |   // fold (mulhs x, 1) -> (sra x, size(x)-1) | 
 |   if (isOneConstant(N1)) | 
 |     return DAG.getNode( | 
 |         ISD::SRA, DL, VT, N0, | 
 |         DAG.getShiftAmountConstant(N0.getScalarValueSizeInBits() - 1, VT, DL)); | 
 |  | 
 |   // fold (mulhs x, undef) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // If the type twice as wide is legal, transform the mulhs to a wider multiply | 
 |   // plus a shift. | 
 |   if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && | 
 |       !VT.isVector()) { | 
 |     MVT Simple = VT.getSimpleVT(); | 
 |     unsigned SimpleSize = Simple.getSizeInBits(); | 
 |     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
 |     if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
 |       N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); | 
 |       N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); | 
 |       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
 |       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
 |                        DAG.getShiftAmountConstant(SimpleSize, NewVT, DL)); | 
 |       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMULHU(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (mulhu c1, c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (mulhu x, 0) -> 0 | 
 |     // do not return N1, because undef node may exist. | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return DAG.getConstant(0, DL, VT); | 
 |   } | 
 |  | 
 |   // fold (mulhu x, 0) -> 0 | 
 |   if (isNullConstant(N1)) | 
 |     return N1; | 
 |  | 
 |   // fold (mulhu x, 1) -> 0 | 
 |   if (isOneConstant(N1)) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (mulhu x, undef) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) | 
 |   if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && | 
 |       hasOperation(ISD::SRL, VT)) { | 
 |     if (SDValue LogBase2 = BuildLogBase2(N1, DL)) { | 
 |       unsigned NumEltBits = VT.getScalarSizeInBits(); | 
 |       SDValue SRLAmt = DAG.getNode( | 
 |           ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); | 
 |       EVT ShiftVT = getShiftAmountTy(N0.getValueType()); | 
 |       SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); | 
 |       return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the type twice as wide is legal, transform the mulhu to a wider multiply | 
 |   // plus a shift. | 
 |   if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && | 
 |       !VT.isVector()) { | 
 |     MVT Simple = VT.getSimpleVT(); | 
 |     unsigned SimpleSize = Simple.getSizeInBits(); | 
 |     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
 |     if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
 |       N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); | 
 |       N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); | 
 |       N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); | 
 |       N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, | 
 |                        DAG.getShiftAmountConstant(SimpleSize, NewVT, DL)); | 
 |       return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); | 
 |     } | 
 |   } | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   // We don't have demanded bits support for MULHU so this just enables constant | 
 |   // folding based on known bits. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitAVG(SDNode *N) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   bool IsSigned = Opcode == ISD::AVGCEILS || Opcode == ISD::AVGFLOORS; | 
 |  | 
 |   // fold (avg c1, c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // fold (avg x, undef) -> x | 
 |   if (N0.isUndef()) | 
 |     return N1; | 
 |   if (N1.isUndef()) | 
 |     return N0; | 
 |  | 
 |   // fold (avg x, x) --> x | 
 |   if (N0 == N1 && Level >= AfterLegalizeTypes) | 
 |     return N0; | 
 |  | 
 |   // fold (avgfloor x, 0) -> x >> 1 | 
 |   SDValue X, Y; | 
 |   if (sd_match(N, m_c_BinOp(ISD::AVGFLOORS, m_Value(X), m_Zero()))) | 
 |     return DAG.getNode(ISD::SRA, DL, VT, X, | 
 |                        DAG.getShiftAmountConstant(1, VT, DL)); | 
 |   if (sd_match(N, m_c_BinOp(ISD::AVGFLOORU, m_Value(X), m_Zero()))) | 
 |     return DAG.getNode(ISD::SRL, DL, VT, X, | 
 |                        DAG.getShiftAmountConstant(1, VT, DL)); | 
 |  | 
 |   // fold avgu(zext(x), zext(y)) -> zext(avgu(x, y)) | 
 |   // fold avgs(sext(x), sext(y)) -> sext(avgs(x, y)) | 
 |   if (!IsSigned && | 
 |       sd_match(N, m_BinOp(Opcode, m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) && | 
 |       X.getValueType() == Y.getValueType() && | 
 |       hasOperation(Opcode, X.getValueType())) { | 
 |     SDValue AvgU = DAG.getNode(Opcode, DL, X.getValueType(), X, Y); | 
 |     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, AvgU); | 
 |   } | 
 |   if (IsSigned && | 
 |       sd_match(N, m_BinOp(Opcode, m_SExt(m_Value(X)), m_SExt(m_Value(Y)))) && | 
 |       X.getValueType() == Y.getValueType() && | 
 |       hasOperation(Opcode, X.getValueType())) { | 
 |     SDValue AvgS = DAG.getNode(Opcode, DL, X.getValueType(), X, Y); | 
 |     return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, AvgS); | 
 |   } | 
 |  | 
 |   // Fold avgflooru(x,y) -> avgceilu(x,y-1) iff y != 0 | 
 |   // Fold avgflooru(x,y) -> avgceilu(x-1,y) iff x != 0 | 
 |   // Check if avgflooru isn't legal/custom but avgceilu is. | 
 |   if (Opcode == ISD::AVGFLOORU && !hasOperation(ISD::AVGFLOORU, VT) && | 
 |       (!LegalOperations || hasOperation(ISD::AVGCEILU, VT))) { | 
 |     if (DAG.isKnownNeverZero(N1)) | 
 |       return DAG.getNode( | 
 |           ISD::AVGCEILU, DL, VT, N0, | 
 |           DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getAllOnesConstant(DL, VT))); | 
 |     if (DAG.isKnownNeverZero(N0)) | 
 |       return DAG.getNode( | 
 |           ISD::AVGCEILU, DL, VT, N1, | 
 |           DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getAllOnesConstant(DL, VT))); | 
 |   } | 
 |  | 
 |   // Fold avgfloor((add nw x,y), 1) -> avgceil(x,y) | 
 |   // Fold avgfloor((add nw x,1), y) -> avgceil(x,y) | 
 |   if ((Opcode == ISD::AVGFLOORU && hasOperation(ISD::AVGCEILU, VT)) || | 
 |       (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGCEILS, VT))) { | 
 |     SDValue Add; | 
 |     if (sd_match(N, | 
 |                  m_c_BinOp(Opcode, | 
 |                            m_AllOf(m_Value(Add), m_Add(m_Value(X), m_Value(Y))), | 
 |                            m_One())) || | 
 |         sd_match(N, m_c_BinOp(Opcode, | 
 |                               m_AllOf(m_Value(Add), m_Add(m_Value(X), m_One())), | 
 |                               m_Value(Y)))) { | 
 |  | 
 |       if (IsSigned && Add->getFlags().hasNoSignedWrap()) | 
 |         return DAG.getNode(ISD::AVGCEILS, DL, VT, X, Y); | 
 |  | 
 |       if (!IsSigned && Add->getFlags().hasNoUnsignedWrap()) | 
 |         return DAG.getNode(ISD::AVGCEILU, DL, VT, X, Y); | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold avgfloors(x,y) -> avgflooru(x,y) if both x and y are non-negative | 
 |   if (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGFLOORU, VT)) { | 
 |     if (DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1)) | 
 |       return DAG.getNode(ISD::AVGFLOORU, DL, VT, N0, N1); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitABD(SDNode *N) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (abd c1, c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // fold (abd x, undef) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (abd x, x) -> 0 | 
 |   if (N0 == N1) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   SDValue X; | 
 |  | 
 |   // fold (abds x, 0) -> abs x | 
 |   if (sd_match(N, m_c_BinOp(ISD::ABDS, m_Value(X), m_Zero())) && | 
 |       (!LegalOperations || hasOperation(ISD::ABS, VT))) | 
 |     return DAG.getNode(ISD::ABS, DL, VT, X); | 
 |  | 
 |   // fold (abdu x, 0) -> x | 
 |   if (sd_match(N, m_c_BinOp(ISD::ABDU, m_Value(X), m_Zero()))) | 
 |     return X; | 
 |  | 
 |   // fold (abds x, y) -> (abdu x, y) iff both args are known positive | 
 |   if (Opcode == ISD::ABDS && hasOperation(ISD::ABDU, VT) && | 
 |       DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1)) | 
 |     return DAG.getNode(ISD::ABDU, DL, VT, N1, N0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Perform optimizations common to nodes that compute two values. LoOp and HiOp | 
 | /// give the opcodes for the two computations that are being performed. Return | 
 | /// true if a simplification was made. | 
 | SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, | 
 |                                                 unsigned HiOp) { | 
 |   // If the high half is not needed, just compute the low half. | 
 |   bool HiExists = N->hasAnyUseOfValue(1); | 
 |   if (!HiExists && (!LegalOperations || | 
 |                     TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { | 
 |     SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | 
 |     return CombineTo(N, Res, Res); | 
 |   } | 
 |  | 
 |   // If the low half is not needed, just compute the high half. | 
 |   bool LoExists = N->hasAnyUseOfValue(0); | 
 |   if (!LoExists && (!LegalOperations || | 
 |                     TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { | 
 |     SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | 
 |     return CombineTo(N, Res, Res); | 
 |   } | 
 |  | 
 |   // If both halves are used, return as it is. | 
 |   if (LoExists && HiExists) | 
 |     return SDValue(); | 
 |  | 
 |   // If the two computed results can be simplified separately, separate them. | 
 |   if (LoExists) { | 
 |     SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); | 
 |     AddToWorklist(Lo.getNode()); | 
 |     SDValue LoOpt = combine(Lo.getNode()); | 
 |     if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && | 
 |         (!LegalOperations || | 
 |          TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) | 
 |       return CombineTo(N, LoOpt, LoOpt); | 
 |   } | 
 |  | 
 |   if (HiExists) { | 
 |     SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); | 
 |     AddToWorklist(Hi.getNode()); | 
 |     SDValue HiOpt = combine(Hi.getNode()); | 
 |     if (HiOpt.getNode() && HiOpt != Hi && | 
 |         (!LegalOperations || | 
 |          TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) | 
 |       return CombineTo(N, HiOpt, HiOpt); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { | 
 |   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) | 
 |     return Res; | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Constant fold. | 
 |   if (isa<ConstantSDNode>(N0) && isa<ConstantSDNode>(N1)) | 
 |     return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N0, N1); | 
 |  | 
 |   // canonicalize constant to RHS (vector doesn't have to splat) | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   // If the type is twice as wide is legal, transform the mulhu to a wider | 
 |   // multiply plus a shift. | 
 |   if (VT.isSimple() && !VT.isVector()) { | 
 |     MVT Simple = VT.getSimpleVT(); | 
 |     unsigned SimpleSize = Simple.getSizeInBits(); | 
 |     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
 |     if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
 |       SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); | 
 |       SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); | 
 |       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
 |       // Compute the high part as N1. | 
 |       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
 |                        DAG.getShiftAmountConstant(SimpleSize, NewVT, DL)); | 
 |       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
 |       // Compute the low part as N0. | 
 |       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
 |       return CombineTo(N, Lo, Hi); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { | 
 |   if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) | 
 |     return Res; | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Constant fold. | 
 |   if (isa<ConstantSDNode>(N0) && isa<ConstantSDNode>(N1)) | 
 |     return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N0, N1); | 
 |  | 
 |   // canonicalize constant to RHS (vector doesn't have to splat) | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N1, N0); | 
 |  | 
 |   // (umul_lohi N0, 0) -> (0, 0) | 
 |   if (isNullConstant(N1)) { | 
 |     SDValue Zero = DAG.getConstant(0, DL, VT); | 
 |     return CombineTo(N, Zero, Zero); | 
 |   } | 
 |  | 
 |   // (umul_lohi N0, 1) -> (N0, 0) | 
 |   if (isOneConstant(N1)) { | 
 |     SDValue Zero = DAG.getConstant(0, DL, VT); | 
 |     return CombineTo(N, N0, Zero); | 
 |   } | 
 |  | 
 |   // If the type is twice as wide is legal, transform the mulhu to a wider | 
 |   // multiply plus a shift. | 
 |   if (VT.isSimple() && !VT.isVector()) { | 
 |     MVT Simple = VT.getSimpleVT(); | 
 |     unsigned SimpleSize = Simple.getSizeInBits(); | 
 |     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); | 
 |     if (TLI.isOperationLegal(ISD::MUL, NewVT)) { | 
 |       SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); | 
 |       SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); | 
 |       Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); | 
 |       // Compute the high part as N1. | 
 |       Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, | 
 |                        DAG.getShiftAmountConstant(SimpleSize, NewVT, DL)); | 
 |       Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); | 
 |       // Compute the low part as N0. | 
 |       Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); | 
 |       return CombineTo(N, Lo, Hi); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMULO(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   bool IsSigned = (ISD::SMULO == N->getOpcode()); | 
 |  | 
 |   EVT CarryVT = N->getValueType(1); | 
 |   SDLoc DL(N); | 
 |  | 
 |   ConstantSDNode *N0C = isConstOrConstSplat(N0); | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |  | 
 |   // fold operation with constant operands. | 
 |   // TODO: Move this to FoldConstantArithmetic when it supports nodes with | 
 |   // multiple results. | 
 |   if (N0C && N1C) { | 
 |     bool Overflow; | 
 |     APInt Result = | 
 |         IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow) | 
 |                  : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow); | 
 |     return CombineTo(N, DAG.getConstant(Result, DL, VT), | 
 |                      DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT)); | 
 |   } | 
 |  | 
 |   // canonicalize constant to RHS. | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); | 
 |  | 
 |   // fold (mulo x, 0) -> 0 + no carry out | 
 |   if (isNullOrNullSplat(N1)) | 
 |     return CombineTo(N, DAG.getConstant(0, DL, VT), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |  | 
 |   // (mulo x, 2) -> (addo x, x) | 
 |   // FIXME: This needs a freeze. | 
 |   if (N1C && N1C->getAPIntValue() == 2 && | 
 |       (!IsSigned || VT.getScalarSizeInBits() > 2)) | 
 |     return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, | 
 |                        N->getVTList(), N0, N0); | 
 |  | 
 |   // A 1 bit SMULO overflows if both inputs are 1. | 
 |   if (IsSigned && VT.getScalarSizeInBits() == 1) { | 
 |     SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1); | 
 |     SDValue Cmp = DAG.getSetCC(DL, CarryVT, And, | 
 |                                DAG.getConstant(0, DL, VT), ISD::SETNE); | 
 |     return CombineTo(N, And, Cmp); | 
 |   } | 
 |  | 
 |   // If it cannot overflow, transform into a mul. | 
 |   if (DAG.willNotOverflowMul(IsSigned, N0, N1)) | 
 |     return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1), | 
 |                      DAG.getConstant(0, DL, CarryVT)); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Function to calculate whether the Min/Max pair of SDNodes (potentially | 
 | // swapped around) make a signed saturate pattern, clamping to between a signed | 
 | // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW. | 
 | // Returns the node being clamped and the bitwidth of the clamp in BW. Should | 
 | // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the | 
 | // same as SimplifySelectCC. N0<N1 ? N2 : N3. | 
 | static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, | 
 |                                   SDValue N3, ISD::CondCode CC, unsigned &BW, | 
 |                                   bool &Unsigned, SelectionDAG &DAG) { | 
 |   auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3, | 
 |                             ISD::CondCode CC) { | 
 |     // The compare and select operand should be the same or the select operands | 
 |     // should be truncated versions of the comparison. | 
 |     if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) | 
 |       return 0; | 
 |     // The constants need to be the same or a truncated version of each other. | 
 |     ConstantSDNode *N1C = isConstOrConstSplat(peekThroughTruncates(N1)); | 
 |     ConstantSDNode *N3C = isConstOrConstSplat(peekThroughTruncates(N3)); | 
 |     if (!N1C || !N3C) | 
 |       return 0; | 
 |     const APInt &C1 = N1C->getAPIntValue().trunc(N1.getScalarValueSizeInBits()); | 
 |     const APInt &C2 = N3C->getAPIntValue().trunc(N3.getScalarValueSizeInBits()); | 
 |     if (C1.getBitWidth() < C2.getBitWidth() || C1 != C2.sext(C1.getBitWidth())) | 
 |       return 0; | 
 |     return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0); | 
 |   }; | 
 |  | 
 |   // Check the initial value is a SMIN/SMAX equivalent. | 
 |   unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC); | 
 |   if (!Opcode0) | 
 |     return SDValue(); | 
 |  | 
 |   // We could only need one range check, if the fptosi could never produce | 
 |   // the upper value. | 
 |   if (N0.getOpcode() == ISD::FP_TO_SINT && Opcode0 == ISD::SMAX) { | 
 |     if (isNullOrNullSplat(N3)) { | 
 |       EVT IntVT = N0.getValueType().getScalarType(); | 
 |       EVT FPVT = N0.getOperand(0).getValueType().getScalarType(); | 
 |       if (FPVT.isSimple()) { | 
 |         Type *InputTy = FPVT.getTypeForEVT(*DAG.getContext()); | 
 |         const fltSemantics &Semantics = InputTy->getFltSemantics(); | 
 |         uint32_t MinBitWidth = | 
 |           APFloatBase::semanticsIntSizeInBits(Semantics, /*isSigned*/ true); | 
 |         if (IntVT.getSizeInBits() >= MinBitWidth) { | 
 |           Unsigned = true; | 
 |           BW = PowerOf2Ceil(MinBitWidth); | 
 |           return N0; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   SDValue N00, N01, N02, N03; | 
 |   ISD::CondCode N0CC; | 
 |   switch (N0.getOpcode()) { | 
 |   case ISD::SMIN: | 
 |   case ISD::SMAX: | 
 |     N00 = N02 = N0.getOperand(0); | 
 |     N01 = N03 = N0.getOperand(1); | 
 |     N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT; | 
 |     break; | 
 |   case ISD::SELECT_CC: | 
 |     N00 = N0.getOperand(0); | 
 |     N01 = N0.getOperand(1); | 
 |     N02 = N0.getOperand(2); | 
 |     N03 = N0.getOperand(3); | 
 |     N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get(); | 
 |     break; | 
 |   case ISD::SELECT: | 
 |   case ISD::VSELECT: | 
 |     if (N0.getOperand(0).getOpcode() != ISD::SETCC) | 
 |       return SDValue(); | 
 |     N00 = N0.getOperand(0).getOperand(0); | 
 |     N01 = N0.getOperand(0).getOperand(1); | 
 |     N02 = N0.getOperand(1); | 
 |     N03 = N0.getOperand(2); | 
 |     N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get(); | 
 |     break; | 
 |   default: | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC); | 
 |   if (!Opcode1 || Opcode0 == Opcode1) | 
 |     return SDValue(); | 
 |  | 
 |   ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01); | 
 |   ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1); | 
 |   if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0)) | 
 |     return SDValue(); | 
 |  | 
 |   const APInt &MinC = MinCOp->getAPIntValue(); | 
 |   const APInt &MaxC = MaxCOp->getAPIntValue(); | 
 |   APInt MinCPlus1 = MinC + 1; | 
 |   if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) { | 
 |     BW = MinCPlus1.exactLogBase2() + 1; | 
 |     Unsigned = false; | 
 |     return N02; | 
 |   } | 
 |  | 
 |   if (MaxC == 0 && MinCPlus1.isPowerOf2()) { | 
 |     BW = MinCPlus1.exactLogBase2(); | 
 |     Unsigned = true; | 
 |     return N02; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, | 
 |                                            SDValue N3, ISD::CondCode CC, | 
 |                                            SelectionDAG &DAG) { | 
 |   unsigned BW; | 
 |   bool Unsigned; | 
 |   SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned, DAG); | 
 |   if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT) | 
 |     return SDValue(); | 
 |   EVT FPVT = Fp.getOperand(0).getValueType(); | 
 |   EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); | 
 |   if (FPVT.isVector()) | 
 |     NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, | 
 |                              FPVT.getVectorElementCount()); | 
 |   unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT; | 
 |   if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT)) | 
 |     return SDValue(); | 
 |   SDLoc DL(Fp); | 
 |   SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0), | 
 |                             DAG.getValueType(NewVT.getScalarType())); | 
 |   return DAG.getExtOrTrunc(!Unsigned, Sat, DL, N2->getValueType(0)); | 
 | } | 
 |  | 
 | static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, | 
 |                                          SDValue N3, ISD::CondCode CC, | 
 |                                          SelectionDAG &DAG) { | 
 |   // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a | 
 |   // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may | 
 |   // be truncated versions of the setcc (N0/N1). | 
 |   if ((N0 != N2 && | 
 |        (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) || | 
 |       N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT) | 
 |     return SDValue(); | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |   ConstantSDNode *N3C = isConstOrConstSplat(N3); | 
 |   if (!N1C || !N3C) | 
 |     return SDValue(); | 
 |   const APInt &C1 = N1C->getAPIntValue(); | 
 |   const APInt &C3 = N3C->getAPIntValue(); | 
 |   if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() || | 
 |       C1 != C3.zext(C1.getBitWidth())) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned BW = (C1 + 1).exactLogBase2(); | 
 |   EVT FPVT = N0.getOperand(0).getValueType(); | 
 |   EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW); | 
 |   if (FPVT.isVector()) | 
 |     NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT, | 
 |                              FPVT.getVectorElementCount()); | 
 |   if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(ISD::FP_TO_UINT_SAT, | 
 |                                                         FPVT, NewVT)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Sat = | 
 |       DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0), | 
 |                   DAG.getValueType(NewVT.getScalarType())); | 
 |   return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType()); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitIMINMAX(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold operation with constant operands. | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // If the operands are the same, this is a no-op. | 
 |   if (N0 == N1) | 
 |     return N0; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(Opcode, DL, VT, N1, N0); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // reassociate minmax | 
 |   if (SDValue RMINMAX = reassociateOps(Opcode, DL, N0, N1, N->getFlags())) | 
 |     return RMINMAX; | 
 |  | 
 |   // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. | 
 |   // Only do this if: | 
 |   // 1. The current op isn't legal and the flipped is. | 
 |   // 2. The saturation pattern is broken by canonicalization in InstCombine. | 
 |   bool IsOpIllegal = !TLI.isOperationLegal(Opcode, VT); | 
 |   bool IsSatBroken = Opcode == ISD::UMIN && N0.getOpcode() == ISD::SMAX; | 
 |   if ((IsSatBroken || IsOpIllegal) && (N0.isUndef() || DAG.SignBitIsZero(N0)) && | 
 |       (N1.isUndef() || DAG.SignBitIsZero(N1))) { | 
 |     unsigned AltOpcode; | 
 |     switch (Opcode) { | 
 |     case ISD::SMIN: AltOpcode = ISD::UMIN; break; | 
 |     case ISD::SMAX: AltOpcode = ISD::UMAX; break; | 
 |     case ISD::UMIN: AltOpcode = ISD::SMIN; break; | 
 |     case ISD::UMAX: AltOpcode = ISD::SMAX; break; | 
 |     default: llvm_unreachable("Unknown MINMAX opcode"); | 
 |     } | 
 |     if ((IsSatBroken && IsOpIllegal) || TLI.isOperationLegal(AltOpcode, VT)) | 
 |       return DAG.getNode(AltOpcode, DL, VT, N0, N1); | 
 |   } | 
 |  | 
 |   if (Opcode == ISD::SMIN || Opcode == ISD::SMAX) | 
 |     if (SDValue S = PerformMinMaxFpToSatCombine( | 
 |             N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG)) | 
 |       return S; | 
 |   if (Opcode == ISD::UMIN) | 
 |     if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG)) | 
 |       return S; | 
 |  | 
 |   // Fold min/max(vecreduce(x), vecreduce(y)) -> vecreduce(min/max(x, y)) | 
 |   auto ReductionOpcode = [](unsigned Opcode) { | 
 |     switch (Opcode) { | 
 |     case ISD::SMIN: | 
 |       return ISD::VECREDUCE_SMIN; | 
 |     case ISD::SMAX: | 
 |       return ISD::VECREDUCE_SMAX; | 
 |     case ISD::UMIN: | 
 |       return ISD::VECREDUCE_UMIN; | 
 |     case ISD::UMAX: | 
 |       return ISD::VECREDUCE_UMAX; | 
 |     default: | 
 |       llvm_unreachable("Unexpected opcode"); | 
 |     } | 
 |   }; | 
 |   if (SDValue SD = reassociateReduction(ReductionOpcode(Opcode), Opcode, | 
 |                                         SDLoc(N), VT, N0, N1)) | 
 |     return SD; | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If this is a bitwise logic instruction and both operands have the same | 
 | /// opcode, try to sink the other opcode after the logic instruction. | 
 | SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned LogicOpcode = N->getOpcode(); | 
 |   unsigned HandOpcode = N0.getOpcode(); | 
 |   assert(ISD::isBitwiseLogicOp(LogicOpcode) && "Expected logic opcode"); | 
 |   assert(HandOpcode == N1.getOpcode() && "Bad input!"); | 
 |  | 
 |   // Bail early if none of these transforms apply. | 
 |   if (N0.getNumOperands() == 0) | 
 |     return SDValue(); | 
 |  | 
 |   // FIXME: We should check number of uses of the operands to not increase | 
 |   //        the instruction count for all transforms. | 
 |  | 
 |   // Handle size-changing casts (or sign_extend_inreg). | 
 |   SDValue X = N0.getOperand(0); | 
 |   SDValue Y = N1.getOperand(0); | 
 |   EVT XVT = X.getValueType(); | 
 |   SDLoc DL(N); | 
 |   if (ISD::isExtOpcode(HandOpcode) || ISD::isExtVecInRegOpcode(HandOpcode) || | 
 |       (HandOpcode == ISD::SIGN_EXTEND_INREG && | 
 |        N0.getOperand(1) == N1.getOperand(1))) { | 
 |     // If both operands have other uses, this transform would create extra | 
 |     // instructions without eliminating anything. | 
 |     if (!N0.hasOneUse() && !N1.hasOneUse()) | 
 |       return SDValue(); | 
 |     // We need matching integer source types. | 
 |     if (XVT != Y.getValueType()) | 
 |       return SDValue(); | 
 |     // Don't create an illegal op during or after legalization. Don't ever | 
 |     // create an unsupported vector op. | 
 |     if ((VT.isVector() || LegalOperations) && | 
 |         !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) | 
 |       return SDValue(); | 
 |     // Avoid infinite looping with PromoteIntBinOp. | 
 |     // TODO: Should we apply desirable/legal constraints to all opcodes? | 
 |     if ((HandOpcode == ISD::ANY_EXTEND || | 
 |          HandOpcode == ISD::ANY_EXTEND_VECTOR_INREG) && | 
 |         LegalTypes && !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) | 
 |       return SDValue(); | 
 |     // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) | 
 |     SDNodeFlags LogicFlags; | 
 |     LogicFlags.setDisjoint(N->getFlags().hasDisjoint() && | 
 |                            ISD::isExtOpcode(HandOpcode)); | 
 |     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y, LogicFlags); | 
 |     if (HandOpcode == ISD::SIGN_EXTEND_INREG) | 
 |       return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); | 
 |     return DAG.getNode(HandOpcode, DL, VT, Logic); | 
 |   } | 
 |  | 
 |   // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) | 
 |   if (HandOpcode == ISD::TRUNCATE) { | 
 |     // If both operands have other uses, this transform would create extra | 
 |     // instructions without eliminating anything. | 
 |     if (!N0.hasOneUse() && !N1.hasOneUse()) | 
 |       return SDValue(); | 
 |     // We need matching source types. | 
 |     if (XVT != Y.getValueType()) | 
 |       return SDValue(); | 
 |     // Don't create an illegal op during or after legalization. | 
 |     if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) | 
 |       return SDValue(); | 
 |     // Be extra careful sinking truncate. If it's free, there's no benefit in | 
 |     // widening a binop. Also, don't create a logic op on an illegal type. | 
 |     if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) | 
 |       return SDValue(); | 
 |     if (!TLI.isTypeLegal(XVT)) | 
 |       return SDValue(); | 
 |     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
 |     return DAG.getNode(HandOpcode, DL, VT, Logic); | 
 |   } | 
 |  | 
 |   // For binops SHL/SRL/SRA/AND: | 
 |   //   logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z | 
 |   if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || | 
 |        HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && | 
 |       N0.getOperand(1) == N1.getOperand(1)) { | 
 |     // If either operand has other uses, this transform is not an improvement. | 
 |     if (!N0.hasOneUse() || !N1.hasOneUse()) | 
 |       return SDValue(); | 
 |     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
 |     return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); | 
 |   } | 
 |  | 
 |   // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) | 
 |   if (HandOpcode == ISD::BSWAP) { | 
 |     // If either operand has other uses, this transform is not an improvement. | 
 |     if (!N0.hasOneUse() || !N1.hasOneUse()) | 
 |       return SDValue(); | 
 |     SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
 |     return DAG.getNode(HandOpcode, DL, VT, Logic); | 
 |   } | 
 |  | 
 |   // For funnel shifts FSHL/FSHR: | 
 |   // logic_op (OP x, x1, s), (OP y, y1, s) --> | 
 |   // --> OP (logic_op x, y), (logic_op, x1, y1), s | 
 |   if ((HandOpcode == ISD::FSHL || HandOpcode == ISD::FSHR) && | 
 |       N0.getOperand(2) == N1.getOperand(2)) { | 
 |     if (!N0.hasOneUse() || !N1.hasOneUse()) | 
 |       return SDValue(); | 
 |     SDValue X1 = N0.getOperand(1); | 
 |     SDValue Y1 = N1.getOperand(1); | 
 |     SDValue S = N0.getOperand(2); | 
 |     SDValue Logic0 = DAG.getNode(LogicOpcode, DL, VT, X, Y); | 
 |     SDValue Logic1 = DAG.getNode(LogicOpcode, DL, VT, X1, Y1); | 
 |     return DAG.getNode(HandOpcode, DL, VT, Logic0, Logic1, S); | 
 |   } | 
 |  | 
 |   // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) | 
 |   // Only perform this optimization up until type legalization, before | 
 |   // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by | 
 |   // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and | 
 |   // we don't want to undo this promotion. | 
 |   // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper | 
 |   // on scalars. | 
 |   if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && | 
 |        Level <= AfterLegalizeTypes) { | 
 |     // Input types must be integer and the same. | 
 |     if (XVT.isInteger() && XVT == Y.getValueType() && | 
 |         !(VT.isVector() && TLI.isTypeLegal(VT) && | 
 |           !XVT.isVector() && !TLI.isTypeLegal(XVT))) { | 
 |       SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); | 
 |       return DAG.getNode(HandOpcode, DL, VT, Logic); | 
 |     } | 
 |   } | 
 |  | 
 |   // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). | 
 |   // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) | 
 |   // If both shuffles use the same mask, and both shuffle within a single | 
 |   // vector, then it is worthwhile to move the swizzle after the operation. | 
 |   // The type-legalizer generates this pattern when loading illegal | 
 |   // vector types from memory. In many cases this allows additional shuffle | 
 |   // optimizations. | 
 |   // There are other cases where moving the shuffle after the xor/and/or | 
 |   // is profitable even if shuffles don't perform a swizzle. | 
 |   // If both shuffles use the same mask, and both shuffles have the same first | 
 |   // or second operand, then it might still be profitable to move the shuffle | 
 |   // after the xor/and/or operation. | 
 |   if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { | 
 |     auto *SVN0 = cast<ShuffleVectorSDNode>(N0); | 
 |     auto *SVN1 = cast<ShuffleVectorSDNode>(N1); | 
 |     assert(X.getValueType() == Y.getValueType() && | 
 |            "Inputs to shuffles are not the same type"); | 
 |  | 
 |     // Check that both shuffles use the same mask. The masks are known to be of | 
 |     // the same length because the result vector type is the same. | 
 |     // Check also that shuffles have only one use to avoid introducing extra | 
 |     // instructions. | 
 |     if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || | 
 |         !SVN0->getMask().equals(SVN1->getMask())) | 
 |       return SDValue(); | 
 |  | 
 |     // Don't try to fold this node if it requires introducing a | 
 |     // build vector of all zeros that might be illegal at this stage. | 
 |     SDValue ShOp = N0.getOperand(1); | 
 |     if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) | 
 |       ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
 |  | 
 |     // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) | 
 |     if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { | 
 |       SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, | 
 |                                   N0.getOperand(0), N1.getOperand(0)); | 
 |       return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); | 
 |     } | 
 |  | 
 |     // Don't try to fold this node if it requires introducing a | 
 |     // build vector of all zeros that might be illegal at this stage. | 
 |     ShOp = N0.getOperand(0); | 
 |     if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) | 
 |       ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
 |  | 
 |     // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) | 
 |     if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { | 
 |       SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), | 
 |                                   N1.getOperand(1)); | 
 |       return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. | 
 | SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, | 
 |                                        const SDLoc &DL) { | 
 |   SDValue LL, LR, RL, RR, N0CC, N1CC; | 
 |   if (!isSetCCEquivalent(N0, LL, LR, N0CC) || | 
 |       !isSetCCEquivalent(N1, RL, RR, N1CC)) | 
 |     return SDValue(); | 
 |  | 
 |   assert(N0.getValueType() == N1.getValueType() && | 
 |          "Unexpected operand types for bitwise logic op"); | 
 |   assert(LL.getValueType() == LR.getValueType() && | 
 |          RL.getValueType() == RR.getValueType() && | 
 |          "Unexpected operand types for setcc"); | 
 |  | 
 |   // If we're here post-legalization or the logic op type is not i1, the logic | 
 |   // op type must match a setcc result type. Also, all folds require new | 
 |   // operations on the left and right operands, so those types must match. | 
 |   EVT VT = N0.getValueType(); | 
 |   EVT OpVT = LL.getValueType(); | 
 |   if (LegalOperations || VT.getScalarType() != MVT::i1) | 
 |     if (VT != getSetCCResultType(OpVT)) | 
 |       return SDValue(); | 
 |   if (OpVT != RL.getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); | 
 |   ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); | 
 |   bool IsInteger = OpVT.isInteger(); | 
 |   if (LR == RR && CC0 == CC1 && IsInteger) { | 
 |     bool IsZero = isNullOrNullSplat(LR); | 
 |     bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); | 
 |  | 
 |     // All bits clear? | 
 |     bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; | 
 |     // All sign bits clear? | 
 |     bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; | 
 |     // Any bits set? | 
 |     bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; | 
 |     // Any sign bits set? | 
 |     bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; | 
 |  | 
 |     // (and (seteq X,  0), (seteq Y,  0)) --> (seteq (or X, Y),  0) | 
 |     // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) | 
 |     // (or  (setne X,  0), (setne Y,  0)) --> (setne (or X, Y),  0) | 
 |     // (or  (setlt X,  0), (setlt Y,  0)) --> (setlt (or X, Y),  0) | 
 |     if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { | 
 |       SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); | 
 |       AddToWorklist(Or.getNode()); | 
 |       return DAG.getSetCC(DL, VT, Or, LR, CC1); | 
 |     } | 
 |  | 
 |     // All bits set? | 
 |     bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; | 
 |     // All sign bits set? | 
 |     bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; | 
 |     // Any bits clear? | 
 |     bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; | 
 |     // Any sign bits clear? | 
 |     bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; | 
 |  | 
 |     // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) | 
 |     // (and (setlt X,  0), (setlt Y,  0)) --> (setlt (and X, Y),  0) | 
 |     // (or  (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) | 
 |     // (or  (setgt X, -1), (setgt Y  -1)) --> (setgt (and X, Y), -1) | 
 |     if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { | 
 |       SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); | 
 |       AddToWorklist(And.getNode()); | 
 |       return DAG.getSetCC(DL, VT, And, LR, CC1); | 
 |     } | 
 |   } | 
 |  | 
 |   // TODO: What is the 'or' equivalent of this fold? | 
 |   // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) | 
 |   if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && | 
 |       IsInteger && CC0 == ISD::SETNE && | 
 |       ((isNullConstant(LR) && isAllOnesConstant(RR)) || | 
 |        (isAllOnesConstant(LR) && isNullConstant(RR)))) { | 
 |     SDValue One = DAG.getConstant(1, DL, OpVT); | 
 |     SDValue Two = DAG.getConstant(2, DL, OpVT); | 
 |     SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); | 
 |     AddToWorklist(Add.getNode()); | 
 |     return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); | 
 |   } | 
 |  | 
 |   // Try more general transforms if the predicates match and the only user of | 
 |   // the compares is the 'and' or 'or'. | 
 |   if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && | 
 |       N0.hasOneUse() && N1.hasOneUse()) { | 
 |     // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 | 
 |     // or  (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 | 
 |     if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { | 
 |       SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); | 
 |       SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); | 
 |       SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); | 
 |       SDValue Zero = DAG.getConstant(0, DL, OpVT); | 
 |       return DAG.getSetCC(DL, VT, Or, Zero, CC1); | 
 |     } | 
 |  | 
 |     // Turn compare of constants whose difference is 1 bit into add+and+setcc. | 
 |     if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { | 
 |       // Match a shared variable operand and 2 non-opaque constant operands. | 
 |       auto MatchDiffPow2 = [&](ConstantSDNode *C0, ConstantSDNode *C1) { | 
 |         // The difference of the constants must be a single bit. | 
 |         const APInt &CMax = | 
 |             APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue()); | 
 |         const APInt &CMin = | 
 |             APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue()); | 
 |         return !C0->isOpaque() && !C1->isOpaque() && (CMax - CMin).isPowerOf2(); | 
 |       }; | 
 |       if (LL == RL && ISD::matchBinaryPredicate(LR, RR, MatchDiffPow2)) { | 
 |         // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) --> | 
 |         // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq | 
 |         SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR); | 
 |         SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR); | 
 |         SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min); | 
 |         SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min); | 
 |         SDValue Mask = DAG.getNOT(DL, Diff, OpVT); | 
 |         SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask); | 
 |         SDValue Zero = DAG.getConstant(0, DL, OpVT); | 
 |         return DAG.getSetCC(DL, VT, And, Zero, CC0); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Canonicalize equivalent operands to LL == RL. | 
 |   if (LL == RR && LR == RL) { | 
 |     CC1 = ISD::getSetCCSwappedOperands(CC1); | 
 |     std::swap(RL, RR); | 
 |   } | 
 |  | 
 |   // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) | 
 |   // (or  (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) | 
 |   if (LL == RL && LR == RR) { | 
 |     ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) | 
 |                                 : ISD::getSetCCOrOperation(CC0, CC1, OpVT); | 
 |     if (NewCC != ISD::SETCC_INVALID && | 
 |         (!LegalOperations || | 
 |          (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && | 
 |           TLI.isOperationLegal(ISD::SETCC, OpVT)))) | 
 |       return DAG.getSetCC(DL, VT, LL, LR, NewCC); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static bool arebothOperandsNotSNan(SDValue Operand1, SDValue Operand2, | 
 |                                    SelectionDAG &DAG) { | 
 |   return DAG.isKnownNeverSNaN(Operand2) && DAG.isKnownNeverSNaN(Operand1); | 
 | } | 
 |  | 
 | static bool arebothOperandsNotNan(SDValue Operand1, SDValue Operand2, | 
 |                                   SelectionDAG &DAG) { | 
 |   return DAG.isKnownNeverNaN(Operand2) && DAG.isKnownNeverNaN(Operand1); | 
 | } | 
 |  | 
 | // FIXME: use FMINIMUMNUM if possible, such as for RISC-V. | 
 | static unsigned getMinMaxOpcodeForFP(SDValue Operand1, SDValue Operand2, | 
 |                                      ISD::CondCode CC, unsigned OrAndOpcode, | 
 |                                      SelectionDAG &DAG, | 
 |                                      bool isFMAXNUMFMINNUM_IEEE, | 
 |                                      bool isFMAXNUMFMINNUM) { | 
 |   // The optimization cannot be applied for all the predicates because | 
 |   // of the way FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle | 
 |   // NaNs. For FMINNUM_IEEE/FMAXNUM_IEEE, the optimization cannot be | 
 |   // applied at all if one of the operands is a signaling NaN. | 
 |  | 
 |   // It is safe to use FMINNUM_IEEE/FMAXNUM_IEEE if all the operands | 
 |   // are non NaN values. | 
 |   if (((CC == ISD::SETLT || CC == ISD::SETLE) && (OrAndOpcode == ISD::OR)) || | 
 |       ((CC == ISD::SETGT || CC == ISD::SETGE) && (OrAndOpcode == ISD::AND))) | 
 |     return arebothOperandsNotNan(Operand1, Operand2, DAG) && | 
 |                    isFMAXNUMFMINNUM_IEEE | 
 |                ? ISD::FMINNUM_IEEE | 
 |                : ISD::DELETED_NODE; | 
 |   else if (((CC == ISD::SETGT || CC == ISD::SETGE) && | 
 |             (OrAndOpcode == ISD::OR)) || | 
 |            ((CC == ISD::SETLT || CC == ISD::SETLE) && | 
 |             (OrAndOpcode == ISD::AND))) | 
 |     return arebothOperandsNotNan(Operand1, Operand2, DAG) && | 
 |                    isFMAXNUMFMINNUM_IEEE | 
 |                ? ISD::FMAXNUM_IEEE | 
 |                : ISD::DELETED_NODE; | 
 |   // Both FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle quiet | 
 |   // NaNs in the same way. But, FMINNUM/FMAXNUM and FMINNUM_IEEE/ | 
 |   // FMAXNUM_IEEE handle signaling NaNs differently. If we cannot prove | 
 |   // that there are not any sNaNs, then the optimization is not valid | 
 |   // for FMINNUM_IEEE/FMAXNUM_IEEE. In the presence of sNaNs, we apply | 
 |   // the optimization using FMINNUM/FMAXNUM for the following cases. If | 
 |   // we can prove that we do not have any sNaNs, then we can do the | 
 |   // optimization using FMINNUM_IEEE/FMAXNUM_IEEE for the following | 
 |   // cases. | 
 |   else if (((CC == ISD::SETOLT || CC == ISD::SETOLE) && | 
 |             (OrAndOpcode == ISD::OR)) || | 
 |            ((CC == ISD::SETUGT || CC == ISD::SETUGE) && | 
 |             (OrAndOpcode == ISD::AND))) | 
 |     return isFMAXNUMFMINNUM ? ISD::FMINNUM | 
 |                             : arebothOperandsNotSNan(Operand1, Operand2, DAG) && | 
 |                                       isFMAXNUMFMINNUM_IEEE | 
 |                                   ? ISD::FMINNUM_IEEE | 
 |                                   : ISD::DELETED_NODE; | 
 |   else if (((CC == ISD::SETOGT || CC == ISD::SETOGE) && | 
 |             (OrAndOpcode == ISD::OR)) || | 
 |            ((CC == ISD::SETULT || CC == ISD::SETULE) && | 
 |             (OrAndOpcode == ISD::AND))) | 
 |     return isFMAXNUMFMINNUM ? ISD::FMAXNUM | 
 |                             : arebothOperandsNotSNan(Operand1, Operand2, DAG) && | 
 |                                       isFMAXNUMFMINNUM_IEEE | 
 |                                   ? ISD::FMAXNUM_IEEE | 
 |                                   : ISD::DELETED_NODE; | 
 |   return ISD::DELETED_NODE; | 
 | } | 
 |  | 
 | static SDValue foldAndOrOfSETCC(SDNode *LogicOp, SelectionDAG &DAG) { | 
 |   using AndOrSETCCFoldKind = TargetLowering::AndOrSETCCFoldKind; | 
 |   assert( | 
 |       (LogicOp->getOpcode() == ISD::AND || LogicOp->getOpcode() == ISD::OR) && | 
 |       "Invalid Op to combine SETCC with"); | 
 |  | 
 |   // TODO: Search past casts/truncates. | 
 |   SDValue LHS = LogicOp->getOperand(0); | 
 |   SDValue RHS = LogicOp->getOperand(1); | 
 |   if (LHS->getOpcode() != ISD::SETCC || RHS->getOpcode() != ISD::SETCC || | 
 |       !LHS->hasOneUse() || !RHS->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   AndOrSETCCFoldKind TargetPreference = TLI.isDesirableToCombineLogicOpOfSETCC( | 
 |       LogicOp, LHS.getNode(), RHS.getNode()); | 
 |  | 
 |   SDValue LHS0 = LHS->getOperand(0); | 
 |   SDValue RHS0 = RHS->getOperand(0); | 
 |   SDValue LHS1 = LHS->getOperand(1); | 
 |   SDValue RHS1 = RHS->getOperand(1); | 
 |   // TODO: We don't actually need a splat here, for vectors we just need the | 
 |   // invariants to hold for each element. | 
 |   auto *LHS1C = isConstOrConstSplat(LHS1); | 
 |   auto *RHS1C = isConstOrConstSplat(RHS1); | 
 |   ISD::CondCode CCL = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | 
 |   ISD::CondCode CCR = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); | 
 |   EVT VT = LogicOp->getValueType(0); | 
 |   EVT OpVT = LHS0.getValueType(); | 
 |   SDLoc DL(LogicOp); | 
 |  | 
 |   // Check if the operands of an and/or operation are comparisons and if they | 
 |   // compare against the same value. Replace the and/or-cmp-cmp sequence with | 
 |   // min/max cmp sequence. If LHS1 is equal to RHS1, then the or-cmp-cmp | 
 |   // sequence will be replaced with min-cmp sequence: | 
 |   // (LHS0 < LHS1) | (RHS0 < RHS1) -> min(LHS0, RHS0) < LHS1 | 
 |   // and and-cmp-cmp will be replaced with max-cmp sequence: | 
 |   // (LHS0 < LHS1) & (RHS0 < RHS1) -> max(LHS0, RHS0) < LHS1 | 
 |   // The optimization does not work for `==` or `!=` . | 
 |   // The two comparisons should have either the same predicate or the | 
 |   // predicate of one of the comparisons is the opposite of the other one. | 
 |   bool isFMAXNUMFMINNUM_IEEE = TLI.isOperationLegal(ISD::FMAXNUM_IEEE, OpVT) && | 
 |                                TLI.isOperationLegal(ISD::FMINNUM_IEEE, OpVT); | 
 |   bool isFMAXNUMFMINNUM = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, OpVT) && | 
 |                           TLI.isOperationLegalOrCustom(ISD::FMINNUM, OpVT); | 
 |   if (((OpVT.isInteger() && TLI.isOperationLegal(ISD::UMAX, OpVT) && | 
 |         TLI.isOperationLegal(ISD::SMAX, OpVT) && | 
 |         TLI.isOperationLegal(ISD::UMIN, OpVT) && | 
 |         TLI.isOperationLegal(ISD::SMIN, OpVT)) || | 
 |        (OpVT.isFloatingPoint() && | 
 |         (isFMAXNUMFMINNUM_IEEE || isFMAXNUMFMINNUM))) && | 
 |       !ISD::isIntEqualitySetCC(CCL) && !ISD::isFPEqualitySetCC(CCL) && | 
 |       CCL != ISD::SETFALSE && CCL != ISD::SETO && CCL != ISD::SETUO && | 
 |       CCL != ISD::SETTRUE && | 
 |       (CCL == CCR || CCL == ISD::getSetCCSwappedOperands(CCR))) { | 
 |  | 
 |     SDValue CommonValue, Operand1, Operand2; | 
 |     ISD::CondCode CC = ISD::SETCC_INVALID; | 
 |     if (CCL == CCR) { | 
 |       if (LHS0 == RHS0) { | 
 |         CommonValue = LHS0; | 
 |         Operand1 = LHS1; | 
 |         Operand2 = RHS1; | 
 |         CC = ISD::getSetCCSwappedOperands(CCL); | 
 |       } else if (LHS1 == RHS1) { | 
 |         CommonValue = LHS1; | 
 |         Operand1 = LHS0; | 
 |         Operand2 = RHS0; | 
 |         CC = CCL; | 
 |       } | 
 |     } else { | 
 |       assert(CCL == ISD::getSetCCSwappedOperands(CCR) && "Unexpected CC"); | 
 |       if (LHS0 == RHS1) { | 
 |         CommonValue = LHS0; | 
 |         Operand1 = LHS1; | 
 |         Operand2 = RHS0; | 
 |         CC = CCR; | 
 |       } else if (RHS0 == LHS1) { | 
 |         CommonValue = LHS1; | 
 |         Operand1 = LHS0; | 
 |         Operand2 = RHS1; | 
 |         CC = CCL; | 
 |       } | 
 |     } | 
 |  | 
 |     // Don't do this transform for sign bit tests. Let foldLogicOfSetCCs | 
 |     // handle it using OR/AND. | 
 |     if (CC == ISD::SETLT && isNullOrNullSplat(CommonValue)) | 
 |       CC = ISD::SETCC_INVALID; | 
 |     else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CommonValue)) | 
 |       CC = ISD::SETCC_INVALID; | 
 |  | 
 |     if (CC != ISD::SETCC_INVALID) { | 
 |       unsigned NewOpcode = ISD::DELETED_NODE; | 
 |       bool IsSigned = isSignedIntSetCC(CC); | 
 |       if (OpVT.isInteger()) { | 
 |         bool IsLess = (CC == ISD::SETLE || CC == ISD::SETULE || | 
 |                        CC == ISD::SETLT || CC == ISD::SETULT); | 
 |         bool IsOr = (LogicOp->getOpcode() == ISD::OR); | 
 |         if (IsLess == IsOr) | 
 |           NewOpcode = IsSigned ? ISD::SMIN : ISD::UMIN; | 
 |         else | 
 |           NewOpcode = IsSigned ? ISD::SMAX : ISD::UMAX; | 
 |       } else if (OpVT.isFloatingPoint()) | 
 |         NewOpcode = | 
 |             getMinMaxOpcodeForFP(Operand1, Operand2, CC, LogicOp->getOpcode(), | 
 |                                  DAG, isFMAXNUMFMINNUM_IEEE, isFMAXNUMFMINNUM); | 
 |  | 
 |       if (NewOpcode != ISD::DELETED_NODE) { | 
 |         SDValue MinMaxValue = | 
 |             DAG.getNode(NewOpcode, DL, OpVT, Operand1, Operand2); | 
 |         return DAG.getSetCC(DL, VT, MinMaxValue, CommonValue, CC); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (LHS0 == LHS1 && RHS0 == RHS1 && CCL == CCR && | 
 |       LHS0.getValueType() == RHS0.getValueType() && | 
 |       ((LogicOp->getOpcode() == ISD::AND && CCL == ISD::SETO) || | 
 |        (LogicOp->getOpcode() == ISD::OR && CCL == ISD::SETUO))) | 
 |     return DAG.getSetCC(DL, VT, LHS0, RHS0, CCL); | 
 |  | 
 |   if (TargetPreference == AndOrSETCCFoldKind::None) | 
 |     return SDValue(); | 
 |  | 
 |   if (CCL == CCR && | 
 |       CCL == (LogicOp->getOpcode() == ISD::AND ? ISD::SETNE : ISD::SETEQ) && | 
 |       LHS0 == RHS0 && LHS1C && RHS1C && OpVT.isInteger()) { | 
 |     const APInt &APLhs = LHS1C->getAPIntValue(); | 
 |     const APInt &APRhs = RHS1C->getAPIntValue(); | 
 |  | 
 |     // Preference is to use ISD::ABS or we already have an ISD::ABS (in which | 
 |     // case this is just a compare). | 
 |     if (APLhs == (-APRhs) && | 
 |         ((TargetPreference & AndOrSETCCFoldKind::ABS) || | 
 |          DAG.doesNodeExist(ISD::ABS, DAG.getVTList(OpVT), {LHS0}))) { | 
 |       const APInt &C = APLhs.isNegative() ? APRhs : APLhs; | 
 |       // (icmp eq A, C) | (icmp eq A, -C) | 
 |       //    -> (icmp eq Abs(A), C) | 
 |       // (icmp ne A, C) & (icmp ne A, -C) | 
 |       //    -> (icmp ne Abs(A), C) | 
 |       SDValue AbsOp = DAG.getNode(ISD::ABS, DL, OpVT, LHS0); | 
 |       return DAG.getNode(ISD::SETCC, DL, VT, AbsOp, | 
 |                          DAG.getConstant(C, DL, OpVT), LHS.getOperand(2)); | 
 |     } else if (TargetPreference & | 
 |                (AndOrSETCCFoldKind::AddAnd | AndOrSETCCFoldKind::NotAnd)) { | 
 |  | 
 |       // AndOrSETCCFoldKind::AddAnd: | 
 |       // A == C0 | A == C1 | 
 |       //  IF IsPow2(smax(C0, C1)-smin(C0, C1)) | 
 |       //    -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) == 0 | 
 |       // A != C0 & A != C1 | 
 |       //  IF IsPow2(smax(C0, C1)-smin(C0, C1)) | 
 |       //    -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) != 0 | 
 |  | 
 |       // AndOrSETCCFoldKind::NotAnd: | 
 |       // A == C0 | A == C1 | 
 |       //  IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1)) | 
 |       //    -> ~A & smin(C0, C1) == 0 | 
 |       // A != C0 & A != C1 | 
 |       //  IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1)) | 
 |       //    -> ~A & smin(C0, C1) != 0 | 
 |  | 
 |       const APInt &MaxC = APIntOps::smax(APRhs, APLhs); | 
 |       const APInt &MinC = APIntOps::smin(APRhs, APLhs); | 
 |       APInt Dif = MaxC - MinC; | 
 |       if (!Dif.isZero() && Dif.isPowerOf2()) { | 
 |         if (MaxC.isAllOnes() && | 
 |             (TargetPreference & AndOrSETCCFoldKind::NotAnd)) { | 
 |           SDValue NotOp = DAG.getNOT(DL, LHS0, OpVT); | 
 |           SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, NotOp, | 
 |                                       DAG.getConstant(MinC, DL, OpVT)); | 
 |           return DAG.getNode(ISD::SETCC, DL, VT, AndOp, | 
 |                              DAG.getConstant(0, DL, OpVT), LHS.getOperand(2)); | 
 |         } else if (TargetPreference & AndOrSETCCFoldKind::AddAnd) { | 
 |  | 
 |           SDValue AddOp = DAG.getNode(ISD::ADD, DL, OpVT, LHS0, | 
 |                                       DAG.getConstant(-MinC, DL, OpVT)); | 
 |           SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, AddOp, | 
 |                                       DAG.getConstant(~Dif, DL, OpVT)); | 
 |           return DAG.getNode(ISD::SETCC, DL, VT, AndOp, | 
 |                              DAG.getConstant(0, DL, OpVT), LHS.getOperand(2)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Combine `(select c, (X & 1), 0)` -> `(and (zext c), X)`. | 
 | // We canonicalize to the `select` form in the middle end, but the `and` form | 
 | // gets better codegen and all tested targets (arm, x86, riscv) | 
 | static SDValue combineSelectAsExtAnd(SDValue Cond, SDValue T, SDValue F, | 
 |                                      const SDLoc &DL, SelectionDAG &DAG) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   if (!isNullConstant(F)) | 
 |     return SDValue(); | 
 |  | 
 |   EVT CondVT = Cond.getValueType(); | 
 |   if (TLI.getBooleanContents(CondVT) != | 
 |       TargetLoweringBase::ZeroOrOneBooleanContent) | 
 |     return SDValue(); | 
 |  | 
 |   if (T.getOpcode() != ISD::AND) | 
 |     return SDValue(); | 
 |  | 
 |   if (!isOneConstant(T.getOperand(1))) | 
 |     return SDValue(); | 
 |  | 
 |   EVT OpVT = T.getValueType(); | 
 |  | 
 |   SDValue CondMask = | 
 |       OpVT == CondVT ? Cond : DAG.getBoolExtOrTrunc(Cond, DL, OpVT, CondVT); | 
 |   return DAG.getNode(ISD::AND, DL, OpVT, CondMask, T.getOperand(0)); | 
 | } | 
 |  | 
 | /// This contains all DAGCombine rules which reduce two values combined by | 
 | /// an And operation to a single value. This makes them reusable in the context | 
 | /// of visitSELECT(). Rules involving constants are not included as | 
 | /// visitSELECT() already handles those cases. | 
 | SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { | 
 |   EVT VT = N1.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (and x, undef) -> 0 | 
 |   if (N0.isUndef() || N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) | 
 |     return V; | 
 |  | 
 |   // Canonicalize: | 
 |   //   and(x, add) -> and(add, x) | 
 |   if (N1.getOpcode() == ISD::ADD) | 
 |     std::swap(N0, N1); | 
 |  | 
 |   // TODO: Rewrite this to return a new 'AND' instead of using CombineTo. | 
 |   if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && | 
 |       VT.isScalarInteger() && VT.getSizeInBits() <= 64 && N0->hasOneUse()) { | 
 |     if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
 |       if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { | 
 |         // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal | 
 |         // immediate for an add, but it is legal if its top c2 bits are set, | 
 |         // transform the ADD so the immediate doesn't need to be materialized | 
 |         // in a register. | 
 |         APInt ADDC = ADDI->getAPIntValue(); | 
 |         APInt SRLC = SRLI->getAPIntValue(); | 
 |         if (ADDC.getSignificantBits() <= 64 && SRLC.ult(VT.getSizeInBits()) && | 
 |             !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | 
 |           APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), | 
 |                                              SRLC.getZExtValue()); | 
 |           if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { | 
 |             ADDC |= Mask; | 
 |             if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { | 
 |               SDLoc DL0(N0); | 
 |               SDValue NewAdd = | 
 |                 DAG.getNode(ISD::ADD, DL0, VT, | 
 |                             N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); | 
 |               CombineTo(N0.getNode(), NewAdd); | 
 |               // Return N so it doesn't get rechecked! | 
 |               return SDValue(N, 0); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, | 
 |                                    EVT LoadResultTy, EVT &ExtVT) { | 
 |   if (!AndC->getAPIntValue().isMask()) | 
 |     return false; | 
 |  | 
 |   unsigned ActiveBits = AndC->getAPIntValue().countr_one(); | 
 |  | 
 |   ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
 |   EVT LoadedVT = LoadN->getMemoryVT(); | 
 |  | 
 |   if (ExtVT == LoadedVT && | 
 |       (!LegalOperations || | 
 |        TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { | 
 |     // ZEXTLOAD will match without needing to change the size of the value being | 
 |     // loaded. | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Do not change the width of a volatile or atomic loads. | 
 |   if (!LoadN->isSimple()) | 
 |     return false; | 
 |  | 
 |   // Do not generate loads of non-round integer types since these can | 
 |   // be expensive (and would be wrong if the type is not byte sized). | 
 |   if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) | 
 |     return false; | 
 |  | 
 |   if (LegalOperations && | 
 |       !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) | 
 |     return false; | 
 |  | 
 |   if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT, /*ByteOffset=*/0)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, | 
 |                                     ISD::LoadExtType ExtType, EVT &MemVT, | 
 |                                     unsigned ShAmt) { | 
 |   if (!LDST) | 
 |     return false; | 
 |  | 
 |   // Only allow byte offsets. | 
 |   if (ShAmt % 8) | 
 |     return false; | 
 |   const unsigned ByteShAmt = ShAmt / 8; | 
 |  | 
 |   // Do not generate loads of non-round integer types since these can | 
 |   // be expensive (and would be wrong if the type is not byte sized). | 
 |   if (!MemVT.isRound()) | 
 |     return false; | 
 |  | 
 |   // Don't change the width of a volatile or atomic loads. | 
 |   if (!LDST->isSimple()) | 
 |     return false; | 
 |  | 
 |   EVT LdStMemVT = LDST->getMemoryVT(); | 
 |  | 
 |   // Bail out when changing the scalable property, since we can't be sure that | 
 |   // we're actually narrowing here. | 
 |   if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) | 
 |     return false; | 
 |  | 
 |   // Verify that we are actually reducing a load width here. | 
 |   if (LdStMemVT.bitsLT(MemVT)) | 
 |     return false; | 
 |  | 
 |   // Ensure that this isn't going to produce an unsupported memory access. | 
 |   if (ShAmt) { | 
 |     const Align LDSTAlign = LDST->getAlign(); | 
 |     const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); | 
 |     if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, | 
 |                                 LDST->getAddressSpace(), NarrowAlign, | 
 |                                 LDST->getMemOperand()->getFlags())) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // It's not possible to generate a constant of extended or untyped type. | 
 |   EVT PtrType = LDST->getBasePtr().getValueType(); | 
 |   if (PtrType == MVT::Untyped || PtrType.isExtended()) | 
 |     return false; | 
 |  | 
 |   if (isa<LoadSDNode>(LDST)) { | 
 |     LoadSDNode *Load = cast<LoadSDNode>(LDST); | 
 |     // Don't transform one with multiple uses, this would require adding a new | 
 |     // load. | 
 |     if (!SDValue(Load, 0).hasOneUse()) | 
 |       return false; | 
 |  | 
 |     if (LegalOperations && | 
 |         !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) | 
 |       return false; | 
 |  | 
 |     // For the transform to be legal, the load must produce only two values | 
 |     // (the value loaded and the chain).  Don't transform a pre-increment | 
 |     // load, for example, which produces an extra value.  Otherwise the | 
 |     // transformation is not equivalent, and the downstream logic to replace | 
 |     // uses gets things wrong. | 
 |     if (Load->getNumValues() > 2) | 
 |       return false; | 
 |  | 
 |     // If the load that we're shrinking is an extload and we're not just | 
 |     // discarding the extension we can't simply shrink the load. Bail. | 
 |     // TODO: It would be possible to merge the extensions in some cases. | 
 |     if (Load->getExtensionType() != ISD::NON_EXTLOAD && | 
 |         Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) | 
 |       return false; | 
 |  | 
 |     if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT, ByteShAmt)) | 
 |       return false; | 
 |   } else { | 
 |     assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); | 
 |     StoreSDNode *Store = cast<StoreSDNode>(LDST); | 
 |     // Can't write outside the original store | 
 |     if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) | 
 |       return false; | 
 |  | 
 |     if (LegalOperations && | 
 |         !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool DAGCombiner::SearchForAndLoads(SDNode *N, | 
 |                                     SmallVectorImpl<LoadSDNode*> &Loads, | 
 |                                     SmallPtrSetImpl<SDNode*> &NodesWithConsts, | 
 |                                     ConstantSDNode *Mask, | 
 |                                     SDNode *&NodeToMask) { | 
 |   // Recursively search for the operands, looking for loads which can be | 
 |   // narrowed. | 
 |   for (SDValue Op : N->op_values()) { | 
 |     if (Op.getValueType().isVector()) | 
 |       return false; | 
 |  | 
 |     // Some constants may need fixing up later if they are too large. | 
 |     if (auto *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && | 
 |           (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) | 
 |         NodesWithConsts.insert(N); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (!Op.hasOneUse()) | 
 |       return false; | 
 |  | 
 |     switch(Op.getOpcode()) { | 
 |     case ISD::LOAD: { | 
 |       auto *Load = cast<LoadSDNode>(Op); | 
 |       EVT ExtVT; | 
 |       if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && | 
 |           isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { | 
 |  | 
 |         // ZEXTLOAD is already small enough. | 
 |         if (Load->getExtensionType() == ISD::ZEXTLOAD && | 
 |             ExtVT.bitsGE(Load->getMemoryVT())) | 
 |           continue; | 
 |  | 
 |         // Use LE to convert equal sized loads to zext. | 
 |         if (ExtVT.bitsLE(Load->getMemoryVT())) | 
 |           Loads.push_back(Load); | 
 |  | 
 |         continue; | 
 |       } | 
 |       return false; | 
 |     } | 
 |     case ISD::ZERO_EXTEND: | 
 |     case ISD::AssertZext: { | 
 |       unsigned ActiveBits = Mask->getAPIntValue().countr_one(); | 
 |       EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
 |       EVT VT = Op.getOpcode() == ISD::AssertZext ? | 
 |         cast<VTSDNode>(Op.getOperand(1))->getVT() : | 
 |         Op.getOperand(0).getValueType(); | 
 |  | 
 |       // We can accept extending nodes if the mask is wider or an equal | 
 |       // width to the original type. | 
 |       if (ExtVT.bitsGE(VT)) | 
 |         continue; | 
 |       break; | 
 |     } | 
 |     case ISD::OR: | 
 |     case ISD::XOR: | 
 |     case ISD::AND: | 
 |       if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, | 
 |                              NodeToMask)) | 
 |         return false; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Allow one node which will masked along with any loads found. | 
 |     if (NodeToMask) | 
 |       return false; | 
 |  | 
 |     // Also ensure that the node to be masked only produces one data result. | 
 |     NodeToMask = Op.getNode(); | 
 |     if (NodeToMask->getNumValues() > 1) { | 
 |       bool HasValue = false; | 
 |       for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { | 
 |         MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); | 
 |         if (VT != MVT::Glue && VT != MVT::Other) { | 
 |           if (HasValue) { | 
 |             NodeToMask = nullptr; | 
 |             return false; | 
 |           } | 
 |           HasValue = true; | 
 |         } | 
 |       } | 
 |       assert(HasValue && "Node to be masked has no data result?"); | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { | 
 |   auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |   if (!Mask) | 
 |     return false; | 
 |  | 
 |   if (!Mask->getAPIntValue().isMask()) | 
 |     return false; | 
 |  | 
 |   // No need to do anything if the and directly uses a load. | 
 |   if (isa<LoadSDNode>(N->getOperand(0))) | 
 |     return false; | 
 |  | 
 |   SmallVector<LoadSDNode*, 8> Loads; | 
 |   SmallPtrSet<SDNode*, 2> NodesWithConsts; | 
 |   SDNode *FixupNode = nullptr; | 
 |   if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { | 
 |     if (Loads.empty()) | 
 |       return false; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); | 
 |     SDValue MaskOp = N->getOperand(1); | 
 |  | 
 |     // If it exists, fixup the single node we allow in the tree that needs | 
 |     // masking. | 
 |     if (FixupNode) { | 
 |       LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); | 
 |       SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), | 
 |                                 FixupNode->getValueType(0), | 
 |                                 SDValue(FixupNode, 0), MaskOp); | 
 |       DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); | 
 |       if (And.getOpcode() == ISD ::AND) | 
 |         DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); | 
 |     } | 
 |  | 
 |     // Narrow any constants that need it. | 
 |     for (auto *LogicN : NodesWithConsts) { | 
 |       SDValue Op0 = LogicN->getOperand(0); | 
 |       SDValue Op1 = LogicN->getOperand(1); | 
 |  | 
 |       if (isa<ConstantSDNode>(Op0)) | 
 |         Op0 = | 
 |             DAG.getNode(ISD::AND, SDLoc(Op0), Op0.getValueType(), Op0, MaskOp); | 
 |  | 
 |       if (isa<ConstantSDNode>(Op1)) | 
 |         Op1 = | 
 |             DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), Op1, MaskOp); | 
 |  | 
 |       if (isa<ConstantSDNode>(Op0) && !isa<ConstantSDNode>(Op1)) | 
 |         std::swap(Op0, Op1); | 
 |  | 
 |       DAG.UpdateNodeOperands(LogicN, Op0, Op1); | 
 |     } | 
 |  | 
 |     // Create narrow loads. | 
 |     for (auto *Load : Loads) { | 
 |       LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); | 
 |       SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), | 
 |                                 SDValue(Load, 0), MaskOp); | 
 |       DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); | 
 |       if (And.getOpcode() == ISD ::AND) | 
 |         And = SDValue( | 
 |             DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); | 
 |       SDValue NewLoad = reduceLoadWidth(And.getNode()); | 
 |       assert(NewLoad && | 
 |              "Shouldn't be masking the load if it can't be narrowed"); | 
 |       CombineTo(Load, NewLoad, NewLoad.getValue(1)); | 
 |     } | 
 |     DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Unfold | 
 | //    x &  (-1 'logical shift' y) | 
 | // To | 
 | //    (x 'opposite logical shift' y) 'logical shift' y | 
 | // if it is better for performance. | 
 | SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::AND); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |  | 
 |   // Do we actually prefer shifts over mask? | 
 |   if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) | 
 |     return SDValue(); | 
 |  | 
 |   // Try to match  (-1 '[outer] logical shift' y) | 
 |   unsigned OuterShift; | 
 |   unsigned InnerShift; // The opposite direction to the OuterShift. | 
 |   SDValue Y;           // Shift amount. | 
 |   auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { | 
 |     if (!M.hasOneUse()) | 
 |       return false; | 
 |     OuterShift = M->getOpcode(); | 
 |     if (OuterShift == ISD::SHL) | 
 |       InnerShift = ISD::SRL; | 
 |     else if (OuterShift == ISD::SRL) | 
 |       InnerShift = ISD::SHL; | 
 |     else | 
 |       return false; | 
 |     if (!isAllOnesConstant(M->getOperand(0))) | 
 |       return false; | 
 |     Y = M->getOperand(1); | 
 |     return true; | 
 |   }; | 
 |  | 
 |   SDValue X; | 
 |   if (matchMask(N1)) | 
 |     X = N0; | 
 |   else if (matchMask(N0)) | 
 |     X = N1; | 
 |   else | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   //     tmp = x   'opposite logical shift' y | 
 |   SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); | 
 |   //     ret = tmp 'logical shift' y | 
 |   SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); | 
 |  | 
 |   return T1; | 
 | } | 
 |  | 
 | /// Try to replace shift/logic that tests if a bit is clear with mask + setcc. | 
 | /// For a target with a bit test, this is expected to become test + set and save | 
 | /// at least 1 instruction. | 
 | static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { | 
 |   assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); | 
 |  | 
 |   // Look through an optional extension. | 
 |   SDValue And0 = And->getOperand(0), And1 = And->getOperand(1); | 
 |   if (And0.getOpcode() == ISD::ANY_EXTEND && And0.hasOneUse()) | 
 |     And0 = And0.getOperand(0); | 
 |   if (!isOneConstant(And1) || !And0.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Src = And0; | 
 |  | 
 |   // Attempt to find a 'not' op. | 
 |   // TODO: Should we favor test+set even without the 'not' op? | 
 |   bool FoundNot = false; | 
 |   if (isBitwiseNot(Src)) { | 
 |     FoundNot = true; | 
 |     Src = Src.getOperand(0); | 
 |  | 
 |     // Look though an optional truncation. The source operand may not be the | 
 |     // same type as the original 'and', but that is ok because we are masking | 
 |     // off everything but the low bit. | 
 |     if (Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse()) | 
 |       Src = Src.getOperand(0); | 
 |   } | 
 |  | 
 |   // Match a shift-right by constant. | 
 |   if (Src.getOpcode() != ISD::SRL || !Src.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // This is probably not worthwhile without a supported type. | 
 |   EVT SrcVT = Src.getValueType(); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   if (!TLI.isTypeLegal(SrcVT)) | 
 |     return SDValue(); | 
 |  | 
 |   // We might have looked through casts that make this transform invalid. | 
 |   unsigned BitWidth = SrcVT.getScalarSizeInBits(); | 
 |   SDValue ShiftAmt = Src.getOperand(1); | 
 |   auto *ShiftAmtC = dyn_cast<ConstantSDNode>(ShiftAmt); | 
 |   if (!ShiftAmtC || !ShiftAmtC->getAPIntValue().ult(BitWidth)) | 
 |     return SDValue(); | 
 |  | 
 |   // Set source to shift source. | 
 |   Src = Src.getOperand(0); | 
 |  | 
 |   // Try again to find a 'not' op. | 
 |   // TODO: Should we favor test+set even with two 'not' ops? | 
 |   if (!FoundNot) { | 
 |     if (!isBitwiseNot(Src)) | 
 |       return SDValue(); | 
 |     Src = Src.getOperand(0); | 
 |   } | 
 |  | 
 |   if (!TLI.hasBitTest(Src, ShiftAmt)) | 
 |     return SDValue(); | 
 |  | 
 |   // Turn this into a bit-test pattern using mask op + setcc: | 
 |   // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 | 
 |   // and (srl (not X), C)), 1 --> (and X, 1<<C) == 0 | 
 |   SDLoc DL(And); | 
 |   SDValue X = DAG.getZExtOrTrunc(Src, DL, SrcVT); | 
 |   EVT CCVT = | 
 |       TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); | 
 |   SDValue Mask = DAG.getConstant( | 
 |       APInt::getOneBitSet(BitWidth, ShiftAmtC->getZExtValue()), DL, SrcVT); | 
 |   SDValue NewAnd = DAG.getNode(ISD::AND, DL, SrcVT, X, Mask); | 
 |   SDValue Zero = DAG.getConstant(0, DL, SrcVT); | 
 |   SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); | 
 |   return DAG.getZExtOrTrunc(Setcc, DL, And->getValueType(0)); | 
 | } | 
 |  | 
 | /// For targets that support usubsat, match a bit-hack form of that operation | 
 | /// that ends in 'and' and convert it. | 
 | static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG, const SDLoc &DL) { | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |   APInt SignMask = APInt::getSignMask(BitWidth); | 
 |  | 
 |   // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128 | 
 |   // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128 | 
 |   // xor/add with SMIN (signmask) are logically equivalent. | 
 |   SDValue X; | 
 |   if (!sd_match(N, m_And(m_OneUse(m_Xor(m_Value(X), m_SpecificInt(SignMask))), | 
 |                          m_OneUse(m_Sra(m_Deferred(X), | 
 |                                         m_SpecificInt(BitWidth - 1))))) && | 
 |       !sd_match(N, m_And(m_OneUse(m_Add(m_Value(X), m_SpecificInt(SignMask))), | 
 |                          m_OneUse(m_Sra(m_Deferred(X), | 
 |                                         m_SpecificInt(BitWidth - 1)))))) | 
 |     return SDValue(); | 
 |  | 
 |   return DAG.getNode(ISD::USUBSAT, DL, VT, X, | 
 |                      DAG.getConstant(SignMask, DL, VT)); | 
 | } | 
 |  | 
 | /// Given a bitwise logic operation N with a matching bitwise logic operand, | 
 | /// fold a pattern where 2 of the source operands are identically shifted | 
 | /// values. For example: | 
 | /// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z | 
 | static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp, | 
 |                                  SelectionDAG &DAG) { | 
 |   unsigned LogicOpcode = N->getOpcode(); | 
 |   assert(ISD::isBitwiseLogicOp(LogicOpcode) && | 
 |          "Expected bitwise logic operation"); | 
 |  | 
 |   if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // Match another bitwise logic op and a shift. | 
 |   unsigned ShiftOpcode = ShiftOp.getOpcode(); | 
 |   if (LogicOp.getOpcode() != LogicOpcode || | 
 |       !(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL || | 
 |         ShiftOpcode == ISD::SRA)) | 
 |     return SDValue(); | 
 |  | 
 |   // Match another shift op inside the first logic operand. Handle both commuted | 
 |   // possibilities. | 
 |   // LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z | 
 |   // LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z | 
 |   SDValue X1 = ShiftOp.getOperand(0); | 
 |   SDValue Y = ShiftOp.getOperand(1); | 
 |   SDValue X0, Z; | 
 |   if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode && | 
 |       LogicOp.getOperand(0).getOperand(1) == Y) { | 
 |     X0 = LogicOp.getOperand(0).getOperand(0); | 
 |     Z = LogicOp.getOperand(1); | 
 |   } else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode && | 
 |              LogicOp.getOperand(1).getOperand(1) == Y) { | 
 |     X0 = LogicOp.getOperand(1).getOperand(0); | 
 |     Z = LogicOp.getOperand(0); | 
 |   } else { | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1); | 
 |   SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y); | 
 |   return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z); | 
 | } | 
 |  | 
 | /// Given a tree of logic operations with shape like | 
 | /// (LOGIC (LOGIC (X, Y), LOGIC (Z, Y))) | 
 | /// try to match and fold shift operations with the same shift amount. | 
 | /// For example: | 
 | /// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) --> | 
 | /// --> LOGIC (SH (LOGIC X0, X1), Y), (LOGIC Z, W) | 
 | static SDValue foldLogicTreeOfShifts(SDNode *N, SDValue LeftHand, | 
 |                                      SDValue RightHand, SelectionDAG &DAG) { | 
 |   unsigned LogicOpcode = N->getOpcode(); | 
 |   assert(ISD::isBitwiseLogicOp(LogicOpcode) && | 
 |          "Expected bitwise logic operation"); | 
 |   if (LeftHand.getOpcode() != LogicOpcode || | 
 |       RightHand.getOpcode() != LogicOpcode) | 
 |     return SDValue(); | 
 |   if (!LeftHand.hasOneUse() || !RightHand.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // Try to match one of following patterns: | 
 |   // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) | 
 |   // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC W, (SH X1, Y)) | 
 |   // Note that foldLogicOfShifts will handle commuted versions of the left hand | 
 |   // itself. | 
 |   SDValue CombinedShifts, W; | 
 |   SDValue R0 = RightHand.getOperand(0); | 
 |   SDValue R1 = RightHand.getOperand(1); | 
 |   if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R0, DAG))) | 
 |     W = R1; | 
 |   else if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R1, DAG))) | 
 |     W = R0; | 
 |   else | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   return DAG.getNode(LogicOpcode, DL, VT, CombinedShifts, W); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitAND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N1.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // x & x --> x | 
 |   if (N0 == N1) | 
 |     return N0; | 
 |  | 
 |   // fold (and c1, c2) -> c1&c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::AND, DL, VT, N1, N0); | 
 |  | 
 |   if (areBitwiseNotOfEachother(N0, N1)) | 
 |     return DAG.getConstant(APInt::getZero(VT.getScalarSizeInBits()), DL, VT); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (and x, 0) -> 0, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       // do not return N1, because undef node may exist in N1 | 
 |       return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), DL, | 
 |                              N1.getValueType()); | 
 |  | 
 |     // fold (and x, -1) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) | 
 |       return N0; | 
 |  | 
 |     // fold (and (masked_load) (splat_vec (x, ...))) to zext_masked_load | 
 |     auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); | 
 |     ConstantSDNode *Splat = isConstOrConstSplat(N1, true, true); | 
 |     if (MLoad && MLoad->getExtensionType() == ISD::EXTLOAD && Splat) { | 
 |       EVT LoadVT = MLoad->getMemoryVT(); | 
 |       EVT ExtVT = VT; | 
 |       if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) { | 
 |         // For this AND to be a zero extension of the masked load the elements | 
 |         // of the BuildVec must mask the bottom bits of the extended element | 
 |         // type | 
 |         uint64_t ElementSize = | 
 |             LoadVT.getVectorElementType().getScalarSizeInBits(); | 
 |         if (Splat->getAPIntValue().isMask(ElementSize)) { | 
 |           SDValue NewLoad = DAG.getMaskedLoad( | 
 |               ExtVT, DL, MLoad->getChain(), MLoad->getBasePtr(), | 
 |               MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(), | 
 |               LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(), | 
 |               ISD::ZEXTLOAD, MLoad->isExpandingLoad()); | 
 |           bool LoadHasOtherUsers = !N0.hasOneUse(); | 
 |           CombineTo(N, NewLoad); | 
 |           if (LoadHasOtherUsers) | 
 |             CombineTo(MLoad, NewLoad.getValue(0), NewLoad.getValue(1)); | 
 |           return SDValue(N, 0); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (and x, -1) -> x | 
 |   if (isAllOnesConstant(N1)) | 
 |     return N0; | 
 |  | 
 |   // if (and x, c) is known to be zero, return 0 | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |   if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth))) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   if (SDValue R = foldAndOrOfSETCC(N, DAG)) | 
 |     return R; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // reassociate and | 
 |   if (SDValue RAND = reassociateOps(ISD::AND, DL, N0, N1, N->getFlags())) | 
 |     return RAND; | 
 |  | 
 |   // Fold and(vecreduce(x), vecreduce(y)) -> vecreduce(and(x, y)) | 
 |   if (SDValue SD = | 
 |           reassociateReduction(ISD::VECREDUCE_AND, ISD::AND, DL, VT, N0, N1)) | 
 |     return SD; | 
 |  | 
 |   // fold (and (or x, C), D) -> D if (C & D) == D | 
 |   auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { | 
 |     return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); | 
 |   }; | 
 |   if (N0.getOpcode() == ISD::OR && | 
 |       ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) | 
 |     return N1; | 
 |  | 
 |   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
 |     SDValue N0Op0 = N0.getOperand(0); | 
 |     EVT SrcVT = N0Op0.getValueType(); | 
 |     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); | 
 |     APInt Mask = ~N1C->getAPIntValue(); | 
 |     Mask = Mask.trunc(SrcBitWidth); | 
 |  | 
 |     // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. | 
 |     if (DAG.MaskedValueIsZero(N0Op0, Mask)) | 
 |       return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0Op0); | 
 |  | 
 |     // fold (and (any_ext V), c) -> (zero_ext (and (trunc V), c)) if profitable. | 
 |     if (N1C->getAPIntValue().countLeadingZeros() >= (BitWidth - SrcBitWidth) && | 
 |         TLI.isTruncateFree(VT, SrcVT) && TLI.isZExtFree(SrcVT, VT) && | 
 |         TLI.isTypeDesirableForOp(ISD::AND, SrcVT) && | 
 |         TLI.isNarrowingProfitable(N, VT, SrcVT)) | 
 |       return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, | 
 |                          DAG.getNode(ISD::AND, DL, SrcVT, N0Op0, | 
 |                                      DAG.getZExtOrTrunc(N1, DL, SrcVT))); | 
 |   } | 
 |  | 
 |   // fold (and (ext (and V, c1)), c2) -> (and (ext V), (and c1, (ext c2))) | 
 |   if (ISD::isExtOpcode(N0.getOpcode())) { | 
 |     unsigned ExtOpc = N0.getOpcode(); | 
 |     SDValue N0Op0 = N0.getOperand(0); | 
 |     if (N0Op0.getOpcode() == ISD::AND && | 
 |         (ExtOpc != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0Op0, VT)) && | 
 |         N0->hasOneUse() && N0Op0->hasOneUse()) { | 
 |       if (SDValue NewExt = DAG.FoldConstantArithmetic(ExtOpc, DL, VT, | 
 |                                                       {N0Op0.getOperand(1)})) { | 
 |         if (SDValue NewMask = | 
 |                 DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N1, NewExt})) { | 
 |           return DAG.getNode(ISD::AND, DL, VT, | 
 |                              DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(0)), | 
 |                              NewMask); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> | 
 |   // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must | 
 |   // already be zero by virtue of the width of the base type of the load. | 
 |   // | 
 |   // the 'X' node here can either be nothing or an extract_vector_elt to catch | 
 |   // more cases. | 
 |   if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
 |        N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && | 
 |        N0.getOperand(0).getOpcode() == ISD::LOAD && | 
 |        N0.getOperand(0).getResNo() == 0) || | 
 |       (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { | 
 |     auto *Load = | 
 |         cast<LoadSDNode>((N0.getOpcode() == ISD::LOAD) ? N0 : N0.getOperand(0)); | 
 |  | 
 |     // Get the constant (if applicable) the zero'th operand is being ANDed with. | 
 |     // This can be a pure constant or a vector splat, in which case we treat the | 
 |     // vector as a scalar and use the splat value. | 
 |     APInt Constant = APInt::getZero(1); | 
 |     if (const ConstantSDNode *C = isConstOrConstSplat( | 
 |             N1, /*AllowUndef=*/false, /*AllowTruncation=*/true)) { | 
 |       Constant = C->getAPIntValue(); | 
 |     } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { | 
 |       unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); | 
 |       APInt SplatValue, SplatUndef; | 
 |       unsigned SplatBitSize; | 
 |       bool HasAnyUndefs; | 
 |       // Endianness should not matter here. Code below makes sure that we only | 
 |       // use the result if the SplatBitSize is a multiple of the vector element | 
 |       // size. And after that we AND all element sized parts of the splat | 
 |       // together. So the end result should be the same regardless of in which | 
 |       // order we do those operations. | 
 |       const bool IsBigEndian = false; | 
 |       bool IsSplat = | 
 |           Vector->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
 |                                   HasAnyUndefs, EltBitWidth, IsBigEndian); | 
 |  | 
 |       // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a | 
 |       // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. | 
 |       if (IsSplat && (SplatBitSize % EltBitWidth) == 0) { | 
 |         // Undef bits can contribute to a possible optimisation if set, so | 
 |         // set them. | 
 |         SplatValue |= SplatUndef; | 
 |  | 
 |         // The splat value may be something like "0x00FFFFFF", which means 0 for | 
 |         // the first vector value and FF for the rest, repeating. We need a mask | 
 |         // that will apply equally to all members of the vector, so AND all the | 
 |         // lanes of the constant together. | 
 |         Constant = APInt::getAllOnes(EltBitWidth); | 
 |         for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) | 
 |           Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); | 
 |       } | 
 |     } | 
 |  | 
 |     // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is | 
 |     // actually legal and isn't going to get expanded, else this is a false | 
 |     // optimisation. | 
 |     bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, | 
 |                                                     Load->getValueType(0), | 
 |                                                     Load->getMemoryVT()); | 
 |  | 
 |     // Resize the constant to the same size as the original memory access before | 
 |     // extension. If it is still the AllOnesValue then this AND is completely | 
 |     // unneeded. | 
 |     Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); | 
 |  | 
 |     bool B; | 
 |     switch (Load->getExtensionType()) { | 
 |     default: B = false; break; | 
 |     case ISD::EXTLOAD: B = CanZextLoadProfitably; break; | 
 |     case ISD::ZEXTLOAD: | 
 |     case ISD::NON_EXTLOAD: B = true; break; | 
 |     } | 
 |  | 
 |     if (B && Constant.isAllOnes()) { | 
 |       // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to | 
 |       // preserve semantics once we get rid of the AND. | 
 |       SDValue NewLoad(Load, 0); | 
 |  | 
 |       // Fold the AND away. NewLoad may get replaced immediately. | 
 |       CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); | 
 |  | 
 |       if (Load->getExtensionType() == ISD::EXTLOAD) { | 
 |         NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, | 
 |                               Load->getValueType(0), SDLoc(Load), | 
 |                               Load->getChain(), Load->getBasePtr(), | 
 |                               Load->getOffset(), Load->getMemoryVT(), | 
 |                               Load->getMemOperand()); | 
 |         // Replace uses of the EXTLOAD with the new ZEXTLOAD. | 
 |         if (Load->getNumValues() == 3) { | 
 |           // PRE/POST_INC loads have 3 values. | 
 |           SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), | 
 |                            NewLoad.getValue(2) }; | 
 |           CombineTo(Load, To, 3, true); | 
 |         } else { | 
 |           CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); | 
 |         } | 
 |       } | 
 |  | 
 |       return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   // Try to convert a constant mask AND into a shuffle clear mask. | 
 |   if (VT.isVector()) | 
 |     if (SDValue Shuffle = XformToShuffleWithZero(N)) | 
 |       return Shuffle; | 
 |  | 
 |   if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) | 
 |     return Combined; | 
 |  | 
 |   if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && N1C && | 
 |       ISD::isExtOpcode(N0.getOperand(0).getOpcode())) { | 
 |     SDValue Ext = N0.getOperand(0); | 
 |     EVT ExtVT = Ext->getValueType(0); | 
 |     SDValue Extendee = Ext->getOperand(0); | 
 |  | 
 |     unsigned ScalarWidth = Extendee.getValueType().getScalarSizeInBits(); | 
 |     if (N1C->getAPIntValue().isMask(ScalarWidth) && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, ExtVT))) { | 
 |       //    (and (extract_subvector (zext|anyext|sext v) _) iN_mask) | 
 |       // => (extract_subvector (iN_zeroext v)) | 
 |       SDValue ZeroExtExtendee = | 
 |           DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, Extendee); | 
 |  | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ZeroExtExtendee, | 
 |                          N0.getOperand(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (and (masked_gather x)) -> (zext_masked_gather x) | 
 |   if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { | 
 |     EVT MemVT = GN0->getMemoryVT(); | 
 |     EVT ScalarVT = MemVT.getScalarType(); | 
 |  | 
 |     if (SDValue(GN0, 0).hasOneUse() && | 
 |         isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) && | 
 |         TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { | 
 |       SDValue Ops[] = {GN0->getChain(),   GN0->getPassThru(), GN0->getMask(), | 
 |                        GN0->getBasePtr(), GN0->getIndex(),    GN0->getScale()}; | 
 |  | 
 |       SDValue ZExtLoad = DAG.getMaskedGather( | 
 |           DAG.getVTList(VT, MVT::Other), MemVT, DL, Ops, GN0->getMemOperand(), | 
 |           GN0->getIndexType(), ISD::ZEXTLOAD); | 
 |  | 
 |       CombineTo(N, ZExtLoad); | 
 |       AddToWorklist(ZExtLoad.getNode()); | 
 |       // Avoid recheck of N. | 
 |       return SDValue(N, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (and (load x), 255) -> (zextload x, i8) | 
 |   // fold (and (extload x, i16), 255) -> (zextload x, i8) | 
 |   if (N1C && N0.getOpcode() == ISD::LOAD && !VT.isVector()) | 
 |     if (SDValue Res = reduceLoadWidth(N)) | 
 |       return Res; | 
 |  | 
 |   if (LegalTypes) { | 
 |     // Attempt to propagate the AND back up to the leaves which, if they're | 
 |     // loads, can be combined to narrow loads and the AND node can be removed. | 
 |     // Perform after legalization so that extend nodes will already be | 
 |     // combined into the loads. | 
 |     if (BackwardsPropagateMask(N)) | 
 |       return SDValue(N, 0); | 
 |   } | 
 |  | 
 |   if (SDValue Combined = visitANDLike(N0, N1, N)) | 
 |     return Combined; | 
 |  | 
 |   // Simplify: (and (op x...), (op y...))  -> (op (and x, y)) | 
 |   if (N0.getOpcode() == N1.getOpcode()) | 
 |     if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) | 
 |       return V; | 
 |  | 
 |   if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) | 
 |     return R; | 
 |   if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG)) | 
 |     return R; | 
 |  | 
 |   // Fold (and X, (bswap (not Y))) -> (and X, (not (bswap Y))) | 
 |   // Fold (and X, (bitreverse (not Y))) -> (and X, (not (bitreverse Y))) | 
 |   SDValue X, Y, Z, NotY; | 
 |   for (unsigned Opc : {ISD::BSWAP, ISD::BITREVERSE}) | 
 |     if (sd_match(N, | 
 |                  m_And(m_Value(X), m_OneUse(m_UnaryOp(Opc, m_Value(NotY))))) && | 
 |         sd_match(NotY, m_Not(m_Value(Y))) && | 
 |         (TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse())) | 
 |       return DAG.getNode(ISD::AND, DL, VT, X, | 
 |                          DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y), VT)); | 
 |  | 
 |   // Fold (and X, (rot (not Y), Z)) -> (and X, (not (rot Y, Z))) | 
 |   for (unsigned Opc : {ISD::ROTL, ISD::ROTR}) | 
 |     if (sd_match(N, m_And(m_Value(X), | 
 |                           m_OneUse(m_BinOp(Opc, m_Value(NotY), m_Value(Z))))) && | 
 |         sd_match(NotY, m_Not(m_Value(Y))) && | 
 |         (TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse())) | 
 |       return DAG.getNode(ISD::AND, DL, VT, X, | 
 |                          DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y, Z), VT)); | 
 |  | 
 |   // Fold (and (srl X, C), 1) -> (srl X, BW-1) for signbit extraction | 
 |   // If we are shifting down an extended sign bit, see if we can simplify | 
 |   // this to shifting the MSB directly to expose further simplifications. | 
 |   // This pattern often appears after sext_inreg legalization. | 
 |   APInt Amt; | 
 |   if (sd_match(N, m_And(m_Srl(m_Value(X), m_ConstInt(Amt)), m_One())) && | 
 |       Amt.ult(BitWidth - 1) && Amt.uge(BitWidth - DAG.ComputeNumSignBits(X))) | 
 |     return DAG.getNode(ISD::SRL, DL, VT, X, | 
 |                        DAG.getShiftAmountConstant(BitWidth - 1, VT, DL)); | 
 |  | 
 |   // Masking the negated extension of a boolean is just the zero-extended | 
 |   // boolean: | 
 |   // and (sub 0, zext(bool X)), 1 --> zext(bool X) | 
 |   // and (sub 0, sext(bool X)), 1 --> zext(bool X) | 
 |   // | 
 |   // Note: the SimplifyDemandedBits fold below can make an information-losing | 
 |   // transform, and then we have no way to find this better fold. | 
 |   if (sd_match(N, m_And(m_Sub(m_Zero(), m_Value(X)), m_One()))) { | 
 |     if (X.getOpcode() == ISD::ZERO_EXTEND && | 
 |         X.getOperand(0).getScalarValueSizeInBits() == 1) | 
 |       return X; | 
 |     if (X.getOpcode() == ISD::SIGN_EXTEND && | 
 |         X.getOperand(0).getScalarValueSizeInBits() == 1) | 
 |       return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, X.getOperand(0)); | 
 |   } | 
 |  | 
 |   // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) | 
 |   // fold (and (sra)) -> (and (srl)) when possible. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // fold (zext_inreg (extload x)) -> (zextload x) | 
 |   // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use | 
 |   if (ISD::isUNINDEXEDLoad(N0.getNode()) && | 
 |       (ISD::isEXTLoad(N0.getNode()) || | 
 |        (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { | 
 |     auto *LN0 = cast<LoadSDNode>(N0); | 
 |     EVT MemVT = LN0->getMemoryVT(); | 
 |     // If we zero all the possible extended bits, then we can turn this into | 
 |     // a zextload if we are running before legalize or the operation is legal. | 
 |     unsigned ExtBitSize = N1.getScalarValueSizeInBits(); | 
 |     unsigned MemBitSize = MemVT.getScalarSizeInBits(); | 
 |     APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); | 
 |     if (DAG.MaskedValueIsZero(N1, ExtBits) && | 
 |         ((!LegalOperations && LN0->isSimple()) || | 
 |          TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { | 
 |       SDValue ExtLoad = | 
 |           DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), | 
 |                          LN0->getBasePtr(), MemVT, LN0->getMemOperand()); | 
 |       AddToWorklist(N); | 
 |       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
 |       return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) | 
 |   if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { | 
 |     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
 |                                            N0.getOperand(1), false)) | 
 |       return BSwap; | 
 |   } | 
 |  | 
 |   if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) | 
 |     return Shifts; | 
 |  | 
 |   if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) | 
 |     return V; | 
 |  | 
 |   // Recognize the following pattern: | 
 |   // | 
 |   // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) | 
 |   // | 
 |   // where bitmask is a mask that clears the upper bits of AndVT. The | 
 |   // number of bits in bitmask must be a power of two. | 
 |   auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) { | 
 |     if (LHS->getOpcode() != ISD::SIGN_EXTEND) | 
 |       return false; | 
 |  | 
 |     auto *C = dyn_cast<ConstantSDNode>(RHS); | 
 |     if (!C) | 
 |       return false; | 
 |  | 
 |     if (!C->getAPIntValue().isMask( | 
 |             LHS.getOperand(0).getValueType().getFixedSizeInBits())) | 
 |       return false; | 
 |  | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...). | 
 |   if (IsAndZeroExtMask(N0, N1)) | 
 |     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   if (hasOperation(ISD::USUBSAT, VT)) | 
 |     if (SDValue V = foldAndToUsubsat(N, DAG, DL)) | 
 |       return V; | 
 |  | 
 |   // Postpone until legalization completed to avoid interference with bswap | 
 |   // folding | 
 |   if (LegalOperations || VT.isVector()) | 
 |     if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG)) | 
 |       return R; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. | 
 | SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, | 
 |                                         bool DemandHighBits) { | 
 |   if (!LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) | 
 |     return SDValue(); | 
 |   if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) | 
 |   bool LookPassAnd0 = false; | 
 |   bool LookPassAnd1 = false; | 
 |   if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) | 
 |     std::swap(N0, N1); | 
 |   if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) | 
 |     std::swap(N0, N1); | 
 |   if (N0.getOpcode() == ISD::AND) { | 
 |     if (!N0->hasOneUse()) | 
 |       return SDValue(); | 
 |     ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |     // Also handle 0xffff since the LHS is guaranteed to have zeros there. | 
 |     // This is needed for X86. | 
 |     if (!N01C || (N01C->getZExtValue() != 0xFF00 && | 
 |                   N01C->getZExtValue() != 0xFFFF)) | 
 |       return SDValue(); | 
 |     N0 = N0.getOperand(0); | 
 |     LookPassAnd0 = true; | 
 |   } | 
 |  | 
 |   if (N1.getOpcode() == ISD::AND) { | 
 |     if (!N1->hasOneUse()) | 
 |       return SDValue(); | 
 |     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
 |     if (!N11C || N11C->getZExtValue() != 0xFF) | 
 |       return SDValue(); | 
 |     N1 = N1.getOperand(0); | 
 |     LookPassAnd1 = true; | 
 |   } | 
 |  | 
 |   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) | 
 |     std::swap(N0, N1); | 
 |   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) | 
 |     return SDValue(); | 
 |   if (!N0->hasOneUse() || !N1->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |   ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); | 
 |   if (!N01C || !N11C) | 
 |     return SDValue(); | 
 |   if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) | 
 |     return SDValue(); | 
 |  | 
 |   // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) | 
 |   SDValue N00 = N0->getOperand(0); | 
 |   if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { | 
 |     if (!N00->hasOneUse()) | 
 |       return SDValue(); | 
 |     ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); | 
 |     if (!N001C || N001C->getZExtValue() != 0xFF) | 
 |       return SDValue(); | 
 |     N00 = N00.getOperand(0); | 
 |     LookPassAnd0 = true; | 
 |   } | 
 |  | 
 |   SDValue N10 = N1->getOperand(0); | 
 |   if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { | 
 |     if (!N10->hasOneUse()) | 
 |       return SDValue(); | 
 |     ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); | 
 |     // Also allow 0xFFFF since the bits will be shifted out. This is needed | 
 |     // for X86. | 
 |     if (!N101C || (N101C->getZExtValue() != 0xFF00 && | 
 |                    N101C->getZExtValue() != 0xFFFF)) | 
 |       return SDValue(); | 
 |     N10 = N10.getOperand(0); | 
 |     LookPassAnd1 = true; | 
 |   } | 
 |  | 
 |   if (N00 != N10) | 
 |     return SDValue(); | 
 |  | 
 |   // Make sure everything beyond the low halfword gets set to zero since the SRL | 
 |   // 16 will clear the top bits. | 
 |   unsigned OpSizeInBits = VT.getSizeInBits(); | 
 |   if (OpSizeInBits > 16) { | 
 |     // If the left-shift isn't masked out then the only way this is a bswap is | 
 |     // if all bits beyond the low 8 are 0. In that case the entire pattern | 
 |     // reduces to a left shift anyway: leave it for other parts of the combiner. | 
 |     if (DemandHighBits && !LookPassAnd0) | 
 |       return SDValue(); | 
 |  | 
 |     // However, if the right shift isn't masked out then it might be because | 
 |     // it's not needed. See if we can spot that too. If the high bits aren't | 
 |     // demanded, we only need bits 23:16 to be zero. Otherwise, we need all | 
 |     // upper bits to be zero. | 
 |     if (!LookPassAnd1) { | 
 |       unsigned HighBit = DemandHighBits ? OpSizeInBits : 24; | 
 |       if (!DAG.MaskedValueIsZero(N10, | 
 |                                  APInt::getBitsSet(OpSizeInBits, 16, HighBit))) | 
 |         return SDValue(); | 
 |     } | 
 |   } | 
 |  | 
 |   SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); | 
 |   if (OpSizeInBits > 16) { | 
 |     SDLoc DL(N); | 
 |     Res = DAG.getNode(ISD::SRL, DL, VT, Res, | 
 |                       DAG.getShiftAmountConstant(OpSizeInBits - 16, VT, DL)); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | /// Return true if the specified node is an element that makes up a 32-bit | 
 | /// packed halfword byteswap. | 
 | /// ((x & 0x000000ff) << 8) | | 
 | /// ((x & 0x0000ff00) >> 8) | | 
 | /// ((x & 0x00ff0000) << 8) | | 
 | /// ((x & 0xff000000) >> 8) | 
 | static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { | 
 |   if (!N->hasOneUse()) | 
 |     return false; | 
 |  | 
 |   unsigned Opc = N.getOpcode(); | 
 |   if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) | 
 |     return false; | 
 |  | 
 |   SDValue N0 = N.getOperand(0); | 
 |   unsigned Opc0 = N0.getOpcode(); | 
 |   if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) | 
 |     return false; | 
 |  | 
 |   ConstantSDNode *N1C = nullptr; | 
 |   // SHL or SRL: look upstream for AND mask operand | 
 |   if (Opc == ISD::AND) | 
 |     N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
 |   else if (Opc0 == ISD::AND) | 
 |     N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |   if (!N1C) | 
 |     return false; | 
 |  | 
 |   unsigned MaskByteOffset; | 
 |   switch (N1C->getZExtValue()) { | 
 |   default: | 
 |     return false; | 
 |   case 0xFF:       MaskByteOffset = 0; break; | 
 |   case 0xFF00:     MaskByteOffset = 1; break; | 
 |   case 0xFFFF: | 
 |     // In case demanded bits didn't clear the bits that will be shifted out. | 
 |     // This is needed for X86. | 
 |     if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { | 
 |       MaskByteOffset = 1; | 
 |       break; | 
 |     } | 
 |     return false; | 
 |   case 0xFF0000:   MaskByteOffset = 2; break; | 
 |   case 0xFF000000: MaskByteOffset = 3; break; | 
 |   } | 
 |  | 
 |   // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). | 
 |   if (Opc == ISD::AND) { | 
 |     if (MaskByteOffset == 0 || MaskByteOffset == 2) { | 
 |       // (x >> 8) & 0xff | 
 |       // (x >> 8) & 0xff0000 | 
 |       if (Opc0 != ISD::SRL) | 
 |         return false; | 
 |       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |       if (!C || C->getZExtValue() != 8) | 
 |         return false; | 
 |     } else { | 
 |       // (x << 8) & 0xff00 | 
 |       // (x << 8) & 0xff000000 | 
 |       if (Opc0 != ISD::SHL) | 
 |         return false; | 
 |       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |       if (!C || C->getZExtValue() != 8) | 
 |         return false; | 
 |     } | 
 |   } else if (Opc == ISD::SHL) { | 
 |     // (x & 0xff) << 8 | 
 |     // (x & 0xff0000) << 8 | 
 |     if (MaskByteOffset != 0 && MaskByteOffset != 2) | 
 |       return false; | 
 |     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
 |     if (!C || C->getZExtValue() != 8) | 
 |       return false; | 
 |   } else { // Opc == ISD::SRL | 
 |     // (x & 0xff00) >> 8 | 
 |     // (x & 0xff000000) >> 8 | 
 |     if (MaskByteOffset != 1 && MaskByteOffset != 3) | 
 |       return false; | 
 |     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
 |     if (!C || C->getZExtValue() != 8) | 
 |       return false; | 
 |   } | 
 |  | 
 |   if (Parts[MaskByteOffset]) | 
 |     return false; | 
 |  | 
 |   Parts[MaskByteOffset] = N0.getOperand(0).getNode(); | 
 |   return true; | 
 | } | 
 |  | 
 | // Match 2 elements of a packed halfword bswap. | 
 | static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { | 
 |   if (N.getOpcode() == ISD::OR) | 
 |     return isBSwapHWordElement(N.getOperand(0), Parts) && | 
 |            isBSwapHWordElement(N.getOperand(1), Parts); | 
 |  | 
 |   if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { | 
 |     ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); | 
 |     if (!C || C->getAPIntValue() != 16) | 
 |       return false; | 
 |     Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Match this pattern: | 
 | //   (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) | 
 | // And rewrite this to: | 
 | //   (rotr (bswap A), 16) | 
 | static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, | 
 |                                        SelectionDAG &DAG, SDNode *N, SDValue N0, | 
 |                                        SDValue N1, EVT VT) { | 
 |   assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && | 
 |          "MatchBSwapHWordOrAndAnd: expecting i32"); | 
 |   if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) | 
 |     return SDValue(); | 
 |   if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) | 
 |     return SDValue(); | 
 |   // TODO: this is too restrictive; lifting this restriction requires more tests | 
 |   if (!N0->hasOneUse() || !N1->hasOneUse()) | 
 |     return SDValue(); | 
 |   ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); | 
 |   ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); | 
 |   if (!Mask0 || !Mask1) | 
 |     return SDValue(); | 
 |   if (Mask0->getAPIntValue() != 0xff00ff00 || | 
 |       Mask1->getAPIntValue() != 0x00ff00ff) | 
 |     return SDValue(); | 
 |   SDValue Shift0 = N0.getOperand(0); | 
 |   SDValue Shift1 = N1.getOperand(0); | 
 |   if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) | 
 |     return SDValue(); | 
 |   ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); | 
 |   ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); | 
 |   if (!ShiftAmt0 || !ShiftAmt1) | 
 |     return SDValue(); | 
 |   if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) | 
 |     return SDValue(); | 
 |   if (Shift0.getOperand(0) != Shift1.getOperand(0)) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); | 
 |   SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL); | 
 |   return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); | 
 | } | 
 |  | 
 | /// Match a 32-bit packed halfword bswap. That is | 
 | /// ((x & 0x000000ff) << 8) | | 
 | /// ((x & 0x0000ff00) >> 8) | | 
 | /// ((x & 0x00ff0000) << 8) | | 
 | /// ((x & 0xff000000) >> 8) | 
 | /// => (rotl (bswap x), 16) | 
 | SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { | 
 |   if (!LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   if (VT != MVT::i32) | 
 |     return SDValue(); | 
 |   if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT)) | 
 |     return BSwap; | 
 |  | 
 |   // Try again with commuted operands. | 
 |   if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT)) | 
 |     return BSwap; | 
 |  | 
 |  | 
 |   // Look for either | 
 |   // (or (bswaphpair), (bswaphpair)) | 
 |   // (or (or (bswaphpair), (and)), (and)) | 
 |   // (or (or (and), (bswaphpair)), (and)) | 
 |   SDNode *Parts[4] = {}; | 
 |  | 
 |   if (isBSwapHWordPair(N0, Parts)) { | 
 |     // (or (or (and), (and)), (or (and), (and))) | 
 |     if (!isBSwapHWordPair(N1, Parts)) | 
 |       return SDValue(); | 
 |   } else if (N0.getOpcode() == ISD::OR) { | 
 |     // (or (or (or (and), (and)), (and)), (and)) | 
 |     if (!isBSwapHWordElement(N1, Parts)) | 
 |       return SDValue(); | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && | 
 |         !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) | 
 |       return SDValue(); | 
 |   } else { | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   // Make sure the parts are all coming from the same node. | 
 |   if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, | 
 |                               SDValue(Parts[0], 0)); | 
 |  | 
 |   // Result of the bswap should be rotated by 16. If it's not legal, then | 
 |   // do  (x << 16) | (x >> 16). | 
 |   SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL); | 
 |   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) | 
 |     return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); | 
 |   if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) | 
 |     return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); | 
 |   return DAG.getNode(ISD::OR, DL, VT, | 
 |                      DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), | 
 |                      DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); | 
 | } | 
 |  | 
 | /// This contains all DAGCombine rules which reduce two values combined by | 
 | /// an Or operation to a single value \see visitANDLike(). | 
 | SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, const SDLoc &DL) { | 
 |   EVT VT = N1.getValueType(); | 
 |  | 
 |   // fold (or x, undef) -> -1 | 
 |   if (!LegalOperations && (N0.isUndef() || N1.isUndef())) | 
 |     return DAG.getAllOnesConstant(DL, VT); | 
 |  | 
 |   if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) | 
 |     return V; | 
 |  | 
 |   // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible. | 
 |   if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && | 
 |       // Don't increase # computations. | 
 |       (N0->hasOneUse() || N1->hasOneUse())) { | 
 |     // We can only do this xform if we know that bits from X that are set in C2 | 
 |     // but not in C1 are already zero.  Likewise for Y. | 
 |     if (const ConstantSDNode *N0O1C = | 
 |         getAsNonOpaqueConstant(N0.getOperand(1))) { | 
 |       if (const ConstantSDNode *N1O1C = | 
 |           getAsNonOpaqueConstant(N1.getOperand(1))) { | 
 |         // We can only do this xform if we know that bits from X that are set in | 
 |         // C2 but not in C1 are already zero.  Likewise for Y. | 
 |         const APInt &LHSMask = N0O1C->getAPIntValue(); | 
 |         const APInt &RHSMask = N1O1C->getAPIntValue(); | 
 |  | 
 |         if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && | 
 |             DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { | 
 |           SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | 
 |                                   N0.getOperand(0), N1.getOperand(0)); | 
 |           return DAG.getNode(ISD::AND, DL, VT, X, | 
 |                              DAG.getConstant(LHSMask | RHSMask, DL, VT)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // (or (and X, M), (and X, N)) -> (and X, (or M, N)) | 
 |   if (N0.getOpcode() == ISD::AND && | 
 |       N1.getOpcode() == ISD::AND && | 
 |       N0.getOperand(0) == N1.getOperand(0) && | 
 |       // Don't increase # computations. | 
 |       (N0->hasOneUse() || N1->hasOneUse())) { | 
 |     SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, | 
 |                             N0.getOperand(1), N1.getOperand(1)); | 
 |     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// OR combines for which the commuted variant will be tried as well. | 
 | static SDValue visitORCommutative(SelectionDAG &DAG, SDValue N0, SDValue N1, | 
 |                                   SDNode *N) { | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned BW = VT.getScalarSizeInBits(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   auto peekThroughResize = [](SDValue V) { | 
 |     if (V->getOpcode() == ISD::ZERO_EXTEND || V->getOpcode() == ISD::TRUNCATE) | 
 |       return V->getOperand(0); | 
 |     return V; | 
 |   }; | 
 |  | 
 |   SDValue N0Resized = peekThroughResize(N0); | 
 |   if (N0Resized.getOpcode() == ISD::AND) { | 
 |     SDValue N1Resized = peekThroughResize(N1); | 
 |     SDValue N00 = N0Resized.getOperand(0); | 
 |     SDValue N01 = N0Resized.getOperand(1); | 
 |  | 
 |     // fold or (and x, y), x --> x | 
 |     if (N00 == N1Resized || N01 == N1Resized) | 
 |       return N1; | 
 |  | 
 |     // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) | 
 |     // TODO: Set AllowUndefs = true. | 
 |     if (SDValue NotOperand = getBitwiseNotOperand(N01, N00, | 
 |                                                   /* AllowUndefs */ false)) { | 
 |       if (peekThroughResize(NotOperand) == N1Resized) | 
 |         return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N00, DL, VT), | 
 |                            N1); | 
 |     } | 
 |  | 
 |     // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) | 
 |     if (SDValue NotOperand = getBitwiseNotOperand(N00, N01, | 
 |                                                   /* AllowUndefs */ false)) { | 
 |       if (peekThroughResize(NotOperand) == N1Resized) | 
 |         return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N01, DL, VT), | 
 |                            N1); | 
 |     } | 
 |   } | 
 |  | 
 |   SDValue X, Y; | 
 |  | 
 |   // fold or (xor X, N1), N1 --> or X, N1 | 
 |   if (sd_match(N0, m_Xor(m_Value(X), m_Specific(N1)))) | 
 |     return DAG.getNode(ISD::OR, DL, VT, X, N1); | 
 |  | 
 |   // fold or (xor x, y), (x and/or y) --> or x, y | 
 |   if (sd_match(N0, m_Xor(m_Value(X), m_Value(Y))) && | 
 |       (sd_match(N1, m_And(m_Specific(X), m_Specific(Y))) || | 
 |        sd_match(N1, m_Or(m_Specific(X), m_Specific(Y))))) | 
 |     return DAG.getNode(ISD::OR, DL, VT, X, Y); | 
 |  | 
 |   if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) | 
 |     return R; | 
 |  | 
 |   auto peekThroughZext = [](SDValue V) { | 
 |     if (V->getOpcode() == ISD::ZERO_EXTEND) | 
 |       return V->getOperand(0); | 
 |     return V; | 
 |   }; | 
 |  | 
 |   // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y | 
 |   if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL && | 
 |       N0.getOperand(0) == N1.getOperand(0) && | 
 |       peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1))) | 
 |     return N0; | 
 |  | 
 |   // (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y | 
 |   if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL && | 
 |       N0.getOperand(1) == N1.getOperand(0) && | 
 |       peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1))) | 
 |     return N0; | 
 |  | 
 |   // Attempt to match a legalized build_pair-esque pattern: | 
 |   // or(shl(aext(Hi),BW/2),zext(Lo)) | 
 |   SDValue Lo, Hi; | 
 |   if (sd_match(N0, | 
 |                m_OneUse(m_Shl(m_AnyExt(m_Value(Hi)), m_SpecificInt(BW / 2)))) && | 
 |       sd_match(N1, m_ZExt(m_Value(Lo))) && | 
 |       Lo.getScalarValueSizeInBits() == (BW / 2) && | 
 |       Lo.getValueType() == Hi.getValueType()) { | 
 |     // Fold build_pair(not(Lo),not(Hi)) -> not(build_pair(Lo,Hi)). | 
 |     SDValue NotLo, NotHi; | 
 |     if (sd_match(Lo, m_OneUse(m_Not(m_Value(NotLo)))) && | 
 |         sd_match(Hi, m_OneUse(m_Not(m_Value(NotHi))))) { | 
 |       Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotLo); | 
 |       Hi = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NotHi); | 
 |       Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, | 
 |                        DAG.getShiftAmountConstant(BW / 2, VT, DL)); | 
 |       return DAG.getNOT(DL, DAG.getNode(ISD::OR, DL, VT, Lo, Hi), VT); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitOR(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N1.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // x | x --> x | 
 |   if (N0 == N1) | 
 |     return N0; | 
 |  | 
 |   // fold (or c1, c2) -> c1|c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::OR, DL, VT, N1, N0); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (or x, 0) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return N0; | 
 |  | 
 |     // fold (or x, -1) -> -1, vector edition | 
 |     if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) | 
 |       // do not return N1, because undef node may exist in N1 | 
 |       return DAG.getAllOnesConstant(DL, N1.getValueType()); | 
 |  | 
 |     // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) | 
 |     // Do this only if the resulting type / shuffle is legal. | 
 |     auto *SV0 = dyn_cast<ShuffleVectorSDNode>(N0); | 
 |     auto *SV1 = dyn_cast<ShuffleVectorSDNode>(N1); | 
 |     if (SV0 && SV1 && TLI.isTypeLegal(VT)) { | 
 |       bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); | 
 |       bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); | 
 |       bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | 
 |       bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); | 
 |       // Ensure both shuffles have a zero input. | 
 |       if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { | 
 |         assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); | 
 |         assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); | 
 |         bool CanFold = true; | 
 |         int NumElts = VT.getVectorNumElements(); | 
 |         SmallVector<int, 4> Mask(NumElts, -1); | 
 |  | 
 |         for (int i = 0; i != NumElts; ++i) { | 
 |           int M0 = SV0->getMaskElt(i); | 
 |           int M1 = SV1->getMaskElt(i); | 
 |  | 
 |           // Determine if either index is pointing to a zero vector. | 
 |           bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); | 
 |           bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); | 
 |  | 
 |           // If one element is zero and the otherside is undef, keep undef. | 
 |           // This also handles the case that both are undef. | 
 |           if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) | 
 |             continue; | 
 |  | 
 |           // Make sure only one of the elements is zero. | 
 |           if (M0Zero == M1Zero) { | 
 |             CanFold = false; | 
 |             break; | 
 |           } | 
 |  | 
 |           assert((M0 >= 0 || M1 >= 0) && "Undef index!"); | 
 |  | 
 |           // We have a zero and non-zero element. If the non-zero came from | 
 |           // SV0 make the index a LHS index. If it came from SV1, make it | 
 |           // a RHS index. We need to mod by NumElts because we don't care | 
 |           // which operand it came from in the original shuffles. | 
 |           Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; | 
 |         } | 
 |  | 
 |         if (CanFold) { | 
 |           SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); | 
 |           SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); | 
 |           SDValue LegalShuffle = | 
 |               TLI.buildLegalVectorShuffle(VT, DL, NewLHS, NewRHS, Mask, DAG); | 
 |           if (LegalShuffle) | 
 |             return LegalShuffle; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (or x, 0) -> x | 
 |   if (isNullConstant(N1)) | 
 |     return N0; | 
 |  | 
 |   // fold (or x, -1) -> -1 | 
 |   if (isAllOnesConstant(N1)) | 
 |     return N1; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // fold (or x, c) -> c iff (x & ~c) == 0 | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); | 
 |   if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) | 
 |     return N1; | 
 |  | 
 |   if (SDValue R = foldAndOrOfSETCC(N, DAG)) | 
 |     return R; | 
 |  | 
 |   if (SDValue Combined = visitORLike(N0, N1, DL)) | 
 |     return Combined; | 
 |  | 
 |   if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) | 
 |     return Combined; | 
 |  | 
 |   // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) | 
 |   if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) | 
 |     return BSwap; | 
 |   if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) | 
 |     return BSwap; | 
 |  | 
 |   // reassociate or | 
 |   if (SDValue ROR = reassociateOps(ISD::OR, DL, N0, N1, N->getFlags())) | 
 |     return ROR; | 
 |  | 
 |   // Fold or(vecreduce(x), vecreduce(y)) -> vecreduce(or(x, y)) | 
 |   if (SDValue SD = | 
 |           reassociateReduction(ISD::VECREDUCE_OR, ISD::OR, DL, VT, N0, N1)) | 
 |     return SD; | 
 |  | 
 |   // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) | 
 |   // iff (c1 & c2) != 0 or c1/c2 are undef. | 
 |   auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { | 
 |     return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); | 
 |   }; | 
 |   if (N0.getOpcode() == ISD::AND && N0->hasOneUse() && | 
 |       ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { | 
 |     if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, | 
 |                                                  {N1, N0.getOperand(1)})) { | 
 |       SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); | 
 |       AddToWorklist(IOR.getNode()); | 
 |       return DAG.getNode(ISD::AND, DL, VT, COR, IOR); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) | 
 |     return Combined; | 
 |   if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) | 
 |     return Combined; | 
 |  | 
 |   // Simplify: (or (op x...), (op y...))  -> (op (or x, y)) | 
 |   if (N0.getOpcode() == N1.getOpcode()) | 
 |     if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) | 
 |       return V; | 
 |  | 
 |   // See if this is some rotate idiom. | 
 |   if (SDValue Rot = MatchRotate(N0, N1, DL, /*FromAdd=*/false)) | 
 |     return Rot; | 
 |  | 
 |   if (SDValue Load = MatchLoadCombine(N)) | 
 |     return Load; | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // If OR can be rewritten into ADD, try combines based on ADD. | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && | 
 |       DAG.isADDLike(SDValue(N, 0))) | 
 |     if (SDValue Combined = visitADDLike(N)) | 
 |       return Combined; | 
 |  | 
 |   // Postpone until legalization completed to avoid interference with bswap | 
 |   // folding | 
 |   if (LegalOperations || VT.isVector()) | 
 |     if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG)) | 
 |       return R; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue stripConstantMask(const SelectionDAG &DAG, SDValue Op, | 
 |                                  SDValue &Mask) { | 
 |   if (Op.getOpcode() == ISD::AND && | 
 |       DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { | 
 |     Mask = Op.getOperand(1); | 
 |     return Op.getOperand(0); | 
 |   } | 
 |   return Op; | 
 | } | 
 |  | 
 | /// Match "(X shl/srl V1) & V2" where V2 may not be present. | 
 | static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift, | 
 |                             SDValue &Mask) { | 
 |   Op = stripConstantMask(DAG, Op, Mask); | 
 |   if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { | 
 |     Shift = Op; | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Helper function for visitOR to extract the needed side of a rotate idiom | 
 | /// from a shl/srl/mul/udiv.  This is meant to handle cases where | 
 | /// InstCombine merged some outside op with one of the shifts from | 
 | /// the rotate pattern. | 
 | /// \returns An empty \c SDValue if the needed shift couldn't be extracted. | 
 | /// Otherwise, returns an expansion of \p ExtractFrom based on the following | 
 | /// patterns: | 
 | /// | 
 | ///   (or (add v v) (shrl v bitwidth-1)): | 
 | ///     expands (add v v) -> (shl v 1) | 
 | /// | 
 | ///   (or (mul v c0) (shrl (mul v c1) c2)): | 
 | ///     expands (mul v c0) -> (shl (mul v c1) c3) | 
 | /// | 
 | ///   (or (udiv v c0) (shl (udiv v c1) c2)): | 
 | ///     expands (udiv v c0) -> (shrl (udiv v c1) c3) | 
 | /// | 
 | ///   (or (shl v c0) (shrl (shl v c1) c2)): | 
 | ///     expands (shl v c0) -> (shl (shl v c1) c3) | 
 | /// | 
 | ///   (or (shrl v c0) (shl (shrl v c1) c2)): | 
 | ///     expands (shrl v c0) -> (shrl (shrl v c1) c3) | 
 | /// | 
 | /// Such that in all cases, c3+c2==bitwidth(op v c1). | 
 | static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, | 
 |                                      SDValue ExtractFrom, SDValue &Mask, | 
 |                                      const SDLoc &DL) { | 
 |   assert(OppShift && ExtractFrom && "Empty SDValue"); | 
 |   if (OppShift.getOpcode() != ISD::SHL && OppShift.getOpcode() != ISD::SRL) | 
 |     return SDValue(); | 
 |  | 
 |   ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); | 
 |  | 
 |   // Value and Type of the shift. | 
 |   SDValue OppShiftLHS = OppShift.getOperand(0); | 
 |   EVT ShiftedVT = OppShiftLHS.getValueType(); | 
 |  | 
 |   // Amount of the existing shift. | 
 |   ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); | 
 |  | 
 |   // (add v v) -> (shl v 1) | 
 |   // TODO: Should this be a general DAG canonicalization? | 
 |   if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && | 
 |       ExtractFrom.getOpcode() == ISD::ADD && | 
 |       ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && | 
 |       ExtractFrom.getOperand(0) == OppShiftLHS && | 
 |       OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) | 
 |     return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, | 
 |                        DAG.getShiftAmountConstant(1, ShiftedVT, DL)); | 
 |  | 
 |   // Preconditions: | 
 |   //    (or (op0 v c0) (shiftl/r (op0 v c1) c2)) | 
 |   // | 
 |   // Find opcode of the needed shift to be extracted from (op0 v c0). | 
 |   unsigned Opcode = ISD::DELETED_NODE; | 
 |   bool IsMulOrDiv = false; | 
 |   // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift | 
 |   // opcode or its arithmetic (mul or udiv) variant. | 
 |   auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { | 
 |     IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; | 
 |     if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) | 
 |       return false; | 
 |     Opcode = NeededShift; | 
 |     return true; | 
 |   }; | 
 |   // op0 must be either the needed shift opcode or the mul/udiv equivalent | 
 |   // that the needed shift can be extracted from. | 
 |   if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && | 
 |       (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) | 
 |     return SDValue(); | 
 |  | 
 |   // op0 must be the same opcode on both sides, have the same LHS argument, | 
 |   // and produce the same value type. | 
 |   if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || | 
 |       OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || | 
 |       ShiftedVT != ExtractFrom.getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. | 
 |   ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); | 
 |   // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. | 
 |   ConstantSDNode *ExtractFromCst = | 
 |       isConstOrConstSplat(ExtractFrom.getOperand(1)); | 
 |   // TODO: We should be able to handle non-uniform constant vectors for these values | 
 |   // Check that we have constant values. | 
 |   if (!OppShiftCst || !OppShiftCst->getAPIntValue() || | 
 |       !OppLHSCst || !OppLHSCst->getAPIntValue() || | 
 |       !ExtractFromCst || !ExtractFromCst->getAPIntValue()) | 
 |     return SDValue(); | 
 |  | 
 |   // Compute the shift amount we need to extract to complete the rotate. | 
 |   const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); | 
 |   if (OppShiftCst->getAPIntValue().ugt(VTWidth)) | 
 |     return SDValue(); | 
 |   APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); | 
 |   // Normalize the bitwidth of the two mul/udiv/shift constant operands. | 
 |   APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); | 
 |   APInt OppLHSAmt = OppLHSCst->getAPIntValue(); | 
 |   zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); | 
 |  | 
 |   // Now try extract the needed shift from the ExtractFrom op and see if the | 
 |   // result matches up with the existing shift's LHS op. | 
 |   if (IsMulOrDiv) { | 
 |     // Op to extract from is a mul or udiv by a constant. | 
 |     // Check: | 
 |     //     c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 | 
 |     //     c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 | 
 |     const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), | 
 |                                                  NeededShiftAmt.getZExtValue()); | 
 |     APInt ResultAmt; | 
 |     APInt Rem; | 
 |     APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); | 
 |     if (Rem != 0 || ResultAmt != OppLHSAmt) | 
 |       return SDValue(); | 
 |   } else { | 
 |     // Op to extract from is a shift by a constant. | 
 |     // Check: | 
 |     //      c2 - (bitwidth(op0 v c0) - c1) == c0 | 
 |     if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( | 
 |                                           ExtractFromAmt.getBitWidth())) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // Return the expanded shift op that should allow a rotate to be formed. | 
 |   EVT ShiftVT = OppShift.getOperand(1).getValueType(); | 
 |   EVT ResVT = ExtractFrom.getValueType(); | 
 |   SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); | 
 |   return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); | 
 | } | 
 |  | 
 | // Return true if we can prove that, whenever Neg and Pos are both in the | 
 | // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that | 
 | // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: | 
 | // | 
 | //     (or (shift1 X, Neg), (shift2 X, Pos)) | 
 | // | 
 | // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate | 
 | // in direction shift1 by Neg.  The range [0, EltSize) means that we only need | 
 | // to consider shift amounts with defined behavior. | 
 | // | 
 | // The IsRotate flag should be set when the LHS of both shifts is the same. | 
 | // Otherwise if matching a general funnel shift, it should be clear. | 
 | static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, | 
 |                            SelectionDAG &DAG, bool IsRotate, bool FromAdd) { | 
 |   const auto &TLI = DAG.getTargetLoweringInfo(); | 
 |   // If EltSize is a power of 2 then: | 
 |   // | 
 |   //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) | 
 |   //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). | 
 |   // | 
 |   // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check | 
 |   // for the stronger condition: | 
 |   // | 
 |   //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A] | 
 |   // | 
 |   // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) | 
 |   // we can just replace Neg with Neg' for the rest of the function. | 
 |   // | 
 |   // In other cases we check for the even stronger condition: | 
 |   // | 
 |   //     Neg == EltSize - Pos                                    [B] | 
 |   // | 
 |   // for all Neg and Pos.  Note that the (or ...) then invokes undefined | 
 |   // behavior if Pos == 0 (and consequently Neg == EltSize). | 
 |   // | 
 |   // We could actually use [A] whenever EltSize is a power of 2, but the | 
 |   // only extra cases that it would match are those uninteresting ones | 
 |   // where Neg and Pos are never in range at the same time.  E.g. for | 
 |   // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) | 
 |   // as well as (sub 32, Pos), but: | 
 |   // | 
 |   //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) | 
 |   // | 
 |   // always invokes undefined behavior for 32-bit X. | 
 |   // | 
 |   // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. | 
 |   // This allows us to peek through any operations that only affect Mask's | 
 |   // un-demanded bits. | 
 |   // | 
 |   // NOTE: We can only do this when matching operations which won't modify the | 
 |   // least Log2(EltSize) significant bits and not a general funnel shift. | 
 |   unsigned MaskLoBits = 0; | 
 |   if (IsRotate && !FromAdd && isPowerOf2_64(EltSize)) { | 
 |     unsigned Bits = Log2_64(EltSize); | 
 |     unsigned NegBits = Neg.getScalarValueSizeInBits(); | 
 |     if (NegBits >= Bits) { | 
 |       APInt DemandedBits = APInt::getLowBitsSet(NegBits, Bits); | 
 |       if (SDValue Inner = | 
 |               TLI.SimplifyMultipleUseDemandedBits(Neg, DemandedBits, DAG)) { | 
 |         Neg = Inner; | 
 |         MaskLoBits = Bits; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. | 
 |   if (Neg.getOpcode() != ISD::SUB) | 
 |     return false; | 
 |   ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); | 
 |   if (!NegC) | 
 |     return false; | 
 |   SDValue NegOp1 = Neg.getOperand(1); | 
 |  | 
 |   // On the RHS of [A], if Pos is the result of operation on Pos' that won't | 
 |   // affect Mask's demanded bits, just replace Pos with Pos'. These operations | 
 |   // are redundant for the purpose of the equality. | 
 |   if (MaskLoBits) { | 
 |     unsigned PosBits = Pos.getScalarValueSizeInBits(); | 
 |     if (PosBits >= MaskLoBits) { | 
 |       APInt DemandedBits = APInt::getLowBitsSet(PosBits, MaskLoBits); | 
 |       if (SDValue Inner = | 
 |               TLI.SimplifyMultipleUseDemandedBits(Pos, DemandedBits, DAG)) { | 
 |         Pos = Inner; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // The condition we need is now: | 
 |   // | 
 |   //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask | 
 |   // | 
 |   // If NegOp1 == Pos then we need: | 
 |   // | 
 |   //              EltSize & Mask == NegC & Mask | 
 |   // | 
 |   // (because "x & Mask" is a truncation and distributes through subtraction). | 
 |   // | 
 |   // We also need to account for a potential truncation of NegOp1 if the amount | 
 |   // has already been legalized to a shift amount type. | 
 |   APInt Width; | 
 |   if ((Pos == NegOp1) || | 
 |       (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) | 
 |     Width = NegC->getAPIntValue(); | 
 |  | 
 |   // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. | 
 |   // Then the condition we want to prove becomes: | 
 |   // | 
 |   //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask | 
 |   // | 
 |   // which, again because "x & Mask" is a truncation, becomes: | 
 |   // | 
 |   //                NegC & Mask == (EltSize - PosC) & Mask | 
 |   //             EltSize & Mask == (NegC + PosC) & Mask | 
 |   else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { | 
 |     if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) | 
 |       Width = PosC->getAPIntValue() + NegC->getAPIntValue(); | 
 |     else | 
 |       return false; | 
 |   } else | 
 |     return false; | 
 |  | 
 |   // Now we just need to check that EltSize & Mask == Width & Mask. | 
 |   if (MaskLoBits) | 
 |     // EltSize & Mask is 0 since Mask is EltSize - 1. | 
 |     return Width.getLoBits(MaskLoBits) == 0; | 
 |   return Width == EltSize; | 
 | } | 
 |  | 
 | // A subroutine of MatchRotate used once we have found an OR of two opposite | 
 | // shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces | 
 | // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the | 
 | // former being preferred if supported.  InnerPos and InnerNeg are Pos and | 
 | // Neg with outer conversions stripped away. | 
 | SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, | 
 |                                        SDValue Neg, SDValue InnerPos, | 
 |                                        SDValue InnerNeg, bool FromAdd, | 
 |                                        bool HasPos, unsigned PosOpcode, | 
 |                                        unsigned NegOpcode, const SDLoc &DL) { | 
 |   // fold (or/add (shl x, (*ext y)), | 
 |   //              (srl x, (*ext (sub 32, y)))) -> | 
 |   //   (rotl x, y) or (rotr x, (sub 32, y)) | 
 |   // | 
 |   // fold (or/add (shl x, (*ext (sub 32, y))), | 
 |   //              (srl x, (*ext y))) -> | 
 |   //   (rotr x, y) or (rotl x, (sub 32, y)) | 
 |   EVT VT = Shifted.getValueType(); | 
 |   if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, | 
 |                      /*IsRotate*/ true, FromAdd)) | 
 |     return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, | 
 |                        HasPos ? Pos : Neg); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // A subroutine of MatchRotate used once we have found an OR of two opposite | 
 | // shifts of N0 + N1.  If Neg == <operand size> - Pos then the OR reduces | 
 | // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the | 
 | // former being preferred if supported.  InnerPos and InnerNeg are Pos and | 
 | // Neg with outer conversions stripped away. | 
 | // TODO: Merge with MatchRotatePosNeg. | 
 | SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, | 
 |                                        SDValue Neg, SDValue InnerPos, | 
 |                                        SDValue InnerNeg, bool FromAdd, | 
 |                                        bool HasPos, unsigned PosOpcode, | 
 |                                        unsigned NegOpcode, const SDLoc &DL) { | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned EltBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   // fold (or/add (shl x0, (*ext y)), | 
 |   //              (srl x1, (*ext (sub 32, y)))) -> | 
 |   //   (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) | 
 |   // | 
 |   // fold (or/add (shl x0, (*ext (sub 32, y))), | 
 |   //              (srl x1, (*ext y))) -> | 
 |   //   (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) | 
 |   if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1, | 
 |                      FromAdd)) | 
 |     return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, | 
 |                        HasPos ? Pos : Neg); | 
 |  | 
 |   // Matching the shift+xor cases, we can't easily use the xor'd shift amount | 
 |   // so for now just use the PosOpcode case if its legal. | 
 |   // TODO: When can we use the NegOpcode case? | 
 |   if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { | 
 |     SDValue X; | 
 |     // fold (or/add (shl x0, y), (srl (srl x1, 1), (xor y, 31))) | 
 |     //   -> (fshl x0, x1, y) | 
 |     if (sd_match(N1, m_Srl(m_Value(X), m_One())) && | 
 |         sd_match(InnerNeg, | 
 |                  m_Xor(m_Specific(InnerPos), m_SpecificInt(EltBits - 1))) && | 
 |         TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { | 
 |       return DAG.getNode(ISD::FSHL, DL, VT, N0, X, Pos); | 
 |     } | 
 |  | 
 |     // fold (or/add (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) | 
 |     //   -> (fshr x0, x1, y) | 
 |     if (sd_match(N0, m_Shl(m_Value(X), m_One())) && | 
 |         sd_match(InnerPos, | 
 |                  m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) && | 
 |         TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { | 
 |       return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg); | 
 |     } | 
 |  | 
 |     // fold (or/add (shl (add x0, x0), (xor y, 31)), (srl x1, y)) | 
 |     //   -> (fshr x0, x1, y) | 
 |     // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? | 
 |     if (sd_match(N0, m_Add(m_Value(X), m_Deferred(X))) && | 
 |         sd_match(InnerPos, | 
 |                  m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) && | 
 |         TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { | 
 |       return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // MatchRotate - Handle an 'or' or 'add' of two operands.  If this is one of the | 
 | // many idioms for rotate, and if the target supports rotation instructions, | 
 | // generate a rot[lr]. This also matches funnel shift patterns, similar to | 
 | // rotation but with different shifted sources. | 
 | SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL, | 
 |                                  bool FromAdd) { | 
 |   EVT VT = LHS.getValueType(); | 
 |  | 
 |   // The target must have at least one rotate/funnel flavor. | 
 |   // We still try to match rotate by constant pre-legalization. | 
 |   // TODO: Support pre-legalization funnel-shift by constant. | 
 |   bool HasROTL = hasOperation(ISD::ROTL, VT); | 
 |   bool HasROTR = hasOperation(ISD::ROTR, VT); | 
 |   bool HasFSHL = hasOperation(ISD::FSHL, VT); | 
 |   bool HasFSHR = hasOperation(ISD::FSHR, VT); | 
 |  | 
 |   // If the type is going to be promoted and the target has enabled custom | 
 |   // lowering for rotate, allow matching rotate by non-constants. Only allow | 
 |   // this for scalar types. | 
 |   if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) == | 
 |                                   TargetLowering::TypePromoteInteger) { | 
 |     HasROTL |= TLI.getOperationAction(ISD::ROTL, VT) == TargetLowering::Custom; | 
 |     HasROTR |= TLI.getOperationAction(ISD::ROTR, VT) == TargetLowering::Custom; | 
 |   } | 
 |  | 
 |   if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR) | 
 |     return SDValue(); | 
 |  | 
 |   // Check for truncated rotate. | 
 |   if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && | 
 |       LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { | 
 |     assert(LHS.getValueType() == RHS.getValueType()); | 
 |     if (SDValue Rot = | 
 |             MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL, FromAdd)) | 
 |       return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); | 
 |   } | 
 |  | 
 |   // Match "(X shl/srl V1) & V2" where V2 may not be present. | 
 |   SDValue LHSShift;   // The shift. | 
 |   SDValue LHSMask;    // AND value if any. | 
 |   matchRotateHalf(DAG, LHS, LHSShift, LHSMask); | 
 |  | 
 |   SDValue RHSShift;   // The shift. | 
 |   SDValue RHSMask;    // AND value if any. | 
 |   matchRotateHalf(DAG, RHS, RHSShift, RHSMask); | 
 |  | 
 |   // If neither side matched a rotate half, bail | 
 |   if (!LHSShift && !RHSShift) | 
 |     return SDValue(); | 
 |  | 
 |   // InstCombine may have combined a constant shl, srl, mul, or udiv with one | 
 |   // side of the rotate, so try to handle that here. In all cases we need to | 
 |   // pass the matched shift from the opposite side to compute the opcode and | 
 |   // needed shift amount to extract.  We still want to do this if both sides | 
 |   // matched a rotate half because one half may be a potential overshift that | 
 |   // can be broken down (ie if InstCombine merged two shl or srl ops into a | 
 |   // single one). | 
 |  | 
 |   // Have LHS side of the rotate, try to extract the needed shift from the RHS. | 
 |   if (LHSShift) | 
 |     if (SDValue NewRHSShift = | 
 |             extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) | 
 |       RHSShift = NewRHSShift; | 
 |   // Have RHS side of the rotate, try to extract the needed shift from the LHS. | 
 |   if (RHSShift) | 
 |     if (SDValue NewLHSShift = | 
 |             extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) | 
 |       LHSShift = NewLHSShift; | 
 |  | 
 |   // If a side is still missing, nothing else we can do. | 
 |   if (!RHSShift || !LHSShift) | 
 |     return SDValue(); | 
 |  | 
 |   // At this point we've matched or extracted a shift op on each side. | 
 |  | 
 |   if (LHSShift.getOpcode() == RHSShift.getOpcode()) | 
 |     return SDValue(); // Shifts must disagree. | 
 |  | 
 |   // Canonicalize shl to left side in a shl/srl pair. | 
 |   if (RHSShift.getOpcode() == ISD::SHL) { | 
 |     std::swap(LHS, RHS); | 
 |     std::swap(LHSShift, RHSShift); | 
 |     std::swap(LHSMask, RHSMask); | 
 |   } | 
 |  | 
 |   // Something has gone wrong - we've lost the shl/srl pair - bail. | 
 |   if (LHSShift.getOpcode() != ISD::SHL || RHSShift.getOpcode() != ISD::SRL) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
 |   SDValue LHSShiftArg = LHSShift.getOperand(0); | 
 |   SDValue LHSShiftAmt = LHSShift.getOperand(1); | 
 |   SDValue RHSShiftArg = RHSShift.getOperand(0); | 
 |   SDValue RHSShiftAmt = RHSShift.getOperand(1); | 
 |  | 
 |   auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, | 
 |                                         ConstantSDNode *RHS) { | 
 |     return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; | 
 |   }; | 
 |  | 
 |   auto ApplyMasks = [&](SDValue Res) { | 
 |     // If there is an AND of either shifted operand, apply it to the result. | 
 |     if (LHSMask.getNode() || RHSMask.getNode()) { | 
 |       SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); | 
 |       SDValue Mask = AllOnes; | 
 |  | 
 |       if (LHSMask.getNode()) { | 
 |         SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); | 
 |         Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | 
 |                            DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); | 
 |       } | 
 |       if (RHSMask.getNode()) { | 
 |         SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); | 
 |         Mask = DAG.getNode(ISD::AND, DL, VT, Mask, | 
 |                            DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); | 
 |       } | 
 |  | 
 |       Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); | 
 |     } | 
 |  | 
 |     return Res; | 
 |   }; | 
 |  | 
 |   // TODO: Support pre-legalization funnel-shift by constant. | 
 |   bool IsRotate = LHSShiftArg == RHSShiftArg; | 
 |   if (!IsRotate && !(HasFSHL || HasFSHR)) { | 
 |     if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() && | 
 |         ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { | 
 |       // Look for a disguised rotate by constant. | 
 |       // The common shifted operand X may be hidden inside another 'or'. | 
 |       SDValue X, Y; | 
 |       auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) { | 
 |         if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR) | 
 |           return false; | 
 |         if (CommonOp == Or.getOperand(0)) { | 
 |           X = CommonOp; | 
 |           Y = Or.getOperand(1); | 
 |           return true; | 
 |         } | 
 |         if (CommonOp == Or.getOperand(1)) { | 
 |           X = CommonOp; | 
 |           Y = Or.getOperand(0); | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       }; | 
 |  | 
 |       SDValue Res; | 
 |       if (matchOr(LHSShiftArg, RHSShiftArg)) { | 
 |         // (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1) | 
 |         SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt); | 
 |         SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt); | 
 |         Res = DAG.getNode(ISD::OR, DL, VT, RotX, ShlY); | 
 |       } else if (matchOr(RHSShiftArg, LHSShiftArg)) { | 
 |         // (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2) | 
 |         SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt); | 
 |         SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt); | 
 |         Res = DAG.getNode(ISD::OR, DL, VT, RotX, SrlY); | 
 |       } else { | 
 |         return SDValue(); | 
 |       } | 
 |  | 
 |       return ApplyMasks(Res); | 
 |     } | 
 |  | 
 |     return SDValue(); // Requires funnel shift support. | 
 |   } | 
 |  | 
 |   // fold (or/add (shl x, C1), (srl x, C2)) -> (rotl x, C1) | 
 |   // fold (or/add (shl x, C1), (srl x, C2)) -> (rotr x, C2) | 
 |   // fold (or/add (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) | 
 |   // fold (or/add (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) | 
 |   // iff C1+C2 == EltSizeInBits | 
 |   if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { | 
 |     SDValue Res; | 
 |     if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) { | 
 |       bool UseROTL = !LegalOperations || HasROTL; | 
 |       Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, | 
 |                         UseROTL ? LHSShiftAmt : RHSShiftAmt); | 
 |     } else { | 
 |       bool UseFSHL = !LegalOperations || HasFSHL; | 
 |       Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, | 
 |                         RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt); | 
 |     } | 
 |  | 
 |     return ApplyMasks(Res); | 
 |   } | 
 |  | 
 |   // Even pre-legalization, we can't easily rotate/funnel-shift by a variable | 
 |   // shift. | 
 |   if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) | 
 |     return SDValue(); | 
 |  | 
 |   // If there is a mask here, and we have a variable shift, we can't be sure | 
 |   // that we're masking out the right stuff. | 
 |   if (LHSMask.getNode() || RHSMask.getNode()) | 
 |     return SDValue(); | 
 |  | 
 |   // If the shift amount is sign/zext/any-extended just peel it off. | 
 |   SDValue LExtOp0 = LHSShiftAmt; | 
 |   SDValue RExtOp0 = RHSShiftAmt; | 
 |   if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | 
 |        LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | 
 |        LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | 
 |        LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && | 
 |       (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || | 
 |        RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || | 
 |        RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || | 
 |        RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { | 
 |     LExtOp0 = LHSShiftAmt.getOperand(0); | 
 |     RExtOp0 = RHSShiftAmt.getOperand(0); | 
 |   } | 
 |  | 
 |   if (IsRotate && (HasROTL || HasROTR)) { | 
 |     if (SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, | 
 |                                          LExtOp0, RExtOp0, FromAdd, HasROTL, | 
 |                                          ISD::ROTL, ISD::ROTR, DL)) | 
 |       return TryL; | 
 |  | 
 |     if (SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, | 
 |                                          RExtOp0, LExtOp0, FromAdd, HasROTR, | 
 |                                          ISD::ROTR, ISD::ROTL, DL)) | 
 |       return TryR; | 
 |   } | 
 |  | 
 |   if (SDValue TryL = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, | 
 |                                        RHSShiftAmt, LExtOp0, RExtOp0, FromAdd, | 
 |                                        HasFSHL, ISD::FSHL, ISD::FSHR, DL)) | 
 |     return TryL; | 
 |  | 
 |   if (SDValue TryR = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, | 
 |                                        LHSShiftAmt, RExtOp0, LExtOp0, FromAdd, | 
 |                                        HasFSHR, ISD::FSHR, ISD::FSHL, DL)) | 
 |     return TryR; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Recursively traverses the expression calculating the origin of the requested | 
 | /// byte of the given value. Returns std::nullopt if the provider can't be | 
 | /// calculated. | 
 | /// | 
 | /// For all the values except the root of the expression, we verify that the | 
 | /// value has exactly one use and if not then return std::nullopt. This way if | 
 | /// the origin of the byte is returned it's guaranteed that the values which | 
 | /// contribute to the byte are not used outside of this expression. | 
 |  | 
 | /// However, there is a special case when dealing with vector loads -- we allow | 
 | /// more than one use if the load is a vector type.  Since the values that | 
 | /// contribute to the byte ultimately come from the ExtractVectorElements of the | 
 | /// Load, we don't care if the Load has uses other than ExtractVectorElements, | 
 | /// because those operations are independent from the pattern to be combined. | 
 | /// For vector loads, we simply care that the ByteProviders are adjacent | 
 | /// positions of the same vector, and their index matches the byte that is being | 
 | /// provided. This is captured by the \p VectorIndex algorithm. \p VectorIndex | 
 | /// is the index used in an ExtractVectorElement, and \p StartingIndex is the | 
 | /// byte position we are trying to provide for the LoadCombine. If these do | 
 | /// not match, then we can not combine the vector loads. \p Index uses the | 
 | /// byte position we are trying to provide for and is matched against the | 
 | /// shl and load size. The \p Index algorithm ensures the requested byte is | 
 | /// provided for by the pattern, and the pattern does not over provide bytes. | 
 | /// | 
 | /// | 
 | /// The supported LoadCombine pattern for vector loads is as follows | 
 | ///                              or | 
 | ///                          /        \ | 
 | ///                         or        shl | 
 | ///                       /     \      | | 
 | ///                     or      shl   zext | 
 | ///                   /    \     |     | | 
 | ///                 shl   zext  zext  EVE* | 
 | ///                  |     |     |     | | 
 | ///                 zext  EVE*  EVE*  LOAD | 
 | ///                  |     |     | | 
 | ///                 EVE*  LOAD  LOAD | 
 | ///                  | | 
 | ///                 LOAD | 
 | /// | 
 | /// *ExtractVectorElement | 
 | using SDByteProvider = ByteProvider<SDNode *>; | 
 |  | 
 | static std::optional<SDByteProvider> | 
 | calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, | 
 |                       std::optional<uint64_t> VectorIndex, | 
 |                       unsigned StartingIndex = 0) { | 
 |  | 
 |   // Typical i64 by i8 pattern requires recursion up to 8 calls depth | 
 |   if (Depth == 10) | 
 |     return std::nullopt; | 
 |  | 
 |   // Only allow multiple uses if the instruction is a vector load (in which | 
 |   // case we will use the load for every ExtractVectorElement) | 
 |   if (Depth && !Op.hasOneUse() && | 
 |       (Op.getOpcode() != ISD::LOAD || !Op.getValueType().isVector())) | 
 |     return std::nullopt; | 
 |  | 
 |   // Fail to combine if we have encountered anything but a LOAD after handling | 
 |   // an ExtractVectorElement. | 
 |   if (Op.getOpcode() != ISD::LOAD && VectorIndex.has_value()) | 
 |     return std::nullopt; | 
 |  | 
 |   unsigned BitWidth = Op.getValueSizeInBits(); | 
 |   if (BitWidth % 8 != 0) | 
 |     return std::nullopt; | 
 |   unsigned ByteWidth = BitWidth / 8; | 
 |   assert(Index < ByteWidth && "invalid index requested"); | 
 |   (void) ByteWidth; | 
 |  | 
 |   switch (Op.getOpcode()) { | 
 |   case ISD::OR: { | 
 |     auto LHS = | 
 |         calculateByteProvider(Op->getOperand(0), Index, Depth + 1, VectorIndex); | 
 |     if (!LHS) | 
 |       return std::nullopt; | 
 |     auto RHS = | 
 |         calculateByteProvider(Op->getOperand(1), Index, Depth + 1, VectorIndex); | 
 |     if (!RHS) | 
 |       return std::nullopt; | 
 |  | 
 |     if (LHS->isConstantZero()) | 
 |       return RHS; | 
 |     if (RHS->isConstantZero()) | 
 |       return LHS; | 
 |     return std::nullopt; | 
 |   } | 
 |   case ISD::SHL: { | 
 |     auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | 
 |     if (!ShiftOp) | 
 |       return std::nullopt; | 
 |  | 
 |     uint64_t BitShift = ShiftOp->getZExtValue(); | 
 |  | 
 |     if (BitShift % 8 != 0) | 
 |       return std::nullopt; | 
 |     uint64_t ByteShift = BitShift / 8; | 
 |  | 
 |     // If we are shifting by an amount greater than the index we are trying to | 
 |     // provide, then do not provide anything. Otherwise, subtract the index by | 
 |     // the amount we shifted by. | 
 |     return Index < ByteShift | 
 |                ? SDByteProvider::getConstantZero() | 
 |                : calculateByteProvider(Op->getOperand(0), Index - ByteShift, | 
 |                                        Depth + 1, VectorIndex, Index); | 
 |   } | 
 |   case ISD::ANY_EXTEND: | 
 |   case ISD::SIGN_EXTEND: | 
 |   case ISD::ZERO_EXTEND: { | 
 |     SDValue NarrowOp = Op->getOperand(0); | 
 |     unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); | 
 |     if (NarrowBitWidth % 8 != 0) | 
 |       return std::nullopt; | 
 |     uint64_t NarrowByteWidth = NarrowBitWidth / 8; | 
 |  | 
 |     if (Index >= NarrowByteWidth) | 
 |       return Op.getOpcode() == ISD::ZERO_EXTEND | 
 |                  ? std::optional<SDByteProvider>( | 
 |                        SDByteProvider::getConstantZero()) | 
 |                  : std::nullopt; | 
 |     return calculateByteProvider(NarrowOp, Index, Depth + 1, VectorIndex, | 
 |                                  StartingIndex); | 
 |   } | 
 |   case ISD::BSWAP: | 
 |     return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, | 
 |                                  Depth + 1, VectorIndex, StartingIndex); | 
 |   case ISD::EXTRACT_VECTOR_ELT: { | 
 |     auto OffsetOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | 
 |     if (!OffsetOp) | 
 |       return std::nullopt; | 
 |  | 
 |     VectorIndex = OffsetOp->getZExtValue(); | 
 |  | 
 |     SDValue NarrowOp = Op->getOperand(0); | 
 |     unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); | 
 |     if (NarrowBitWidth % 8 != 0) | 
 |       return std::nullopt; | 
 |     uint64_t NarrowByteWidth = NarrowBitWidth / 8; | 
 |     // EXTRACT_VECTOR_ELT can extend the element type to the width of the return | 
 |     // type, leaving the high bits undefined. | 
 |     if (Index >= NarrowByteWidth) | 
 |       return std::nullopt; | 
 |  | 
 |     // Check to see if the position of the element in the vector corresponds | 
 |     // with the byte we are trying to provide for. In the case of a vector of | 
 |     // i8, this simply means the VectorIndex == StartingIndex. For non i8 cases, | 
 |     // the element will provide a range of bytes. For example, if we have a | 
 |     // vector of i16s, each element provides two bytes (V[1] provides byte 2 and | 
 |     // 3). | 
 |     if (*VectorIndex * NarrowByteWidth > StartingIndex) | 
 |       return std::nullopt; | 
 |     if ((*VectorIndex + 1) * NarrowByteWidth <= StartingIndex) | 
 |       return std::nullopt; | 
 |  | 
 |     return calculateByteProvider(Op->getOperand(0), Index, Depth + 1, | 
 |                                  VectorIndex, StartingIndex); | 
 |   } | 
 |   case ISD::LOAD: { | 
 |     auto L = cast<LoadSDNode>(Op.getNode()); | 
 |     if (!L->isSimple() || L->isIndexed()) | 
 |       return std::nullopt; | 
 |  | 
 |     unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); | 
 |     if (NarrowBitWidth % 8 != 0) | 
 |       return std::nullopt; | 
 |     uint64_t NarrowByteWidth = NarrowBitWidth / 8; | 
 |  | 
 |     // If the width of the load does not reach byte we are trying to provide for | 
 |     // and it is not a ZEXTLOAD, then the load does not provide for the byte in | 
 |     // question | 
 |     if (Index >= NarrowByteWidth) | 
 |       return L->getExtensionType() == ISD::ZEXTLOAD | 
 |                  ? std::optional<SDByteProvider>( | 
 |                        SDByteProvider::getConstantZero()) | 
 |                  : std::nullopt; | 
 |  | 
 |     unsigned BPVectorIndex = VectorIndex.value_or(0U); | 
 |     return SDByteProvider::getSrc(L, Index, BPVectorIndex); | 
 |   } | 
 |   } | 
 |  | 
 |   return std::nullopt; | 
 | } | 
 |  | 
 | static unsigned littleEndianByteAt(unsigned BW, unsigned i) { | 
 |   return i; | 
 | } | 
 |  | 
 | static unsigned bigEndianByteAt(unsigned BW, unsigned i) { | 
 |   return BW - i - 1; | 
 | } | 
 |  | 
 | // Check if the bytes offsets we are looking at match with either big or | 
 | // little endian value loaded. Return true for big endian, false for little | 
 | // endian, and std::nullopt if match failed. | 
 | static std::optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, | 
 |                                        int64_t FirstOffset) { | 
 |   // The endian can be decided only when it is 2 bytes at least. | 
 |   unsigned Width = ByteOffsets.size(); | 
 |   if (Width < 2) | 
 |     return std::nullopt; | 
 |  | 
 |   bool BigEndian = true, LittleEndian = true; | 
 |   for (unsigned i = 0; i < Width; i++) { | 
 |     int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; | 
 |     LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); | 
 |     BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); | 
 |     if (!BigEndian && !LittleEndian) | 
 |       return std::nullopt; | 
 |   } | 
 |  | 
 |   assert((BigEndian != LittleEndian) && "It should be either big endian or" | 
 |                                         "little endian"); | 
 |   return BigEndian; | 
 | } | 
 |  | 
 | // Look through one layer of truncate or extend. | 
 | static SDValue stripTruncAndExt(SDValue Value) { | 
 |   switch (Value.getOpcode()) { | 
 |   case ISD::TRUNCATE: | 
 |   case ISD::ZERO_EXTEND: | 
 |   case ISD::SIGN_EXTEND: | 
 |   case ISD::ANY_EXTEND: | 
 |     return Value.getOperand(0); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Match a pattern where a wide type scalar value is stored by several narrow | 
 | /// stores. Fold it into a single store or a BSWAP and a store if the targets | 
 | /// supports it. | 
 | /// | 
 | /// Assuming little endian target: | 
 | ///  i8 *p = ... | 
 | ///  i32 val = ... | 
 | ///  p[0] = (val >> 0) & 0xFF; | 
 | ///  p[1] = (val >> 8) & 0xFF; | 
 | ///  p[2] = (val >> 16) & 0xFF; | 
 | ///  p[3] = (val >> 24) & 0xFF; | 
 | /// => | 
 | ///  *((i32)p) = val; | 
 | /// | 
 | ///  i8 *p = ... | 
 | ///  i32 val = ... | 
 | ///  p[0] = (val >> 24) & 0xFF; | 
 | ///  p[1] = (val >> 16) & 0xFF; | 
 | ///  p[2] = (val >> 8) & 0xFF; | 
 | ///  p[3] = (val >> 0) & 0xFF; | 
 | /// => | 
 | ///  *((i32)p) = BSWAP(val); | 
 | SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { | 
 |   // The matching looks for "store (trunc x)" patterns that appear early but are | 
 |   // likely to be replaced by truncating store nodes during combining. | 
 |   // TODO: If there is evidence that running this later would help, this | 
 |   //       limitation could be removed. Legality checks may need to be added | 
 |   //       for the created store and optional bswap/rotate. | 
 |   if (LegalOperations || OptLevel == CodeGenOptLevel::None) | 
 |     return SDValue(); | 
 |  | 
 |   // We only handle merging simple stores of 1-4 bytes. | 
 |   // TODO: Allow unordered atomics when wider type is legal (see D66309) | 
 |   EVT MemVT = N->getMemoryVT(); | 
 |   if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) || | 
 |       !N->isSimple() || N->isIndexed()) | 
 |     return SDValue(); | 
 |  | 
 |   // Collect all of the stores in the chain, upto the maximum store width (i64). | 
 |   SDValue Chain = N->getChain(); | 
 |   SmallVector<StoreSDNode *, 8> Stores = {N}; | 
 |   unsigned NarrowNumBits = MemVT.getScalarSizeInBits(); | 
 |   unsigned MaxWideNumBits = 64; | 
 |   unsigned MaxStores = MaxWideNumBits / NarrowNumBits; | 
 |   while (auto *Store = dyn_cast<StoreSDNode>(Chain)) { | 
 |     // All stores must be the same size to ensure that we are writing all of the | 
 |     // bytes in the wide value. | 
 |     // This store should have exactly one use as a chain operand for another | 
 |     // store in the merging set. If there are other chain uses, then the | 
 |     // transform may not be safe because order of loads/stores outside of this | 
 |     // set may not be preserved. | 
 |     // TODO: We could allow multiple sizes by tracking each stored byte. | 
 |     if (Store->getMemoryVT() != MemVT || !Store->isSimple() || | 
 |         Store->isIndexed() || !Store->hasOneUse()) | 
 |       return SDValue(); | 
 |     Stores.push_back(Store); | 
 |     Chain = Store->getChain(); | 
 |     if (MaxStores < Stores.size()) | 
 |       return SDValue(); | 
 |   } | 
 |   // There is no reason to continue if we do not have at least a pair of stores. | 
 |   if (Stores.size() < 2) | 
 |     return SDValue(); | 
 |  | 
 |   // Handle simple types only. | 
 |   LLVMContext &Context = *DAG.getContext(); | 
 |   unsigned NumStores = Stores.size(); | 
 |   unsigned WideNumBits = NumStores * NarrowNumBits; | 
 |   EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); | 
 |   if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) | 
 |     return SDValue(); | 
 |  | 
 |   // Check if all bytes of the source value that we are looking at are stored | 
 |   // to the same base address. Collect offsets from Base address into OffsetMap. | 
 |   SDValue SourceValue; | 
 |   SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); | 
 |   int64_t FirstOffset = INT64_MAX; | 
 |   StoreSDNode *FirstStore = nullptr; | 
 |   std::optional<BaseIndexOffset> Base; | 
 |   for (auto *Store : Stores) { | 
 |     // All the stores store different parts of the CombinedValue. A truncate is | 
 |     // required to get the partial value. | 
 |     SDValue Trunc = Store->getValue(); | 
 |     if (Trunc.getOpcode() != ISD::TRUNCATE) | 
 |       return SDValue(); | 
 |     // Other than the first/last part, a shift operation is required to get the | 
 |     // offset. | 
 |     int64_t Offset = 0; | 
 |     SDValue WideVal = Trunc.getOperand(0); | 
 |     if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && | 
 |         isa<ConstantSDNode>(WideVal.getOperand(1))) { | 
 |       // The shift amount must be a constant multiple of the narrow type. | 
 |       // It is translated to the offset address in the wide source value "y". | 
 |       // | 
 |       // x = srl y, ShiftAmtC | 
 |       // i8 z = trunc x | 
 |       // store z, ... | 
 |       uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); | 
 |       if (ShiftAmtC % NarrowNumBits != 0) | 
 |         return SDValue(); | 
 |  | 
 |       // Make sure we aren't reading bits that are shifted in. | 
 |       if (ShiftAmtC > WideVal.getScalarValueSizeInBits() - NarrowNumBits) | 
 |         return SDValue(); | 
 |  | 
 |       Offset = ShiftAmtC / NarrowNumBits; | 
 |       WideVal = WideVal.getOperand(0); | 
 |     } | 
 |  | 
 |     // Stores must share the same source value with different offsets. | 
 |     if (!SourceValue) | 
 |       SourceValue = WideVal; | 
 |     else if (SourceValue != WideVal) { | 
 |       // Truncate and extends can be stripped to see if the values are related. | 
 |       if (stripTruncAndExt(SourceValue) != WideVal && | 
 |           stripTruncAndExt(WideVal) != SourceValue) | 
 |         return SDValue(); | 
 |  | 
 |       if (WideVal.getScalarValueSizeInBits() > | 
 |           SourceValue.getScalarValueSizeInBits()) | 
 |         SourceValue = WideVal; | 
 |  | 
 |       // Give up if the source value type is smaller than the store size. | 
 |       if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) | 
 |         return SDValue(); | 
 |     } | 
 |  | 
 |     // Stores must share the same base address. | 
 |     BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); | 
 |     int64_t ByteOffsetFromBase = 0; | 
 |     if (!Base) | 
 |       Base = Ptr; | 
 |     else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) | 
 |       return SDValue(); | 
 |  | 
 |     // Remember the first store. | 
 |     if (ByteOffsetFromBase < FirstOffset) { | 
 |       FirstStore = Store; | 
 |       FirstOffset = ByteOffsetFromBase; | 
 |     } | 
 |     // Map the offset in the store and the offset in the combined value, and | 
 |     // early return if it has been set before. | 
 |     if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) | 
 |       return SDValue(); | 
 |     OffsetMap[Offset] = ByteOffsetFromBase; | 
 |   } | 
 |  | 
 |   assert(FirstOffset != INT64_MAX && "First byte offset must be set"); | 
 |   assert(FirstStore && "First store must be set"); | 
 |  | 
 |   // Check that a store of the wide type is both allowed and fast on the target | 
 |   const DataLayout &Layout = DAG.getDataLayout(); | 
 |   unsigned Fast = 0; | 
 |   bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, | 
 |                                         *FirstStore->getMemOperand(), &Fast); | 
 |   if (!Allowed || !Fast) | 
 |     return SDValue(); | 
 |  | 
 |   // Check if the pieces of the value are going to the expected places in memory | 
 |   // to merge the stores. | 
 |   auto checkOffsets = [&](bool MatchLittleEndian) { | 
 |     if (MatchLittleEndian) { | 
 |       for (unsigned i = 0; i != NumStores; ++i) | 
 |         if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset) | 
 |           return false; | 
 |     } else { // MatchBigEndian by reversing loop counter. | 
 |       for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j) | 
 |         if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset) | 
 |           return false; | 
 |     } | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // Check if the offsets line up for the native data layout of this target. | 
 |   bool NeedBswap = false; | 
 |   bool NeedRotate = false; | 
 |   if (!checkOffsets(Layout.isLittleEndian())) { | 
 |     // Special-case: check if byte offsets line up for the opposite endian. | 
 |     if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian())) | 
 |       NeedBswap = true; | 
 |     else if (NumStores == 2 && checkOffsets(Layout.isBigEndian())) | 
 |       NeedRotate = true; | 
 |     else | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   SDLoc DL(N); | 
 |   if (WideVT != SourceValue.getValueType()) { | 
 |     assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && | 
 |            "Unexpected store value to merge"); | 
 |     SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue); | 
 |   } | 
 |  | 
 |   // Before legalize we can introduce illegal bswaps/rotates which will be later | 
 |   // converted to an explicit bswap sequence. This way we end up with a single | 
 |   // store and byte shuffling instead of several stores and byte shuffling. | 
 |   if (NeedBswap) { | 
 |     SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); | 
 |   } else if (NeedRotate) { | 
 |     assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); | 
 |     SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); | 
 |     SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); | 
 |   } | 
 |  | 
 |   SDValue NewStore = | 
 |       DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), | 
 |                    FirstStore->getPointerInfo(), FirstStore->getAlign()); | 
 |  | 
 |   // Rely on other DAG combine rules to remove the other individual stores. | 
 |   DAG.ReplaceAllUsesWith(N, NewStore.getNode()); | 
 |   return NewStore; | 
 | } | 
 |  | 
 | /// Match a pattern where a wide type scalar value is loaded by several narrow | 
 | /// loads and combined by shifts and ors. Fold it into a single load or a load | 
 | /// and a BSWAP if the targets supports it. | 
 | /// | 
 | /// Assuming little endian target: | 
 | ///  i8 *a = ... | 
 | ///  i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) | 
 | /// => | 
 | ///  i32 val = *((i32)a) | 
 | /// | 
 | ///  i8 *a = ... | 
 | ///  i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] | 
 | /// => | 
 | ///  i32 val = BSWAP(*((i32)a)) | 
 | /// | 
 | /// TODO: This rule matches complex patterns with OR node roots and doesn't | 
 | /// interact well with the worklist mechanism. When a part of the pattern is | 
 | /// updated (e.g. one of the loads) its direct users are put into the worklist, | 
 | /// but the root node of the pattern which triggers the load combine is not | 
 | /// necessarily a direct user of the changed node. For example, once the address | 
 | /// of t28 load is reassociated load combine won't be triggered: | 
 | ///             t25: i32 = add t4, Constant:i32<2> | 
 | ///           t26: i64 = sign_extend t25 | 
 | ///        t27: i64 = add t2, t26 | 
 | ///       t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 | 
 | ///     t29: i32 = zero_extend t28 | 
 | ///   t32: i32 = shl t29, Constant:i8<8> | 
 | /// t33: i32 = or t23, t32 | 
 | /// As a possible fix visitLoad can check if the load can be a part of a load | 
 | /// combine pattern and add corresponding OR roots to the worklist. | 
 | SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::OR && | 
 |          "Can only match load combining against OR nodes"); | 
 |  | 
 |   // Handles simple types only | 
 |   EVT VT = N->getValueType(0); | 
 |   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) | 
 |     return SDValue(); | 
 |   unsigned ByteWidth = VT.getSizeInBits() / 8; | 
 |  | 
 |   bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); | 
 |   auto MemoryByteOffset = [&](SDByteProvider P) { | 
 |     assert(P.hasSrc() && "Must be a memory byte provider"); | 
 |     auto *Load = cast<LoadSDNode>(P.Src.value()); | 
 |  | 
 |     unsigned LoadBitWidth = Load->getMemoryVT().getScalarSizeInBits(); | 
 |  | 
 |     assert(LoadBitWidth % 8 == 0 && | 
 |            "can only analyze providers for individual bytes not bit"); | 
 |     unsigned LoadByteWidth = LoadBitWidth / 8; | 
 |     return IsBigEndianTarget ? bigEndianByteAt(LoadByteWidth, P.DestOffset) | 
 |                              : littleEndianByteAt(LoadByteWidth, P.DestOffset); | 
 |   }; | 
 |  | 
 |   std::optional<BaseIndexOffset> Base; | 
 |   SDValue Chain; | 
 |  | 
 |   SmallPtrSet<LoadSDNode *, 8> Loads; | 
 |   std::optional<SDByteProvider> FirstByteProvider; | 
 |   int64_t FirstOffset = INT64_MAX; | 
 |  | 
 |   // Check if all the bytes of the OR we are looking at are loaded from the same | 
 |   // base address. Collect bytes offsets from Base address in ByteOffsets. | 
 |   SmallVector<int64_t, 8> ByteOffsets(ByteWidth); | 
 |   unsigned ZeroExtendedBytes = 0; | 
 |   for (int i = ByteWidth - 1; i >= 0; --i) { | 
 |     auto P = | 
 |         calculateByteProvider(SDValue(N, 0), i, 0, /*VectorIndex*/ std::nullopt, | 
 |                               /*StartingIndex*/ i); | 
 |     if (!P) | 
 |       return SDValue(); | 
 |  | 
 |     if (P->isConstantZero()) { | 
 |       // It's OK for the N most significant bytes to be 0, we can just | 
 |       // zero-extend the load. | 
 |       if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) | 
 |         return SDValue(); | 
 |       continue; | 
 |     } | 
 |     assert(P->hasSrc() && "provenance should either be memory or zero"); | 
 |     auto *L = cast<LoadSDNode>(P->Src.value()); | 
 |  | 
 |     // All loads must share the same chain | 
 |     SDValue LChain = L->getChain(); | 
 |     if (!Chain) | 
 |       Chain = LChain; | 
 |     else if (Chain != LChain) | 
 |       return SDValue(); | 
 |  | 
 |     // Loads must share the same base address | 
 |     BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); | 
 |     int64_t ByteOffsetFromBase = 0; | 
 |  | 
 |     // For vector loads, the expected load combine pattern will have an | 
 |     // ExtractElement for each index in the vector. While each of these | 
 |     // ExtractElements will be accessing the same base address as determined | 
 |     // by the load instruction, the actual bytes they interact with will differ | 
 |     // due to different ExtractElement indices. To accurately determine the | 
 |     // byte position of an ExtractElement, we offset the base load ptr with | 
 |     // the index multiplied by the byte size of each element in the vector. | 
 |     if (L->getMemoryVT().isVector()) { | 
 |       unsigned LoadWidthInBit = L->getMemoryVT().getScalarSizeInBits(); | 
 |       if (LoadWidthInBit % 8 != 0) | 
 |         return SDValue(); | 
 |       unsigned ByteOffsetFromVector = P->SrcOffset * LoadWidthInBit / 8; | 
 |       Ptr.addToOffset(ByteOffsetFromVector); | 
 |     } | 
 |  | 
 |     if (!Base) | 
 |       Base = Ptr; | 
 |  | 
 |     else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) | 
 |       return SDValue(); | 
 |  | 
 |     // Calculate the offset of the current byte from the base address | 
 |     ByteOffsetFromBase += MemoryByteOffset(*P); | 
 |     ByteOffsets[i] = ByteOffsetFromBase; | 
 |  | 
 |     // Remember the first byte load | 
 |     if (ByteOffsetFromBase < FirstOffset) { | 
 |       FirstByteProvider = P; | 
 |       FirstOffset = ByteOffsetFromBase; | 
 |     } | 
 |  | 
 |     Loads.insert(L); | 
 |   } | 
 |  | 
 |   assert(!Loads.empty() && "All the bytes of the value must be loaded from " | 
 |          "memory, so there must be at least one load which produces the value"); | 
 |   assert(Base && "Base address of the accessed memory location must be set"); | 
 |   assert(FirstOffset != INT64_MAX && "First byte offset must be set"); | 
 |  | 
 |   bool NeedsZext = ZeroExtendedBytes > 0; | 
 |  | 
 |   EVT MemVT = | 
 |       EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); | 
 |  | 
 |   if (!MemVT.isSimple()) | 
 |     return SDValue(); | 
 |  | 
 |   // Before legalize we can introduce too wide illegal loads which will be later | 
 |   // split into legal sized loads. This enables us to combine i64 load by i8 | 
 |   // patterns to a couple of i32 loads on 32 bit targets. | 
 |   if (LegalOperations && | 
 |       !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, | 
 |                             MemVT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Check if the bytes of the OR we are looking at match with either big or | 
 |   // little endian value load | 
 |   std::optional<bool> IsBigEndian = isBigEndian( | 
 |       ArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); | 
 |   if (!IsBigEndian) | 
 |     return SDValue(); | 
 |  | 
 |   assert(FirstByteProvider && "must be set"); | 
 |  | 
 |   // Ensure that the first byte is loaded from zero offset of the first load. | 
 |   // So the combined value can be loaded from the first load address. | 
 |   if (MemoryByteOffset(*FirstByteProvider) != 0) | 
 |     return SDValue(); | 
 |   auto *FirstLoad = cast<LoadSDNode>(FirstByteProvider->Src.value()); | 
 |  | 
 |   // The node we are looking at matches with the pattern, check if we can | 
 |   // replace it with a single (possibly zero-extended) load and bswap + shift if | 
 |   // needed. | 
 |  | 
 |   // If the load needs byte swap check if the target supports it | 
 |   bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; | 
 |  | 
 |   // Before legalize we can introduce illegal bswaps which will be later | 
 |   // converted to an explicit bswap sequence. This way we end up with a single | 
 |   // load and byte shuffling instead of several loads and byte shuffling. | 
 |   // We do not introduce illegal bswaps when zero-extending as this tends to | 
 |   // introduce too many arithmetic instructions. | 
 |   if (NeedsBswap && (LegalOperations || NeedsZext) && | 
 |       !TLI.isOperationLegal(ISD::BSWAP, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // If we need to bswap and zero extend, we have to insert a shift. Check that | 
 |   // it is legal. | 
 |   if (NeedsBswap && NeedsZext && LegalOperations && | 
 |       !TLI.isOperationLegal(ISD::SHL, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Check that a load of the wide type is both allowed and fast on the target | 
 |   unsigned Fast = 0; | 
 |   bool Allowed = | 
 |       TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, | 
 |                              *FirstLoad->getMemOperand(), &Fast); | 
 |   if (!Allowed || !Fast) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue NewLoad = | 
 |       DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, | 
 |                      Chain, FirstLoad->getBasePtr(), | 
 |                      FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); | 
 |  | 
 |   // Transfer chain users from old loads to the new load. | 
 |   for (LoadSDNode *L : Loads) | 
 |     DAG.makeEquivalentMemoryOrdering(L, NewLoad); | 
 |  | 
 |   if (!NeedsBswap) | 
 |     return NewLoad; | 
 |  | 
 |   SDValue ShiftedLoad = | 
 |       NeedsZext ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, | 
 |                               DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, | 
 |                                                          VT, SDLoc(N))) | 
 |                 : NewLoad; | 
 |   return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); | 
 | } | 
 |  | 
 | // If the target has andn, bsl, or a similar bit-select instruction, | 
 | // we want to unfold masked merge, with canonical pattern of: | 
 | //   |        A  |  |B| | 
 | //   ((x ^ y) & m) ^ y | 
 | //    |  D  | | 
 | // Into: | 
 | //   (x & m) | (y & ~m) | 
 | // If y is a constant, m is not a 'not', and the 'andn' does not work with | 
 | // immediates, we unfold into a different pattern: | 
 | //   ~(~x & m) & (m | y) | 
 | // If x is a constant, m is a 'not', and the 'andn' does not work with | 
 | // immediates, we unfold into a different pattern: | 
 | //   (x | ~m) & ~(~m & ~y) | 
 | // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at | 
 | //       the very least that breaks andnpd / andnps patterns, and because those | 
 | //       patterns are simplified in IR and shouldn't be created in the DAG | 
 | SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::XOR); | 
 |  | 
 |   // Don't touch 'not' (i.e. where y = -1). | 
 |   if (isAllOnesOrAllOnesSplat(N->getOperand(1))) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // There are 3 commutable operators in the pattern, | 
 |   // so we have to deal with 8 possible variants of the basic pattern. | 
 |   SDValue X, Y, M; | 
 |   auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { | 
 |     if (And.getOpcode() != ISD::AND || !And.hasOneUse()) | 
 |       return false; | 
 |     SDValue Xor = And.getOperand(XorIdx); | 
 |     if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) | 
 |       return false; | 
 |     SDValue Xor0 = Xor.getOperand(0); | 
 |     SDValue Xor1 = Xor.getOperand(1); | 
 |     // Don't touch 'not' (i.e. where y = -1). | 
 |     if (isAllOnesOrAllOnesSplat(Xor1)) | 
 |       return false; | 
 |     if (Other == Xor0) | 
 |       std::swap(Xor0, Xor1); | 
 |     if (Other != Xor1) | 
 |       return false; | 
 |     X = Xor0; | 
 |     Y = Xor1; | 
 |     M = And.getOperand(XorIdx ? 0 : 1); | 
 |     return true; | 
 |   }; | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && | 
 |       !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) | 
 |     return SDValue(); | 
 |  | 
 |   // Don't do anything if the mask is constant. This should not be reachable. | 
 |   // InstCombine should have already unfolded this pattern, and DAGCombiner | 
 |   // probably shouldn't produce it, too. | 
 |   if (isa<ConstantSDNode>(M.getNode())) | 
 |     return SDValue(); | 
 |  | 
 |   // We can transform if the target has AndNot | 
 |   if (!TLI.hasAndNot(M)) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |  | 
 |   // If Y is a constant, check that 'andn' works with immediates. Unless M is | 
 |   // a bitwise not that would already allow ANDN to be used. | 
 |   if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) { | 
 |     assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); | 
 |     // If not, we need to do a bit more work to make sure andn is still used. | 
 |     SDValue NotX = DAG.getNOT(DL, X, VT); | 
 |     SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); | 
 |     SDValue NotLHS = DAG.getNOT(DL, LHS, VT); | 
 |     SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); | 
 |     return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); | 
 |   } | 
 |  | 
 |   // If X is a constant and M is a bitwise not, check that 'andn' works with | 
 |   // immediates. | 
 |   if (!TLI.hasAndNot(X) && isBitwiseNot(M)) { | 
 |     assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable."); | 
 |     // If not, we need to do a bit more work to make sure andn is still used. | 
 |     SDValue NotM = M.getOperand(0); | 
 |     SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM); | 
 |     SDValue NotY = DAG.getNOT(DL, Y, VT); | 
 |     SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY); | 
 |     SDValue NotRHS = DAG.getNOT(DL, RHS, VT); | 
 |     return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS); | 
 |   } | 
 |  | 
 |   SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); | 
 |   SDValue NotM = DAG.getNOT(DL, M, VT); | 
 |   SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); | 
 |  | 
 |   return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitXOR(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (xor undef, undef) -> 0. This is a common idiom (misuse). | 
 |   if (N0.isUndef() && N1.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (xor x, undef) -> undef | 
 |   if (N0.isUndef()) | 
 |     return N0; | 
 |   if (N1.isUndef()) | 
 |     return N1; | 
 |  | 
 |   // fold (xor c1, c2) -> c1^c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && | 
 |       !DAG.isConstantIntBuildVectorOrConstantInt(N1)) | 
 |     return DAG.getNode(ISD::XOR, DL, VT, N1, N0); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     // fold (xor x, 0) -> x, vector edition | 
 |     if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) | 
 |       return N0; | 
 |   } | 
 |  | 
 |   // fold (xor x, 0) -> x | 
 |   if (isNullConstant(N1)) | 
 |     return N0; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // reassociate xor | 
 |   if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) | 
 |     return RXOR; | 
 |  | 
 |   // Fold xor(vecreduce(x), vecreduce(y)) -> vecreduce(xor(x, y)) | 
 |   if (SDValue SD = | 
 |           reassociateReduction(ISD::VECREDUCE_XOR, ISD::XOR, DL, VT, N0, N1)) | 
 |     return SD; | 
 |  | 
 |   // fold (a^b) -> (a|b) iff a and b share no bits. | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && | 
 |       DAG.haveNoCommonBitsSet(N0, N1)) | 
 |     return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint); | 
 |  | 
 |   // look for 'add-like' folds: | 
 |   // XOR(N0,MIN_SIGNED_VALUE) == ADD(N0,MIN_SIGNED_VALUE) | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && | 
 |       isMinSignedConstant(N1)) | 
 |     if (SDValue Combined = visitADDLike(N)) | 
 |       return Combined; | 
 |  | 
 |   // fold !(x cc y) -> (x !cc y) | 
 |   unsigned N0Opcode = N0.getOpcode(); | 
 |   SDValue LHS, RHS, CC; | 
 |   if (TLI.isConstTrueVal(N1) && | 
 |       isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true)) { | 
 |     ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), | 
 |                                                LHS.getValueType()); | 
 |     if (!LegalOperations || | 
 |         TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { | 
 |       switch (N0Opcode) { | 
 |       default: | 
 |         llvm_unreachable("Unhandled SetCC Equivalent!"); | 
 |       case ISD::SETCC: | 
 |         return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); | 
 |       case ISD::SELECT_CC: | 
 |         return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), | 
 |                                N0.getOperand(3), NotCC); | 
 |       case ISD::STRICT_FSETCC: | 
 |       case ISD::STRICT_FSETCCS: { | 
 |         if (N0.hasOneUse()) { | 
 |           // FIXME Can we handle multiple uses? Could we token factor the chain | 
 |           // results from the new/old setcc? | 
 |           SDValue SetCC = | 
 |               DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, | 
 |                            N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); | 
 |           CombineTo(N, SetCC); | 
 |           DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); | 
 |           recursivelyDeleteUnusedNodes(N0.getNode()); | 
 |           return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |         } | 
 |         break; | 
 |       } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) | 
 |   if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && | 
 |       isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ | 
 |     SDValue V = N0.getOperand(0); | 
 |     SDLoc DL0(N0); | 
 |     V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, | 
 |                     DAG.getConstant(1, DL0, V.getValueType())); | 
 |     AddToWorklist(V.getNode()); | 
 |     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); | 
 |   } | 
 |  | 
 |   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc | 
 |   // fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are setcc | 
 |   if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && | 
 |       (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { | 
 |     SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); | 
 |     if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { | 
 |       unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; | 
 |       N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 | 
 |       N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 | 
 |       AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); | 
 |       return DAG.getNode(NewOpcode, DL, VT, N00, N01); | 
 |     } | 
 |   } | 
 |   // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants | 
 |   // fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are constants | 
 |   if (isAllOnesConstant(N1) && N0.hasOneUse() && | 
 |       (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { | 
 |     SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); | 
 |     if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { | 
 |       unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; | 
 |       N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 | 
 |       N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 | 
 |       AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); | 
 |       return DAG.getNode(NewOpcode, DL, VT, N00, N01); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (not (neg x)) -> (add X, -1) | 
 |   // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if | 
 |   // Y is a constant or the subtract has a single use. | 
 |   if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && | 
 |       isNullConstant(N0.getOperand(0))) { | 
 |     return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), | 
 |                        DAG.getAllOnesConstant(DL, VT)); | 
 |   } | 
 |  | 
 |   // fold (not (add X, -1)) -> (neg X) | 
 |   if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && isAllOnesConstant(N1) && | 
 |       isAllOnesOrAllOnesSplat(N0.getOperand(1))) { | 
 |     return DAG.getNegative(N0.getOperand(0), DL, VT); | 
 |   } | 
 |  | 
 |   // fold (xor (and x, y), y) -> (and (not x), y) | 
 |   if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { | 
 |     SDValue X = N0.getOperand(0); | 
 |     SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); | 
 |     AddToWorklist(NotX.getNode()); | 
 |     return DAG.getNode(ISD::AND, DL, VT, NotX, N1); | 
 |   } | 
 |  | 
 |   // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) | 
 |   if (!LegalOperations || hasOperation(ISD::ABS, VT)) { | 
 |     SDValue A = N0Opcode == ISD::ADD ? N0 : N1; | 
 |     SDValue S = N0Opcode == ISD::SRA ? N0 : N1; | 
 |     if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { | 
 |       SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); | 
 |       SDValue S0 = S.getOperand(0); | 
 |       if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) | 
 |         if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) | 
 |           if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) | 
 |             return DAG.getNode(ISD::ABS, DL, VT, S0); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (xor x, x) -> 0 | 
 |   if (N0 == N1) | 
 |     return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); | 
 |  | 
 |   // fold (xor (shl 1, x), -1) -> (rotl ~1, x) | 
 |   // Here is a concrete example of this equivalence: | 
 |   // i16   x ==  14 | 
 |   // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000 | 
 |   // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 | 
 |   // | 
 |   // => | 
 |   // | 
 |   // i16     ~1      == 0b1111111111111110 | 
 |   // i16 rol(~1, 14) == 0b1011111111111111 | 
 |   // | 
 |   // Some additional tips to help conceptualize this transform: | 
 |   // - Try to see the operation as placing a single zero in a value of all ones. | 
 |   // - There exists no value for x which would allow the result to contain zero. | 
 |   // - Values of x larger than the bitwidth are undefined and do not require a | 
 |   //   consistent result. | 
 |   // - Pushing the zero left requires shifting one bits in from the right. | 
 |   // A rotate left of ~1 is a nice way of achieving the desired result. | 
 |   if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && | 
 |       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { | 
 |     return DAG.getNode(ISD::ROTL, DL, VT, DAG.getSignedConstant(~1, DL, VT), | 
 |                        N0.getOperand(1)); | 
 |   } | 
 |  | 
 |   // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) | 
 |   if (N0Opcode == N1.getOpcode()) | 
 |     if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) | 
 |       return V; | 
 |  | 
 |   if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG)) | 
 |     return R; | 
 |   if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG)) | 
 |     return R; | 
 |   if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG)) | 
 |     return R; | 
 |  | 
 |   // Unfold  ((x ^ y) & m) ^ y  into  (x & m) | (y & ~m)  if profitable | 
 |   if (SDValue MM = unfoldMaskedMerge(N)) | 
 |     return MM; | 
 |  | 
 |   // Simplify the expression using non-local knowledge. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N)) | 
 |     return Combined; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If we have a shift-by-constant of a bitwise logic op that itself has a | 
 | /// shift-by-constant operand with identical opcode, we may be able to convert | 
 | /// that into 2 independent shifts followed by the logic op. This is a | 
 | /// throughput improvement. | 
 | static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { | 
 |   // Match a one-use bitwise logic op. | 
 |   SDValue LogicOp = Shift->getOperand(0); | 
 |   if (!LogicOp.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned LogicOpcode = LogicOp.getOpcode(); | 
 |   if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && | 
 |       LogicOpcode != ISD::XOR) | 
 |     return SDValue(); | 
 |  | 
 |   // Find a matching one-use shift by constant. | 
 |   unsigned ShiftOpcode = Shift->getOpcode(); | 
 |   SDValue C1 = Shift->getOperand(1); | 
 |   ConstantSDNode *C1Node = isConstOrConstSplat(C1); | 
 |   assert(C1Node && "Expected a shift with constant operand"); | 
 |   const APInt &C1Val = C1Node->getAPIntValue(); | 
 |   auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, | 
 |                              const APInt *&ShiftAmtVal) { | 
 |     if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) | 
 |       return false; | 
 |  | 
 |     ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); | 
 |     if (!ShiftCNode) | 
 |       return false; | 
 |  | 
 |     // Capture the shifted operand and shift amount value. | 
 |     ShiftOp = V.getOperand(0); | 
 |     ShiftAmtVal = &ShiftCNode->getAPIntValue(); | 
 |  | 
 |     // Shift amount types do not have to match their operand type, so check that | 
 |     // the constants are the same width. | 
 |     if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) | 
 |       return false; | 
 |  | 
 |     // The fold is not valid if the sum of the shift values doesn't fit in the | 
 |     // given shift amount type. | 
 |     bool Overflow = false; | 
 |     APInt NewShiftAmt = C1Val.uadd_ov(*ShiftAmtVal, Overflow); | 
 |     if (Overflow) | 
 |       return false; | 
 |  | 
 |     // The fold is not valid if the sum of the shift values exceeds bitwidth. | 
 |     if (NewShiftAmt.uge(V.getScalarValueSizeInBits())) | 
 |       return false; | 
 |  | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // Logic ops are commutative, so check each operand for a match. | 
 |   SDValue X, Y; | 
 |   const APInt *C0Val; | 
 |   if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) | 
 |     Y = LogicOp.getOperand(1); | 
 |   else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) | 
 |     Y = LogicOp.getOperand(0); | 
 |   else | 
 |     return SDValue(); | 
 |  | 
 |   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) | 
 |   SDLoc DL(Shift); | 
 |   EVT VT = Shift->getValueType(0); | 
 |   EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); | 
 |   SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); | 
 |   SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); | 
 |   SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); | 
 |   return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2, | 
 |                      LogicOp->getFlags()); | 
 | } | 
 |  | 
 | /// Handle transforms common to the three shifts, when the shift amount is a | 
 | /// constant. | 
 | /// We are looking for: (shift being one of shl/sra/srl) | 
 | ///   shift (binop X, C0), C1 | 
 | /// And want to transform into: | 
 | ///   binop (shift X, C1), (shift C0, C1) | 
 | SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { | 
 |   assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); | 
 |  | 
 |   // Do not turn a 'not' into a regular xor. | 
 |   if (isBitwiseNot(N->getOperand(0))) | 
 |     return SDValue(); | 
 |  | 
 |   // The inner binop must be one-use, since we want to replace it. | 
 |   SDValue LHS = N->getOperand(0); | 
 |   if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) | 
 |     return SDValue(); | 
 |  | 
 |   // Fold shift(bitop(shift(x,c1),y), c2) -> bitop(shift(x,c1+c2),shift(y,c2)). | 
 |   if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) | 
 |     return R; | 
 |  | 
 |   // We want to pull some binops through shifts, so that we have (and (shift)) | 
 |   // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of | 
 |   // thing happens with address calculations, so it's important to canonicalize | 
 |   // it. | 
 |   switch (LHS.getOpcode()) { | 
 |   default: | 
 |     return SDValue(); | 
 |   case ISD::OR: | 
 |   case ISD::XOR: | 
 |   case ISD::AND: | 
 |     break; | 
 |   case ISD::ADD: | 
 |     if (N->getOpcode() != ISD::SHL) | 
 |       return SDValue(); // only shl(add) not sr[al](add). | 
 |     break; | 
 |   } | 
 |  | 
 |   // FIXME: disable this unless the input to the binop is a shift by a constant | 
 |   // or is copy/select. Enable this in other cases when figure out it's exactly | 
 |   // profitable. | 
 |   SDValue BinOpLHSVal = LHS.getOperand(0); | 
 |   bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || | 
 |                             BinOpLHSVal.getOpcode() == ISD::SRA || | 
 |                             BinOpLHSVal.getOpcode() == ISD::SRL) && | 
 |                            isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); | 
 |   bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || | 
 |                         BinOpLHSVal.getOpcode() == ISD::SELECT; | 
 |  | 
 |   if (!IsShiftByConstant && !IsCopyOrSelect) | 
 |     return SDValue(); | 
 |  | 
 |   if (IsCopyOrSelect && N->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // Attempt to fold the constants, shifting the binop RHS by the shift amount. | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |   if (SDValue NewRHS = DAG.FoldConstantArithmetic( | 
 |           N->getOpcode(), DL, VT, {LHS.getOperand(1), N->getOperand(1)})) { | 
 |     SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), | 
 |                                    N->getOperand(1)); | 
 |     return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::TRUNCATE); | 
 |   assert(N->getOperand(0).getOpcode() == ISD::AND); | 
 |  | 
 |   // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) | 
 |   EVT TruncVT = N->getValueType(0); | 
 |   if (N->hasOneUse() && N->getOperand(0).hasOneUse() && | 
 |       TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { | 
 |     SDValue N01 = N->getOperand(0).getOperand(1); | 
 |     if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { | 
 |       SDLoc DL(N); | 
 |       SDValue N00 = N->getOperand(0).getOperand(0); | 
 |       SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); | 
 |       SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); | 
 |       AddToWorklist(Trunc00.getNode()); | 
 |       AddToWorklist(Trunc01.getNode()); | 
 |       return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitRotate(SDNode *N) { | 
 |   SDLoc dl(N); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned Bitsize = VT.getScalarSizeInBits(); | 
 |  | 
 |   // fold (rot x, 0) -> x | 
 |   if (isNullOrNullSplat(N1)) | 
 |     return N0; | 
 |  | 
 |   // fold (rot x, c) -> x iff (c % BitSize) == 0 | 
 |   if (isPowerOf2_32(Bitsize) && Bitsize > 1) { | 
 |     APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); | 
 |     if (DAG.MaskedValueIsZero(N1, ModuloMask)) | 
 |       return N0; | 
 |   } | 
 |  | 
 |   // fold (rot x, c) -> (rot x, c % BitSize) | 
 |   bool OutOfRange = false; | 
 |   auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { | 
 |     OutOfRange |= C->getAPIntValue().uge(Bitsize); | 
 |     return true; | 
 |   }; | 
 |   if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { | 
 |     EVT AmtVT = N1.getValueType(); | 
 |     SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); | 
 |     if (SDValue Amt = | 
 |             DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) | 
 |       return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); | 
 |   } | 
 |  | 
 |   // rot i16 X, 8 --> bswap X | 
 |   auto *RotAmtC = isConstOrConstSplat(N1); | 
 |   if (RotAmtC && RotAmtC->getAPIntValue() == 8 && | 
 |       VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) | 
 |     return DAG.getNode(ISD::BSWAP, dl, VT, N0); | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). | 
 |   if (N1.getOpcode() == ISD::TRUNCATE && | 
 |       N1.getOperand(0).getOpcode() == ISD::AND) { | 
 |     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
 |       return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); | 
 |   } | 
 |  | 
 |   unsigned NextOp = N0.getOpcode(); | 
 |  | 
 |   // fold (rot* (rot* x, c2), c1) | 
 |   //   -> (rot* x, ((c1 % bitsize) +- (c2 % bitsize) + bitsize) % bitsize) | 
 |   if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { | 
 |     bool C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); | 
 |     bool C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); | 
 |     if (C1 && C2 && N1.getValueType() == N0.getOperand(1).getValueType()) { | 
 |       EVT ShiftVT = N1.getValueType(); | 
 |       bool SameSide = (N->getOpcode() == NextOp); | 
 |       unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; | 
 |       SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); | 
 |       SDValue Norm1 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT, | 
 |                                                  {N1, BitsizeC}); | 
 |       SDValue Norm2 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT, | 
 |                                                  {N0.getOperand(1), BitsizeC}); | 
 |       if (Norm1 && Norm2) | 
 |         if (SDValue CombinedShift = DAG.FoldConstantArithmetic( | 
 |                 CombineOp, dl, ShiftVT, {Norm1, Norm2})) { | 
 |           CombinedShift = DAG.FoldConstantArithmetic(ISD::ADD, dl, ShiftVT, | 
 |                                                      {CombinedShift, BitsizeC}); | 
 |           SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( | 
 |               ISD::UREM, dl, ShiftVT, {CombinedShift, BitsizeC}); | 
 |           return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), | 
 |                              CombinedShiftNorm); | 
 |         } | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSHL(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (SDValue V = DAG.simplifyShift(N0, N1)) | 
 |     return V; | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT VT = N0.getValueType(); | 
 |   EVT ShiftVT = N1.getValueType(); | 
 |   unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   // fold (shl c1, c2) -> c1<<c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) { | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |     BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); | 
 |     // If setcc produces all-one true value then: | 
 |     // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) | 
 |     if (N1CV && N1CV->isConstant()) { | 
 |       if (N0.getOpcode() == ISD::AND) { | 
 |         SDValue N00 = N0->getOperand(0); | 
 |         SDValue N01 = N0->getOperand(1); | 
 |         BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); | 
 |  | 
 |         if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && | 
 |             TLI.getBooleanContents(N00.getOperand(0).getValueType()) == | 
 |                 TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
 |           if (SDValue C = | 
 |                   DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N01, N1})) | 
 |             return DAG.getNode(ISD::AND, DL, VT, N00, C); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // if (shl x, c) is known to be zero, return 0 | 
 |   if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). | 
 |   if (N1.getOpcode() == ISD::TRUNCATE && | 
 |       N1.getOperand(0).getOpcode() == ISD::AND) { | 
 |     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
 |       return DAG.getNode(ISD::SHL, DL, VT, N0, NewOp1); | 
 |   } | 
 |  | 
 |   // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) | 
 |   if (N0.getOpcode() == ISD::SHL) { | 
 |     auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, | 
 |                                           ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       return (c1 + c2).uge(OpSizeInBits); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) | 
 |       return DAG.getConstant(0, DL, VT); | 
 |  | 
 |     auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, | 
 |                                        ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       return (c1 + c2).ult(OpSizeInBits); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { | 
 |       SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); | 
 |       return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) | 
 |   // For this to be valid, the second form must not preserve any of the bits | 
 |   // that are shifted out by the inner shift in the first form.  This means | 
 |   // the outer shift size must be >= the number of bits added by the ext. | 
 |   // As a corollary, we don't care what kind of ext it is. | 
 |   if ((N0.getOpcode() == ISD::ZERO_EXTEND || | 
 |        N0.getOpcode() == ISD::ANY_EXTEND || | 
 |        N0.getOpcode() == ISD::SIGN_EXTEND) && | 
 |       N0.getOperand(0).getOpcode() == ISD::SHL) { | 
 |     SDValue N0Op0 = N0.getOperand(0); | 
 |     SDValue InnerShiftAmt = N0Op0.getOperand(1); | 
 |     EVT InnerVT = N0Op0.getValueType(); | 
 |     uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); | 
 |  | 
 |     auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, | 
 |                                                          ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       return c2.uge(OpSizeInBits - InnerBitwidth) && | 
 |              (c1 + c2).uge(OpSizeInBits); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, | 
 |                                   /*AllowUndefs*/ false, | 
 |                                   /*AllowTypeMismatch*/ true)) | 
 |       return DAG.getConstant(0, DL, VT); | 
 |  | 
 |     auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, | 
 |                                                       ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       return c2.uge(OpSizeInBits - InnerBitwidth) && | 
 |              (c1 + c2).ult(OpSizeInBits); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, | 
 |                                   /*AllowUndefs*/ false, | 
 |                                   /*AllowTypeMismatch*/ true)) { | 
 |       SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); | 
 |       SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); | 
 |       Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); | 
 |       return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) | 
 |   // Only fold this if the inner zext has no other uses to avoid increasing | 
 |   // the total number of instructions. | 
 |   if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && | 
 |       N0.getOperand(0).getOpcode() == ISD::SRL) { | 
 |     SDValue N0Op0 = N0.getOperand(0); | 
 |     SDValue InnerShiftAmt = N0Op0.getOperand(1); | 
 |  | 
 |     auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2); | 
 |       return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, | 
 |                                   /*AllowUndefs*/ false, | 
 |                                   /*AllowTypeMismatch*/ true)) { | 
 |       EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); | 
 |       SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); | 
 |       NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); | 
 |       AddToWorklist(NewSHL.getNode()); | 
 |       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); | 
 |     } | 
 |   } | 
 |  | 
 |   if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) { | 
 |     auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS, | 
 |                                            ConstantSDNode *RHS) { | 
 |       const APInt &LHSC = LHS->getAPIntValue(); | 
 |       const APInt &RHSC = RHS->getAPIntValue(); | 
 |       return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) && | 
 |              LHSC.getZExtValue() <= RHSC.getZExtValue(); | 
 |     }; | 
 |  | 
 |     // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2 | 
 |     // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1 >= C2 | 
 |     if (N0->getFlags().hasExact()) { | 
 |       if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount, | 
 |                                     /*AllowUndefs*/ false, | 
 |                                     /*AllowTypeMismatch*/ true)) { | 
 |         SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); | 
 |         SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01); | 
 |         return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff); | 
 |       } | 
 |       if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount, | 
 |                                     /*AllowUndefs*/ false, | 
 |                                     /*AllowTypeMismatch*/ true)) { | 
 |         SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); | 
 |         SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1); | 
 |         return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Diff); | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or | 
 |     //                               (and (srl x, (sub c1, c2), MASK) | 
 |     // Only fold this if the inner shift has no other uses -- if it does, | 
 |     // folding this will increase the total number of instructions. | 
 |     if (N0.getOpcode() == ISD::SRL && | 
 |         (N0.getOperand(1) == N1 || N0.hasOneUse()) && | 
 |         TLI.shouldFoldConstantShiftPairToMask(N, Level)) { | 
 |       if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount, | 
 |                                     /*AllowUndefs*/ false, | 
 |                                     /*AllowTypeMismatch*/ true)) { | 
 |         SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); | 
 |         SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1); | 
 |         SDValue Mask = DAG.getAllOnesConstant(DL, VT); | 
 |         Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N01); | 
 |         Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, Diff); | 
 |         SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff); | 
 |         return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); | 
 |       } | 
 |       if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount, | 
 |                                     /*AllowUndefs*/ false, | 
 |                                     /*AllowTypeMismatch*/ true)) { | 
 |         SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); | 
 |         SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01); | 
 |         SDValue Mask = DAG.getAllOnesConstant(DL, VT); | 
 |         Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N1); | 
 |         SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff); | 
 |         return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) | 
 |   if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && | 
 |       isConstantOrConstantVector(N1, /* No Opaques */ true)) { | 
 |     SDValue AllBits = DAG.getAllOnesConstant(DL, VT); | 
 |     SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); | 
 |     return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); | 
 |   } | 
 |  | 
 |   // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) | 
 |   // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) | 
 |   // Variant of version done on multiply, except mul by a power of 2 is turned | 
 |   // into a shift. | 
 |   if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && | 
 |       TLI.isDesirableToCommuteWithShift(N, Level)) { | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (SDValue Shl1 = | 
 |             DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1})) { | 
 |       SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); | 
 |       AddToWorklist(Shl0.getNode()); | 
 |       SDNodeFlags Flags; | 
 |       // Preserve the disjoint flag for Or. | 
 |       if (N0.getOpcode() == ISD::OR && N0->getFlags().hasDisjoint()) | 
 |         Flags |= SDNodeFlags::Disjoint; | 
 |       return DAG.getNode(N0.getOpcode(), DL, VT, Shl0, Shl1, Flags); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (shl (sext (add_nsw x, c1)), c2) -> (add (shl (sext x), c2), c1 << c2) | 
 |   // TODO: Add zext/add_nuw variant with suitable test coverage | 
 |   // TODO: Should we limit this with isLegalAddImmediate? | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND && | 
 |       N0.getOperand(0).getOpcode() == ISD::ADD && | 
 |       N0.getOperand(0)->getFlags().hasNoSignedWrap() && | 
 |       TLI.isDesirableToCommuteWithShift(N, Level)) { | 
 |     SDValue Add = N0.getOperand(0); | 
 |     SDLoc DL(N0); | 
 |     if (SDValue ExtC = DAG.FoldConstantArithmetic(N0.getOpcode(), DL, VT, | 
 |                                                   {Add.getOperand(1)})) { | 
 |       if (SDValue ShlC = | 
 |               DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {ExtC, N1})) { | 
 |         SDValue ExtX = DAG.getNode(N0.getOpcode(), DL, VT, Add.getOperand(0)); | 
 |         SDValue ShlX = DAG.getNode(ISD::SHL, DL, VT, ExtX, N1); | 
 |         return DAG.getNode(ISD::ADD, DL, VT, ShlX, ShlC); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) | 
 |   if (N0.getOpcode() == ISD::MUL && N0->hasOneUse()) { | 
 |     SDValue N01 = N0.getOperand(1); | 
 |     if (SDValue Shl = | 
 |             DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1})) | 
 |       return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), Shl); | 
 |   } | 
 |  | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |   if (N1C && !N1C->isOpaque()) | 
 |     if (SDValue NewSHL = visitShiftByConstant(N)) | 
 |       return NewSHL; | 
 |  | 
 |   // fold (shl X, cttz(Y)) -> (mul (Y & -Y), X) if cttz is unsupported on the | 
 |   // target. | 
 |   if (((N1.getOpcode() == ISD::CTTZ && | 
 |         VT.getScalarSizeInBits() <= ShiftVT.getScalarSizeInBits()) || | 
 |        N1.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && | 
 |       N1.hasOneUse() && !TLI.isOperationLegalOrCustom(ISD::CTTZ, ShiftVT) && | 
 |       TLI.isOperationLegalOrCustom(ISD::MUL, VT)) { | 
 |     SDValue Y = N1.getOperand(0); | 
 |     SDLoc DL(N); | 
 |     SDValue NegY = DAG.getNegative(Y, DL, ShiftVT); | 
 |     SDValue And = | 
 |         DAG.getZExtOrTrunc(DAG.getNode(ISD::AND, DL, ShiftVT, Y, NegY), DL, VT); | 
 |     return DAG.getNode(ISD::MUL, DL, VT, And, N0); | 
 |   } | 
 |  | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). | 
 |   if (N0.getOpcode() == ISD::VSCALE && N1C) { | 
 |     const APInt &C0 = N0.getConstantOperandAPInt(0); | 
 |     const APInt &C1 = N1C->getAPIntValue(); | 
 |     return DAG.getVScale(DL, VT, C0 << C1); | 
 |   } | 
 |  | 
 |   // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)). | 
 |   APInt ShlVal; | 
 |   if (N0.getOpcode() == ISD::STEP_VECTOR && | 
 |       ISD::isConstantSplatVector(N1.getNode(), ShlVal)) { | 
 |     const APInt &C0 = N0.getConstantOperandAPInt(0); | 
 |     if (ShlVal.ult(C0.getBitWidth())) { | 
 |       APInt NewStep = C0 << ShlVal; | 
 |       return DAG.getStepVector(DL, VT, NewStep); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Transform a right shift of a multiply into a multiply-high. | 
 | // Examples: | 
 | // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) | 
 | // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) | 
 | static SDValue combineShiftToMULH(SDNode *N, const SDLoc &DL, SelectionDAG &DAG, | 
 |                                   const TargetLowering &TLI) { | 
 |   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && | 
 |          "SRL or SRA node is required here!"); | 
 |  | 
 |   // Check the shift amount. Proceed with the transformation if the shift | 
 |   // amount is constant. | 
 |   ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); | 
 |   if (!ShiftAmtSrc) | 
 |     return SDValue(); | 
 |  | 
 |   // The operation feeding into the shift must be a multiply. | 
 |   SDValue ShiftOperand = N->getOperand(0); | 
 |   if (ShiftOperand.getOpcode() != ISD::MUL) | 
 |     return SDValue(); | 
 |  | 
 |   // Both operands must be equivalent extend nodes. | 
 |   SDValue LeftOp = ShiftOperand.getOperand(0); | 
 |   SDValue RightOp = ShiftOperand.getOperand(1); | 
 |  | 
 |   bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; | 
 |   bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; | 
 |  | 
 |   if (!IsSignExt && !IsZeroExt) | 
 |     return SDValue(); | 
 |  | 
 |   EVT NarrowVT = LeftOp.getOperand(0).getValueType(); | 
 |   unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); | 
 |  | 
 |   // return true if U may use the lower bits of its operands | 
 |   auto UserOfLowerBits = [NarrowVTSize](SDNode *U) { | 
 |     if (U->getOpcode() != ISD::SRL && U->getOpcode() != ISD::SRA) { | 
 |       return true; | 
 |     } | 
 |     ConstantSDNode *UShiftAmtSrc = isConstOrConstSplat(U->getOperand(1)); | 
 |     if (!UShiftAmtSrc) { | 
 |       return true; | 
 |     } | 
 |     unsigned UShiftAmt = UShiftAmtSrc->getZExtValue(); | 
 |     return UShiftAmt < NarrowVTSize; | 
 |   }; | 
 |  | 
 |   // If the lower part of the MUL is also used and MUL_LOHI is supported | 
 |   // do not introduce the MULH in favor of MUL_LOHI | 
 |   unsigned MulLoHiOp = IsSignExt ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; | 
 |   if (!ShiftOperand.hasOneUse() && | 
 |       TLI.isOperationLegalOrCustom(MulLoHiOp, NarrowVT) && | 
 |       llvm::any_of(ShiftOperand->users(), UserOfLowerBits)) { | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   SDValue MulhRightOp; | 
 |   if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) { | 
 |     unsigned ActiveBits = IsSignExt | 
 |                               ? Constant->getAPIntValue().getSignificantBits() | 
 |                               : Constant->getAPIntValue().getActiveBits(); | 
 |     if (ActiveBits > NarrowVTSize) | 
 |       return SDValue(); | 
 |     MulhRightOp = DAG.getConstant( | 
 |         Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL, | 
 |         NarrowVT); | 
 |   } else { | 
 |     if (LeftOp.getOpcode() != RightOp.getOpcode()) | 
 |       return SDValue(); | 
 |     // Check that the two extend nodes are the same type. | 
 |     if (NarrowVT != RightOp.getOperand(0).getValueType()) | 
 |       return SDValue(); | 
 |     MulhRightOp = RightOp.getOperand(0); | 
 |   } | 
 |  | 
 |   EVT WideVT = LeftOp.getValueType(); | 
 |   // Proceed with the transformation if the wide types match. | 
 |   assert((WideVT == RightOp.getValueType()) && | 
 |          "Cannot have a multiply node with two different operand types."); | 
 |  | 
 |   // Proceed with the transformation if the wide type is twice as large | 
 |   // as the narrow type. | 
 |   if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) | 
 |     return SDValue(); | 
 |  | 
 |   // Check the shift amount with the narrow type size. | 
 |   // Proceed with the transformation if the shift amount is the width | 
 |   // of the narrow type. | 
 |   unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); | 
 |   if (ShiftAmt != NarrowVTSize) | 
 |     return SDValue(); | 
 |  | 
 |   // If the operation feeding into the MUL is a sign extend (sext), | 
 |   // we use mulhs. Othewise, zero extends (zext) use mulhu. | 
 |   unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; | 
 |  | 
 |   // Combine to mulh if mulh is legal/custom for the narrow type on the target | 
 |   // or if it is a vector type then we could transform to an acceptable type and | 
 |   // rely on legalization to split/combine the result. | 
 |   if (NarrowVT.isVector()) { | 
 |     EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), NarrowVT); | 
 |     if (TransformVT.getVectorElementType() != NarrowVT.getVectorElementType() || | 
 |         !TLI.isOperationLegalOrCustom(MulhOpcode, TransformVT)) | 
 |       return SDValue(); | 
 |   } else { | 
 |     if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   SDValue Result = | 
 |       DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp); | 
 |   bool IsSigned = N->getOpcode() == ISD::SRA; | 
 |   return DAG.getExtOrTrunc(IsSigned, Result, DL, WideVT); | 
 | } | 
 |  | 
 | // fold (bswap (logic_op(bswap(x),y))) -> logic_op(x,bswap(y)) | 
 | // This helper function accept SDNode with opcode ISD::BSWAP and ISD::BITREVERSE | 
 | static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   if (Opcode != ISD::BSWAP && Opcode != ISD::BITREVERSE) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   if (ISD::isBitwiseLogicOp(N0.getOpcode()) && N0.hasOneUse()) { | 
 |     SDValue OldLHS = N0.getOperand(0); | 
 |     SDValue OldRHS = N0.getOperand(1); | 
 |  | 
 |     // If both operands are bswap/bitreverse, ignore the multiuse | 
 |     // Otherwise need to ensure logic_op and bswap/bitreverse(x) have one use. | 
 |     if (OldLHS.getOpcode() == Opcode && OldRHS.getOpcode() == Opcode) { | 
 |       return DAG.getNode(N0.getOpcode(), DL, VT, OldLHS.getOperand(0), | 
 |                          OldRHS.getOperand(0)); | 
 |     } | 
 |  | 
 |     if (OldLHS.getOpcode() == Opcode && OldLHS.hasOneUse()) { | 
 |       SDValue NewBitReorder = DAG.getNode(Opcode, DL, VT, OldRHS); | 
 |       return DAG.getNode(N0.getOpcode(), DL, VT, OldLHS.getOperand(0), | 
 |                          NewBitReorder); | 
 |     } | 
 |  | 
 |     if (OldRHS.getOpcode() == Opcode && OldRHS.hasOneUse()) { | 
 |       SDValue NewBitReorder = DAG.getNode(Opcode, DL, VT, OldLHS); | 
 |       return DAG.getNode(N0.getOpcode(), DL, VT, NewBitReorder, | 
 |                          OldRHS.getOperand(0)); | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSRA(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (SDValue V = DAG.simplifyShift(N0, N1)) | 
 |     return V; | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   // fold (sra c1, c2) -> (sra c1, c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // Arithmetic shifting an all-sign-bit value is a no-op. | 
 |   // fold (sra 0, x) -> 0 | 
 |   // fold (sra -1, x) -> -1 | 
 |   if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) | 
 |     return N0; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |  | 
 |   // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) | 
 |   // clamp (add c1, c2) to max shift. | 
 |   if (N0.getOpcode() == ISD::SRA) { | 
 |     EVT ShiftVT = N1.getValueType(); | 
 |     EVT ShiftSVT = ShiftVT.getScalarType(); | 
 |     SmallVector<SDValue, 16> ShiftValues; | 
 |  | 
 |     auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       APInt Sum = c1 + c2; | 
 |       unsigned ShiftSum = | 
 |           Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); | 
 |       ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); | 
 |       return true; | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { | 
 |       SDValue ShiftValue; | 
 |       if (N1.getOpcode() == ISD::BUILD_VECTOR) | 
 |         ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); | 
 |       else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { | 
 |         assert(ShiftValues.size() == 1 && | 
 |                "Expected matchBinaryPredicate to return one element for " | 
 |                "SPLAT_VECTORs"); | 
 |         ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]); | 
 |       } else | 
 |         ShiftValue = ShiftValues[0]; | 
 |       return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (sra (shl X, m), (sub result_size, n)) | 
 |   // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for | 
 |   // result_size - n != m. | 
 |   // If truncate is free for the target sext(shl) is likely to result in better | 
 |   // code. | 
 |   if (N0.getOpcode() == ISD::SHL && N1C) { | 
 |     // Get the two constants of the shifts, CN0 = m, CN = n. | 
 |     const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); | 
 |     if (N01C) { | 
 |       LLVMContext &Ctx = *DAG.getContext(); | 
 |       // Determine what the truncate's result bitsize and type would be. | 
 |       EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); | 
 |  | 
 |       if (VT.isVector()) | 
 |         TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); | 
 |  | 
 |       // Determine the residual right-shift amount. | 
 |       int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); | 
 |  | 
 |       // If the shift is not a no-op (in which case this should be just a sign | 
 |       // extend already), the truncated to type is legal, sign_extend is legal | 
 |       // on that type, and the truncate to that type is both legal and free, | 
 |       // perform the transform. | 
 |       if ((ShiftAmt > 0) && | 
 |           TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && | 
 |           TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && | 
 |           TLI.isTruncateFree(VT, TruncVT)) { | 
 |         SDValue Amt = DAG.getShiftAmountConstant(ShiftAmt, VT, DL); | 
 |         SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, | 
 |                                     N0.getOperand(0), Amt); | 
 |         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, | 
 |                                     Shift); | 
 |         return DAG.getNode(ISD::SIGN_EXTEND, DL, | 
 |                            N->getValueType(0), Trunc); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. | 
 |   //   sra (add (shl X, N1C), AddC), N1C --> | 
 |   //   sext (add (trunc X to (width - N1C)), AddC') | 
 |   //   sra (sub AddC, (shl X, N1C)), N1C --> | 
 |   //   sext (sub AddC1',(trunc X to (width - N1C))) | 
 |   if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB) && N1C && | 
 |       N0.hasOneUse()) { | 
 |     bool IsAdd = N0.getOpcode() == ISD::ADD; | 
 |     SDValue Shl = N0.getOperand(IsAdd ? 0 : 1); | 
 |     if (Shl.getOpcode() == ISD::SHL && Shl.getOperand(1) == N1 && | 
 |         Shl.hasOneUse()) { | 
 |       // TODO: AddC does not need to be a splat. | 
 |       if (ConstantSDNode *AddC = | 
 |               isConstOrConstSplat(N0.getOperand(IsAdd ? 1 : 0))) { | 
 |         // Determine what the truncate's type would be and ask the target if | 
 |         // that is a free operation. | 
 |         LLVMContext &Ctx = *DAG.getContext(); | 
 |         unsigned ShiftAmt = N1C->getZExtValue(); | 
 |         EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); | 
 |         if (VT.isVector()) | 
 |           TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount()); | 
 |  | 
 |         // TODO: The simple type check probably belongs in the default hook | 
 |         //       implementation and/or target-specific overrides (because | 
 |         //       non-simple types likely require masking when legalized), but | 
 |         //       that restriction may conflict with other transforms. | 
 |         if (TruncVT.isSimple() && isTypeLegal(TruncVT) && | 
 |             TLI.isTruncateFree(VT, TruncVT)) { | 
 |           SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); | 
 |           SDValue ShiftC = | 
 |               DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).trunc( | 
 |                                   TruncVT.getScalarSizeInBits()), | 
 |                               DL, TruncVT); | 
 |           SDValue Add; | 
 |           if (IsAdd) | 
 |             Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); | 
 |           else | 
 |             Add = DAG.getNode(ISD::SUB, DL, TruncVT, ShiftC, Trunc); | 
 |           return DAG.getSExtOrTrunc(Add, DL, VT); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). | 
 |   if (N1.getOpcode() == ISD::TRUNCATE && | 
 |       N1.getOperand(0).getOpcode() == ISD::AND) { | 
 |     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
 |       return DAG.getNode(ISD::SRA, DL, VT, N0, NewOp1); | 
 |   } | 
 |  | 
 |   // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) | 
 |   // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) | 
 |   //      if c1 is equal to the number of bits the trunc removes | 
 |   // TODO - support non-uniform vector shift amounts. | 
 |   if (N0.getOpcode() == ISD::TRUNCATE && | 
 |       (N0.getOperand(0).getOpcode() == ISD::SRL || | 
 |        N0.getOperand(0).getOpcode() == ISD::SRA) && | 
 |       N0.getOperand(0).hasOneUse() && | 
 |       N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { | 
 |     SDValue N0Op0 = N0.getOperand(0); | 
 |     if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { | 
 |       EVT LargeVT = N0Op0.getValueType(); | 
 |       unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; | 
 |       if (LargeShift->getAPIntValue() == TruncBits) { | 
 |         EVT LargeShiftVT = getShiftAmountTy(LargeVT); | 
 |         SDValue Amt = DAG.getZExtOrTrunc(N1, DL, LargeShiftVT); | 
 |         Amt = DAG.getNode(ISD::ADD, DL, LargeShiftVT, Amt, | 
 |                           DAG.getConstant(TruncBits, DL, LargeShiftVT)); | 
 |         SDValue SRA = | 
 |             DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); | 
 |         return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Simplify, based on bits shifted out of the LHS. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // If the sign bit is known to be zero, switch this to a SRL. | 
 |   if (DAG.SignBitIsZero(N0)) | 
 |     return DAG.getNode(ISD::SRL, DL, VT, N0, N1); | 
 |  | 
 |   if (N1C && !N1C->isOpaque()) | 
 |     if (SDValue NewSRA = visitShiftByConstant(N)) | 
 |       return NewSRA; | 
 |  | 
 |   // Try to transform this shift into a multiply-high if | 
 |   // it matches the appropriate pattern detected in combineShiftToMULH. | 
 |   if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI)) | 
 |     return MULH; | 
 |  | 
 |   // Attempt to convert a sra of a load into a narrower sign-extending load. | 
 |   if (SDValue NarrowLoad = reduceLoadWidth(N)) | 
 |     return NarrowLoad; | 
 |  | 
 |   if (SDValue AVG = foldShiftToAvg(N)) | 
 |     return AVG; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSRL(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (SDValue V = DAG.simplifyShift(N0, N1)) | 
 |     return V; | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT VT = N0.getValueType(); | 
 |   EVT ShiftVT = N1.getValueType(); | 
 |   unsigned OpSizeInBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   // fold (srl c1, c2) -> c1 >>u c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // if (srl x, c) is known to be zero, return 0 | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |   if (N1C && | 
 |       DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits))) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) | 
 |   if (N0.getOpcode() == ISD::SRL) { | 
 |     auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, | 
 |                                           ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       return (c1 + c2).uge(OpSizeInBits); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) | 
 |       return DAG.getConstant(0, DL, VT); | 
 |  | 
 |     auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, | 
 |                                        ConstantSDNode *RHS) { | 
 |       APInt c1 = LHS->getAPIntValue(); | 
 |       APInt c2 = RHS->getAPIntValue(); | 
 |       zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); | 
 |       return (c1 + c2).ult(OpSizeInBits); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { | 
 |       SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); | 
 |       return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); | 
 |     } | 
 |   } | 
 |  | 
 |   if (N1C && N0.getOpcode() == ISD::TRUNCATE && | 
 |       N0.getOperand(0).getOpcode() == ISD::SRL) { | 
 |     SDValue InnerShift = N0.getOperand(0); | 
 |     // TODO - support non-uniform vector shift amounts. | 
 |     if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { | 
 |       uint64_t c1 = N001C->getZExtValue(); | 
 |       uint64_t c2 = N1C->getZExtValue(); | 
 |       EVT InnerShiftVT = InnerShift.getValueType(); | 
 |       EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); | 
 |       uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); | 
 |       // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) | 
 |       // This is only valid if the OpSizeInBits + c1 = size of inner shift. | 
 |       if (c1 + OpSizeInBits == InnerShiftSize) { | 
 |         if (c1 + c2 >= InnerShiftSize) | 
 |           return DAG.getConstant(0, DL, VT); | 
 |         SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); | 
 |         SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, | 
 |                                        InnerShift.getOperand(0), NewShiftAmt); | 
 |         return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); | 
 |       } | 
 |       // In the more general case, we can clear the high bits after the shift: | 
 |       // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) | 
 |       if (N0.hasOneUse() && InnerShift.hasOneUse() && | 
 |           c1 + c2 < InnerShiftSize) { | 
 |         SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); | 
 |         SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, | 
 |                                        InnerShift.getOperand(0), NewShiftAmt); | 
 |         SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, | 
 |                                                             OpSizeInBits - c2), | 
 |                                        DL, InnerShiftVT); | 
 |         SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); | 
 |         return DAG.getNode(ISD::TRUNCATE, DL, VT, And); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (srl (shl x, c1), c2) -> (and (shl x, (sub c1, c2), MASK) or | 
 |   //                               (and (srl x, (sub c2, c1), MASK) | 
 |   if (N0.getOpcode() == ISD::SHL && | 
 |       (N0.getOperand(1) == N1 || N0->hasOneUse()) && | 
 |       TLI.shouldFoldConstantShiftPairToMask(N, Level)) { | 
 |     auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS, | 
 |                                            ConstantSDNode *RHS) { | 
 |       const APInt &LHSC = LHS->getAPIntValue(); | 
 |       const APInt &RHSC = RHS->getAPIntValue(); | 
 |       return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) && | 
 |              LHSC.getZExtValue() <= RHSC.getZExtValue(); | 
 |     }; | 
 |     if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount, | 
 |                                   /*AllowUndefs*/ false, | 
 |                                   /*AllowTypeMismatch*/ true)) { | 
 |       SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); | 
 |       SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1); | 
 |       SDValue Mask = DAG.getAllOnesConstant(DL, VT); | 
 |       Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N01); | 
 |       Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, Diff); | 
 |       SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff); | 
 |       return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); | 
 |     } | 
 |     if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount, | 
 |                                   /*AllowUndefs*/ false, | 
 |                                   /*AllowTypeMismatch*/ true)) { | 
 |       SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT); | 
 |       SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01); | 
 |       SDValue Mask = DAG.getAllOnesConstant(DL, VT); | 
 |       Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N1); | 
 |       SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff); | 
 |       return DAG.getNode(ISD::AND, DL, VT, Shift, Mask); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) | 
 |   // TODO - support non-uniform vector shift amounts. | 
 |   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { | 
 |     // Shifting in all undef bits? | 
 |     EVT SmallVT = N0.getOperand(0).getValueType(); | 
 |     unsigned BitSize = SmallVT.getScalarSizeInBits(); | 
 |     if (N1C->getAPIntValue().uge(BitSize)) | 
 |       return DAG.getUNDEF(VT); | 
 |  | 
 |     if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { | 
 |       uint64_t ShiftAmt = N1C->getZExtValue(); | 
 |       SDLoc DL0(N0); | 
 |       SDValue SmallShift = | 
 |           DAG.getNode(ISD::SRL, DL0, SmallVT, N0.getOperand(0), | 
 |                       DAG.getShiftAmountConstant(ShiftAmt, SmallVT, DL0)); | 
 |       AddToWorklist(SmallShift.getNode()); | 
 |       APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); | 
 |       return DAG.getNode(ISD::AND, DL, VT, | 
 |                          DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), | 
 |                          DAG.getConstant(Mask, DL, VT)); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign | 
 |   // bit, which is unmodified by sra. | 
 |   if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { | 
 |     if (N0.getOpcode() == ISD::SRA) | 
 |       return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1); | 
 |   } | 
 |  | 
 |   // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit), and x has a power | 
 |   // of two bitwidth. The "5" represents (log2 (bitwidth x)). | 
 |   if (N1C && N0.getOpcode() == ISD::CTLZ && | 
 |       isPowerOf2_32(OpSizeInBits) && | 
 |       N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { | 
 |     KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); | 
 |  | 
 |     // If any of the input bits are KnownOne, then the input couldn't be all | 
 |     // zeros, thus the result of the srl will always be zero. | 
 |     if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); | 
 |  | 
 |     // If all of the bits input the to ctlz node are known to be zero, then | 
 |     // the result of the ctlz is "32" and the result of the shift is one. | 
 |     APInt UnknownBits = ~Known.Zero; | 
 |     if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); | 
 |  | 
 |     // Otherwise, check to see if there is exactly one bit input to the ctlz. | 
 |     if (UnknownBits.isPowerOf2()) { | 
 |       // Okay, we know that only that the single bit specified by UnknownBits | 
 |       // could be set on input to the CTLZ node. If this bit is set, the SRL | 
 |       // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair | 
 |       // to an SRL/XOR pair, which is likely to simplify more. | 
 |       unsigned ShAmt = UnknownBits.countr_zero(); | 
 |       SDValue Op = N0.getOperand(0); | 
 |  | 
 |       if (ShAmt) { | 
 |         SDLoc DL(N0); | 
 |         Op = DAG.getNode(ISD::SRL, DL, VT, Op, | 
 |                          DAG.getShiftAmountConstant(ShAmt, VT, DL)); | 
 |         AddToWorklist(Op.getNode()); | 
 |       } | 
 |       return DAG.getNode(ISD::XOR, DL, VT, Op, DAG.getConstant(1, DL, VT)); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). | 
 |   if (N1.getOpcode() == ISD::TRUNCATE && | 
 |       N1.getOperand(0).getOpcode() == ISD::AND) { | 
 |     if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) | 
 |       return DAG.getNode(ISD::SRL, DL, VT, N0, NewOp1); | 
 |   } | 
 |  | 
 |   // fold operands of srl based on knowledge that the low bits are not | 
 |   // demanded. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   if (N1C && !N1C->isOpaque()) | 
 |     if (SDValue NewSRL = visitShiftByConstant(N)) | 
 |       return NewSRL; | 
 |  | 
 |   // Attempt to convert a srl of a load into a narrower zero-extending load. | 
 |   if (SDValue NarrowLoad = reduceLoadWidth(N)) | 
 |     return NarrowLoad; | 
 |  | 
 |   // Here is a common situation. We want to optimize: | 
 |   // | 
 |   //   %a = ... | 
 |   //   %b = and i32 %a, 2 | 
 |   //   %c = srl i32 %b, 1 | 
 |   //   brcond i32 %c ... | 
 |   // | 
 |   // into | 
 |   // | 
 |   //   %a = ... | 
 |   //   %b = and %a, 2 | 
 |   //   %c = setcc eq %b, 0 | 
 |   //   brcond %c ... | 
 |   // | 
 |   // However when after the source operand of SRL is optimized into AND, the SRL | 
 |   // itself may not be optimized further. Look for it and add the BRCOND into | 
 |   // the worklist. | 
 |   // | 
 |   // The also tends to happen for binary operations when SimplifyDemandedBits | 
 |   // is involved. | 
 |   // | 
 |   // FIXME: This is unecessary if we process the DAG in topological order, | 
 |   // which we plan to do. This workaround can be removed once the DAG is | 
 |   // processed in topological order. | 
 |   if (N->hasOneUse()) { | 
 |     SDNode *User = *N->user_begin(); | 
 |  | 
 |     // Look pass the truncate. | 
 |     if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) | 
 |       User = *User->user_begin(); | 
 |  | 
 |     if (User->getOpcode() == ISD::BRCOND || User->getOpcode() == ISD::AND || | 
 |         User->getOpcode() == ISD::OR || User->getOpcode() == ISD::XOR) | 
 |       AddToWorklist(User); | 
 |   } | 
 |  | 
 |   // Try to transform this shift into a multiply-high if | 
 |   // it matches the appropriate pattern detected in combineShiftToMULH. | 
 |   if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI)) | 
 |     return MULH; | 
 |  | 
 |   if (SDValue AVG = foldShiftToAvg(N)) | 
 |     return AVG; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFunnelShift(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   bool IsFSHL = N->getOpcode() == ISD::FSHL; | 
 |   unsigned BitWidth = VT.getScalarSizeInBits(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (fshl N0, N1, 0) -> N0 | 
 |   // fold (fshr N0, N1, 0) -> N1 | 
 |   if (isPowerOf2_32(BitWidth)) | 
 |     if (DAG.MaskedValueIsZero( | 
 |             N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) | 
 |       return IsFSHL ? N0 : N1; | 
 |  | 
 |   auto IsUndefOrZero = [](SDValue V) { | 
 |     return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); | 
 |   }; | 
 |  | 
 |   // TODO - support non-uniform vector shift amounts. | 
 |   if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { | 
 |     EVT ShAmtTy = N2.getValueType(); | 
 |  | 
 |     // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) | 
 |     if (Cst->getAPIntValue().uge(BitWidth)) { | 
 |       uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); | 
 |       return DAG.getNode(N->getOpcode(), DL, VT, N0, N1, | 
 |                          DAG.getConstant(RotAmt, DL, ShAmtTy)); | 
 |     } | 
 |  | 
 |     unsigned ShAmt = Cst->getZExtValue(); | 
 |     if (ShAmt == 0) | 
 |       return IsFSHL ? N0 : N1; | 
 |  | 
 |     // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) | 
 |     // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) | 
 |     // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) | 
 |     // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) | 
 |     if (IsUndefOrZero(N0)) | 
 |       return DAG.getNode( | 
 |           ISD::SRL, DL, VT, N1, | 
 |           DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, DL, ShAmtTy)); | 
 |     if (IsUndefOrZero(N1)) | 
 |       return DAG.getNode( | 
 |           ISD::SHL, DL, VT, N0, | 
 |           DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, DL, ShAmtTy)); | 
 |  | 
 |     // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. | 
 |     // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. | 
 |     // TODO - bigendian support once we have test coverage. | 
 |     // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? | 
 |     // TODO - permit LHS EXTLOAD if extensions are shifted out. | 
 |     if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && | 
 |         !DAG.getDataLayout().isBigEndian()) { | 
 |       auto *LHS = dyn_cast<LoadSDNode>(N0); | 
 |       auto *RHS = dyn_cast<LoadSDNode>(N1); | 
 |       if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && | 
 |           LHS->getAddressSpace() == RHS->getAddressSpace() && | 
 |           (LHS->hasNUsesOfValue(1, 0) || RHS->hasNUsesOfValue(1, 0)) && | 
 |           ISD::isNON_EXTLoad(RHS) && ISD::isNON_EXTLoad(LHS)) { | 
 |         if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { | 
 |           SDLoc DL(RHS); | 
 |           uint64_t PtrOff = | 
 |               IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); | 
 |           Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); | 
 |           unsigned Fast = 0; | 
 |           if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
 |                                      RHS->getAddressSpace(), NewAlign, | 
 |                                      RHS->getMemOperand()->getFlags(), &Fast) && | 
 |               Fast) { | 
 |             SDValue NewPtr = DAG.getMemBasePlusOffset( | 
 |                 RHS->getBasePtr(), TypeSize::getFixed(PtrOff), DL); | 
 |             AddToWorklist(NewPtr.getNode()); | 
 |             SDValue Load = DAG.getLoad( | 
 |                 VT, DL, RHS->getChain(), NewPtr, | 
 |                 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, | 
 |                 RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); | 
 |             DAG.makeEquivalentMemoryOrdering(LHS, Load.getValue(1)); | 
 |             DAG.makeEquivalentMemoryOrdering(RHS, Load.getValue(1)); | 
 |             return Load; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) | 
 |   // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) | 
 |   // iff We know the shift amount is in range. | 
 |   // TODO: when is it worth doing SUB(BW, N2) as well? | 
 |   if (isPowerOf2_32(BitWidth)) { | 
 |     APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); | 
 |     if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) | 
 |       return DAG.getNode(ISD::SRL, DL, VT, N1, N2); | 
 |     if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) | 
 |       return DAG.getNode(ISD::SHL, DL, VT, N0, N2); | 
 |   } | 
 |  | 
 |   // fold (fshl N0, N0, N2) -> (rotl N0, N2) | 
 |   // fold (fshr N0, N0, N2) -> (rotr N0, N2) | 
 |   // TODO: Investigate flipping this rotate if only one is legal. | 
 |   // If funnel shift is legal as well we might be better off avoiding | 
 |   // non-constant (BW - N2). | 
 |   unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; | 
 |   if (N0 == N1 && hasOperation(RotOpc, VT)) | 
 |     return DAG.getNode(RotOpc, DL, VT, N0, N2); | 
 |  | 
 |   // Simplify, based on bits shifted out of N0/N1. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSHLSAT(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (SDValue V = DAG.simplifyShift(N0, N1)) | 
 |     return V; | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT VT = N0.getValueType(); | 
 |  | 
 |   // fold (*shlsat c1, c2) -> c1<<c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   ConstantSDNode *N1C = isConstOrConstSplat(N1); | 
 |  | 
 |   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) { | 
 |     // fold (sshlsat x, c) -> (shl x, c) | 
 |     if (N->getOpcode() == ISD::SSHLSAT && N1C && | 
 |         N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0))) | 
 |       return DAG.getNode(ISD::SHL, DL, VT, N0, N1); | 
 |  | 
 |     // fold (ushlsat x, c) -> (shl x, c) | 
 |     if (N->getOpcode() == ISD::USHLSAT && N1C && | 
 |         N1C->getAPIntValue().ule( | 
 |             DAG.computeKnownBits(N0).countMinLeadingZeros())) | 
 |       return DAG.getNode(ISD::SHL, DL, VT, N0, N1); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Given a ABS node, detect the following patterns: | 
 | // (ABS (SUB (EXTEND a), (EXTEND b))). | 
 | // (TRUNC (ABS (SUB (EXTEND a), (EXTEND b)))). | 
 | // Generates UABD/SABD instruction. | 
 | SDValue DAGCombiner::foldABSToABD(SDNode *N, const SDLoc &DL) { | 
 |   EVT SrcVT = N->getValueType(0); | 
 |  | 
 |   if (N->getOpcode() == ISD::TRUNCATE) | 
 |     N = N->getOperand(0).getNode(); | 
 |  | 
 |   if (N->getOpcode() != ISD::ABS) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue AbsOp1 = N->getOperand(0); | 
 |   SDValue Op0, Op1; | 
 |  | 
 |   if (AbsOp1.getOpcode() != ISD::SUB) | 
 |     return SDValue(); | 
 |  | 
 |   Op0 = AbsOp1.getOperand(0); | 
 |   Op1 = AbsOp1.getOperand(1); | 
 |  | 
 |   unsigned Opc0 = Op0.getOpcode(); | 
 |  | 
 |   // Check if the operands of the sub are (zero|sign)-extended. | 
 |   // TODO: Should we use ValueTracking instead? | 
 |   if (Opc0 != Op1.getOpcode() || | 
 |       (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND && | 
 |        Opc0 != ISD::SIGN_EXTEND_INREG)) { | 
 |     // fold (abs (sub nsw x, y)) -> abds(x, y) | 
 |     // Don't fold this for unsupported types as we lose the NSW handling. | 
 |     if (AbsOp1->getFlags().hasNoSignedWrap() && hasOperation(ISD::ABDS, VT) && | 
 |         TLI.preferABDSToABSWithNSW(VT)) { | 
 |       SDValue ABD = DAG.getNode(ISD::ABDS, DL, VT, Op0, Op1); | 
 |       return DAG.getZExtOrTrunc(ABD, DL, SrcVT); | 
 |     } | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   EVT VT0, VT1; | 
 |   if (Opc0 == ISD::SIGN_EXTEND_INREG) { | 
 |     VT0 = cast<VTSDNode>(Op0.getOperand(1))->getVT(); | 
 |     VT1 = cast<VTSDNode>(Op1.getOperand(1))->getVT(); | 
 |   } else { | 
 |     VT0 = Op0.getOperand(0).getValueType(); | 
 |     VT1 = Op1.getOperand(0).getValueType(); | 
 |   } | 
 |   unsigned ABDOpcode = (Opc0 == ISD::ZERO_EXTEND) ? ISD::ABDU : ISD::ABDS; | 
 |  | 
 |   // fold abs(sext(x) - sext(y)) -> zext(abds(x, y)) | 
 |   // fold abs(zext(x) - zext(y)) -> zext(abdu(x, y)) | 
 |   EVT MaxVT = VT0.bitsGT(VT1) ? VT0 : VT1; | 
 |   if ((VT0 == MaxVT || Op0->hasOneUse()) && | 
 |       (VT1 == MaxVT || Op1->hasOneUse()) && | 
 |       (!LegalTypes || hasOperation(ABDOpcode, MaxVT))) { | 
 |     SDValue ABD = DAG.getNode(ABDOpcode, DL, MaxVT, | 
 |                               DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op0), | 
 |                               DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op1)); | 
 |     ABD = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ABD); | 
 |     return DAG.getZExtOrTrunc(ABD, DL, SrcVT); | 
 |   } | 
 |  | 
 |   // fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y)) | 
 |   // fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y)) | 
 |   if (!LegalOperations || hasOperation(ABDOpcode, VT)) { | 
 |     SDValue ABD = DAG.getNode(ABDOpcode, DL, VT, Op0, Op1); | 
 |     return DAG.getZExtOrTrunc(ABD, DL, SrcVT); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitABS(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (abs c1) -> c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::ABS, DL, VT, {N0})) | 
 |     return C; | 
 |   // fold (abs (abs x)) -> (abs x) | 
 |   if (N0.getOpcode() == ISD::ABS) | 
 |     return N0; | 
 |   // fold (abs x) -> x iff not-negative | 
 |   if (DAG.SignBitIsZero(N0)) | 
 |     return N0; | 
 |  | 
 |   if (SDValue ABD = foldABSToABD(N, DL)) | 
 |     return ABD; | 
 |  | 
 |   // fold (abs (sign_extend_inreg x)) -> (zero_extend (abs (truncate x))) | 
 |   // iff zero_extend/truncate are free. | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
 |     EVT ExtVT = cast<VTSDNode>(N0.getOperand(1))->getVT(); | 
 |     if (TLI.isTruncateFree(VT, ExtVT) && TLI.isZExtFree(ExtVT, VT) && | 
 |         TLI.isTypeDesirableForOp(ISD::ABS, ExtVT) && | 
 |         hasOperation(ISD::ABS, ExtVT)) { | 
 |       return DAG.getNode( | 
 |           ISD::ZERO_EXTEND, DL, VT, | 
 |           DAG.getNode(ISD::ABS, DL, ExtVT, | 
 |                       DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N0.getOperand(0)))); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBSWAP(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (bswap c1) -> c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::BSWAP, DL, VT, {N0})) | 
 |     return C; | 
 |   // fold (bswap (bswap x)) -> x | 
 |   if (N0.getOpcode() == ISD::BSWAP) | 
 |     return N0.getOperand(0); | 
 |  | 
 |   // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse | 
 |   // isn't supported, it will be expanded to bswap followed by a manual reversal | 
 |   // of bits in each byte. By placing bswaps before bitreverse, we can remove | 
 |   // the two bswaps if the bitreverse gets expanded. | 
 |   if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) { | 
 |     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0)); | 
 |     return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap); | 
 |   } | 
 |  | 
 |   // fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2)))))) | 
 |   // iff x >= bw/2 (i.e. lower half is known zero) | 
 |   unsigned BW = VT.getScalarSizeInBits(); | 
 |   if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) { | 
 |     auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |     EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2); | 
 |     if (ShAmt && ShAmt->getAPIntValue().ult(BW) && | 
 |         ShAmt->getZExtValue() >= (BW / 2) && | 
 |         (ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) && | 
 |         TLI.isTruncateFree(VT, HalfVT) && | 
 |         (!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) { | 
 |       SDValue Res = N0.getOperand(0); | 
 |       if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2))) | 
 |         Res = DAG.getNode(ISD::SHL, DL, VT, Res, | 
 |                           DAG.getShiftAmountConstant(NewShAmt, VT, DL)); | 
 |       Res = DAG.getZExtOrTrunc(Res, DL, HalfVT); | 
 |       Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res); | 
 |       return DAG.getZExtOrTrunc(Res, DL, VT); | 
 |     } | 
 |   } | 
 |  | 
 |   // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as | 
 |   // inverse-shift-of-bswap: | 
 |   // bswap (X u<< C) --> (bswap X) u>> C | 
 |   // bswap (X u>> C) --> (bswap X) u<< C | 
 |   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && | 
 |       N0.hasOneUse()) { | 
 |     auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
 |     if (ShAmt && ShAmt->getAPIntValue().ult(BW) && | 
 |         ShAmt->getZExtValue() % 8 == 0) { | 
 |       SDValue NewSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0)); | 
 |       unsigned InverseShift = N0.getOpcode() == ISD::SHL ? ISD::SRL : ISD::SHL; | 
 |       return DAG.getNode(InverseShift, DL, VT, NewSwap, N0.getOperand(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = foldBitOrderCrossLogicOp(N, DAG)) | 
 |     return V; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (bitreverse c1) -> c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::BITREVERSE, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // fold (bitreverse (bitreverse x)) -> x | 
 |   if (N0.getOpcode() == ISD::BITREVERSE) | 
 |     return N0.getOperand(0); | 
 |  | 
 |   SDValue X, Y; | 
 |  | 
 |   // fold (bitreverse (lshr (bitreverse x), y)) -> (shl x, y) | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && | 
 |       sd_match(N, m_BitReverse(m_Srl(m_BitReverse(m_Value(X)), m_Value(Y))))) | 
 |     return DAG.getNode(ISD::SHL, DL, VT, X, Y); | 
 |  | 
 |   // fold (bitreverse (shl (bitreverse x), y)) -> (lshr x, y) | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::SRL, VT)) && | 
 |       sd_match(N, m_BitReverse(m_Shl(m_BitReverse(m_Value(X)), m_Value(Y))))) | 
 |     return DAG.getNode(ISD::SRL, DL, VT, X, Y); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitCTLZ(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (ctlz c1) -> c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTLZ, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // If the value is known never to be zero, switch to the undef version. | 
 |   if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) | 
 |     if (DAG.isKnownNeverZero(N0)) | 
 |       return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, N0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (ctlz_zero_undef c1) -> c2 | 
 |   if (SDValue C = | 
 |           DAG.FoldConstantArithmetic(ISD::CTLZ_ZERO_UNDEF, DL, VT, {N0})) | 
 |     return C; | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitCTTZ(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (cttz c1) -> c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTTZ, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // If the value is known never to be zero, switch to the undef version. | 
 |   if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) | 
 |     if (DAG.isKnownNeverZero(N0)) | 
 |       return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, DL, VT, N0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (cttz_zero_undef c1) -> c2 | 
 |   if (SDValue C = | 
 |           DAG.FoldConstantArithmetic(ISD::CTTZ_ZERO_UNDEF, DL, VT, {N0})) | 
 |     return C; | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitCTPOP(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned NumBits = VT.getScalarSizeInBits(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (ctpop c1) -> c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTPOP, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // If the source is being shifted, but doesn't affect any active bits, | 
 |   // then we can call CTPOP on the shift source directly. | 
 |   if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SHL) { | 
 |     if (ConstantSDNode *AmtC = isConstOrConstSplat(N0.getOperand(1))) { | 
 |       const APInt &Amt = AmtC->getAPIntValue(); | 
 |       if (Amt.ult(NumBits)) { | 
 |         KnownBits KnownSrc = DAG.computeKnownBits(N0.getOperand(0)); | 
 |         if ((N0.getOpcode() == ISD::SRL && | 
 |              Amt.ule(KnownSrc.countMinTrailingZeros())) || | 
 |             (N0.getOpcode() == ISD::SHL && | 
 |              Amt.ule(KnownSrc.countMinLeadingZeros()))) { | 
 |           return DAG.getNode(ISD::CTPOP, DL, VT, N0.getOperand(0)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If the upper bits are known to be zero, then see if its profitable to | 
 |   // only count the lower bits. | 
 |   if (VT.isScalarInteger() && NumBits > 8 && (NumBits & 1) == 0) { | 
 |     EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), NumBits / 2); | 
 |     if (hasOperation(ISD::CTPOP, HalfVT) && | 
 |         TLI.isTypeDesirableForOp(ISD::CTPOP, HalfVT) && | 
 |         TLI.isTruncateFree(N0, HalfVT) && TLI.isZExtFree(HalfVT, VT)) { | 
 |       APInt UpperBits = APInt::getHighBitsSet(NumBits, NumBits / 2); | 
 |       if (DAG.MaskedValueIsZero(N0, UpperBits)) { | 
 |         SDValue PopCnt = DAG.getNode(ISD::CTPOP, DL, HalfVT, | 
 |                                      DAG.getZExtOrTrunc(N0, DL, HalfVT)); | 
 |         return DAG.getZExtOrTrunc(PopCnt, DL, VT); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, | 
 |                                          SDValue RHS, const SDNodeFlags Flags, | 
 |                                          const TargetLowering &TLI) { | 
 |   EVT VT = LHS.getValueType(); | 
 |   if (!VT.isFloatingPoint()) | 
 |     return false; | 
 |  | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |  | 
 |   return (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) && | 
 |          TLI.isProfitableToCombineMinNumMaxNum(VT) && | 
 |          (Flags.hasNoNaNs() || | 
 |           (DAG.isKnownNeverNaN(RHS) && DAG.isKnownNeverNaN(LHS))); | 
 | } | 
 |  | 
 | static SDValue combineMinNumMaxNumImpl(const SDLoc &DL, EVT VT, SDValue LHS, | 
 |                                        SDValue RHS, SDValue True, SDValue False, | 
 |                                        ISD::CondCode CC, | 
 |                                        const TargetLowering &TLI, | 
 |                                        SelectionDAG &DAG) { | 
 |   EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); | 
 |   switch (CC) { | 
 |   case ISD::SETOLT: | 
 |   case ISD::SETOLE: | 
 |   case ISD::SETLT: | 
 |   case ISD::SETLE: | 
 |   case ISD::SETULT: | 
 |   case ISD::SETULE: { | 
 |     // Since it's known never nan to get here already, either fminnum or | 
 |     // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is | 
 |     // expanded in terms of it. | 
 |     unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; | 
 |     if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) | 
 |       return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); | 
 |  | 
 |     unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; | 
 |     if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) | 
 |       return DAG.getNode(Opcode, DL, VT, LHS, RHS); | 
 |     return SDValue(); | 
 |   } | 
 |   case ISD::SETOGT: | 
 |   case ISD::SETOGE: | 
 |   case ISD::SETGT: | 
 |   case ISD::SETGE: | 
 |   case ISD::SETUGT: | 
 |   case ISD::SETUGE: { | 
 |     unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; | 
 |     if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) | 
 |       return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); | 
 |  | 
 |     unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; | 
 |     if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) | 
 |       return DAG.getNode(Opcode, DL, VT, LHS, RHS); | 
 |     return SDValue(); | 
 |   } | 
 |   default: | 
 |     return SDValue(); | 
 |   } | 
 | } | 
 |  | 
 | SDValue DAGCombiner::foldShiftToAvg(SDNode *N) { | 
 |   const unsigned Opcode = N->getOpcode(); | 
 |  | 
 |   // Convert (sr[al] (add n[su]w x, y)) -> (avgfloor[su] x, y) | 
 |   if (Opcode != ISD::SRA && Opcode != ISD::SRL) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned FloorISD = 0; | 
 |   auto VT = N->getValueType(0); | 
 |   bool IsUnsigned = false; | 
 |  | 
 |   // Decide wether signed or unsigned. | 
 |   switch (Opcode) { | 
 |   case ISD::SRA: | 
 |     if (!hasOperation(ISD::AVGFLOORS, VT)) | 
 |       return SDValue(); | 
 |     FloorISD = ISD::AVGFLOORS; | 
 |     break; | 
 |   case ISD::SRL: | 
 |     IsUnsigned = true; | 
 |     if (!hasOperation(ISD::AVGFLOORU, VT)) | 
 |       return SDValue(); | 
 |     FloorISD = ISD::AVGFLOORU; | 
 |     break; | 
 |   default: | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   // Captured values. | 
 |   SDValue A, B, Add; | 
 |  | 
 |   // Match floor average as it is common to both floor/ceil avgs. | 
 |   if (!sd_match(N, m_BinOp(Opcode, | 
 |                            m_AllOf(m_Value(Add), m_Add(m_Value(A), m_Value(B))), | 
 |                            m_One()))) | 
 |     return SDValue(); | 
 |  | 
 |   // Can't optimize adds that may wrap. | 
 |   if (IsUnsigned && !Add->getFlags().hasNoUnsignedWrap()) | 
 |     return SDValue(); | 
 |  | 
 |   if (!IsUnsigned && !Add->getFlags().hasNoSignedWrap()) | 
 |     return SDValue(); | 
 |  | 
 |   return DAG.getNode(FloorISD, SDLoc(N), N->getValueType(0), {A, B}); | 
 | } | 
 |  | 
 | /// Generate Min/Max node | 
 | SDValue DAGCombiner::combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, | 
 |                                          SDValue RHS, SDValue True, | 
 |                                          SDValue False, ISD::CondCode CC) { | 
 |   if ((LHS == True && RHS == False) || (LHS == False && RHS == True)) | 
 |     return combineMinNumMaxNumImpl(DL, VT, LHS, RHS, True, False, CC, TLI, DAG); | 
 |  | 
 |   // If we can't directly match this, try to see if we can pull an fneg out of | 
 |   // the select. | 
 |   SDValue NegTrue = TLI.getCheaperOrNeutralNegatedExpression( | 
 |       True, DAG, LegalOperations, ForCodeSize); | 
 |   if (!NegTrue) | 
 |     return SDValue(); | 
 |  | 
 |   HandleSDNode NegTrueHandle(NegTrue); | 
 |  | 
 |   // Try to unfold an fneg from the select if we are comparing the negated | 
 |   // constant. | 
 |   // | 
 |   // select (setcc x, K) (fneg x), -K -> fneg(minnum(x, K)) | 
 |   // | 
 |   // TODO: Handle fabs | 
 |   if (LHS == NegTrue) { | 
 |     // If we can't directly match this, try to see if we can pull an fneg out of | 
 |     // the select. | 
 |     SDValue NegRHS = TLI.getCheaperOrNeutralNegatedExpression( | 
 |         RHS, DAG, LegalOperations, ForCodeSize); | 
 |     if (NegRHS) { | 
 |       HandleSDNode NegRHSHandle(NegRHS); | 
 |       if (NegRHS == False) { | 
 |         SDValue Combined = combineMinNumMaxNumImpl(DL, VT, LHS, RHS, NegTrue, | 
 |                                                    False, CC, TLI, DAG); | 
 |         if (Combined) | 
 |           return DAG.getNode(ISD::FNEG, DL, VT, Combined); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If a (v)select has a condition value that is a sign-bit test, try to smear | 
 | /// the condition operand sign-bit across the value width and use it as a mask. | 
 | static SDValue foldSelectOfConstantsUsingSra(SDNode *N, const SDLoc &DL, | 
 |                                              SelectionDAG &DAG) { | 
 |   SDValue Cond = N->getOperand(0); | 
 |   SDValue C1 = N->getOperand(1); | 
 |   SDValue C2 = N->getOperand(2); | 
 |   if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2)) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || | 
 |       VT != Cond.getOperand(0).getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   // The inverted-condition + commuted-select variants of these patterns are | 
 |   // canonicalized to these forms in IR. | 
 |   SDValue X = Cond.getOperand(0); | 
 |   SDValue CondC = Cond.getOperand(1); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
 |   if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && | 
 |       isAllOnesOrAllOnesSplat(C2)) { | 
 |     // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 | 
 |     SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); | 
 |     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); | 
 |     return DAG.getNode(ISD::OR, DL, VT, Sra, C1); | 
 |   } | 
 |   if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { | 
 |     // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 | 
 |     SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); | 
 |     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); | 
 |     return DAG.getNode(ISD::AND, DL, VT, Sra, C1); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static bool shouldConvertSelectOfConstantsToMath(const SDValue &Cond, EVT VT, | 
 |                                                  const TargetLowering &TLI) { | 
 |   if (!TLI.convertSelectOfConstantsToMath(VT)) | 
 |     return false; | 
 |  | 
 |   if (Cond.getOpcode() != ISD::SETCC || !Cond->hasOneUse()) | 
 |     return true; | 
 |   if (!TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) | 
 |     return true; | 
 |  | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
 |   if (CC == ISD::SETLT && isNullOrNullSplat(Cond.getOperand(1))) | 
 |     return true; | 
 |   if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond.getOperand(1))) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { | 
 |   SDValue Cond = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT CondVT = Cond.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (!VT.isInteger()) | 
 |     return SDValue(); | 
 |  | 
 |   auto *C1 = dyn_cast<ConstantSDNode>(N1); | 
 |   auto *C2 = dyn_cast<ConstantSDNode>(N2); | 
 |   if (!C1 || !C2) | 
 |     return SDValue(); | 
 |  | 
 |   if (CondVT != MVT::i1 || LegalOperations) { | 
 |     // fold (select Cond, 0, 1) -> (xor Cond, 1) | 
 |     // We can't do this reliably if integer based booleans have different contents | 
 |     // to floating point based booleans. This is because we can't tell whether we | 
 |     // have an integer-based boolean or a floating-point-based boolean unless we | 
 |     // can find the SETCC that produced it and inspect its operands. This is | 
 |     // fairly easy if C is the SETCC node, but it can potentially be | 
 |     // undiscoverable (or not reasonably discoverable). For example, it could be | 
 |     // in another basic block or it could require searching a complicated | 
 |     // expression. | 
 |     if (CondVT.isInteger() && | 
 |         TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == | 
 |             TargetLowering::ZeroOrOneBooleanContent && | 
 |         TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == | 
 |             TargetLowering::ZeroOrOneBooleanContent && | 
 |         C1->isZero() && C2->isOne()) { | 
 |       SDValue NotCond = | 
 |           DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); | 
 |       if (VT.bitsEq(CondVT)) | 
 |         return NotCond; | 
 |       return DAG.getZExtOrTrunc(NotCond, DL, VT); | 
 |     } | 
 |  | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   // Only do this before legalization to avoid conflicting with target-specific | 
 |   // transforms in the other direction (create a select from a zext/sext). There | 
 |   // is also a target-independent combine here in DAGCombiner in the other | 
 |   // direction for (select Cond, -1, 0) when the condition is not i1. | 
 |   assert(CondVT == MVT::i1 && !LegalOperations); | 
 |  | 
 |   // select Cond, 1, 0 --> zext (Cond) | 
 |   if (C1->isOne() && C2->isZero()) | 
 |     return DAG.getZExtOrTrunc(Cond, DL, VT); | 
 |  | 
 |   // select Cond, -1, 0 --> sext (Cond) | 
 |   if (C1->isAllOnes() && C2->isZero()) | 
 |     return DAG.getSExtOrTrunc(Cond, DL, VT); | 
 |  | 
 |   // select Cond, 0, 1 --> zext (!Cond) | 
 |   if (C1->isZero() && C2->isOne()) { | 
 |     SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | 
 |     NotCond = DAG.getZExtOrTrunc(NotCond, DL, VT); | 
 |     return NotCond; | 
 |   } | 
 |  | 
 |   // select Cond, 0, -1 --> sext (!Cond) | 
 |   if (C1->isZero() && C2->isAllOnes()) { | 
 |     SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | 
 |     NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT); | 
 |     return NotCond; | 
 |   } | 
 |  | 
 |   // Use a target hook because some targets may prefer to transform in the | 
 |   // other direction. | 
 |   if (!shouldConvertSelectOfConstantsToMath(Cond, VT, TLI)) | 
 |     return SDValue(); | 
 |  | 
 |   // For any constants that differ by 1, we can transform the select into | 
 |   // an extend and add. | 
 |   const APInt &C1Val = C1->getAPIntValue(); | 
 |   const APInt &C2Val = C2->getAPIntValue(); | 
 |  | 
 |   // select Cond, C1, C1-1 --> add (zext Cond), C1-1 | 
 |   if (C1Val - 1 == C2Val) { | 
 |     Cond = DAG.getZExtOrTrunc(Cond, DL, VT); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); | 
 |   } | 
 |  | 
 |   // select Cond, C1, C1+1 --> add (sext Cond), C1+1 | 
 |   if (C1Val + 1 == C2Val) { | 
 |     Cond = DAG.getSExtOrTrunc(Cond, DL, VT); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); | 
 |   } | 
 |  | 
 |   // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) | 
 |   if (C1Val.isPowerOf2() && C2Val.isZero()) { | 
 |     Cond = DAG.getZExtOrTrunc(Cond, DL, VT); | 
 |     SDValue ShAmtC = | 
 |         DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL); | 
 |     return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); | 
 |   } | 
 |  | 
 |   // select Cond, -1, C --> or (sext Cond), C | 
 |   if (C1->isAllOnes()) { | 
 |     Cond = DAG.getSExtOrTrunc(Cond, DL, VT); | 
 |     return DAG.getNode(ISD::OR, DL, VT, Cond, N2); | 
 |   } | 
 |  | 
 |   // select Cond, C, -1 --> or (sext (not Cond)), C | 
 |   if (C2->isAllOnes()) { | 
 |     SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); | 
 |     NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT); | 
 |     return DAG.getNode(ISD::OR, DL, VT, NotCond, N1); | 
 |   } | 
 |  | 
 |   if (SDValue V = foldSelectOfConstantsUsingSra(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | template <class MatchContextClass> | 
 | static SDValue foldBoolSelectToLogic(SDNode *N, const SDLoc &DL, | 
 |                                      SelectionDAG &DAG) { | 
 |   assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT || | 
 |           N->getOpcode() == ISD::VP_SELECT) && | 
 |          "Expected a (v)(vp.)select"); | 
 |   SDValue Cond = N->getOperand(0); | 
 |   SDValue T = N->getOperand(1), F = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   MatchContextClass matcher(DAG, TLI, N); | 
 |  | 
 |   if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1) | 
 |     return SDValue(); | 
 |  | 
 |   // select Cond, Cond, F --> or Cond, freeze(F) | 
 |   // select Cond, 1, F    --> or Cond, freeze(F) | 
 |   if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true)) | 
 |     return matcher.getNode(ISD::OR, DL, VT, Cond, DAG.getFreeze(F)); | 
 |  | 
 |   // select Cond, T, Cond --> and Cond, freeze(T) | 
 |   // select Cond, T, 0    --> and Cond, freeze(T) | 
 |   if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true)) | 
 |     return matcher.getNode(ISD::AND, DL, VT, Cond, DAG.getFreeze(T)); | 
 |  | 
 |   // select Cond, T, 1 --> or (not Cond), freeze(T) | 
 |   if (isOneOrOneSplat(F, /* AllowUndefs */ true)) { | 
 |     SDValue NotCond = | 
 |         matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT)); | 
 |     return matcher.getNode(ISD::OR, DL, VT, NotCond, DAG.getFreeze(T)); | 
 |   } | 
 |  | 
 |   // select Cond, 0, F --> and (not Cond), freeze(F) | 
 |   if (isNullOrNullSplat(T, /* AllowUndefs */ true)) { | 
 |     SDValue NotCond = | 
 |         matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT)); | 
 |     return matcher.getNode(ISD::AND, DL, VT, NotCond, DAG.getFreeze(F)); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   SDValue Cond0, Cond1; | 
 |   ISD::CondCode CC; | 
 |   if (!sd_match(N0, m_OneUse(m_SetCC(m_Value(Cond0), m_Value(Cond1), | 
 |                                      m_CondCode(CC)))) || | 
 |       VT != Cond0.getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the | 
 |   // compare is inverted from that pattern ("Cond0 s> -1"). | 
 |   if (CC == ISD::SETLT && isNullOrNullSplat(Cond1)) | 
 |     ; // This is the pattern we are looking for. | 
 |   else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1)) | 
 |     std::swap(N1, N2); | 
 |   else | 
 |     return SDValue(); | 
 |  | 
 |   // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & freeze(N1) | 
 |   if (isNullOrNullSplat(N2)) { | 
 |     SDLoc DL(N); | 
 |     SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL); | 
 |     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); | 
 |     return DAG.getNode(ISD::AND, DL, VT, Sra, DAG.getFreeze(N1)); | 
 |   } | 
 |  | 
 |   // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | freeze(N2) | 
 |   if (isAllOnesOrAllOnesSplat(N1)) { | 
 |     SDLoc DL(N); | 
 |     SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL); | 
 |     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); | 
 |     return DAG.getNode(ISD::OR, DL, VT, Sra, DAG.getFreeze(N2)); | 
 |   } | 
 |  | 
 |   // If we have to invert the sign bit mask, only do that transform if the | 
 |   // target has a bitwise 'and not' instruction (the invert is free). | 
 |   // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & freeze(N2) | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) { | 
 |     SDLoc DL(N); | 
 |     SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL); | 
 |     SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt); | 
 |     SDValue Not = DAG.getNOT(DL, Sra, VT); | 
 |     return DAG.getNode(ISD::AND, DL, VT, Not, DAG.getFreeze(N2)); | 
 |   } | 
 |  | 
 |   // TODO: There's another pattern in this family, but it may require | 
 |   //       implementing hasOrNot() to check for profitability: | 
 |   //       (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | freeze(N2) | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Match SELECTs with absolute difference patterns. | 
 | // (select (setcc a, b, set?gt), (sub a, b), (sub b, a)) --> (abd? a, b) | 
 | // (select (setcc a, b, set?ge), (sub a, b), (sub b, a)) --> (abd? a, b) | 
 | // (select (setcc a, b, set?lt), (sub b, a), (sub a, b)) --> (abd? a, b) | 
 | // (select (setcc a, b, set?le), (sub b, a), (sub a, b)) --> (abd? a, b) | 
 | SDValue DAGCombiner::foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True, | 
 |                                      SDValue False, ISD::CondCode CC, | 
 |                                      const SDLoc &DL) { | 
 |   bool IsSigned = isSignedIntSetCC(CC); | 
 |   unsigned ABDOpc = IsSigned ? ISD::ABDS : ISD::ABDU; | 
 |   EVT VT = LHS.getValueType(); | 
 |  | 
 |   if (LegalOperations && !hasOperation(ABDOpc, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   switch (CC) { | 
 |   case ISD::SETGT: | 
 |   case ISD::SETGE: | 
 |   case ISD::SETUGT: | 
 |   case ISD::SETUGE: | 
 |     if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) && | 
 |         sd_match(False, m_Sub(m_Specific(RHS), m_Specific(LHS)))) | 
 |       return DAG.getNode(ABDOpc, DL, VT, LHS, RHS); | 
 |     if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) && | 
 |         sd_match(False, m_Sub(m_Specific(LHS), m_Specific(RHS))) && | 
 |         hasOperation(ABDOpc, VT)) | 
 |       return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT); | 
 |     break; | 
 |   case ISD::SETLT: | 
 |   case ISD::SETLE: | 
 |   case ISD::SETULT: | 
 |   case ISD::SETULE: | 
 |     if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) && | 
 |         sd_match(False, m_Sub(m_Specific(LHS), m_Specific(RHS)))) | 
 |       return DAG.getNode(ABDOpc, DL, VT, LHS, RHS); | 
 |     if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) && | 
 |         sd_match(False, m_Sub(m_Specific(RHS), m_Specific(LHS))) && | 
 |         hasOperation(ABDOpc, VT)) | 
 |       return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT); | 
 |     break; | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSELECT(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT VT0 = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |   SDNodeFlags Flags = N->getFlags(); | 
 |  | 
 |   if (SDValue V = DAG.simplifySelect(N0, N1, N2)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldBoolSelectToLogic<EmptyMatchContext>(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   // select (not Cond), N1, N2 -> select Cond, N2, N1 | 
 |   if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { | 
 |     SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); | 
 |     SelectOp->setFlags(Flags); | 
 |     return SelectOp; | 
 |   } | 
 |  | 
 |   if (SDValue V = foldSelectOfConstants(N)) | 
 |     return V; | 
 |  | 
 |   // If we can fold this based on the true/false value, do so. | 
 |   if (SimplifySelectOps(N, N1, N2)) | 
 |     return SDValue(N, 0); // Don't revisit N. | 
 |  | 
 |   if (VT0 == MVT::i1) { | 
 |     // The code in this block deals with the following 2 equivalences: | 
 |     //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) | 
 |     //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) | 
 |     // The target can specify its preferred form with the | 
 |     // shouldNormalizeToSelectSequence() callback. However we always transform | 
 |     // to the right anyway if we find the inner select exists in the DAG anyway | 
 |     // and we always transform to the left side if we know that we can further | 
 |     // optimize the combination of the conditions. | 
 |     bool normalizeToSequence = | 
 |         TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); | 
 |     // select (and Cond0, Cond1), X, Y | 
 |     //   -> select Cond0, (select Cond1, X, Y), Y | 
 |     if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { | 
 |       SDValue Cond0 = N0->getOperand(0); | 
 |       SDValue Cond1 = N0->getOperand(1); | 
 |       SDValue InnerSelect = | 
 |           DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); | 
 |       if (normalizeToSequence || !InnerSelect.use_empty()) | 
 |         return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, | 
 |                            InnerSelect, N2, Flags); | 
 |       // Cleanup on failure. | 
 |       if (InnerSelect.use_empty()) | 
 |         recursivelyDeleteUnusedNodes(InnerSelect.getNode()); | 
 |     } | 
 |     // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) | 
 |     if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { | 
 |       SDValue Cond0 = N0->getOperand(0); | 
 |       SDValue Cond1 = N0->getOperand(1); | 
 |       SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), | 
 |                                         Cond1, N1, N2, Flags); | 
 |       if (normalizeToSequence || !InnerSelect.use_empty()) | 
 |         return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, | 
 |                            InnerSelect, Flags); | 
 |       // Cleanup on failure. | 
 |       if (InnerSelect.use_empty()) | 
 |         recursivelyDeleteUnusedNodes(InnerSelect.getNode()); | 
 |     } | 
 |  | 
 |     // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y | 
 |     if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { | 
 |       SDValue N1_0 = N1->getOperand(0); | 
 |       SDValue N1_1 = N1->getOperand(1); | 
 |       SDValue N1_2 = N1->getOperand(2); | 
 |       if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { | 
 |         // Create the actual and node if we can generate good code for it. | 
 |         if (!normalizeToSequence) { | 
 |           SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); | 
 |           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, | 
 |                              N2, Flags); | 
 |         } | 
 |         // Otherwise see if we can optimize the "and" to a better pattern. | 
 |         if (SDValue Combined = visitANDLike(N0, N1_0, N)) { | 
 |           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, | 
 |                              N2, Flags); | 
 |         } | 
 |       } | 
 |     } | 
 |     // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y | 
 |     if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { | 
 |       SDValue N2_0 = N2->getOperand(0); | 
 |       SDValue N2_1 = N2->getOperand(1); | 
 |       SDValue N2_2 = N2->getOperand(2); | 
 |       if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { | 
 |         // Create the actual or node if we can generate good code for it. | 
 |         if (!normalizeToSequence) { | 
 |           SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); | 
 |           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, | 
 |                              N2_2, Flags); | 
 |         } | 
 |         // Otherwise see if we can optimize to a better pattern. | 
 |         if (SDValue Combined = visitORLike(N0, N2_0, DL)) | 
 |           return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, | 
 |                              N2_2, Flags); | 
 |       } | 
 |     } | 
 |  | 
 |     // select usubo(x, y).overflow, (sub y, x), (usubo x, y) -> abdu(x, y) | 
 |     if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 && | 
 |         N2.getNode() == N0.getNode() && N2.getResNo() == 0 && | 
 |         N1.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) && | 
 |         N2.getOperand(1) == N1.getOperand(0) && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT))) | 
 |       return DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1)); | 
 |  | 
 |     // select usubo(x, y).overflow, (usubo x, y), (sub y, x) -> neg (abdu x, y) | 
 |     if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 && | 
 |         N1.getNode() == N0.getNode() && N1.getResNo() == 0 && | 
 |         N2.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) && | 
 |         N2.getOperand(1) == N1.getOperand(0) && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT))) | 
 |       return DAG.getNegative( | 
 |           DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1)), | 
 |           DL, VT); | 
 |   } | 
 |  | 
 |   // Fold selects based on a setcc into other things, such as min/max/abs. | 
 |   if (N0.getOpcode() == ISD::SETCC) { | 
 |     SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); | 
 |     ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
 |  | 
 |     // select (fcmp lt x, y), x, y -> fminnum x, y | 
 |     // select (fcmp gt x, y), x, y -> fmaxnum x, y | 
 |     // | 
 |     // This is OK if we don't care what happens if either operand is a NaN. | 
 |     if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, Flags, TLI)) | 
 |       if (SDValue FMinMax = | 
 |               combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, CC)) | 
 |         return FMinMax; | 
 |  | 
 |     // Use 'unsigned add with overflow' to optimize an unsigned saturating add. | 
 |     // This is conservatively limited to pre-legal-operations to give targets | 
 |     // a chance to reverse the transform if they want to do that. Also, it is | 
 |     // unlikely that the pattern would be formed late, so it's probably not | 
 |     // worth going through the other checks. | 
 |     if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && | 
 |         CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && | 
 |         N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { | 
 |       auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); | 
 |       auto *NotC = dyn_cast<ConstantSDNode>(Cond1); | 
 |       if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { | 
 |         // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> | 
 |         // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 | 
 |         // | 
 |         // The IR equivalent of this transform would have this form: | 
 |         //   %a = add %x, C | 
 |         //   %c = icmp ugt %x, ~C | 
 |         //   %r = select %c, -1, %a | 
 |         //   => | 
 |         //   %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) | 
 |         //   %u0 = extractvalue %u, 0 | 
 |         //   %u1 = extractvalue %u, 1 | 
 |         //   %r = select %u1, -1, %u0 | 
 |         SDVTList VTs = DAG.getVTList(VT, VT0); | 
 |         SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); | 
 |         return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); | 
 |       } | 
 |     } | 
 |  | 
 |     if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || | 
 |         (!LegalOperations && | 
 |          TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { | 
 |       // Any flags available in a select/setcc fold will be on the setcc as they | 
 |       // migrated from fcmp | 
 |       Flags = N0->getFlags(); | 
 |       SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, | 
 |                                        N2, N0.getOperand(2)); | 
 |       SelectNode->setFlags(Flags); | 
 |       return SelectNode; | 
 |     } | 
 |  | 
 |     if (SDValue ABD = foldSelectToABD(Cond0, Cond1, N1, N2, CC, DL)) | 
 |       return ABD; | 
 |  | 
 |     if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2)) | 
 |       return NewSel; | 
 |  | 
 |     // (select (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x) | 
 |     // (select (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C)) | 
 |     APInt C; | 
 |     if (sd_match(Cond1, m_ConstInt(C)) && hasUMin(VT)) { | 
 |       if ((CC == ISD::SETUGT && Cond0 == N2 && | 
 |            sd_match(N1, m_Add(m_Specific(N2), m_SpecificInt(~C)))) || | 
 |           (CC == ISD::SETULT && Cond0 == N1 && | 
 |            sd_match(N2, m_Add(m_Specific(N1), m_SpecificInt(-C))))) | 
 |         return DAG.getNode(ISD::UMIN, DL, VT, N1, N2); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!VT.isVector()) | 
 |     if (SDValue BinOp = foldSelectOfBinops(N)) | 
 |       return BinOp; | 
 |  | 
 |   if (SDValue R = combineSelectAsExtAnd(N0, N1, N2, DL, DAG)) | 
 |     return R; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // This function assumes all the vselect's arguments are CONCAT_VECTOR | 
 | // nodes and that the condition is a BV of ConstantSDNodes (or undefs). | 
 | static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { | 
 |   SDLoc DL(N); | 
 |   SDValue Cond = N->getOperand(0); | 
 |   SDValue LHS = N->getOperand(1); | 
 |   SDValue RHS = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   int NumElems = VT.getVectorNumElements(); | 
 |   assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && | 
 |          RHS.getOpcode() == ISD::CONCAT_VECTORS && | 
 |          Cond.getOpcode() == ISD::BUILD_VECTOR); | 
 |  | 
 |   // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about | 
 |   // binary ones here. | 
 |   if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) | 
 |     return SDValue(); | 
 |  | 
 |   // We're sure we have an even number of elements due to the | 
 |   // concat_vectors we have as arguments to vselect. | 
 |   // Skip BV elements until we find one that's not an UNDEF | 
 |   // After we find an UNDEF element, keep looping until we get to half the | 
 |   // length of the BV and see if all the non-undef nodes are the same. | 
 |   ConstantSDNode *BottomHalf = nullptr; | 
 |   for (int i = 0; i < NumElems / 2; ++i) { | 
 |     if (Cond->getOperand(i)->isUndef()) | 
 |       continue; | 
 |  | 
 |     if (BottomHalf == nullptr) | 
 |       BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | 
 |     else if (Cond->getOperand(i).getNode() != BottomHalf) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // Do the same for the second half of the BuildVector | 
 |   ConstantSDNode *TopHalf = nullptr; | 
 |   for (int i = NumElems / 2; i < NumElems; ++i) { | 
 |     if (Cond->getOperand(i)->isUndef()) | 
 |       continue; | 
 |  | 
 |     if (TopHalf == nullptr) | 
 |       TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); | 
 |     else if (Cond->getOperand(i).getNode() != TopHalf) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   assert(TopHalf && BottomHalf && | 
 |          "One half of the selector was all UNDEFs and the other was all the " | 
 |          "same value. This should have been addressed before this function."); | 
 |   return DAG.getNode( | 
 |       ISD::CONCAT_VECTORS, DL, VT, | 
 |       BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0), | 
 |       TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1)); | 
 | } | 
 |  | 
 | bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled, | 
 |                        SelectionDAG &DAG, const SDLoc &DL) { | 
 |  | 
 |   // Only perform the transformation when existing operands can be reused. | 
 |   if (IndexIsScaled) | 
 |     return false; | 
 |  | 
 |   if (!isNullConstant(BasePtr) && !Index.hasOneUse()) | 
 |     return false; | 
 |  | 
 |   EVT VT = BasePtr.getValueType(); | 
 |  | 
 |   if (SDValue SplatVal = DAG.getSplatValue(Index); | 
 |       SplatVal && !isNullConstant(SplatVal) && | 
 |       SplatVal.getValueType() == VT) { | 
 |     BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal); | 
 |     Index = DAG.getSplat(Index.getValueType(), DL, DAG.getConstant(0, DL, VT)); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Index.getOpcode() != ISD::ADD) | 
 |     return false; | 
 |  | 
 |   if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(0)); | 
 |       SplatVal && SplatVal.getValueType() == VT) { | 
 |     BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal); | 
 |     Index = Index.getOperand(1); | 
 |     return true; | 
 |   } | 
 |   if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(1)); | 
 |       SplatVal && SplatVal.getValueType() == VT) { | 
 |     BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal); | 
 |     Index = Index.getOperand(0); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Fold sext/zext of index into index type. | 
 | bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT, | 
 |                      SelectionDAG &DAG) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |  | 
 |   // It's always safe to look through zero extends. | 
 |   if (Index.getOpcode() == ISD::ZERO_EXTEND) { | 
 |     if (TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) { | 
 |       IndexType = ISD::UNSIGNED_SCALED; | 
 |       Index = Index.getOperand(0); | 
 |       return true; | 
 |     } | 
 |     if (ISD::isIndexTypeSigned(IndexType)) { | 
 |       IndexType = ISD::UNSIGNED_SCALED; | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // It's only safe to look through sign extends when Index is signed. | 
 |   if (Index.getOpcode() == ISD::SIGN_EXTEND && | 
 |       ISD::isIndexTypeSigned(IndexType) && | 
 |       TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) { | 
 |     Index = Index.getOperand(0); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVPSCATTER(SDNode *N) { | 
 |   VPScatterSDNode *MSC = cast<VPScatterSDNode>(N); | 
 |   SDValue Mask = MSC->getMask(); | 
 |   SDValue Chain = MSC->getChain(); | 
 |   SDValue Index = MSC->getIndex(); | 
 |   SDValue Scale = MSC->getScale(); | 
 |   SDValue StoreVal = MSC->getValue(); | 
 |   SDValue BasePtr = MSC->getBasePtr(); | 
 |   SDValue VL = MSC->getVectorLength(); | 
 |   ISD::MemIndexType IndexType = MSC->getIndexType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Zap scatters with a zero mask. | 
 |   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) | 
 |     return Chain; | 
 |  | 
 |   if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) { | 
 |     SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL}; | 
 |     return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), | 
 |                             DL, Ops, MSC->getMemOperand(), IndexType); | 
 |   } | 
 |  | 
 |   if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) { | 
 |     SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL}; | 
 |     return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), | 
 |                             DL, Ops, MSC->getMemOperand(), IndexType); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMSCATTER(SDNode *N) { | 
 |   MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); | 
 |   SDValue Mask = MSC->getMask(); | 
 |   SDValue Chain = MSC->getChain(); | 
 |   SDValue Index = MSC->getIndex(); | 
 |   SDValue Scale = MSC->getScale(); | 
 |   SDValue StoreVal = MSC->getValue(); | 
 |   SDValue BasePtr = MSC->getBasePtr(); | 
 |   ISD::MemIndexType IndexType = MSC->getIndexType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Zap scatters with a zero mask. | 
 |   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) | 
 |     return Chain; | 
 |  | 
 |   if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) { | 
 |     SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; | 
 |     return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), | 
 |                                 DL, Ops, MSC->getMemOperand(), IndexType, | 
 |                                 MSC->isTruncatingStore()); | 
 |   } | 
 |  | 
 |   if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) { | 
 |     SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; | 
 |     return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), | 
 |                                 DL, Ops, MSC->getMemOperand(), IndexType, | 
 |                                 MSC->isTruncatingStore()); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMSTORE(SDNode *N) { | 
 |   MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); | 
 |   SDValue Mask = MST->getMask(); | 
 |   SDValue Chain = MST->getChain(); | 
 |   SDValue Value = MST->getValue(); | 
 |   SDValue Ptr = MST->getBasePtr(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Zap masked stores with a zero mask. | 
 |   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) | 
 |     return Chain; | 
 |  | 
 |   // Remove a masked store if base pointers and masks are equal. | 
 |   if (MaskedStoreSDNode *MST1 = dyn_cast<MaskedStoreSDNode>(Chain)) { | 
 |     if (MST->isUnindexed() && MST->isSimple() && MST1->isUnindexed() && | 
 |         MST1->isSimple() && MST1->getBasePtr() == Ptr && | 
 |         !MST->getBasePtr().isUndef() && | 
 |         ((Mask == MST1->getMask() && MST->getMemoryVT().getStoreSize() == | 
 |                                          MST1->getMemoryVT().getStoreSize()) || | 
 |          ISD::isConstantSplatVectorAllOnes(Mask.getNode())) && | 
 |         TypeSize::isKnownLE(MST1->getMemoryVT().getStoreSize(), | 
 |                             MST->getMemoryVT().getStoreSize())) { | 
 |       CombineTo(MST1, MST1->getChain()); | 
 |       if (N->getOpcode() != ISD::DELETED_NODE) | 
 |         AddToWorklist(N); | 
 |       return SDValue(N, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a masked load with an all ones mask, we can use a unmasked load. | 
 |   // FIXME: Can we do this for indexed, compressing, or truncating stores? | 
 |   if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() && | 
 |       !MST->isCompressingStore() && !MST->isTruncatingStore()) | 
 |     return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), | 
 |                         MST->getBasePtr(), MST->getPointerInfo(), | 
 |                         MST->getOriginalAlign(), | 
 |                         MST->getMemOperand()->getFlags(), MST->getAAInfo()); | 
 |  | 
 |   // Try transforming N to an indexed store. | 
 |   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   if (MST->isTruncatingStore() && MST->isUnindexed() && | 
 |       Value.getValueType().isInteger() && | 
 |       (!isa<ConstantSDNode>(Value) || | 
 |        !cast<ConstantSDNode>(Value)->isOpaque())) { | 
 |     APInt TruncDemandedBits = | 
 |         APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), | 
 |                              MST->getMemoryVT().getScalarSizeInBits()); | 
 |  | 
 |     // See if we can simplify the operation with | 
 |     // SimplifyDemandedBits, which only works if the value has a single use. | 
 |     if (SimplifyDemandedBits(Value, TruncDemandedBits)) { | 
 |       // Re-visit the store if anything changed and the store hasn't been merged | 
 |       // with another node (N is deleted) SimplifyDemandedBits will add Value's | 
 |       // node back to the worklist if necessary, but we also need to re-visit | 
 |       // the Store node itself. | 
 |       if (N->getOpcode() != ISD::DELETED_NODE) | 
 |         AddToWorklist(N); | 
 |       return SDValue(N, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a TRUNC followed by a masked store, fold this into a masked | 
 |   // truncating store.  We can do this even if this is already a masked | 
 |   // truncstore. | 
 |   // TODO: Try combine to masked compress store if possiable. | 
 |   if ((Value.getOpcode() == ISD::TRUNCATE) && Value->hasOneUse() && | 
 |       MST->isUnindexed() && !MST->isCompressingStore() && | 
 |       TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), | 
 |                                MST->getMemoryVT(), LegalOperations)) { | 
 |     auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(), | 
 |                                          Value.getOperand(0).getValueType()); | 
 |     return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, | 
 |                               MST->getOffset(), Mask, MST->getMemoryVT(), | 
 |                               MST->getMemOperand(), MST->getAddressingMode(), | 
 |                               /*IsTruncating=*/true); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVP_STRIDED_STORE(SDNode *N) { | 
 |   auto *SST = cast<VPStridedStoreSDNode>(N); | 
 |   EVT EltVT = SST->getValue().getValueType().getVectorElementType(); | 
 |   // Combine strided stores with unit-stride to a regular VP store. | 
 |   if (auto *CStride = dyn_cast<ConstantSDNode>(SST->getStride()); | 
 |       CStride && CStride->getZExtValue() == EltVT.getStoreSize()) { | 
 |     return DAG.getStoreVP(SST->getChain(), SDLoc(N), SST->getValue(), | 
 |                           SST->getBasePtr(), SST->getOffset(), SST->getMask(), | 
 |                           SST->getVectorLength(), SST->getMemoryVT(), | 
 |                           SST->getMemOperand(), SST->getAddressingMode(), | 
 |                           SST->isTruncatingStore(), SST->isCompressingStore()); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVECTOR_COMPRESS(SDNode *N) { | 
 |   SDLoc DL(N); | 
 |   SDValue Vec = N->getOperand(0); | 
 |   SDValue Mask = N->getOperand(1); | 
 |   SDValue Passthru = N->getOperand(2); | 
 |   EVT VecVT = Vec.getValueType(); | 
 |  | 
 |   bool HasPassthru = !Passthru.isUndef(); | 
 |  | 
 |   APInt SplatVal; | 
 |   if (ISD::isConstantSplatVector(Mask.getNode(), SplatVal)) | 
 |     return TLI.isConstTrueVal(Mask) ? Vec : Passthru; | 
 |  | 
 |   if (Vec.isUndef() || Mask.isUndef()) | 
 |     return Passthru; | 
 |  | 
 |   // No need for potentially expensive compress if the mask is constant. | 
 |   if (ISD::isBuildVectorOfConstantSDNodes(Mask.getNode())) { | 
 |     SmallVector<SDValue, 16> Ops; | 
 |     EVT ScalarVT = VecVT.getVectorElementType(); | 
 |     unsigned NumSelected = 0; | 
 |     unsigned NumElmts = VecVT.getVectorNumElements(); | 
 |     for (unsigned I = 0; I < NumElmts; ++I) { | 
 |       SDValue MaskI = Mask.getOperand(I); | 
 |       // We treat undef mask entries as "false". | 
 |       if (MaskI.isUndef()) | 
 |         continue; | 
 |  | 
 |       if (TLI.isConstTrueVal(MaskI)) { | 
 |         SDValue VecI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, | 
 |                                    DAG.getVectorIdxConstant(I, DL)); | 
 |         Ops.push_back(VecI); | 
 |         NumSelected++; | 
 |       } | 
 |     } | 
 |     for (unsigned Rest = NumSelected; Rest < NumElmts; ++Rest) { | 
 |       SDValue Val = | 
 |           HasPassthru | 
 |               ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Passthru, | 
 |                             DAG.getVectorIdxConstant(Rest, DL)) | 
 |               : DAG.getUNDEF(ScalarVT); | 
 |       Ops.push_back(Val); | 
 |     } | 
 |     return DAG.getBuildVector(VecVT, DL, Ops); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVPGATHER(SDNode *N) { | 
 |   VPGatherSDNode *MGT = cast<VPGatherSDNode>(N); | 
 |   SDValue Mask = MGT->getMask(); | 
 |   SDValue Chain = MGT->getChain(); | 
 |   SDValue Index = MGT->getIndex(); | 
 |   SDValue Scale = MGT->getScale(); | 
 |   SDValue BasePtr = MGT->getBasePtr(); | 
 |   SDValue VL = MGT->getVectorLength(); | 
 |   ISD::MemIndexType IndexType = MGT->getIndexType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) { | 
 |     SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL}; | 
 |     return DAG.getGatherVP( | 
 |         DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, | 
 |         Ops, MGT->getMemOperand(), IndexType); | 
 |   } | 
 |  | 
 |   if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) { | 
 |     SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL}; | 
 |     return DAG.getGatherVP( | 
 |         DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, | 
 |         Ops, MGT->getMemOperand(), IndexType); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMGATHER(SDNode *N) { | 
 |   MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); | 
 |   SDValue Mask = MGT->getMask(); | 
 |   SDValue Chain = MGT->getChain(); | 
 |   SDValue Index = MGT->getIndex(); | 
 |   SDValue Scale = MGT->getScale(); | 
 |   SDValue PassThru = MGT->getPassThru(); | 
 |   SDValue BasePtr = MGT->getBasePtr(); | 
 |   ISD::MemIndexType IndexType = MGT->getIndexType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Zap gathers with a zero mask. | 
 |   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) | 
 |     return CombineTo(N, PassThru, MGT->getChain()); | 
 |  | 
 |   if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) { | 
 |     SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; | 
 |     return DAG.getMaskedGather( | 
 |         DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, | 
 |         Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType()); | 
 |   } | 
 |  | 
 |   if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) { | 
 |     SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; | 
 |     return DAG.getMaskedGather( | 
 |         DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, | 
 |         Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType()); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMLOAD(SDNode *N) { | 
 |   MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); | 
 |   SDValue Mask = MLD->getMask(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Zap masked loads with a zero mask. | 
 |   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) | 
 |     return CombineTo(N, MLD->getPassThru(), MLD->getChain()); | 
 |  | 
 |   // If this is a masked load with an all ones mask, we can use a unmasked load. | 
 |   // FIXME: Can we do this for indexed, expanding, or extending loads? | 
 |   if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() && | 
 |       !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) { | 
 |     SDValue NewLd = DAG.getLoad( | 
 |         N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(), | 
 |         MLD->getPointerInfo(), MLD->getOriginalAlign(), | 
 |         MLD->getMemOperand()->getFlags(), MLD->getAAInfo(), MLD->getRanges()); | 
 |     return CombineTo(N, NewLd, NewLd.getValue(1)); | 
 |   } | 
 |  | 
 |   // Try transforming N to an indexed load. | 
 |   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitMHISTOGRAM(SDNode *N) { | 
 |   MaskedHistogramSDNode *HG = cast<MaskedHistogramSDNode>(N); | 
 |   SDValue Chain = HG->getChain(); | 
 |   SDValue Inc = HG->getInc(); | 
 |   SDValue Mask = HG->getMask(); | 
 |   SDValue BasePtr = HG->getBasePtr(); | 
 |   SDValue Index = HG->getIndex(); | 
 |   SDLoc DL(HG); | 
 |  | 
 |   EVT MemVT = HG->getMemoryVT(); | 
 |   MachineMemOperand *MMO = HG->getMemOperand(); | 
 |   ISD::MemIndexType IndexType = HG->getIndexType(); | 
 |  | 
 |   if (ISD::isConstantSplatVectorAllZeros(Mask.getNode())) | 
 |     return Chain; | 
 |  | 
 |   SDValue Ops[] = {Chain,          Inc,           Mask, BasePtr, Index, | 
 |                    HG->getScale(), HG->getIntID()}; | 
 |   if (refineUniformBase(BasePtr, Index, HG->isIndexScaled(), DAG, DL)) | 
 |     return DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), MemVT, DL, Ops, | 
 |                                   MMO, IndexType); | 
 |  | 
 |   EVT DataVT = Index.getValueType(); | 
 |   if (refineIndexType(Index, IndexType, DataVT, DAG)) | 
 |     return DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), MemVT, DL, Ops, | 
 |                                   MMO, IndexType); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Makes PARTIAL_REDUCE_*MLA(Acc, MUL(ZEXT(LHSExtOp), ZEXT(RHSExtOp)), | 
 | // Splat(1)) into | 
 | // PARTIAL_REDUCE_UMLA(Acc, LHSExtOp, RHSExtOp). | 
 | // Makes PARTIAL_REDUCE_*MLA(Acc, MUL(SEXT(LHSExtOp), SEXT(RHSExtOp)), | 
 | // Splat(1)) into | 
 | // PARTIAL_REDUCE_SMLA(Acc, LHSExtOp, RHSExtOp). | 
 | SDValue DAGCombiner::visitPARTIAL_REDUCE_MLA(SDNode *N) { | 
 |   SDLoc DL(N); | 
 |  | 
 |   SDValue Acc = N->getOperand(0); | 
 |   SDValue Op1 = N->getOperand(1); | 
 |   SDValue Op2 = N->getOperand(2); | 
 |  | 
 |   APInt ConstantOne; | 
 |   if (Op1->getOpcode() != ISD::MUL || | 
 |       !ISD::isConstantSplatVector(Op2.getNode(), ConstantOne) || | 
 |       !ConstantOne.isOne()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue LHS = Op1->getOperand(0); | 
 |   SDValue RHS = Op1->getOperand(1); | 
 |   unsigned LHSOpcode = LHS->getOpcode(); | 
 |   unsigned RHSOpcode = RHS->getOpcode(); | 
 |   if (!ISD::isExtOpcode(LHSOpcode) || !ISD::isExtOpcode(RHSOpcode)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue LHSExtOp = LHS->getOperand(0); | 
 |   SDValue RHSExtOp = RHS->getOperand(0); | 
 |   EVT LHSExtOpVT = LHSExtOp.getValueType(); | 
 |   if (LHSExtOpVT != RHSExtOp.getValueType() || LHSOpcode != RHSOpcode) | 
 |     return SDValue(); | 
 |  | 
 |   // Only perform the DAG combine if there is custom lowering provided by the | 
 |   // target | 
 |   auto *Context = DAG.getContext(); | 
 |   if (!TLI.isPartialReduceMLALegalOrCustom( | 
 |           TLI.getTypeToTransformTo(*Context, N->getValueType(0)), | 
 |           TLI.getTypeToTransformTo(*Context, LHSExtOpVT))) | 
 |     return SDValue(); | 
 |  | 
 |   bool ExtIsSigned = LHSOpcode == ISD::SIGN_EXTEND; | 
 |  | 
 |   // For a 2-stage extend the signedness of both of the extends must be the | 
 |   // same. This is so the node can be folded into only a signed or unsigned | 
 |   // node. | 
 |   bool NodeIsSigned = N->getOpcode() == ISD::PARTIAL_REDUCE_SMLA; | 
 |   EVT AccElemVT = Acc.getValueType().getVectorElementType(); | 
 |   if (ExtIsSigned != NodeIsSigned && | 
 |       Op1.getValueType().getVectorElementType() != AccElemVT) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned NewOpcode = | 
 |       ExtIsSigned ? ISD::PARTIAL_REDUCE_SMLA : ISD::PARTIAL_REDUCE_UMLA; | 
 |   return DAG.getNode(NewOpcode, DL, N->getValueType(0), Acc, LHSExtOp, | 
 |                      RHSExtOp); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVP_STRIDED_LOAD(SDNode *N) { | 
 |   auto *SLD = cast<VPStridedLoadSDNode>(N); | 
 |   EVT EltVT = SLD->getValueType(0).getVectorElementType(); | 
 |   // Combine strided loads with unit-stride to a regular VP load. | 
 |   if (auto *CStride = dyn_cast<ConstantSDNode>(SLD->getStride()); | 
 |       CStride && CStride->getZExtValue() == EltVT.getStoreSize()) { | 
 |     SDValue NewLd = DAG.getLoadVP( | 
 |         SLD->getAddressingMode(), SLD->getExtensionType(), SLD->getValueType(0), | 
 |         SDLoc(N), SLD->getChain(), SLD->getBasePtr(), SLD->getOffset(), | 
 |         SLD->getMask(), SLD->getVectorLength(), SLD->getMemoryVT(), | 
 |         SLD->getMemOperand(), SLD->isExpandingLoad()); | 
 |     return CombineTo(N, NewLd, NewLd.getValue(1)); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// A vector select of 2 constant vectors can be simplified to math/logic to | 
 | /// avoid a variable select instruction and possibly avoid constant loads. | 
 | SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { | 
 |   SDValue Cond = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || | 
 |       !shouldConvertSelectOfConstantsToMath(Cond, VT, TLI) || | 
 |       !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || | 
 |       !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) | 
 |     return SDValue(); | 
 |  | 
 |   // Check if we can use the condition value to increment/decrement a single | 
 |   // constant value. This simplifies a select to an add and removes a constant | 
 |   // load/materialization from the general case. | 
 |   bool AllAddOne = true; | 
 |   bool AllSubOne = true; | 
 |   unsigned Elts = VT.getVectorNumElements(); | 
 |   for (unsigned i = 0; i != Elts; ++i) { | 
 |     SDValue N1Elt = N1.getOperand(i); | 
 |     SDValue N2Elt = N2.getOperand(i); | 
 |     if (N1Elt.isUndef()) | 
 |       continue; | 
 |     // N2 should not contain undef values since it will be reused in the fold. | 
 |     if (N2Elt.isUndef() || N1Elt.getValueType() != N2Elt.getValueType()) { | 
 |       AllAddOne = false; | 
 |       AllSubOne = false; | 
 |       break; | 
 |     } | 
 |  | 
 |     const APInt &C1 = N1Elt->getAsAPIntVal(); | 
 |     const APInt &C2 = N2Elt->getAsAPIntVal(); | 
 |     if (C1 != C2 + 1) | 
 |       AllAddOne = false; | 
 |     if (C1 != C2 - 1) | 
 |       AllSubOne = false; | 
 |   } | 
 |  | 
 |   // Further simplifications for the extra-special cases where the constants are | 
 |   // all 0 or all -1 should be implemented as folds of these patterns. | 
 |   SDLoc DL(N); | 
 |   if (AllAddOne || AllSubOne) { | 
 |     // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C | 
 |     // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C | 
 |     auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; | 
 |     SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); | 
 |   } | 
 |  | 
 |   // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) | 
 |   APInt Pow2C; | 
 |   if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && | 
 |       isNullOrNullSplat(N2)) { | 
 |     SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); | 
 |     SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); | 
 |     return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); | 
 |   } | 
 |  | 
 |   if (SDValue V = foldSelectOfConstantsUsingSra(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   // The general case for select-of-constants: | 
 |   // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 | 
 |   // ...but that only makes sense if a vselect is slower than 2 logic ops, so | 
 |   // leave that to a machine-specific pass. | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVP_SELECT(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (SDValue V = DAG.simplifySelect(N0, N1, N2)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldBoolSelectToLogic<VPMatchContext>(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVSELECT(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (SDValue V = DAG.simplifySelect(N0, N1, N2)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldBoolSelectToLogic<EmptyMatchContext>(N, DL, DAG)) | 
 |     return V; | 
 |  | 
 |   // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 | 
 |   if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) | 
 |     return DAG.getSelect(DL, VT, F, N2, N1); | 
 |  | 
 |   // select (sext m), (add X, C), X --> (add X, (and C, (sext m)))) | 
 |   if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N2 && N1->hasOneUse() && | 
 |       DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1)) && | 
 |       N0.getScalarValueSizeInBits() == N1.getScalarValueSizeInBits() && | 
 |       TLI.getBooleanContents(N0.getValueType()) == | 
 |           TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
 |     return DAG.getNode( | 
 |         ISD::ADD, DL, N1.getValueType(), N2, | 
 |         DAG.getNode(ISD::AND, DL, N0.getValueType(), N1.getOperand(1), N0)); | 
 |   } | 
 |  | 
 |   // Canonicalize integer abs. | 
 |   // vselect (setg[te] X,  0),  X, -X -> | 
 |   // vselect (setgt    X, -1),  X, -X -> | 
 |   // vselect (setl[te] X,  0), -X,  X -> | 
 |   // Y = sra (X, size(X)-1); xor (add (X, Y), Y) | 
 |   if (N0.getOpcode() == ISD::SETCC) { | 
 |     SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); | 
 |     ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
 |     bool isAbs = false; | 
 |     bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); | 
 |  | 
 |     if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || | 
 |          (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && | 
 |         N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) | 
 |       isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); | 
 |     else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && | 
 |              N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) | 
 |       isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); | 
 |  | 
 |     if (isAbs) { | 
 |       if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) | 
 |         return DAG.getNode(ISD::ABS, DL, VT, LHS); | 
 |  | 
 |       SDValue Shift = DAG.getNode( | 
 |           ISD::SRA, DL, VT, LHS, | 
 |           DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, DL)); | 
 |       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); | 
 |       AddToWorklist(Shift.getNode()); | 
 |       AddToWorklist(Add.getNode()); | 
 |       return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); | 
 |     } | 
 |  | 
 |     // vselect x, y (fcmp lt x, y) -> fminnum x, y | 
 |     // vselect x, y (fcmp gt x, y) -> fmaxnum x, y | 
 |     // | 
 |     // This is OK if we don't care about what happens if either operand is a | 
 |     // NaN. | 
 |     // | 
 |     if (N0.hasOneUse() && | 
 |         isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, N->getFlags(), TLI)) { | 
 |       if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC)) | 
 |         return FMinMax; | 
 |     } | 
 |  | 
 |     if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) | 
 |       return S; | 
 |     if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG)) | 
 |       return S; | 
 |  | 
 |     // If this select has a condition (setcc) with narrower operands than the | 
 |     // select, try to widen the compare to match the select width. | 
 |     // TODO: This should be extended to handle any constant. | 
 |     // TODO: This could be extended to handle non-loading patterns, but that | 
 |     //       requires thorough testing to avoid regressions. | 
 |     if (isNullOrNullSplat(RHS)) { | 
 |       EVT NarrowVT = LHS.getValueType(); | 
 |       EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); | 
 |       EVT SetCCVT = getSetCCResultType(LHS.getValueType()); | 
 |       unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); | 
 |       unsigned WideWidth = WideVT.getScalarSizeInBits(); | 
 |       bool IsSigned = isSignedIntSetCC(CC); | 
 |       auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
 |       if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && | 
 |           SetCCWidth != 1 && SetCCWidth < WideWidth && | 
 |           TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && | 
 |           TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { | 
 |         // Both compare operands can be widened for free. The LHS can use an | 
 |         // extended load, and the RHS is a constant: | 
 |         //   vselect (ext (setcc load(X), C)), N1, N2 --> | 
 |         //   vselect (setcc extload(X), C'), N1, N2 | 
 |         auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
 |         SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); | 
 |         SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); | 
 |         EVT WideSetCCVT = getSetCCResultType(WideVT); | 
 |         SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); | 
 |         return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); | 
 |       } | 
 |     } | 
 |  | 
 |     if (SDValue ABD = foldSelectToABD(LHS, RHS, N1, N2, CC, DL)) | 
 |       return ABD; | 
 |  | 
 |     // Match VSELECTs into add with unsigned saturation. | 
 |     if (hasOperation(ISD::UADDSAT, VT)) { | 
 |       // Check if one of the arms of the VSELECT is vector with all bits set. | 
 |       // If it's on the left side invert the predicate to simplify logic below. | 
 |       SDValue Other; | 
 |       ISD::CondCode SatCC = CC; | 
 |       if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) { | 
 |         Other = N2; | 
 |         SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); | 
 |       } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) { | 
 |         Other = N1; | 
 |       } | 
 |  | 
 |       if (Other && Other.getOpcode() == ISD::ADD) { | 
 |         SDValue CondLHS = LHS, CondRHS = RHS; | 
 |         SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); | 
 |  | 
 |         // Canonicalize condition operands. | 
 |         if (SatCC == ISD::SETUGE) { | 
 |           std::swap(CondLHS, CondRHS); | 
 |           SatCC = ISD::SETULE; | 
 |         } | 
 |  | 
 |         // We can test against either of the addition operands. | 
 |         // x <= x+y ? x+y : ~0 --> uaddsat x, y | 
 |         // x+y >= x ? x+y : ~0 --> uaddsat x, y | 
 |         if (SatCC == ISD::SETULE && Other == CondRHS && | 
 |             (OpLHS == CondLHS || OpRHS == CondLHS)) | 
 |           return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); | 
 |  | 
 |         if (OpRHS.getOpcode() == CondRHS.getOpcode() && | 
 |             (OpRHS.getOpcode() == ISD::BUILD_VECTOR || | 
 |              OpRHS.getOpcode() == ISD::SPLAT_VECTOR) && | 
 |             CondLHS == OpLHS) { | 
 |           // If the RHS is a constant we have to reverse the const | 
 |           // canonicalization. | 
 |           // x >= ~C ? x+C : ~0 --> uaddsat x, C | 
 |           auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { | 
 |             return Cond->getAPIntValue() == ~Op->getAPIntValue(); | 
 |           }; | 
 |           if (SatCC == ISD::SETULE && | 
 |               ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT)) | 
 |             return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Match VSELECTs into sub with unsigned saturation. | 
 |     if (hasOperation(ISD::USUBSAT, VT)) { | 
 |       // Check if one of the arms of the VSELECT is a zero vector. If it's on | 
 |       // the left side invert the predicate to simplify logic below. | 
 |       SDValue Other; | 
 |       ISD::CondCode SatCC = CC; | 
 |       if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) { | 
 |         Other = N2; | 
 |         SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType()); | 
 |       } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) { | 
 |         Other = N1; | 
 |       } | 
 |  | 
 |       // zext(x) >= y ? trunc(zext(x) - y) : 0 | 
 |       // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit))) | 
 |       // zext(x) >  y ? trunc(zext(x) - y) : 0 | 
 |       // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit))) | 
 |       if (Other && Other.getOpcode() == ISD::TRUNCATE && | 
 |           Other.getOperand(0).getOpcode() == ISD::SUB && | 
 |           (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)) { | 
 |         SDValue OpLHS = Other.getOperand(0).getOperand(0); | 
 |         SDValue OpRHS = Other.getOperand(0).getOperand(1); | 
 |         if (LHS == OpLHS && RHS == OpRHS && LHS.getOpcode() == ISD::ZERO_EXTEND) | 
 |           if (SDValue R = getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, | 
 |                                               DAG, DL)) | 
 |             return R; | 
 |       } | 
 |  | 
 |       if (Other && Other.getNumOperands() == 2) { | 
 |         SDValue CondRHS = RHS; | 
 |         SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1); | 
 |  | 
 |         if (OpLHS == LHS) { | 
 |           // Look for a general sub with unsigned saturation first. | 
 |           // x >= y ? x-y : 0 --> usubsat x, y | 
 |           // x >  y ? x-y : 0 --> usubsat x, y | 
 |           if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) && | 
 |               Other.getOpcode() == ISD::SUB && OpRHS == CondRHS) | 
 |             return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); | 
 |  | 
 |           if (OpRHS.getOpcode() == ISD::BUILD_VECTOR || | 
 |               OpRHS.getOpcode() == ISD::SPLAT_VECTOR) { | 
 |             if (CondRHS.getOpcode() == ISD::BUILD_VECTOR || | 
 |                 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) { | 
 |               // If the RHS is a constant we have to reverse the const | 
 |               // canonicalization. | 
 |               // x > C-1 ? x+-C : 0 --> usubsat x, C | 
 |               auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) { | 
 |                 return (!Op && !Cond) || | 
 |                        (Op && Cond && | 
 |                         Cond->getAPIntValue() == (-Op->getAPIntValue() - 1)); | 
 |               }; | 
 |               if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD && | 
 |                   ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT, | 
 |                                             /*AllowUndefs*/ true)) { | 
 |                 OpRHS = DAG.getNegative(OpRHS, DL, VT); | 
 |                 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); | 
 |               } | 
 |  | 
 |               // Another special case: If C was a sign bit, the sub has been | 
 |               // canonicalized into a xor. | 
 |               // FIXME: Would it be better to use computeKnownBits to | 
 |               // determine whether it's safe to decanonicalize the xor? | 
 |               // x s< 0 ? x^C : 0 --> usubsat x, C | 
 |               APInt SplatValue; | 
 |               if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR && | 
 |                   ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) && | 
 |                   ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) && | 
 |                   SplatValue.isSignMask()) { | 
 |                 // Note that we have to rebuild the RHS constant here to | 
 |                 // ensure we don't rely on particular values of undef lanes. | 
 |                 OpRHS = DAG.getConstant(SplatValue, DL, VT); | 
 |                 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS); | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SimplifySelectOps(N, N1, N2)) | 
 |     return SDValue(N, 0);  // Don't revisit N. | 
 |  | 
 |   // Fold (vselect all_ones, N1, N2) -> N1 | 
 |   if (ISD::isConstantSplatVectorAllOnes(N0.getNode())) | 
 |     return N1; | 
 |   // Fold (vselect all_zeros, N1, N2) -> N2 | 
 |   if (ISD::isConstantSplatVectorAllZeros(N0.getNode())) | 
 |     return N2; | 
 |  | 
 |   // The ConvertSelectToConcatVector function is assuming both the above | 
 |   // checks for (vselect (build_vector all{ones,zeros) ...) have been made | 
 |   // and addressed. | 
 |   if (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
 |       N2.getOpcode() == ISD::CONCAT_VECTORS && | 
 |       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { | 
 |     if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) | 
 |       return CV; | 
 |   } | 
 |  | 
 |   if (SDValue V = foldVSelectOfConstants(N)) | 
 |     return V; | 
 |  | 
 |   if (hasOperation(ISD::SRA, VT)) | 
 |     if (SDValue V = foldVSelectToSignBitSplatMask(N, DAG)) | 
 |       return V; | 
 |  | 
 |   if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   SDValue N3 = N->getOperand(3); | 
 |   SDValue N4 = N->getOperand(4); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold select_cc lhs, rhs, x, x, cc -> x | 
 |   if (N2 == N3) | 
 |     return N2; | 
 |  | 
 |   // select_cc bool, 0, x, y, seteq -> select bool, y, x | 
 |   if (CC == ISD::SETEQ && !LegalTypes && N0.getValueType() == MVT::i1 && | 
 |       isNullConstant(N1)) | 
 |     return DAG.getSelect(DL, N2.getValueType(), N0, N3, N2); | 
 |  | 
 |   // Determine if the condition we're dealing with is constant | 
 |   if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, | 
 |                                   CC, DL, false)) { | 
 |     AddToWorklist(SCC.getNode()); | 
 |  | 
 |     // cond always true -> true val | 
 |     // cond always false -> false val | 
 |     if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) | 
 |       return SCCC->isZero() ? N3 : N2; | 
 |  | 
 |     // When the condition is UNDEF, just return the first operand. This is | 
 |     // coherent the DAG creation, no setcc node is created in this case | 
 |     if (SCC->isUndef()) | 
 |       return N2; | 
 |  | 
 |     // Fold to a simpler select_cc | 
 |     if (SCC.getOpcode() == ISD::SETCC) { | 
 |       SDValue SelectOp = | 
 |           DAG.getNode(ISD::SELECT_CC, DL, N2.getValueType(), SCC.getOperand(0), | 
 |                       SCC.getOperand(1), N2, N3, SCC.getOperand(2)); | 
 |       SelectOp->setFlags(SCC->getFlags()); | 
 |       return SelectOp; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we can fold this based on the true/false value, do so. | 
 |   if (SimplifySelectOps(N, N2, N3)) | 
 |     return SDValue(N, 0); // Don't revisit N. | 
 |  | 
 |   // fold select_cc into other things, such as min/max/abs | 
 |   return SimplifySelectCC(DL, N0, N1, N2, N3, CC); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSETCC(SDNode *N) { | 
 |   // setcc is very commonly used as an argument to brcond. This pattern | 
 |   // also lend itself to numerous combines and, as a result, it is desired | 
 |   // we keep the argument to a brcond as a setcc as much as possible. | 
 |   bool PreferSetCC = | 
 |       N->hasOneUse() && N->user_begin()->getOpcode() == ISD::BRCOND; | 
 |  | 
 |   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (SDValue Combined = SimplifySetCC(VT, N0, N1, Cond, DL, !PreferSetCC)) { | 
 |     // If we prefer to have a setcc, and we don't, we'll try our best to | 
 |     // recreate one using rebuildSetCC. | 
 |     if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { | 
 |       SDValue NewSetCC = rebuildSetCC(Combined); | 
 |  | 
 |       // We don't have anything interesting to combine to. | 
 |       if (NewSetCC.getNode() == N) | 
 |         return SDValue(); | 
 |  | 
 |       if (NewSetCC) | 
 |         return NewSetCC; | 
 |     } | 
 |     return Combined; | 
 |   } | 
 |  | 
 |   // Optimize | 
 |   //    1) (icmp eq/ne (and X, C0), (shift X, C1)) | 
 |   // or | 
 |   //    2) (icmp eq/ne X, (rotate X, C1)) | 
 |   // If C0 is a mask or shifted mask and the shift amt (C1) isolates the | 
 |   // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`) | 
 |   // Then: | 
 |   // If C1 is a power of 2, then the rotate and shift+and versions are | 
 |   // equivilent, so we can interchange them depending on target preference. | 
 |   // Otherwise, if we have the shift+and version we can interchange srl/shl | 
 |   // which inturn affects the constant C0. We can use this to get better | 
 |   // constants again determined by target preference. | 
 |   if (Cond == ISD::SETNE || Cond == ISD::SETEQ) { | 
 |     auto IsAndWithShift = [](SDValue A, SDValue B) { | 
 |       return A.getOpcode() == ISD::AND && | 
 |              (B.getOpcode() == ISD::SRL || B.getOpcode() == ISD::SHL) && | 
 |              A.getOperand(0) == B.getOperand(0); | 
 |     }; | 
 |     auto IsRotateWithOp = [](SDValue A, SDValue B) { | 
 |       return (B.getOpcode() == ISD::ROTL || B.getOpcode() == ISD::ROTR) && | 
 |              B.getOperand(0) == A; | 
 |     }; | 
 |     SDValue AndOrOp = SDValue(), ShiftOrRotate = SDValue(); | 
 |     bool IsRotate = false; | 
 |  | 
 |     // Find either shift+and or rotate pattern. | 
 |     if (IsAndWithShift(N0, N1)) { | 
 |       AndOrOp = N0; | 
 |       ShiftOrRotate = N1; | 
 |     } else if (IsAndWithShift(N1, N0)) { | 
 |       AndOrOp = N1; | 
 |       ShiftOrRotate = N0; | 
 |     } else if (IsRotateWithOp(N0, N1)) { | 
 |       IsRotate = true; | 
 |       AndOrOp = N0; | 
 |       ShiftOrRotate = N1; | 
 |     } else if (IsRotateWithOp(N1, N0)) { | 
 |       IsRotate = true; | 
 |       AndOrOp = N1; | 
 |       ShiftOrRotate = N0; | 
 |     } | 
 |  | 
 |     if (AndOrOp && ShiftOrRotate && ShiftOrRotate.hasOneUse() && | 
 |         (IsRotate || AndOrOp.hasOneUse())) { | 
 |       EVT OpVT = N0.getValueType(); | 
 |       // Get constant shift/rotate amount and possibly mask (if its shift+and | 
 |       // variant). | 
 |       auto GetAPIntValue = [](SDValue Op) -> std::optional<APInt> { | 
 |         ConstantSDNode *CNode = isConstOrConstSplat(Op, /*AllowUndefs*/ false, | 
 |                                                     /*AllowTrunc*/ false); | 
 |         if (CNode == nullptr) | 
 |           return std::nullopt; | 
 |         return CNode->getAPIntValue(); | 
 |       }; | 
 |       std::optional<APInt> AndCMask = | 
 |           IsRotate ? std::nullopt : GetAPIntValue(AndOrOp.getOperand(1)); | 
 |       std::optional<APInt> ShiftCAmt = | 
 |           GetAPIntValue(ShiftOrRotate.getOperand(1)); | 
 |       unsigned NumBits = OpVT.getScalarSizeInBits(); | 
 |  | 
 |       // We found constants. | 
 |       if (ShiftCAmt && (IsRotate || AndCMask) && ShiftCAmt->ult(NumBits)) { | 
 |         unsigned ShiftOpc = ShiftOrRotate.getOpcode(); | 
 |         // Check that the constants meet the constraints. | 
 |         bool CanTransform = IsRotate; | 
 |         if (!CanTransform) { | 
 |           // Check that mask and shift compliment eachother | 
 |           CanTransform = *ShiftCAmt == (~*AndCMask).popcount(); | 
 |           // Check that we are comparing all bits | 
 |           CanTransform &= (*ShiftCAmt + AndCMask->popcount()) == NumBits; | 
 |           // Check that the and mask is correct for the shift | 
 |           CanTransform &= | 
 |               ShiftOpc == ISD::SHL ? (~*AndCMask).isMask() : AndCMask->isMask(); | 
 |         } | 
 |  | 
 |         // See if target prefers another shift/rotate opcode. | 
 |         unsigned NewShiftOpc = TLI.preferedOpcodeForCmpEqPiecesOfOperand( | 
 |             OpVT, ShiftOpc, ShiftCAmt->isPowerOf2(), *ShiftCAmt, AndCMask); | 
 |         // Transform is valid and we have a new preference. | 
 |         if (CanTransform && NewShiftOpc != ShiftOpc) { | 
 |           SDValue NewShiftOrRotate = | 
 |               DAG.getNode(NewShiftOpc, DL, OpVT, ShiftOrRotate.getOperand(0), | 
 |                           ShiftOrRotate.getOperand(1)); | 
 |           SDValue NewAndOrOp = SDValue(); | 
 |  | 
 |           if (NewShiftOpc == ISD::SHL || NewShiftOpc == ISD::SRL) { | 
 |             APInt NewMask = | 
 |                 NewShiftOpc == ISD::SHL | 
 |                     ? APInt::getHighBitsSet(NumBits, | 
 |                                             NumBits - ShiftCAmt->getZExtValue()) | 
 |                     : APInt::getLowBitsSet(NumBits, | 
 |                                            NumBits - ShiftCAmt->getZExtValue()); | 
 |             NewAndOrOp = | 
 |                 DAG.getNode(ISD::AND, DL, OpVT, ShiftOrRotate.getOperand(0), | 
 |                             DAG.getConstant(NewMask, DL, OpVT)); | 
 |           } else { | 
 |             NewAndOrOp = ShiftOrRotate.getOperand(0); | 
 |           } | 
 |  | 
 |           return DAG.getSetCC(DL, VT, NewAndOrOp, NewShiftOrRotate, Cond); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { | 
 |   SDValue LHS = N->getOperand(0); | 
 |   SDValue RHS = N->getOperand(1); | 
 |   SDValue Carry = N->getOperand(2); | 
 |   SDValue Cond = N->getOperand(3); | 
 |  | 
 |   // If Carry is false, fold to a regular SETCC. | 
 |   if (isNullConstant(Carry)) | 
 |     return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Check if N satisfies: | 
 | ///   N is used once. | 
 | ///   N is a Load. | 
 | ///   The load is compatible with ExtOpcode. It means | 
 | ///     If load has explicit zero/sign extension, ExpOpcode must have the same | 
 | ///     extension. | 
 | ///     Otherwise returns true. | 
 | static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) { | 
 |   if (!N.hasOneUse()) | 
 |     return false; | 
 |  | 
 |   if (!isa<LoadSDNode>(N)) | 
 |     return false; | 
 |  | 
 |   LoadSDNode *Load = cast<LoadSDNode>(N); | 
 |   ISD::LoadExtType LoadExt = Load->getExtensionType(); | 
 |   if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD) | 
 |     return true; | 
 |  | 
 |   // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same | 
 |   // extension. | 
 |   if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) || | 
 |       (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Fold | 
 | ///   (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) | 
 | ///   (zext (select c, load x, load y)) -> (select c, zextload x, zextload y) | 
 | ///   (aext (select c, load x, load y)) -> (select c, extload x, extload y) | 
 | /// This function is called by the DAGCombiner when visiting sext/zext/aext | 
 | /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). | 
 | static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, | 
 |                                          SelectionDAG &DAG, const SDLoc &DL, | 
 |                                          CombineLevel Level) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || | 
 |           Opcode == ISD::ANY_EXTEND) && | 
 |          "Expected EXTEND dag node in input!"); | 
 |  | 
 |   if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) || | 
 |       !N0.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Op1 = N0->getOperand(1); | 
 |   SDValue Op2 = N0->getOperand(2); | 
 |   if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode)) | 
 |     return SDValue(); | 
 |  | 
 |   auto ExtLoadOpcode = ISD::EXTLOAD; | 
 |   if (Opcode == ISD::SIGN_EXTEND) | 
 |     ExtLoadOpcode = ISD::SEXTLOAD; | 
 |   else if (Opcode == ISD::ZERO_EXTEND) | 
 |     ExtLoadOpcode = ISD::ZEXTLOAD; | 
 |  | 
 |   // Illegal VSELECT may ISel fail if happen after legalization (DAG | 
 |   // Combine2), so we should conservatively check the OperationAction. | 
 |   LoadSDNode *Load1 = cast<LoadSDNode>(Op1); | 
 |   LoadSDNode *Load2 = cast<LoadSDNode>(Op2); | 
 |   if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) || | 
 |       !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()) || | 
 |       (N0->getOpcode() == ISD::VSELECT && Level >= AfterLegalizeTypes && | 
 |        TLI.getOperationAction(ISD::VSELECT, VT) != TargetLowering::Legal)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1); | 
 |   SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2); | 
 |   return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2); | 
 | } | 
 |  | 
 | /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or | 
 | /// a build_vector of constants. | 
 | /// This function is called by the DAGCombiner when visiting sext/zext/aext | 
 | /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). | 
 | /// Vector extends are not folded if operations are legal; this is to | 
 | /// avoid introducing illegal build_vector dag nodes. | 
 | static SDValue tryToFoldExtendOfConstant(SDNode *N, const SDLoc &DL, | 
 |                                          const TargetLowering &TLI, | 
 |                                          SelectionDAG &DAG, bool LegalTypes) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   assert((ISD::isExtOpcode(Opcode) || ISD::isExtVecInRegOpcode(Opcode)) && | 
 |          "Expected EXTEND dag node in input!"); | 
 |  | 
 |   // fold (sext c1) -> c1 | 
 |   // fold (zext c1) -> c1 | 
 |   // fold (aext c1) -> c1 | 
 |   if (isa<ConstantSDNode>(N0)) | 
 |     return DAG.getNode(Opcode, DL, VT, N0); | 
 |  | 
 |   // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) | 
 |   // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) | 
 |   // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) | 
 |   if (N0->getOpcode() == ISD::SELECT) { | 
 |     SDValue Op1 = N0->getOperand(1); | 
 |     SDValue Op2 = N0->getOperand(2); | 
 |     if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && | 
 |         (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { | 
 |       // For any_extend, choose sign extension of the constants to allow a | 
 |       // possible further transform to sign_extend_inreg.i.e. | 
 |       // | 
 |       // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> | 
 |       // t2: i64 = any_extend t1 | 
 |       // --> | 
 |       // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> | 
 |       // --> | 
 |       // t4: i64 = sign_extend_inreg t3 | 
 |       unsigned FoldOpc = Opcode; | 
 |       if (FoldOpc == ISD::ANY_EXTEND) | 
 |         FoldOpc = ISD::SIGN_EXTEND; | 
 |       return DAG.getSelect(DL, VT, N0->getOperand(0), | 
 |                            DAG.getNode(FoldOpc, DL, VT, Op1), | 
 |                            DAG.getNode(FoldOpc, DL, VT, Op2)); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) | 
 |   // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) | 
 |   // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) | 
 |   EVT SVT = VT.getScalarType(); | 
 |   if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && | 
 |       ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) | 
 |     return SDValue(); | 
 |  | 
 |   // We can fold this node into a build_vector. | 
 |   unsigned VTBits = SVT.getSizeInBits(); | 
 |   unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); | 
 |   SmallVector<SDValue, 8> Elts; | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |  | 
 |   for (unsigned i = 0; i != NumElts; ++i) { | 
 |     SDValue Op = N0.getOperand(i); | 
 |     if (Op.isUndef()) { | 
 |       if (Opcode == ISD::ANY_EXTEND || Opcode == ISD::ANY_EXTEND_VECTOR_INREG) | 
 |         Elts.push_back(DAG.getUNDEF(SVT)); | 
 |       else | 
 |         Elts.push_back(DAG.getConstant(0, DL, SVT)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     SDLoc DL(Op); | 
 |     // Get the constant value and if needed trunc it to the size of the type. | 
 |     // Nodes like build_vector might have constants wider than the scalar type. | 
 |     APInt C = Op->getAsAPIntVal().zextOrTrunc(EVTBits); | 
 |     if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) | 
 |       Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); | 
 |     else | 
 |       Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); | 
 |   } | 
 |  | 
 |   return DAG.getBuildVector(VT, DL, Elts); | 
 | } | 
 |  | 
 | // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: | 
 | // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" | 
 | // transformation. Returns true if extension are possible and the above | 
 | // mentioned transformation is profitable. | 
 | static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, | 
 |                                     unsigned ExtOpc, | 
 |                                     SmallVectorImpl<SDNode *> &ExtendNodes, | 
 |                                     const TargetLowering &TLI) { | 
 |   bool HasCopyToRegUses = false; | 
 |   bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); | 
 |   for (SDUse &Use : N0->uses()) { | 
 |     SDNode *User = Use.getUser(); | 
 |     if (User == N) | 
 |       continue; | 
 |     if (Use.getResNo() != N0.getResNo()) | 
 |       continue; | 
 |     // FIXME: Only extend SETCC N, N and SETCC N, c for now. | 
 |     if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { | 
 |       ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | 
 |       if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) | 
 |         // Sign bits will be lost after a zext. | 
 |         return false; | 
 |       bool Add = false; | 
 |       for (unsigned i = 0; i != 2; ++i) { | 
 |         SDValue UseOp = User->getOperand(i); | 
 |         if (UseOp == N0) | 
 |           continue; | 
 |         if (!isa<ConstantSDNode>(UseOp)) | 
 |           return false; | 
 |         Add = true; | 
 |       } | 
 |       if (Add) | 
 |         ExtendNodes.push_back(User); | 
 |       continue; | 
 |     } | 
 |     // If truncates aren't free and there are users we can't | 
 |     // extend, it isn't worthwhile. | 
 |     if (!isTruncFree) | 
 |       return false; | 
 |     // Remember if this value is live-out. | 
 |     if (User->getOpcode() == ISD::CopyToReg) | 
 |       HasCopyToRegUses = true; | 
 |   } | 
 |  | 
 |   if (HasCopyToRegUses) { | 
 |     bool BothLiveOut = false; | 
 |     for (SDUse &Use : N->uses()) { | 
 |       if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { | 
 |         BothLiveOut = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (BothLiveOut) | 
 |       // Both unextended and extended values are live out. There had better be | 
 |       // a good reason for the transformation. | 
 |       return !ExtendNodes.empty(); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, | 
 |                                   SDValue OrigLoad, SDValue ExtLoad, | 
 |                                   ISD::NodeType ExtType) { | 
 |   // Extend SetCC uses if necessary. | 
 |   SDLoc DL(ExtLoad); | 
 |   for (SDNode *SetCC : SetCCs) { | 
 |     SmallVector<SDValue, 4> Ops; | 
 |  | 
 |     for (unsigned j = 0; j != 2; ++j) { | 
 |       SDValue SOp = SetCC->getOperand(j); | 
 |       if (SOp == OrigLoad) | 
 |         Ops.push_back(ExtLoad); | 
 |       else | 
 |         Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); | 
 |     } | 
 |  | 
 |     Ops.push_back(SetCC->getOperand(2)); | 
 |     CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); | 
 |   } | 
 | } | 
 |  | 
 | // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). | 
 | SDValue DAGCombiner::CombineExtLoad(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT DstVT = N->getValueType(0); | 
 |   EVT SrcVT = N0.getValueType(); | 
 |  | 
 |   assert((N->getOpcode() == ISD::SIGN_EXTEND || | 
 |           N->getOpcode() == ISD::ZERO_EXTEND) && | 
 |          "Unexpected node type (not an extend)!"); | 
 |  | 
 |   // fold (sext (load x)) to multiple smaller sextloads; same for zext. | 
 |   // For example, on a target with legal v4i32, but illegal v8i32, turn: | 
 |   //   (v8i32 (sext (v8i16 (load x)))) | 
 |   // into: | 
 |   //   (v8i32 (concat_vectors (v4i32 (sextload x)), | 
 |   //                          (v4i32 (sextload (x + 16))))) | 
 |   // Where uses of the original load, i.e.: | 
 |   //   (v8i16 (load x)) | 
 |   // are replaced with: | 
 |   //   (v8i16 (truncate | 
 |   //     (v8i32 (concat_vectors (v4i32 (sextload x)), | 
 |   //                            (v4i32 (sextload (x + 16))))))) | 
 |   // | 
 |   // This combine is only applicable to illegal, but splittable, vectors. | 
 |   // All legal types, and illegal non-vector types, are handled elsewhere. | 
 |   // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. | 
 |   // | 
 |   if (N0->getOpcode() != ISD::LOAD) | 
 |     return SDValue(); | 
 |  | 
 |   LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |  | 
 |   if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || | 
 |       !N0.hasOneUse() || !LN0->isSimple() || | 
 |       !DstVT.isVector() || !DstVT.isPow2VectorType() || | 
 |       !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<SDNode *, 4> SetCCs; | 
 |   if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) | 
 |     return SDValue(); | 
 |  | 
 |   ISD::LoadExtType ExtType = | 
 |       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
 |  | 
 |   // Try to split the vector types to get down to legal types. | 
 |   EVT SplitSrcVT = SrcVT; | 
 |   EVT SplitDstVT = DstVT; | 
 |   while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && | 
 |          SplitSrcVT.getVectorNumElements() > 1) { | 
 |     SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; | 
 |     SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; | 
 |   } | 
 |  | 
 |   if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) | 
 |     return SDValue(); | 
 |  | 
 |   assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); | 
 |  | 
 |   SDLoc DL(N); | 
 |   const unsigned NumSplits = | 
 |       DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); | 
 |   const unsigned Stride = SplitSrcVT.getStoreSize(); | 
 |   SmallVector<SDValue, 4> Loads; | 
 |   SmallVector<SDValue, 4> Chains; | 
 |  | 
 |   SDValue BasePtr = LN0->getBasePtr(); | 
 |   for (unsigned Idx = 0; Idx < NumSplits; Idx++) { | 
 |     const unsigned Offset = Idx * Stride; | 
 |  | 
 |     SDValue SplitLoad = | 
 |         DAG.getExtLoad(ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), | 
 |                        BasePtr, LN0->getPointerInfo().getWithOffset(Offset), | 
 |                        SplitSrcVT, LN0->getOriginalAlign(), | 
 |                        LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | 
 |  | 
 |     BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::getFixed(Stride), DL); | 
 |  | 
 |     Loads.push_back(SplitLoad.getValue(0)); | 
 |     Chains.push_back(SplitLoad.getValue(1)); | 
 |   } | 
 |  | 
 |   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
 |   SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); | 
 |  | 
 |   // Simplify TF. | 
 |   AddToWorklist(NewChain.getNode()); | 
 |  | 
 |   CombineTo(N, NewValue); | 
 |  | 
 |   // Replace uses of the original load (before extension) | 
 |   // with a truncate of the concatenated sextloaded vectors. | 
 |   SDValue Trunc = | 
 |       DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); | 
 |   ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); | 
 |   CombineTo(N0.getNode(), Trunc, NewChain); | 
 |   return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 | } | 
 |  | 
 | // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> | 
 | //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) | 
 | SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::ZERO_EXTEND); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT OrigVT = N->getOperand(0).getValueType(); | 
 |   if (TLI.isZExtFree(OrigVT, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // and/or/xor | 
 |   SDValue N0 = N->getOperand(0); | 
 |   if (!ISD::isBitwiseLogicOp(N0.getOpcode()) || | 
 |       N0.getOperand(1).getOpcode() != ISD::Constant || | 
 |       (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) | 
 |     return SDValue(); | 
 |  | 
 |   // shl/shr | 
 |   SDValue N1 = N0->getOperand(0); | 
 |   if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || | 
 |       N1.getOperand(1).getOpcode() != ISD::Constant || | 
 |       (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) | 
 |     return SDValue(); | 
 |  | 
 |   // load | 
 |   if (!isa<LoadSDNode>(N1.getOperand(0))) | 
 |     return SDValue(); | 
 |   LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); | 
 |   EVT MemVT = Load->getMemoryVT(); | 
 |   if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || | 
 |       Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) | 
 |     return SDValue(); | 
 |  | 
 |  | 
 |   // If the shift op is SHL, the logic op must be AND, otherwise the result | 
 |   // will be wrong. | 
 |   if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) | 
 |     return SDValue(); | 
 |  | 
 |   if (!N0.hasOneUse() || !N1.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<SDNode*, 4> SetCCs; | 
 |   if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), | 
 |                                ISD::ZERO_EXTEND, SetCCs, TLI)) | 
 |     return SDValue(); | 
 |  | 
 |   // Actually do the transformation. | 
 |   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, | 
 |                                    Load->getChain(), Load->getBasePtr(), | 
 |                                    Load->getMemoryVT(), Load->getMemOperand()); | 
 |  | 
 |   SDLoc DL1(N1); | 
 |   SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, | 
 |                               N1.getOperand(1)); | 
 |  | 
 |   APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); | 
 |   SDLoc DL0(N0); | 
 |   SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, | 
 |                             DAG.getConstant(Mask, DL0, VT)); | 
 |  | 
 |   ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); | 
 |   CombineTo(N, And); | 
 |   if (SDValue(Load, 0).hasOneUse()) { | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); | 
 |   } else { | 
 |     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), | 
 |                                 Load->getValueType(0), ExtLoad); | 
 |     CombineTo(Load, Trunc, ExtLoad.getValue(1)); | 
 |   } | 
 |  | 
 |   // N0 is dead at this point. | 
 |   recursivelyDeleteUnusedNodes(N0.getNode()); | 
 |  | 
 |   return SDValue(N,0); // Return N so it doesn't get rechecked! | 
 | } | 
 |  | 
 | /// If we're narrowing or widening the result of a vector select and the final | 
 | /// size is the same size as a setcc (compare) feeding the select, then try to | 
 | /// apply the cast operation to the select's operands because matching vector | 
 | /// sizes for a select condition and other operands should be more efficient. | 
 | SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { | 
 |   unsigned CastOpcode = Cast->getOpcode(); | 
 |   assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || | 
 |           CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || | 
 |           CastOpcode == ISD::FP_ROUND) && | 
 |          "Unexpected opcode for vector select narrowing/widening"); | 
 |  | 
 |   // We only do this transform before legal ops because the pattern may be | 
 |   // obfuscated by target-specific operations after legalization. Do not create | 
 |   // an illegal select op, however, because that may be difficult to lower. | 
 |   EVT VT = Cast->getValueType(0); | 
 |   if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue VSel = Cast->getOperand(0); | 
 |   if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || | 
 |       VSel.getOperand(0).getOpcode() != ISD::SETCC) | 
 |     return SDValue(); | 
 |  | 
 |   // Does the setcc have the same vector size as the casted select? | 
 |   SDValue SetCC = VSel.getOperand(0); | 
 |   EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); | 
 |   if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) | 
 |     return SDValue(); | 
 |  | 
 |   // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) | 
 |   SDValue A = VSel.getOperand(1); | 
 |   SDValue B = VSel.getOperand(2); | 
 |   SDValue CastA, CastB; | 
 |   SDLoc DL(Cast); | 
 |   if (CastOpcode == ISD::FP_ROUND) { | 
 |     // FP_ROUND (fptrunc) has an extra flag operand to pass along. | 
 |     CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); | 
 |     CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); | 
 |   } else { | 
 |     CastA = DAG.getNode(CastOpcode, DL, VT, A); | 
 |     CastB = DAG.getNode(CastOpcode, DL, VT, B); | 
 |   } | 
 |   return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); | 
 | } | 
 |  | 
 | // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) | 
 | // fold ([s|z]ext (     extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) | 
 | static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, | 
 |                                      const TargetLowering &TLI, EVT VT, | 
 |                                      bool LegalOperations, SDNode *N, | 
 |                                      SDValue N0, ISD::LoadExtType ExtLoadType) { | 
 |   SDNode *N0Node = N0.getNode(); | 
 |   bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) | 
 |                                                    : ISD::isZEXTLoad(N0Node); | 
 |   if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || | 
 |       !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |   EVT MemVT = LN0->getMemoryVT(); | 
 |   if ((LegalOperations || !LN0->isSimple() || | 
 |        VT.isVector()) && | 
 |       !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue ExtLoad = | 
 |       DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), | 
 |                      LN0->getBasePtr(), MemVT, LN0->getMemOperand()); | 
 |   Combiner.CombineTo(N, ExtLoad); | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
 |   if (LN0->use_empty()) | 
 |     Combiner.recursivelyDeleteUnusedNodes(LN0); | 
 |   return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 | } | 
 |  | 
 | // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) | 
 | // Only generate vector extloads when 1) they're legal, and 2) they are | 
 | // deemed desirable by the target. NonNegZExt can be set to true if a zero | 
 | // extend has the nonneg flag to allow use of sextload if profitable. | 
 | static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, | 
 |                                   const TargetLowering &TLI, EVT VT, | 
 |                                   bool LegalOperations, SDNode *N, SDValue N0, | 
 |                                   ISD::LoadExtType ExtLoadType, | 
 |                                   ISD::NodeType ExtOpc, | 
 |                                   bool NonNegZExt = false) { | 
 |   if (!ISD::isNON_EXTLoad(N0.getNode()) || !ISD::isUNINDEXEDLoad(N0.getNode())) | 
 |     return {}; | 
 |  | 
 |   // If this is zext nneg, see if it would make sense to treat it as a sext. | 
 |   if (NonNegZExt) { | 
 |     assert(ExtLoadType == ISD::ZEXTLOAD && ExtOpc == ISD::ZERO_EXTEND && | 
 |            "Unexpected load type or opcode"); | 
 |     for (SDNode *User : N0->users()) { | 
 |       if (User->getOpcode() == ISD::SETCC) { | 
 |         ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); | 
 |         if (ISD::isSignedIntSetCC(CC)) { | 
 |           ExtLoadType = ISD::SEXTLOAD; | 
 |           ExtOpc = ISD::SIGN_EXTEND; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // TODO: isFixedLengthVector() should be removed and any negative effects on | 
 |   // code generation being the result of that target's implementation of | 
 |   // isVectorLoadExtDesirable(). | 
 |   if ((LegalOperations || VT.isFixedLengthVector() || | 
 |        !cast<LoadSDNode>(N0)->isSimple()) && | 
 |       !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())) | 
 |     return {}; | 
 |  | 
 |   bool DoXform = true; | 
 |   SmallVector<SDNode *, 4> SetCCs; | 
 |   if (!N0.hasOneUse()) | 
 |     DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); | 
 |   if (VT.isVector()) | 
 |     DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); | 
 |   if (!DoXform) | 
 |     return {}; | 
 |  | 
 |   LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |   SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), | 
 |                                    LN0->getBasePtr(), N0.getValueType(), | 
 |                                    LN0->getMemOperand()); | 
 |   Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); | 
 |   // If the load value is used only by N, replace it via CombineTo N. | 
 |   bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); | 
 |   Combiner.CombineTo(N, ExtLoad); | 
 |   if (NoReplaceTrunc) { | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
 |     Combiner.recursivelyDeleteUnusedNodes(LN0); | 
 |   } else { | 
 |     SDValue Trunc = | 
 |         DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); | 
 |     Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); | 
 |   } | 
 |   return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 | } | 
 |  | 
 | static SDValue | 
 | tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, const TargetLowering &TLI, EVT VT, | 
 |                          bool LegalOperations, SDNode *N, SDValue N0, | 
 |                          ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc) { | 
 |   if (!N0.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); | 
 |   if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) | 
 |     return SDValue(); | 
 |  | 
 |   if ((LegalOperations || !cast<MaskedLoadSDNode>(N0)->isSimple()) && | 
 |       !TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0))) | 
 |     return SDValue(); | 
 |  | 
 |   if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc dl(Ld); | 
 |   SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); | 
 |   SDValue NewLoad = DAG.getMaskedLoad( | 
 |       VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), | 
 |       PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), | 
 |       ExtLoadType, Ld->isExpandingLoad()); | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); | 
 |   return NewLoad; | 
 | } | 
 |  | 
 | // fold ([s|z]ext (atomic_load)) -> ([s|z]ext (truncate ([s|z]ext atomic_load))) | 
 | static SDValue tryToFoldExtOfAtomicLoad(SelectionDAG &DAG, | 
 |                                         const TargetLowering &TLI, EVT VT, | 
 |                                         SDValue N0, | 
 |                                         ISD::LoadExtType ExtLoadType) { | 
 |   auto *ALoad = dyn_cast<AtomicSDNode>(N0); | 
 |   if (!ALoad || ALoad->getOpcode() != ISD::ATOMIC_LOAD) | 
 |     return {}; | 
 |   EVT MemoryVT = ALoad->getMemoryVT(); | 
 |   if (!TLI.isAtomicLoadExtLegal(ExtLoadType, VT, MemoryVT)) | 
 |     return {}; | 
 |   // Can't fold into ALoad if it is already extending differently. | 
 |   ISD::LoadExtType ALoadExtTy = ALoad->getExtensionType(); | 
 |   if ((ALoadExtTy == ISD::ZEXTLOAD && ExtLoadType == ISD::SEXTLOAD) || | 
 |       (ALoadExtTy == ISD::SEXTLOAD && ExtLoadType == ISD::ZEXTLOAD)) | 
 |     return {}; | 
 |  | 
 |   EVT OrigVT = ALoad->getValueType(0); | 
 |   assert(OrigVT.getSizeInBits() < VT.getSizeInBits() && "VT should be wider."); | 
 |   auto *NewALoad = cast<AtomicSDNode>(DAG.getAtomicLoad( | 
 |       ExtLoadType, SDLoc(ALoad), MemoryVT, VT, ALoad->getChain(), | 
 |       ALoad->getBasePtr(), ALoad->getMemOperand())); | 
 |   DAG.ReplaceAllUsesOfValueWith( | 
 |       SDValue(ALoad, 0), | 
 |       DAG.getNode(ISD::TRUNCATE, SDLoc(ALoad), OrigVT, SDValue(NewALoad, 0))); | 
 |   // Update the chain uses. | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(ALoad, 1), SDValue(NewALoad, 1)); | 
 |   return SDValue(NewALoad, 0); | 
 | } | 
 |  | 
 | static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, | 
 |                                        bool LegalOperations) { | 
 |   assert((N->getOpcode() == ISD::SIGN_EXTEND || | 
 |           N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); | 
 |  | 
 |   SDValue SetCC = N->getOperand(0); | 
 |   if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || | 
 |       !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue X = SetCC.getOperand(0); | 
 |   SDValue Ones = SetCC.getOperand(1); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT XVT = X.getValueType(); | 
 |   // setge X, C is canonicalized to setgt, so we do not need to match that | 
 |   // pattern. The setlt sibling is folded in SimplifySelectCC() because it does | 
 |   // not require the 'not' op. | 
 |   if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { | 
 |     // Invert and smear/shift the sign bit: | 
 |     // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) | 
 |     // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) | 
 |     SDLoc DL(N); | 
 |     unsigned ShCt = VT.getSizeInBits() - 1; | 
 |     const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |     if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { | 
 |       SDValue NotX = DAG.getNOT(DL, X, VT); | 
 |       SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); | 
 |       auto ShiftOpcode = | 
 |         N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; | 
 |       return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::foldSextSetcc(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   if (N0.getOpcode() != ISD::SETCC) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N00 = N0.getOperand(0); | 
 |   SDValue N01 = N0.getOperand(1); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT N00VT = N00.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Propagate fast-math-flags. | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags()); | 
 |  | 
 |   // On some architectures (such as SSE/NEON/etc) the SETCC result type is | 
 |   // the same size as the compared operands. Try to optimize sext(setcc()) | 
 |   // if this is the case. | 
 |   if (VT.isVector() && !LegalOperations && | 
 |       TLI.getBooleanContents(N00VT) == | 
 |           TargetLowering::ZeroOrNegativeOneBooleanContent) { | 
 |     EVT SVT = getSetCCResultType(N00VT); | 
 |  | 
 |     // If we already have the desired type, don't change it. | 
 |     if (SVT != N0.getValueType()) { | 
 |       // We know that the # elements of the results is the same as the | 
 |       // # elements of the compare (and the # elements of the compare result | 
 |       // for that matter).  Check to see that they are the same size.  If so, | 
 |       // we know that the element size of the sext'd result matches the | 
 |       // element size of the compare operands. | 
 |       if (VT.getSizeInBits() == SVT.getSizeInBits()) | 
 |         return DAG.getSetCC(DL, VT, N00, N01, CC); | 
 |  | 
 |       // If the desired elements are smaller or larger than the source | 
 |       // elements, we can use a matching integer vector type and then | 
 |       // truncate/sign extend. | 
 |       EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); | 
 |       if (SVT == MatchingVecType) { | 
 |         SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); | 
 |         return DAG.getSExtOrTrunc(VsetCC, DL, VT); | 
 |       } | 
 |     } | 
 |  | 
 |     // Try to eliminate the sext of a setcc by zexting the compare operands. | 
 |     if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) && | 
 |         !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) { | 
 |       bool IsSignedCmp = ISD::isSignedIntSetCC(CC); | 
 |       unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
 |       unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
 |  | 
 |       // We have an unsupported narrow vector compare op that would be legal | 
 |       // if extended to the destination type. See if the compare operands | 
 |       // can be freely extended to the destination type. | 
 |       auto IsFreeToExtend = [&](SDValue V) { | 
 |         if (isConstantOrConstantVector(V, /*NoOpaques*/ true)) | 
 |           return true; | 
 |         // Match a simple, non-extended load that can be converted to a | 
 |         // legal {z/s}ext-load. | 
 |         // TODO: Allow widening of an existing {z/s}ext-load? | 
 |         if (!(ISD::isNON_EXTLoad(V.getNode()) && | 
 |               ISD::isUNINDEXEDLoad(V.getNode()) && | 
 |               cast<LoadSDNode>(V)->isSimple() && | 
 |               TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType()))) | 
 |           return false; | 
 |  | 
 |         // Non-chain users of this value must either be the setcc in this | 
 |         // sequence or extends that can be folded into the new {z/s}ext-load. | 
 |         for (SDUse &Use : V->uses()) { | 
 |           // Skip uses of the chain and the setcc. | 
 |           SDNode *User = Use.getUser(); | 
 |           if (Use.getResNo() != 0 || User == N0.getNode()) | 
 |             continue; | 
 |           // Extra users must have exactly the same cast we are about to create. | 
 |           // TODO: This restriction could be eased if ExtendUsesToFormExtLoad() | 
 |           //       is enhanced similarly. | 
 |           if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT) | 
 |             return false; | 
 |         } | 
 |         return true; | 
 |       }; | 
 |  | 
 |       if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) { | 
 |         SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00); | 
 |         SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01); | 
 |         return DAG.getSetCC(DL, VT, Ext0, Ext1, CC); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) | 
 |   // Here, T can be 1 or -1, depending on the type of the setcc and | 
 |   // getBooleanContents(). | 
 |   unsigned SetCCWidth = N0.getScalarValueSizeInBits(); | 
 |  | 
 |   // To determine the "true" side of the select, we need to know the high bit | 
 |   // of the value returned by the setcc if it evaluates to true. | 
 |   // If the type of the setcc is i1, then the true case of the select is just | 
 |   // sext(i1 1), that is, -1. | 
 |   // If the type of the setcc is larger (say, i8) then the value of the high | 
 |   // bit depends on getBooleanContents(), so ask TLI for a real "true" value | 
 |   // of the appropriate width. | 
 |   SDValue ExtTrueVal = (SetCCWidth == 1) | 
 |                            ? DAG.getAllOnesConstant(DL, VT) | 
 |                            : DAG.getBoolConstant(true, DL, VT, N00VT); | 
 |   SDValue Zero = DAG.getConstant(0, DL, VT); | 
 |   if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) | 
 |     return SCC; | 
 |  | 
 |   if (!VT.isVector() && !shouldConvertSelectOfConstantsToMath(N0, VT, TLI)) { | 
 |     EVT SetCCVT = getSetCCResultType(N00VT); | 
 |     // Don't do this transform for i1 because there's a select transform | 
 |     // that would reverse it. | 
 |     // TODO: We should not do this transform at all without a target hook | 
 |     // because a sext is likely cheaper than a select? | 
 |     if (SetCCVT.getScalarSizeInBits() != 1 && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { | 
 |       SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); | 
 |       return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVCastOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // sext(undef) = 0 because the top bit will all be the same. | 
 |   if (N0.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes)) | 
 |     return Res; | 
 |  | 
 |   // fold (sext (sext x)) -> (sext x) | 
 |   // fold (sext (aext x)) -> (sext x) | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) | 
 |     return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   // fold (sext (aext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x) | 
 |   // fold (sext (sext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x) | 
 |   if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || | 
 |       N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG) | 
 |     return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, | 
 |                        N0.getOperand(0)); | 
 |  | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     EVT ExtVT = cast<VTSDNode>(N0->getOperand(1))->getVT(); | 
 |     if (N00.getOpcode() == ISD::TRUNCATE || TLI.isTruncateFree(N00, ExtVT)) { | 
 |       // fold (sext (sext_inreg x)) -> (sext (trunc x)) | 
 |       if ((!LegalTypes || TLI.isTypeLegal(ExtVT))) { | 
 |         SDValue T = DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N00); | 
 |         return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, T); | 
 |       } | 
 |  | 
 |       // If the trunc wasn't legal, try to fold to (sext_inreg (anyext x)) | 
 |       if ((!LegalTypes || TLI.isTypeLegal(VT)) && N0.hasOneUse()) { | 
 |         SDValue ExtSrc = DAG.getAnyExtOrTrunc(N00, DL, VT); | 
 |         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, ExtSrc, | 
 |                            N0->getOperand(1)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (N0.getOpcode() == ISD::TRUNCATE) { | 
 |     // fold (sext (truncate (load x))) -> (sext (smaller load x)) | 
 |     // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) | 
 |     if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { | 
 |       SDNode *oye = N0.getOperand(0).getNode(); | 
 |       if (NarrowLoad.getNode() != N0.getNode()) { | 
 |         CombineTo(N0.getNode(), NarrowLoad); | 
 |         // CombineTo deleted the truncate, if needed, but not what's under it. | 
 |         AddToWorklist(oye); | 
 |       } | 
 |       return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 |     } | 
 |  | 
 |     // See if the value being truncated is already sign extended.  If so, just | 
 |     // eliminate the trunc/sext pair. | 
 |     SDValue Op = N0.getOperand(0); | 
 |     unsigned OpBits   = Op.getScalarValueSizeInBits(); | 
 |     unsigned MidBits  = N0.getScalarValueSizeInBits(); | 
 |     unsigned DestBits = VT.getScalarSizeInBits(); | 
 |  | 
 |     if (N0->getFlags().hasNoSignedWrap() || | 
 |         DAG.ComputeNumSignBits(Op) > OpBits - MidBits) { | 
 |       if (OpBits == DestBits) { | 
 |         // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
 |         // bits, it is already ready. | 
 |         return Op; | 
 |       } | 
 |  | 
 |       if (OpBits < DestBits) { | 
 |         // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
 |         // bits, just sext from i32. | 
 |         return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); | 
 |       } | 
 |  | 
 |       // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
 |       // bits, just truncate to i32. | 
 |       SDNodeFlags Flags; | 
 |       Flags.setNoSignedWrap(true); | 
 |       Flags.setNoUnsignedWrap(N0->getFlags().hasNoUnsignedWrap()); | 
 |       return DAG.getNode(ISD::TRUNCATE, DL, VT, Op, Flags); | 
 |     } | 
 |  | 
 |     // fold (sext (truncate x)) -> (sextinreg x). | 
 |     if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, | 
 |                                                  N0.getValueType())) { | 
 |       if (OpBits < DestBits) | 
 |         Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); | 
 |       else if (OpBits > DestBits) | 
 |         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); | 
 |       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, | 
 |                          DAG.getValueType(N0.getValueType())); | 
 |     } | 
 |   } | 
 |  | 
 |   // Try to simplify (sext (load x)). | 
 |   if (SDValue foldedExt = | 
 |           tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, | 
 |                              ISD::SEXTLOAD, ISD::SIGN_EXTEND)) | 
 |     return foldedExt; | 
 |  | 
 |   if (SDValue foldedExt = | 
 |           tryToFoldExtOfMaskedLoad(DAG, TLI, VT, LegalOperations, N, N0, | 
 |                                    ISD::SEXTLOAD, ISD::SIGN_EXTEND)) | 
 |     return foldedExt; | 
 |  | 
 |   // fold (sext (load x)) to multiple smaller sextloads. | 
 |   // Only on illegal but splittable vectors. | 
 |   if (SDValue ExtLoad = CombineExtLoad(N)) | 
 |     return ExtLoad; | 
 |  | 
 |   // Try to simplify (sext (sextload x)). | 
 |   if (SDValue foldedExt = tryToFoldExtOfExtload( | 
 |           DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) | 
 |     return foldedExt; | 
 |  | 
 |   // Try to simplify (sext (atomic_load x)). | 
 |   if (SDValue foldedExt = | 
 |           tryToFoldExtOfAtomicLoad(DAG, TLI, VT, N0, ISD::SEXTLOAD)) | 
 |     return foldedExt; | 
 |  | 
 |   // fold (sext (and/or/xor (load x), cst)) -> | 
 |   //      (and/or/xor (sextload x), (sext cst)) | 
 |   if (ISD::isBitwiseLogicOp(N0.getOpcode()) && | 
 |       isa<LoadSDNode>(N0.getOperand(0)) && | 
 |       N0.getOperand(1).getOpcode() == ISD::Constant && | 
 |       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
 |     LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); | 
 |     EVT MemVT = LN00->getMemoryVT(); | 
 |     if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && | 
 |       LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { | 
 |       SmallVector<SDNode*, 4> SetCCs; | 
 |       bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), | 
 |                                              ISD::SIGN_EXTEND, SetCCs, TLI); | 
 |       if (DoXform) { | 
 |         SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, | 
 |                                          LN00->getChain(), LN00->getBasePtr(), | 
 |                                          LN00->getMemoryVT(), | 
 |                                          LN00->getMemOperand()); | 
 |         APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); | 
 |         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | 
 |                                   ExtLoad, DAG.getConstant(Mask, DL, VT)); | 
 |         ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); | 
 |         bool NoReplaceTruncAnd = !N0.hasOneUse(); | 
 |         bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); | 
 |         CombineTo(N, And); | 
 |         // If N0 has multiple uses, change other uses as well. | 
 |         if (NoReplaceTruncAnd) { | 
 |           SDValue TruncAnd = | 
 |               DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); | 
 |           CombineTo(N0.getNode(), TruncAnd); | 
 |         } | 
 |         if (NoReplaceTrunc) { | 
 |           DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); | 
 |         } else { | 
 |           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), | 
 |                                       LN00->getValueType(0), ExtLoad); | 
 |           CombineTo(LN00, Trunc, ExtLoad.getValue(1)); | 
 |         } | 
 |         return SDValue(N,0); // Return N so it doesn't get rechecked! | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldSextSetcc(N)) | 
 |     return V; | 
 |  | 
 |   // fold (sext x) -> (zext x) if the sign bit is known zero. | 
 |   if (!TLI.isSExtCheaperThanZExt(N0.getValueType(), VT) && | 
 |       (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && | 
 |       DAG.SignBitIsZero(N0)) | 
 |     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0, SDNodeFlags::NonNeg); | 
 |  | 
 |   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
 |     return NewVSel; | 
 |  | 
 |   // Eliminate this sign extend by doing a negation in the destination type: | 
 |   // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) | 
 |   if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && | 
 |       isNullOrNullSplat(N0.getOperand(0)) && | 
 |       N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && | 
 |       TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { | 
 |     SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); | 
 |     return DAG.getNegative(Zext, DL, VT); | 
 |   } | 
 |   // Eliminate this sign extend by doing a decrement in the destination type: | 
 |   // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) | 
 |   if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && | 
 |       isAllOnesOrAllOnesSplat(N0.getOperand(1)) && | 
 |       N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | 
 |       TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { | 
 |     SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); | 
 |   } | 
 |  | 
 |   // fold sext (not i1 X) -> add (zext i1 X), -1 | 
 |   // TODO: This could be extended to handle bool vectors. | 
 |   if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && | 
 |       (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) && | 
 |                             TLI.isOperationLegal(ISD::ADD, VT)))) { | 
 |     // If we can eliminate the 'not', the sext form should be better | 
 |     if (SDValue NewXor = visitXOR(N0.getNode())) { | 
 |       // Returning N0 is a form of in-visit replacement that may have | 
 |       // invalidated N0. | 
 |       if (NewXor.getNode() == N0.getNode()) { | 
 |         // Return SDValue here as the xor should have already been replaced in | 
 |         // this sext. | 
 |         return SDValue(); | 
 |       } | 
 |  | 
 |       // Return a new sext with the new xor. | 
 |       return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor); | 
 |     } | 
 |  | 
 |     SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); | 
 |     return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); | 
 |   } | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level)) | 
 |     return Res; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Given an extending node with a pop-count operand, if the target does not | 
 | /// support a pop-count in the narrow source type but does support it in the | 
 | /// destination type, widen the pop-count to the destination type. | 
 | static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG, const SDLoc &DL) { | 
 |   assert((Extend->getOpcode() == ISD::ZERO_EXTEND || | 
 |           Extend->getOpcode() == ISD::ANY_EXTEND) && | 
 |          "Expected extend op"); | 
 |  | 
 |   SDValue CtPop = Extend->getOperand(0); | 
 |   if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = Extend->getValueType(0); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || | 
 |       !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // zext (ctpop X) --> ctpop (zext X) | 
 |   SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); | 
 |   return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); | 
 | } | 
 |  | 
 | // If we have (zext (abs X)) where X is a type that will be promoted by type | 
 | // legalization, convert to (abs (sext X)). But don't extend past a legal type. | 
 | static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG) { | 
 |   assert(Extend->getOpcode() == ISD::ZERO_EXTEND && "Expected zero extend."); | 
 |  | 
 |   EVT VT = Extend->getValueType(0); | 
 |   if (VT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Abs = Extend->getOperand(0); | 
 |   if (Abs.getOpcode() != ISD::ABS || !Abs.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   EVT AbsVT = Abs.getValueType(); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   if (TLI.getTypeAction(*DAG.getContext(), AbsVT) != | 
 |       TargetLowering::TypePromoteInteger) | 
 |     return SDValue(); | 
 |  | 
 |   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), AbsVT); | 
 |  | 
 |   SDValue SExt = | 
 |       DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Abs), LegalVT, Abs.getOperand(0)); | 
 |   SDValue NewAbs = DAG.getNode(ISD::ABS, SDLoc(Abs), LegalVT, SExt); | 
 |   return DAG.getZExtOrTrunc(NewAbs, SDLoc(Extend), VT); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVCastOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // zext(undef) = 0 | 
 |   if (N0.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes)) | 
 |     return Res; | 
 |  | 
 |   // fold (zext (zext x)) -> (zext x) | 
 |   // fold (zext (aext x)) -> (zext x) | 
 |   if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | 
 |     SDNodeFlags Flags; | 
 |     if (N0.getOpcode() == ISD::ZERO_EXTEND) | 
 |       Flags.setNonNeg(N0->getFlags().hasNonNeg()); | 
 |     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0), Flags); | 
 |   } | 
 |  | 
 |   // fold (zext (aext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x) | 
 |   // fold (zext (zext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x) | 
 |   if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || | 
 |       N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) | 
 |     return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   // fold (zext (truncate x)) -> (zext x) or | 
 |   //      (zext (truncate x)) -> (truncate x) | 
 |   // This is valid when the truncated bits of x are already zero. | 
 |   SDValue Op; | 
 |   KnownBits Known; | 
 |   if (isTruncateOf(DAG, N0, Op, Known)) { | 
 |     APInt TruncatedBits = | 
 |       (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? | 
 |       APInt(Op.getScalarValueSizeInBits(), 0) : | 
 |       APInt::getBitsSet(Op.getScalarValueSizeInBits(), | 
 |                         N0.getScalarValueSizeInBits(), | 
 |                         std::min(Op.getScalarValueSizeInBits(), | 
 |                                  VT.getScalarSizeInBits())); | 
 |     if (TruncatedBits.isSubsetOf(Known.Zero)) { | 
 |       SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, DL, VT); | 
 |       DAG.salvageDebugInfo(*N0.getNode()); | 
 |  | 
 |       return ZExtOrTrunc; | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (zext (truncate x)) -> (and x, mask) | 
 |   if (N0.getOpcode() == ISD::TRUNCATE) { | 
 |     // fold (zext (truncate (load x))) -> (zext (smaller load x)) | 
 |     // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) | 
 |     if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { | 
 |       SDNode *oye = N0.getOperand(0).getNode(); | 
 |       if (NarrowLoad.getNode() != N0.getNode()) { | 
 |         CombineTo(N0.getNode(), NarrowLoad); | 
 |         // CombineTo deleted the truncate, if needed, but not what's under it. | 
 |         AddToWorklist(oye); | 
 |       } | 
 |       return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |     } | 
 |  | 
 |     EVT SrcVT = N0.getOperand(0).getValueType(); | 
 |     EVT MinVT = N0.getValueType(); | 
 |  | 
 |     if (N->getFlags().hasNonNeg()) { | 
 |       SDValue Op = N0.getOperand(0); | 
 |       unsigned OpBits = SrcVT.getScalarSizeInBits(); | 
 |       unsigned MidBits = MinVT.getScalarSizeInBits(); | 
 |       unsigned DestBits = VT.getScalarSizeInBits(); | 
 |  | 
 |       if (N0->getFlags().hasNoSignedWrap() || | 
 |           DAG.ComputeNumSignBits(Op) > OpBits - MidBits) { | 
 |         if (OpBits == DestBits) { | 
 |           // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign | 
 |           // bits, it is already ready. | 
 |           return Op; | 
 |         } | 
 |  | 
 |         if (OpBits < DestBits) { | 
 |           // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign | 
 |           // bits, just sext from i32. | 
 |           // FIXME: This can probably be ZERO_EXTEND nneg? | 
 |           return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); | 
 |         } | 
 |  | 
 |         // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign | 
 |         // bits, just truncate to i32. | 
 |         SDNodeFlags Flags; | 
 |         Flags.setNoSignedWrap(true); | 
 |         Flags.setNoUnsignedWrap(true); | 
 |         return DAG.getNode(ISD::TRUNCATE, DL, VT, Op, Flags); | 
 |       } | 
 |     } | 
 |  | 
 |     // Try to mask before the extension to avoid having to generate a larger mask, | 
 |     // possibly over several sub-vectors. | 
 |     if (SrcVT.bitsLT(VT) && VT.isVector()) { | 
 |       if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && | 
 |                                TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { | 
 |         SDValue Op = N0.getOperand(0); | 
 |         Op = DAG.getZeroExtendInReg(Op, DL, MinVT); | 
 |         AddToWorklist(Op.getNode()); | 
 |         SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, DL, VT); | 
 |         // Transfer the debug info; the new node is equivalent to N0. | 
 |         DAG.transferDbgValues(N0, ZExtOrTrunc); | 
 |         return ZExtOrTrunc; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { | 
 |       SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), DL, VT); | 
 |       AddToWorklist(Op.getNode()); | 
 |       SDValue And = DAG.getZeroExtendInReg(Op, DL, MinVT); | 
 |       // We may safely transfer the debug info describing the truncate node over | 
 |       // to the equivalent and operation. | 
 |       DAG.transferDbgValues(N0, And); | 
 |       return And; | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold (zext (and (trunc x), cst)) -> (and x, cst), | 
 |   // if either of the casts is not free. | 
 |   if (N0.getOpcode() == ISD::AND && | 
 |       N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
 |       N0.getOperand(1).getOpcode() == ISD::Constant && | 
 |       (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0), N0.getValueType()) || | 
 |        !TLI.isZExtFree(N0.getValueType(), VT))) { | 
 |     SDValue X = N0.getOperand(0).getOperand(0); | 
 |     X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); | 
 |     APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); | 
 |     return DAG.getNode(ISD::AND, DL, VT, | 
 |                        X, DAG.getConstant(Mask, DL, VT)); | 
 |   } | 
 |  | 
 |   // Try to simplify (zext (load x)). | 
 |   if (SDValue foldedExt = tryToFoldExtOfLoad( | 
 |           DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD, | 
 |           ISD::ZERO_EXTEND, N->getFlags().hasNonNeg())) | 
 |     return foldedExt; | 
 |  | 
 |   if (SDValue foldedExt = | 
 |           tryToFoldExtOfMaskedLoad(DAG, TLI, VT, LegalOperations, N, N0, | 
 |                                    ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) | 
 |     return foldedExt; | 
 |  | 
 |   // fold (zext (load x)) to multiple smaller zextloads. | 
 |   // Only on illegal but splittable vectors. | 
 |   if (SDValue ExtLoad = CombineExtLoad(N)) | 
 |     return ExtLoad; | 
 |  | 
 |   // Try to simplify (zext (atomic_load x)). | 
 |   if (SDValue foldedExt = | 
 |           tryToFoldExtOfAtomicLoad(DAG, TLI, VT, N0, ISD::ZEXTLOAD)) | 
 |     return foldedExt; | 
 |  | 
 |   // fold (zext (and/or/xor (load x), cst)) -> | 
 |   //      (and/or/xor (zextload x), (zext cst)) | 
 |   // Unless (and (load x) cst) will match as a zextload already and has | 
 |   // additional users, or the zext is already free. | 
 |   if (ISD::isBitwiseLogicOp(N0.getOpcode()) && !TLI.isZExtFree(N0, VT) && | 
 |       isa<LoadSDNode>(N0.getOperand(0)) && | 
 |       N0.getOperand(1).getOpcode() == ISD::Constant && | 
 |       (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { | 
 |     LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); | 
 |     EVT MemVT = LN00->getMemoryVT(); | 
 |     if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && | 
 |         LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { | 
 |       bool DoXform = true; | 
 |       SmallVector<SDNode*, 4> SetCCs; | 
 |       if (!N0.hasOneUse()) { | 
 |         if (N0.getOpcode() == ISD::AND) { | 
 |           auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); | 
 |           EVT LoadResultTy = AndC->getValueType(0); | 
 |           EVT ExtVT; | 
 |           if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) | 
 |             DoXform = false; | 
 |         } | 
 |       } | 
 |       if (DoXform) | 
 |         DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), | 
 |                                           ISD::ZERO_EXTEND, SetCCs, TLI); | 
 |       if (DoXform) { | 
 |         SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, | 
 |                                          LN00->getChain(), LN00->getBasePtr(), | 
 |                                          LN00->getMemoryVT(), | 
 |                                          LN00->getMemOperand()); | 
 |         APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); | 
 |         SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, | 
 |                                   ExtLoad, DAG.getConstant(Mask, DL, VT)); | 
 |         ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); | 
 |         bool NoReplaceTruncAnd = !N0.hasOneUse(); | 
 |         bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); | 
 |         CombineTo(N, And); | 
 |         // If N0 has multiple uses, change other uses as well. | 
 |         if (NoReplaceTruncAnd) { | 
 |           SDValue TruncAnd = | 
 |               DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); | 
 |           CombineTo(N0.getNode(), TruncAnd); | 
 |         } | 
 |         if (NoReplaceTrunc) { | 
 |           DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); | 
 |         } else { | 
 |           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), | 
 |                                       LN00->getValueType(0), ExtLoad); | 
 |           CombineTo(LN00, Trunc, ExtLoad.getValue(1)); | 
 |         } | 
 |         return SDValue(N,0); // Return N so it doesn't get rechecked! | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> | 
 |   //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) | 
 |   if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) | 
 |     return ZExtLoad; | 
 |  | 
 |   // Try to simplify (zext (zextload x)). | 
 |   if (SDValue foldedExt = tryToFoldExtOfExtload( | 
 |           DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) | 
 |     return foldedExt; | 
 |  | 
 |   if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   if (N0.getOpcode() == ISD::SETCC) { | 
 |     // Propagate fast-math-flags. | 
 |     SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags()); | 
 |  | 
 |     // Only do this before legalize for now. | 
 |     if (!LegalOperations && VT.isVector() && | 
 |         N0.getValueType().getVectorElementType() == MVT::i1) { | 
 |       EVT N00VT = N0.getOperand(0).getValueType(); | 
 |       if (getSetCCResultType(N00VT) == N0.getValueType()) | 
 |         return SDValue(); | 
 |  | 
 |       // We know that the # elements of the results is the same as the # | 
 |       // elements of the compare (and the # elements of the compare result for | 
 |       // that matter). Check to see that they are the same size. If so, we know | 
 |       // that the element size of the sext'd result matches the element size of | 
 |       // the compare operands. | 
 |       if (VT.getSizeInBits() == N00VT.getSizeInBits()) { | 
 |         // zext(setcc) -> zext_in_reg(vsetcc) for vectors. | 
 |         SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), | 
 |                                      N0.getOperand(1), N0.getOperand(2)); | 
 |         return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); | 
 |       } | 
 |  | 
 |       // If the desired elements are smaller or larger than the source | 
 |       // elements we can use a matching integer vector type and then | 
 |       // truncate/any extend followed by zext_in_reg. | 
 |       EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); | 
 |       SDValue VsetCC = | 
 |           DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), | 
 |                       N0.getOperand(1), N0.getOperand(2)); | 
 |       return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, | 
 |                                     N0.getValueType()); | 
 |     } | 
 |  | 
 |     // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) | 
 |     EVT N0VT = N0.getValueType(); | 
 |     EVT N00VT = N0.getOperand(0).getValueType(); | 
 |     if (SDValue SCC = SimplifySelectCC( | 
 |             DL, N0.getOperand(0), N0.getOperand(1), | 
 |             DAG.getBoolConstant(true, DL, N0VT, N00VT), | 
 |             DAG.getBoolConstant(false, DL, N0VT, N00VT), | 
 |             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
 |       return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); | 
 |   } | 
 |  | 
 |   // (zext (shl (zext x), cst)) -> (shl (zext x), cst) | 
 |   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && | 
 |       !TLI.isZExtFree(N0, VT)) { | 
 |     SDValue ShVal = N0.getOperand(0); | 
 |     SDValue ShAmt = N0.getOperand(1); | 
 |     if (auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt)) { | 
 |       if (ShVal.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse()) { | 
 |         if (N0.getOpcode() == ISD::SHL) { | 
 |           // If the original shl may be shifting out bits, do not perform this | 
 |           // transformation. | 
 |           unsigned KnownZeroBits = ShVal.getValueSizeInBits() - | 
 |                                    ShVal.getOperand(0).getValueSizeInBits(); | 
 |           if (ShAmtC->getAPIntValue().ugt(KnownZeroBits)) { | 
 |             // If the shift is too large, then see if we can deduce that the | 
 |             // shift is safe anyway. | 
 |  | 
 |             // Check if the bits being shifted out are known to be zero. | 
 |             KnownBits KnownShVal = DAG.computeKnownBits(ShVal); | 
 |             if (ShAmtC->getAPIntValue().ugt(KnownShVal.countMinLeadingZeros())) | 
 |               return SDValue(); | 
 |           } | 
 |         } | 
 |  | 
 |         // Ensure that the shift amount is wide enough for the shifted value. | 
 |         if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) | 
 |           ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); | 
 |  | 
 |         return DAG.getNode(N0.getOpcode(), DL, VT, | 
 |                            DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ShVal), ShAmt); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
 |     return NewVSel; | 
 |  | 
 |   if (SDValue NewCtPop = widenCtPop(N, DAG, DL)) | 
 |     return NewCtPop; | 
 |  | 
 |   if (SDValue V = widenAbs(N, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level)) | 
 |     return Res; | 
 |  | 
 |   // CSE zext nneg with sext if the zext is not free. | 
 |   if (N->getFlags().hasNonNeg() && !TLI.isZExtFree(N0.getValueType(), VT)) { | 
 |     SDNode *CSENode = DAG.getNodeIfExists(ISD::SIGN_EXTEND, N->getVTList(), N0); | 
 |     if (CSENode) | 
 |       return SDValue(CSENode, 0); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // aext(undef) = undef | 
 |   if (N0.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes)) | 
 |     return Res; | 
 |  | 
 |   // fold (aext (aext x)) -> (aext x) | 
 |   // fold (aext (zext x)) -> (zext x) | 
 |   // fold (aext (sext x)) -> (sext x) | 
 |   if (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::ZERO_EXTEND || | 
 |       N0.getOpcode() == ISD::SIGN_EXTEND) { | 
 |     SDNodeFlags Flags; | 
 |     if (N0.getOpcode() == ISD::ZERO_EXTEND) | 
 |       Flags.setNonNeg(N0->getFlags().hasNonNeg()); | 
 |     return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Flags); | 
 |   } | 
 |  | 
 |   // fold (aext (aext_extend_vector_inreg x)) -> (aext_extend_vector_inreg x) | 
 |   // fold (aext (zext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x) | 
 |   // fold (aext (sext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x) | 
 |   if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || | 
 |       N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG || | 
 |       N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG) | 
 |     return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0)); | 
 |  | 
 |   // fold (aext (truncate (load x))) -> (aext (smaller load x)) | 
 |   // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) | 
 |   if (N0.getOpcode() == ISD::TRUNCATE) { | 
 |     if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) { | 
 |       SDNode *oye = N0.getOperand(0).getNode(); | 
 |       if (NarrowLoad.getNode() != N0.getNode()) { | 
 |         CombineTo(N0.getNode(), NarrowLoad); | 
 |         // CombineTo deleted the truncate, if needed, but not what's under it. | 
 |         AddToWorklist(oye); | 
 |       } | 
 |       return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (aext (truncate x)) | 
 |   if (N0.getOpcode() == ISD::TRUNCATE) | 
 |     return DAG.getAnyExtOrTrunc(N0.getOperand(0), DL, VT); | 
 |  | 
 |   // Fold (aext (and (trunc x), cst)) -> (and x, cst) | 
 |   // if the trunc is not free. | 
 |   if (N0.getOpcode() == ISD::AND && | 
 |       N0.getOperand(0).getOpcode() == ISD::TRUNCATE && | 
 |       N0.getOperand(1).getOpcode() == ISD::Constant && | 
 |       !TLI.isTruncateFree(N0.getOperand(0).getOperand(0), N0.getValueType())) { | 
 |     SDValue X = DAG.getAnyExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); | 
 |     SDValue Y = DAG.getNode(ISD::ANY_EXTEND, DL, VT, N0.getOperand(1)); | 
 |     assert(isa<ConstantSDNode>(Y) && "Expected constant to be folded!"); | 
 |     return DAG.getNode(ISD::AND, DL, VT, X, Y); | 
 |   } | 
 |  | 
 |   // fold (aext (load x)) -> (aext (truncate (extload x))) | 
 |   // None of the supported targets knows how to perform load and any_ext | 
 |   // on vectors in one instruction, so attempt to fold to zext instead. | 
 |   if (VT.isVector()) { | 
 |     // Try to simplify (zext (load x)). | 
 |     if (SDValue foldedExt = | 
 |             tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, | 
 |                                ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) | 
 |       return foldedExt; | 
 |   } else if (ISD::isNON_EXTLoad(N0.getNode()) && | 
 |              ISD::isUNINDEXEDLoad(N0.getNode()) && | 
 |              TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { | 
 |     bool DoXform = true; | 
 |     SmallVector<SDNode *, 4> SetCCs; | 
 |     if (!N0.hasOneUse()) | 
 |       DoXform = | 
 |           ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); | 
 |     if (DoXform) { | 
 |       LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |       SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, LN0->getChain(), | 
 |                                        LN0->getBasePtr(), N0.getValueType(), | 
 |                                        LN0->getMemOperand()); | 
 |       ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); | 
 |       // If the load value is used only by N, replace it via CombineTo N. | 
 |       bool NoReplaceTrunc = N0.hasOneUse(); | 
 |       CombineTo(N, ExtLoad); | 
 |       if (NoReplaceTrunc) { | 
 |         DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
 |         recursivelyDeleteUnusedNodes(LN0); | 
 |       } else { | 
 |         SDValue Trunc = | 
 |             DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); | 
 |         CombineTo(LN0, Trunc, ExtLoad.getValue(1)); | 
 |       } | 
 |       return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (aext (zextload x)) -> (aext (truncate (zextload x))) | 
 |   // fold (aext (sextload x)) -> (aext (truncate (sextload x))) | 
 |   // fold (aext ( extload x)) -> (aext (truncate (extload  x))) | 
 |   if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && | 
 |       ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { | 
 |     LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |     ISD::LoadExtType ExtType = LN0->getExtensionType(); | 
 |     EVT MemVT = LN0->getMemoryVT(); | 
 |     if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { | 
 |       SDValue ExtLoad = | 
 |           DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), LN0->getBasePtr(), | 
 |                          MemVT, LN0->getMemOperand()); | 
 |       CombineTo(N, ExtLoad); | 
 |       DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); | 
 |       recursivelyDeleteUnusedNodes(LN0); | 
 |       return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   if (N0.getOpcode() == ISD::SETCC) { | 
 |     // Propagate fast-math-flags. | 
 |     SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags()); | 
 |  | 
 |     // For vectors: | 
 |     // aext(setcc) -> vsetcc | 
 |     // aext(setcc) -> truncate(vsetcc) | 
 |     // aext(setcc) -> aext(vsetcc) | 
 |     // Only do this before legalize for now. | 
 |     if (VT.isVector() && !LegalOperations) { | 
 |       EVT N00VT = N0.getOperand(0).getValueType(); | 
 |       if (getSetCCResultType(N00VT) == N0.getValueType()) | 
 |         return SDValue(); | 
 |  | 
 |       // We know that the # elements of the results is the same as the | 
 |       // # elements of the compare (and the # elements of the compare result | 
 |       // for that matter).  Check to see that they are the same size.  If so, | 
 |       // we know that the element size of the sext'd result matches the | 
 |       // element size of the compare operands. | 
 |       if (VT.getSizeInBits() == N00VT.getSizeInBits()) | 
 |         return DAG.getSetCC(DL, VT, N0.getOperand(0), N0.getOperand(1), | 
 |                             cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
 |  | 
 |       // If the desired elements are smaller or larger than the source | 
 |       // elements we can use a matching integer vector type and then | 
 |       // truncate/any extend | 
 |       EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); | 
 |       SDValue VsetCC = DAG.getSetCC( | 
 |           DL, MatchingVectorType, N0.getOperand(0), N0.getOperand(1), | 
 |           cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
 |       return DAG.getAnyExtOrTrunc(VsetCC, DL, VT); | 
 |     } | 
 |  | 
 |     // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc | 
 |     if (SDValue SCC = SimplifySelectCC( | 
 |             DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), | 
 |             DAG.getConstant(0, DL, VT), | 
 |             cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) | 
 |       return SCC; | 
 |   } | 
 |  | 
 |   if (SDValue NewCtPop = widenCtPop(N, DAG, DL)) | 
 |     return NewCtPop; | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level)) | 
 |     return Res; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitAssertExt(SDNode *N) { | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT AssertVT = cast<VTSDNode>(N1)->getVT(); | 
 |  | 
 |   // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) | 
 |   if (N0.getOpcode() == Opcode && | 
 |       AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) | 
 |     return N0; | 
 |  | 
 |   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && | 
 |       N0.getOperand(0).getOpcode() == Opcode) { | 
 |     // We have an assert, truncate, assert sandwich. Make one stronger assert | 
 |     // by asserting on the smallest asserted type to the larger source type. | 
 |     // This eliminates the later assert: | 
 |     // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN | 
 |     // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN | 
 |     SDLoc DL(N); | 
 |     SDValue BigA = N0.getOperand(0); | 
 |     EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); | 
 |     EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; | 
 |     SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); | 
 |     SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), | 
 |                                     BigA.getOperand(0), MinAssertVTVal); | 
 |     return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); | 
 |   } | 
 |  | 
 |   // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller | 
 |   // than X. Just move the AssertZext in front of the truncate and drop the | 
 |   // AssertSExt. | 
 |   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && | 
 |       N0.getOperand(0).getOpcode() == ISD::AssertSext && | 
 |       Opcode == ISD::AssertZext) { | 
 |     SDValue BigA = N0.getOperand(0); | 
 |     EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); | 
 |     if (AssertVT.bitsLT(BigA_AssertVT)) { | 
 |       SDLoc DL(N); | 
 |       SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), | 
 |                                       BigA.getOperand(0), N1); | 
 |       return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitAssertAlign(SDNode *N) { | 
 |   SDLoc DL(N); | 
 |  | 
 |   Align AL = cast<AssertAlignSDNode>(N)->getAlign(); | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // Fold (assertalign (assertalign x, AL0), AL1) -> | 
 |   // (assertalign x, max(AL0, AL1)) | 
 |   if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) | 
 |     return DAG.getAssertAlign(DL, N0.getOperand(0), | 
 |                               std::max(AL, AAN->getAlign())); | 
 |  | 
 |   // In rare cases, there are trivial arithmetic ops in source operands. Sink | 
 |   // this assert down to source operands so that those arithmetic ops could be | 
 |   // exposed to the DAG combining. | 
 |   switch (N0.getOpcode()) { | 
 |   default: | 
 |     break; | 
 |   case ISD::ADD: | 
 |   case ISD::SUB: { | 
 |     unsigned AlignShift = Log2(AL); | 
 |     SDValue LHS = N0.getOperand(0); | 
 |     SDValue RHS = N0.getOperand(1); | 
 |     unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); | 
 |     unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); | 
 |     if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { | 
 |       if (LHSAlignShift < AlignShift) | 
 |         LHS = DAG.getAssertAlign(DL, LHS, AL); | 
 |       if (RHSAlignShift < AlignShift) | 
 |         RHS = DAG.getAssertAlign(DL, RHS, AL); | 
 |       return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); | 
 |     } | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If the result of a load is shifted/masked/truncated to an effectively | 
 | /// narrower type, try to transform the load to a narrower type and/or | 
 | /// use an extending load. | 
 | SDValue DAGCombiner::reduceLoadWidth(SDNode *N) { | 
 |   unsigned Opc = N->getOpcode(); | 
 |  | 
 |   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT ExtVT = VT; | 
 |  | 
 |   // This transformation isn't valid for vector loads. | 
 |   if (VT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // The ShAmt variable is used to indicate that we've consumed a right | 
 |   // shift. I.e. we want to narrow the width of the load by skipping to load the | 
 |   // ShAmt least significant bits. | 
 |   unsigned ShAmt = 0; | 
 |   // A special case is when the least significant bits from the load are masked | 
 |   // away, but using an AND rather than a right shift. HasShiftedOffset is used | 
 |   // to indicate that the narrowed load should be left-shifted ShAmt bits to get | 
 |   // the result. | 
 |   unsigned ShiftedOffset = 0; | 
 |   // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then | 
 |   // extended to VT. | 
 |   if (Opc == ISD::SIGN_EXTEND_INREG) { | 
 |     ExtType = ISD::SEXTLOAD; | 
 |     ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | 
 |   } else if (Opc == ISD::SRL || Opc == ISD::SRA) { | 
 |     // Another special-case: SRL/SRA is basically zero/sign-extending a narrower | 
 |     // value, or it may be shifting a higher subword, half or byte into the | 
 |     // lowest bits. | 
 |  | 
 |     // Only handle shift with constant shift amount, and the shiftee must be a | 
 |     // load. | 
 |     auto *LN = dyn_cast<LoadSDNode>(N0); | 
 |     auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |     if (!N1C || !LN) | 
 |       return SDValue(); | 
 |     // If the shift amount is larger than the memory type then we're not | 
 |     // accessing any of the loaded bytes. | 
 |     ShAmt = N1C->getZExtValue(); | 
 |     uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits(); | 
 |     if (MemoryWidth <= ShAmt) | 
 |       return SDValue(); | 
 |     // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD. | 
 |     ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD; | 
 |     ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); | 
 |     // If original load is a SEXTLOAD then we can't simply replace it by a | 
 |     // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD | 
 |     // followed by a ZEXT, but that is not handled at the moment). Similarly if | 
 |     // the original load is a ZEXTLOAD and we want to use a SEXTLOAD. | 
 |     if ((LN->getExtensionType() == ISD::SEXTLOAD || | 
 |          LN->getExtensionType() == ISD::ZEXTLOAD) && | 
 |         LN->getExtensionType() != ExtType) | 
 |       return SDValue(); | 
 |   } else if (Opc == ISD::AND) { | 
 |     // An AND with a constant mask is the same as a truncate + zero-extend. | 
 |     auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |     if (!AndC) | 
 |       return SDValue(); | 
 |  | 
 |     const APInt &Mask = AndC->getAPIntValue(); | 
 |     unsigned ActiveBits = 0; | 
 |     if (Mask.isMask()) { | 
 |       ActiveBits = Mask.countr_one(); | 
 |     } else if (Mask.isShiftedMask(ShAmt, ActiveBits)) { | 
 |       ShiftedOffset = ShAmt; | 
 |     } else { | 
 |       return SDValue(); | 
 |     } | 
 |  | 
 |     ExtType = ISD::ZEXTLOAD; | 
 |     ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
 |   } | 
 |  | 
 |   // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing | 
 |   // a right shift. Here we redo some of those checks, to possibly adjust the | 
 |   // ExtVT even further based on "a masking AND". We could also end up here for | 
 |   // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks | 
 |   // need to be done here as well. | 
 |   if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) { | 
 |     SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0; | 
 |     // Bail out when the SRL has more than one use. This is done for historical | 
 |     // (undocumented) reasons. Maybe intent was to guard the AND-masking below | 
 |     // check below? And maybe it could be non-profitable to do the transform in | 
 |     // case the SRL has multiple uses and we get here with Opc!=ISD::SRL? | 
 |     // FIXME: Can't we just skip this check for the Opc==ISD::SRL case. | 
 |     if (!SRL.hasOneUse()) | 
 |       return SDValue(); | 
 |  | 
 |     // Only handle shift with constant shift amount, and the shiftee must be a | 
 |     // load. | 
 |     auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0)); | 
 |     auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1)); | 
 |     if (!SRL1C || !LN) | 
 |       return SDValue(); | 
 |  | 
 |     // If the shift amount is larger than the input type then we're not | 
 |     // accessing any of the loaded bytes.  If the load was a zextload/extload | 
 |     // then the result of the shift+trunc is zero/undef (handled elsewhere). | 
 |     ShAmt = SRL1C->getZExtValue(); | 
 |     uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits(); | 
 |     if (ShAmt >= MemoryWidth) | 
 |       return SDValue(); | 
 |  | 
 |     // Because a SRL must be assumed to *need* to zero-extend the high bits | 
 |     // (as opposed to anyext the high bits), we can't combine the zextload | 
 |     // lowering of SRL and an sextload. | 
 |     if (LN->getExtensionType() == ISD::SEXTLOAD) | 
 |       return SDValue(); | 
 |  | 
 |     // Avoid reading outside the memory accessed by the original load (could | 
 |     // happened if we only adjust the load base pointer by ShAmt). Instead we | 
 |     // try to narrow the load even further. The typical scenario here is: | 
 |     //   (i64 (truncate (i96 (srl (load x), 64)))) -> | 
 |     //     (i64 (truncate (i96 (zextload (load i32 + offset) from i32)))) | 
 |     if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) { | 
 |       // Don't replace sextload by zextload. | 
 |       if (ExtType == ISD::SEXTLOAD) | 
 |         return SDValue(); | 
 |       // Narrow the load. | 
 |       ExtType = ISD::ZEXTLOAD; | 
 |       ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt); | 
 |     } | 
 |  | 
 |     // If the SRL is only used by a masking AND, we may be able to adjust | 
 |     // the ExtVT to make the AND redundant. | 
 |     SDNode *Mask = *(SRL->user_begin()); | 
 |     if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND && | 
 |         isa<ConstantSDNode>(Mask->getOperand(1))) { | 
 |       unsigned Offset, ActiveBits; | 
 |       const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); | 
 |       if (ShiftMask.isMask()) { | 
 |         EVT MaskedVT = | 
 |             EVT::getIntegerVT(*DAG.getContext(), ShiftMask.countr_one()); | 
 |         // If the mask is smaller, recompute the type. | 
 |         if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && | 
 |             TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) | 
 |           ExtVT = MaskedVT; | 
 |       } else if (ExtType == ISD::ZEXTLOAD && | 
 |                  ShiftMask.isShiftedMask(Offset, ActiveBits) && | 
 |                  (Offset + ShAmt) < VT.getScalarSizeInBits()) { | 
 |         EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); | 
 |         // If the mask is shifted we can use a narrower load and a shl to insert | 
 |         // the trailing zeros. | 
 |         if (((Offset + ActiveBits) <= ExtVT.getScalarSizeInBits()) && | 
 |             TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) { | 
 |           ExtVT = MaskedVT; | 
 |           ShAmt = Offset + ShAmt; | 
 |           ShiftedOffset = Offset; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     N0 = SRL.getOperand(0); | 
 |   } | 
 |  | 
 |   // If the load is shifted left (and the result isn't shifted back right), we | 
 |   // can fold a truncate through the shift. The typical scenario is that N | 
 |   // points at a TRUNCATE here so the attempted fold is: | 
 |   //   (truncate (shl (load x), c))) -> (shl (narrow load x), c) | 
 |   // ShLeftAmt will indicate how much a narrowed load should be shifted left. | 
 |   unsigned ShLeftAmt = 0; | 
 |   if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | 
 |       ExtVT == VT && TLI.isNarrowingProfitable(N, N0.getValueType(), VT)) { | 
 |     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
 |       ShLeftAmt = N01->getZExtValue(); | 
 |       N0 = N0.getOperand(0); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we haven't found a load, we can't narrow it. | 
 |   if (!isa<LoadSDNode>(N0)) | 
 |     return SDValue(); | 
 |  | 
 |   LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |   // Reducing the width of a volatile load is illegal.  For atomics, we may be | 
 |   // able to reduce the width provided we never widen again. (see D66309) | 
 |   if (!LN0->isSimple() || | 
 |       !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) | 
 |     return SDValue(); | 
 |  | 
 |   auto AdjustBigEndianShift = [&](unsigned ShAmt) { | 
 |     unsigned LVTStoreBits = | 
 |         LN0->getMemoryVT().getStoreSizeInBits().getFixedValue(); | 
 |     unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedValue(); | 
 |     return LVTStoreBits - EVTStoreBits - ShAmt; | 
 |   }; | 
 |  | 
 |   // We need to adjust the pointer to the load by ShAmt bits in order to load | 
 |   // the correct bytes. | 
 |   unsigned PtrAdjustmentInBits = | 
 |       DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt; | 
 |  | 
 |   uint64_t PtrOff = PtrAdjustmentInBits / 8; | 
 |   SDLoc DL(LN0); | 
 |   // The original load itself didn't wrap, so an offset within it doesn't. | 
 |   SDValue NewPtr = | 
 |       DAG.getMemBasePlusOffset(LN0->getBasePtr(), TypeSize::getFixed(PtrOff), | 
 |                                DL, SDNodeFlags::NoUnsignedWrap); | 
 |   AddToWorklist(NewPtr.getNode()); | 
 |  | 
 |   SDValue Load; | 
 |   if (ExtType == ISD::NON_EXTLOAD) { | 
 |     const MDNode *OldRanges = LN0->getRanges(); | 
 |     const MDNode *NewRanges = nullptr; | 
 |     // If LSBs are loaded and the truncated ConstantRange for the OldRanges | 
 |     // metadata is not the full-set for the new width then create a NewRanges | 
 |     // metadata for the truncated load | 
 |     if (ShAmt == 0 && OldRanges) { | 
 |       ConstantRange CR = getConstantRangeFromMetadata(*OldRanges); | 
 |       unsigned BitSize = VT.getScalarSizeInBits(); | 
 |  | 
 |       // It is possible for an 8-bit extending load with 8-bit range | 
 |       // metadata to be narrowed to an 8-bit load.  This guard is necessary to | 
 |       // ensure that truncation is strictly smaller. | 
 |       if (CR.getBitWidth() > BitSize) { | 
 |         ConstantRange TruncatedCR = CR.truncate(BitSize); | 
 |         if (!TruncatedCR.isFullSet()) { | 
 |           Metadata *Bounds[2] = { | 
 |               ConstantAsMetadata::get( | 
 |                   ConstantInt::get(*DAG.getContext(), TruncatedCR.getLower())), | 
 |               ConstantAsMetadata::get( | 
 |                   ConstantInt::get(*DAG.getContext(), TruncatedCR.getUpper()))}; | 
 |           NewRanges = MDNode::get(*DAG.getContext(), Bounds); | 
 |         } | 
 |       } else if (CR.getBitWidth() == BitSize) | 
 |         NewRanges = OldRanges; | 
 |     } | 
 |     Load = DAG.getLoad( | 
 |         VT, DL, LN0->getChain(), NewPtr, | 
 |         LN0->getPointerInfo().getWithOffset(PtrOff), LN0->getOriginalAlign(), | 
 |         LN0->getMemOperand()->getFlags(), LN0->getAAInfo(), NewRanges); | 
 |   } else | 
 |     Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, | 
 |                           LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, | 
 |                           LN0->getOriginalAlign(), | 
 |                           LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); | 
 |  | 
 |   // Replace the old load's chain with the new load's chain. | 
 |   WorklistRemover DeadNodes(*this); | 
 |   DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | 
 |  | 
 |   // Shift the result left, if we've swallowed a left shift. | 
 |   SDValue Result = Load; | 
 |   if (ShLeftAmt != 0) { | 
 |     // If the shift amount is as large as the result size (but, presumably, | 
 |     // no larger than the source) then the useful bits of the result are | 
 |     // zero; we can't simply return the shortened shift, because the result | 
 |     // of that operation is undefined. | 
 |     if (ShLeftAmt >= VT.getScalarSizeInBits()) | 
 |       Result = DAG.getConstant(0, DL, VT); | 
 |     else | 
 |       Result = DAG.getNode(ISD::SHL, DL, VT, Result, | 
 |                            DAG.getShiftAmountConstant(ShLeftAmt, VT, DL)); | 
 |   } | 
 |  | 
 |   if (ShiftedOffset != 0) { | 
 |     // We're using a shifted mask, so the load now has an offset. This means | 
 |     // that data has been loaded into the lower bytes than it would have been | 
 |     // before, so we need to shl the loaded data into the correct position in the | 
 |     // register. | 
 |     SDValue ShiftC = DAG.getConstant(ShiftedOffset, DL, VT); | 
 |     Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
 |   } | 
 |  | 
 |   // Return the new loaded value. | 
 |   return Result; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT ExtVT = cast<VTSDNode>(N1)->getVT(); | 
 |   unsigned VTBits = VT.getScalarSizeInBits(); | 
 |   unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // sext_vector_inreg(undef) = 0 because the top bit will all be the same. | 
 |   if (N0.isUndef()) | 
 |     return DAG.getConstant(0, DL, VT); | 
 |  | 
 |   // fold (sext_in_reg c1) -> c1 | 
 |   if (SDValue C = | 
 |           DAG.FoldConstantArithmetic(ISD::SIGN_EXTEND_INREG, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // If the input is already sign extended, just drop the extension. | 
 |   if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0)) | 
 |     return N0; | 
 |  | 
 |   // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
 |       ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) | 
 |     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N0.getOperand(0), N1); | 
 |  | 
 |   // fold (sext_in_reg (sext x)) -> (sext x) | 
 |   // fold (sext_in_reg (aext x)) -> (sext x) | 
 |   // if x is small enough or if we know that x has more than 1 sign bit and the | 
 |   // sign_extend_inreg is extending from one of them. | 
 |   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     unsigned N00Bits = N00.getScalarValueSizeInBits(); | 
 |     if ((N00Bits <= ExtVTBits || | 
 |          DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | 
 |       return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N00); | 
 |   } | 
 |  | 
 |   // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) | 
 |   // if x is small enough or if we know that x has more than 1 sign bit and the | 
 |   // sign_extend_inreg is extending from one of them. | 
 |   if (ISD::isExtVecInRegOpcode(N0.getOpcode())) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     unsigned N00Bits = N00.getScalarValueSizeInBits(); | 
 |     unsigned DstElts = N0.getValueType().getVectorMinNumElements(); | 
 |     unsigned SrcElts = N00.getValueType().getVectorMinNumElements(); | 
 |     bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; | 
 |     APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts); | 
 |     if ((N00Bits == ExtVTBits || | 
 |          (!IsZext && (N00Bits < ExtVTBits || | 
 |                       DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) && | 
 |         (!LegalOperations || | 
 |          TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))) | 
 |       return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, N00); | 
 |   } | 
 |  | 
 |   // fold (sext_in_reg (zext x)) -> (sext x) | 
 |   // iff we are extending the source sign bit. | 
 |   if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (N00.getScalarValueSizeInBits() == ExtVTBits && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) | 
 |       return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N00); | 
 |   } | 
 |  | 
 |   // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. | 
 |   if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) | 
 |     return DAG.getZeroExtendInReg(N0, DL, ExtVT); | 
 |  | 
 |   // fold operands of sext_in_reg based on knowledge that the top bits are not | 
 |   // demanded. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // fold (sext_in_reg (load x)) -> (smaller sextload x) | 
 |   // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) | 
 |   if (SDValue NarrowLoad = reduceLoadWidth(N)) | 
 |     return NarrowLoad; | 
 |  | 
 |   // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) | 
 |   // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. | 
 |   // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. | 
 |   if (N0.getOpcode() == ISD::SRL) { | 
 |     if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) | 
 |       if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { | 
 |         // We can turn this into an SRA iff the input to the SRL is already sign | 
 |         // extended enough. | 
 |         unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); | 
 |         if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) | 
 |           return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), | 
 |                              N0.getOperand(1)); | 
 |       } | 
 |   } | 
 |  | 
 |   // fold (sext_inreg (extload x)) -> (sextload x) | 
 |   // If sextload is not supported by target, we can only do the combine when | 
 |   // load has one use. Doing otherwise can block folding the extload with other | 
 |   // extends that the target does support. | 
 |   if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
 |       ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
 |       ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && | 
 |         N0.hasOneUse()) || | 
 |        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { | 
 |     auto *LN0 = cast<LoadSDNode>(N0); | 
 |     SDValue ExtLoad = | 
 |         DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(), | 
 |                        LN0->getBasePtr(), ExtVT, LN0->getMemOperand()); | 
 |     CombineTo(N, ExtLoad); | 
 |     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
 |     AddToWorklist(ExtLoad.getNode()); | 
 |     return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |   } | 
 |  | 
 |   // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use | 
 |   if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && | 
 |       N0.hasOneUse() && ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && | 
 |       ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && | 
 |        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { | 
 |     auto *LN0 = cast<LoadSDNode>(N0); | 
 |     SDValue ExtLoad = | 
 |         DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(), | 
 |                        LN0->getBasePtr(), ExtVT, LN0->getMemOperand()); | 
 |     CombineTo(N, ExtLoad); | 
 |     CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
 |     return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |   } | 
 |  | 
 |   // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) | 
 |   // ignore it if the masked load is already sign extended | 
 |   if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { | 
 |     if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() && | 
 |         Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD && | 
 |         TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) { | 
 |       SDValue ExtMaskedLoad = DAG.getMaskedLoad( | 
 |           VT, DL, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), | 
 |           Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(), | 
 |           Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad()); | 
 |       CombineTo(N, ExtMaskedLoad); | 
 |       CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1)); | 
 |       return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x) | 
 |   if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { | 
 |     if (SDValue(GN0, 0).hasOneUse() && ExtVT == GN0->getMemoryVT() && | 
 |         TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) { | 
 |       SDValue Ops[] = {GN0->getChain(),   GN0->getPassThru(), GN0->getMask(), | 
 |                        GN0->getBasePtr(), GN0->getIndex(),    GN0->getScale()}; | 
 |  | 
 |       SDValue ExtLoad = DAG.getMaskedGather( | 
 |           DAG.getVTList(VT, MVT::Other), ExtVT, DL, Ops, GN0->getMemOperand(), | 
 |           GN0->getIndexType(), ISD::SEXTLOAD); | 
 |  | 
 |       CombineTo(N, ExtLoad); | 
 |       CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); | 
 |       AddToWorklist(ExtLoad.getNode()); | 
 |       return SDValue(N, 0); // Return N so it doesn't get rechecked! | 
 |     } | 
 |   } | 
 |  | 
 |   // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) | 
 |   if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { | 
 |     if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), | 
 |                                            N0.getOperand(1), false)) | 
 |       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, BSwap, N1); | 
 |   } | 
 |  | 
 |   // Fold (iM_signext_inreg | 
 |   //        (extract_subvector (zext|anyext|sext iN_v to _) _) | 
 |   //        from iN) | 
 |   //      -> (extract_subvector (signext iN_v to iM)) | 
 |   if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && | 
 |       ISD::isExtOpcode(N0.getOperand(0).getOpcode())) { | 
 |     SDValue InnerExt = N0.getOperand(0); | 
 |     EVT InnerExtVT = InnerExt->getValueType(0); | 
 |     SDValue Extendee = InnerExt->getOperand(0); | 
 |  | 
 |     if (ExtVTBits == Extendee.getValueType().getScalarSizeInBits() && | 
 |         (!LegalOperations || | 
 |          TLI.isOperationLegal(ISD::SIGN_EXTEND, InnerExtVT))) { | 
 |       SDValue SignExtExtendee = | 
 |           DAG.getNode(ISD::SIGN_EXTEND, DL, InnerExtVT, Extendee); | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SignExtExtendee, | 
 |                          N0.getOperand(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue foldExtendVectorInregToExtendOfSubvector( | 
 |     SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG, | 
 |     bool LegalOperations) { | 
 |   unsigned InregOpcode = N->getOpcode(); | 
 |   unsigned Opcode = DAG.getOpcode_EXTEND(InregOpcode); | 
 |  | 
 |   SDValue Src = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT SrcVT = EVT::getVectorVT(*DAG.getContext(), | 
 |                                Src.getValueType().getVectorElementType(), | 
 |                                VT.getVectorElementCount()); | 
 |  | 
 |   assert(ISD::isExtVecInRegOpcode(InregOpcode) && | 
 |          "Expected EXTEND_VECTOR_INREG dag node in input!"); | 
 |  | 
 |   // Profitability check: our operand must be an one-use CONCAT_VECTORS. | 
 |   // FIXME: one-use check may be overly restrictive | 
 |   if (!Src.hasOneUse() || Src.getOpcode() != ISD::CONCAT_VECTORS) | 
 |     return SDValue(); | 
 |  | 
 |   // Profitability check: we must be extending exactly one of it's operands. | 
 |   // FIXME: this is probably overly restrictive. | 
 |   Src = Src.getOperand(0); | 
 |   if (Src.getValueType() != SrcVT) | 
 |     return SDValue(); | 
 |  | 
 |   if (LegalOperations && !TLI.isOperationLegal(Opcode, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   return DAG.getNode(Opcode, DL, VT, Src); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (N0.isUndef()) { | 
 |     // aext_vector_inreg(undef) = undef because the top bits are undefined. | 
 |     // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same. | 
 |     return N->getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG | 
 |                ? DAG.getUNDEF(VT) | 
 |                : DAG.getConstant(0, DL, VT); | 
 |   } | 
 |  | 
 |   if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes)) | 
 |     return Res; | 
 |  | 
 |   if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   if (SDValue R = foldExtendVectorInregToExtendOfSubvector(N, DL, TLI, DAG, | 
 |                                                            LegalOperations)) | 
 |     return R; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitTRUNCATE_USAT_U(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   SDValue FPVal; | 
 |   if (sd_match(N0, m_FPToUI(m_Value(FPVal))) && | 
 |       DAG.getTargetLoweringInfo().shouldConvertFpToSat( | 
 |           ISD::FP_TO_UINT_SAT, FPVal.getValueType(), VT)) | 
 |     return DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), VT, FPVal, | 
 |                        DAG.getValueType(VT.getScalarType())); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Detect patterns of truncation with unsigned saturation: | 
 | /// | 
 | /// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type). | 
 | /// Return the source value x to be truncated or SDValue() if the pattern was | 
 | /// not matched. | 
 | /// | 
 | static SDValue detectUSatUPattern(SDValue In, EVT VT) { | 
 |   unsigned NumDstBits = VT.getScalarSizeInBits(); | 
 |   unsigned NumSrcBits = In.getScalarValueSizeInBits(); | 
 |   // Saturation with truncation. We truncate from InVT to VT. | 
 |   assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation"); | 
 |  | 
 |   SDValue Min; | 
 |   APInt UnsignedMax = APInt::getMaxValue(NumDstBits).zext(NumSrcBits); | 
 |   if (sd_match(In, m_UMin(m_Value(Min), m_SpecificInt(UnsignedMax)))) | 
 |     return Min; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Detect patterns of truncation with signed saturation: | 
 | /// (truncate (smin (smax (x, signed_min_of_dest_type), | 
 | ///                  signed_max_of_dest_type)) to dest_type) | 
 | /// or: | 
 | /// (truncate (smax (smin (x, signed_max_of_dest_type), | 
 | ///                  signed_min_of_dest_type)) to dest_type). | 
 | /// | 
 | /// Return the source value to be truncated or SDValue() if the pattern was not | 
 | /// matched. | 
 | static SDValue detectSSatSPattern(SDValue In, EVT VT) { | 
 |   unsigned NumDstBits = VT.getScalarSizeInBits(); | 
 |   unsigned NumSrcBits = In.getScalarValueSizeInBits(); | 
 |   // Saturation with truncation. We truncate from InVT to VT. | 
 |   assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation"); | 
 |  | 
 |   SDValue Val; | 
 |   APInt SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits); | 
 |   APInt SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits); | 
 |  | 
 |   if (sd_match(In, m_SMin(m_SMax(m_Value(Val), m_SpecificInt(SignedMin)), | 
 |                           m_SpecificInt(SignedMax)))) | 
 |     return Val; | 
 |  | 
 |   if (sd_match(In, m_SMax(m_SMin(m_Value(Val), m_SpecificInt(SignedMax)), | 
 |                           m_SpecificInt(SignedMin)))) | 
 |     return Val; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Detect patterns of truncation with unsigned saturation: | 
 | static SDValue detectSSatUPattern(SDValue In, EVT VT, SelectionDAG &DAG, | 
 |                                   const SDLoc &DL) { | 
 |   unsigned NumDstBits = VT.getScalarSizeInBits(); | 
 |   unsigned NumSrcBits = In.getScalarValueSizeInBits(); | 
 |   // Saturation with truncation. We truncate from InVT to VT. | 
 |   assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation"); | 
 |  | 
 |   SDValue Val; | 
 |   APInt UnsignedMax = APInt::getMaxValue(NumDstBits).zext(NumSrcBits); | 
 |   // Min == 0, Max is unsigned max of destination type. | 
 |   if (sd_match(In, m_SMax(m_SMin(m_Value(Val), m_SpecificInt(UnsignedMax)), | 
 |                           m_Zero()))) | 
 |     return Val; | 
 |  | 
 |   if (sd_match(In, m_SMin(m_SMax(m_Value(Val), m_Zero()), | 
 |                           m_SpecificInt(UnsignedMax)))) | 
 |     return Val; | 
 |  | 
 |   if (sd_match(In, m_UMin(m_SMax(m_Value(Val), m_Zero()), | 
 |                           m_SpecificInt(UnsignedMax)))) | 
 |     return Val; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue foldToSaturated(SDNode *N, EVT &VT, SDValue &Src, EVT &SrcVT, | 
 |                                SDLoc &DL, const TargetLowering &TLI, | 
 |                                SelectionDAG &DAG) { | 
 |   auto AllowedTruncateSat = [&](unsigned Opc, EVT SrcVT, EVT VT) -> bool { | 
 |     return (TLI.isOperationLegalOrCustom(Opc, SrcVT) && | 
 |             TLI.isTypeDesirableForOp(Opc, VT)); | 
 |   }; | 
 |  | 
 |   if (Src.getOpcode() == ISD::SMIN || Src.getOpcode() == ISD::SMAX) { | 
 |     if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_S, SrcVT, VT)) | 
 |       if (SDValue SSatVal = detectSSatSPattern(Src, VT)) | 
 |         return DAG.getNode(ISD::TRUNCATE_SSAT_S, DL, VT, SSatVal); | 
 |     if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_U, SrcVT, VT)) | 
 |       if (SDValue SSatVal = detectSSatUPattern(Src, VT, DAG, DL)) | 
 |         return DAG.getNode(ISD::TRUNCATE_SSAT_U, DL, VT, SSatVal); | 
 |   } else if (Src.getOpcode() == ISD::UMIN) { | 
 |     if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_U, SrcVT, VT)) | 
 |       if (SDValue SSatVal = detectSSatUPattern(Src, VT, DAG, DL)) | 
 |         return DAG.getNode(ISD::TRUNCATE_SSAT_U, DL, VT, SSatVal); | 
 |     if (AllowedTruncateSat(ISD::TRUNCATE_USAT_U, SrcVT, VT)) | 
 |       if (SDValue USatVal = detectUSatUPattern(Src, VT)) | 
 |         return DAG.getNode(ISD::TRUNCATE_USAT_U, DL, VT, USatVal); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT SrcVT = N0.getValueType(); | 
 |   bool isLE = DAG.getDataLayout().isLittleEndian(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // trunc(undef) = undef | 
 |   if (N0.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // fold (truncate (truncate x)) -> (truncate x) | 
 |   if (N0.getOpcode() == ISD::TRUNCATE) | 
 |     return DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   // fold saturated truncate | 
 |   if (SDValue SaturatedTR = foldToSaturated(N, VT, N0, SrcVT, DL, TLI, DAG)) | 
 |     return SaturatedTR; | 
 |  | 
 |   // fold (truncate c1) -> c1 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::TRUNCATE, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // fold (truncate (ext x)) -> (ext x) or (truncate x) or x | 
 |   if (N0.getOpcode() == ISD::ZERO_EXTEND || | 
 |       N0.getOpcode() == ISD::SIGN_EXTEND || | 
 |       N0.getOpcode() == ISD::ANY_EXTEND) { | 
 |     // if the source is smaller than the dest, we still need an extend. | 
 |     if (N0.getOperand(0).getValueType().bitsLT(VT)) | 
 |       return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0)); | 
 |     // if the source is larger than the dest, than we just need the truncate. | 
 |     if (N0.getOperand(0).getValueType().bitsGT(VT)) | 
 |       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); | 
 |     // if the source and dest are the same type, we can drop both the extend | 
 |     // and the truncate. | 
 |     return N0.getOperand(0); | 
 |   } | 
 |  | 
 |   // Try to narrow a truncate-of-sext_in_reg to the destination type: | 
 |   // trunc (sign_ext_inreg X, iM) to iN --> sign_ext_inreg (trunc X to iN), iM | 
 |   if (!LegalTypes && N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
 |       N0.hasOneUse()) { | 
 |     SDValue X = N0.getOperand(0); | 
 |     SDValue ExtVal = N0.getOperand(1); | 
 |     EVT ExtVT = cast<VTSDNode>(ExtVal)->getVT(); | 
 |     if (ExtVT.bitsLT(VT) && TLI.preferSextInRegOfTruncate(VT, SrcVT, ExtVT)) { | 
 |       SDValue TrX = DAG.getNode(ISD::TRUNCATE, DL, VT, X); | 
 |       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, TrX, ExtVal); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is anyext(trunc), don't fold it, allow ourselves to be folded. | 
 |   if (N->hasOneUse() && (N->user_begin()->getOpcode() == ISD::ANY_EXTEND)) | 
 |     return SDValue(); | 
 |  | 
 |   // Fold extract-and-trunc into a narrow extract. For example: | 
 |   //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) | 
 |   //   i32 y = TRUNCATE(i64 x) | 
 |   //        -- becomes -- | 
 |   //   v16i8 b = BITCAST (v2i64 val) | 
 |   //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) | 
 |   // | 
 |   // Note: We only run this optimization after type legalization (which often | 
 |   // creates this pattern) and before operation legalization after which | 
 |   // we need to be more careful about the vector instructions that we generate. | 
 |   if (LegalTypes && !LegalOperations && VT.isScalarInteger() && VT != MVT::i1 && | 
 |       N0->hasOneUse()) { | 
 |     EVT TrTy = N->getValueType(0); | 
 |     SDValue Src = N0; | 
 |  | 
 |     // Check for cases where we shift down an upper element before truncation. | 
 |     int EltOffset = 0; | 
 |     if (Src.getOpcode() == ISD::SRL && Src.getOperand(0)->hasOneUse()) { | 
 |       if (auto ShAmt = DAG.getValidShiftAmount(Src)) { | 
 |         if ((*ShAmt % TrTy.getSizeInBits()) == 0) { | 
 |           Src = Src.getOperand(0); | 
 |           EltOffset = *ShAmt / TrTy.getSizeInBits(); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
 |       EVT VecTy = Src.getOperand(0).getValueType(); | 
 |       EVT ExTy = Src.getValueType(); | 
 |  | 
 |       auto EltCnt = VecTy.getVectorElementCount(); | 
 |       unsigned SizeRatio = ExTy.getSizeInBits() / TrTy.getSizeInBits(); | 
 |       auto NewEltCnt = EltCnt * SizeRatio; | 
 |  | 
 |       EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); | 
 |       assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); | 
 |  | 
 |       SDValue EltNo = Src->getOperand(1); | 
 |       if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { | 
 |         int Elt = EltNo->getAsZExtVal(); | 
 |         int Index = isLE ? (Elt * SizeRatio + EltOffset) | 
 |                          : (Elt * SizeRatio + (SizeRatio - 1) - EltOffset); | 
 |         return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, | 
 |                            DAG.getBitcast(NVT, Src.getOperand(0)), | 
 |                            DAG.getVectorIdxConstant(Index, DL)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // trunc (select c, a, b) -> select c, (trunc a), (trunc b) | 
 |   if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse() && | 
 |       TLI.isTruncateFree(SrcVT, VT)) { | 
 |     if (!LegalOperations || | 
 |         (TLI.isOperationLegal(ISD::SELECT, SrcVT) && | 
 |          TLI.isNarrowingProfitable(N0.getNode(), SrcVT, VT))) { | 
 |       SDLoc SL(N0); | 
 |       SDValue Cond = N0.getOperand(0); | 
 |       SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); | 
 |       SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); | 
 |       return DAG.getNode(ISD::SELECT, DL, VT, Cond, TruncOp0, TruncOp1); | 
 |     } | 
 |   } | 
 |  | 
 |   // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() | 
 |   if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && | 
 |       (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && | 
 |       TLI.isTypeDesirableForOp(ISD::SHL, VT)) { | 
 |     SDValue Amt = N0.getOperand(1); | 
 |     KnownBits Known = DAG.computeKnownBits(Amt); | 
 |     unsigned Size = VT.getScalarSizeInBits(); | 
 |     if (Known.countMaxActiveBits() <= Log2_32(Size)) { | 
 |       EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
 |       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); | 
 |       if (AmtVT != Amt.getValueType()) { | 
 |         Amt = DAG.getZExtOrTrunc(Amt, DL, AmtVT); | 
 |         AddToWorklist(Amt.getNode()); | 
 |       } | 
 |       return DAG.getNode(ISD::SHL, DL, VT, Trunc, Amt); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = foldSubToUSubSat(VT, N0.getNode(), DL)) | 
 |     return V; | 
 |  | 
 |   if (SDValue ABD = foldABSToABD(N, DL)) | 
 |     return ABD; | 
 |  | 
 |   // Attempt to pre-truncate BUILD_VECTOR sources. | 
 |   if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && | 
 |       N0.hasOneUse() && | 
 |       TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && | 
 |       // Avoid creating illegal types if running after type legalizer. | 
 |       (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { | 
 |     EVT SVT = VT.getScalarType(); | 
 |     SmallVector<SDValue, 8> TruncOps; | 
 |     for (const SDValue &Op : N0->op_values()) { | 
 |       SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); | 
 |       TruncOps.push_back(TruncOp); | 
 |     } | 
 |     return DAG.getBuildVector(VT, DL, TruncOps); | 
 |   } | 
 |  | 
 |   // trunc (splat_vector x) -> splat_vector (trunc x) | 
 |   if (N0.getOpcode() == ISD::SPLAT_VECTOR && | 
 |       (!LegalTypes || TLI.isTypeLegal(VT.getScalarType())) && | 
 |       (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, VT))) { | 
 |     EVT SVT = VT.getScalarType(); | 
 |     return DAG.getSplatVector( | 
 |         VT, DL, DAG.getNode(ISD::TRUNCATE, DL, SVT, N0->getOperand(0))); | 
 |   } | 
 |  | 
 |   // Fold a series of buildvector, bitcast, and truncate if possible. | 
 |   // For example fold | 
 |   //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to | 
 |   //   (2xi32 (buildvector x, y)). | 
 |   if (Level == AfterLegalizeVectorOps && VT.isVector() && | 
 |       N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | 
 |       N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && | 
 |       N0.getOperand(0).hasOneUse()) { | 
 |     SDValue BuildVect = N0.getOperand(0); | 
 |     EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); | 
 |     EVT TruncVecEltTy = VT.getVectorElementType(); | 
 |  | 
 |     // Check that the element types match. | 
 |     if (BuildVectEltTy == TruncVecEltTy) { | 
 |       // Now we only need to compute the offset of the truncated elements. | 
 |       unsigned BuildVecNumElts =  BuildVect.getNumOperands(); | 
 |       unsigned TruncVecNumElts = VT.getVectorNumElements(); | 
 |       unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; | 
 |       unsigned FirstElt = isLE ? 0 : (TruncEltOffset - 1); | 
 |  | 
 |       assert((BuildVecNumElts % TruncVecNumElts) == 0 && | 
 |              "Invalid number of elements"); | 
 |  | 
 |       SmallVector<SDValue, 8> Opnds; | 
 |       for (unsigned i = FirstElt, e = BuildVecNumElts; i < e; | 
 |            i += TruncEltOffset) | 
 |         Opnds.push_back(BuildVect.getOperand(i)); | 
 |  | 
 |       return DAG.getBuildVector(VT, DL, Opnds); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (truncate (load x)) -> (smaller load x) | 
 |   // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) | 
 |   if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { | 
 |     if (SDValue Reduced = reduceLoadWidth(N)) | 
 |       return Reduced; | 
 |  | 
 |     // Handle the case where the truncated result is at least as wide as the | 
 |     // loaded type. | 
 |     if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { | 
 |       auto *LN0 = cast<LoadSDNode>(N0); | 
 |       if (LN0->isSimple() && LN0->getMemoryVT().bitsLE(VT)) { | 
 |         SDValue NewLoad = DAG.getExtLoad( | 
 |             LN0->getExtensionType(), SDLoc(LN0), VT, LN0->getChain(), | 
 |             LN0->getBasePtr(), LN0->getMemoryVT(), LN0->getMemOperand()); | 
 |         DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); | 
 |         return NewLoad; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), | 
 |   // where ... are all 'undef'. | 
 |   if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { | 
 |     SmallVector<EVT, 8> VTs; | 
 |     SDValue V; | 
 |     unsigned Idx = 0; | 
 |     unsigned NumDefs = 0; | 
 |  | 
 |     for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { | 
 |       SDValue X = N0.getOperand(i); | 
 |       if (!X.isUndef()) { | 
 |         V = X; | 
 |         Idx = i; | 
 |         NumDefs++; | 
 |       } | 
 |       // Stop if more than one members are non-undef. | 
 |       if (NumDefs > 1) | 
 |         break; | 
 |  | 
 |       VTs.push_back(EVT::getVectorVT(*DAG.getContext(), | 
 |                                      VT.getVectorElementType(), | 
 |                                      X.getValueType().getVectorElementCount())); | 
 |     } | 
 |  | 
 |     if (NumDefs == 0) | 
 |       return DAG.getUNDEF(VT); | 
 |  | 
 |     if (NumDefs == 1) { | 
 |       assert(V.getNode() && "The single defined operand is empty!"); | 
 |       SmallVector<SDValue, 8> Opnds; | 
 |       for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | 
 |         if (i != Idx) { | 
 |           Opnds.push_back(DAG.getUNDEF(VTs[i])); | 
 |           continue; | 
 |         } | 
 |         SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); | 
 |         AddToWorklist(NV.getNode()); | 
 |         Opnds.push_back(NV); | 
 |       } | 
 |       return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds); | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold truncate of a bitcast of a vector to an extract of the low vector | 
 |   // element. | 
 |   // | 
 |   // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx | 
 |   if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { | 
 |     SDValue VecSrc = N0.getOperand(0); | 
 |     EVT VecSrcVT = VecSrc.getValueType(); | 
 |     if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && | 
 |         (!LegalOperations || | 
 |          TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { | 
 |       unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; | 
 |       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, VecSrc, | 
 |                          DAG.getVectorIdxConstant(Idx, DL)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Simplify the operands using demanded-bits information. | 
 |   if (SimplifyDemandedBits(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // fold (truncate (extract_subvector(ext x))) -> | 
 |   //      (extract_subvector x) | 
 |   // TODO: This can be generalized to cover cases where the truncate and extract | 
 |   // do not fully cancel each other out. | 
 |   if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (N00.getOpcode() == ISD::SIGN_EXTEND || | 
 |         N00.getOpcode() == ISD::ZERO_EXTEND || | 
 |         N00.getOpcode() == ISD::ANY_EXTEND) { | 
 |       if (N00.getOperand(0)->getValueType(0).getVectorElementType() == | 
 |           VT.getVectorElementType()) | 
 |         return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, | 
 |                            N00.getOperand(0), N0.getOperand(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
 |     return NewVSel; | 
 |  | 
 |   // Narrow a suitable binary operation with a non-opaque constant operand by | 
 |   // moving it ahead of the truncate. This is limited to pre-legalization | 
 |   // because targets may prefer a wider type during later combines and invert | 
 |   // this transform. | 
 |   switch (N0.getOpcode()) { | 
 |   case ISD::ADD: | 
 |   case ISD::SUB: | 
 |   case ISD::MUL: | 
 |   case ISD::AND: | 
 |   case ISD::OR: | 
 |   case ISD::XOR: | 
 |     if (!LegalOperations && N0.hasOneUse() && | 
 |         (isConstantOrConstantVector(N0.getOperand(0), true) || | 
 |          isConstantOrConstantVector(N0.getOperand(1), true))) { | 
 |       // TODO: We already restricted this to pre-legalization, but for vectors | 
 |       // we are extra cautious to not create an unsupported operation. | 
 |       // Target-specific changes are likely needed to avoid regressions here. | 
 |       if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { | 
 |         SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); | 
 |         SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); | 
 |         return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); | 
 |       } | 
 |     } | 
 |     break; | 
 |   case ISD::ADDE: | 
 |   case ISD::UADDO_CARRY: | 
 |     // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) | 
 |     // (trunc uaddo_carry(X, Y, Carry)) -> | 
 |     //     (uaddo_carry trunc(X), trunc(Y), Carry) | 
 |     // When the adde's carry is not used. | 
 |     // We only do for uaddo_carry before legalize operation | 
 |     if (((!LegalOperations && N0.getOpcode() == ISD::UADDO_CARRY) || | 
 |          TLI.isOperationLegal(N0.getOpcode(), VT)) && | 
 |         N0.hasOneUse() && !N0->hasAnyUseOfValue(1)) { | 
 |       SDValue X = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); | 
 |       SDValue Y = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); | 
 |       SDVTList VTs = DAG.getVTList(VT, N0->getValueType(1)); | 
 |       return DAG.getNode(N0.getOpcode(), DL, VTs, X, Y, N0.getOperand(2)); | 
 |     } | 
 |     break; | 
 |   case ISD::USUBSAT: | 
 |     // Truncate the USUBSAT only if LHS is a known zero-extension, its not | 
 |     // enough to know that the upper bits are zero we must ensure that we don't | 
 |     // introduce an extra truncate. | 
 |     if (!LegalOperations && N0.hasOneUse() && | 
 |         N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && | 
 |         N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <= | 
 |             VT.getScalarSizeInBits() && | 
 |         hasOperation(N0.getOpcode(), VT)) { | 
 |       return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1), | 
 |                                  DAG, DL); | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDNode *getBuildPairElt(SDNode *N, unsigned i) { | 
 |   SDValue Elt = N->getOperand(i); | 
 |   if (Elt.getOpcode() != ISD::MERGE_VALUES) | 
 |     return Elt.getNode(); | 
 |   return Elt.getOperand(Elt.getResNo()).getNode(); | 
 | } | 
 |  | 
 | /// build_pair (load, load) -> load | 
 | /// if load locations are consecutive. | 
 | SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { | 
 |   assert(N->getOpcode() == ISD::BUILD_PAIR); | 
 |  | 
 |   auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); | 
 |   auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); | 
 |  | 
 |   // A BUILD_PAIR is always having the least significant part in elt 0 and the | 
 |   // most significant part in elt 1. So when combining into one large load, we | 
 |   // need to consider the endianness. | 
 |   if (DAG.getDataLayout().isBigEndian()) | 
 |     std::swap(LD1, LD2); | 
 |  | 
 |   if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) || | 
 |       !LD1->hasOneUse() || !LD2->hasOneUse() || | 
 |       LD1->getAddressSpace() != LD2->getAddressSpace()) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned LD1Fast = 0; | 
 |   EVT LD1VT = LD1->getValueType(0); | 
 |   unsigned LD1Bytes = LD1VT.getStoreSize(); | 
 |   if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && | 
 |       DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) && | 
 |       TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
 |                              *LD1->getMemOperand(), &LD1Fast) && LD1Fast) | 
 |     return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), | 
 |                        LD1->getPointerInfo(), LD1->getAlign()); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { | 
 |   // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi | 
 |   // and Lo parts; on big-endian machines it doesn't. | 
 |   return DAG.getDataLayout().isBigEndian() ? 1 : 0; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, | 
 |                                           const TargetLowering &TLI) { | 
 |   // If this is not a bitcast to an FP type or if the target doesn't have | 
 |   // IEEE754-compliant FP logic, we're done. | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT SourceVT = N0.getValueType(); | 
 |  | 
 |   if (!VT.isFloatingPoint()) | 
 |     return SDValue(); | 
 |  | 
 |   // TODO: Handle cases where the integer constant is a different scalar | 
 |   // bitwidth to the FP. | 
 |   if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned FPOpcode; | 
 |   APInt SignMask; | 
 |   switch (N0.getOpcode()) { | 
 |   case ISD::AND: | 
 |     FPOpcode = ISD::FABS; | 
 |     SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); | 
 |     break; | 
 |   case ISD::XOR: | 
 |     FPOpcode = ISD::FNEG; | 
 |     SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); | 
 |     break; | 
 |   case ISD::OR: | 
 |     FPOpcode = ISD::FABS; | 
 |     SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); | 
 |     break; | 
 |   default: | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   if (LegalOperations && !TLI.isOperationLegal(FPOpcode, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // This needs to be the inverse of logic in foldSignChangeInBitcast. | 
 |   // FIXME: I don't think looking for bitcast intrinsically makes sense, but | 
 |   // removing this would require more changes. | 
 |   auto IsBitCastOrFree = [&TLI, FPOpcode](SDValue Op, EVT VT) { | 
 |     if (sd_match(Op, m_BitCast(m_SpecificVT(VT)))) | 
 |       return true; | 
 |  | 
 |     return FPOpcode == ISD::FABS ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); | 
 |   }; | 
 |  | 
 |   // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X | 
 |   // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X | 
 |   // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> | 
 |   //   fneg (fabs X) | 
 |   SDValue LogicOp0 = N0.getOperand(0); | 
 |   ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); | 
 |   if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && | 
 |       IsBitCastOrFree(LogicOp0, VT)) { | 
 |     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, LogicOp0); | 
 |     SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, CastOp0); | 
 |     NumFPLogicOpsConv++; | 
 |     if (N0.getOpcode() == ISD::OR) | 
 |       return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); | 
 |     return FPOp; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBITCAST(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   if (N0.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // If the input is a BUILD_VECTOR with all constant elements, fold this now. | 
 |   // Only do this before legalize types, unless both types are integer and the | 
 |   // scalar type is legal. Only do this before legalize ops, since the target | 
 |   // maybe depending on the bitcast. | 
 |   // First check to see if this is all constant. | 
 |   // TODO: Support FP bitcasts after legalize types. | 
 |   if (VT.isVector() && | 
 |       (!LegalTypes || | 
 |        (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && | 
 |         TLI.isTypeLegal(VT.getVectorElementType()))) && | 
 |       N0.getOpcode() == ISD::BUILD_VECTOR && N0->hasOneUse() && | 
 |       cast<BuildVectorSDNode>(N0)->isConstant()) | 
 |     return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), | 
 |                                              VT.getVectorElementType()); | 
 |  | 
 |   // If the input is a constant, let getNode fold it. | 
 |   if (isIntOrFPConstant(N0)) { | 
 |     // If we can't allow illegal operations, we need to check that this is just | 
 |     // a fp -> int or int -> conversion and that the resulting operation will | 
 |     // be legal. | 
 |     if (!LegalOperations || | 
 |         (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && | 
 |          TLI.isOperationLegal(ISD::ConstantFP, VT)) || | 
 |         (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && | 
 |          TLI.isOperationLegal(ISD::Constant, VT))) { | 
 |       SDValue C = DAG.getBitcast(VT, N0); | 
 |       if (C.getNode() != N) | 
 |         return C; | 
 |     } | 
 |   } | 
 |  | 
 |   // (conv (conv x, t1), t2) -> (conv x, t2) | 
 |   if (N0.getOpcode() == ISD::BITCAST) | 
 |     return DAG.getBitcast(VT, N0.getOperand(0)); | 
 |  | 
 |   // fold (conv (logicop (conv x), (c))) -> (logicop x, (conv c)) | 
 |   // iff the current bitwise logicop type isn't legal | 
 |   if (ISD::isBitwiseLogicOp(N0.getOpcode()) && VT.isInteger() && | 
 |       !TLI.isTypeLegal(N0.getOperand(0).getValueType())) { | 
 |     auto IsFreeBitcast = [VT](SDValue V) { | 
 |       return (V.getOpcode() == ISD::BITCAST && | 
 |               V.getOperand(0).getValueType() == VT) || | 
 |              (ISD::isBuildVectorOfConstantSDNodes(V.getNode()) && | 
 |               V->hasOneUse()); | 
 |     }; | 
 |     if (IsFreeBitcast(N0.getOperand(0)) && IsFreeBitcast(N0.getOperand(1))) | 
 |       return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, | 
 |                          DAG.getBitcast(VT, N0.getOperand(0)), | 
 |                          DAG.getBitcast(VT, N0.getOperand(1))); | 
 |   } | 
 |  | 
 |   // fold (conv (load x)) -> (load (conv*)x) | 
 |   // If the resultant load doesn't need a higher alignment than the original! | 
 |   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
 |       // Do not remove the cast if the types differ in endian layout. | 
 |       TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == | 
 |           TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && | 
 |       // If the load is volatile, we only want to change the load type if the | 
 |       // resulting load is legal. Otherwise we might increase the number of | 
 |       // memory accesses. We don't care if the original type was legal or not | 
 |       // as we assume software couldn't rely on the number of accesses of an | 
 |       // illegal type. | 
 |       ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || | 
 |        TLI.isOperationLegal(ISD::LOAD, VT))) { | 
 |     LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |  | 
 |     if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, | 
 |                                     *LN0->getMemOperand())) { | 
 |       // If the range metadata type does not match the new memory | 
 |       // operation type, remove the range metadata. | 
 |       if (const MDNode *MD = LN0->getRanges()) { | 
 |         ConstantInt *Lower = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
 |         if (Lower->getBitWidth() != VT.getScalarSizeInBits() || | 
 |             !VT.isInteger()) { | 
 |           LN0->getMemOperand()->clearRanges(); | 
 |         } | 
 |       } | 
 |       SDValue Load = | 
 |           DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), | 
 |                       LN0->getMemOperand()); | 
 |       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); | 
 |       return Load; | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) | 
 |     return V; | 
 |  | 
 |   // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) | 
 |   // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) | 
 |   // | 
 |   // For ppc_fp128: | 
 |   // fold (bitcast (fneg x)) -> | 
 |   //     flipbit = signbit | 
 |   //     (xor (bitcast x) (build_pair flipbit, flipbit)) | 
 |   // | 
 |   // fold (bitcast (fabs x)) -> | 
 |   //     flipbit = (and (extract_element (bitcast x), 0), signbit) | 
 |   //     (xor (bitcast x) (build_pair flipbit, flipbit)) | 
 |   // This often reduces constant pool loads. | 
 |   if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || | 
 |        (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && | 
 |       N0->hasOneUse() && VT.isInteger() && !VT.isVector() && | 
 |       !N0.getValueType().isVector()) { | 
 |     SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); | 
 |     AddToWorklist(NewConv.getNode()); | 
 |  | 
 |     SDLoc DL(N); | 
 |     if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | 
 |       assert(VT.getSizeInBits() == 128); | 
 |       SDValue SignBit = DAG.getConstant( | 
 |           APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); | 
 |       SDValue FlipBit; | 
 |       if (N0.getOpcode() == ISD::FNEG) { | 
 |         FlipBit = SignBit; | 
 |         AddToWorklist(FlipBit.getNode()); | 
 |       } else { | 
 |         assert(N0.getOpcode() == ISD::FABS); | 
 |         SDValue Hi = | 
 |             DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, | 
 |                         DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | 
 |                                               SDLoc(NewConv))); | 
 |         AddToWorklist(Hi.getNode()); | 
 |         FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); | 
 |         AddToWorklist(FlipBit.getNode()); | 
 |       } | 
 |       SDValue FlipBits = | 
 |           DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | 
 |       AddToWorklist(FlipBits.getNode()); | 
 |       return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); | 
 |     } | 
 |     APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); | 
 |     if (N0.getOpcode() == ISD::FNEG) | 
 |       return DAG.getNode(ISD::XOR, DL, VT, | 
 |                          NewConv, DAG.getConstant(SignBit, DL, VT)); | 
 |     assert(N0.getOpcode() == ISD::FABS); | 
 |     return DAG.getNode(ISD::AND, DL, VT, | 
 |                        NewConv, DAG.getConstant(~SignBit, DL, VT)); | 
 |   } | 
 |  | 
 |   // fold (bitconvert (fcopysign cst, x)) -> | 
 |   //         (or (and (bitconvert x), sign), (and cst, (not sign))) | 
 |   // Note that we don't handle (copysign x, cst) because this can always be | 
 |   // folded to an fneg or fabs. | 
 |   // | 
 |   // For ppc_fp128: | 
 |   // fold (bitcast (fcopysign cst, x)) -> | 
 |   //     flipbit = (and (extract_element | 
 |   //                     (xor (bitcast cst), (bitcast x)), 0), | 
 |   //                    signbit) | 
 |   //     (xor (bitcast cst) (build_pair flipbit, flipbit)) | 
 |   if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() && | 
 |       isa<ConstantFPSDNode>(N0.getOperand(0)) && VT.isInteger() && | 
 |       !VT.isVector()) { | 
 |     unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); | 
 |     EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); | 
 |     if (isTypeLegal(IntXVT)) { | 
 |       SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); | 
 |       AddToWorklist(X.getNode()); | 
 |  | 
 |       // If X has a different width than the result/lhs, sext it or truncate it. | 
 |       unsigned VTWidth = VT.getSizeInBits(); | 
 |       if (OrigXWidth < VTWidth) { | 
 |         X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); | 
 |         AddToWorklist(X.getNode()); | 
 |       } else if (OrigXWidth > VTWidth) { | 
 |         // To get the sign bit in the right place, we have to shift it right | 
 |         // before truncating. | 
 |         SDLoc DL(X); | 
 |         X = DAG.getNode(ISD::SRL, DL, | 
 |                         X.getValueType(), X, | 
 |                         DAG.getConstant(OrigXWidth-VTWidth, DL, | 
 |                                         X.getValueType())); | 
 |         AddToWorklist(X.getNode()); | 
 |         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); | 
 |         AddToWorklist(X.getNode()); | 
 |       } | 
 |  | 
 |       if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { | 
 |         APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); | 
 |         SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | 
 |         AddToWorklist(Cst.getNode()); | 
 |         SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); | 
 |         AddToWorklist(X.getNode()); | 
 |         SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); | 
 |         AddToWorklist(XorResult.getNode()); | 
 |         SDValue XorResult64 = DAG.getNode( | 
 |             ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, | 
 |             DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), | 
 |                                   SDLoc(XorResult))); | 
 |         AddToWorklist(XorResult64.getNode()); | 
 |         SDValue FlipBit = | 
 |             DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, | 
 |                         DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); | 
 |         AddToWorklist(FlipBit.getNode()); | 
 |         SDValue FlipBits = | 
 |             DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); | 
 |         AddToWorklist(FlipBits.getNode()); | 
 |         return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); | 
 |       } | 
 |       APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); | 
 |       X = DAG.getNode(ISD::AND, SDLoc(X), VT, | 
 |                       X, DAG.getConstant(SignBit, SDLoc(X), VT)); | 
 |       AddToWorklist(X.getNode()); | 
 |  | 
 |       SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); | 
 |       Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, | 
 |                         Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); | 
 |       AddToWorklist(Cst.getNode()); | 
 |  | 
 |       return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); | 
 |     } | 
 |   } | 
 |  | 
 |   // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. | 
 |   if (N0.getOpcode() == ISD::BUILD_PAIR) | 
 |     if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) | 
 |       return CombineLD; | 
 |  | 
 |   // int_vt (bitcast (vec_vt (scalar_to_vector elt_vt:x))) | 
 |   //   => int_vt (any_extend elt_vt:x) | 
 |   if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && VT.isScalarInteger()) { | 
 |     SDValue SrcScalar = N0.getOperand(0); | 
 |     if (SrcScalar.getValueType().isScalarInteger()) | 
 |       return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SrcScalar); | 
 |   } | 
 |  | 
 |   // Remove double bitcasts from shuffles - this is often a legacy of | 
 |   // XformToShuffleWithZero being used to combine bitmaskings (of | 
 |   // float vectors bitcast to integer vectors) into shuffles. | 
 |   // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) | 
 |   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && | 
 |       N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && | 
 |       VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && | 
 |       !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { | 
 |     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); | 
 |  | 
 |     // If operands are a bitcast, peek through if it casts the original VT. | 
 |     // If operands are a constant, just bitcast back to original VT. | 
 |     auto PeekThroughBitcast = [&](SDValue Op) { | 
 |       if (Op.getOpcode() == ISD::BITCAST && | 
 |           Op.getOperand(0).getValueType() == VT) | 
 |         return SDValue(Op.getOperand(0)); | 
 |       if (Op.isUndef() || isAnyConstantBuildVector(Op)) | 
 |         return DAG.getBitcast(VT, Op); | 
 |       return SDValue(); | 
 |     }; | 
 |  | 
 |     // FIXME: If either input vector is bitcast, try to convert the shuffle to | 
 |     // the result type of this bitcast. This would eliminate at least one | 
 |     // bitcast. See the transform in InstCombine. | 
 |     SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); | 
 |     SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); | 
 |     if (!(SV0 && SV1)) | 
 |       return SDValue(); | 
 |  | 
 |     int MaskScale = | 
 |         VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); | 
 |     SmallVector<int, 8> NewMask; | 
 |     for (int M : SVN->getMask()) | 
 |       for (int i = 0; i != MaskScale; ++i) | 
 |         NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); | 
 |  | 
 |     SDValue LegalShuffle = | 
 |         TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); | 
 |     if (LegalShuffle) | 
 |       return LegalShuffle; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   return CombineConsecutiveLoads(N, VT); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFREEZE(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false)) | 
 |     return N0; | 
 |  | 
 |   // We currently avoid folding freeze over SRA/SRL, due to the problems seen | 
 |   // with (freeze (assert ext)) blocking simplifications of SRA/SRL. See for | 
 |   // example https://reviews.llvm.org/D136529#4120959. | 
 |   if (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL) | 
 |     return SDValue(); | 
 |  | 
 |   // Fold freeze(op(x, ...)) -> op(freeze(x), ...). | 
 |   // Try to push freeze through instructions that propagate but don't produce | 
 |   // poison as far as possible. If an operand of freeze follows three | 
 |   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one | 
 |   // guaranteed-non-poison operands (or is a BUILD_VECTOR or similar) then push | 
 |   // the freeze through to the operands that are not guaranteed non-poison. | 
 |   // NOTE: we will strip poison-generating flags, so ignore them here. | 
 |   if (DAG.canCreateUndefOrPoison(N0, /*PoisonOnly*/ false, | 
 |                                  /*ConsiderFlags*/ false) || | 
 |       N0->getNumValues() != 1 || !N0->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   bool AllowMultipleMaybePoisonOperands = | 
 |       N0.getOpcode() == ISD::SELECT_CC || | 
 |       N0.getOpcode() == ISD::SETCC || | 
 |       N0.getOpcode() == ISD::BUILD_VECTOR || | 
 |       N0.getOpcode() == ISD::BUILD_PAIR || | 
 |       N0.getOpcode() == ISD::VECTOR_SHUFFLE || | 
 |       N0.getOpcode() == ISD::CONCAT_VECTORS; | 
 |  | 
 |   // Avoid turning a BUILD_VECTOR that can be recognized as "all zeros", "all | 
 |   // ones" or "constant" into something that depends on FrozenUndef. We can | 
 |   // instead pick undef values to keep those properties, while at the same time | 
 |   // folding away the freeze. | 
 |   // If we implement a more general solution for folding away freeze(undef) in | 
 |   // the future, then this special handling can be removed. | 
 |   if (N0.getOpcode() == ISD::BUILD_VECTOR) { | 
 |     SDLoc DL(N0); | 
 |     EVT VT = N0.getValueType(); | 
 |     if (llvm::ISD::isBuildVectorAllOnes(N0.getNode()) && VT.isInteger()) | 
 |       return DAG.getAllOnesConstant(DL, VT); | 
 |     if (llvm::ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { | 
 |       SmallVector<SDValue, 8> NewVecC; | 
 |       for (const SDValue &Op : N0->op_values()) | 
 |         NewVecC.push_back( | 
 |             Op.isUndef() ? DAG.getConstant(0, DL, Op.getValueType()) : Op); | 
 |       return DAG.getBuildVector(VT, DL, NewVecC); | 
 |     } | 
 |   } | 
 |  | 
 |   SmallSet<SDValue, 8> MaybePoisonOperands; | 
 |   SmallVector<unsigned, 8> MaybePoisonOperandNumbers; | 
 |   for (auto [OpNo, Op] : enumerate(N0->ops())) { | 
 |     if (DAG.isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ false, | 
 |                                              /*Depth*/ 1)) | 
 |       continue; | 
 |     bool HadMaybePoisonOperands = !MaybePoisonOperands.empty(); | 
 |     bool IsNewMaybePoisonOperand = MaybePoisonOperands.insert(Op).second; | 
 |     if (IsNewMaybePoisonOperand) | 
 |       MaybePoisonOperandNumbers.push_back(OpNo); | 
 |     if (!HadMaybePoisonOperands) | 
 |       continue; | 
 |     if (IsNewMaybePoisonOperand && !AllowMultipleMaybePoisonOperands) { | 
 |       // Multiple maybe-poison ops when not allowed - bail out. | 
 |       return SDValue(); | 
 |     } | 
 |   } | 
 |   // NOTE: the whole op may be not guaranteed to not be undef or poison because | 
 |   // it could create undef or poison due to it's poison-generating flags. | 
 |   // So not finding any maybe-poison operands is fine. | 
 |  | 
 |   for (unsigned OpNo : MaybePoisonOperandNumbers) { | 
 |     // N0 can mutate during iteration, so make sure to refetch the maybe poison | 
 |     // operands via the operand numbers. The typical scenario is that we have | 
 |     // something like this | 
 |     //   t262: i32 = freeze t181 | 
 |     //   t150: i32 = ctlz_zero_undef t262 | 
 |     //   t184: i32 = ctlz_zero_undef t181 | 
 |     //   t268: i32 = select_cc t181, Constant:i32<0>, t184, t186, setne:ch | 
 |     // When freezing the t181 operand we get t262 back, and then the | 
 |     // ReplaceAllUsesOfValueWith call will not only replace t181 by t262, but | 
 |     // also recursively replace t184 by t150. | 
 |     SDValue MaybePoisonOperand = N->getOperand(0).getOperand(OpNo); | 
 |     // Don't replace every single UNDEF everywhere with frozen UNDEF, though. | 
 |     if (MaybePoisonOperand.isUndef()) | 
 |       continue; | 
 |     // First, freeze each offending operand. | 
 |     SDValue FrozenMaybePoisonOperand = DAG.getFreeze(MaybePoisonOperand); | 
 |     // Then, change all other uses of unfrozen operand to use frozen operand. | 
 |     DAG.ReplaceAllUsesOfValueWith(MaybePoisonOperand, FrozenMaybePoisonOperand); | 
 |     if (FrozenMaybePoisonOperand.getOpcode() == ISD::FREEZE && | 
 |         FrozenMaybePoisonOperand.getOperand(0) == FrozenMaybePoisonOperand) { | 
 |       // But, that also updated the use in the freeze we just created, thus | 
 |       // creating a cycle in a DAG. Let's undo that by mutating the freeze. | 
 |       DAG.UpdateNodeOperands(FrozenMaybePoisonOperand.getNode(), | 
 |                              MaybePoisonOperand); | 
 |     } | 
 |  | 
 |     // This node has been merged with another. | 
 |     if (N->getOpcode() == ISD::DELETED_NODE) | 
 |       return SDValue(N, 0); | 
 |   } | 
 |  | 
 |   assert(N->getOpcode() != ISD::DELETED_NODE && "Node was deleted!"); | 
 |  | 
 |   // The whole node may have been updated, so the value we were holding | 
 |   // may no longer be valid. Re-fetch the operand we're `freeze`ing. | 
 |   N0 = N->getOperand(0); | 
 |  | 
 |   // Finally, recreate the node, it's operands were updated to use | 
 |   // frozen operands, so we just need to use it's "original" operands. | 
 |   SmallVector<SDValue> Ops(N0->ops()); | 
 |   // TODO: ISD::UNDEF and ISD::POISON should get separate handling, but best | 
 |   // leave for a future patch. | 
 |   for (SDValue &Op : Ops) { | 
 |     if (Op.isUndef()) | 
 |       Op = DAG.getFreeze(Op); | 
 |   } | 
 |  | 
 |   SDValue R; | 
 |   if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N0)) { | 
 |     // Special case handling for ShuffleVectorSDNode nodes. | 
 |     R = DAG.getVectorShuffle(N0.getValueType(), SDLoc(N0), Ops[0], Ops[1], | 
 |                              SVN->getMask()); | 
 |   } else { | 
 |     // NOTE: this strips poison generating flags. | 
 |     R = DAG.getNode(N0.getOpcode(), SDLoc(N0), N0->getVTList(), Ops); | 
 |   } | 
 |   assert(DAG.isGuaranteedNotToBeUndefOrPoison(R, /*PoisonOnly*/ false) && | 
 |          "Can't create node that may be undef/poison!"); | 
 |   return R; | 
 | } | 
 |  | 
 | /// We know that BV is a build_vector node with Constant, ConstantFP or Undef | 
 | /// operands. DstEltVT indicates the destination element value type. | 
 | SDValue DAGCombiner:: | 
 | ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { | 
 |   EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); | 
 |  | 
 |   // If this is already the right type, we're done. | 
 |   if (SrcEltVT == DstEltVT) return SDValue(BV, 0); | 
 |  | 
 |   unsigned SrcBitSize = SrcEltVT.getSizeInBits(); | 
 |   unsigned DstBitSize = DstEltVT.getSizeInBits(); | 
 |  | 
 |   // If this is a conversion of N elements of one type to N elements of another | 
 |   // type, convert each element.  This handles FP<->INT cases. | 
 |   if (SrcBitSize == DstBitSize) { | 
 |     SmallVector<SDValue, 8> Ops; | 
 |     for (SDValue Op : BV->op_values()) { | 
 |       // If the vector element type is not legal, the BUILD_VECTOR operands | 
 |       // are promoted and implicitly truncated.  Make that explicit here. | 
 |       if (Op.getValueType() != SrcEltVT) | 
 |         Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); | 
 |       Ops.push_back(DAG.getBitcast(DstEltVT, Op)); | 
 |       AddToWorklist(Ops.back().getNode()); | 
 |     } | 
 |     EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, | 
 |                               BV->getValueType(0).getVectorNumElements()); | 
 |     return DAG.getBuildVector(VT, SDLoc(BV), Ops); | 
 |   } | 
 |  | 
 |   // Otherwise, we're growing or shrinking the elements.  To avoid having to | 
 |   // handle annoying details of growing/shrinking FP values, we convert them to | 
 |   // int first. | 
 |   if (SrcEltVT.isFloatingPoint()) { | 
 |     // Convert the input float vector to a int vector where the elements are the | 
 |     // same sizes. | 
 |     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); | 
 |     BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); | 
 |     SrcEltVT = IntVT; | 
 |   } | 
 |  | 
 |   // Now we know the input is an integer vector.  If the output is a FP type, | 
 |   // convert to integer first, then to FP of the right size. | 
 |   if (DstEltVT.isFloatingPoint()) { | 
 |     EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); | 
 |     SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); | 
 |  | 
 |     // Next, convert to FP elements of the same size. | 
 |     return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); | 
 |   } | 
 |  | 
 |   // Okay, we know the src/dst types are both integers of differing types. | 
 |   assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); | 
 |  | 
 |   // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a | 
 |   // BuildVectorSDNode? | 
 |   auto *BVN = cast<BuildVectorSDNode>(BV); | 
 |  | 
 |   // Extract the constant raw bit data. | 
 |   BitVector UndefElements; | 
 |   SmallVector<APInt> RawBits; | 
 |   bool IsLE = DAG.getDataLayout().isLittleEndian(); | 
 |   if (!BVN->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements)) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(BV); | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   for (unsigned I = 0, E = RawBits.size(); I != E; ++I) { | 
 |     if (UndefElements[I]) | 
 |       Ops.push_back(DAG.getUNDEF(DstEltVT)); | 
 |     else | 
 |       Ops.push_back(DAG.getConstant(RawBits[I], DL, DstEltVT)); | 
 |   } | 
 |  | 
 |   EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); | 
 |   return DAG.getBuildVector(VT, DL, Ops); | 
 | } | 
 |  | 
 | // Returns true if floating point contraction is allowed on the FMUL-SDValue | 
 | // `N` | 
 | static bool isContractableFMUL(const TargetOptions &Options, SDValue N) { | 
 |   assert(N.getOpcode() == ISD::FMUL); | 
 |  | 
 |   return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || | 
 |          N->getFlags().hasAllowContract(); | 
 | } | 
 |  | 
 | // Returns true if `N` can assume no infinities involved in its computation. | 
 | static bool hasNoInfs(const TargetOptions &Options, SDValue N) { | 
 |   return Options.NoInfsFPMath || N->getFlags().hasNoInfs(); | 
 | } | 
 |  | 
 | /// Try to perform FMA combining on a given FADD node. | 
 | template <class MatchContextClass> | 
 | SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc SL(N); | 
 |   MatchContextClass matcher(DAG, TLI, N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |  | 
 |   bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>; | 
 |  | 
 |   // Floating-point multiply-add with intermediate rounding. | 
 |   // FIXME: Make isFMADLegal have specific behavior when using VPMatchContext. | 
 |   // FIXME: Add VP_FMAD opcode. | 
 |   bool HasFMAD = !UseVP && (LegalOperations && TLI.isFMADLegal(DAG, N)); | 
 |  | 
 |   // Floating-point multiply-add without intermediate rounding. | 
 |   bool HasFMA = | 
 |       (!LegalOperations || matcher.isOperationLegalOrCustom(ISD::FMA, VT)) && | 
 |       TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT); | 
 |  | 
 |   // No valid opcode, do not combine. | 
 |   if (!HasFMAD && !HasFMA) | 
 |     return SDValue(); | 
 |  | 
 |   bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || | 
 |                               Options.UnsafeFPMath || HasFMAD); | 
 |   // If the addition is not contractable, do not combine. | 
 |   if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) | 
 |     return SDValue(); | 
 |  | 
 |   // Folding fadd (fmul x, y), (fmul x, y) -> fma x, y, (fmul x, y) is never | 
 |   // beneficial. It does not reduce latency. It increases register pressure. It | 
 |   // replaces an fadd with an fma which is a more complex instruction, so is | 
 |   // likely to have a larger encoding, use more functional units, etc. | 
 |   if (N0 == N1) | 
 |     return SDValue(); | 
 |  | 
 |   if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) | 
 |     return SDValue(); | 
 |  | 
 |   // Always prefer FMAD to FMA for precision. | 
 |   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
 |   bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
 |  | 
 |   auto isFusedOp = [&](SDValue N) { | 
 |     return matcher.match(N, ISD::FMA) || matcher.match(N, ISD::FMAD); | 
 |   }; | 
 |  | 
 |   // Is the node an FMUL and contractable either due to global flags or | 
 |   // SDNodeFlags. | 
 |   auto isContractableFMUL = [AllowFusionGlobally, &matcher](SDValue N) { | 
 |     if (!matcher.match(N, ISD::FMUL)) | 
 |       return false; | 
 |     return AllowFusionGlobally || N->getFlags().hasAllowContract(); | 
 |   }; | 
 |   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), | 
 |   // prefer to fold the multiply with fewer uses. | 
 |   if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { | 
 |     if (N0->use_size() > N1->use_size()) | 
 |       std::swap(N0, N1); | 
 |   } | 
 |  | 
 |   // fold (fadd (fmul x, y), z) -> (fma x, y, z) | 
 |   if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { | 
 |     return matcher.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), | 
 |                            N0.getOperand(1), N1); | 
 |   } | 
 |  | 
 |   // fold (fadd x, (fmul y, z)) -> (fma y, z, x) | 
 |   // Note: Commutes FADD operands. | 
 |   if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { | 
 |     return matcher.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), | 
 |                            N1.getOperand(1), N0); | 
 |   } | 
 |  | 
 |   // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) | 
 |   // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) | 
 |   // This also works with nested fma instructions: | 
 |   // fadd (fma A, B, (fma (C, D, (fmul (E, F))))), G --> | 
 |   // fma A, B, (fma C, D, fma (E, F, G)) | 
 |   // fadd (G, (fma A, B, (fma (C, D, (fmul (E, F)))))) --> | 
 |   // fma A, B, (fma C, D, fma (E, F, G)). | 
 |   // This requires reassociation because it changes the order of operations. | 
 |   bool CanReassociate = | 
 |       Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); | 
 |   if (CanReassociate) { | 
 |     SDValue FMA, E; | 
 |     if (isFusedOp(N0) && N0.hasOneUse()) { | 
 |       FMA = N0; | 
 |       E = N1; | 
 |     } else if (isFusedOp(N1) && N1.hasOneUse()) { | 
 |       FMA = N1; | 
 |       E = N0; | 
 |     } | 
 |  | 
 |     SDValue TmpFMA = FMA; | 
 |     while (E && isFusedOp(TmpFMA) && TmpFMA.hasOneUse()) { | 
 |       SDValue FMul = TmpFMA->getOperand(2); | 
 |       if (matcher.match(FMul, ISD::FMUL) && FMul.hasOneUse()) { | 
 |         SDValue C = FMul.getOperand(0); | 
 |         SDValue D = FMul.getOperand(1); | 
 |         SDValue CDE = matcher.getNode(PreferredFusedOpcode, SL, VT, C, D, E); | 
 |         DAG.ReplaceAllUsesOfValueWith(FMul, CDE); | 
 |         // Replacing the inner FMul could cause the outer FMA to be simplified | 
 |         // away. | 
 |         return FMA.getOpcode() == ISD::DELETED_NODE ? SDValue(N, 0) : FMA; | 
 |       } | 
 |  | 
 |       TmpFMA = TmpFMA->getOperand(2); | 
 |     } | 
 |   } | 
 |  | 
 |   // Look through FP_EXTEND nodes to do more combining. | 
 |  | 
 |   // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) | 
 |   if (matcher.match(N0, ISD::FP_EXTEND)) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (isContractableFMUL(N00) && | 
 |         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                             N00.getValueType())) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), N1); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) | 
 |   // Note: Commutes FADD operands. | 
 |   if (matcher.match(N1, ISD::FP_EXTEND)) { | 
 |     SDValue N10 = N1.getOperand(0); | 
 |     if (isContractableFMUL(N10) && | 
 |         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                             N10.getValueType())) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); | 
 |     } | 
 |   } | 
 |  | 
 |   // More folding opportunities when target permits. | 
 |   if (Aggressive) { | 
 |     // fold (fadd (fma x, y, (fpext (fmul u, v))), z) | 
 |     //   -> (fma x, y, (fma (fpext u), (fpext v), z)) | 
 |     auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, | 
 |                                     SDValue Z) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, X, Y, | 
 |           matcher.getNode(PreferredFusedOpcode, SL, VT, | 
 |                           matcher.getNode(ISD::FP_EXTEND, SL, VT, U), | 
 |                           matcher.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); | 
 |     }; | 
 |     if (isFusedOp(N0)) { | 
 |       SDValue N02 = N0.getOperand(2); | 
 |       if (matcher.match(N02, ISD::FP_EXTEND)) { | 
 |         SDValue N020 = N02.getOperand(0); | 
 |         if (isContractableFMUL(N020) && | 
 |             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                                 N020.getValueType())) { | 
 |           return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), | 
 |                                       N020.getOperand(0), N020.getOperand(1), | 
 |                                       N1); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (fadd (fpext (fma x, y, (fmul u, v))), z) | 
 |     //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) | 
 |     // FIXME: This turns two single-precision and one double-precision | 
 |     // operation into two double-precision operations, which might not be | 
 |     // interesting for all targets, especially GPUs. | 
 |     auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, | 
 |                                     SDValue Z) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, X), | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, Y), | 
 |           matcher.getNode(PreferredFusedOpcode, SL, VT, | 
 |                           matcher.getNode(ISD::FP_EXTEND, SL, VT, U), | 
 |                           matcher.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); | 
 |     }; | 
 |     if (N0.getOpcode() == ISD::FP_EXTEND) { | 
 |       SDValue N00 = N0.getOperand(0); | 
 |       if (isFusedOp(N00)) { | 
 |         SDValue N002 = N00.getOperand(2); | 
 |         if (isContractableFMUL(N002) && | 
 |             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                                 N00.getValueType())) { | 
 |           return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), | 
 |                                       N002.getOperand(0), N002.getOperand(1), | 
 |                                       N1); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (fadd x, (fma y, z, (fpext (fmul u, v))) | 
 |     //   -> (fma y, z, (fma (fpext u), (fpext v), x)) | 
 |     if (isFusedOp(N1)) { | 
 |       SDValue N12 = N1.getOperand(2); | 
 |       if (N12.getOpcode() == ISD::FP_EXTEND) { | 
 |         SDValue N120 = N12.getOperand(0); | 
 |         if (isContractableFMUL(N120) && | 
 |             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                                 N120.getValueType())) { | 
 |           return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), | 
 |                                       N120.getOperand(0), N120.getOperand(1), | 
 |                                       N0); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (fadd x, (fpext (fma y, z, (fmul u, v))) | 
 |     //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) | 
 |     // FIXME: This turns two single-precision and one double-precision | 
 |     // operation into two double-precision operations, which might not be | 
 |     // interesting for all targets, especially GPUs. | 
 |     if (N1.getOpcode() == ISD::FP_EXTEND) { | 
 |       SDValue N10 = N1.getOperand(0); | 
 |       if (isFusedOp(N10)) { | 
 |         SDValue N102 = N10.getOperand(2); | 
 |         if (isContractableFMUL(N102) && | 
 |             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                                 N10.getValueType())) { | 
 |           return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), | 
 |                                       N102.getOperand(0), N102.getOperand(1), | 
 |                                       N0); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Try to perform FMA combining on a given FSUB node. | 
 | template <class MatchContextClass> | 
 | SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc SL(N); | 
 |   MatchContextClass matcher(DAG, TLI, N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |  | 
 |   bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>; | 
 |  | 
 |   // Floating-point multiply-add with intermediate rounding. | 
 |   // FIXME: Make isFMADLegal have specific behavior when using VPMatchContext. | 
 |   // FIXME: Add VP_FMAD opcode. | 
 |   bool HasFMAD = !UseVP && (LegalOperations && TLI.isFMADLegal(DAG, N)); | 
 |  | 
 |   // Floating-point multiply-add without intermediate rounding. | 
 |   bool HasFMA = | 
 |       (!LegalOperations || matcher.isOperationLegalOrCustom(ISD::FMA, VT)) && | 
 |       TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT); | 
 |  | 
 |   // No valid opcode, do not combine. | 
 |   if (!HasFMAD && !HasFMA) | 
 |     return SDValue(); | 
 |  | 
 |   const SDNodeFlags Flags = N->getFlags(); | 
 |   bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || | 
 |                               Options.UnsafeFPMath || HasFMAD); | 
 |  | 
 |   // If the subtraction is not contractable, do not combine. | 
 |   if (!AllowFusionGlobally && !N->getFlags().hasAllowContract()) | 
 |     return SDValue(); | 
 |  | 
 |   if (TLI.generateFMAsInMachineCombiner(VT, OptLevel)) | 
 |     return SDValue(); | 
 |  | 
 |   // Always prefer FMAD to FMA for precision. | 
 |   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
 |   bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
 |   bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); | 
 |  | 
 |   // Is the node an FMUL and contractable either due to global flags or | 
 |   // SDNodeFlags. | 
 |   auto isContractableFMUL = [AllowFusionGlobally, &matcher](SDValue N) { | 
 |     if (!matcher.match(N, ISD::FMUL)) | 
 |       return false; | 
 |     return AllowFusionGlobally || N->getFlags().hasAllowContract(); | 
 |   }; | 
 |  | 
 |   // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) | 
 |   auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { | 
 |     if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { | 
 |       return matcher.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), | 
 |                              XY.getOperand(1), | 
 |                              matcher.getNode(ISD::FNEG, SL, VT, Z)); | 
 |     } | 
 |     return SDValue(); | 
 |   }; | 
 |  | 
 |   // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) | 
 |   // Note: Commutes FSUB operands. | 
 |   auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { | 
 |     if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), | 
 |           YZ.getOperand(1), X); | 
 |     } | 
 |     return SDValue(); | 
 |   }; | 
 |  | 
 |   // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), | 
 |   // prefer to fold the multiply with fewer uses. | 
 |   if (isContractableFMUL(N0) && isContractableFMUL(N1) && | 
 |       (N0->use_size() > N1->use_size())) { | 
 |     // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) | 
 |     if (SDValue V = tryToFoldXSubYZ(N0, N1)) | 
 |       return V; | 
 |     // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) | 
 |     if (SDValue V = tryToFoldXYSubZ(N0, N1)) | 
 |       return V; | 
 |   } else { | 
 |     // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) | 
 |     if (SDValue V = tryToFoldXYSubZ(N0, N1)) | 
 |       return V; | 
 |     // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) | 
 |     if (SDValue V = tryToFoldXSubYZ(N0, N1)) | 
 |       return V; | 
 |   } | 
 |  | 
 |   // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) | 
 |   if (matcher.match(N0, ISD::FNEG) && isContractableFMUL(N0.getOperand(0)) && | 
 |       (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { | 
 |     SDValue N00 = N0.getOperand(0).getOperand(0); | 
 |     SDValue N01 = N0.getOperand(0).getOperand(1); | 
 |     return matcher.getNode(PreferredFusedOpcode, SL, VT, | 
 |                            matcher.getNode(ISD::FNEG, SL, VT, N00), N01, | 
 |                            matcher.getNode(ISD::FNEG, SL, VT, N1)); | 
 |   } | 
 |  | 
 |   // Look through FP_EXTEND nodes to do more combining. | 
 |  | 
 |   // fold (fsub (fpext (fmul x, y)), z) | 
 |   //   -> (fma (fpext x), (fpext y), (fneg z)) | 
 |   if (matcher.match(N0, ISD::FP_EXTEND)) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (isContractableFMUL(N00) && | 
 |         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                             N00.getValueType())) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), | 
 |           matcher.getNode(ISD::FNEG, SL, VT, N1)); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (fsub x, (fpext (fmul y, z))) | 
 |   //   -> (fma (fneg (fpext y)), (fpext z), x) | 
 |   // Note: Commutes FSUB operands. | 
 |   if (matcher.match(N1, ISD::FP_EXTEND)) { | 
 |     SDValue N10 = N1.getOperand(0); | 
 |     if (isContractableFMUL(N10) && | 
 |         TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                             N10.getValueType())) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode( | 
 |               ISD::FNEG, SL, VT, | 
 |               matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), | 
 |           matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (fsub (fpext (fneg (fmul, x, y))), z) | 
 |   //   -> (fneg (fma (fpext x), (fpext y), z)) | 
 |   // Note: This could be removed with appropriate canonicalization of the | 
 |   // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | 
 |   // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | 
 |   // from implementing the canonicalization in visitFSUB. | 
 |   if (matcher.match(N0, ISD::FP_EXTEND)) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (matcher.match(N00, ISD::FNEG)) { | 
 |       SDValue N000 = N00.getOperand(0); | 
 |       if (isContractableFMUL(N000) && | 
 |           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                               N00.getValueType())) { | 
 |         return matcher.getNode( | 
 |             ISD::FNEG, SL, VT, | 
 |             matcher.getNode( | 
 |                 PreferredFusedOpcode, SL, VT, | 
 |                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), | 
 |                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), | 
 |                 N1)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold (fsub (fneg (fpext (fmul, x, y))), z) | 
 |   //   -> (fneg (fma (fpext x)), (fpext y), z) | 
 |   // Note: This could be removed with appropriate canonicalization of the | 
 |   // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the | 
 |   // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent | 
 |   // from implementing the canonicalization in visitFSUB. | 
 |   if (matcher.match(N0, ISD::FNEG)) { | 
 |     SDValue N00 = N0.getOperand(0); | 
 |     if (matcher.match(N00, ISD::FP_EXTEND)) { | 
 |       SDValue N000 = N00.getOperand(0); | 
 |       if (isContractableFMUL(N000) && | 
 |           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                               N000.getValueType())) { | 
 |         return matcher.getNode( | 
 |             ISD::FNEG, SL, VT, | 
 |             matcher.getNode( | 
 |                 PreferredFusedOpcode, SL, VT, | 
 |                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), | 
 |                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), | 
 |                 N1)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   auto isReassociable = [&Options](SDNode *N) { | 
 |     return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); | 
 |   }; | 
 |  | 
 |   auto isContractableAndReassociableFMUL = [&isContractableFMUL, | 
 |                                             &isReassociable](SDValue N) { | 
 |     return isContractableFMUL(N) && isReassociable(N.getNode()); | 
 |   }; | 
 |  | 
 |   auto isFusedOp = [&](SDValue N) { | 
 |     return matcher.match(N, ISD::FMA) || matcher.match(N, ISD::FMAD); | 
 |   }; | 
 |  | 
 |   // More folding opportunities when target permits. | 
 |   if (Aggressive && isReassociable(N)) { | 
 |     bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract(); | 
 |     // fold (fsub (fma x, y, (fmul u, v)), z) | 
 |     //   -> (fma x, y (fma u, v, (fneg z))) | 
 |     if (CanFuse && isFusedOp(N0) && | 
 |         isContractableAndReassociableFMUL(N0.getOperand(2)) && | 
 |         N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), | 
 |           matcher.getNode(PreferredFusedOpcode, SL, VT, | 
 |                           N0.getOperand(2).getOperand(0), | 
 |                           N0.getOperand(2).getOperand(1), | 
 |                           matcher.getNode(ISD::FNEG, SL, VT, N1))); | 
 |     } | 
 |  | 
 |     // fold (fsub x, (fma y, z, (fmul u, v))) | 
 |     //   -> (fma (fneg y), z, (fma (fneg u), v, x)) | 
 |     if (CanFuse && isFusedOp(N1) && | 
 |         isContractableAndReassociableFMUL(N1.getOperand(2)) && | 
 |         N1->hasOneUse() && NoSignedZero) { | 
 |       SDValue N20 = N1.getOperand(2).getOperand(0); | 
 |       SDValue N21 = N1.getOperand(2).getOperand(1); | 
 |       return matcher.getNode( | 
 |           PreferredFusedOpcode, SL, VT, | 
 |           matcher.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), | 
 |           N1.getOperand(1), | 
 |           matcher.getNode(PreferredFusedOpcode, SL, VT, | 
 |                           matcher.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); | 
 |     } | 
 |  | 
 |     // fold (fsub (fma x, y, (fpext (fmul u, v))), z) | 
 |     //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) | 
 |     if (isFusedOp(N0) && N0->hasOneUse()) { | 
 |       SDValue N02 = N0.getOperand(2); | 
 |       if (matcher.match(N02, ISD::FP_EXTEND)) { | 
 |         SDValue N020 = N02.getOperand(0); | 
 |         if (isContractableAndReassociableFMUL(N020) && | 
 |             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                                 N020.getValueType())) { | 
 |           return matcher.getNode( | 
 |               PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), | 
 |               matcher.getNode( | 
 |                   PreferredFusedOpcode, SL, VT, | 
 |                   matcher.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), | 
 |                   matcher.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), | 
 |                   matcher.getNode(ISD::FNEG, SL, VT, N1))); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (fsub (fpext (fma x, y, (fmul u, v))), z) | 
 |     //   -> (fma (fpext x), (fpext y), | 
 |     //           (fma (fpext u), (fpext v), (fneg z))) | 
 |     // FIXME: This turns two single-precision and one double-precision | 
 |     // operation into two double-precision operations, which might not be | 
 |     // interesting for all targets, especially GPUs. | 
 |     if (matcher.match(N0, ISD::FP_EXTEND)) { | 
 |       SDValue N00 = N0.getOperand(0); | 
 |       if (isFusedOp(N00)) { | 
 |         SDValue N002 = N00.getOperand(2); | 
 |         if (isContractableAndReassociableFMUL(N002) && | 
 |             TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                                 N00.getValueType())) { | 
 |           return matcher.getNode( | 
 |               PreferredFusedOpcode, SL, VT, | 
 |               matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), | 
 |               matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), | 
 |               matcher.getNode( | 
 |                   PreferredFusedOpcode, SL, VT, | 
 |                   matcher.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), | 
 |                   matcher.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), | 
 |                   matcher.getNode(ISD::FNEG, SL, VT, N1))); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) | 
 |     //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) | 
 |     if (isFusedOp(N1) && matcher.match(N1.getOperand(2), ISD::FP_EXTEND) && | 
 |         N1->hasOneUse()) { | 
 |       SDValue N120 = N1.getOperand(2).getOperand(0); | 
 |       if (isContractableAndReassociableFMUL(N120) && | 
 |           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                               N120.getValueType())) { | 
 |         SDValue N1200 = N120.getOperand(0); | 
 |         SDValue N1201 = N120.getOperand(1); | 
 |         return matcher.getNode( | 
 |             PreferredFusedOpcode, SL, VT, | 
 |             matcher.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), | 
 |             N1.getOperand(1), | 
 |             matcher.getNode( | 
 |                 PreferredFusedOpcode, SL, VT, | 
 |                 matcher.getNode(ISD::FNEG, SL, VT, | 
 |                                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1200)), | 
 |                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); | 
 |       } | 
 |     } | 
 |  | 
 |     // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) | 
 |     //   -> (fma (fneg (fpext y)), (fpext z), | 
 |     //           (fma (fneg (fpext u)), (fpext v), x)) | 
 |     // FIXME: This turns two single-precision and one double-precision | 
 |     // operation into two double-precision operations, which might not be | 
 |     // interesting for all targets, especially GPUs. | 
 |     if (matcher.match(N1, ISD::FP_EXTEND) && isFusedOp(N1.getOperand(0))) { | 
 |       SDValue CvtSrc = N1.getOperand(0); | 
 |       SDValue N100 = CvtSrc.getOperand(0); | 
 |       SDValue N101 = CvtSrc.getOperand(1); | 
 |       SDValue N102 = CvtSrc.getOperand(2); | 
 |       if (isContractableAndReassociableFMUL(N102) && | 
 |           TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, | 
 |                               CvtSrc.getValueType())) { | 
 |         SDValue N1020 = N102.getOperand(0); | 
 |         SDValue N1021 = N102.getOperand(1); | 
 |         return matcher.getNode( | 
 |             PreferredFusedOpcode, SL, VT, | 
 |             matcher.getNode(ISD::FNEG, SL, VT, | 
 |                             matcher.getNode(ISD::FP_EXTEND, SL, VT, N100)), | 
 |             matcher.getNode(ISD::FP_EXTEND, SL, VT, N101), | 
 |             matcher.getNode( | 
 |                 PreferredFusedOpcode, SL, VT, | 
 |                 matcher.getNode(ISD::FNEG, SL, VT, | 
 |                                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1020)), | 
 |                 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Try to perform FMA combining on a given FMUL node based on the distributive | 
 | /// law x * (y + 1) = x * y + x and variants thereof (commuted versions, | 
 | /// subtraction instead of addition). | 
 | SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc SL(N); | 
 |  | 
 |   assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); | 
 |  | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |  | 
 |   // The transforms below are incorrect when x == 0 and y == inf, because the | 
 |   // intermediate multiplication produces a nan. | 
 |   SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1; | 
 |   if (!hasNoInfs(Options, FAdd)) | 
 |     return SDValue(); | 
 |  | 
 |   // Floating-point multiply-add without intermediate rounding. | 
 |   bool HasFMA = | 
 |       isContractableFMUL(Options, SDValue(N, 0)) && | 
 |       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)) && | 
 |       TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT); | 
 |  | 
 |   // Floating-point multiply-add with intermediate rounding. This can result | 
 |   // in a less precise result due to the changed rounding order. | 
 |   bool HasFMAD = Options.UnsafeFPMath && | 
 |                  (LegalOperations && TLI.isFMADLegal(DAG, N)); | 
 |  | 
 |   // No valid opcode, do not combine. | 
 |   if (!HasFMAD && !HasFMA) | 
 |     return SDValue(); | 
 |  | 
 |   // Always prefer FMAD to FMA for precision. | 
 |   unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; | 
 |   bool Aggressive = TLI.enableAggressiveFMAFusion(VT); | 
 |  | 
 |   // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) | 
 |   // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) | 
 |   auto FuseFADD = [&](SDValue X, SDValue Y) { | 
 |     if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { | 
 |       if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { | 
 |         if (C->isExactlyValue(+1.0)) | 
 |           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
 |                              Y); | 
 |         if (C->isExactlyValue(-1.0)) | 
 |           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
 |                              DAG.getNode(ISD::FNEG, SL, VT, Y)); | 
 |       } | 
 |     } | 
 |     return SDValue(); | 
 |   }; | 
 |  | 
 |   if (SDValue FMA = FuseFADD(N0, N1)) | 
 |     return FMA; | 
 |   if (SDValue FMA = FuseFADD(N1, N0)) | 
 |     return FMA; | 
 |  | 
 |   // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) | 
 |   // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) | 
 |   // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) | 
 |   // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) | 
 |   auto FuseFSUB = [&](SDValue X, SDValue Y) { | 
 |     if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { | 
 |       if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { | 
 |         if (C0->isExactlyValue(+1.0)) | 
 |           return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
 |                              DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | 
 |                              Y); | 
 |         if (C0->isExactlyValue(-1.0)) | 
 |           return DAG.getNode(PreferredFusedOpcode, SL, VT, | 
 |                              DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, | 
 |                              DAG.getNode(ISD::FNEG, SL, VT, Y)); | 
 |       } | 
 |       if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { | 
 |         if (C1->isExactlyValue(+1.0)) | 
 |           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
 |                              DAG.getNode(ISD::FNEG, SL, VT, Y)); | 
 |         if (C1->isExactlyValue(-1.0)) | 
 |           return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, | 
 |                              Y); | 
 |       } | 
 |     } | 
 |     return SDValue(); | 
 |   }; | 
 |  | 
 |   if (SDValue FMA = FuseFSUB(N0, N1)) | 
 |     return FMA; | 
 |   if (SDValue FMA = FuseFSUB(N1, N0)) | 
 |     return FMA; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVP_FADD(SDNode *N) { | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   // FADD -> FMA combines: | 
 |   if (SDValue Fused = visitFADDForFMACombine<VPMatchContext>(N)) { | 
 |     if (Fused.getOpcode() != ISD::DELETED_NODE) | 
 |       AddToWorklist(Fused.getNode()); | 
 |     return Fused; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFADD(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); | 
 |   bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |   SDNodeFlags Flags = N->getFlags(); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) | 
 |     return R; | 
 |  | 
 |   // fold (fadd c1, c2) -> c1 + c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (N0CFP && !N1CFP) | 
 |     return DAG.getNode(ISD::FADD, DL, VT, N1, N0); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) | 
 |   ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); | 
 |   if (N1C && N1C->isZero()) | 
 |     if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) | 
 |       return N0; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // fold (fadd A, (fneg B)) -> (fsub A, B) | 
 |   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) | 
 |     if (SDValue NegN1 = TLI.getCheaperNegatedExpression( | 
 |             N1, DAG, LegalOperations, ForCodeSize)) | 
 |       return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); | 
 |  | 
 |   // fold (fadd (fneg A), B) -> (fsub B, A) | 
 |   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) | 
 |     if (SDValue NegN0 = TLI.getCheaperNegatedExpression( | 
 |             N0, DAG, LegalOperations, ForCodeSize)) | 
 |       return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); | 
 |  | 
 |   auto isFMulNegTwo = [](SDValue FMul) { | 
 |     if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) | 
 |       return false; | 
 |     auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); | 
 |     return C && C->isExactlyValue(-2.0); | 
 |   }; | 
 |  | 
 |   // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) | 
 |   if (isFMulNegTwo(N0)) { | 
 |     SDValue B = N0.getOperand(0); | 
 |     SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); | 
 |     return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); | 
 |   } | 
 |   // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) | 
 |   if (isFMulNegTwo(N1)) { | 
 |     SDValue B = N1.getOperand(0); | 
 |     SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); | 
 |     return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); | 
 |   } | 
 |  | 
 |   // No FP constant should be created after legalization as Instruction | 
 |   // Selection pass has a hard time dealing with FP constants. | 
 |   bool AllowNewConst = (Level < AfterLegalizeDAG); | 
 |  | 
 |   // If nnan is enabled, fold lots of things. | 
 |   if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { | 
 |     // If allowed, fold (fadd (fneg x), x) -> 0.0 | 
 |     if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) | 
 |       return DAG.getConstantFP(0.0, DL, VT); | 
 |  | 
 |     // If allowed, fold (fadd x, (fneg x)) -> 0.0 | 
 |     if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) | 
 |       return DAG.getConstantFP(0.0, DL, VT); | 
 |   } | 
 |  | 
 |   // If 'unsafe math' or reassoc and nsz, fold lots of things. | 
 |   // TODO: break out portions of the transformations below for which Unsafe is | 
 |   //       considered and which do not require both nsz and reassoc | 
 |   if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || | 
 |        (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && | 
 |       AllowNewConst) { | 
 |     // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 | 
 |     if (N1CFP && N0.getOpcode() == ISD::FADD && | 
 |         DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { | 
 |       SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); | 
 |       return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); | 
 |     } | 
 |  | 
 |     // We can fold chains of FADD's of the same value into multiplications. | 
 |     // This transform is not safe in general because we are reducing the number | 
 |     // of rounding steps. | 
 |     if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { | 
 |       if (N0.getOpcode() == ISD::FMUL) { | 
 |         bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | 
 |         bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); | 
 |  | 
 |         // (fadd (fmul x, c), x) -> (fmul x, c+1) | 
 |         if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { | 
 |           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | 
 |                                        DAG.getConstantFP(1.0, DL, VT)); | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); | 
 |         } | 
 |  | 
 |         // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) | 
 |         if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && | 
 |             N1.getOperand(0) == N1.getOperand(1) && | 
 |             N0.getOperand(0) == N1.getOperand(0)) { | 
 |           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), | 
 |                                        DAG.getConstantFP(2.0, DL, VT)); | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); | 
 |         } | 
 |       } | 
 |  | 
 |       if (N1.getOpcode() == ISD::FMUL) { | 
 |         bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | 
 |         bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); | 
 |  | 
 |         // (fadd x, (fmul x, c)) -> (fmul x, c+1) | 
 |         if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { | 
 |           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | 
 |                                        DAG.getConstantFP(1.0, DL, VT)); | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); | 
 |         } | 
 |  | 
 |         // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) | 
 |         if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && | 
 |             N0.getOperand(0) == N0.getOperand(1) && | 
 |             N1.getOperand(0) == N0.getOperand(0)) { | 
 |           SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), | 
 |                                        DAG.getConstantFP(2.0, DL, VT)); | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); | 
 |         } | 
 |       } | 
 |  | 
 |       if (N0.getOpcode() == ISD::FADD) { | 
 |         bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); | 
 |         // (fadd (fadd x, x), x) -> (fmul x, 3.0) | 
 |         if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && | 
 |             (N0.getOperand(0) == N1)) { | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N1, | 
 |                              DAG.getConstantFP(3.0, DL, VT)); | 
 |         } | 
 |       } | 
 |  | 
 |       if (N1.getOpcode() == ISD::FADD) { | 
 |         bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); | 
 |         // (fadd x, (fadd x, x)) -> (fmul x, 3.0) | 
 |         if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && | 
 |             N1.getOperand(0) == N0) { | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
 |                              DAG.getConstantFP(3.0, DL, VT)); | 
 |         } | 
 |       } | 
 |  | 
 |       // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) | 
 |       if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && | 
 |           N0.getOperand(0) == N0.getOperand(1) && | 
 |           N1.getOperand(0) == N1.getOperand(1) && | 
 |           N0.getOperand(0) == N1.getOperand(0)) { | 
 |         return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), | 
 |                            DAG.getConstantFP(4.0, DL, VT)); | 
 |       } | 
 |     } | 
 |  | 
 |     // Fold fadd(vecreduce(x), vecreduce(y)) -> vecreduce(fadd(x, y)) | 
 |     if (SDValue SD = reassociateReduction(ISD::VECREDUCE_FADD, ISD::FADD, DL, | 
 |                                           VT, N0, N1, Flags)) | 
 |       return SD; | 
 |   } // enable-unsafe-fp-math | 
 |  | 
 |   // FADD -> FMA combines: | 
 |   if (SDValue Fused = visitFADDForFMACombine<EmptyMatchContext>(N)) { | 
 |     if (Fused.getOpcode() != ISD::DELETED_NODE) | 
 |       AddToWorklist(Fused.getNode()); | 
 |     return Fused; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { | 
 |   SDValue Chain = N->getOperand(0); | 
 |   SDValue N0 = N->getOperand(1); | 
 |   SDValue N1 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT ChainVT = N->getValueType(1); | 
 |   SDLoc DL(N); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B) | 
 |   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) | 
 |     if (SDValue NegN1 = TLI.getCheaperNegatedExpression( | 
 |             N1, DAG, LegalOperations, ForCodeSize)) { | 
 |       return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), | 
 |                          {Chain, N0, NegN1}); | 
 |     } | 
 |  | 
 |   // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A) | 
 |   if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT)) | 
 |     if (SDValue NegN0 = TLI.getCheaperNegatedExpression( | 
 |             N0, DAG, LegalOperations, ForCodeSize)) { | 
 |       return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT), | 
 |                          {Chain, N1, NegN0}); | 
 |     } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFSUB(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); | 
 |   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |   const SDNodeFlags Flags = N->getFlags(); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) | 
 |     return R; | 
 |  | 
 |   // fold (fsub c1, c2) -> c1-c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // (fsub A, 0) -> A | 
 |   if (N1CFP && N1CFP->isZero()) { | 
 |     if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || | 
 |         Flags.hasNoSignedZeros()) { | 
 |       return N0; | 
 |     } | 
 |   } | 
 |  | 
 |   if (N0 == N1) { | 
 |     // (fsub x, x) -> 0.0 | 
 |     if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) | 
 |       return DAG.getConstantFP(0.0f, DL, VT); | 
 |   } | 
 |  | 
 |   // (fsub -0.0, N1) -> -N1 | 
 |   if (N0CFP && N0CFP->isZero()) { | 
 |     if (N0CFP->isNegative() || | 
 |         (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { | 
 |       // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are | 
 |       // flushed to zero, unless all users treat denorms as zero (DAZ). | 
 |       // FIXME: This transform will change the sign of a NaN and the behavior | 
 |       // of a signaling NaN. It is only valid when a NoNaN flag is present. | 
 |       DenormalMode DenormMode = DAG.getDenormalMode(VT); | 
 |       if (DenormMode == DenormalMode::getIEEE()) { | 
 |         if (SDValue NegN1 = | 
 |                 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) | 
 |           return NegN1; | 
 |         if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
 |           return DAG.getNode(ISD::FNEG, DL, VT, N1); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || | 
 |        (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && | 
 |       N1.getOpcode() == ISD::FADD) { | 
 |     // X - (X + Y) -> -Y | 
 |     if (N0 == N1->getOperand(0)) | 
 |       return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); | 
 |     // X - (Y + X) -> -Y | 
 |     if (N0 == N1->getOperand(1)) | 
 |       return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); | 
 |   } | 
 |  | 
 |   // fold (fsub A, (fneg B)) -> (fadd A, B) | 
 |   if (SDValue NegN1 = | 
 |           TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) | 
 |     return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); | 
 |  | 
 |   // FSUB -> FMA combines: | 
 |   if (SDValue Fused = visitFSUBForFMACombine<EmptyMatchContext>(N)) { | 
 |     AddToWorklist(Fused.getNode()); | 
 |     return Fused; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Transform IEEE Floats: | 
 | //      (fmul C, (uitofp Pow2)) | 
 | //          -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa)) | 
 | //      (fdiv C, (uitofp Pow2)) | 
 | //          -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa)) | 
 | // | 
 | // The rationale is fmul/fdiv by a power of 2 is just change the exponent, so | 
 | // there is no need for more than an add/sub. | 
 | // | 
 | // This is valid under the following circumstances: | 
 | // 1) We are dealing with IEEE floats | 
 | // 2) C is normal | 
 | // 3) The fmul/fdiv add/sub will not go outside of min/max exponent bounds. | 
 | // TODO: Much of this could also be used for generating `ldexp` on targets the | 
 | // prefer it. | 
 | SDValue DAGCombiner::combineFMulOrFDivWithIntPow2(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   if (!APFloat::isIEEELikeFP(VT.getFltSemantics())) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue ConstOp, Pow2Op; | 
 |  | 
 |   std::optional<int> Mantissa; | 
 |   auto GetConstAndPow2Ops = [&](unsigned ConstOpIdx) { | 
 |     if (ConstOpIdx == 1 && N->getOpcode() == ISD::FDIV) | 
 |       return false; | 
 |  | 
 |     ConstOp = peekThroughBitcasts(N->getOperand(ConstOpIdx)); | 
 |     Pow2Op = N->getOperand(1 - ConstOpIdx); | 
 |     if (Pow2Op.getOpcode() != ISD::UINT_TO_FP && | 
 |         (Pow2Op.getOpcode() != ISD::SINT_TO_FP || | 
 |          !DAG.computeKnownBits(Pow2Op).isNonNegative())) | 
 |       return false; | 
 |  | 
 |     Pow2Op = Pow2Op.getOperand(0); | 
 |  | 
 |     // `Log2(Pow2Op) < Pow2Op.getScalarSizeInBits()`. | 
 |     // TODO: We could use knownbits to make this bound more precise. | 
 |     int MaxExpChange = Pow2Op.getValueType().getScalarSizeInBits(); | 
 |  | 
 |     auto IsFPConstValid = [N, MaxExpChange, &Mantissa](ConstantFPSDNode *CFP) { | 
 |       if (CFP == nullptr) | 
 |         return false; | 
 |  | 
 |       const APFloat &APF = CFP->getValueAPF(); | 
 |  | 
 |       // Make sure we have normal constant. | 
 |       if (!APF.isNormal()) | 
 |         return false; | 
 |  | 
 |       // Make sure the floats exponent is within the bounds that this transform | 
 |       // produces bitwise equals value. | 
 |       int CurExp = ilogb(APF); | 
 |       // FMul by pow2 will only increase exponent. | 
 |       int MinExp = | 
 |           N->getOpcode() == ISD::FMUL ? CurExp : (CurExp - MaxExpChange); | 
 |       // FDiv by pow2 will only decrease exponent. | 
 |       int MaxExp = | 
 |           N->getOpcode() == ISD::FDIV ? CurExp : (CurExp + MaxExpChange); | 
 |       if (MinExp <= APFloat::semanticsMinExponent(APF.getSemantics()) || | 
 |           MaxExp >= APFloat::semanticsMaxExponent(APF.getSemantics())) | 
 |         return false; | 
 |  | 
 |       // Finally make sure we actually know the mantissa for the float type. | 
 |       int ThisMantissa = APFloat::semanticsPrecision(APF.getSemantics()) - 1; | 
 |       if (!Mantissa) | 
 |         Mantissa = ThisMantissa; | 
 |  | 
 |       return *Mantissa == ThisMantissa && ThisMantissa > 0; | 
 |     }; | 
 |  | 
 |     // TODO: We may be able to include undefs. | 
 |     return ISD::matchUnaryFpPredicate(ConstOp, IsFPConstValid); | 
 |   }; | 
 |  | 
 |   if (!GetConstAndPow2Ops(0) && !GetConstAndPow2Ops(1)) | 
 |     return SDValue(); | 
 |  | 
 |   if (!TLI.optimizeFMulOrFDivAsShiftAddBitcast(N, ConstOp, Pow2Op)) | 
 |     return SDValue(); | 
 |  | 
 |   // Get log2 after all other checks have taken place. This is because | 
 |   // BuildLogBase2 may create a new node. | 
 |   SDLoc DL(N); | 
 |   // Get Log2 type with same bitwidth as the float type (VT). | 
 |   EVT NewIntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits()); | 
 |   if (VT.isVector()) | 
 |     NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewIntVT, | 
 |                                 VT.getVectorElementCount()); | 
 |  | 
 |   SDValue Log2 = BuildLogBase2(Pow2Op, DL, DAG.isKnownNeverZero(Pow2Op), | 
 |                                /*InexpensiveOnly*/ true, NewIntVT); | 
 |   if (!Log2) | 
 |     return SDValue(); | 
 |  | 
 |   // Perform actual transform. | 
 |   SDValue MantissaShiftCnt = | 
 |       DAG.getShiftAmountConstant(*Mantissa, NewIntVT, DL); | 
 |   // TODO: Sometimes Log2 is of form `(X + C)`. `(X + C) << C1` should fold to | 
 |   // `(X << C1) + (C << C1)`, but that isn't always the case because of the | 
 |   // cast. We could implement that by handle here to handle the casts. | 
 |   SDValue Shift = DAG.getNode(ISD::SHL, DL, NewIntVT, Log2, MantissaShiftCnt); | 
 |   SDValue ResAsInt = | 
 |       DAG.getNode(N->getOpcode() == ISD::FMUL ? ISD::ADD : ISD::SUB, DL, | 
 |                   NewIntVT, DAG.getBitcast(NewIntVT, ConstOp), Shift); | 
 |   SDValue ResAsFP = DAG.getBitcast(VT, ResAsInt); | 
 |   return ResAsFP; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFMUL(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |   const SDNodeFlags Flags = N->getFlags(); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) | 
 |     return R; | 
 |  | 
 |   // fold (fmul c1, c2) -> c1*c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // canonicalize constant to RHS | 
 |   if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && | 
 |      !DAG.isConstantFPBuildVectorOrConstantFP(N1)) | 
 |     return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { | 
 |     // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 | 
 |     if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && | 
 |         N0.getOpcode() == ISD::FMUL) { | 
 |       SDValue N00 = N0.getOperand(0); | 
 |       SDValue N01 = N0.getOperand(1); | 
 |       // Avoid an infinite loop by making sure that N00 is not a constant | 
 |       // (the inner multiply has not been constant folded yet). | 
 |       if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && | 
 |           !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { | 
 |         SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); | 
 |         return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); | 
 |       } | 
 |     } | 
 |  | 
 |     // Match a special-case: we convert X * 2.0 into fadd. | 
 |     // fmul (fadd X, X), C -> fmul X, 2.0 * C | 
 |     if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && | 
 |         N0.getOperand(0) == N0.getOperand(1)) { | 
 |       const SDValue Two = DAG.getConstantFP(2.0, DL, VT); | 
 |       SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); | 
 |       return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); | 
 |     } | 
 |  | 
 |     // Fold fmul(vecreduce(x), vecreduce(y)) -> vecreduce(fmul(x, y)) | 
 |     if (SDValue SD = reassociateReduction(ISD::VECREDUCE_FMUL, ISD::FMUL, DL, | 
 |                                           VT, N0, N1, Flags)) | 
 |       return SD; | 
 |   } | 
 |  | 
 |   // fold (fmul X, 2.0) -> (fadd X, X) | 
 |   if (N1CFP && N1CFP->isExactlyValue(+2.0)) | 
 |     return DAG.getNode(ISD::FADD, DL, VT, N0, N0); | 
 |  | 
 |   // fold (fmul X, -1.0) -> (fsub -0.0, X) | 
 |   if (N1CFP && N1CFP->isExactlyValue(-1.0)) { | 
 |     if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) { | 
 |       return DAG.getNode(ISD::FSUB, DL, VT, | 
 |                          DAG.getConstantFP(-0.0, DL, VT), N0, Flags); | 
 |     } | 
 |   } | 
 |  | 
 |   // -N0 * -N1 --> N0 * N1 | 
 |   TargetLowering::NegatibleCost CostN0 = | 
 |       TargetLowering::NegatibleCost::Expensive; | 
 |   TargetLowering::NegatibleCost CostN1 = | 
 |       TargetLowering::NegatibleCost::Expensive; | 
 |   SDValue NegN0 = | 
 |       TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); | 
 |   if (NegN0) { | 
 |     HandleSDNode NegN0Handle(NegN0); | 
 |     SDValue NegN1 = | 
 |         TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); | 
 |     if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper || | 
 |                   CostN1 == TargetLowering::NegatibleCost::Cheaper)) | 
 |       return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); | 
 |   } | 
 |  | 
 |   // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) | 
 |   // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) | 
 |   if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && | 
 |       (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && | 
 |       TLI.isOperationLegal(ISD::FABS, VT)) { | 
 |     SDValue Select = N0, X = N1; | 
 |     if (Select.getOpcode() != ISD::SELECT) | 
 |       std::swap(Select, X); | 
 |  | 
 |     SDValue Cond = Select.getOperand(0); | 
 |     auto TrueOpnd  = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); | 
 |     auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); | 
 |  | 
 |     if (TrueOpnd && FalseOpnd && | 
 |         Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && | 
 |         isa<ConstantFPSDNode>(Cond.getOperand(1)) && | 
 |         cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { | 
 |       ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | 
 |       switch (CC) { | 
 |       default: break; | 
 |       case ISD::SETOLT: | 
 |       case ISD::SETULT: | 
 |       case ISD::SETOLE: | 
 |       case ISD::SETULE: | 
 |       case ISD::SETLT: | 
 |       case ISD::SETLE: | 
 |         std::swap(TrueOpnd, FalseOpnd); | 
 |         [[fallthrough]]; | 
 |       case ISD::SETOGT: | 
 |       case ISD::SETUGT: | 
 |       case ISD::SETOGE: | 
 |       case ISD::SETUGE: | 
 |       case ISD::SETGT: | 
 |       case ISD::SETGE: | 
 |         if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && | 
 |             TLI.isOperationLegal(ISD::FNEG, VT)) | 
 |           return DAG.getNode(ISD::FNEG, DL, VT, | 
 |                    DAG.getNode(ISD::FABS, DL, VT, X)); | 
 |         if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) | 
 |           return DAG.getNode(ISD::FABS, DL, VT, X); | 
 |  | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // FMUL -> FMA combines: | 
 |   if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { | 
 |     AddToWorklist(Fused.getNode()); | 
 |     return Fused; | 
 |   } | 
 |  | 
 |   // Don't do `combineFMulOrFDivWithIntPow2` until after FMUL -> FMA has been | 
 |   // able to run. | 
 |   if (SDValue R = combineFMulOrFDivWithIntPow2(N)) | 
 |     return R; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | template <class MatchContextClass> SDValue DAGCombiner::visitFMA(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); | 
 |   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |   // FMA nodes have flags that propagate to the created nodes. | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |   MatchContextClass matcher(DAG, TLI, N); | 
 |  | 
 |   // Constant fold FMA. | 
 |   if (SDValue C = | 
 |           DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1, N2})) | 
 |     return C; | 
 |  | 
 |   // (-N0 * -N1) + N2 --> (N0 * N1) + N2 | 
 |   TargetLowering::NegatibleCost CostN0 = | 
 |       TargetLowering::NegatibleCost::Expensive; | 
 |   TargetLowering::NegatibleCost CostN1 = | 
 |       TargetLowering::NegatibleCost::Expensive; | 
 |   SDValue NegN0 = | 
 |       TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); | 
 |   if (NegN0) { | 
 |     HandleSDNode NegN0Handle(NegN0); | 
 |     SDValue NegN1 = | 
 |         TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); | 
 |     if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper || | 
 |                   CostN1 == TargetLowering::NegatibleCost::Cheaper)) | 
 |       return matcher.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); | 
 |   } | 
 |  | 
 |   // FIXME: use fast math flags instead of Options.UnsafeFPMath | 
 |   if (Options.UnsafeFPMath) { | 
 |     if (N0CFP && N0CFP->isZero()) | 
 |       return N2; | 
 |     if (N1CFP && N1CFP->isZero()) | 
 |       return N2; | 
 |   } | 
 |  | 
 |   // FIXME: Support splat of constant. | 
 |   if (N0CFP && N0CFP->isExactlyValue(1.0)) | 
 |     return matcher.getNode(ISD::FADD, DL, VT, N1, N2); | 
 |   if (N1CFP && N1CFP->isExactlyValue(1.0)) | 
 |     return matcher.getNode(ISD::FADD, DL, VT, N0, N2); | 
 |  | 
 |   // Canonicalize (fma c, x, y) -> (fma x, c, y) | 
 |   if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && | 
 |      !DAG.isConstantFPBuildVectorOrConstantFP(N1)) | 
 |     return matcher.getNode(ISD::FMA, DL, VT, N1, N0, N2); | 
 |  | 
 |   bool CanReassociate = | 
 |       Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); | 
 |   if (CanReassociate) { | 
 |     // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) | 
 |     if (matcher.match(N2, ISD::FMUL) && N0 == N2.getOperand(0) && | 
 |         DAG.isConstantFPBuildVectorOrConstantFP(N1) && | 
 |         DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { | 
 |       return matcher.getNode( | 
 |           ISD::FMUL, DL, VT, N0, | 
 |           matcher.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); | 
 |     } | 
 |  | 
 |     // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) | 
 |     if (matcher.match(N0, ISD::FMUL) && | 
 |         DAG.isConstantFPBuildVectorOrConstantFP(N1) && | 
 |         DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { | 
 |       return matcher.getNode( | 
 |           ISD::FMA, DL, VT, N0.getOperand(0), | 
 |           matcher.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), N2); | 
 |     } | 
 |   } | 
 |  | 
 |   // (fma x, -1, y) -> (fadd (fneg x), y) | 
 |   // FIXME: Support splat of constant. | 
 |   if (N1CFP) { | 
 |     if (N1CFP->isExactlyValue(1.0)) | 
 |       return matcher.getNode(ISD::FADD, DL, VT, N0, N2); | 
 |  | 
 |     if (N1CFP->isExactlyValue(-1.0) && | 
 |         (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { | 
 |       SDValue RHSNeg = matcher.getNode(ISD::FNEG, DL, VT, N0); | 
 |       AddToWorklist(RHSNeg.getNode()); | 
 |       return matcher.getNode(ISD::FADD, DL, VT, N2, RHSNeg); | 
 |     } | 
 |  | 
 |     // fma (fneg x), K, y -> fma x -K, y | 
 |     if (matcher.match(N0, ISD::FNEG) && | 
 |         (TLI.isOperationLegal(ISD::ConstantFP, VT) || | 
 |          (N1.hasOneUse() && | 
 |           !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, ForCodeSize)))) { | 
 |       return matcher.getNode(ISD::FMA, DL, VT, N0.getOperand(0), | 
 |                              matcher.getNode(ISD::FNEG, DL, VT, N1), N2); | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: Support splat of constant. | 
 |   if (CanReassociate) { | 
 |     // (fma x, c, x) -> (fmul x, (c+1)) | 
 |     if (N1CFP && N0 == N2) { | 
 |       return matcher.getNode(ISD::FMUL, DL, VT, N0, | 
 |                              matcher.getNode(ISD::FADD, DL, VT, N1, | 
 |                                              DAG.getConstantFP(1.0, DL, VT))); | 
 |     } | 
 |  | 
 |     // (fma x, c, (fneg x)) -> (fmul x, (c-1)) | 
 |     if (N1CFP && matcher.match(N2, ISD::FNEG) && N2.getOperand(0) == N0) { | 
 |       return matcher.getNode(ISD::FMUL, DL, VT, N0, | 
 |                              matcher.getNode(ISD::FADD, DL, VT, N1, | 
 |                                              DAG.getConstantFP(-1.0, DL, VT))); | 
 |     } | 
 |   } | 
 |  | 
 |   // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) | 
 |   // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) | 
 |   if (!TLI.isFNegFree(VT)) | 
 |     if (SDValue Neg = TLI.getCheaperNegatedExpression( | 
 |             SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) | 
 |       return matcher.getNode(ISD::FNEG, DL, VT, Neg); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFMAD(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Constant fold FMAD. | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMAD, DL, VT, {N0, N1, N2})) | 
 |     return C; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Combine multiple FDIVs with the same divisor into multiple FMULs by the | 
 | // reciprocal. | 
 | // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) | 
 | // Notice that this is not always beneficial. One reason is different targets | 
 | // may have different costs for FDIV and FMUL, so sometimes the cost of two | 
 | // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason | 
 | // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". | 
 | SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { | 
 |   // TODO: Limit this transform based on optsize/minsize - it always creates at | 
 |   //       least 1 extra instruction. But the perf win may be substantial enough | 
 |   //       that only minsize should restrict this. | 
 |   bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; | 
 |   const SDNodeFlags Flags = N->getFlags(); | 
 |   if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) | 
 |     return SDValue(); | 
 |  | 
 |   // Skip if current node is a reciprocal/fneg-reciprocal. | 
 |   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
 |   ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); | 
 |   if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) | 
 |     return SDValue(); | 
 |  | 
 |   // Exit early if the target does not want this transform or if there can't | 
 |   // possibly be enough uses of the divisor to make the transform worthwhile. | 
 |   unsigned MinUses = TLI.combineRepeatedFPDivisors(); | 
 |  | 
 |   // For splat vectors, scale the number of uses by the splat factor. If we can | 
 |   // convert the division into a scalar op, that will likely be much faster. | 
 |   unsigned NumElts = 1; | 
 |   EVT VT = N->getValueType(0); | 
 |   if (VT.isVector() && DAG.isSplatValue(N1)) | 
 |     NumElts = VT.getVectorMinNumElements(); | 
 |  | 
 |   if (!MinUses || (N1->use_size() * NumElts) < MinUses) | 
 |     return SDValue(); | 
 |  | 
 |   // Find all FDIV users of the same divisor. | 
 |   // Use a set because duplicates may be present in the user list. | 
 |   SetVector<SDNode *> Users; | 
 |   for (auto *U : N1->users()) { | 
 |     if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { | 
 |       // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. | 
 |       if (U->getOperand(1).getOpcode() == ISD::FSQRT && | 
 |           U->getOperand(0) == U->getOperand(1).getOperand(0) && | 
 |           U->getFlags().hasAllowReassociation() && | 
 |           U->getFlags().hasNoSignedZeros()) | 
 |         continue; | 
 |  | 
 |       // This division is eligible for optimization only if global unsafe math | 
 |       // is enabled or if this division allows reciprocal formation. | 
 |       if (UnsafeMath || U->getFlags().hasAllowReciprocal()) | 
 |         Users.insert(U); | 
 |     } | 
 |   } | 
 |  | 
 |   // Now that we have the actual number of divisor uses, make sure it meets | 
 |   // the minimum threshold specified by the target. | 
 |   if ((Users.size() * NumElts) < MinUses) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | 
 |   SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); | 
 |  | 
 |   // Dividend / Divisor -> Dividend * Reciprocal | 
 |   for (auto *U : Users) { | 
 |     SDValue Dividend = U->getOperand(0); | 
 |     if (Dividend != FPOne) { | 
 |       SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, | 
 |                                     Reciprocal, Flags); | 
 |       CombineTo(U, NewNode); | 
 |     } else if (U != Reciprocal.getNode()) { | 
 |       // In the absence of fast-math-flags, this user node is always the | 
 |       // same node as Reciprocal, but with FMF they may be different nodes. | 
 |       CombineTo(U, Reciprocal); | 
 |     } | 
 |   } | 
 |   return SDValue(N, 0);  // N was replaced. | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFDIV(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |   SDNodeFlags Flags = N->getFlags(); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) | 
 |     return R; | 
 |  | 
 |   // fold (fdiv c1, c2) -> c1/c2 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold vector ops | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVBinOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   if (SDValue V = combineRepeatedFPDivisors(N)) | 
 |     return V; | 
 |  | 
 |   // fold (fdiv X, c2) -> (fmul X, 1/c2) if there is no loss in precision, or | 
 |   // the loss is acceptable with AllowReciprocal. | 
 |   if (auto *N1CFP = isConstOrConstSplatFP(N1, true)) { | 
 |     // Compute the reciprocal 1.0 / c2. | 
 |     const APFloat &N1APF = N1CFP->getValueAPF(); | 
 |     APFloat Recip = APFloat::getOne(N1APF.getSemantics()); | 
 |     APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); | 
 |     // Only do the transform if the reciprocal is a legal fp immediate that | 
 |     // isn't too nasty (eg NaN, denormal, ...). | 
 |     if (((st == APFloat::opOK && !Recip.isDenormal()) || | 
 |          (st == APFloat::opInexact && | 
 |           (Options.UnsafeFPMath || Flags.hasAllowReciprocal()))) && | 
 |         (!LegalOperations || | 
 |          // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM | 
 |          // backend)... we should handle this gracefully after Legalize. | 
 |          // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || | 
 |          TLI.isOperationLegal(ISD::ConstantFP, VT) || | 
 |          TLI.isFPImmLegal(Recip, VT, ForCodeSize))) | 
 |       return DAG.getNode(ISD::FMUL, DL, VT, N0, | 
 |                          DAG.getConstantFP(Recip, DL, VT)); | 
 |   } | 
 |  | 
 |   if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { | 
 |     // If this FDIV is part of a reciprocal square root, it may be folded | 
 |     // into a target-specific square root estimate instruction. | 
 |     if (N1.getOpcode() == ISD::FSQRT) { | 
 |       if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) | 
 |         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); | 
 |     } else if (N1.getOpcode() == ISD::FP_EXTEND && | 
 |                N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
 |       if (SDValue RV = | 
 |               buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { | 
 |         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); | 
 |         AddToWorklist(RV.getNode()); | 
 |         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); | 
 |       } | 
 |     } else if (N1.getOpcode() == ISD::FP_ROUND && | 
 |                N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
 |       if (SDValue RV = | 
 |               buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { | 
 |         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); | 
 |         AddToWorklist(RV.getNode()); | 
 |         return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); | 
 |       } | 
 |     } else if (N1.getOpcode() == ISD::FMUL) { | 
 |       // Look through an FMUL. Even though this won't remove the FDIV directly, | 
 |       // it's still worthwhile to get rid of the FSQRT if possible. | 
 |       SDValue Sqrt, Y; | 
 |       if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { | 
 |         Sqrt = N1.getOperand(0); | 
 |         Y = N1.getOperand(1); | 
 |       } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { | 
 |         Sqrt = N1.getOperand(1); | 
 |         Y = N1.getOperand(0); | 
 |       } | 
 |       if (Sqrt.getNode()) { | 
 |         // If the other multiply operand is known positive, pull it into the | 
 |         // sqrt. That will eliminate the division if we convert to an estimate. | 
 |         if (Flags.hasAllowReassociation() && N1.hasOneUse() && | 
 |             N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { | 
 |           SDValue A; | 
 |           if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) | 
 |             A = Y.getOperand(0); | 
 |           else if (Y == Sqrt.getOperand(0)) | 
 |             A = Y; | 
 |           if (A) { | 
 |             // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z) | 
 |             // X / (A * sqrt(A))       --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A) | 
 |             SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A); | 
 |             SDValue AAZ = | 
 |                 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); | 
 |             if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) | 
 |               return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); | 
 |  | 
 |             // Estimate creation failed. Clean up speculatively created nodes. | 
 |             recursivelyDeleteUnusedNodes(AAZ.getNode()); | 
 |           } | 
 |         } | 
 |  | 
 |         // We found a FSQRT, so try to make this fold: | 
 |         // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) | 
 |         if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { | 
 |           SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); | 
 |           AddToWorklist(Div.getNode()); | 
 |           return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Fold into a reciprocal estimate and multiply instead of a real divide. | 
 |     if (Options.NoInfsFPMath || Flags.hasNoInfs()) | 
 |       if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) | 
 |         return RV; | 
 |   } | 
 |  | 
 |   // Fold X/Sqrt(X) -> Sqrt(X) | 
 |   if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && | 
 |       (Options.UnsafeFPMath || Flags.hasAllowReassociation())) | 
 |     if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) | 
 |       return N1; | 
 |  | 
 |   // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) | 
 |   TargetLowering::NegatibleCost CostN0 = | 
 |       TargetLowering::NegatibleCost::Expensive; | 
 |   TargetLowering::NegatibleCost CostN1 = | 
 |       TargetLowering::NegatibleCost::Expensive; | 
 |   SDValue NegN0 = | 
 |       TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); | 
 |   if (NegN0) { | 
 |     HandleSDNode NegN0Handle(NegN0); | 
 |     SDValue NegN1 = | 
 |         TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); | 
 |     if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper || | 
 |                   CostN1 == TargetLowering::NegatibleCost::Cheaper)) | 
 |       return DAG.getNode(ISD::FDIV, DL, VT, NegN0, NegN1); | 
 |   } | 
 |  | 
 |   if (SDValue R = combineFMulOrFDivWithIntPow2(N)) | 
 |     return R; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFREM(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDNodeFlags Flags = N->getFlags(); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) | 
 |     return R; | 
 |  | 
 |   // fold (frem c1, c2) -> fmod(c1,c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   if (SDValue NewSel = foldBinOpIntoSelect(N)) | 
 |     return NewSel; | 
 |  | 
 |   // Lower frem N0, N1 => x - trunc(N0 / N1) * N1, providing N1 is an integer | 
 |   // power of 2. | 
 |   if (!TLI.isOperationLegal(ISD::FREM, VT) && | 
 |       TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && | 
 |       TLI.isOperationLegalOrCustom(ISD::FDIV, VT) && | 
 |       TLI.isOperationLegalOrCustom(ISD::FTRUNC, VT) && | 
 |       DAG.isKnownToBeAPowerOfTwoFP(N1)) { | 
 |     bool NeedsCopySign = | 
 |         !Flags.hasNoSignedZeros() && !DAG.cannotBeOrderedNegativeFP(N0); | 
 |     SDValue Div = DAG.getNode(ISD::FDIV, DL, VT, N0, N1); | 
 |     SDValue Rnd = DAG.getNode(ISD::FTRUNC, DL, VT, Div); | 
 |     SDValue MLA; | 
 |     if (TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { | 
 |       MLA = DAG.getNode(ISD::FMA, DL, VT, DAG.getNode(ISD::FNEG, DL, VT, Rnd), | 
 |                         N1, N0); | 
 |     } else { | 
 |       SDValue Mul = DAG.getNode(ISD::FMUL, DL, VT, Rnd, N1); | 
 |       MLA = DAG.getNode(ISD::FSUB, DL, VT, N0, Mul); | 
 |     } | 
 |     return NeedsCopySign ? DAG.getNode(ISD::FCOPYSIGN, DL, VT, MLA, N0) : MLA; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFSQRT(SDNode *N) { | 
 |   SDNodeFlags Flags = N->getFlags(); | 
 |   const TargetOptions &Options = DAG.getTarget().Options; | 
 |  | 
 |   // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: | 
 |   // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN | 
 |   if (!Flags.hasApproximateFuncs() || | 
 |       (!Options.NoInfsFPMath && !Flags.hasNoInfs())) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   if (TLI.isFsqrtCheap(N0, DAG)) | 
 |     return SDValue(); | 
 |  | 
 |   // FSQRT nodes have flags that propagate to the created nodes. | 
 |   // TODO: If this is N0/sqrt(N0), and we reach this node before trying to | 
 |   //       transform the fdiv, we may produce a sub-optimal estimate sequence | 
 |   //       because the reciprocal calculation may not have to filter out a | 
 |   //       0.0 input. | 
 |   return buildSqrtEstimate(N0, Flags); | 
 | } | 
 |  | 
 | /// copysign(x, fp_extend(y)) -> copysign(x, y) | 
 | /// copysign(x, fp_round(y)) -> copysign(x, y) | 
 | /// Operands to the functions are the type of X and Y respectively. | 
 | static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(EVT XTy, EVT YTy) { | 
 |   // Always fold no-op FP casts. | 
 |   if (XTy == YTy) | 
 |     return true; | 
 |  | 
 |   // Do not optimize out type conversion of f128 type yet. | 
 |   // For some targets like x86_64, configuration is changed to keep one f128 | 
 |   // value in one SSE register, but instruction selection cannot handle | 
 |   // FCOPYSIGN on SSE registers yet. | 
 |   if (YTy == MVT::f128) | 
 |     return false; | 
 |  | 
 |   // Avoid mismatched vector operand types, for better instruction selection. | 
 |   return !YTy.isVector(); | 
 | } | 
 |  | 
 | static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (N1.getOpcode() != ISD::FP_EXTEND && | 
 |       N1.getOpcode() != ISD::FP_ROUND) | 
 |     return false; | 
 |   EVT N1VT = N1->getValueType(0); | 
 |   EVT N1Op0VT = N1->getOperand(0).getValueType(); | 
 |   return CanCombineFCOPYSIGN_EXTEND_ROUND(N1VT, N1Op0VT); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (fcopysign c1, c2) -> fcopysign(c1,c2) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { | 
 |     const APFloat &V = N1C->getValueAPF(); | 
 |     // copysign(x, c1) -> fabs(x)       iff ispos(c1) | 
 |     // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) | 
 |     if (!V.isNegative()) { | 
 |       if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) | 
 |         return DAG.getNode(ISD::FABS, DL, VT, N0); | 
 |     } else { | 
 |       if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) | 
 |         return DAG.getNode(ISD::FNEG, DL, VT, | 
 |                            DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); | 
 |     } | 
 |   } | 
 |  | 
 |   // copysign(fabs(x), y) -> copysign(x, y) | 
 |   // copysign(fneg(x), y) -> copysign(x, y) | 
 |   // copysign(copysign(x,z), y) -> copysign(x, y) | 
 |   if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || | 
 |       N0.getOpcode() == ISD::FCOPYSIGN) | 
 |     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N0.getOperand(0), N1); | 
 |  | 
 |   // copysign(x, abs(y)) -> abs(x) | 
 |   if (N1.getOpcode() == ISD::FABS) | 
 |     return DAG.getNode(ISD::FABS, DL, VT, N0); | 
 |  | 
 |   // copysign(x, copysign(y,z)) -> copysign(x, z) | 
 |   if (N1.getOpcode() == ISD::FCOPYSIGN) | 
 |     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N0, N1.getOperand(1)); | 
 |  | 
 |   // copysign(x, fp_extend(y)) -> copysign(x, y) | 
 |   // copysign(x, fp_round(y)) -> copysign(x, y) | 
 |   if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) | 
 |     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N0, N1.getOperand(0)); | 
 |  | 
 |   // We only take the sign bit from the sign operand. | 
 |   EVT SignVT = N1.getValueType(); | 
 |   if (SimplifyDemandedBits(N1, | 
 |                            APInt::getSignMask(SignVT.getScalarSizeInBits()))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // We only take the non-sign bits from the value operand | 
 |   if (SimplifyDemandedBits(N0, | 
 |                            APInt::getSignedMaxValue(VT.getScalarSizeInBits()))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFPOW(SDNode *N) { | 
 |   ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); | 
 |   if (!ExponentC) | 
 |     return SDValue(); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   // Try to convert x ** (1/3) into cube root. | 
 |   // TODO: Handle the various flavors of long double. | 
 |   // TODO: Since we're approximating, we don't need an exact 1/3 exponent. | 
 |   //       Some range near 1/3 should be fine. | 
 |   EVT VT = N->getValueType(0); | 
 |   if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || | 
 |       (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { | 
 |     // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. | 
 |     // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. | 
 |     // pow(-val, 1/3) =  nan; cbrt(-val) = -num. | 
 |     // For regular numbers, rounding may cause the results to differ. | 
 |     // Therefore, we require { nsz ninf nnan afn } for this transform. | 
 |     // TODO: We could select out the special cases if we don't have nsz/ninf. | 
 |     SDNodeFlags Flags = N->getFlags(); | 
 |     if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || | 
 |         !Flags.hasApproximateFuncs()) | 
 |       return SDValue(); | 
 |  | 
 |     // Do not create a cbrt() libcall if the target does not have it, and do not | 
 |     // turn a pow that has lowering support into a cbrt() libcall. | 
 |     if (!DAG.getLibInfo().has(LibFunc_cbrt) || | 
 |         (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && | 
 |          DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) | 
 |       return SDValue(); | 
 |  | 
 |     return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); | 
 |   } | 
 |  | 
 |   // Try to convert x ** (1/4) and x ** (3/4) into square roots. | 
 |   // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. | 
 |   // TODO: This could be extended (using a target hook) to handle smaller | 
 |   // power-of-2 fractional exponents. | 
 |   bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); | 
 |   bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); | 
 |   if (ExponentIs025 || ExponentIs075) { | 
 |     // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. | 
 |     // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) =  NaN. | 
 |     // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. | 
 |     // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) =  NaN. | 
 |     // For regular numbers, rounding may cause the results to differ. | 
 |     // Therefore, we require { nsz ninf afn } for this transform. | 
 |     // TODO: We could select out the special cases if we don't have nsz/ninf. | 
 |     SDNodeFlags Flags = N->getFlags(); | 
 |  | 
 |     // We only need no signed zeros for the 0.25 case. | 
 |     if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || | 
 |         !Flags.hasApproximateFuncs()) | 
 |       return SDValue(); | 
 |  | 
 |     // Don't double the number of libcalls. We are trying to inline fast code. | 
 |     if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) | 
 |       return SDValue(); | 
 |  | 
 |     // Assume that libcalls are the smallest code. | 
 |     // TODO: This restriction should probably be lifted for vectors. | 
 |     if (ForCodeSize) | 
 |       return SDValue(); | 
 |  | 
 |     // pow(X, 0.25) --> sqrt(sqrt(X)) | 
 |     SDLoc DL(N); | 
 |     SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); | 
 |     SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); | 
 |     if (ExponentIs025) | 
 |       return SqrtSqrt; | 
 |     // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) | 
 |     return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue foldFPToIntToFP(SDNode *N, const SDLoc &DL, SelectionDAG &DAG, | 
 |                                const TargetLowering &TLI) { | 
 |   // We only do this if the target has legal ftrunc. Otherwise, we'd likely be | 
 |   // replacing casts with a libcall. We also must be allowed to ignore -0.0 | 
 |   // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer | 
 |   // conversions would return +0.0. | 
 |   // FIXME: We should be able to use node-level FMF here. | 
 |   // TODO: If strict math, should we use FABS (+ range check for signed cast)? | 
 |   EVT VT = N->getValueType(0); | 
 |   if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || | 
 |       !DAG.getTarget().Options.NoSignedZerosFPMath) | 
 |     return SDValue(); | 
 |  | 
 |   // fptosi/fptoui round towards zero, so converting from FP to integer and | 
 |   // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X | 
 |   SDValue N0 = N->getOperand(0); | 
 |   if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && | 
 |       N0.getOperand(0).getValueType() == VT) | 
 |     return DAG.getNode(ISD::FTRUNC, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && | 
 |       N0.getOperand(0).getValueType() == VT) | 
 |     return DAG.getNode(ISD::FTRUNC, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT OpVT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // [us]itofp(undef) = 0, because the result value is bounded. | 
 |   if (N0.isUndef()) | 
 |     return DAG.getConstantFP(0.0, DL, VT); | 
 |  | 
 |   // fold (sint_to_fp c1) -> c1fp | 
 |   // ...but only if the target supports immediate floating-point values | 
 |   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
 |     if (SDValue C = DAG.FoldConstantArithmetic(ISD::SINT_TO_FP, DL, VT, {N0})) | 
 |       return C; | 
 |  | 
 |   // If the input is a legal type, and SINT_TO_FP is not legal on this target, | 
 |   // but UINT_TO_FP is legal on this target, try to convert. | 
 |   if (!hasOperation(ISD::SINT_TO_FP, OpVT) && | 
 |       hasOperation(ISD::UINT_TO_FP, OpVT)) { | 
 |     // If the sign bit is known to be zero, we can change this to UINT_TO_FP. | 
 |     if (DAG.SignBitIsZero(N0)) | 
 |       return DAG.getNode(ISD::UINT_TO_FP, DL, VT, N0); | 
 |   } | 
 |  | 
 |   // The next optimizations are desirable only if SELECT_CC can be lowered. | 
 |   // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) | 
 |   if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && | 
 |       !VT.isVector() && | 
 |       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
 |     return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), | 
 |                          DAG.getConstantFP(0.0, DL, VT)); | 
 |  | 
 |   // fold (sint_to_fp (zext (setcc x, y, cc))) -> | 
 |   //      (select (setcc x, y, cc), 1.0, 0.0) | 
 |   if (N0.getOpcode() == ISD::ZERO_EXTEND && | 
 |       N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && | 
 |       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
 |     return DAG.getSelect(DL, VT, N0.getOperand(0), | 
 |                          DAG.getConstantFP(1.0, DL, VT), | 
 |                          DAG.getConstantFP(0.0, DL, VT)); | 
 |  | 
 |   if (SDValue FTrunc = foldFPToIntToFP(N, DL, DAG, TLI)) | 
 |     return FTrunc; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT OpVT = N0.getValueType(); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // [us]itofp(undef) = 0, because the result value is bounded. | 
 |   if (N0.isUndef()) | 
 |     return DAG.getConstantFP(0.0, DL, VT); | 
 |  | 
 |   // fold (uint_to_fp c1) -> c1fp | 
 |   // ...but only if the target supports immediate floating-point values | 
 |   if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
 |     if (SDValue C = DAG.FoldConstantArithmetic(ISD::UINT_TO_FP, DL, VT, {N0})) | 
 |       return C; | 
 |  | 
 |   // If the input is a legal type, and UINT_TO_FP is not legal on this target, | 
 |   // but SINT_TO_FP is legal on this target, try to convert. | 
 |   if (!hasOperation(ISD::UINT_TO_FP, OpVT) && | 
 |       hasOperation(ISD::SINT_TO_FP, OpVT)) { | 
 |     // If the sign bit is known to be zero, we can change this to SINT_TO_FP. | 
 |     if (DAG.SignBitIsZero(N0)) | 
 |       return DAG.getNode(ISD::SINT_TO_FP, DL, VT, N0); | 
 |   } | 
 |  | 
 |   // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) | 
 |   if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && | 
 |       (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) | 
 |     return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), | 
 |                          DAG.getConstantFP(0.0, DL, VT)); | 
 |  | 
 |   if (SDValue FTrunc = foldFPToIntToFP(N, DL, DAG, TLI)) | 
 |     return FTrunc; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x | 
 | static SDValue FoldIntToFPToInt(SDNode *N, const SDLoc &DL, SelectionDAG &DAG) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Src = N0.getOperand(0); | 
 |   EVT SrcVT = Src.getValueType(); | 
 |   bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; | 
 |   bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; | 
 |  | 
 |   // We can safely assume the conversion won't overflow the output range, | 
 |   // because (for example) (uint8_t)18293.f is undefined behavior. | 
 |  | 
 |   // Since we can assume the conversion won't overflow, our decision as to | 
 |   // whether the input will fit in the float should depend on the minimum | 
 |   // of the input range and output range. | 
 |  | 
 |   // This means this is also safe for a signed input and unsigned output, since | 
 |   // a negative input would lead to undefined behavior. | 
 |   unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; | 
 |   unsigned OutputSize = (int)VT.getScalarSizeInBits(); | 
 |   unsigned ActualSize = std::min(InputSize, OutputSize); | 
 |   const fltSemantics &Sem = N0.getValueType().getFltSemantics(); | 
 |  | 
 |   // We can only fold away the float conversion if the input range can be | 
 |   // represented exactly in the float range. | 
 |   if (APFloat::semanticsPrecision(Sem) >= ActualSize) { | 
 |     if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { | 
 |       unsigned ExtOp = | 
 |           IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
 |       return DAG.getNode(ExtOp, DL, VT, Src); | 
 |     } | 
 |     if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) | 
 |       return DAG.getNode(ISD::TRUNCATE, DL, VT, Src); | 
 |     return DAG.getBitcast(VT, Src); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (fp_to_sint undef) -> undef | 
 |   if (N0.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // fold (fp_to_sint c1fp) -> c1 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_TO_SINT, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   return FoldIntToFPToInt(N, DL, DAG); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (fp_to_uint undef) -> undef | 
 |   if (N0.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // fold (fp_to_uint c1fp) -> c1 | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_TO_UINT, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   return FoldIntToFPToInt(N, DL, DAG); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitXROUND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // fold (lrint|llrint undef) -> undef | 
 |   // fold (lround|llround undef) -> undef | 
 |   if (N0.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // fold (lrint|llrint c1fp) -> c1 | 
 |   // fold (lround|llround c1fp) -> c1 | 
 |   if (SDValue C = | 
 |           DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0})) | 
 |     return C; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (fp_round c1fp) -> c1fp | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_ROUND, DL, VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // fold (fp_round (fp_extend x)) -> x | 
 |   if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) | 
 |     return N0.getOperand(0); | 
 |  | 
 |   // fold (fp_round (fp_round x)) -> (fp_round x) | 
 |   if (N0.getOpcode() == ISD::FP_ROUND) { | 
 |     const bool NIsTrunc = N->getConstantOperandVal(1) == 1; | 
 |     const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; | 
 |  | 
 |     // Avoid folding legal fp_rounds into non-legal ones. | 
 |     if (!hasOperation(ISD::FP_ROUND, VT)) | 
 |       return SDValue(); | 
 |  | 
 |     // Skip this folding if it results in an fp_round from f80 to f16. | 
 |     // | 
 |     // f80 to f16 always generates an expensive (and as yet, unimplemented) | 
 |     // libcall to __truncxfhf2 instead of selecting native f16 conversion | 
 |     // instructions from f32 or f64.  Moreover, the first (value-preserving) | 
 |     // fp_round from f80 to either f32 or f64 may become a NOP in platforms like | 
 |     // x86. | 
 |     if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) | 
 |       return SDValue(); | 
 |  | 
 |     // If the first fp_round isn't a value preserving truncation, it might | 
 |     // introduce a tie in the second fp_round, that wouldn't occur in the | 
 |     // single-step fp_round we want to fold to. | 
 |     // In other words, double rounding isn't the same as rounding. | 
 |     // Also, this is a value preserving truncation iff both fp_round's are. | 
 |     if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) | 
 |       return DAG.getNode( | 
 |           ISD::FP_ROUND, DL, VT, N0.getOperand(0), | 
 |           DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL, /*isTarget=*/true)); | 
 |   } | 
 |  | 
 |   // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) | 
 |   // Note: From a legality perspective, this is a two step transform.  First, | 
 |   // we duplicate the fp_round to the arguments of the copysign, then we | 
 |   // eliminate the fp_round on Y.  The second step requires an additional | 
 |   // predicate to match the implementation above. | 
 |   if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() && | 
 |       CanCombineFCOPYSIGN_EXTEND_ROUND(VT, | 
 |                                        N0.getValueType())) { | 
 |     SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, | 
 |                               N0.getOperand(0), N1); | 
 |     AddToWorklist(Tmp.getNode()); | 
 |     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, Tmp, N0.getOperand(1)); | 
 |   } | 
 |  | 
 |   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
 |     return NewVSel; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   if (VT.isVector()) | 
 |     if (SDValue FoldedVOp = SimplifyVCastOp(N, DL)) | 
 |       return FoldedVOp; | 
 |  | 
 |   // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | 
 |   if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::FP_ROUND) | 
 |     return SDValue(); | 
 |  | 
 |   // fold (fp_extend c1fp) -> c1fp | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_EXTEND, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) | 
 |   if (N0.getOpcode() == ISD::FP16_TO_FP && | 
 |       TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) | 
 |     return DAG.getNode(ISD::FP16_TO_FP, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the | 
 |   // value of X. | 
 |   if (N0.getOpcode() == ISD::FP_ROUND && N0.getConstantOperandVal(1) == 1) { | 
 |     SDValue In = N0.getOperand(0); | 
 |     if (In.getValueType() == VT) return In; | 
 |     if (VT.bitsLT(In.getValueType())) | 
 |       return DAG.getNode(ISD::FP_ROUND, DL, VT, In, N0.getOperand(1)); | 
 |     return DAG.getNode(ISD::FP_EXTEND, DL, VT, In); | 
 |   } | 
 |  | 
 |   // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | 
 |   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
 |       TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, VT, N0.getValueType())) { | 
 |     LoadSDNode *LN0 = cast<LoadSDNode>(N0); | 
 |     SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, | 
 |                                      LN0->getChain(), | 
 |                                      LN0->getBasePtr(), N0.getValueType(), | 
 |                                      LN0->getMemOperand()); | 
 |     CombineTo(N, ExtLoad); | 
 |     CombineTo( | 
 |         N0.getNode(), | 
 |         DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad, | 
 |                     DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)), | 
 |         ExtLoad.getValue(1)); | 
 |     return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 |   } | 
 |  | 
 |   if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) | 
 |     return NewVSel; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFCEIL(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // fold (fceil c1) -> fceil(c1) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FCEIL, SDLoc(N), VT, {N0})) | 
 |     return C; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFTRUNC(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // fold (ftrunc c1) -> ftrunc(c1) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FTRUNC, SDLoc(N), VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // fold ftrunc (known rounded int x) -> x | 
 |   // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is | 
 |   // likely to be generated to extract integer from a rounded floating value. | 
 |   switch (N0.getOpcode()) { | 
 |   default: break; | 
 |   case ISD::FRINT: | 
 |   case ISD::FTRUNC: | 
 |   case ISD::FNEARBYINT: | 
 |   case ISD::FROUNDEVEN: | 
 |   case ISD::FFLOOR: | 
 |   case ISD::FCEIL: | 
 |     return N0; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFFREXP(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // fold (ffrexp c1) -> ffrexp(c1) | 
 |   if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) | 
 |     return DAG.getNode(ISD::FFREXP, SDLoc(N), N->getVTList(), N0); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFFLOOR(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // fold (ffloor c1) -> ffloor(c1) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FFLOOR, SDLoc(N), VT, {N0})) | 
 |     return C; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFNEG(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   // Constant fold FNEG. | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FNEG, SDLoc(N), VT, {N0})) | 
 |     return C; | 
 |  | 
 |   if (SDValue NegN0 = | 
 |           TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) | 
 |     return NegN0; | 
 |  | 
 |   // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 | 
 |   // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't | 
 |   // know it was called from a context with a nsz flag if the input fsub does | 
 |   // not. | 
 |   if (N0.getOpcode() == ISD::FSUB && | 
 |       (DAG.getTarget().Options.NoSignedZerosFPMath || | 
 |        N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { | 
 |     return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), | 
 |                        N0.getOperand(0)); | 
 |   } | 
 |  | 
 |   if (SDValue Cast = foldSignChangeInBitcast(N)) | 
 |     return Cast; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFMinMax(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   EVT VT = N->getValueType(0); | 
 |   const SDNodeFlags Flags = N->getFlags(); | 
 |   unsigned Opc = N->getOpcode(); | 
 |   bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; | 
 |   bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   // Constant fold. | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1})) | 
 |     return C; | 
 |  | 
 |   // Canonicalize to constant on RHS. | 
 |   if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && | 
 |       !DAG.isConstantFPBuildVectorOrConstantFP(N1)) | 
 |     return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); | 
 |  | 
 |   if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) { | 
 |     const APFloat &AF = N1CFP->getValueAPF(); | 
 |  | 
 |     // minnum(X, nan) -> X | 
 |     // maxnum(X, nan) -> X | 
 |     // minimum(X, nan) -> nan | 
 |     // maximum(X, nan) -> nan | 
 |     if (AF.isNaN()) | 
 |       return PropagatesNaN ? N->getOperand(1) : N->getOperand(0); | 
 |  | 
 |     // In the following folds, inf can be replaced with the largest finite | 
 |     // float, if the ninf flag is set. | 
 |     if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) { | 
 |       // minnum(X, -inf) -> -inf | 
 |       // maxnum(X, +inf) -> +inf | 
 |       // minimum(X, -inf) -> -inf if nnan | 
 |       // maximum(X, +inf) -> +inf if nnan | 
 |       if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs())) | 
 |         return N->getOperand(1); | 
 |  | 
 |       // minnum(X, +inf) -> X if nnan | 
 |       // maxnum(X, -inf) -> X if nnan | 
 |       // minimum(X, +inf) -> X | 
 |       // maximum(X, -inf) -> X | 
 |       if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs())) | 
 |         return N->getOperand(0); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue SD = reassociateReduction( | 
 |           PropagatesNaN | 
 |               ? (IsMin ? ISD::VECREDUCE_FMINIMUM : ISD::VECREDUCE_FMAXIMUM) | 
 |               : (IsMin ? ISD::VECREDUCE_FMIN : ISD::VECREDUCE_FMAX), | 
 |           Opc, SDLoc(N), VT, N0, N1, Flags)) | 
 |     return SD; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFABS(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // fold (fabs c1) -> fabs(c1) | 
 |   if (SDValue C = DAG.FoldConstantArithmetic(ISD::FABS, DL, VT, {N0})) | 
 |     return C; | 
 |  | 
 |   // fold (fabs (fabs x)) -> (fabs x) | 
 |   if (N0.getOpcode() == ISD::FABS) | 
 |     return N->getOperand(0); | 
 |  | 
 |   // fold (fabs (fneg x)) -> (fabs x) | 
 |   // fold (fabs (fcopysign x, y)) -> (fabs x) | 
 |   if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) | 
 |     return DAG.getNode(ISD::FABS, DL, VT, N0.getOperand(0)); | 
 |  | 
 |   if (SDValue Cast = foldSignChangeInBitcast(N)) | 
 |     return Cast; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBRCOND(SDNode *N) { | 
 |   SDValue Chain = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |  | 
 |   // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are | 
 |   // nondeterministic jumps). | 
 |   if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { | 
 |     return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, | 
 |                        N1->getOperand(0), N2, N->getFlags()); | 
 |   } | 
 |  | 
 |   // Variant of the previous fold where there is a SETCC in between: | 
 |   //   BRCOND(SETCC(FREEZE(X), CONST, Cond)) | 
 |   // => | 
 |   //   BRCOND(FREEZE(SETCC(X, CONST, Cond))) | 
 |   // => | 
 |   //   BRCOND(SETCC(X, CONST, Cond)) | 
 |   // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond) | 
 |   // isn't equivalent to true or false. | 
 |   // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to | 
 |   // FREEZE(SETCC(X, -128, SETULT)) because X can be poison. | 
 |   if (N1->getOpcode() == ISD::SETCC && N1.hasOneUse()) { | 
 |     SDValue S0 = N1->getOperand(0), S1 = N1->getOperand(1); | 
 |     ISD::CondCode Cond = cast<CondCodeSDNode>(N1->getOperand(2))->get(); | 
 |     ConstantSDNode *S0C = dyn_cast<ConstantSDNode>(S0); | 
 |     ConstantSDNode *S1C = dyn_cast<ConstantSDNode>(S1); | 
 |     bool Updated = false; | 
 |  | 
 |     // Is 'X Cond C' always true or false? | 
 |     auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) { | 
 |       bool False = (Cond == ISD::SETULT && C->isZero()) || | 
 |                    (Cond == ISD::SETLT && C->isMinSignedValue()) || | 
 |                    (Cond == ISD::SETUGT && C->isAllOnes()) || | 
 |                    (Cond == ISD::SETGT && C->isMaxSignedValue()); | 
 |       bool True = (Cond == ISD::SETULE && C->isAllOnes()) || | 
 |                   (Cond == ISD::SETLE && C->isMaxSignedValue()) || | 
 |                   (Cond == ISD::SETUGE && C->isZero()) || | 
 |                   (Cond == ISD::SETGE && C->isMinSignedValue()); | 
 |       return True || False; | 
 |     }; | 
 |  | 
 |     if (S0->getOpcode() == ISD::FREEZE && S0.hasOneUse() && S1C) { | 
 |       if (!IsAlwaysTrueOrFalse(Cond, S1C)) { | 
 |         S0 = S0->getOperand(0); | 
 |         Updated = true; | 
 |       } | 
 |     } | 
 |     if (S1->getOpcode() == ISD::FREEZE && S1.hasOneUse() && S0C) { | 
 |       if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), S0C)) { | 
 |         S1 = S1->getOperand(0); | 
 |         Updated = true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (Updated) | 
 |       return DAG.getNode( | 
 |           ISD::BRCOND, SDLoc(N), MVT::Other, Chain, | 
 |           DAG.getSetCC(SDLoc(N1), N1->getValueType(0), S0, S1, Cond), N2, | 
 |           N->getFlags()); | 
 |   } | 
 |  | 
 |   // If N is a constant we could fold this into a fallthrough or unconditional | 
 |   // branch. However that doesn't happen very often in normal code, because | 
 |   // Instcombine/SimplifyCFG should have handled the available opportunities. | 
 |   // If we did this folding here, it would be necessary to update the | 
 |   // MachineBasicBlock CFG, which is awkward. | 
 |  | 
 |   // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal | 
 |   // on the target. | 
 |   if (N1.getOpcode() == ISD::SETCC && | 
 |       TLI.isOperationLegalOrCustom(ISD::BR_CC, | 
 |                                    N1.getOperand(0).getValueType())) { | 
 |     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | 
 |                        Chain, N1.getOperand(2), | 
 |                        N1.getOperand(0), N1.getOperand(1), N2); | 
 |   } | 
 |  | 
 |   if (N1.hasOneUse()) { | 
 |     // rebuildSetCC calls visitXor which may change the Chain when there is a | 
 |     // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. | 
 |     HandleSDNode ChainHandle(Chain); | 
 |     if (SDValue NewN1 = rebuildSetCC(N1)) | 
 |       return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, | 
 |                          ChainHandle.getValue(), NewN1, N2, N->getFlags()); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::rebuildSetCC(SDValue N) { | 
 |   if (N.getOpcode() == ISD::SRL || | 
 |       (N.getOpcode() == ISD::TRUNCATE && | 
 |        (N.getOperand(0).hasOneUse() && | 
 |         N.getOperand(0).getOpcode() == ISD::SRL))) { | 
 |     // Look pass the truncate. | 
 |     if (N.getOpcode() == ISD::TRUNCATE) | 
 |       N = N.getOperand(0); | 
 |  | 
 |     // Match this pattern so that we can generate simpler code: | 
 |     // | 
 |     //   %a = ... | 
 |     //   %b = and i32 %a, 2 | 
 |     //   %c = srl i32 %b, 1 | 
 |     //   brcond i32 %c ... | 
 |     // | 
 |     // into | 
 |     // | 
 |     //   %a = ... | 
 |     //   %b = and i32 %a, 2 | 
 |     //   %c = setcc eq %b, 0 | 
 |     //   brcond %c ... | 
 |     // | 
 |     // This applies only when the AND constant value has one bit set and the | 
 |     // SRL constant is equal to the log2 of the AND constant. The back-end is | 
 |     // smart enough to convert the result into a TEST/JMP sequence. | 
 |     SDValue Op0 = N.getOperand(0); | 
 |     SDValue Op1 = N.getOperand(1); | 
 |  | 
 |     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { | 
 |       SDValue AndOp1 = Op0.getOperand(1); | 
 |  | 
 |       if (AndOp1.getOpcode() == ISD::Constant) { | 
 |         const APInt &AndConst = AndOp1->getAsAPIntVal(); | 
 |  | 
 |         if (AndConst.isPowerOf2() && | 
 |             Op1->getAsAPIntVal() == AndConst.logBase2()) { | 
 |           SDLoc DL(N); | 
 |           return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), | 
 |                               Op0, DAG.getConstant(0, DL, Op0.getValueType()), | 
 |                               ISD::SETNE); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) | 
 |   // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) | 
 |   if (N.getOpcode() == ISD::XOR) { | 
 |     // Because we may call this on a speculatively constructed | 
 |     // SimplifiedSetCC Node, we need to simplify this node first. | 
 |     // Ideally this should be folded into SimplifySetCC and not | 
 |     // here. For now, grab a handle to N so we don't lose it from | 
 |     // replacements interal to the visit. | 
 |     HandleSDNode XORHandle(N); | 
 |     while (N.getOpcode() == ISD::XOR) { | 
 |       SDValue Tmp = visitXOR(N.getNode()); | 
 |       // No simplification done. | 
 |       if (!Tmp.getNode()) | 
 |         break; | 
 |       // Returning N is form in-visit replacement that may invalidated | 
 |       // N. Grab value from Handle. | 
 |       if (Tmp.getNode() == N.getNode()) | 
 |         N = XORHandle.getValue(); | 
 |       else // Node simplified. Try simplifying again. | 
 |         N = Tmp; | 
 |     } | 
 |  | 
 |     if (N.getOpcode() != ISD::XOR) | 
 |       return N; | 
 |  | 
 |     SDValue Op0 = N->getOperand(0); | 
 |     SDValue Op1 = N->getOperand(1); | 
 |  | 
 |     if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { | 
 |       bool Equal = false; | 
 |       // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) | 
 |       if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && | 
 |           Op0.getValueType() == MVT::i1) { | 
 |         N = Op0; | 
 |         Op0 = N->getOperand(0); | 
 |         Op1 = N->getOperand(1); | 
 |         Equal = true; | 
 |       } | 
 |  | 
 |       EVT SetCCVT = N.getValueType(); | 
 |       if (LegalTypes) | 
 |         SetCCVT = getSetCCResultType(SetCCVT); | 
 |       // Replace the uses of XOR with SETCC. Note, avoid this transformation if | 
 |       // it would introduce illegal operations post-legalization as this can | 
 |       // result in infinite looping between converting xor->setcc here, and | 
 |       // expanding setcc->xor in LegalizeSetCCCondCode if requested. | 
 |       const ISD::CondCode CC = Equal ? ISD::SETEQ : ISD::SETNE; | 
 |       if (!LegalOperations || TLI.isCondCodeLegal(CC, Op0.getSimpleValueType())) | 
 |         return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, CC); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. | 
 | // | 
 | SDValue DAGCombiner::visitBR_CC(SDNode *N) { | 
 |   CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); | 
 |   SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); | 
 |  | 
 |   // If N is a constant we could fold this into a fallthrough or unconditional | 
 |   // branch. However that doesn't happen very often in normal code, because | 
 |   // Instcombine/SimplifyCFG should have handled the available opportunities. | 
 |   // If we did this folding here, it would be necessary to update the | 
 |   // MachineBasicBlock CFG, which is awkward. | 
 |  | 
 |   // Use SimplifySetCC to simplify SETCC's. | 
 |   SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), | 
 |                                CondLHS, CondRHS, CC->get(), SDLoc(N), | 
 |                                false); | 
 |   if (Simp.getNode()) AddToWorklist(Simp.getNode()); | 
 |  | 
 |   // fold to a simpler setcc | 
 |   if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) | 
 |     return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, | 
 |                        N->getOperand(0), Simp.getOperand(2), | 
 |                        Simp.getOperand(0), Simp.getOperand(1), | 
 |                        N->getOperand(4)); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, | 
 |                                      bool &IsLoad, bool &IsMasked, SDValue &Ptr, | 
 |                                      const TargetLowering &TLI) { | 
 |   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
 |     if (LD->isIndexed()) | 
 |       return false; | 
 |     EVT VT = LD->getMemoryVT(); | 
 |     if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) | 
 |       return false; | 
 |     Ptr = LD->getBasePtr(); | 
 |   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
 |     if (ST->isIndexed()) | 
 |       return false; | 
 |     EVT VT = ST->getMemoryVT(); | 
 |     if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) | 
 |       return false; | 
 |     Ptr = ST->getBasePtr(); | 
 |     IsLoad = false; | 
 |   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { | 
 |     if (LD->isIndexed()) | 
 |       return false; | 
 |     EVT VT = LD->getMemoryVT(); | 
 |     if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && | 
 |         !TLI.isIndexedMaskedLoadLegal(Dec, VT)) | 
 |       return false; | 
 |     Ptr = LD->getBasePtr(); | 
 |     IsMasked = true; | 
 |   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { | 
 |     if (ST->isIndexed()) | 
 |       return false; | 
 |     EVT VT = ST->getMemoryVT(); | 
 |     if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && | 
 |         !TLI.isIndexedMaskedStoreLegal(Dec, VT)) | 
 |       return false; | 
 |     Ptr = ST->getBasePtr(); | 
 |     IsLoad = false; | 
 |     IsMasked = true; | 
 |   } else { | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// Try turning a load/store into a pre-indexed load/store when the base | 
 | /// pointer is an add or subtract and it has other uses besides the load/store. | 
 | /// After the transformation, the new indexed load/store has effectively folded | 
 | /// the add/subtract in and all of its other uses are redirected to the | 
 | /// new load/store. | 
 | bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { | 
 |   if (Level < AfterLegalizeDAG) | 
 |     return false; | 
 |  | 
 |   bool IsLoad = true; | 
 |   bool IsMasked = false; | 
 |   SDValue Ptr; | 
 |   if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, | 
 |                                 Ptr, TLI)) | 
 |     return false; | 
 |  | 
 |   // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail | 
 |   // out.  There is no reason to make this a preinc/predec. | 
 |   if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || | 
 |       Ptr->hasOneUse()) | 
 |     return false; | 
 |  | 
 |   // Ask the target to do addressing mode selection. | 
 |   SDValue BasePtr; | 
 |   SDValue Offset; | 
 |   ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
 |   if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) | 
 |     return false; | 
 |  | 
 |   // Backends without true r+i pre-indexed forms may need to pass a | 
 |   // constant base with a variable offset so that constant coercion | 
 |   // will work with the patterns in canonical form. | 
 |   bool Swapped = false; | 
 |   if (isa<ConstantSDNode>(BasePtr)) { | 
 |     std::swap(BasePtr, Offset); | 
 |     Swapped = true; | 
 |   } | 
 |  | 
 |   // Don't create a indexed load / store with zero offset. | 
 |   if (isNullConstant(Offset)) | 
 |     return false; | 
 |  | 
 |   // Try turning it into a pre-indexed load / store except when: | 
 |   // 1) The new base ptr is a frame index. | 
 |   // 2) If N is a store and the new base ptr is either the same as or is a | 
 |   //    predecessor of the value being stored. | 
 |   // 3) Another use of old base ptr is a predecessor of N. If ptr is folded | 
 |   //    that would create a cycle. | 
 |   // 4) All uses are load / store ops that use it as old base ptr. | 
 |  | 
 |   // Check #1.  Preinc'ing a frame index would require copying the stack pointer | 
 |   // (plus the implicit offset) to a register to preinc anyway. | 
 |   if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
 |     return false; | 
 |  | 
 |   // Check #2. | 
 |   if (!IsLoad) { | 
 |     SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() | 
 |                            : cast<StoreSDNode>(N)->getValue(); | 
 |  | 
 |     // Would require a copy. | 
 |     if (Val == BasePtr) | 
 |       return false; | 
 |  | 
 |     // Would create a cycle. | 
 |     if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Caches for hasPredecessorHelper. | 
 |   SmallPtrSet<const SDNode *, 32> Visited; | 
 |   SmallVector<const SDNode *, 16> Worklist; | 
 |   Worklist.push_back(N); | 
 |  | 
 |   // If the offset is a constant, there may be other adds of constants that | 
 |   // can be folded with this one. We should do this to avoid having to keep | 
 |   // a copy of the original base pointer. | 
 |   SmallVector<SDNode *, 16> OtherUses; | 
 |   unsigned MaxSteps = SelectionDAG::getHasPredecessorMaxSteps(); | 
 |   if (isa<ConstantSDNode>(Offset)) | 
 |     for (SDUse &Use : BasePtr->uses()) { | 
 |       // Skip the use that is Ptr and uses of other results from BasePtr's | 
 |       // node (important for nodes that return multiple results). | 
 |       if (Use.getUser() == Ptr.getNode() || Use != BasePtr) | 
 |         continue; | 
 |  | 
 |       if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist, | 
 |                                        MaxSteps)) | 
 |         continue; | 
 |  | 
 |       if (Use.getUser()->getOpcode() != ISD::ADD && | 
 |           Use.getUser()->getOpcode() != ISD::SUB) { | 
 |         OtherUses.clear(); | 
 |         break; | 
 |       } | 
 |  | 
 |       SDValue Op1 = Use.getUser()->getOperand((Use.getOperandNo() + 1) & 1); | 
 |       if (!isa<ConstantSDNode>(Op1)) { | 
 |         OtherUses.clear(); | 
 |         break; | 
 |       } | 
 |  | 
 |       // FIXME: In some cases, we can be smarter about this. | 
 |       if (Op1.getValueType() != Offset.getValueType()) { | 
 |         OtherUses.clear(); | 
 |         break; | 
 |       } | 
 |  | 
 |       OtherUses.push_back(Use.getUser()); | 
 |     } | 
 |  | 
 |   if (Swapped) | 
 |     std::swap(BasePtr, Offset); | 
 |  | 
 |   // Now check for #3 and #4. | 
 |   bool RealUse = false; | 
 |  | 
 |   for (SDNode *User : Ptr->users()) { | 
 |     if (User == N) | 
 |       continue; | 
 |     if (SDNode::hasPredecessorHelper(User, Visited, Worklist, MaxSteps)) | 
 |       return false; | 
 |  | 
 |     // If Ptr may be folded in addressing mode of other use, then it's | 
 |     // not profitable to do this transformation. | 
 |     if (!canFoldInAddressingMode(Ptr.getNode(), User, DAG, TLI)) | 
 |       RealUse = true; | 
 |   } | 
 |  | 
 |   if (!RealUse) | 
 |     return false; | 
 |  | 
 |   SDValue Result; | 
 |   if (!IsMasked) { | 
 |     if (IsLoad) | 
 |       Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); | 
 |     else | 
 |       Result = | 
 |           DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); | 
 |   } else { | 
 |     if (IsLoad) | 
 |       Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, | 
 |                                         Offset, AM); | 
 |     else | 
 |       Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, | 
 |                                          Offset, AM); | 
 |   } | 
 |   ++PreIndexedNodes; | 
 |   ++NodesCombined; | 
 |   LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; | 
 |              Result.dump(&DAG); dbgs() << '\n'); | 
 |   WorklistRemover DeadNodes(*this); | 
 |   if (IsLoad) { | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | 
 |   } else { | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | 
 |   } | 
 |  | 
 |   // Finally, since the node is now dead, remove it from the graph. | 
 |   deleteAndRecombine(N); | 
 |  | 
 |   if (Swapped) | 
 |     std::swap(BasePtr, Offset); | 
 |  | 
 |   // Replace other uses of BasePtr that can be updated to use Ptr | 
 |   for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { | 
 |     unsigned OffsetIdx = 1; | 
 |     if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) | 
 |       OffsetIdx = 0; | 
 |     assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == | 
 |            BasePtr.getNode() && "Expected BasePtr operand"); | 
 |  | 
 |     // We need to replace ptr0 in the following expression: | 
 |     //   x0 * offset0 + y0 * ptr0 = t0 | 
 |     // knowing that | 
 |     //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) | 
 |     // | 
 |     // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the | 
 |     // indexed load/store and the expression that needs to be re-written. | 
 |     // | 
 |     // Therefore, we have: | 
 |     //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 | 
 |  | 
 |     auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); | 
 |     const APInt &Offset0 = CN->getAPIntValue(); | 
 |     const APInt &Offset1 = Offset->getAsAPIntVal(); | 
 |     int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; | 
 |     int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; | 
 |     int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; | 
 |     int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; | 
 |  | 
 |     unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; | 
 |  | 
 |     APInt CNV = Offset0; | 
 |     if (X0 < 0) CNV = -CNV; | 
 |     if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; | 
 |     else CNV = CNV - Offset1; | 
 |  | 
 |     SDLoc DL(OtherUses[i]); | 
 |  | 
 |     // We can now generate the new expression. | 
 |     SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); | 
 |     SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); | 
 |  | 
 |     SDValue NewUse = DAG.getNode(Opcode, | 
 |                                  DL, | 
 |                                  OtherUses[i]->getValueType(0), NewOp1, NewOp2); | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); | 
 |     deleteAndRecombine(OtherUses[i]); | 
 |   } | 
 |  | 
 |   // Replace the uses of Ptr with uses of the updated base value. | 
 |   DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); | 
 |   deleteAndRecombine(Ptr.getNode()); | 
 |   AddToWorklist(Result.getNode()); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, | 
 |                                    SDValue &BasePtr, SDValue &Offset, | 
 |                                    ISD::MemIndexedMode &AM, | 
 |                                    SelectionDAG &DAG, | 
 |                                    const TargetLowering &TLI) { | 
 |   if (PtrUse == N || | 
 |       (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) | 
 |     return false; | 
 |  | 
 |   if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) | 
 |     return false; | 
 |  | 
 |   // Don't create a indexed load / store with zero offset. | 
 |   if (isNullConstant(Offset)) | 
 |     return false; | 
 |  | 
 |   if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) | 
 |     return false; | 
 |  | 
 |   SmallPtrSet<const SDNode *, 32> Visited; | 
 |   unsigned MaxSteps = SelectionDAG::getHasPredecessorMaxSteps(); | 
 |   for (SDNode *User : BasePtr->users()) { | 
 |     if (User == Ptr.getNode()) | 
 |       continue; | 
 |  | 
 |     // No if there's a later user which could perform the index instead. | 
 |     if (isa<MemSDNode>(User)) { | 
 |       bool IsLoad = true; | 
 |       bool IsMasked = false; | 
 |       SDValue OtherPtr; | 
 |       if (getCombineLoadStoreParts(User, ISD::POST_INC, ISD::POST_DEC, IsLoad, | 
 |                                    IsMasked, OtherPtr, TLI)) { | 
 |         SmallVector<const SDNode *, 2> Worklist; | 
 |         Worklist.push_back(User); | 
 |         if (SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps)) | 
 |           return false; | 
 |       } | 
 |     } | 
 |  | 
 |     // If all the uses are load / store addresses, then don't do the | 
 |     // transformation. | 
 |     if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SUB) { | 
 |       for (SDNode *UserUser : User->users()) | 
 |         if (canFoldInAddressingMode(User, UserUser, DAG, TLI)) | 
 |           return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, | 
 |                                          bool &IsMasked, SDValue &Ptr, | 
 |                                          SDValue &BasePtr, SDValue &Offset, | 
 |                                          ISD::MemIndexedMode &AM, | 
 |                                          SelectionDAG &DAG, | 
 |                                          const TargetLowering &TLI) { | 
 |   if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, | 
 |                                 IsMasked, Ptr, TLI) || | 
 |       Ptr->hasOneUse()) | 
 |     return nullptr; | 
 |  | 
 |   // Try turning it into a post-indexed load / store except when | 
 |   // 1) All uses are load / store ops that use it as base ptr (and | 
 |   //    it may be folded as addressing mmode). | 
 |   // 2) Op must be independent of N, i.e. Op is neither a predecessor | 
 |   //    nor a successor of N. Otherwise, if Op is folded that would | 
 |   //    create a cycle. | 
 |   unsigned MaxSteps = SelectionDAG::getHasPredecessorMaxSteps(); | 
 |   for (SDNode *Op : Ptr->users()) { | 
 |     // Check for #1. | 
 |     if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) | 
 |       continue; | 
 |  | 
 |     // Check for #2. | 
 |     SmallPtrSet<const SDNode *, 32> Visited; | 
 |     SmallVector<const SDNode *, 8> Worklist; | 
 |     // Ptr is predecessor to both N and Op. | 
 |     Visited.insert(Ptr.getNode()); | 
 |     Worklist.push_back(N); | 
 |     Worklist.push_back(Op); | 
 |     if (!SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps) && | 
 |         !SDNode::hasPredecessorHelper(Op, Visited, Worklist, MaxSteps)) | 
 |       return Op; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// Try to combine a load/store with a add/sub of the base pointer node into a | 
 | /// post-indexed load/store. The transformation folded the add/subtract into the | 
 | /// new indexed load/store effectively and all of its uses are redirected to the | 
 | /// new load/store. | 
 | bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { | 
 |   if (Level < AfterLegalizeDAG) | 
 |     return false; | 
 |  | 
 |   bool IsLoad = true; | 
 |   bool IsMasked = false; | 
 |   SDValue Ptr; | 
 |   SDValue BasePtr; | 
 |   SDValue Offset; | 
 |   ISD::MemIndexedMode AM = ISD::UNINDEXED; | 
 |   SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, | 
 |                                          Offset, AM, DAG, TLI); | 
 |   if (!Op) | 
 |     return false; | 
 |  | 
 |   SDValue Result; | 
 |   if (!IsMasked) | 
 |     Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, | 
 |                                          Offset, AM) | 
 |                     : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), | 
 |                                           BasePtr, Offset, AM); | 
 |   else | 
 |     Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), | 
 |                                                BasePtr, Offset, AM) | 
 |                     : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), | 
 |                                                 BasePtr, Offset, AM); | 
 |   ++PostIndexedNodes; | 
 |   ++NodesCombined; | 
 |   LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); dbgs() << "\nWith: "; | 
 |              Result.dump(&DAG); dbgs() << '\n'); | 
 |   WorklistRemover DeadNodes(*this); | 
 |   if (IsLoad) { | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); | 
 |   } else { | 
 |     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); | 
 |   } | 
 |  | 
 |   // Finally, since the node is now dead, remove it from the graph. | 
 |   deleteAndRecombine(N); | 
 |  | 
 |   // Replace the uses of Use with uses of the updated base value. | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), | 
 |                                 Result.getValue(IsLoad ? 1 : 0)); | 
 |   deleteAndRecombine(Op); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Return the base-pointer arithmetic from an indexed \p LD. | 
 | SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { | 
 |   ISD::MemIndexedMode AM = LD->getAddressingMode(); | 
 |   assert(AM != ISD::UNINDEXED); | 
 |   SDValue BP = LD->getOperand(1); | 
 |   SDValue Inc = LD->getOperand(2); | 
 |  | 
 |   // Some backends use TargetConstants for load offsets, but don't expect | 
 |   // TargetConstants in general ADD nodes. We can convert these constants into | 
 |   // regular Constants (if the constant is not opaque). | 
 |   assert((Inc.getOpcode() != ISD::TargetConstant || | 
 |           !cast<ConstantSDNode>(Inc)->isOpaque()) && | 
 |          "Cannot split out indexing using opaque target constants"); | 
 |   if (Inc.getOpcode() == ISD::TargetConstant) { | 
 |     ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); | 
 |     Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), | 
 |                           ConstInc->getValueType(0)); | 
 |   } | 
 |  | 
 |   unsigned Opc = | 
 |       (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); | 
 |   return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); | 
 | } | 
 |  | 
 | static inline ElementCount numVectorEltsOrZero(EVT T) { | 
 |   return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); | 
 | } | 
 |  | 
 | bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { | 
 |   EVT STType = Val.getValueType(); | 
 |   EVT STMemType = ST->getMemoryVT(); | 
 |   if (STType == STMemType) | 
 |     return true; | 
 |   if (isTypeLegal(STMemType)) | 
 |     return false; // fail. | 
 |   if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && | 
 |       TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { | 
 |     Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); | 
 |     return true; | 
 |   } | 
 |   if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && | 
 |       STType.isInteger() && STMemType.isInteger()) { | 
 |     Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); | 
 |     return true; | 
 |   } | 
 |   if (STType.getSizeInBits() == STMemType.getSizeInBits()) { | 
 |     Val = DAG.getBitcast(STMemType, Val); | 
 |     return true; | 
 |   } | 
 |   return false; // fail. | 
 | } | 
 |  | 
 | bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { | 
 |   EVT LDMemType = LD->getMemoryVT(); | 
 |   EVT LDType = LD->getValueType(0); | 
 |   assert(Val.getValueType() == LDMemType && | 
 |          "Attempting to extend value of non-matching type"); | 
 |   if (LDType == LDMemType) | 
 |     return true; | 
 |   if (LDMemType.isInteger() && LDType.isInteger()) { | 
 |     switch (LD->getExtensionType()) { | 
 |     case ISD::NON_EXTLOAD: | 
 |       Val = DAG.getBitcast(LDType, Val); | 
 |       return true; | 
 |     case ISD::EXTLOAD: | 
 |       Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); | 
 |       return true; | 
 |     case ISD::SEXTLOAD: | 
 |       Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); | 
 |       return true; | 
 |     case ISD::ZEXTLOAD: | 
 |       Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | StoreSDNode *DAGCombiner::getUniqueStoreFeeding(LoadSDNode *LD, | 
 |                                                 int64_t &Offset) { | 
 |   SDValue Chain = LD->getOperand(0); | 
 |  | 
 |   // Look through CALLSEQ_START. | 
 |   if (Chain.getOpcode() == ISD::CALLSEQ_START) | 
 |     Chain = Chain->getOperand(0); | 
 |  | 
 |   StoreSDNode *ST = nullptr; | 
 |   SmallVector<SDValue, 8> Aliases; | 
 |   if (Chain.getOpcode() == ISD::TokenFactor) { | 
 |     // Look for unique store within the TokenFactor. | 
 |     for (SDValue Op : Chain->ops()) { | 
 |       StoreSDNode *Store = dyn_cast<StoreSDNode>(Op.getNode()); | 
 |       if (!Store) | 
 |         continue; | 
 |       BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); | 
 |       BaseIndexOffset BasePtrST = BaseIndexOffset::match(Store, DAG); | 
 |       if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) | 
 |         continue; | 
 |       // Make sure the store is not aliased with any nodes in TokenFactor. | 
 |       GatherAllAliases(Store, Chain, Aliases); | 
 |       if (Aliases.empty() || | 
 |           (Aliases.size() == 1 && Aliases.front().getNode() == Store)) | 
 |         ST = Store; | 
 |       break; | 
 |     } | 
 |   } else { | 
 |     StoreSDNode *Store = dyn_cast<StoreSDNode>(Chain.getNode()); | 
 |     if (Store) { | 
 |       BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); | 
 |       BaseIndexOffset BasePtrST = BaseIndexOffset::match(Store, DAG); | 
 |       if (BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) | 
 |         ST = Store; | 
 |     } | 
 |   } | 
 |  | 
 |   return ST; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { | 
 |   if (OptLevel == CodeGenOptLevel::None || !LD->isSimple()) | 
 |     return SDValue(); | 
 |   SDValue Chain = LD->getOperand(0); | 
 |   int64_t Offset; | 
 |  | 
 |   StoreSDNode *ST = getUniqueStoreFeeding(LD, Offset); | 
 |   // TODO: Relax this restriction for unordered atomics (see D66309) | 
 |   if (!ST || !ST->isSimple() || ST->getAddressSpace() != LD->getAddressSpace()) | 
 |     return SDValue(); | 
 |  | 
 |   EVT LDType = LD->getValueType(0); | 
 |   EVT LDMemType = LD->getMemoryVT(); | 
 |   EVT STMemType = ST->getMemoryVT(); | 
 |   EVT STType = ST->getValue().getValueType(); | 
 |  | 
 |   // There are two cases to consider here: | 
 |   //  1. The store is fixed width and the load is scalable. In this case we | 
 |   //     don't know at compile time if the store completely envelops the load | 
 |   //     so we abandon the optimisation. | 
 |   //  2. The store is scalable and the load is fixed width. We could | 
 |   //     potentially support a limited number of cases here, but there has been | 
 |   //     no cost-benefit analysis to prove it's worth it. | 
 |   bool LdStScalable = LDMemType.isScalableVT(); | 
 |   if (LdStScalable != STMemType.isScalableVT()) | 
 |     return SDValue(); | 
 |  | 
 |   // If we are dealing with scalable vectors on a big endian platform the | 
 |   // calculation of offsets below becomes trickier, since we do not know at | 
 |   // compile time the absolute size of the vector. Until we've done more | 
 |   // analysis on big-endian platforms it seems better to bail out for now. | 
 |   if (LdStScalable && DAG.getDataLayout().isBigEndian()) | 
 |     return SDValue(); | 
 |  | 
 |   // Normalize for Endianness. After this Offset=0 will denote that the least | 
 |   // significant bit in the loaded value maps to the least significant bit in | 
 |   // the stored value). With Offset=n (for n > 0) the loaded value starts at the | 
 |   // n:th least significant byte of the stored value. | 
 |   int64_t OrigOffset = Offset; | 
 |   if (DAG.getDataLayout().isBigEndian()) | 
 |     Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedValue() - | 
 |               (int64_t)LDMemType.getStoreSizeInBits().getFixedValue()) / | 
 |                  8 - | 
 |              Offset; | 
 |  | 
 |   // Check that the stored value cover all bits that are loaded. | 
 |   bool STCoversLD; | 
 |  | 
 |   TypeSize LdMemSize = LDMemType.getSizeInBits(); | 
 |   TypeSize StMemSize = STMemType.getSizeInBits(); | 
 |   if (LdStScalable) | 
 |     STCoversLD = (Offset == 0) && LdMemSize == StMemSize; | 
 |   else | 
 |     STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedValue() <= | 
 |                                    StMemSize.getFixedValue()); | 
 |  | 
 |   auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { | 
 |     if (LD->isIndexed()) { | 
 |       // Cannot handle opaque target constants and we must respect the user's | 
 |       // request not to split indexes from loads. | 
 |       if (!canSplitIdx(LD)) | 
 |         return SDValue(); | 
 |       SDValue Idx = SplitIndexingFromLoad(LD); | 
 |       SDValue Ops[] = {Val, Idx, Chain}; | 
 |       return CombineTo(LD, Ops, 3); | 
 |     } | 
 |     return CombineTo(LD, Val, Chain); | 
 |   }; | 
 |  | 
 |   if (!STCoversLD) | 
 |     return SDValue(); | 
 |  | 
 |   // Memory as copy space (potentially masked). | 
 |   if (Offset == 0 && LDType == STType && STMemType == LDMemType) { | 
 |     // Simple case: Direct non-truncating forwarding | 
 |     if (LDType.getSizeInBits() == LdMemSize) | 
 |       return ReplaceLd(LD, ST->getValue(), Chain); | 
 |     // Can we model the truncate and extension with an and mask? | 
 |     if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && | 
 |         !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { | 
 |       // Mask to size of LDMemType | 
 |       auto Mask = | 
 |           DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), | 
 |                                                StMemSize.getFixedValue()), | 
 |                           SDLoc(ST), STType); | 
 |       auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); | 
 |       return ReplaceLd(LD, Val, Chain); | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle some cases for big-endian that would be Offset 0 and handled for | 
 |   // little-endian. | 
 |   SDValue Val = ST->getValue(); | 
 |   if (DAG.getDataLayout().isBigEndian() && Offset > 0 && OrigOffset == 0) { | 
 |     if (STType.isInteger() && !STType.isVector() && LDType.isInteger() && | 
 |         !LDType.isVector() && isTypeLegal(STType) && | 
 |         TLI.isOperationLegal(ISD::SRL, STType)) { | 
 |       Val = DAG.getNode(ISD::SRL, SDLoc(LD), STType, Val, | 
 |                         DAG.getConstant(Offset * 8, SDLoc(LD), STType)); | 
 |       Offset = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // TODO: Deal with nonzero offset. | 
 |   if (LD->getBasePtr().isUndef() || Offset != 0) | 
 |     return SDValue(); | 
 |   // Model necessary truncations / extenstions. | 
 |   // Truncate Value To Stored Memory Size. | 
 |   do { | 
 |     if (!getTruncatedStoreValue(ST, Val)) | 
 |       break; | 
 |     if (!isTypeLegal(LDMemType)) | 
 |       break; | 
 |     if (STMemType != LDMemType) { | 
 |       // TODO: Support vectors? This requires extract_subvector/bitcast. | 
 |       if (!STMemType.isVector() && !LDMemType.isVector() && | 
 |           STMemType.isInteger() && LDMemType.isInteger()) | 
 |         Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); | 
 |       else | 
 |         break; | 
 |     } | 
 |     if (!extendLoadedValueToExtension(LD, Val)) | 
 |       break; | 
 |     return ReplaceLd(LD, Val, Chain); | 
 |   } while (false); | 
 |  | 
 |   // On failure, cleanup dead nodes we may have created. | 
 |   if (Val->use_empty()) | 
 |     deleteAndRecombine(Val.getNode()); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitLOAD(SDNode *N) { | 
 |   LoadSDNode *LD  = cast<LoadSDNode>(N); | 
 |   SDValue Chain = LD->getChain(); | 
 |   SDValue Ptr   = LD->getBasePtr(); | 
 |  | 
 |   // If load is not volatile and there are no uses of the loaded value (and | 
 |   // the updated indexed value in case of indexed loads), change uses of the | 
 |   // chain value into uses of the chain input (i.e. delete the dead load). | 
 |   // TODO: Allow this for unordered atomics (see D66309) | 
 |   if (LD->isSimple()) { | 
 |     if (N->getValueType(1) == MVT::Other) { | 
 |       // Unindexed loads. | 
 |       if (!N->hasAnyUseOfValue(0)) { | 
 |         // It's not safe to use the two value CombineTo variant here. e.g. | 
 |         // v1, chain2 = load chain1, loc | 
 |         // v2, chain3 = load chain2, loc | 
 |         // v3         = add v2, c | 
 |         // Now we replace use of chain2 with chain1.  This makes the second load | 
 |         // isomorphic to the one we are deleting, and thus makes this load live. | 
 |         LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); | 
 |                    dbgs() << "\nWith chain: "; Chain.dump(&DAG); | 
 |                    dbgs() << "\n"); | 
 |         WorklistRemover DeadNodes(*this); | 
 |         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | 
 |         AddUsersToWorklist(Chain.getNode()); | 
 |         if (N->use_empty()) | 
 |           deleteAndRecombine(N); | 
 |  | 
 |         return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 |       } | 
 |     } else { | 
 |       // Indexed loads. | 
 |       assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); | 
 |  | 
 |       // If this load has an opaque TargetConstant offset, then we cannot split | 
 |       // the indexing into an add/sub directly (that TargetConstant may not be | 
 |       // valid for a different type of node, and we cannot convert an opaque | 
 |       // target constant into a regular constant). | 
 |       bool CanSplitIdx = canSplitIdx(LD); | 
 |  | 
 |       if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { | 
 |         SDValue Undef = DAG.getUNDEF(N->getValueType(0)); | 
 |         SDValue Index; | 
 |         if (N->hasAnyUseOfValue(1) && CanSplitIdx) { | 
 |           Index = SplitIndexingFromLoad(LD); | 
 |           // Try to fold the base pointer arithmetic into subsequent loads and | 
 |           // stores. | 
 |           AddUsersToWorklist(N); | 
 |         } else | 
 |           Index = DAG.getUNDEF(N->getValueType(1)); | 
 |         LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); | 
 |                    dbgs() << "\nWith: "; Undef.dump(&DAG); | 
 |                    dbgs() << " and 2 other values\n"); | 
 |         WorklistRemover DeadNodes(*this); | 
 |         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); | 
 |         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); | 
 |         DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); | 
 |         deleteAndRecombine(N); | 
 |         return SDValue(N, 0);   // Return N so it doesn't get rechecked! | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If this load is directly stored, replace the load value with the stored | 
 |   // value. | 
 |   if (auto V = ForwardStoreValueToDirectLoad(LD)) | 
 |     return V; | 
 |  | 
 |   // Try to infer better alignment information than the load already has. | 
 |   if (OptLevel != CodeGenOptLevel::None && LD->isUnindexed() && | 
 |       !LD->isAtomic()) { | 
 |     if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { | 
 |       if (*Alignment > LD->getAlign() && | 
 |           isAligned(*Alignment, LD->getSrcValueOffset())) { | 
 |         SDValue NewLoad = DAG.getExtLoad( | 
 |             LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, | 
 |             LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, | 
 |             LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
 |         // NewLoad will always be N as we are only refining the alignment | 
 |         assert(NewLoad.getNode() == N); | 
 |         (void)NewLoad; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (LD->isUnindexed()) { | 
 |     // Walk up chain skipping non-aliasing memory nodes. | 
 |     SDValue BetterChain = FindBetterChain(LD, Chain); | 
 |  | 
 |     // If there is a better chain. | 
 |     if (Chain != BetterChain) { | 
 |       SDValue ReplLoad; | 
 |  | 
 |       // Replace the chain to void dependency. | 
 |       if (LD->getExtensionType() == ISD::NON_EXTLOAD) { | 
 |         ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), | 
 |                                BetterChain, Ptr, LD->getMemOperand()); | 
 |       } else { | 
 |         ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), | 
 |                                   LD->getValueType(0), | 
 |                                   BetterChain, Ptr, LD->getMemoryVT(), | 
 |                                   LD->getMemOperand()); | 
 |       } | 
 |  | 
 |       // Create token factor to keep old chain connected. | 
 |       SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), | 
 |                                   MVT::Other, Chain, ReplLoad.getValue(1)); | 
 |  | 
 |       // Replace uses with load result and token factor | 
 |       return CombineTo(N, ReplLoad.getValue(0), Token); | 
 |     } | 
 |   } | 
 |  | 
 |   // Try transforming N to an indexed load. | 
 |   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // Try to slice up N to more direct loads if the slices are mapped to | 
 |   // different register banks or pairing can take place. | 
 |   if (SliceUpLoad(N)) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// Helper structure used to slice a load in smaller loads. | 
 | /// Basically a slice is obtained from the following sequence: | 
 | /// Origin = load Ty1, Base | 
 | /// Shift = srl Ty1 Origin, CstTy Amount | 
 | /// Inst = trunc Shift to Ty2 | 
 | /// | 
 | /// Then, it will be rewritten into: | 
 | /// Slice = load SliceTy, Base + SliceOffset | 
 | /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 | 
 | /// | 
 | /// SliceTy is deduced from the number of bits that are actually used to | 
 | /// build Inst. | 
 | struct LoadedSlice { | 
 |   /// Helper structure used to compute the cost of a slice. | 
 |   struct Cost { | 
 |     /// Are we optimizing for code size. | 
 |     bool ForCodeSize = false; | 
 |  | 
 |     /// Various cost. | 
 |     unsigned Loads = 0; | 
 |     unsigned Truncates = 0; | 
 |     unsigned CrossRegisterBanksCopies = 0; | 
 |     unsigned ZExts = 0; | 
 |     unsigned Shift = 0; | 
 |  | 
 |     explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} | 
 |  | 
 |     /// Get the cost of one isolated slice. | 
 |     Cost(const LoadedSlice &LS, bool ForCodeSize) | 
 |         : ForCodeSize(ForCodeSize), Loads(1) { | 
 |       EVT TruncType = LS.Inst->getValueType(0); | 
 |       EVT LoadedType = LS.getLoadedType(); | 
 |       if (TruncType != LoadedType && | 
 |           !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) | 
 |         ZExts = 1; | 
 |     } | 
 |  | 
 |     /// Account for slicing gain in the current cost. | 
 |     /// Slicing provide a few gains like removing a shift or a | 
 |     /// truncate. This method allows to grow the cost of the original | 
 |     /// load with the gain from this slice. | 
 |     void addSliceGain(const LoadedSlice &LS) { | 
 |       // Each slice saves a truncate. | 
 |       const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); | 
 |       if (!TLI.isTruncateFree(LS.Inst->getOperand(0), LS.Inst->getValueType(0))) | 
 |         ++Truncates; | 
 |       // If there is a shift amount, this slice gets rid of it. | 
 |       if (LS.Shift) | 
 |         ++Shift; | 
 |       // If this slice can merge a cross register bank copy, account for it. | 
 |       if (LS.canMergeExpensiveCrossRegisterBankCopy()) | 
 |         ++CrossRegisterBanksCopies; | 
 |     } | 
 |  | 
 |     Cost &operator+=(const Cost &RHS) { | 
 |       Loads += RHS.Loads; | 
 |       Truncates += RHS.Truncates; | 
 |       CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; | 
 |       ZExts += RHS.ZExts; | 
 |       Shift += RHS.Shift; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     bool operator==(const Cost &RHS) const { | 
 |       return Loads == RHS.Loads && Truncates == RHS.Truncates && | 
 |              CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && | 
 |              ZExts == RHS.ZExts && Shift == RHS.Shift; | 
 |     } | 
 |  | 
 |     bool operator!=(const Cost &RHS) const { return !(*this == RHS); } | 
 |  | 
 |     bool operator<(const Cost &RHS) const { | 
 |       // Assume cross register banks copies are as expensive as loads. | 
 |       // FIXME: Do we want some more target hooks? | 
 |       unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; | 
 |       unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; | 
 |       // Unless we are optimizing for code size, consider the | 
 |       // expensive operation first. | 
 |       if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) | 
 |         return ExpensiveOpsLHS < ExpensiveOpsRHS; | 
 |       return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < | 
 |              (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); | 
 |     } | 
 |  | 
 |     bool operator>(const Cost &RHS) const { return RHS < *this; } | 
 |  | 
 |     bool operator<=(const Cost &RHS) const { return !(RHS < *this); } | 
 |  | 
 |     bool operator>=(const Cost &RHS) const { return !(*this < RHS); } | 
 |   }; | 
 |  | 
 |   // The last instruction that represent the slice. This should be a | 
 |   // truncate instruction. | 
 |   SDNode *Inst; | 
 |  | 
 |   // The original load instruction. | 
 |   LoadSDNode *Origin; | 
 |  | 
 |   // The right shift amount in bits from the original load. | 
 |   unsigned Shift; | 
 |  | 
 |   // The DAG from which Origin came from. | 
 |   // This is used to get some contextual information about legal types, etc. | 
 |   SelectionDAG *DAG; | 
 |  | 
 |   LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, | 
 |               unsigned Shift = 0, SelectionDAG *DAG = nullptr) | 
 |       : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} | 
 |  | 
 |   /// Get the bits used in a chunk of bits \p BitWidth large. | 
 |   /// \return Result is \p BitWidth and has used bits set to 1 and | 
 |   ///         not used bits set to 0. | 
 |   APInt getUsedBits() const { | 
 |     // Reproduce the trunc(lshr) sequence: | 
 |     // - Start from the truncated value. | 
 |     // - Zero extend to the desired bit width. | 
 |     // - Shift left. | 
 |     assert(Origin && "No original load to compare against."); | 
 |     unsigned BitWidth = Origin->getValueSizeInBits(0); | 
 |     assert(Inst && "This slice is not bound to an instruction"); | 
 |     assert(Inst->getValueSizeInBits(0) <= BitWidth && | 
 |            "Extracted slice is bigger than the whole type!"); | 
 |     APInt UsedBits(Inst->getValueSizeInBits(0), 0); | 
 |     UsedBits.setAllBits(); | 
 |     UsedBits = UsedBits.zext(BitWidth); | 
 |     UsedBits <<= Shift; | 
 |     return UsedBits; | 
 |   } | 
 |  | 
 |   /// Get the size of the slice to be loaded in bytes. | 
 |   unsigned getLoadedSize() const { | 
 |     unsigned SliceSize = getUsedBits().popcount(); | 
 |     assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); | 
 |     return SliceSize / 8; | 
 |   } | 
 |  | 
 |   /// Get the type that will be loaded for this slice. | 
 |   /// Note: This may not be the final type for the slice. | 
 |   EVT getLoadedType() const { | 
 |     assert(DAG && "Missing context"); | 
 |     LLVMContext &Ctxt = *DAG->getContext(); | 
 |     return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); | 
 |   } | 
 |  | 
 |   /// Get the alignment of the load used for this slice. | 
 |   Align getAlign() const { | 
 |     Align Alignment = Origin->getAlign(); | 
 |     uint64_t Offset = getOffsetFromBase(); | 
 |     if (Offset != 0) | 
 |       Alignment = commonAlignment(Alignment, Alignment.value() + Offset); | 
 |     return Alignment; | 
 |   } | 
 |  | 
 |   /// Check if this slice can be rewritten with legal operations. | 
 |   bool isLegal() const { | 
 |     // An invalid slice is not legal. | 
 |     if (!Origin || !Inst || !DAG) | 
 |       return false; | 
 |  | 
 |     // Offsets are for indexed load only, we do not handle that. | 
 |     if (!Origin->getOffset().isUndef()) | 
 |       return false; | 
 |  | 
 |     const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
 |  | 
 |     // Check that the type is legal. | 
 |     EVT SliceType = getLoadedType(); | 
 |     if (!TLI.isTypeLegal(SliceType)) | 
 |       return false; | 
 |  | 
 |     // Check that the load is legal for this type. | 
 |     if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) | 
 |       return false; | 
 |  | 
 |     // Check that the offset can be computed. | 
 |     // 1. Check its type. | 
 |     EVT PtrType = Origin->getBasePtr().getValueType(); | 
 |     if (PtrType == MVT::Untyped || PtrType.isExtended()) | 
 |       return false; | 
 |  | 
 |     // 2. Check that it fits in the immediate. | 
 |     if (!TLI.isLegalAddImmediate(getOffsetFromBase())) | 
 |       return false; | 
 |  | 
 |     // 3. Check that the computation is legal. | 
 |     if (!TLI.isOperationLegal(ISD::ADD, PtrType)) | 
 |       return false; | 
 |  | 
 |     // Check that the zext is legal if it needs one. | 
 |     EVT TruncateType = Inst->getValueType(0); | 
 |     if (TruncateType != SliceType && | 
 |         !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) | 
 |       return false; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// Get the offset in bytes of this slice in the original chunk of | 
 |   /// bits. | 
 |   /// \pre DAG != nullptr. | 
 |   uint64_t getOffsetFromBase() const { | 
 |     assert(DAG && "Missing context."); | 
 |     bool IsBigEndian = DAG->getDataLayout().isBigEndian(); | 
 |     assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); | 
 |     uint64_t Offset = Shift / 8; | 
 |     unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; | 
 |     assert(!(Origin->getValueSizeInBits(0) & 0x7) && | 
 |            "The size of the original loaded type is not a multiple of a" | 
 |            " byte."); | 
 |     // If Offset is bigger than TySizeInBytes, it means we are loading all | 
 |     // zeros. This should have been optimized before in the process. | 
 |     assert(TySizeInBytes > Offset && | 
 |            "Invalid shift amount for given loaded size"); | 
 |     if (IsBigEndian) | 
 |       Offset = TySizeInBytes - Offset - getLoadedSize(); | 
 |     return Offset; | 
 |   } | 
 |  | 
 |   /// Generate the sequence of instructions to load the slice | 
 |   /// represented by this object and redirect the uses of this slice to | 
 |   /// this new sequence of instructions. | 
 |   /// \pre this->Inst && this->Origin are valid Instructions and this | 
 |   /// object passed the legal check: LoadedSlice::isLegal returned true. | 
 |   /// \return The last instruction of the sequence used to load the slice. | 
 |   SDValue loadSlice() const { | 
 |     assert(Inst && Origin && "Unable to replace a non-existing slice."); | 
 |     const SDValue &OldBaseAddr = Origin->getBasePtr(); | 
 |     SDValue BaseAddr = OldBaseAddr; | 
 |     // Get the offset in that chunk of bytes w.r.t. the endianness. | 
 |     int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); | 
 |     assert(Offset >= 0 && "Offset too big to fit in int64_t!"); | 
 |     if (Offset) { | 
 |       // BaseAddr = BaseAddr + Offset. | 
 |       EVT ArithType = BaseAddr.getValueType(); | 
 |       SDLoc DL(Origin); | 
 |       BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, | 
 |                               DAG->getConstant(Offset, DL, ArithType)); | 
 |     } | 
 |  | 
 |     // Create the type of the loaded slice according to its size. | 
 |     EVT SliceType = getLoadedType(); | 
 |  | 
 |     // Create the load for the slice. | 
 |     SDValue LastInst = | 
 |         DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, | 
 |                      Origin->getPointerInfo().getWithOffset(Offset), getAlign(), | 
 |                      Origin->getMemOperand()->getFlags()); | 
 |     // If the final type is not the same as the loaded type, this means that | 
 |     // we have to pad with zero. Create a zero extend for that. | 
 |     EVT FinalType = Inst->getValueType(0); | 
 |     if (SliceType != FinalType) | 
 |       LastInst = | 
 |           DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); | 
 |     return LastInst; | 
 |   } | 
 |  | 
 |   /// Check if this slice can be merged with an expensive cross register | 
 |   /// bank copy. E.g., | 
 |   /// i = load i32 | 
 |   /// f = bitcast i32 i to float | 
 |   bool canMergeExpensiveCrossRegisterBankCopy() const { | 
 |     if (!Inst || !Inst->hasOneUse()) | 
 |       return false; | 
 |     SDNode *User = *Inst->user_begin(); | 
 |     if (User->getOpcode() != ISD::BITCAST) | 
 |       return false; | 
 |     assert(DAG && "Missing context"); | 
 |     const TargetLowering &TLI = DAG->getTargetLoweringInfo(); | 
 |     EVT ResVT = User->getValueType(0); | 
 |     const TargetRegisterClass *ResRC = | 
 |         TLI.getRegClassFor(ResVT.getSimpleVT(), User->isDivergent()); | 
 |     const TargetRegisterClass *ArgRC = | 
 |         TLI.getRegClassFor(User->getOperand(0).getValueType().getSimpleVT(), | 
 |                            User->getOperand(0)->isDivergent()); | 
 |     if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) | 
 |       return false; | 
 |  | 
 |     // At this point, we know that we perform a cross-register-bank copy. | 
 |     // Check if it is expensive. | 
 |     const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); | 
 |     // Assume bitcasts are cheap, unless both register classes do not | 
 |     // explicitly share a common sub class. | 
 |     if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) | 
 |       return false; | 
 |  | 
 |     // Check if it will be merged with the load. | 
 |     // 1. Check the alignment / fast memory access constraint. | 
 |     unsigned IsFast = 0; | 
 |     if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT, | 
 |                                 Origin->getAddressSpace(), getAlign(), | 
 |                                 Origin->getMemOperand()->getFlags(), &IsFast) || | 
 |         !IsFast) | 
 |       return false; | 
 |  | 
 |     // 2. Check that the load is a legal operation for that type. | 
 |     if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) | 
 |       return false; | 
 |  | 
 |     // 3. Check that we do not have a zext in the way. | 
 |     if (Inst->getValueType(0) != getLoadedType()) | 
 |       return false; | 
 |  | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// Check that all bits set in \p UsedBits form a dense region, i.e., | 
 | /// \p UsedBits looks like 0..0 1..1 0..0. | 
 | static bool areUsedBitsDense(const APInt &UsedBits) { | 
 |   // If all the bits are one, this is dense! | 
 |   if (UsedBits.isAllOnes()) | 
 |     return true; | 
 |  | 
 |   // Get rid of the unused bits on the right. | 
 |   APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countr_zero()); | 
 |   // Get rid of the unused bits on the left. | 
 |   if (NarrowedUsedBits.countl_zero()) | 
 |     NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); | 
 |   // Check that the chunk of bits is completely used. | 
 |   return NarrowedUsedBits.isAllOnes(); | 
 | } | 
 |  | 
 | /// Check whether or not \p First and \p Second are next to each other | 
 | /// in memory. This means that there is no hole between the bits loaded | 
 | /// by \p First and the bits loaded by \p Second. | 
 | static bool areSlicesNextToEachOther(const LoadedSlice &First, | 
 |                                      const LoadedSlice &Second) { | 
 |   assert(First.Origin == Second.Origin && First.Origin && | 
 |          "Unable to match different memory origins."); | 
 |   APInt UsedBits = First.getUsedBits(); | 
 |   assert((UsedBits & Second.getUsedBits()) == 0 && | 
 |          "Slices are not supposed to overlap."); | 
 |   UsedBits |= Second.getUsedBits(); | 
 |   return areUsedBitsDense(UsedBits); | 
 | } | 
 |  | 
 | /// Adjust the \p GlobalLSCost according to the target | 
 | /// paring capabilities and the layout of the slices. | 
 | /// \pre \p GlobalLSCost should account for at least as many loads as | 
 | /// there is in the slices in \p LoadedSlices. | 
 | static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, | 
 |                                  LoadedSlice::Cost &GlobalLSCost) { | 
 |   unsigned NumberOfSlices = LoadedSlices.size(); | 
 |   // If there is less than 2 elements, no pairing is possible. | 
 |   if (NumberOfSlices < 2) | 
 |     return; | 
 |  | 
 |   // Sort the slices so that elements that are likely to be next to each | 
 |   // other in memory are next to each other in the list. | 
 |   llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { | 
 |     assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); | 
 |     return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); | 
 |   }); | 
 |   const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); | 
 |   // First (resp. Second) is the first (resp. Second) potentially candidate | 
 |   // to be placed in a paired load. | 
 |   const LoadedSlice *First = nullptr; | 
 |   const LoadedSlice *Second = nullptr; | 
 |   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, | 
 |                 // Set the beginning of the pair. | 
 |                                                            First = Second) { | 
 |     Second = &LoadedSlices[CurrSlice]; | 
 |  | 
 |     // If First is NULL, it means we start a new pair. | 
 |     // Get to the next slice. | 
 |     if (!First) | 
 |       continue; | 
 |  | 
 |     EVT LoadedType = First->getLoadedType(); | 
 |  | 
 |     // If the types of the slices are different, we cannot pair them. | 
 |     if (LoadedType != Second->getLoadedType()) | 
 |       continue; | 
 |  | 
 |     // Check if the target supplies paired loads for this type. | 
 |     Align RequiredAlignment; | 
 |     if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { | 
 |       // move to the next pair, this type is hopeless. | 
 |       Second = nullptr; | 
 |       continue; | 
 |     } | 
 |     // Check if we meet the alignment requirement. | 
 |     if (First->getAlign() < RequiredAlignment) | 
 |       continue; | 
 |  | 
 |     // Check that both loads are next to each other in memory. | 
 |     if (!areSlicesNextToEachOther(*First, *Second)) | 
 |       continue; | 
 |  | 
 |     assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); | 
 |     --GlobalLSCost.Loads; | 
 |     // Move to the next pair. | 
 |     Second = nullptr; | 
 |   } | 
 | } | 
 |  | 
 | /// Check the profitability of all involved LoadedSlice. | 
 | /// Currently, it is considered profitable if there is exactly two | 
 | /// involved slices (1) which are (2) next to each other in memory, and | 
 | /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). | 
 | /// | 
 | /// Note: The order of the elements in \p LoadedSlices may be modified, but not | 
 | /// the elements themselves. | 
 | /// | 
 | /// FIXME: When the cost model will be mature enough, we can relax | 
 | /// constraints (1) and (2). | 
 | static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, | 
 |                                 const APInt &UsedBits, bool ForCodeSize) { | 
 |   unsigned NumberOfSlices = LoadedSlices.size(); | 
 |   if (StressLoadSlicing) | 
 |     return NumberOfSlices > 1; | 
 |  | 
 |   // Check (1). | 
 |   if (NumberOfSlices != 2) | 
 |     return false; | 
 |  | 
 |   // Check (2). | 
 |   if (!areUsedBitsDense(UsedBits)) | 
 |     return false; | 
 |  | 
 |   // Check (3). | 
 |   LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); | 
 |   // The original code has one big load. | 
 |   OrigCost.Loads = 1; | 
 |   for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { | 
 |     const LoadedSlice &LS = LoadedSlices[CurrSlice]; | 
 |     // Accumulate the cost of all the slices. | 
 |     LoadedSlice::Cost SliceCost(LS, ForCodeSize); | 
 |     GlobalSlicingCost += SliceCost; | 
 |  | 
 |     // Account as cost in the original configuration the gain obtained | 
 |     // with the current slices. | 
 |     OrigCost.addSliceGain(LS); | 
 |   } | 
 |  | 
 |   // If the target supports paired load, adjust the cost accordingly. | 
 |   adjustCostForPairing(LoadedSlices, GlobalSlicingCost); | 
 |   return OrigCost > GlobalSlicingCost; | 
 | } | 
 |  | 
 | /// If the given load, \p LI, is used only by trunc or trunc(lshr) | 
 | /// operations, split it in the various pieces being extracted. | 
 | /// | 
 | /// This sort of thing is introduced by SROA. | 
 | /// This slicing takes care not to insert overlapping loads. | 
 | /// \pre LI is a simple load (i.e., not an atomic or volatile load). | 
 | bool DAGCombiner::SliceUpLoad(SDNode *N) { | 
 |   if (Level < AfterLegalizeDAG) | 
 |     return false; | 
 |  | 
 |   LoadSDNode *LD = cast<LoadSDNode>(N); | 
 |   if (!LD->isSimple() || !ISD::isNormalLoad(LD) || | 
 |       !LD->getValueType(0).isInteger()) | 
 |     return false; | 
 |  | 
 |   // The algorithm to split up a load of a scalable vector into individual | 
 |   // elements currently requires knowing the length of the loaded type, | 
 |   // so will need adjusting to work on scalable vectors. | 
 |   if (LD->getValueType(0).isScalableVector()) | 
 |     return false; | 
 |  | 
 |   // Keep track of already used bits to detect overlapping values. | 
 |   // In that case, we will just abort the transformation. | 
 |   APInt UsedBits(LD->getValueSizeInBits(0), 0); | 
 |  | 
 |   SmallVector<LoadedSlice, 4> LoadedSlices; | 
 |  | 
 |   // Check if this load is used as several smaller chunks of bits. | 
 |   // Basically, look for uses in trunc or trunc(lshr) and record a new chain | 
 |   // of computation for each trunc. | 
 |   for (SDUse &U : LD->uses()) { | 
 |     // Skip the uses of the chain. | 
 |     if (U.getResNo() != 0) | 
 |       continue; | 
 |  | 
 |     SDNode *User = U.getUser(); | 
 |     unsigned Shift = 0; | 
 |  | 
 |     // Check if this is a trunc(lshr). | 
 |     if (User->getOpcode() == ISD::SRL && User->hasOneUse() && | 
 |         isa<ConstantSDNode>(User->getOperand(1))) { | 
 |       Shift = User->getConstantOperandVal(1); | 
 |       User = *User->user_begin(); | 
 |     } | 
 |  | 
 |     // At this point, User is a Truncate, iff we encountered, trunc or | 
 |     // trunc(lshr). | 
 |     if (User->getOpcode() != ISD::TRUNCATE) | 
 |       return false; | 
 |  | 
 |     // The width of the type must be a power of 2 and greater than 8-bits. | 
 |     // Otherwise the load cannot be represented in LLVM IR. | 
 |     // Moreover, if we shifted with a non-8-bits multiple, the slice | 
 |     // will be across several bytes. We do not support that. | 
 |     unsigned Width = User->getValueSizeInBits(0); | 
 |     if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) | 
 |       return false; | 
 |  | 
 |     // Build the slice for this chain of computations. | 
 |     LoadedSlice LS(User, LD, Shift, &DAG); | 
 |     APInt CurrentUsedBits = LS.getUsedBits(); | 
 |  | 
 |     // Check if this slice overlaps with another. | 
 |     if ((CurrentUsedBits & UsedBits) != 0) | 
 |       return false; | 
 |     // Update the bits used globally. | 
 |     UsedBits |= CurrentUsedBits; | 
 |  | 
 |     // Check if the new slice would be legal. | 
 |     if (!LS.isLegal()) | 
 |       return false; | 
 |  | 
 |     // Record the slice. | 
 |     LoadedSlices.push_back(LS); | 
 |   } | 
 |  | 
 |   // Abort slicing if it does not seem to be profitable. | 
 |   if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) | 
 |     return false; | 
 |  | 
 |   ++SlicedLoads; | 
 |  | 
 |   // Rewrite each chain to use an independent load. | 
 |   // By construction, each chain can be represented by a unique load. | 
 |  | 
 |   // Prepare the argument for the new token factor for all the slices. | 
 |   SmallVector<SDValue, 8> ArgChains; | 
 |   for (const LoadedSlice &LS : LoadedSlices) { | 
 |     SDValue SliceInst = LS.loadSlice(); | 
 |     CombineTo(LS.Inst, SliceInst, true); | 
 |     if (SliceInst.getOpcode() != ISD::LOAD) | 
 |       SliceInst = SliceInst.getOperand(0); | 
 |     assert(SliceInst->getOpcode() == ISD::LOAD && | 
 |            "It takes more than a zext to get to the loaded slice!!"); | 
 |     ArgChains.push_back(SliceInst.getValue(1)); | 
 |   } | 
 |  | 
 |   SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, | 
 |                               ArgChains); | 
 |   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); | 
 |   AddToWorklist(Chain.getNode()); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check to see if V is (and load (ptr), imm), where the load is having | 
 | /// specific bytes cleared out.  If so, return the byte size being masked out | 
 | /// and the shift amount. | 
 | static std::pair<unsigned, unsigned> | 
 | CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { | 
 |   std::pair<unsigned, unsigned> Result(0, 0); | 
 |  | 
 |   // Check for the structure we're looking for. | 
 |   if (V->getOpcode() != ISD::AND || | 
 |       !isa<ConstantSDNode>(V->getOperand(1)) || | 
 |       !ISD::isNormalLoad(V->getOperand(0).getNode())) | 
 |     return Result; | 
 |  | 
 |   // Check the chain and pointer. | 
 |   LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); | 
 |   if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer. | 
 |  | 
 |   // This only handles simple types. | 
 |   if (V.getValueType() != MVT::i16 && | 
 |       V.getValueType() != MVT::i32 && | 
 |       V.getValueType() != MVT::i64) | 
 |     return Result; | 
 |  | 
 |   // Check the constant mask.  Invert it so that the bits being masked out are | 
 |   // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits | 
 |   // follow the sign bit for uniformity. | 
 |   uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); | 
 |   unsigned NotMaskLZ = llvm::countl_zero(NotMask); | 
 |   if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte. | 
 |   unsigned NotMaskTZ = llvm::countr_zero(NotMask); | 
 |   if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte. | 
 |   if (NotMaskLZ == 64) return Result;  // All zero mask. | 
 |  | 
 |   // See if we have a continuous run of bits.  If so, we have 0*1+0* | 
 |   if (llvm::countr_one(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) | 
 |     return Result; | 
 |  | 
 |   // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. | 
 |   if (V.getValueType() != MVT::i64 && NotMaskLZ) | 
 |     NotMaskLZ -= 64-V.getValueSizeInBits(); | 
 |  | 
 |   unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; | 
 |   switch (MaskedBytes) { | 
 |   case 1: | 
 |   case 2: | 
 |   case 4: break; | 
 |   default: return Result; // All one mask, or 5-byte mask. | 
 |   } | 
 |  | 
 |   // Verify that the first bit starts at a multiple of mask so that the access | 
 |   // is aligned the same as the access width. | 
 |   if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; | 
 |  | 
 |   // For narrowing to be valid, it must be the case that the load the | 
 |   // immediately preceding memory operation before the store. | 
 |   if (LD == Chain.getNode()) | 
 |     ; // ok. | 
 |   else if (Chain->getOpcode() == ISD::TokenFactor && | 
 |            SDValue(LD, 1).hasOneUse()) { | 
 |     // LD has only 1 chain use so they are no indirect dependencies. | 
 |     if (!LD->isOperandOf(Chain.getNode())) | 
 |       return Result; | 
 |   } else | 
 |     return Result; // Fail. | 
 |  | 
 |   Result.first = MaskedBytes; | 
 |   Result.second = NotMaskTZ/8; | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Check to see if IVal is something that provides a value as specified by | 
 | /// MaskInfo. If so, replace the specified store with a narrower store of | 
 | /// truncated IVal. | 
 | static SDValue | 
 | ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, | 
 |                                 SDValue IVal, StoreSDNode *St, | 
 |                                 DAGCombiner *DC) { | 
 |   unsigned NumBytes = MaskInfo.first; | 
 |   unsigned ByteShift = MaskInfo.second; | 
 |   SelectionDAG &DAG = DC->getDAG(); | 
 |  | 
 |   // Check to see if IVal is all zeros in the part being masked in by the 'or' | 
 |   // that uses this.  If not, this is not a replacement. | 
 |   APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), | 
 |                                   ByteShift*8, (ByteShift+NumBytes)*8); | 
 |   if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); | 
 |  | 
 |   // Check that it is legal on the target to do this.  It is legal if the new | 
 |   // VT we're shrinking to (i8/i16/i32) is legal or we're still before type | 
 |   // legalization. If the source type is legal, but the store type isn't, see | 
 |   // if we can use a truncating store. | 
 |   MVT VT = MVT::getIntegerVT(NumBytes * 8); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   bool UseTruncStore; | 
 |   if (DC->isTypeLegal(VT)) | 
 |     UseTruncStore = false; | 
 |   else if (TLI.isTypeLegal(IVal.getValueType()) && | 
 |            TLI.isTruncStoreLegal(IVal.getValueType(), VT)) | 
 |     UseTruncStore = true; | 
 |   else | 
 |     return SDValue(); | 
 |  | 
 |   // Can't do this for indexed stores. | 
 |   if (St->isIndexed()) | 
 |     return SDValue(); | 
 |  | 
 |   // Check that the target doesn't think this is a bad idea. | 
 |   if (St->getMemOperand() && | 
 |       !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, | 
 |                               *St->getMemOperand())) | 
 |     return SDValue(); | 
 |  | 
 |   // Okay, we can do this!  Replace the 'St' store with a store of IVal that is | 
 |   // shifted by ByteShift and truncated down to NumBytes. | 
 |   if (ByteShift) { | 
 |     SDLoc DL(IVal); | 
 |     IVal = DAG.getNode( | 
 |         ISD::SRL, DL, IVal.getValueType(), IVal, | 
 |         DAG.getShiftAmountConstant(ByteShift * 8, IVal.getValueType(), DL)); | 
 |   } | 
 |  | 
 |   // Figure out the offset for the store and the alignment of the access. | 
 |   unsigned StOffset; | 
 |   if (DAG.getDataLayout().isLittleEndian()) | 
 |     StOffset = ByteShift; | 
 |   else | 
 |     StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; | 
 |  | 
 |   SDValue Ptr = St->getBasePtr(); | 
 |   if (StOffset) { | 
 |     SDLoc DL(IVal); | 
 |     Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(StOffset), DL); | 
 |   } | 
 |  | 
 |   ++OpsNarrowed; | 
 |   if (UseTruncStore) | 
 |     return DAG.getTruncStore(St->getChain(), SDLoc(St), IVal, Ptr, | 
 |                              St->getPointerInfo().getWithOffset(StOffset), | 
 |                              VT, St->getOriginalAlign()); | 
 |  | 
 |   // Truncate down to the new size. | 
 |   IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); | 
 |  | 
 |   return DAG | 
 |       .getStore(St->getChain(), SDLoc(St), IVal, Ptr, | 
 |                 St->getPointerInfo().getWithOffset(StOffset), | 
 |                 St->getOriginalAlign()); | 
 | } | 
 |  | 
 | /// Look for sequence of load / op / store where op is one of 'or', 'xor', and | 
 | /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try | 
 | /// narrowing the load and store if it would end up being a win for performance | 
 | /// or code size. | 
 | SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { | 
 |   StoreSDNode *ST  = cast<StoreSDNode>(N); | 
 |   if (!ST->isSimple()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Chain = ST->getChain(); | 
 |   SDValue Value = ST->getValue(); | 
 |   SDValue Ptr   = ST->getBasePtr(); | 
 |   EVT VT = Value.getValueType(); | 
 |  | 
 |   if (ST->isTruncatingStore() || VT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned Opc = Value.getOpcode(); | 
 |  | 
 |   if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || | 
 |       !Value.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst | 
 |   // is a byte mask indicating a consecutive number of bytes, check to see if | 
 |   // Y is known to provide just those bytes.  If so, we try to replace the | 
 |   // load + replace + store sequence with a single (narrower) store, which makes | 
 |   // the load dead. | 
 |   if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { | 
 |     std::pair<unsigned, unsigned> MaskedLoad; | 
 |     MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); | 
 |     if (MaskedLoad.first) | 
 |       if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
 |                                                   Value.getOperand(1), ST,this)) | 
 |         return NewST; | 
 |  | 
 |     // Or is commutative, so try swapping X and Y. | 
 |     MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); | 
 |     if (MaskedLoad.first) | 
 |       if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, | 
 |                                                   Value.getOperand(0), ST,this)) | 
 |         return NewST; | 
 |   } | 
 |  | 
 |   if (!EnableReduceLoadOpStoreWidth) | 
 |     return SDValue(); | 
 |  | 
 |   if (Value.getOperand(1).getOpcode() != ISD::Constant) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N0 = Value.getOperand(0); | 
 |   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | 
 |       Chain == SDValue(N0.getNode(), 1)) { | 
 |     LoadSDNode *LD = cast<LoadSDNode>(N0); | 
 |     if (LD->getBasePtr() != Ptr || | 
 |         LD->getPointerInfo().getAddrSpace() != | 
 |         ST->getPointerInfo().getAddrSpace()) | 
 |       return SDValue(); | 
 |  | 
 |     // Find the type NewVT to narrow the load / op / store to. | 
 |     SDValue N1 = Value.getOperand(1); | 
 |     unsigned BitWidth = N1.getValueSizeInBits(); | 
 |     APInt Imm = N1->getAsAPIntVal(); | 
 |     if (Opc == ISD::AND) | 
 |       Imm.flipAllBits(); | 
 |     if (Imm == 0 || Imm.isAllOnes()) | 
 |       return SDValue(); | 
 |     // Find least/most significant bit that need to be part of the narrowed | 
 |     // operation. We assume target will need to address/access full bytes, so | 
 |     // we make sure to align LSB and MSB at byte boundaries. | 
 |     unsigned BitsPerByteMask = 7u; | 
 |     unsigned LSB = Imm.countr_zero() & ~BitsPerByteMask; | 
 |     unsigned MSB = (Imm.getActiveBits() - 1) | BitsPerByteMask; | 
 |     unsigned NewBW = NextPowerOf2(MSB - LSB); | 
 |     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
 |     // The narrowing should be profitable, the load/store operation should be | 
 |     // legal (or custom) and the store size should be equal to the NewVT width. | 
 |     while (NewBW < BitWidth && | 
 |            (NewVT.getStoreSizeInBits() != NewBW || | 
 |             !TLI.isOperationLegalOrCustom(Opc, NewVT) || | 
 |             (!ReduceLoadOpStoreWidthForceNarrowingProfitable && | 
 |              !TLI.isNarrowingProfitable(N, VT, NewVT)))) { | 
 |       NewBW = NextPowerOf2(NewBW); | 
 |       NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); | 
 |     } | 
 |     if (NewBW >= BitWidth) | 
 |       return SDValue(); | 
 |  | 
 |     // If we come this far NewVT/NewBW reflect a power-of-2 sized type that is | 
 |     // large enough to cover all bits that should be modified. This type might | 
 |     // however be larger than really needed (such as i32 while we actually only | 
 |     // need to modify one byte). Now we need to find our how to align the memory | 
 |     // accesses to satisfy preferred alignments as well as avoiding to access | 
 |     // memory outside the store size of the orignal access. | 
 |  | 
 |     unsigned VTStoreSize = VT.getStoreSizeInBits().getFixedValue(); | 
 |  | 
 |     // Let ShAmt denote amount of bits to skip, counted from the least | 
 |     // significant bits of Imm. And let PtrOff how much the pointer needs to be | 
 |     // offsetted (in bytes) for the new access. | 
 |     unsigned ShAmt = 0; | 
 |     uint64_t PtrOff = 0; | 
 |     for (; ShAmt + NewBW <= VTStoreSize; ShAmt += 8) { | 
 |       // Make sure the range [ShAmt, ShAmt+NewBW) cover both LSB and MSB. | 
 |       if (ShAmt > LSB) | 
 |         return SDValue(); | 
 |       if (ShAmt + NewBW < MSB) | 
 |         continue; | 
 |  | 
 |       // Calculate PtrOff. | 
 |       unsigned PtrAdjustmentInBits = DAG.getDataLayout().isBigEndian() | 
 |                                          ? VTStoreSize - NewBW - ShAmt | 
 |                                          : ShAmt; | 
 |       PtrOff = PtrAdjustmentInBits / 8; | 
 |  | 
 |       // Now check if narrow access is allowed and fast, considering alignments. | 
 |       unsigned IsFast = 0; | 
 |       Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); | 
 |       if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT, | 
 |                                  LD->getAddressSpace(), NewAlign, | 
 |                                  LD->getMemOperand()->getFlags(), &IsFast) && | 
 |           IsFast) | 
 |         break; | 
 |     } | 
 |     // If loop above did not find any accepted ShAmt we need to exit here. | 
 |     if (ShAmt + NewBW > VTStoreSize) | 
 |       return SDValue(); | 
 |  | 
 |     APInt NewImm = Imm.lshr(ShAmt).trunc(NewBW); | 
 |     if (Opc == ISD::AND) | 
 |       NewImm.flipAllBits(); | 
 |     Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); | 
 |     SDValue NewPtr = | 
 |         DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(PtrOff), SDLoc(LD)); | 
 |     SDValue NewLD = | 
 |         DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, | 
 |                     LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, | 
 |                     LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
 |     SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, | 
 |                                  DAG.getConstant(NewImm, SDLoc(Value), NewVT)); | 
 |     SDValue NewST = | 
 |         DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, | 
 |                      ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); | 
 |  | 
 |     AddToWorklist(NewPtr.getNode()); | 
 |     AddToWorklist(NewLD.getNode()); | 
 |     AddToWorklist(NewVal.getNode()); | 
 |     WorklistRemover DeadNodes(*this); | 
 |     DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); | 
 |     ++OpsNarrowed; | 
 |     return NewST; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// For a given floating point load / store pair, if the load value isn't used | 
 | /// by any other operations, then consider transforming the pair to integer | 
 | /// load / store operations if the target deems the transformation profitable. | 
 | SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { | 
 |   StoreSDNode *ST  = cast<StoreSDNode>(N); | 
 |   SDValue Value = ST->getValue(); | 
 |   if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && | 
 |       Value.hasOneUse()) { | 
 |     LoadSDNode *LD = cast<LoadSDNode>(Value); | 
 |     EVT VT = LD->getMemoryVT(); | 
 |     if (!VT.isSimple() || !VT.isFloatingPoint() || VT != ST->getMemoryVT() || | 
 |         LD->isNonTemporal() || ST->isNonTemporal() || | 
 |         LD->getPointerInfo().getAddrSpace() != 0 || | 
 |         ST->getPointerInfo().getAddrSpace() != 0) | 
 |       return SDValue(); | 
 |  | 
 |     TypeSize VTSize = VT.getSizeInBits(); | 
 |  | 
 |     // We don't know the size of scalable types at compile time so we cannot | 
 |     // create an integer of the equivalent size. | 
 |     if (VTSize.isScalable()) | 
 |       return SDValue(); | 
 |  | 
 |     unsigned FastLD = 0, FastST = 0; | 
 |     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedValue()); | 
 |     if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || | 
 |         !TLI.isOperationLegal(ISD::STORE, IntVT) || | 
 |         !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || | 
 |         !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) || | 
 |         !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, | 
 |                                 *LD->getMemOperand(), &FastLD) || | 
 |         !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT, | 
 |                                 *ST->getMemOperand(), &FastST) || | 
 |         !FastLD || !FastST) | 
 |       return SDValue(); | 
 |  | 
 |     SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), | 
 |                                 LD->getBasePtr(), LD->getMemOperand()); | 
 |  | 
 |     SDValue NewST = DAG.getStore(ST->getChain(), SDLoc(N), NewLD, | 
 |                                  ST->getBasePtr(), ST->getMemOperand()); | 
 |  | 
 |     AddToWorklist(NewLD.getNode()); | 
 |     AddToWorklist(NewST.getNode()); | 
 |     WorklistRemover DeadNodes(*this); | 
 |     DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); | 
 |     ++LdStFP2Int; | 
 |     return NewST; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // This is a helper function for visitMUL to check the profitability | 
 | // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). | 
 | // MulNode is the original multiply, AddNode is (add x, c1), | 
 | // and ConstNode is c2. | 
 | // | 
 | // If the (add x, c1) has multiple uses, we could increase | 
 | // the number of adds if we make this transformation. | 
 | // It would only be worth doing this if we can remove a | 
 | // multiply in the process. Check for that here. | 
 | // To illustrate: | 
 | //     (A + c1) * c3 | 
 | //     (A + c2) * c3 | 
 | // We're checking for cases where we have common "c3 * A" expressions. | 
 | bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode, | 
 |                                               SDValue ConstNode) { | 
 |   APInt Val; | 
 |  | 
 |   // If the add only has one use, and the target thinks the folding is | 
 |   // profitable or does not lead to worse code, this would be OK to do. | 
 |   if (AddNode->hasOneUse() && | 
 |       TLI.isMulAddWithConstProfitable(AddNode, ConstNode)) | 
 |     return true; | 
 |  | 
 |   // Walk all the users of the constant with which we're multiplying. | 
 |   for (SDNode *User : ConstNode->users()) { | 
 |     if (User == MulNode) // This use is the one we're on right now. Skip it. | 
 |       continue; | 
 |  | 
 |     if (User->getOpcode() == ISD::MUL) { // We have another multiply use. | 
 |       SDNode *OtherOp; | 
 |       SDNode *MulVar = AddNode.getOperand(0).getNode(); | 
 |  | 
 |       // OtherOp is what we're multiplying against the constant. | 
 |       if (User->getOperand(0) == ConstNode) | 
 |         OtherOp = User->getOperand(1).getNode(); | 
 |       else | 
 |         OtherOp = User->getOperand(0).getNode(); | 
 |  | 
 |       // Check to see if multiply is with the same operand of our "add". | 
 |       // | 
 |       //     ConstNode  = CONST | 
 |       //     User = ConstNode * A  <-- visiting User. OtherOp is A. | 
 |       //     ... | 
 |       //     AddNode  = (A + c1)  <-- MulVar is A. | 
 |       //         = AddNode * ConstNode   <-- current visiting instruction. | 
 |       // | 
 |       // If we make this transformation, we will have a common | 
 |       // multiply (ConstNode * A) that we can save. | 
 |       if (OtherOp == MulVar) | 
 |         return true; | 
 |  | 
 |       // Now check to see if a future expansion will give us a common | 
 |       // multiply. | 
 |       // | 
 |       //     ConstNode  = CONST | 
 |       //     AddNode    = (A + c1) | 
 |       //     ...   = AddNode * ConstNode <-- current visiting instruction. | 
 |       //     ... | 
 |       //     OtherOp = (A + c2) | 
 |       //     User    = OtherOp * ConstNode <-- visiting User. | 
 |       // | 
 |       // If we make this transformation, we will have a common | 
 |       // multiply (CONST * A) after we also do the same transformation | 
 |       // to the "t2" instruction. | 
 |       if (OtherOp->getOpcode() == ISD::ADD && | 
 |           DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && | 
 |           OtherOp->getOperand(0).getNode() == MulVar) | 
 |         return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Didn't find a case where this would be profitable. | 
 |   return false; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                          unsigned NumStores) { | 
 |   SmallVector<SDValue, 8> Chains; | 
 |   SmallPtrSet<const SDNode *, 8> Visited; | 
 |   SDLoc StoreDL(StoreNodes[0].MemNode); | 
 |  | 
 |   for (unsigned i = 0; i < NumStores; ++i) { | 
 |     Visited.insert(StoreNodes[i].MemNode); | 
 |   } | 
 |  | 
 |   // don't include nodes that are children or repeated nodes. | 
 |   for (unsigned i = 0; i < NumStores; ++i) { | 
 |     if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) | 
 |       Chains.push_back(StoreNodes[i].MemNode->getChain()); | 
 |   } | 
 |  | 
 |   assert(!Chains.empty() && "Chain should have generated a chain"); | 
 |   return DAG.getTokenFactor(StoreDL, Chains); | 
 | } | 
 |  | 
 | bool DAGCombiner::hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes) { | 
 |   const Value *UnderlyingObj = nullptr; | 
 |   for (const auto &MemOp : StoreNodes) { | 
 |     const MachineMemOperand *MMO = MemOp.MemNode->getMemOperand(); | 
 |     // Pseudo value like stack frame has its own frame index and size, should | 
 |     // not use the first store's frame index for other frames. | 
 |     if (MMO->getPseudoValue()) | 
 |       return false; | 
 |  | 
 |     if (!MMO->getValue()) | 
 |       return false; | 
 |  | 
 |     const Value *Obj = getUnderlyingObject(MMO->getValue()); | 
 |  | 
 |     if (UnderlyingObj && UnderlyingObj != Obj) | 
 |       return false; | 
 |  | 
 |     if (!UnderlyingObj) | 
 |       UnderlyingObj = Obj; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool DAGCombiner::mergeStoresOfConstantsOrVecElts( | 
 |     SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, | 
 |     bool IsConstantSrc, bool UseVector, bool UseTrunc) { | 
 |   // Make sure we have something to merge. | 
 |   if (NumStores < 2) | 
 |     return false; | 
 |  | 
 |   assert((!UseTrunc || !UseVector) && | 
 |          "This optimization cannot emit a vector truncating store"); | 
 |  | 
 |   // The latest Node in the DAG. | 
 |   SDLoc DL(StoreNodes[0].MemNode); | 
 |  | 
 |   TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); | 
 |   unsigned SizeInBits = NumStores * ElementSizeBits; | 
 |   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; | 
 |  | 
 |   std::optional<MachineMemOperand::Flags> Flags; | 
 |   AAMDNodes AAInfo; | 
 |   for (unsigned I = 0; I != NumStores; ++I) { | 
 |     StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); | 
 |     if (!Flags) { | 
 |       Flags = St->getMemOperand()->getFlags(); | 
 |       AAInfo = St->getAAInfo(); | 
 |       continue; | 
 |     } | 
 |     // Skip merging if there's an inconsistent flag. | 
 |     if (Flags != St->getMemOperand()->getFlags()) | 
 |       return false; | 
 |     // Concatenate AA metadata. | 
 |     AAInfo = AAInfo.concat(St->getAAInfo()); | 
 |   } | 
 |  | 
 |   EVT StoreTy; | 
 |   if (UseVector) { | 
 |     unsigned Elts = NumStores * NumMemElts; | 
 |     // Get the type for the merged vector store. | 
 |     StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | 
 |   } else | 
 |     StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); | 
 |  | 
 |   SDValue StoredVal; | 
 |   if (UseVector) { | 
 |     if (IsConstantSrc) { | 
 |       SmallVector<SDValue, 8> BuildVector; | 
 |       for (unsigned I = 0; I != NumStores; ++I) { | 
 |         StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); | 
 |         SDValue Val = St->getValue(); | 
 |         // If constant is of the wrong type, convert it now.  This comes up | 
 |         // when one of our stores was truncating. | 
 |         if (MemVT != Val.getValueType()) { | 
 |           Val = peekThroughBitcasts(Val); | 
 |           // Deal with constants of wrong size. | 
 |           if (ElementSizeBits != Val.getValueSizeInBits()) { | 
 |             auto *C = dyn_cast<ConstantSDNode>(Val); | 
 |             if (!C) | 
 |               // Not clear how to truncate FP values. | 
 |               // TODO: Handle truncation of build_vector constants | 
 |               return false; | 
 |  | 
 |             EVT IntMemVT = | 
 |                 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); | 
 |             Val = DAG.getConstant(C->getAPIntValue() | 
 |                                       .zextOrTrunc(Val.getValueSizeInBits()) | 
 |                                       .zextOrTrunc(ElementSizeBits), | 
 |                                   SDLoc(C), IntMemVT); | 
 |           } | 
 |           // Make sure correctly size type is the correct type. | 
 |           Val = DAG.getBitcast(MemVT, Val); | 
 |         } | 
 |         BuildVector.push_back(Val); | 
 |       } | 
 |       StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS | 
 |                                                : ISD::BUILD_VECTOR, | 
 |                               DL, StoreTy, BuildVector); | 
 |     } else { | 
 |       SmallVector<SDValue, 8> Ops; | 
 |       for (unsigned i = 0; i < NumStores; ++i) { | 
 |         StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
 |         SDValue Val = peekThroughBitcasts(St->getValue()); | 
 |         // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of | 
 |         // type MemVT. If the underlying value is not the correct | 
 |         // type, but it is an extraction of an appropriate vector we | 
 |         // can recast Val to be of the correct type. This may require | 
 |         // converting between EXTRACT_VECTOR_ELT and | 
 |         // EXTRACT_SUBVECTOR. | 
 |         if ((MemVT != Val.getValueType()) && | 
 |             (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || | 
 |              Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { | 
 |           EVT MemVTScalarTy = MemVT.getScalarType(); | 
 |           // We may need to add a bitcast here to get types to line up. | 
 |           if (MemVTScalarTy != Val.getValueType().getScalarType()) { | 
 |             Val = DAG.getBitcast(MemVT, Val); | 
 |           } else if (MemVT.isVector() && | 
 |                      Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
 |             Val = DAG.getNode(ISD::BUILD_VECTOR, DL, MemVT, Val); | 
 |           } else { | 
 |             unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR | 
 |                                             : ISD::EXTRACT_VECTOR_ELT; | 
 |             SDValue Vec = Val.getOperand(0); | 
 |             SDValue Idx = Val.getOperand(1); | 
 |             Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); | 
 |           } | 
 |         } | 
 |         Ops.push_back(Val); | 
 |       } | 
 |  | 
 |       // Build the extracted vector elements back into a vector. | 
 |       StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS | 
 |                                                : ISD::BUILD_VECTOR, | 
 |                               DL, StoreTy, Ops); | 
 |     } | 
 |   } else { | 
 |     // We should always use a vector store when merging extracted vector | 
 |     // elements, so this path implies a store of constants. | 
 |     assert(IsConstantSrc && "Merged vector elements should use vector store"); | 
 |  | 
 |     APInt StoreInt(SizeInBits, 0); | 
 |  | 
 |     // Construct a single integer constant which is made of the smaller | 
 |     // constant inputs. | 
 |     bool IsLE = DAG.getDataLayout().isLittleEndian(); | 
 |     for (unsigned i = 0; i < NumStores; ++i) { | 
 |       unsigned Idx = IsLE ? (NumStores - 1 - i) : i; | 
 |       StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode); | 
 |  | 
 |       SDValue Val = St->getValue(); | 
 |       Val = peekThroughBitcasts(Val); | 
 |       StoreInt <<= ElementSizeBits; | 
 |       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { | 
 |         StoreInt |= C->getAPIntValue() | 
 |                         .zextOrTrunc(ElementSizeBits) | 
 |                         .zextOrTrunc(SizeInBits); | 
 |       } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { | 
 |         StoreInt |= C->getValueAPF() | 
 |                         .bitcastToAPInt() | 
 |                         .zextOrTrunc(ElementSizeBits) | 
 |                         .zextOrTrunc(SizeInBits); | 
 |         // If fp truncation is necessary give up for now. | 
 |         if (MemVT.getSizeInBits() != ElementSizeBits) | 
 |           return false; | 
 |       } else if (ISD::isBuildVectorOfConstantSDNodes(Val.getNode()) || | 
 |                  ISD::isBuildVectorOfConstantFPSDNodes(Val.getNode())) { | 
 |         // Not yet handled | 
 |         return false; | 
 |       } else { | 
 |         llvm_unreachable("Invalid constant element type"); | 
 |       } | 
 |     } | 
 |  | 
 |     // Create the new Load and Store operations. | 
 |     StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); | 
 |   } | 
 |  | 
 |   LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
 |   SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); | 
 |   bool CanReusePtrInfo = hasSameUnderlyingObj(StoreNodes); | 
 |  | 
 |   // make sure we use trunc store if it's necessary to be legal. | 
 |   // When generate the new widen store, if the first store's pointer info can | 
 |   // not be reused, discard the pointer info except the address space because | 
 |   // now the widen store can not be represented by the original pointer info | 
 |   // which is for the narrow memory object. | 
 |   SDValue NewStore; | 
 |   if (!UseTrunc) { | 
 |     NewStore = DAG.getStore( | 
 |         NewChain, DL, StoredVal, FirstInChain->getBasePtr(), | 
 |         CanReusePtrInfo | 
 |             ? FirstInChain->getPointerInfo() | 
 |             : MachinePointerInfo(FirstInChain->getPointerInfo().getAddrSpace()), | 
 |         FirstInChain->getAlign(), *Flags, AAInfo); | 
 |   } else { // Must be realized as a trunc store | 
 |     EVT LegalizedStoredValTy = | 
 |         TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); | 
 |     unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); | 
 |     ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); | 
 |     SDValue ExtendedStoreVal = | 
 |         DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, | 
 |                         LegalizedStoredValTy); | 
 |     NewStore = DAG.getTruncStore( | 
 |         NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), | 
 |         CanReusePtrInfo | 
 |             ? FirstInChain->getPointerInfo() | 
 |             : MachinePointerInfo(FirstInChain->getPointerInfo().getAddrSpace()), | 
 |         StoredVal.getValueType() /*TVT*/, FirstInChain->getAlign(), *Flags, | 
 |         AAInfo); | 
 |   } | 
 |  | 
 |   // Replace all merged stores with the new store. | 
 |   for (unsigned i = 0; i < NumStores; ++i) | 
 |     CombineTo(StoreNodes[i].MemNode, NewStore); | 
 |  | 
 |   AddToWorklist(NewChain.getNode()); | 
 |   return true; | 
 | } | 
 |  | 
 | SDNode * | 
 | DAGCombiner::getStoreMergeCandidates(StoreSDNode *St, | 
 |                                      SmallVectorImpl<MemOpLink> &StoreNodes) { | 
 |   // This holds the base pointer, index, and the offset in bytes from the base | 
 |   // pointer. We must have a base and an offset. Do not handle stores to undef | 
 |   // base pointers. | 
 |   BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); | 
 |   if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) | 
 |     return nullptr; | 
 |  | 
 |   SDValue Val = peekThroughBitcasts(St->getValue()); | 
 |   StoreSource StoreSrc = getStoreSource(Val); | 
 |   assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); | 
 |  | 
 |   // Match on loadbaseptr if relevant. | 
 |   EVT MemVT = St->getMemoryVT(); | 
 |   BaseIndexOffset LBasePtr; | 
 |   EVT LoadVT; | 
 |   if (StoreSrc == StoreSource::Load) { | 
 |     auto *Ld = cast<LoadSDNode>(Val); | 
 |     LBasePtr = BaseIndexOffset::match(Ld, DAG); | 
 |     LoadVT = Ld->getMemoryVT(); | 
 |     // Load and store should be the same type. | 
 |     if (MemVT != LoadVT) | 
 |       return nullptr; | 
 |     // Loads must only have one use. | 
 |     if (!Ld->hasNUsesOfValue(1, 0)) | 
 |       return nullptr; | 
 |     // The memory operands must not be volatile/indexed/atomic. | 
 |     // TODO: May be able to relax for unordered atomics (see D66309) | 
 |     if (!Ld->isSimple() || Ld->isIndexed()) | 
 |       return nullptr; | 
 |   } | 
 |   auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, | 
 |                             int64_t &Offset) -> bool { | 
 |     // The memory operands must not be volatile/indexed/atomic. | 
 |     // TODO: May be able to relax for unordered atomics (see D66309) | 
 |     if (!Other->isSimple() || Other->isIndexed()) | 
 |       return false; | 
 |     // Don't mix temporal stores with non-temporal stores. | 
 |     if (St->isNonTemporal() != Other->isNonTemporal()) | 
 |       return false; | 
 |     if (!TLI.areTwoSDNodeTargetMMOFlagsMergeable(*St, *Other)) | 
 |       return false; | 
 |     SDValue OtherBC = peekThroughBitcasts(Other->getValue()); | 
 |     // Allow merging constants of different types as integers. | 
 |     bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) | 
 |                                            : Other->getMemoryVT() != MemVT; | 
 |     switch (StoreSrc) { | 
 |     case StoreSource::Load: { | 
 |       if (NoTypeMatch) | 
 |         return false; | 
 |       // The Load's Base Ptr must also match. | 
 |       auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); | 
 |       if (!OtherLd) | 
 |         return false; | 
 |       BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); | 
 |       if (LoadVT != OtherLd->getMemoryVT()) | 
 |         return false; | 
 |       // Loads must only have one use. | 
 |       if (!OtherLd->hasNUsesOfValue(1, 0)) | 
 |         return false; | 
 |       // The memory operands must not be volatile/indexed/atomic. | 
 |       // TODO: May be able to relax for unordered atomics (see D66309) | 
 |       if (!OtherLd->isSimple() || OtherLd->isIndexed()) | 
 |         return false; | 
 |       // Don't mix temporal loads with non-temporal loads. | 
 |       if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal()) | 
 |         return false; | 
 |       if (!TLI.areTwoSDNodeTargetMMOFlagsMergeable(*cast<LoadSDNode>(Val), | 
 |                                                    *OtherLd)) | 
 |         return false; | 
 |       if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) | 
 |         return false; | 
 |       break; | 
 |     } | 
 |     case StoreSource::Constant: | 
 |       if (NoTypeMatch) | 
 |         return false; | 
 |       if (getStoreSource(OtherBC) != StoreSource::Constant) | 
 |         return false; | 
 |       break; | 
 |     case StoreSource::Extract: | 
 |       // Do not merge truncated stores here. | 
 |       if (Other->isTruncatingStore()) | 
 |         return false; | 
 |       if (!MemVT.bitsEq(OtherBC.getValueType())) | 
 |         return false; | 
 |       if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && | 
 |           OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
 |         return false; | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("Unhandled store source for merging"); | 
 |     } | 
 |     Ptr = BaseIndexOffset::match(Other, DAG); | 
 |     return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); | 
 |   }; | 
 |  | 
 |   // We are looking for a root node which is an ancestor to all mergable | 
 |   // stores. We search up through a load, to our root and then down | 
 |   // through all children. For instance we will find Store{1,2,3} if | 
 |   // St is Store1, Store2. or Store3 where the root is not a load | 
 |   // which always true for nonvolatile ops. TODO: Expand | 
 |   // the search to find all valid candidates through multiple layers of loads. | 
 |   // | 
 |   // Root | 
 |   // |-------|-------| | 
 |   // Load    Load    Store3 | 
 |   // |       | | 
 |   // Store1   Store2 | 
 |   // | 
 |   // FIXME: We should be able to climb and | 
 |   // descend TokenFactors to find candidates as well. | 
 |  | 
 |   SDNode *RootNode = St->getChain().getNode(); | 
 |   // Bail out if we already analyzed this root node and found nothing. | 
 |   if (ChainsWithoutMergeableStores.contains(RootNode)) | 
 |     return nullptr; | 
 |  | 
 |   // Check if the pair of StoreNode and the RootNode already bail out many | 
 |   // times which is over the limit in dependence check. | 
 |   auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, | 
 |                                         SDNode *RootNode) -> bool { | 
 |     auto RootCount = StoreRootCountMap.find(StoreNode); | 
 |     return RootCount != StoreRootCountMap.end() && | 
 |            RootCount->second.first == RootNode && | 
 |            RootCount->second.second > StoreMergeDependenceLimit; | 
 |   }; | 
 |  | 
 |   auto TryToAddCandidate = [&](SDUse &Use) { | 
 |     // This must be a chain use. | 
 |     if (Use.getOperandNo() != 0) | 
 |       return; | 
 |     if (auto *OtherStore = dyn_cast<StoreSDNode>(Use.getUser())) { | 
 |       BaseIndexOffset Ptr; | 
 |       int64_t PtrDiff; | 
 |       if (CandidateMatch(OtherStore, Ptr, PtrDiff) && | 
 |           !OverLimitInDependenceCheck(OtherStore, RootNode)) | 
 |         StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff)); | 
 |     } | 
 |   }; | 
 |  | 
 |   unsigned NumNodesExplored = 0; | 
 |   const unsigned MaxSearchNodes = 1024; | 
 |   if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { | 
 |     RootNode = Ldn->getChain().getNode(); | 
 |     // Bail out if we already analyzed this root node and found nothing. | 
 |     if (ChainsWithoutMergeableStores.contains(RootNode)) | 
 |       return nullptr; | 
 |     for (auto I = RootNode->use_begin(), E = RootNode->use_end(); | 
 |          I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { | 
 |       SDNode *User = I->getUser(); | 
 |       if (I->getOperandNo() == 0 && isa<LoadSDNode>(User)) { // walk down chain | 
 |         for (SDUse &U2 : User->uses()) | 
 |           TryToAddCandidate(U2); | 
 |       } | 
 |       // Check stores that depend on the root (e.g. Store 3 in the chart above). | 
 |       if (I->getOperandNo() == 0 && isa<StoreSDNode>(User)) { | 
 |         TryToAddCandidate(*I); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     for (auto I = RootNode->use_begin(), E = RootNode->use_end(); | 
 |          I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) | 
 |       TryToAddCandidate(*I); | 
 |   } | 
 |  | 
 |   return RootNode; | 
 | } | 
 |  | 
 | // We need to check that merging these stores does not cause a loop in the | 
 | // DAG. Any store candidate may depend on another candidate indirectly through | 
 | // its operands. Check in parallel by searching up from operands of candidates. | 
 | bool DAGCombiner::checkMergeStoreCandidatesForDependencies( | 
 |     SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, | 
 |     SDNode *RootNode) { | 
 |   // FIXME: We should be able to truncate a full search of | 
 |   // predecessors by doing a BFS and keeping tabs the originating | 
 |   // stores from which worklist nodes come from in a similar way to | 
 |   // TokenFactor simplfication. | 
 |  | 
 |   SmallPtrSet<const SDNode *, 32> Visited; | 
 |   SmallVector<const SDNode *, 8> Worklist; | 
 |  | 
 |   // RootNode is a predecessor to all candidates so we need not search | 
 |   // past it. Add RootNode (peeking through TokenFactors). Do not count | 
 |   // these towards size check. | 
 |  | 
 |   Worklist.push_back(RootNode); | 
 |   while (!Worklist.empty()) { | 
 |     auto N = Worklist.pop_back_val(); | 
 |     if (!Visited.insert(N).second) | 
 |       continue; // Already present in Visited. | 
 |     if (N->getOpcode() == ISD::TokenFactor) { | 
 |       for (SDValue Op : N->ops()) | 
 |         Worklist.push_back(Op.getNode()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Don't count pruning nodes towards max. | 
 |   unsigned int Max = 1024 + Visited.size(); | 
 |   // Search Ops of store candidates. | 
 |   for (unsigned i = 0; i < NumStores; ++i) { | 
 |     SDNode *N = StoreNodes[i].MemNode; | 
 |     // Of the 4 Store Operands: | 
 |     //   * Chain (Op 0) -> We have already considered these | 
 |     //                     in candidate selection, but only by following the | 
 |     //                     chain dependencies. We could still have a chain | 
 |     //                     dependency to a load, that has a non-chain dep to | 
 |     //                     another load, that depends on a store, etc. So it is | 
 |     //                     possible to have dependencies that consist of a mix | 
 |     //                     of chain and non-chain deps, and we need to include | 
 |     //                     chain operands in the analysis here.. | 
 |     //   * Value (Op 1) -> Cycles may happen (e.g. through load chains) | 
 |     //   * Address (Op 2) -> Merged addresses may only vary by a fixed constant, | 
 |     //                       but aren't necessarily fromt the same base node, so | 
 |     //                       cycles possible (e.g. via indexed store). | 
 |     //   * (Op 3) -> Represents the pre or post-indexing offset (or undef for | 
 |     //               non-indexed stores). Not constant on all targets (e.g. ARM) | 
 |     //               and so can participate in a cycle. | 
 |     for (const SDValue &Op : N->op_values()) | 
 |       Worklist.push_back(Op.getNode()); | 
 |   } | 
 |   // Search through DAG. We can stop early if we find a store node. | 
 |   for (unsigned i = 0; i < NumStores; ++i) | 
 |     if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, | 
 |                                      Max)) { | 
 |       // If the searching bail out, record the StoreNode and RootNode in the | 
 |       // StoreRootCountMap. If we have seen the pair many times over a limit, | 
 |       // we won't add the StoreNode into StoreNodes set again. | 
 |       if (Visited.size() >= Max) { | 
 |         auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; | 
 |         if (RootCount.first == RootNode) | 
 |           RootCount.second++; | 
 |         else | 
 |           RootCount = {RootNode, 1}; | 
 |       } | 
 |       return false; | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | bool DAGCombiner::hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld) { | 
 |   SmallPtrSet<const SDNode *, 32> Visited; | 
 |   SmallVector<std::pair<const SDNode *, bool>, 8> Worklist; | 
 |   Worklist.emplace_back(St->getChain().getNode(), false); | 
 |  | 
 |   while (!Worklist.empty()) { | 
 |     auto [Node, FoundCall] = Worklist.pop_back_val(); | 
 |     if (!Visited.insert(Node).second || Node->getNumOperands() == 0) | 
 |       continue; | 
 |  | 
 |     switch (Node->getOpcode()) { | 
 |     case ISD::CALLSEQ_END: | 
 |       Worklist.emplace_back(Node->getOperand(0).getNode(), true); | 
 |       break; | 
 |     case ISD::TokenFactor: | 
 |       for (SDValue Op : Node->ops()) | 
 |         Worklist.emplace_back(Op.getNode(), FoundCall); | 
 |       break; | 
 |     case ISD::LOAD: | 
 |       if (Node == Ld) | 
 |         return FoundCall; | 
 |       [[fallthrough]]; | 
 |     default: | 
 |       assert(Node->getOperand(0).getValueType() == MVT::Other && | 
 |              "Invalid chain type"); | 
 |       Worklist.emplace_back(Node->getOperand(0).getNode(), FoundCall); | 
 |       break; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned | 
 | DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                   int64_t ElementSizeBytes) const { | 
 |   while (true) { | 
 |     // Find a store past the width of the first store. | 
 |     size_t StartIdx = 0; | 
 |     while ((StartIdx + 1 < StoreNodes.size()) && | 
 |            StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != | 
 |               StoreNodes[StartIdx + 1].OffsetFromBase) | 
 |       ++StartIdx; | 
 |  | 
 |     // Bail if we don't have enough candidates to merge. | 
 |     if (StartIdx + 1 >= StoreNodes.size()) | 
 |       return 0; | 
 |  | 
 |     // Trim stores that overlapped with the first store. | 
 |     if (StartIdx) | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); | 
 |  | 
 |     // Scan the memory operations on the chain and find the first | 
 |     // non-consecutive store memory address. | 
 |     unsigned NumConsecutiveStores = 1; | 
 |     int64_t StartAddress = StoreNodes[0].OffsetFromBase; | 
 |     // Check that the addresses are consecutive starting from the second | 
 |     // element in the list of stores. | 
 |     for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { | 
 |       int64_t CurrAddress = StoreNodes[i].OffsetFromBase; | 
 |       if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | 
 |         break; | 
 |       NumConsecutiveStores = i + 1; | 
 |     } | 
 |     if (NumConsecutiveStores > 1) | 
 |       return NumConsecutiveStores; | 
 |  | 
 |     // There are no consecutive stores at the start of the list. | 
 |     // Remove the first store and try again. | 
 |     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); | 
 |   } | 
 | } | 
 |  | 
 | bool DAGCombiner::tryStoreMergeOfConstants( | 
 |     SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, | 
 |     EVT MemVT, SDNode *RootNode, bool AllowVectors) { | 
 |   LLVMContext &Context = *DAG.getContext(); | 
 |   const DataLayout &DL = DAG.getDataLayout(); | 
 |   int64_t ElementSizeBytes = MemVT.getStoreSize(); | 
 |   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; | 
 |   bool MadeChange = false; | 
 |  | 
 |   // Store the constants into memory as one consecutive store. | 
 |   while (NumConsecutiveStores >= 2) { | 
 |     LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
 |     unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
 |     Align FirstStoreAlign = FirstInChain->getAlign(); | 
 |     unsigned LastLegalType = 1; | 
 |     unsigned LastLegalVectorType = 1; | 
 |     bool LastIntegerTrunc = false; | 
 |     bool NonZero = false; | 
 |     unsigned FirstZeroAfterNonZero = NumConsecutiveStores; | 
 |     for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | 
 |       StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
 |       SDValue StoredVal = ST->getValue(); | 
 |       bool IsElementZero = false; | 
 |       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) | 
 |         IsElementZero = C->isZero(); | 
 |       else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) | 
 |         IsElementZero = C->getConstantFPValue()->isNullValue(); | 
 |       else if (ISD::isBuildVectorAllZeros(StoredVal.getNode())) | 
 |         IsElementZero = true; | 
 |       if (IsElementZero) { | 
 |         if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) | 
 |           FirstZeroAfterNonZero = i; | 
 |       } | 
 |       NonZero |= !IsElementZero; | 
 |  | 
 |       // Find a legal type for the constant store. | 
 |       unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; | 
 |       EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); | 
 |       unsigned IsFast = 0; | 
 |  | 
 |       // Break early when size is too large to be legal. | 
 |       if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) | 
 |         break; | 
 |  | 
 |       if (TLI.isTypeLegal(StoreTy) && | 
 |           TLI.canMergeStoresTo(FirstStoreAS, StoreTy, | 
 |                                DAG.getMachineFunction()) && | 
 |           TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                  *FirstInChain->getMemOperand(), &IsFast) && | 
 |           IsFast) { | 
 |         LastIntegerTrunc = false; | 
 |         LastLegalType = i + 1; | 
 |         // Or check whether a truncstore is legal. | 
 |       } else if (TLI.getTypeAction(Context, StoreTy) == | 
 |                  TargetLowering::TypePromoteInteger) { | 
 |         EVT LegalizedStoredValTy = | 
 |             TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); | 
 |         if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && | 
 |             TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, | 
 |                                  DAG.getMachineFunction()) && | 
 |             TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                    *FirstInChain->getMemOperand(), &IsFast) && | 
 |             IsFast) { | 
 |           LastIntegerTrunc = true; | 
 |           LastLegalType = i + 1; | 
 |         } | 
 |       } | 
 |  | 
 |       // We only use vectors if the target allows it and the function is not | 
 |       // marked with the noimplicitfloat attribute. | 
 |       if (TLI.storeOfVectorConstantIsCheap(!NonZero, MemVT, i + 1, FirstStoreAS) && | 
 |           AllowVectors) { | 
 |         // Find a legal type for the vector store. | 
 |         unsigned Elts = (i + 1) * NumMemElts; | 
 |         EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); | 
 |         if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && | 
 |             TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && | 
 |             TLI.allowsMemoryAccess(Context, DL, Ty, | 
 |                                    *FirstInChain->getMemOperand(), &IsFast) && | 
 |             IsFast) | 
 |           LastLegalVectorType = i + 1; | 
 |       } | 
 |     } | 
 |  | 
 |     bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; | 
 |     unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; | 
 |     bool UseTrunc = LastIntegerTrunc && !UseVector; | 
 |  | 
 |     // Check if we found a legal integer type that creates a meaningful | 
 |     // merge. | 
 |     if (NumElem < 2) { | 
 |       // We know that candidate stores are in order and of correct | 
 |       // shape. While there is no mergeable sequence from the | 
 |       // beginning one may start later in the sequence. The only | 
 |       // reason a merge of size N could have failed where another of | 
 |       // the same size would not have, is if the alignment has | 
 |       // improved or we've dropped a non-zero value. Drop as many | 
 |       // candidates as we can here. | 
 |       unsigned NumSkip = 1; | 
 |       while ((NumSkip < NumConsecutiveStores) && | 
 |              (NumSkip < FirstZeroAfterNonZero) && | 
 |              (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) | 
 |         NumSkip++; | 
 |  | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); | 
 |       NumConsecutiveStores -= NumSkip; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check that we can merge these candidates without causing a cycle. | 
 |     if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, | 
 |                                                   RootNode)) { | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
 |       NumConsecutiveStores -= NumElem; | 
 |       continue; | 
 |     } | 
 |  | 
 |     MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, | 
 |                                                   /*IsConstantSrc*/ true, | 
 |                                                   UseVector, UseTrunc); | 
 |  | 
 |     // Remove merged stores for next iteration. | 
 |     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
 |     NumConsecutiveStores -= NumElem; | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool DAGCombiner::tryStoreMergeOfExtracts( | 
 |     SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, | 
 |     EVT MemVT, SDNode *RootNode) { | 
 |   LLVMContext &Context = *DAG.getContext(); | 
 |   const DataLayout &DL = DAG.getDataLayout(); | 
 |   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; | 
 |   bool MadeChange = false; | 
 |  | 
 |   // Loop on Consecutive Stores on success. | 
 |   while (NumConsecutiveStores >= 2) { | 
 |     LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
 |     unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
 |     Align FirstStoreAlign = FirstInChain->getAlign(); | 
 |     unsigned NumStoresToMerge = 1; | 
 |     for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | 
 |       // Find a legal type for the vector store. | 
 |       unsigned Elts = (i + 1) * NumMemElts; | 
 |       EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); | 
 |       unsigned IsFast = 0; | 
 |  | 
 |       // Break early when size is too large to be legal. | 
 |       if (Ty.getSizeInBits() > MaximumLegalStoreInBits) | 
 |         break; | 
 |  | 
 |       if (TLI.isTypeLegal(Ty) && | 
 |           TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) && | 
 |           TLI.allowsMemoryAccess(Context, DL, Ty, | 
 |                                  *FirstInChain->getMemOperand(), &IsFast) && | 
 |           IsFast) | 
 |         NumStoresToMerge = i + 1; | 
 |     } | 
 |  | 
 |     // Check if we found a legal integer type creating a meaningful | 
 |     // merge. | 
 |     if (NumStoresToMerge < 2) { | 
 |       // We know that candidate stores are in order and of correct | 
 |       // shape. While there is no mergeable sequence from the | 
 |       // beginning one may start later in the sequence. The only | 
 |       // reason a merge of size N could have failed where another of | 
 |       // the same size would not have, is if the alignment has | 
 |       // improved. Drop as many candidates as we can here. | 
 |       unsigned NumSkip = 1; | 
 |       while ((NumSkip < NumConsecutiveStores) && | 
 |              (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) | 
 |         NumSkip++; | 
 |  | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); | 
 |       NumConsecutiveStores -= NumSkip; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check that we can merge these candidates without causing a cycle. | 
 |     if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, | 
 |                                                   RootNode)) { | 
 |       StoreNodes.erase(StoreNodes.begin(), | 
 |                        StoreNodes.begin() + NumStoresToMerge); | 
 |       NumConsecutiveStores -= NumStoresToMerge; | 
 |       continue; | 
 |     } | 
 |  | 
 |     MadeChange |= mergeStoresOfConstantsOrVecElts( | 
 |         StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false, | 
 |         /*UseVector*/ true, /*UseTrunc*/ false); | 
 |  | 
 |     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); | 
 |     NumConsecutiveStores -= NumStoresToMerge; | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, | 
 |                                        unsigned NumConsecutiveStores, EVT MemVT, | 
 |                                        SDNode *RootNode, bool AllowVectors, | 
 |                                        bool IsNonTemporalStore, | 
 |                                        bool IsNonTemporalLoad) { | 
 |   LLVMContext &Context = *DAG.getContext(); | 
 |   const DataLayout &DL = DAG.getDataLayout(); | 
 |   int64_t ElementSizeBytes = MemVT.getStoreSize(); | 
 |   unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; | 
 |   bool MadeChange = false; | 
 |  | 
 |   // Look for load nodes which are used by the stored values. | 
 |   SmallVector<MemOpLink, 8> LoadNodes; | 
 |  | 
 |   // Find acceptable loads. Loads need to have the same chain (token factor), | 
 |   // must not be zext, volatile, indexed, and they must be consecutive. | 
 |   BaseIndexOffset LdBasePtr; | 
 |  | 
 |   for (unsigned i = 0; i < NumConsecutiveStores; ++i) { | 
 |     StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); | 
 |     SDValue Val = peekThroughBitcasts(St->getValue()); | 
 |     LoadSDNode *Ld = cast<LoadSDNode>(Val); | 
 |  | 
 |     BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); | 
 |     // If this is not the first ptr that we check. | 
 |     int64_t LdOffset = 0; | 
 |     if (LdBasePtr.getBase().getNode()) { | 
 |       // The base ptr must be the same. | 
 |       if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) | 
 |         break; | 
 |     } else { | 
 |       // Check that all other base pointers are the same as this one. | 
 |       LdBasePtr = LdPtr; | 
 |     } | 
 |  | 
 |     // We found a potential memory operand to merge. | 
 |     LoadNodes.push_back(MemOpLink(Ld, LdOffset)); | 
 |   } | 
 |  | 
 |   while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { | 
 |     Align RequiredAlignment; | 
 |     bool NeedRotate = false; | 
 |     if (LoadNodes.size() == 2) { | 
 |       // If we have load/store pair instructions and we only have two values, | 
 |       // don't bother merging. | 
 |       if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && | 
 |           StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { | 
 |         StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); | 
 |         LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); | 
 |         break; | 
 |       } | 
 |       // If the loads are reversed, see if we can rotate the halves into place. | 
 |       int64_t Offset0 = LoadNodes[0].OffsetFromBase; | 
 |       int64_t Offset1 = LoadNodes[1].OffsetFromBase; | 
 |       EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); | 
 |       if (Offset0 - Offset1 == ElementSizeBytes && | 
 |           (hasOperation(ISD::ROTL, PairVT) || | 
 |            hasOperation(ISD::ROTR, PairVT))) { | 
 |         std::swap(LoadNodes[0], LoadNodes[1]); | 
 |         NeedRotate = true; | 
 |       } | 
 |     } | 
 |     LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; | 
 |     unsigned FirstStoreAS = FirstInChain->getAddressSpace(); | 
 |     Align FirstStoreAlign = FirstInChain->getAlign(); | 
 |     LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); | 
 |  | 
 |     // Scan the memory operations on the chain and find the first | 
 |     // non-consecutive load memory address. These variables hold the index in | 
 |     // the store node array. | 
 |  | 
 |     unsigned LastConsecutiveLoad = 1; | 
 |  | 
 |     // This variable refers to the size and not index in the array. | 
 |     unsigned LastLegalVectorType = 1; | 
 |     unsigned LastLegalIntegerType = 1; | 
 |     bool isDereferenceable = true; | 
 |     bool DoIntegerTruncate = false; | 
 |     int64_t StartAddress = LoadNodes[0].OffsetFromBase; | 
 |     SDValue LoadChain = FirstLoad->getChain(); | 
 |     for (unsigned i = 1; i < LoadNodes.size(); ++i) { | 
 |       // All loads must share the same chain. | 
 |       if (LoadNodes[i].MemNode->getChain() != LoadChain) | 
 |         break; | 
 |  | 
 |       int64_t CurrAddress = LoadNodes[i].OffsetFromBase; | 
 |       if (CurrAddress - StartAddress != (ElementSizeBytes * i)) | 
 |         break; | 
 |       LastConsecutiveLoad = i; | 
 |  | 
 |       if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) | 
 |         isDereferenceable = false; | 
 |  | 
 |       // Find a legal type for the vector store. | 
 |       unsigned Elts = (i + 1) * NumMemElts; | 
 |       EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); | 
 |  | 
 |       // Break early when size is too large to be legal. | 
 |       if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) | 
 |         break; | 
 |  | 
 |       unsigned IsFastSt = 0; | 
 |       unsigned IsFastLd = 0; | 
 |       // Don't try vector types if we need a rotate. We may still fail the | 
 |       // legality checks for the integer type, but we can't handle the rotate | 
 |       // case with vectors. | 
 |       // FIXME: We could use a shuffle in place of the rotate. | 
 |       if (!NeedRotate && TLI.isTypeLegal(StoreTy) && | 
 |           TLI.canMergeStoresTo(FirstStoreAS, StoreTy, | 
 |                                DAG.getMachineFunction()) && | 
 |           TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                  *FirstInChain->getMemOperand(), &IsFastSt) && | 
 |           IsFastSt && | 
 |           TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                  *FirstLoad->getMemOperand(), &IsFastLd) && | 
 |           IsFastLd) { | 
 |         LastLegalVectorType = i + 1; | 
 |       } | 
 |  | 
 |       // Find a legal type for the integer store. | 
 |       unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; | 
 |       StoreTy = EVT::getIntegerVT(Context, SizeInBits); | 
 |       if (TLI.isTypeLegal(StoreTy) && | 
 |           TLI.canMergeStoresTo(FirstStoreAS, StoreTy, | 
 |                                DAG.getMachineFunction()) && | 
 |           TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                  *FirstInChain->getMemOperand(), &IsFastSt) && | 
 |           IsFastSt && | 
 |           TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                  *FirstLoad->getMemOperand(), &IsFastLd) && | 
 |           IsFastLd) { | 
 |         LastLegalIntegerType = i + 1; | 
 |         DoIntegerTruncate = false; | 
 |         // Or check whether a truncstore and extload is legal. | 
 |       } else if (TLI.getTypeAction(Context, StoreTy) == | 
 |                  TargetLowering::TypePromoteInteger) { | 
 |         EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); | 
 |         if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && | 
 |             TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, | 
 |                                  DAG.getMachineFunction()) && | 
 |             TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && | 
 |             TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && | 
 |             TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && | 
 |             TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                    *FirstInChain->getMemOperand(), &IsFastSt) && | 
 |             IsFastSt && | 
 |             TLI.allowsMemoryAccess(Context, DL, StoreTy, | 
 |                                    *FirstLoad->getMemOperand(), &IsFastLd) && | 
 |             IsFastLd) { | 
 |           LastLegalIntegerType = i + 1; | 
 |           DoIntegerTruncate = true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Only use vector types if the vector type is larger than the integer | 
 |     // type. If they are the same, use integers. | 
 |     bool UseVectorTy = | 
 |         LastLegalVectorType > LastLegalIntegerType && AllowVectors; | 
 |     unsigned LastLegalType = | 
 |         std::max(LastLegalVectorType, LastLegalIntegerType); | 
 |  | 
 |     // We add +1 here because the LastXXX variables refer to location while | 
 |     // the NumElem refers to array/index size. | 
 |     unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); | 
 |     NumElem = std::min(LastLegalType, NumElem); | 
 |     Align FirstLoadAlign = FirstLoad->getAlign(); | 
 |  | 
 |     if (NumElem < 2) { | 
 |       // We know that candidate stores are in order and of correct | 
 |       // shape. While there is no mergeable sequence from the | 
 |       // beginning one may start later in the sequence. The only | 
 |       // reason a merge of size N could have failed where another of | 
 |       // the same size would not have is if the alignment or either | 
 |       // the load or store has improved. Drop as many candidates as we | 
 |       // can here. | 
 |       unsigned NumSkip = 1; | 
 |       while ((NumSkip < LoadNodes.size()) && | 
 |              (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && | 
 |              (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) | 
 |         NumSkip++; | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); | 
 |       LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); | 
 |       NumConsecutiveStores -= NumSkip; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check that we can merge these candidates without causing a cycle. | 
 |     if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, | 
 |                                                   RootNode)) { | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
 |       LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); | 
 |       NumConsecutiveStores -= NumElem; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Find if it is better to use vectors or integers to load and store | 
 |     // to memory. | 
 |     EVT JointMemOpVT; | 
 |     if (UseVectorTy) { | 
 |       // Find a legal type for the vector store. | 
 |       unsigned Elts = NumElem * NumMemElts; | 
 |       JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); | 
 |     } else { | 
 |       unsigned SizeInBits = NumElem * ElementSizeBytes * 8; | 
 |       JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); | 
 |     } | 
 |  | 
 |     // Check if there is a call in the load/store chain. | 
 |     if (!TLI.shouldMergeStoreOfLoadsOverCall(MemVT, JointMemOpVT) && | 
 |         hasCallInLdStChain(cast<StoreSDNode>(StoreNodes[0].MemNode), | 
 |                            cast<LoadSDNode>(LoadNodes[0].MemNode))) { | 
 |       StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
 |       LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); | 
 |       NumConsecutiveStores -= NumElem; | 
 |       continue; | 
 |     } | 
 |  | 
 |     SDLoc LoadDL(LoadNodes[0].MemNode); | 
 |     SDLoc StoreDL(StoreNodes[0].MemNode); | 
 |  | 
 |     // The merged loads are required to have the same incoming chain, so | 
 |     // using the first's chain is acceptable. | 
 |  | 
 |     SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); | 
 |     bool CanReusePtrInfo = hasSameUnderlyingObj(StoreNodes); | 
 |     AddToWorklist(NewStoreChain.getNode()); | 
 |  | 
 |     MachineMemOperand::Flags LdMMOFlags = | 
 |         isDereferenceable ? MachineMemOperand::MODereferenceable | 
 |                           : MachineMemOperand::MONone; | 
 |     if (IsNonTemporalLoad) | 
 |       LdMMOFlags |= MachineMemOperand::MONonTemporal; | 
 |  | 
 |     LdMMOFlags |= TLI.getTargetMMOFlags(*FirstLoad); | 
 |  | 
 |     MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore | 
 |                                               ? MachineMemOperand::MONonTemporal | 
 |                                               : MachineMemOperand::MONone; | 
 |  | 
 |     StMMOFlags |= TLI.getTargetMMOFlags(*StoreNodes[0].MemNode); | 
 |  | 
 |     SDValue NewLoad, NewStore; | 
 |     if (UseVectorTy || !DoIntegerTruncate) { | 
 |       NewLoad = DAG.getLoad( | 
 |           JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), | 
 |           FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); | 
 |       SDValue StoreOp = NewLoad; | 
 |       if (NeedRotate) { | 
 |         unsigned LoadWidth = ElementSizeBytes * 8 * 2; | 
 |         assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && | 
 |                "Unexpected type for rotate-able load pair"); | 
 |         SDValue RotAmt = | 
 |             DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); | 
 |         // Target can convert to the identical ROTR if it does not have ROTL. | 
 |         StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); | 
 |       } | 
 |       NewStore = DAG.getStore( | 
 |           NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), | 
 |           CanReusePtrInfo ? FirstInChain->getPointerInfo() | 
 |                           : MachinePointerInfo(FirstStoreAS), | 
 |           FirstStoreAlign, StMMOFlags); | 
 |     } else { // This must be the truncstore/extload case | 
 |       EVT ExtendedTy = | 
 |           TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); | 
 |       NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, | 
 |                                FirstLoad->getChain(), FirstLoad->getBasePtr(), | 
 |                                FirstLoad->getPointerInfo(), JointMemOpVT, | 
 |                                FirstLoadAlign, LdMMOFlags); | 
 |       NewStore = DAG.getTruncStore( | 
 |           NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), | 
 |           CanReusePtrInfo ? FirstInChain->getPointerInfo() | 
 |                           : MachinePointerInfo(FirstStoreAS), | 
 |           JointMemOpVT, FirstInChain->getAlign(), | 
 |           FirstInChain->getMemOperand()->getFlags()); | 
 |     } | 
 |  | 
 |     // Transfer chain users from old loads to the new load. | 
 |     for (unsigned i = 0; i < NumElem; ++i) { | 
 |       LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); | 
 |       DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), | 
 |                                     SDValue(NewLoad.getNode(), 1)); | 
 |     } | 
 |  | 
 |     // Replace all stores with the new store. Recursively remove corresponding | 
 |     // values if they are no longer used. | 
 |     for (unsigned i = 0; i < NumElem; ++i) { | 
 |       SDValue Val = StoreNodes[i].MemNode->getOperand(1); | 
 |       CombineTo(StoreNodes[i].MemNode, NewStore); | 
 |       if (Val->use_empty()) | 
 |         recursivelyDeleteUnusedNodes(Val.getNode()); | 
 |     } | 
 |  | 
 |     MadeChange = true; | 
 |     StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); | 
 |     LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); | 
 |     NumConsecutiveStores -= NumElem; | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { | 
 |   if (OptLevel == CodeGenOptLevel::None || !EnableStoreMerging) | 
 |     return false; | 
 |  | 
 |   // TODO: Extend this function to merge stores of scalable vectors. | 
 |   // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> | 
 |   // store since we know <vscale x 16 x i8> is exactly twice as large as | 
 |   // <vscale x 8 x i8>). Until then, bail out for scalable vectors. | 
 |   EVT MemVT = St->getMemoryVT(); | 
 |   if (MemVT.isScalableVT()) | 
 |     return false; | 
 |   if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) | 
 |     return false; | 
 |  | 
 |   // This function cannot currently deal with non-byte-sized memory sizes. | 
 |   int64_t ElementSizeBytes = MemVT.getStoreSize(); | 
 |   if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) | 
 |     return false; | 
 |  | 
 |   // Do not bother looking at stored values that are not constants, loads, or | 
 |   // extracted vector elements. | 
 |   SDValue StoredVal = peekThroughBitcasts(St->getValue()); | 
 |   const StoreSource StoreSrc = getStoreSource(StoredVal); | 
 |   if (StoreSrc == StoreSource::Unknown) | 
 |     return false; | 
 |  | 
 |   SmallVector<MemOpLink, 8> StoreNodes; | 
 |   // Find potential store merge candidates by searching through chain sub-DAG | 
 |   SDNode *RootNode = getStoreMergeCandidates(St, StoreNodes); | 
 |  | 
 |   // Check if there is anything to merge. | 
 |   if (StoreNodes.size() < 2) | 
 |     return false; | 
 |  | 
 |   // Sort the memory operands according to their distance from the | 
 |   // base pointer. | 
 |   llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { | 
 |     return LHS.OffsetFromBase < RHS.OffsetFromBase; | 
 |   }); | 
 |  | 
 |   bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( | 
 |       Attribute::NoImplicitFloat); | 
 |   bool IsNonTemporalStore = St->isNonTemporal(); | 
 |   bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && | 
 |                            cast<LoadSDNode>(StoredVal)->isNonTemporal(); | 
 |  | 
 |   // Store Merge attempts to merge the lowest stores. This generally | 
 |   // works out as if successful, as the remaining stores are checked | 
 |   // after the first collection of stores is merged. However, in the | 
 |   // case that a non-mergeable store is found first, e.g., {p[-2], | 
 |   // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent | 
 |   // mergeable cases. To prevent this, we prune such stores from the | 
 |   // front of StoreNodes here. | 
 |   bool MadeChange = false; | 
 |   while (StoreNodes.size() > 1) { | 
 |     unsigned NumConsecutiveStores = | 
 |         getConsecutiveStores(StoreNodes, ElementSizeBytes); | 
 |     // There are no more stores in the list to examine. | 
 |     if (NumConsecutiveStores == 0) | 
 |       return MadeChange; | 
 |  | 
 |     // We have at least 2 consecutive stores. Try to merge them. | 
 |     assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); | 
 |     switch (StoreSrc) { | 
 |     case StoreSource::Constant: | 
 |       MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, | 
 |                                              MemVT, RootNode, AllowVectors); | 
 |       break; | 
 |  | 
 |     case StoreSource::Extract: | 
 |       MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, | 
 |                                             MemVT, RootNode); | 
 |       break; | 
 |  | 
 |     case StoreSource::Load: | 
 |       MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, | 
 |                                          MemVT, RootNode, AllowVectors, | 
 |                                          IsNonTemporalStore, IsNonTemporalLoad); | 
 |       break; | 
 |  | 
 |     default: | 
 |       llvm_unreachable("Unhandled store source type"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Remember if we failed to optimize, to save compile time. | 
 |   if (!MadeChange) | 
 |     ChainsWithoutMergeableStores.insert(RootNode); | 
 |  | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { | 
 |   SDLoc SL(ST); | 
 |   SDValue ReplStore; | 
 |  | 
 |   // Replace the chain to avoid dependency. | 
 |   if (ST->isTruncatingStore()) { | 
 |     ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), | 
 |                                   ST->getBasePtr(), ST->getMemoryVT(), | 
 |                                   ST->getMemOperand()); | 
 |   } else { | 
 |     ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), | 
 |                              ST->getMemOperand()); | 
 |   } | 
 |  | 
 |   // Create token to keep both nodes around. | 
 |   SDValue Token = DAG.getNode(ISD::TokenFactor, SL, | 
 |                               MVT::Other, ST->getChain(), ReplStore); | 
 |  | 
 |   // Make sure the new and old chains are cleaned up. | 
 |   AddToWorklist(Token.getNode()); | 
 |  | 
 |   // Don't add users to work list. | 
 |   return CombineTo(ST, Token, false); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { | 
 |   SDValue Value = ST->getValue(); | 
 |   if (Value.getOpcode() == ISD::TargetConstantFP) | 
 |     return SDValue(); | 
 |  | 
 |   if (!ISD::isNormalStore(ST)) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(ST); | 
 |  | 
 |   SDValue Chain = ST->getChain(); | 
 |   SDValue Ptr = ST->getBasePtr(); | 
 |  | 
 |   const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); | 
 |  | 
 |   // NOTE: If the original store is volatile, this transform must not increase | 
 |   // the number of stores.  For example, on x86-32 an f64 can be stored in one | 
 |   // processor operation but an i64 (which is not legal) requires two.  So the | 
 |   // transform should not be done in this case. | 
 |  | 
 |   SDValue Tmp; | 
 |   switch (CFP->getSimpleValueType(0).SimpleTy) { | 
 |   default: | 
 |     llvm_unreachable("Unknown FP type"); | 
 |   case MVT::f16:    // We don't do this for these yet. | 
 |   case MVT::bf16: | 
 |   case MVT::f80: | 
 |   case MVT::f128: | 
 |   case MVT::ppcf128: | 
 |     return SDValue(); | 
 |   case MVT::f32: | 
 |     if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || | 
 |         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { | 
 |       Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). | 
 |                             bitcastToAPInt().getZExtValue(), SDLoc(CFP), | 
 |                             MVT::i32); | 
 |       return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); | 
 |     } | 
 |  | 
 |     return SDValue(); | 
 |   case MVT::f64: | 
 |     if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && | 
 |          ST->isSimple()) || | 
 |         TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { | 
 |       Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). | 
 |                             getZExtValue(), SDLoc(CFP), MVT::i64); | 
 |       return DAG.getStore(Chain, DL, Tmp, | 
 |                           Ptr, ST->getMemOperand()); | 
 |     } | 
 |  | 
 |     if (ST->isSimple() && TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32) && | 
 |         !TLI.isFPImmLegal(CFP->getValueAPF(), MVT::f64)) { | 
 |       // Many FP stores are not made apparent until after legalize, e.g. for | 
 |       // argument passing.  Since this is so common, custom legalize the | 
 |       // 64-bit integer store into two 32-bit stores. | 
 |       uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); | 
 |       SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); | 
 |       SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); | 
 |       if (DAG.getDataLayout().isBigEndian()) | 
 |         std::swap(Lo, Hi); | 
 |  | 
 |       MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | 
 |       AAMDNodes AAInfo = ST->getAAInfo(); | 
 |  | 
 |       SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), | 
 |                                  ST->getOriginalAlign(), MMOFlags, AAInfo); | 
 |       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(4), DL); | 
 |       SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, | 
 |                                  ST->getPointerInfo().getWithOffset(4), | 
 |                                  ST->getOriginalAlign(), MMOFlags, AAInfo); | 
 |       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
 |                          St0, St1); | 
 |     } | 
 |  | 
 |     return SDValue(); | 
 |   } | 
 | } | 
 |  | 
 | // (store (insert_vector_elt (load p), x, i), p) -> (store x, p+offset) | 
 | // | 
 | // If a store of a load with an element inserted into it has no other | 
 | // uses in between the chain, then we can consider the vector store | 
 | // dead and replace it with just the single scalar element store. | 
 | SDValue DAGCombiner::replaceStoreOfInsertLoad(StoreSDNode *ST) { | 
 |   SDLoc DL(ST); | 
 |   SDValue Value = ST->getValue(); | 
 |   SDValue Ptr = ST->getBasePtr(); | 
 |   SDValue Chain = ST->getChain(); | 
 |   if (Value.getOpcode() != ISD::INSERT_VECTOR_ELT || !Value.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Elt = Value.getOperand(1); | 
 |   SDValue Idx = Value.getOperand(2); | 
 |  | 
 |   // If the element isn't byte sized or is implicitly truncated then we can't | 
 |   // compute an offset. | 
 |   EVT EltVT = Elt.getValueType(); | 
 |   if (!EltVT.isByteSized() || | 
 |       EltVT != Value.getOperand(0).getValueType().getVectorElementType()) | 
 |     return SDValue(); | 
 |  | 
 |   auto *Ld = dyn_cast<LoadSDNode>(Value.getOperand(0)); | 
 |   if (!Ld || Ld->getBasePtr() != Ptr || | 
 |       ST->getMemoryVT() != Ld->getMemoryVT() || !ST->isSimple() || | 
 |       !ISD::isNormalStore(ST) || | 
 |       Ld->getAddressSpace() != ST->getAddressSpace() || | 
 |       !Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned IsFast; | 
 |   if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), | 
 |                               Elt.getValueType(), ST->getAddressSpace(), | 
 |                               ST->getAlign(), ST->getMemOperand()->getFlags(), | 
 |                               &IsFast) || | 
 |       !IsFast) | 
 |     return SDValue(); | 
 |  | 
 |   MachinePointerInfo PointerInfo(ST->getAddressSpace()); | 
 |  | 
 |   // If the offset is a known constant then try to recover the pointer | 
 |   // info | 
 |   SDValue NewPtr; | 
 |   if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) { | 
 |     unsigned COffset = CIdx->getSExtValue() * EltVT.getSizeInBits() / 8; | 
 |     NewPtr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(COffset), DL); | 
 |     PointerInfo = ST->getPointerInfo().getWithOffset(COffset); | 
 |   } else { | 
 |     NewPtr = TLI.getVectorElementPointer(DAG, Ptr, Value.getValueType(), Idx); | 
 |   } | 
 |  | 
 |   return DAG.getStore(Chain, DL, Elt, NewPtr, PointerInfo, ST->getAlign(), | 
 |                       ST->getMemOperand()->getFlags()); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitATOMIC_STORE(SDNode *N) { | 
 |   AtomicSDNode *ST = cast<AtomicSDNode>(N); | 
 |   SDValue Val = ST->getVal(); | 
 |   EVT VT = Val.getValueType(); | 
 |   EVT MemVT = ST->getMemoryVT(); | 
 |  | 
 |   if (MemVT.bitsLT(VT)) { // Is truncating store | 
 |     APInt TruncDemandedBits = APInt::getLowBitsSet(VT.getScalarSizeInBits(), | 
 |                                                    MemVT.getScalarSizeInBits()); | 
 |     // See if we can simplify the operation with SimplifyDemandedBits, which | 
 |     // only works if the value has a single use. | 
 |     if (SimplifyDemandedBits(Val, TruncDemandedBits)) | 
 |       return SDValue(N, 0); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSTORE(SDNode *N) { | 
 |   StoreSDNode *ST  = cast<StoreSDNode>(N); | 
 |   SDValue Chain = ST->getChain(); | 
 |   SDValue Value = ST->getValue(); | 
 |   SDValue Ptr   = ST->getBasePtr(); | 
 |  | 
 |   // If this is a store of a bit convert, store the input value if the | 
 |   // resultant store does not need a higher alignment than the original. | 
 |   if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && | 
 |       ST->isUnindexed()) { | 
 |     EVT SVT = Value.getOperand(0).getValueType(); | 
 |     // If the store is volatile, we only want to change the store type if the | 
 |     // resulting store is legal. Otherwise we might increase the number of | 
 |     // memory accesses. We don't care if the original type was legal or not | 
 |     // as we assume software couldn't rely on the number of accesses of an | 
 |     // illegal type. | 
 |     // TODO: May be able to relax for unordered atomics (see D66309) | 
 |     if (((!LegalOperations && ST->isSimple()) || | 
 |          TLI.isOperationLegal(ISD::STORE, SVT)) && | 
 |         TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, | 
 |                                      DAG, *ST->getMemOperand())) { | 
 |       return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, | 
 |                           ST->getMemOperand()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Turn 'store undef, Ptr' -> nothing. | 
 |   if (Value.isUndef() && ST->isUnindexed() && !ST->isVolatile()) | 
 |     return Chain; | 
 |  | 
 |   // Try to infer better alignment information than the store already has. | 
 |   if (OptLevel != CodeGenOptLevel::None && ST->isUnindexed() && | 
 |       !ST->isAtomic()) { | 
 |     if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { | 
 |       if (*Alignment > ST->getAlign() && | 
 |           isAligned(*Alignment, ST->getSrcValueOffset())) { | 
 |         SDValue NewStore = | 
 |             DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), | 
 |                               ST->getMemoryVT(), *Alignment, | 
 |                               ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
 |         // NewStore will always be N as we are only refining the alignment | 
 |         assert(NewStore.getNode() == N); | 
 |         (void)NewStore; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Try transforming a pair floating point load / store ops to integer | 
 |   // load / store ops. | 
 |   if (SDValue NewST = TransformFPLoadStorePair(N)) | 
 |     return NewST; | 
 |  | 
 |   // Try transforming several stores into STORE (BSWAP). | 
 |   if (SDValue Store = mergeTruncStores(ST)) | 
 |     return Store; | 
 |  | 
 |   if (ST->isUnindexed()) { | 
 |     // Walk up chain skipping non-aliasing memory nodes, on this store and any | 
 |     // adjacent stores. | 
 |     if (findBetterNeighborChains(ST)) { | 
 |       // replaceStoreChain uses CombineTo, which handled all of the worklist | 
 |       // manipulation. Return the original node to not do anything else. | 
 |       return SDValue(ST, 0); | 
 |     } | 
 |     Chain = ST->getChain(); | 
 |   } | 
 |  | 
 |   // FIXME: is there such a thing as a truncating indexed store? | 
 |   if (ST->isTruncatingStore() && ST->isUnindexed() && | 
 |       Value.getValueType().isInteger() && | 
 |       (!isa<ConstantSDNode>(Value) || | 
 |        !cast<ConstantSDNode>(Value)->isOpaque())) { | 
 |     // Convert a truncating store of a extension into a standard store. | 
 |     if ((Value.getOpcode() == ISD::ZERO_EXTEND || | 
 |          Value.getOpcode() == ISD::SIGN_EXTEND || | 
 |          Value.getOpcode() == ISD::ANY_EXTEND) && | 
 |         Value.getOperand(0).getValueType() == ST->getMemoryVT() && | 
 |         TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT())) | 
 |       return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, | 
 |                           ST->getMemOperand()); | 
 |  | 
 |     APInt TruncDemandedBits = | 
 |         APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), | 
 |                              ST->getMemoryVT().getScalarSizeInBits()); | 
 |  | 
 |     // See if we can simplify the operation with SimplifyDemandedBits, which | 
 |     // only works if the value has a single use. | 
 |     AddToWorklist(Value.getNode()); | 
 |     if (SimplifyDemandedBits(Value, TruncDemandedBits)) { | 
 |       // Re-visit the store if anything changed and the store hasn't been merged | 
 |       // with another node (N is deleted) SimplifyDemandedBits will add Value's | 
 |       // node back to the worklist if necessary, but we also need to re-visit | 
 |       // the Store node itself. | 
 |       if (N->getOpcode() != ISD::DELETED_NODE) | 
 |         AddToWorklist(N); | 
 |       return SDValue(N, 0); | 
 |     } | 
 |  | 
 |     // Otherwise, see if we can simplify the input to this truncstore with | 
 |     // knowledge that only the low bits are being used.  For example: | 
 |     // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" | 
 |     if (SDValue Shorter = | 
 |             TLI.SimplifyMultipleUseDemandedBits(Value, TruncDemandedBits, DAG)) | 
 |       return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), | 
 |                                ST->getMemOperand()); | 
 |  | 
 |     // If we're storing a truncated constant, see if we can simplify it. | 
 |     // TODO: Move this to targetShrinkDemandedConstant? | 
 |     if (auto *Cst = dyn_cast<ConstantSDNode>(Value)) | 
 |       if (!Cst->isOpaque()) { | 
 |         const APInt &CValue = Cst->getAPIntValue(); | 
 |         APInt NewVal = CValue & TruncDemandedBits; | 
 |         if (NewVal != CValue) { | 
 |           SDValue Shorter = | 
 |               DAG.getConstant(NewVal, SDLoc(N), Value.getValueType()); | 
 |           return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, | 
 |                                    ST->getMemoryVT(), ST->getMemOperand()); | 
 |         } | 
 |       } | 
 |   } | 
 |  | 
 |   // If this is a load followed by a store to the same location, then the store | 
 |   // is dead/noop. Peek through any truncates if canCombineTruncStore failed. | 
 |   // TODO: Add big-endian truncate support with test coverage. | 
 |   // TODO: Can relax for unordered atomics (see D66309) | 
 |   SDValue TruncVal = DAG.getDataLayout().isLittleEndian() | 
 |                          ? peekThroughTruncates(Value) | 
 |                          : Value; | 
 |   if (auto *Ld = dyn_cast<LoadSDNode>(TruncVal)) { | 
 |     if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && | 
 |         ST->isUnindexed() && ST->isSimple() && | 
 |         Ld->getAddressSpace() == ST->getAddressSpace() && | 
 |         // There can't be any side effects between the load and store, such as | 
 |         // a call or store. | 
 |         Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { | 
 |       // The store is dead, remove it. | 
 |       return Chain; | 
 |     } | 
 |   } | 
 |  | 
 |   // Try scalarizing vector stores of loads where we only change one element | 
 |   if (SDValue NewST = replaceStoreOfInsertLoad(ST)) | 
 |     return NewST; | 
 |  | 
 |   // TODO: Can relax for unordered atomics (see D66309) | 
 |   if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { | 
 |     if (ST->isUnindexed() && ST->isSimple() && | 
 |         ST1->isUnindexed() && ST1->isSimple()) { | 
 |       if (OptLevel != CodeGenOptLevel::None && ST1->getBasePtr() == Ptr && | 
 |           ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() && | 
 |           ST->getAddressSpace() == ST1->getAddressSpace()) { | 
 |         // If this is a store followed by a store with the same value to the | 
 |         // same location, then the store is dead/noop. | 
 |         return Chain; | 
 |       } | 
 |  | 
 |       if (OptLevel != CodeGenOptLevel::None && ST1->hasOneUse() && | 
 |           !ST1->getBasePtr().isUndef() && | 
 |           ST->getAddressSpace() == ST1->getAddressSpace()) { | 
 |         // If we consider two stores and one smaller in size is a scalable | 
 |         // vector type and another one a bigger size store with a fixed type, | 
 |         // then we could not allow the scalable store removal because we don't | 
 |         // know its final size in the end. | 
 |         if (ST->getMemoryVT().isScalableVector() || | 
 |             ST1->getMemoryVT().isScalableVector()) { | 
 |           if (ST1->getBasePtr() == Ptr && | 
 |               TypeSize::isKnownLE(ST1->getMemoryVT().getStoreSize(), | 
 |                                   ST->getMemoryVT().getStoreSize())) { | 
 |             CombineTo(ST1, ST1->getChain()); | 
 |             return SDValue(N, 0); | 
 |           } | 
 |         } else { | 
 |           const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); | 
 |           const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); | 
 |           // If this is a store who's preceding store to a subset of the current | 
 |           // location and no one other node is chained to that store we can | 
 |           // effectively drop the store. Do not remove stores to undef as they | 
 |           // may be used as data sinks. | 
 |           if (STBase.contains(DAG, ST->getMemoryVT().getFixedSizeInBits(), | 
 |                               ChainBase, | 
 |                               ST1->getMemoryVT().getFixedSizeInBits())) { | 
 |             CombineTo(ST1, ST1->getChain()); | 
 |             return SDValue(N, 0); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is an FP_ROUND or TRUNC followed by a store, fold this into a | 
 |   // truncating store.  We can do this even if this is already a truncstore. | 
 |   if ((Value.getOpcode() == ISD::FP_ROUND || | 
 |        Value.getOpcode() == ISD::TRUNCATE) && | 
 |       Value->hasOneUse() && ST->isUnindexed() && | 
 |       TLI.canCombineTruncStore(Value.getOperand(0).getValueType(), | 
 |                                ST->getMemoryVT(), LegalOperations)) { | 
 |     return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), | 
 |                              Ptr, ST->getMemoryVT(), ST->getMemOperand()); | 
 |   } | 
 |  | 
 |   // Always perform this optimization before types are legal. If the target | 
 |   // prefers, also try this after legalization to catch stores that were created | 
 |   // by intrinsics or other nodes. | 
 |   if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { | 
 |     while (true) { | 
 |       // There can be multiple store sequences on the same chain. | 
 |       // Keep trying to merge store sequences until we are unable to do so | 
 |       // or until we merge the last store on the chain. | 
 |       bool Changed = mergeConsecutiveStores(ST); | 
 |       if (!Changed) break; | 
 |       // Return N as merge only uses CombineTo and no worklist clean | 
 |       // up is necessary. | 
 |       if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) | 
 |         return SDValue(N, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   // Try transforming N to an indexed store. | 
 |   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' | 
 |   // | 
 |   // Make sure to do this only after attempting to merge stores in order to | 
 |   //  avoid changing the types of some subset of stores due to visit order, | 
 |   //  preventing their merging. | 
 |   if (isa<ConstantFPSDNode>(ST->getValue())) { | 
 |     if (SDValue NewSt = replaceStoreOfFPConstant(ST)) | 
 |       return NewSt; | 
 |   } | 
 |  | 
 |   if (SDValue NewSt = splitMergedValStore(ST)) | 
 |     return NewSt; | 
 |  | 
 |   return ReduceLoadOpStoreWidth(N); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { | 
 |   const auto *LifetimeEnd = cast<LifetimeSDNode>(N); | 
 |   if (!LifetimeEnd->hasOffset()) | 
 |     return SDValue(); | 
 |  | 
 |   const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), | 
 |                                         LifetimeEnd->getOffset(), false); | 
 |  | 
 |   // We walk up the chains to find stores. | 
 |   SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; | 
 |   while (!Chains.empty()) { | 
 |     SDValue Chain = Chains.pop_back_val(); | 
 |     if (!Chain.hasOneUse()) | 
 |       continue; | 
 |     switch (Chain.getOpcode()) { | 
 |     case ISD::TokenFactor: | 
 |       for (unsigned Nops = Chain.getNumOperands(); Nops;) | 
 |         Chains.push_back(Chain.getOperand(--Nops)); | 
 |       break; | 
 |     case ISD::LIFETIME_START: | 
 |     case ISD::LIFETIME_END: | 
 |       // We can forward past any lifetime start/end that can be proven not to | 
 |       // alias the node. | 
 |       if (!mayAlias(Chain.getNode(), N)) | 
 |         Chains.push_back(Chain.getOperand(0)); | 
 |       break; | 
 |     case ISD::STORE: { | 
 |       StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); | 
 |       // TODO: Can relax for unordered atomics (see D66309) | 
 |       if (!ST->isSimple() || ST->isIndexed()) | 
 |         continue; | 
 |       const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); | 
 |       // The bounds of a scalable store are not known until runtime, so this | 
 |       // store cannot be elided. | 
 |       if (StoreSize.isScalable()) | 
 |         continue; | 
 |       const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); | 
 |       // If we store purely within object bounds just before its lifetime ends, | 
 |       // we can remove the store. | 
 |       if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, | 
 |                                    StoreSize.getFixedValue() * 8)) { | 
 |         LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); | 
 |                    dbgs() << "\nwithin LIFETIME_END of : "; | 
 |                    LifetimeEndBase.dump(); dbgs() << "\n"); | 
 |         CombineTo(ST, ST->getChain()); | 
 |         return SDValue(N, 0); | 
 |       } | 
 |     } | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// For the instruction sequence of store below, F and I values | 
 | /// are bundled together as an i64 value before being stored into memory. | 
 | /// Sometimes it is more efficent to generate separate stores for F and I, | 
 | /// which can remove the bitwise instructions or sink them to colder places. | 
 | /// | 
 | ///   (store (or (zext (bitcast F to i32) to i64), | 
 | ///              (shl (zext I to i64), 32)), addr)  --> | 
 | ///   (store F, addr) and (store I, addr+4) | 
 | /// | 
 | /// Similarly, splitting for other merged store can also be beneficial, like: | 
 | /// For pair of {i32, i32}, i64 store --> two i32 stores. | 
 | /// For pair of {i32, i16}, i64 store --> two i32 stores. | 
 | /// For pair of {i16, i16}, i32 store --> two i16 stores. | 
 | /// For pair of {i16, i8},  i32 store --> two i16 stores. | 
 | /// For pair of {i8, i8},   i16 store --> two i8 stores. | 
 | /// | 
 | /// We allow each target to determine specifically which kind of splitting is | 
 | /// supported. | 
 | /// | 
 | /// The store patterns are commonly seen from the simple code snippet below | 
 | /// if only std::make_pair(...) is sroa transformed before inlined into hoo. | 
 | ///   void goo(const std::pair<int, float> &); | 
 | ///   hoo() { | 
 | ///     ... | 
 | ///     goo(std::make_pair(tmp, ftmp)); | 
 | ///     ... | 
 | ///   } | 
 | /// | 
 | SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { | 
 |   if (OptLevel == CodeGenOptLevel::None) | 
 |     return SDValue(); | 
 |  | 
 |   // Can't change the number of memory accesses for a volatile store or break | 
 |   // atomicity for an atomic one. | 
 |   if (!ST->isSimple()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Val = ST->getValue(); | 
 |   SDLoc DL(ST); | 
 |  | 
 |   // Match OR operand. | 
 |   if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) | 
 |     return SDValue(); | 
 |  | 
 |   // Match SHL operand and get Lower and Higher parts of Val. | 
 |   SDValue Op1 = Val.getOperand(0); | 
 |   SDValue Op2 = Val.getOperand(1); | 
 |   SDValue Lo, Hi; | 
 |   if (Op1.getOpcode() != ISD::SHL) { | 
 |     std::swap(Op1, Op2); | 
 |     if (Op1.getOpcode() != ISD::SHL) | 
 |       return SDValue(); | 
 |   } | 
 |   Lo = Op2; | 
 |   Hi = Op1.getOperand(0); | 
 |   if (!Op1.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // Match shift amount to HalfValBitSize. | 
 |   unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; | 
 |   ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); | 
 |   if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) | 
 |     return SDValue(); | 
 |  | 
 |   // Lo and Hi are zero-extended from int with size less equal than 32 | 
 |   // to i64. | 
 |   if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || | 
 |       !Lo.getOperand(0).getValueType().isScalarInteger() || | 
 |       Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || | 
 |       Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || | 
 |       !Hi.getOperand(0).getValueType().isScalarInteger() || | 
 |       Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) | 
 |     return SDValue(); | 
 |  | 
 |   // Use the EVT of low and high parts before bitcast as the input | 
 |   // of target query. | 
 |   EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) | 
 |                   ? Lo.getOperand(0).getValueType() | 
 |                   : Lo.getValueType(); | 
 |   EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) | 
 |                    ? Hi.getOperand(0).getValueType() | 
 |                    : Hi.getValueType(); | 
 |   if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) | 
 |     return SDValue(); | 
 |  | 
 |   // Start to split store. | 
 |   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); | 
 |   AAMDNodes AAInfo = ST->getAAInfo(); | 
 |  | 
 |   // Change the sizes of Lo and Hi's value types to HalfValBitSize. | 
 |   EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); | 
 |   Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); | 
 |   Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); | 
 |  | 
 |   SDValue Chain = ST->getChain(); | 
 |   SDValue Ptr = ST->getBasePtr(); | 
 |   // Lower value store. | 
 |   SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), | 
 |                              ST->getOriginalAlign(), MMOFlags, AAInfo); | 
 |   Ptr = | 
 |       DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(HalfValBitSize / 8), DL); | 
 |   // Higher value store. | 
 |   SDValue St1 = DAG.getStore( | 
 |       St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), | 
 |       ST->getOriginalAlign(), MMOFlags, AAInfo); | 
 |   return St1; | 
 | } | 
 |  | 
 | // Merge an insertion into an existing shuffle: | 
 | // (insert_vector_elt (vector_shuffle X, Y, Mask), | 
 | //                   .(extract_vector_elt X, N), InsIndex) | 
 | //   --> (vector_shuffle X, Y, NewMask) | 
 | //  and variations where shuffle operands may be CONCAT_VECTORS. | 
 | static bool mergeEltWithShuffle(SDValue &X, SDValue &Y, ArrayRef<int> Mask, | 
 |                                 SmallVectorImpl<int> &NewMask, SDValue Elt, | 
 |                                 unsigned InsIndex) { | 
 |   if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
 |       !isa<ConstantSDNode>(Elt.getOperand(1))) | 
 |     return false; | 
 |  | 
 |   // Vec's operand 0 is using indices from 0 to N-1 and | 
 |   // operand 1 from N to 2N - 1, where N is the number of | 
 |   // elements in the vectors. | 
 |   SDValue InsertVal0 = Elt.getOperand(0); | 
 |   int ElementOffset = -1; | 
 |  | 
 |   // We explore the inputs of the shuffle in order to see if we find the | 
 |   // source of the extract_vector_elt. If so, we can use it to modify the | 
 |   // shuffle rather than perform an insert_vector_elt. | 
 |   SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; | 
 |   ArgWorkList.emplace_back(Mask.size(), Y); | 
 |   ArgWorkList.emplace_back(0, X); | 
 |  | 
 |   while (!ArgWorkList.empty()) { | 
 |     int ArgOffset; | 
 |     SDValue ArgVal; | 
 |     std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); | 
 |  | 
 |     if (ArgVal == InsertVal0) { | 
 |       ElementOffset = ArgOffset; | 
 |       break; | 
 |     } | 
 |  | 
 |     // Peek through concat_vector. | 
 |     if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { | 
 |       int CurrentArgOffset = | 
 |           ArgOffset + ArgVal.getValueType().getVectorNumElements(); | 
 |       int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); | 
 |       for (SDValue Op : reverse(ArgVal->ops())) { | 
 |         CurrentArgOffset -= Step; | 
 |         ArgWorkList.emplace_back(CurrentArgOffset, Op); | 
 |       } | 
 |  | 
 |       // Make sure we went through all the elements and did not screw up index | 
 |       // computation. | 
 |       assert(CurrentArgOffset == ArgOffset); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we failed to find a match, see if we can replace an UNDEF shuffle | 
 |   // operand. | 
 |   if (ElementOffset == -1) { | 
 |     if (!Y.isUndef() || InsertVal0.getValueType() != Y.getValueType()) | 
 |       return false; | 
 |     ElementOffset = Mask.size(); | 
 |     Y = InsertVal0; | 
 |   } | 
 |  | 
 |   NewMask.assign(Mask.begin(), Mask.end()); | 
 |   NewMask[InsIndex] = ElementOffset + Elt.getConstantOperandVal(1); | 
 |   assert(NewMask[InsIndex] < (int)(2 * Mask.size()) && NewMask[InsIndex] >= 0 && | 
 |          "NewMask[InsIndex] is out of bound"); | 
 |   return true; | 
 | } | 
 |  | 
 | // Merge an insertion into an existing shuffle: | 
 | // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), | 
 | // InsIndex) | 
 | //   --> (vector_shuffle X, Y) and variations where shuffle operands may be | 
 | //   CONCAT_VECTORS. | 
 | SDValue DAGCombiner::mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex) { | 
 |   assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && | 
 |          "Expected extract_vector_elt"); | 
 |   SDValue InsertVal = N->getOperand(1); | 
 |   SDValue Vec = N->getOperand(0); | 
 |  | 
 |   auto *SVN = dyn_cast<ShuffleVectorSDNode>(Vec); | 
 |   if (!SVN || !Vec.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   ArrayRef<int> Mask = SVN->getMask(); | 
 |   SDValue X = Vec.getOperand(0); | 
 |   SDValue Y = Vec.getOperand(1); | 
 |  | 
 |   SmallVector<int, 16> NewMask(Mask); | 
 |   if (mergeEltWithShuffle(X, Y, Mask, NewMask, InsertVal, InsIndex)) { | 
 |     SDValue LegalShuffle = TLI.buildLegalVectorShuffle( | 
 |         Vec.getValueType(), SDLoc(N), X, Y, NewMask, DAG); | 
 |     if (LegalShuffle) | 
 |       return LegalShuffle; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Convert a disguised subvector insertion into a shuffle: | 
 | // insert_vector_elt V, (bitcast X from vector type), IdxC --> | 
 | // bitcast(shuffle (bitcast V), (extended X), Mask) | 
 | // Note: We do not use an insert_subvector node because that requires a | 
 | // legal subvector type. | 
 | SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { | 
 |   assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && | 
 |          "Expected extract_vector_elt"); | 
 |   SDValue InsertVal = N->getOperand(1); | 
 |  | 
 |   if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || | 
 |       !InsertVal.getOperand(0).getValueType().isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue SubVec = InsertVal.getOperand(0); | 
 |   SDValue DestVec = N->getOperand(0); | 
 |   EVT SubVecVT = SubVec.getValueType(); | 
 |   EVT VT = DestVec.getValueType(); | 
 |   unsigned NumSrcElts = SubVecVT.getVectorNumElements(); | 
 |   // If the source only has a single vector element, the cost of creating adding | 
 |   // it to a vector is likely to exceed the cost of a insert_vector_elt. | 
 |   if (NumSrcElts == 1) | 
 |     return SDValue(); | 
 |   unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); | 
 |   unsigned NumMaskVals = ExtendRatio * NumSrcElts; | 
 |  | 
 |   // Step 1: Create a shuffle mask that implements this insert operation. The | 
 |   // vector that we are inserting into will be operand 0 of the shuffle, so | 
 |   // those elements are just 'i'. The inserted subvector is in the first | 
 |   // positions of operand 1 of the shuffle. Example: | 
 |   // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} | 
 |   SmallVector<int, 16> Mask(NumMaskVals); | 
 |   for (unsigned i = 0; i != NumMaskVals; ++i) { | 
 |     if (i / NumSrcElts == InsIndex) | 
 |       Mask[i] = (i % NumSrcElts) + NumMaskVals; | 
 |     else | 
 |       Mask[i] = i; | 
 |   } | 
 |  | 
 |   // Bail out if the target can not handle the shuffle we want to create. | 
 |   EVT SubVecEltVT = SubVecVT.getVectorElementType(); | 
 |   EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); | 
 |   if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Step 2: Create a wide vector from the inserted source vector by appending | 
 |   // undefined elements. This is the same size as our destination vector. | 
 |   SDLoc DL(N); | 
 |   SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); | 
 |   ConcatOps[0] = SubVec; | 
 |   SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); | 
 |  | 
 |   // Step 3: Shuffle in the padded subvector. | 
 |   SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); | 
 |   SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); | 
 |   AddToWorklist(PaddedSubV.getNode()); | 
 |   AddToWorklist(DestVecBC.getNode()); | 
 |   AddToWorklist(Shuf.getNode()); | 
 |   return DAG.getBitcast(VT, Shuf); | 
 | } | 
 |  | 
 | // Combine insert(shuffle(load, <u,0,1,2>), load, 0) into a single load if | 
 | // possible and the new load will be quick. We use more loads but less shuffles | 
 | // and inserts. | 
 | SDValue DAGCombiner::combineInsertEltToLoad(SDNode *N, unsigned InsIndex) { | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // InsIndex is expected to be the first of last lane. | 
 |   if (!VT.isFixedLengthVector() || | 
 |       (InsIndex != 0 && InsIndex != VT.getVectorNumElements() - 1)) | 
 |     return SDValue(); | 
 |  | 
 |   // Look for a shuffle with the mask u,0,1,2,3,4,5,6 or 1,2,3,4,5,6,7,u | 
 |   // depending on the InsIndex. | 
 |   auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0)); | 
 |   SDValue Scalar = N->getOperand(1); | 
 |   if (!Shuffle || !all_of(enumerate(Shuffle->getMask()), [&](auto P) { | 
 |         return InsIndex == P.index() || P.value() < 0 || | 
 |                (InsIndex == 0 && P.value() == (int)P.index() - 1) || | 
 |                (InsIndex == VT.getVectorNumElements() - 1 && | 
 |                 P.value() == (int)P.index() + 1); | 
 |       })) | 
 |     return SDValue(); | 
 |  | 
 |   // We optionally skip over an extend so long as both loads are extended in the | 
 |   // same way from the same type. | 
 |   unsigned Extend = 0; | 
 |   if (Scalar.getOpcode() == ISD::ZERO_EXTEND || | 
 |       Scalar.getOpcode() == ISD::SIGN_EXTEND || | 
 |       Scalar.getOpcode() == ISD::ANY_EXTEND) { | 
 |     Extend = Scalar.getOpcode(); | 
 |     Scalar = Scalar.getOperand(0); | 
 |   } | 
 |  | 
 |   auto *ScalarLoad = dyn_cast<LoadSDNode>(Scalar); | 
 |   if (!ScalarLoad) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Vec = Shuffle->getOperand(0); | 
 |   if (Extend) { | 
 |     if (Vec.getOpcode() != Extend) | 
 |       return SDValue(); | 
 |     Vec = Vec.getOperand(0); | 
 |   } | 
 |   auto *VecLoad = dyn_cast<LoadSDNode>(Vec); | 
 |   if (!VecLoad || Vec.getValueType().getScalarType() != Scalar.getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   int EltSize = ScalarLoad->getValueType(0).getScalarSizeInBits(); | 
 |   if (EltSize == 0 || EltSize % 8 != 0 || !ScalarLoad->isSimple() || | 
 |       !VecLoad->isSimple() || VecLoad->getExtensionType() != ISD::NON_EXTLOAD || | 
 |       ScalarLoad->getExtensionType() != ISD::NON_EXTLOAD || | 
 |       ScalarLoad->getAddressSpace() != VecLoad->getAddressSpace()) | 
 |     return SDValue(); | 
 |  | 
 |   // Check that the offset between the pointers to produce a single continuous | 
 |   // load. | 
 |   if (InsIndex == 0) { | 
 |     if (!DAG.areNonVolatileConsecutiveLoads(ScalarLoad, VecLoad, EltSize / 8, | 
 |                                             -1)) | 
 |       return SDValue(); | 
 |   } else { | 
 |     if (!DAG.areNonVolatileConsecutiveLoads( | 
 |             VecLoad, ScalarLoad, VT.getVectorNumElements() * EltSize / 8, -1)) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // And that the new unaligned load will be fast. | 
 |   unsigned IsFast = 0; | 
 |   Align NewAlign = commonAlignment(VecLoad->getAlign(), EltSize / 8); | 
 |   if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), | 
 |                               Vec.getValueType(), VecLoad->getAddressSpace(), | 
 |                               NewAlign, VecLoad->getMemOperand()->getFlags(), | 
 |                               &IsFast) || | 
 |       !IsFast) | 
 |     return SDValue(); | 
 |  | 
 |   // Calculate the new Ptr and create the new load. | 
 |   SDLoc DL(N); | 
 |   SDValue Ptr = ScalarLoad->getBasePtr(); | 
 |   if (InsIndex != 0) | 
 |     Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), VecLoad->getBasePtr(), | 
 |                       DAG.getConstant(EltSize / 8, DL, Ptr.getValueType())); | 
 |   MachinePointerInfo PtrInfo = | 
 |       InsIndex == 0 ? ScalarLoad->getPointerInfo() | 
 |                     : VecLoad->getPointerInfo().getWithOffset(EltSize / 8); | 
 |  | 
 |   SDValue Load = DAG.getLoad(VecLoad->getValueType(0), DL, | 
 |                              ScalarLoad->getChain(), Ptr, PtrInfo, NewAlign); | 
 |   DAG.makeEquivalentMemoryOrdering(ScalarLoad, Load.getValue(1)); | 
 |   DAG.makeEquivalentMemoryOrdering(VecLoad, Load.getValue(1)); | 
 |   return Extend ? DAG.getNode(Extend, DL, VT, Load) : Load; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { | 
 |   SDValue InVec = N->getOperand(0); | 
 |   SDValue InVal = N->getOperand(1); | 
 |   SDValue EltNo = N->getOperand(2); | 
 |   SDLoc DL(N); | 
 |  | 
 |   EVT VT = InVec.getValueType(); | 
 |   auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); | 
 |  | 
 |   // Insert into out-of-bounds element is undefined. | 
 |   if (IndexC && VT.isFixedLengthVector() && | 
 |       IndexC->getZExtValue() >= VT.getVectorNumElements()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // Remove redundant insertions: | 
 |   // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x | 
 |   if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
 |       InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) | 
 |     return InVec; | 
 |  | 
 |   if (!IndexC) { | 
 |     // If this is variable insert to undef vector, it might be better to splat: | 
 |     // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > | 
 |     if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) | 
 |       return DAG.getSplat(VT, DL, InVal); | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   if (VT.isScalableVector()) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |  | 
 |   // We must know which element is being inserted for folds below here. | 
 |   unsigned Elt = IndexC->getZExtValue(); | 
 |  | 
 |   // Handle <1 x ???> vector insertion special cases. | 
 |   if (NumElts == 1) { | 
 |     // insert_vector_elt(x, extract_vector_elt(y, 0), 0) -> y | 
 |     if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
 |         InVal.getOperand(0).getValueType() == VT && | 
 |         isNullConstant(InVal.getOperand(1))) | 
 |       return InVal.getOperand(0); | 
 |   } | 
 |  | 
 |   // Canonicalize insert_vector_elt dag nodes. | 
 |   // Example: | 
 |   // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) | 
 |   // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) | 
 |   // | 
 |   // Do this only if the child insert_vector node has one use; also | 
 |   // do this only if indices are both constants and Idx1 < Idx0. | 
 |   if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() | 
 |       && isa<ConstantSDNode>(InVec.getOperand(2))) { | 
 |     unsigned OtherElt = InVec.getConstantOperandVal(2); | 
 |     if (Elt < OtherElt) { | 
 |       // Swap nodes. | 
 |       SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, | 
 |                                   InVec.getOperand(0), InVal, EltNo); | 
 |       AddToWorklist(NewOp.getNode()); | 
 |       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), | 
 |                          VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue Shuf = mergeInsertEltWithShuffle(N, Elt)) | 
 |     return Shuf; | 
 |  | 
 |   if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) | 
 |     return Shuf; | 
 |  | 
 |   if (SDValue Shuf = combineInsertEltToLoad(N, Elt)) | 
 |     return Shuf; | 
 |  | 
 |   // Attempt to convert an insert_vector_elt chain into a legal build_vector. | 
 |   if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { | 
 |     // vXi1 vector - we don't need to recurse. | 
 |     if (NumElts == 1) | 
 |       return DAG.getBuildVector(VT, DL, {InVal}); | 
 |  | 
 |     // If we haven't already collected the element, insert into the op list. | 
 |     EVT MaxEltVT = InVal.getValueType(); | 
 |     auto AddBuildVectorOp = [&](SmallVectorImpl<SDValue> &Ops, SDValue Elt, | 
 |                                 unsigned Idx) { | 
 |       if (!Ops[Idx]) { | 
 |         Ops[Idx] = Elt; | 
 |         if (VT.isInteger()) { | 
 |           EVT EltVT = Elt.getValueType(); | 
 |           MaxEltVT = MaxEltVT.bitsGE(EltVT) ? MaxEltVT : EltVT; | 
 |         } | 
 |       } | 
 |     }; | 
 |  | 
 |     // Ensure all the operands are the same value type, fill any missing | 
 |     // operands with UNDEF and create the BUILD_VECTOR. | 
 |     auto CanonicalizeBuildVector = [&](SmallVectorImpl<SDValue> &Ops) { | 
 |       assert(Ops.size() == NumElts && "Unexpected vector size"); | 
 |       for (SDValue &Op : Ops) { | 
 |         if (Op) | 
 |           Op = VT.isInteger() ? DAG.getAnyExtOrTrunc(Op, DL, MaxEltVT) : Op; | 
 |         else | 
 |           Op = DAG.getUNDEF(MaxEltVT); | 
 |       } | 
 |       return DAG.getBuildVector(VT, DL, Ops); | 
 |     }; | 
 |  | 
 |     SmallVector<SDValue, 8> Ops(NumElts, SDValue()); | 
 |     Ops[Elt] = InVal; | 
 |  | 
 |     // Recurse up a INSERT_VECTOR_ELT chain to build a BUILD_VECTOR. | 
 |     for (SDValue CurVec = InVec; CurVec;) { | 
 |       // UNDEF - build new BUILD_VECTOR from already inserted operands. | 
 |       if (CurVec.isUndef()) | 
 |         return CanonicalizeBuildVector(Ops); | 
 |  | 
 |       // BUILD_VECTOR - insert unused operands and build new BUILD_VECTOR. | 
 |       if (CurVec.getOpcode() == ISD::BUILD_VECTOR && CurVec.hasOneUse()) { | 
 |         for (unsigned I = 0; I != NumElts; ++I) | 
 |           AddBuildVectorOp(Ops, CurVec.getOperand(I), I); | 
 |         return CanonicalizeBuildVector(Ops); | 
 |       } | 
 |  | 
 |       // SCALAR_TO_VECTOR - insert unused scalar and build new BUILD_VECTOR. | 
 |       if (CurVec.getOpcode() == ISD::SCALAR_TO_VECTOR && CurVec.hasOneUse()) { | 
 |         AddBuildVectorOp(Ops, CurVec.getOperand(0), 0); | 
 |         return CanonicalizeBuildVector(Ops); | 
 |       } | 
 |  | 
 |       // INSERT_VECTOR_ELT - insert operand and continue up the chain. | 
 |       if (CurVec.getOpcode() == ISD::INSERT_VECTOR_ELT && CurVec.hasOneUse()) | 
 |         if (auto *CurIdx = dyn_cast<ConstantSDNode>(CurVec.getOperand(2))) | 
 |           if (CurIdx->getAPIntValue().ult(NumElts)) { | 
 |             unsigned Idx = CurIdx->getZExtValue(); | 
 |             AddBuildVectorOp(Ops, CurVec.getOperand(1), Idx); | 
 |  | 
 |             // Found entire BUILD_VECTOR. | 
 |             if (all_of(Ops, [](SDValue Op) { return !!Op; })) | 
 |               return CanonicalizeBuildVector(Ops); | 
 |  | 
 |             CurVec = CurVec->getOperand(0); | 
 |             continue; | 
 |           } | 
 |  | 
 |       // VECTOR_SHUFFLE - if all the operands match the shuffle's sources, | 
 |       // update the shuffle mask (and second operand if we started with unary | 
 |       // shuffle) and create a new legal shuffle. | 
 |       if (CurVec.getOpcode() == ISD::VECTOR_SHUFFLE && CurVec.hasOneUse()) { | 
 |         auto *SVN = cast<ShuffleVectorSDNode>(CurVec); | 
 |         SDValue LHS = SVN->getOperand(0); | 
 |         SDValue RHS = SVN->getOperand(1); | 
 |         SmallVector<int, 16> Mask(SVN->getMask()); | 
 |         bool Merged = true; | 
 |         for (auto I : enumerate(Ops)) { | 
 |           SDValue &Op = I.value(); | 
 |           if (Op) { | 
 |             SmallVector<int, 16> NewMask; | 
 |             if (!mergeEltWithShuffle(LHS, RHS, Mask, NewMask, Op, I.index())) { | 
 |               Merged = false; | 
 |               break; | 
 |             } | 
 |             Mask = std::move(NewMask); | 
 |           } | 
 |         } | 
 |         if (Merged) | 
 |           if (SDValue NewShuffle = | 
 |                   TLI.buildLegalVectorShuffle(VT, DL, LHS, RHS, Mask, DAG)) | 
 |             return NewShuffle; | 
 |       } | 
 |  | 
 |       // If all insertions are zero value, try to convert to AND mask. | 
 |       // TODO: Do this for -1 with OR mask? | 
 |       if (!LegalOperations && llvm::isNullConstant(InVal) && | 
 |           all_of(Ops, [InVal](SDValue Op) { return !Op || Op == InVal; }) && | 
 |           count_if(Ops, [InVal](SDValue Op) { return Op == InVal; }) >= 2) { | 
 |         SDValue Zero = DAG.getConstant(0, DL, MaxEltVT); | 
 |         SDValue AllOnes = DAG.getAllOnesConstant(DL, MaxEltVT); | 
 |         SmallVector<SDValue, 8> Mask(NumElts); | 
 |         for (unsigned I = 0; I != NumElts; ++I) | 
 |           Mask[I] = Ops[I] ? Zero : AllOnes; | 
 |         return DAG.getNode(ISD::AND, DL, VT, CurVec, | 
 |                            DAG.getBuildVector(VT, DL, Mask)); | 
 |       } | 
 |  | 
 |       // Failed to find a match in the chain - bail. | 
 |       break; | 
 |     } | 
 |  | 
 |     // See if we can fill in the missing constant elements as zeros. | 
 |     // TODO: Should we do this for any constant? | 
 |     APInt DemandedZeroElts = APInt::getZero(NumElts); | 
 |     for (unsigned I = 0; I != NumElts; ++I) | 
 |       if (!Ops[I]) | 
 |         DemandedZeroElts.setBit(I); | 
 |  | 
 |     if (DAG.MaskedVectorIsZero(InVec, DemandedZeroElts)) { | 
 |       SDValue Zero = VT.isInteger() ? DAG.getConstant(0, DL, MaxEltVT) | 
 |                                     : DAG.getConstantFP(0, DL, MaxEltVT); | 
 |       for (unsigned I = 0; I != NumElts; ++I) | 
 |         if (!Ops[I]) | 
 |           Ops[I] = Zero; | 
 |  | 
 |       return CanonicalizeBuildVector(Ops); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Transform a vector binary operation into a scalar binary operation by moving | 
 | /// the math/logic after an extract element of a vector. | 
 | static SDValue scalarizeExtractedBinOp(SDNode *ExtElt, SelectionDAG &DAG, | 
 |                                        const SDLoc &DL, bool LegalTypes) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   SDValue Vec = ExtElt->getOperand(0); | 
 |   SDValue Index = ExtElt->getOperand(1); | 
 |   auto *IndexC = dyn_cast<ConstantSDNode>(Index); | 
 |   unsigned Opc = Vec.getOpcode(); | 
 |   if (!IndexC || !Vec.hasOneUse() || (!TLI.isBinOp(Opc) && Opc != ISD::SETCC) || | 
 |       Vec->getNumValues() != 1) | 
 |     return SDValue(); | 
 |  | 
 |   // Targets may want to avoid this to prevent an expensive register transfer. | 
 |   if (!TLI.shouldScalarizeBinop(Vec)) | 
 |     return SDValue(); | 
 |  | 
 |   EVT ResVT = ExtElt->getValueType(0); | 
 |   if (Opc == ISD::SETCC && | 
 |       (ResVT != Vec.getValueType().getVectorElementType() || LegalTypes)) | 
 |     return SDValue(); | 
 |  | 
 |   // Extracting an element of a vector constant is constant-folded, so this | 
 |   // transform is just replacing a vector op with a scalar op while moving the | 
 |   // extract. | 
 |   SDValue Op0 = Vec.getOperand(0); | 
 |   SDValue Op1 = Vec.getOperand(1); | 
 |   APInt SplatVal; | 
 |   if (!isAnyConstantBuildVector(Op0, true) && | 
 |       !ISD::isConstantSplatVector(Op0.getNode(), SplatVal) && | 
 |       !isAnyConstantBuildVector(Op1, true) && | 
 |       !ISD::isConstantSplatVector(Op1.getNode(), SplatVal)) | 
 |     return SDValue(); | 
 |  | 
 |   // extractelt (op X, C), IndexC --> op (extractelt X, IndexC), C' | 
 |   // extractelt (op C, X), IndexC --> op C', (extractelt X, IndexC) | 
 |   if (Opc == ISD::SETCC) { | 
 |     EVT OpVT = Op0.getValueType().getVectorElementType(); | 
 |     Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT, Op0, Index); | 
 |     Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT, Op1, Index); | 
 |     SDValue NewVal = DAG.getSetCC( | 
 |         DL, ResVT, Op0, Op1, cast<CondCodeSDNode>(Vec->getOperand(2))->get()); | 
 |     // We may need to sign- or zero-extend the result to match the same | 
 |     // behaviour as the vector version of SETCC. | 
 |     unsigned VecBoolContents = TLI.getBooleanContents(Vec.getValueType()); | 
 |     if (ResVT != MVT::i1 && | 
 |         VecBoolContents != TargetLowering::UndefinedBooleanContent && | 
 |         VecBoolContents != TLI.getBooleanContents(ResVT)) { | 
 |       if (VecBoolContents == TargetLowering::ZeroOrNegativeOneBooleanContent) | 
 |         NewVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ResVT, NewVal, | 
 |                              DAG.getValueType(MVT::i1)); | 
 |       else | 
 |         NewVal = DAG.getZeroExtendInReg(NewVal, DL, MVT::i1); | 
 |     } | 
 |     return NewVal; | 
 |   } | 
 |   Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op0, Index); | 
 |   Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op1, Index); | 
 |   return DAG.getNode(Opc, DL, ResVT, Op0, Op1); | 
 | } | 
 |  | 
 | // Given a ISD::EXTRACT_VECTOR_ELT, which is a glorified bit sequence extract, | 
 | // recursively analyse all of it's users. and try to model themselves as | 
 | // bit sequence extractions. If all of them agree on the new, narrower element | 
 | // type, and all of them can be modelled as ISD::EXTRACT_VECTOR_ELT's of that | 
 | // new element type, do so now. | 
 | // This is mainly useful to recover from legalization that scalarized | 
 | // the vector as wide elements, but tries to rebuild it with narrower elements. | 
 | // | 
 | // Some more nodes could be modelled if that helps cover interesting patterns. | 
 | bool DAGCombiner::refineExtractVectorEltIntoMultipleNarrowExtractVectorElts( | 
 |     SDNode *N) { | 
 |   // We perform this optimization post type-legalization because | 
 |   // the type-legalizer often scalarizes integer-promoted vectors. | 
 |   // Performing this optimization before may cause legalizaton cycles. | 
 |   if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) | 
 |     return false; | 
 |  | 
 |   // TODO: Add support for big-endian. | 
 |   if (DAG.getDataLayout().isBigEndian()) | 
 |     return false; | 
 |  | 
 |   SDValue VecOp = N->getOperand(0); | 
 |   EVT VecVT = VecOp.getValueType(); | 
 |   assert(!VecVT.isScalableVector() && "Only for fixed vectors."); | 
 |  | 
 |   // We must start with a constant extraction index. | 
 |   auto *IndexC = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |   if (!IndexC) | 
 |     return false; | 
 |  | 
 |   assert(IndexC->getZExtValue() < VecVT.getVectorNumElements() && | 
 |          "Original ISD::EXTRACT_VECTOR_ELT is undefinend?"); | 
 |  | 
 |   // TODO: deal with the case of implicit anyext of the extraction. | 
 |   unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); | 
 |   EVT ScalarVT = N->getValueType(0); | 
 |   if (VecVT.getScalarType() != ScalarVT) | 
 |     return false; | 
 |  | 
 |   // TODO: deal with the cases other than everything being integer-typed. | 
 |   if (!ScalarVT.isScalarInteger()) | 
 |     return false; | 
 |  | 
 |   struct Entry { | 
 |     SDNode *Producer; | 
 |  | 
 |     // Which bits of VecOp does it contain? | 
 |     unsigned BitPos; | 
 |     int NumBits; | 
 |     // NOTE: the actual width of \p Producer may be wider than NumBits! | 
 |  | 
 |     Entry(Entry &&) = default; | 
 |     Entry(SDNode *Producer_, unsigned BitPos_, int NumBits_) | 
 |         : Producer(Producer_), BitPos(BitPos_), NumBits(NumBits_) {} | 
 |  | 
 |     Entry() = delete; | 
 |     Entry(const Entry &) = delete; | 
 |     Entry &operator=(const Entry &) = delete; | 
 |     Entry &operator=(Entry &&) = delete; | 
 |   }; | 
 |   SmallVector<Entry, 32> Worklist; | 
 |   SmallVector<Entry, 32> Leafs; | 
 |  | 
 |   // We start at the "root" ISD::EXTRACT_VECTOR_ELT. | 
 |   Worklist.emplace_back(N, /*BitPos=*/VecEltBitWidth * IndexC->getZExtValue(), | 
 |                         /*NumBits=*/VecEltBitWidth); | 
 |  | 
 |   while (!Worklist.empty()) { | 
 |     Entry E = Worklist.pop_back_val(); | 
 |     // Does the node not even use any of the VecOp bits? | 
 |     if (!(E.NumBits > 0 && E.BitPos < VecVT.getSizeInBits() && | 
 |           E.BitPos + E.NumBits <= VecVT.getSizeInBits())) | 
 |       return false; // Let's allow the other combines clean this up first. | 
 |     // Did we fail to model any of the users of the Producer? | 
 |     bool ProducerIsLeaf = false; | 
 |     // Look at each user of this Producer. | 
 |     for (SDNode *User : E.Producer->users()) { | 
 |       switch (User->getOpcode()) { | 
 |       // TODO: support ISD::BITCAST | 
 |       // TODO: support ISD::ANY_EXTEND | 
 |       // TODO: support ISD::ZERO_EXTEND | 
 |       // TODO: support ISD::SIGN_EXTEND | 
 |       case ISD::TRUNCATE: | 
 |         // Truncation simply means we keep position, but extract less bits. | 
 |         Worklist.emplace_back(User, E.BitPos, | 
 |                               /*NumBits=*/User->getValueSizeInBits(0)); | 
 |         break; | 
 |       // TODO: support ISD::SRA | 
 |       // TODO: support ISD::SHL | 
 |       case ISD::SRL: | 
 |         // We should be shifting the Producer by a constant amount. | 
 |         if (auto *ShAmtC = dyn_cast<ConstantSDNode>(User->getOperand(1)); | 
 |             User->getOperand(0).getNode() == E.Producer && ShAmtC) { | 
 |           // Logical right-shift means that we start extraction later, | 
 |           // but stop it at the same position we did previously. | 
 |           unsigned ShAmt = ShAmtC->getZExtValue(); | 
 |           Worklist.emplace_back(User, E.BitPos + ShAmt, E.NumBits - ShAmt); | 
 |           break; | 
 |         } | 
 |         [[fallthrough]]; | 
 |       default: | 
 |         // We can not model this user of the Producer. | 
 |         // Which means the current Producer will be a ISD::EXTRACT_VECTOR_ELT. | 
 |         ProducerIsLeaf = true; | 
 |         // Profitability check: all users that we can not model | 
 |         //                      must be ISD::BUILD_VECTOR's. | 
 |         if (User->getOpcode() != ISD::BUILD_VECTOR) | 
 |           return false; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (ProducerIsLeaf) | 
 |       Leafs.emplace_back(std::move(E)); | 
 |   } | 
 |  | 
 |   unsigned NewVecEltBitWidth = Leafs.front().NumBits; | 
 |  | 
 |   // If we are still at the same element granularity, give up, | 
 |   if (NewVecEltBitWidth == VecEltBitWidth) | 
 |     return false; | 
 |  | 
 |   // The vector width must be a multiple of the new element width. | 
 |   if (VecVT.getSizeInBits() % NewVecEltBitWidth != 0) | 
 |     return false; | 
 |  | 
 |   // All leafs must agree on the new element width. | 
 |   // All leafs must not expect any "padding" bits ontop of that width. | 
 |   // All leafs must start extraction from multiple of that width. | 
 |   if (!all_of(Leafs, [NewVecEltBitWidth](const Entry &E) { | 
 |         return (unsigned)E.NumBits == NewVecEltBitWidth && | 
 |                E.Producer->getValueSizeInBits(0) == NewVecEltBitWidth && | 
 |                E.BitPos % NewVecEltBitWidth == 0; | 
 |       })) | 
 |     return false; | 
 |  | 
 |   EVT NewScalarVT = EVT::getIntegerVT(*DAG.getContext(), NewVecEltBitWidth); | 
 |   EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewScalarVT, | 
 |                                   VecVT.getSizeInBits() / NewVecEltBitWidth); | 
 |  | 
 |   if (LegalTypes && | 
 |       !(TLI.isTypeLegal(NewScalarVT) && TLI.isTypeLegal(NewVecVT))) | 
 |     return false; | 
 |  | 
 |   if (LegalOperations && | 
 |       !(TLI.isOperationLegalOrCustom(ISD::BITCAST, NewVecVT) && | 
 |         TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, NewVecVT))) | 
 |     return false; | 
 |  | 
 |   SDValue NewVecOp = DAG.getBitcast(NewVecVT, VecOp); | 
 |   for (const Entry &E : Leafs) { | 
 |     SDLoc DL(E.Producer); | 
 |     unsigned NewIndex = E.BitPos / NewVecEltBitWidth; | 
 |     assert(NewIndex < NewVecVT.getVectorNumElements() && | 
 |            "Creating out-of-bounds ISD::EXTRACT_VECTOR_ELT?"); | 
 |     SDValue V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, NewScalarVT, NewVecOp, | 
 |                             DAG.getVectorIdxConstant(NewIndex, DL)); | 
 |     CombineTo(E.Producer, V); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { | 
 |   SDValue VecOp = N->getOperand(0); | 
 |   SDValue Index = N->getOperand(1); | 
 |   EVT ScalarVT = N->getValueType(0); | 
 |   EVT VecVT = VecOp.getValueType(); | 
 |   if (VecOp.isUndef()) | 
 |     return DAG.getUNDEF(ScalarVT); | 
 |  | 
 |   // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val | 
 |   // | 
 |   // This only really matters if the index is non-constant since other combines | 
 |   // on the constant elements already work. | 
 |   SDLoc DL(N); | 
 |   if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && | 
 |       Index == VecOp.getOperand(2)) { | 
 |     SDValue Elt = VecOp.getOperand(1); | 
 |     AddUsersToWorklist(VecOp.getNode()); | 
 |     return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; | 
 |   } | 
 |  | 
 |   // (vextract (scalar_to_vector val, 0) -> val | 
 |   if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
 |     // Only 0'th element of SCALAR_TO_VECTOR is defined. | 
 |     if (DAG.isKnownNeverZero(Index)) | 
 |       return DAG.getUNDEF(ScalarVT); | 
 |  | 
 |     // Check if the result type doesn't match the inserted element type. | 
 |     // The inserted element and extracted element may have mismatched bitwidth. | 
 |     // As a result, EXTRACT_VECTOR_ELT may extend or truncate the extracted vector. | 
 |     SDValue InOp = VecOp.getOperand(0); | 
 |     if (InOp.getValueType() != ScalarVT) { | 
 |       assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); | 
 |       if (InOp.getValueType().bitsGT(ScalarVT)) | 
 |         return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, InOp); | 
 |       return DAG.getNode(ISD::ANY_EXTEND, DL, ScalarVT, InOp); | 
 |     } | 
 |     return InOp; | 
 |   } | 
 |  | 
 |   // extract_vector_elt of out-of-bounds element -> UNDEF | 
 |   auto *IndexC = dyn_cast<ConstantSDNode>(Index); | 
 |   if (IndexC && VecVT.isFixedLengthVector() && | 
 |       IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) | 
 |     return DAG.getUNDEF(ScalarVT); | 
 |  | 
 |   // extract_vector_elt (build_vector x, y), 1 -> y | 
 |   if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || | 
 |        VecOp.getOpcode() == ISD::SPLAT_VECTOR) && | 
 |       TLI.isTypeLegal(VecVT)) { | 
 |     assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || | 
 |             VecVT.isFixedLengthVector()) && | 
 |            "BUILD_VECTOR used for scalable vectors"); | 
 |     unsigned IndexVal = | 
 |         VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; | 
 |     SDValue Elt = VecOp.getOperand(IndexVal); | 
 |     EVT InEltVT = Elt.getValueType(); | 
 |  | 
 |     if (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT) || | 
 |         isNullConstant(Elt)) { | 
 |       // Sometimes build_vector's scalar input types do not match result type. | 
 |       if (ScalarVT == InEltVT) | 
 |         return Elt; | 
 |  | 
 |       // TODO: It may be useful to truncate if free if the build_vector | 
 |       // implicitly converts. | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue BO = scalarizeExtractedBinOp(N, DAG, DL, LegalTypes)) | 
 |     return BO; | 
 |  | 
 |   if (VecVT.isScalableVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // All the code from this point onwards assumes fixed width vectors, but it's | 
 |   // possible that some of the combinations could be made to work for scalable | 
 |   // vectors too. | 
 |   unsigned NumElts = VecVT.getVectorNumElements(); | 
 |   unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); | 
 |  | 
 |   // See if the extracted element is constant, in which case fold it if its | 
 |   // a legal fp immediate. | 
 |   if (IndexC && ScalarVT.isFloatingPoint()) { | 
 |     APInt EltMask = APInt::getOneBitSet(NumElts, IndexC->getZExtValue()); | 
 |     KnownBits KnownElt = DAG.computeKnownBits(VecOp, EltMask); | 
 |     if (KnownElt.isConstant()) { | 
 |       APFloat CstFP = | 
 |           APFloat(ScalarVT.getFltSemantics(), KnownElt.getConstant()); | 
 |       if (TLI.isFPImmLegal(CstFP, ScalarVT)) | 
 |         return DAG.getConstantFP(CstFP, DL, ScalarVT); | 
 |     } | 
 |   } | 
 |  | 
 |   // TODO: These transforms should not require the 'hasOneUse' restriction, but | 
 |   // there are regressions on multiple targets without it. We can end up with a | 
 |   // mess of scalar and vector code if we reduce only part of the DAG to scalar. | 
 |   if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && | 
 |       VecOp.hasOneUse()) { | 
 |     // The vector index of the LSBs of the source depend on the endian-ness. | 
 |     bool IsLE = DAG.getDataLayout().isLittleEndian(); | 
 |     unsigned ExtractIndex = IndexC->getZExtValue(); | 
 |     // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) | 
 |     unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; | 
 |     SDValue BCSrc = VecOp.getOperand(0); | 
 |     if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) | 
 |       return DAG.getAnyExtOrTrunc(BCSrc, DL, ScalarVT); | 
 |  | 
 |     // TODO: Add support for SCALAR_TO_VECTOR implicit truncation. | 
 |     if (LegalTypes && BCSrc.getValueType().isInteger() && | 
 |         BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
 |         BCSrc.getScalarValueSizeInBits() == | 
 |             BCSrc.getOperand(0).getScalarValueSizeInBits()) { | 
 |       // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> | 
 |       // trunc i64 X to i32 | 
 |       SDValue X = BCSrc.getOperand(0); | 
 |       EVT XVT = X.getValueType(); | 
 |       assert(XVT.isScalarInteger() && ScalarVT.isScalarInteger() && | 
 |              "Extract element and scalar to vector can't change element type " | 
 |              "from FP to integer."); | 
 |       unsigned XBitWidth = X.getValueSizeInBits(); | 
 |       unsigned Scale = XBitWidth / VecEltBitWidth; | 
 |       BCTruncElt = IsLE ? 0 : Scale - 1; | 
 |  | 
 |       // An extract element return value type can be wider than its vector | 
 |       // operand element type. In that case, the high bits are undefined, so | 
 |       // it's possible that we may need to extend rather than truncate. | 
 |       if (ExtractIndex < Scale && XBitWidth > VecEltBitWidth) { | 
 |         assert(XBitWidth % VecEltBitWidth == 0 && | 
 |                "Scalar bitwidth must be a multiple of vector element bitwidth"); | 
 |  | 
 |         if (ExtractIndex != BCTruncElt) { | 
 |           unsigned ShiftIndex = | 
 |               IsLE ? ExtractIndex : (Scale - 1) - ExtractIndex; | 
 |           X = DAG.getNode( | 
 |               ISD::SRL, DL, XVT, X, | 
 |               DAG.getShiftAmountConstant(ShiftIndex * VecEltBitWidth, XVT, DL)); | 
 |         } | 
 |  | 
 |         return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. | 
 |   // We only perform this optimization before the op legalization phase because | 
 |   // we may introduce new vector instructions which are not backed by TD | 
 |   // patterns. For example on AVX, extracting elements from a wide vector | 
 |   // without using extract_subvector. However, if we can find an underlying | 
 |   // scalar value, then we can always use that. | 
 |   if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { | 
 |     auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); | 
 |     // Find the new index to extract from. | 
 |     int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); | 
 |  | 
 |     // Extracting an undef index is undef. | 
 |     if (OrigElt == -1) | 
 |       return DAG.getUNDEF(ScalarVT); | 
 |  | 
 |     // Select the right vector half to extract from. | 
 |     SDValue SVInVec; | 
 |     if (OrigElt < (int)NumElts) { | 
 |       SVInVec = VecOp.getOperand(0); | 
 |     } else { | 
 |       SVInVec = VecOp.getOperand(1); | 
 |       OrigElt -= NumElts; | 
 |     } | 
 |  | 
 |     if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { | 
 |       // TODO: Check if shuffle mask is legal? | 
 |       if (LegalOperations && TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VecVT) && | 
 |           !VecOp.hasOneUse()) | 
 |         return SDValue(); | 
 |  | 
 |       SDValue InOp = SVInVec.getOperand(OrigElt); | 
 |       if (InOp.getValueType() != ScalarVT) { | 
 |         assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); | 
 |         InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); | 
 |       } | 
 |  | 
 |       return InOp; | 
 |     } | 
 |  | 
 |     // FIXME: We should handle recursing on other vector shuffles and | 
 |     // scalar_to_vector here as well. | 
 |  | 
 |     if (!LegalOperations || | 
 |         // FIXME: Should really be just isOperationLegalOrCustom. | 
 |         TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || | 
 |         TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { | 
 |       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, | 
 |                          DAG.getVectorIdxConstant(OrigElt, DL)); | 
 |     } | 
 |   } | 
 |  | 
 |   // If only EXTRACT_VECTOR_ELT nodes use the source vector we can | 
 |   // simplify it based on the (valid) extraction indices. | 
 |   if (llvm::all_of(VecOp->users(), [&](SDNode *Use) { | 
 |         return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
 |                Use->getOperand(0) == VecOp && | 
 |                isa<ConstantSDNode>(Use->getOperand(1)); | 
 |       })) { | 
 |     APInt DemandedElts = APInt::getZero(NumElts); | 
 |     for (SDNode *User : VecOp->users()) { | 
 |       auto *CstElt = cast<ConstantSDNode>(User->getOperand(1)); | 
 |       if (CstElt->getAPIntValue().ult(NumElts)) | 
 |         DemandedElts.setBit(CstElt->getZExtValue()); | 
 |     } | 
 |     if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { | 
 |       // We simplified the vector operand of this extract element. If this | 
 |       // extract is not dead, visit it again so it is folded properly. | 
 |       if (N->getOpcode() != ISD::DELETED_NODE) | 
 |         AddToWorklist(N); | 
 |       return SDValue(N, 0); | 
 |     } | 
 |     APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth); | 
 |     if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { | 
 |       // We simplified the vector operand of this extract element. If this | 
 |       // extract is not dead, visit it again so it is folded properly. | 
 |       if (N->getOpcode() != ISD::DELETED_NODE) | 
 |         AddToWorklist(N); | 
 |       return SDValue(N, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   if (refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(N)) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // Everything under here is trying to match an extract of a loaded value. | 
 |   // If the result of load has to be truncated, then it's not necessarily | 
 |   // profitable. | 
 |   bool BCNumEltsChanged = false; | 
 |   EVT ExtVT = VecVT.getVectorElementType(); | 
 |   EVT LVT = ExtVT; | 
 |   if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) | 
 |     return SDValue(); | 
 |  | 
 |   if (VecOp.getOpcode() == ISD::BITCAST) { | 
 |     // Don't duplicate a load with other uses. | 
 |     if (!VecOp.hasOneUse()) | 
 |       return SDValue(); | 
 |  | 
 |     EVT BCVT = VecOp.getOperand(0).getValueType(); | 
 |     if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) | 
 |       return SDValue(); | 
 |     if (NumElts != BCVT.getVectorNumElements()) | 
 |       BCNumEltsChanged = true; | 
 |     VecOp = VecOp.getOperand(0); | 
 |     ExtVT = BCVT.getVectorElementType(); | 
 |   } | 
 |  | 
 |   // extract (vector load $addr), i --> load $addr + i * size | 
 |   if (!LegalOperations && !IndexC && VecOp.hasOneUse() && | 
 |       ISD::isNormalLoad(VecOp.getNode()) && | 
 |       !Index->hasPredecessor(VecOp.getNode())) { | 
 |     auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); | 
 |     if (VecLoad && VecLoad->isSimple()) { | 
 |       if (SDValue Scalarized = TLI.scalarizeExtractedVectorLoad( | 
 |               ScalarVT, SDLoc(N), VecVT, Index, VecLoad, DAG)) { | 
 |         ++OpsNarrowed; | 
 |         return Scalarized; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Perform only after legalization to ensure build_vector / vector_shuffle | 
 |   // optimizations have already been done. | 
 |   if (!LegalOperations || !IndexC) | 
 |     return SDValue(); | 
 |  | 
 |   // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) | 
 |   // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) | 
 |   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) | 
 |   int Elt = IndexC->getZExtValue(); | 
 |   LoadSDNode *LN0 = nullptr; | 
 |   if (ISD::isNormalLoad(VecOp.getNode())) { | 
 |     LN0 = cast<LoadSDNode>(VecOp); | 
 |   } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
 |              VecOp.getOperand(0).getValueType() == ExtVT && | 
 |              ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { | 
 |     // Don't duplicate a load with other uses. | 
 |     if (!VecOp.hasOneUse()) | 
 |       return SDValue(); | 
 |  | 
 |     LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); | 
 |   } | 
 |   if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { | 
 |     // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) | 
 |     // => | 
 |     // (load $addr+1*size) | 
 |  | 
 |     // Don't duplicate a load with other uses. | 
 |     if (!VecOp.hasOneUse()) | 
 |       return SDValue(); | 
 |  | 
 |     // If the bit convert changed the number of elements, it is unsafe | 
 |     // to examine the mask. | 
 |     if (BCNumEltsChanged) | 
 |       return SDValue(); | 
 |  | 
 |     // Select the input vector, guarding against out of range extract vector. | 
 |     int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); | 
 |     VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); | 
 |  | 
 |     if (VecOp.getOpcode() == ISD::BITCAST) { | 
 |       // Don't duplicate a load with other uses. | 
 |       if (!VecOp.hasOneUse()) | 
 |         return SDValue(); | 
 |  | 
 |       VecOp = VecOp.getOperand(0); | 
 |     } | 
 |     if (ISD::isNormalLoad(VecOp.getNode())) { | 
 |       LN0 = cast<LoadSDNode>(VecOp); | 
 |       Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; | 
 |       Index = DAG.getConstant(Elt, DL, Index.getValueType()); | 
 |     } | 
 |   } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && | 
 |              VecVT.getVectorElementType() == ScalarVT && | 
 |              (!LegalTypes || | 
 |               TLI.isTypeLegal( | 
 |                   VecOp.getOperand(0).getValueType().getVectorElementType()))) { | 
 |     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 | 
 |     //      -> extract_vector_elt a, 0 | 
 |     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 | 
 |     //      -> extract_vector_elt a, 1 | 
 |     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 | 
 |     //      -> extract_vector_elt b, 0 | 
 |     // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 | 
 |     //      -> extract_vector_elt b, 1 | 
 |     EVT ConcatVT = VecOp.getOperand(0).getValueType(); | 
 |     unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); | 
 |     SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, DL, | 
 |                                      Index.getValueType()); | 
 |  | 
 |     SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); | 
 |     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, | 
 |                               ConcatVT.getVectorElementType(), | 
 |                               ConcatOp, NewIdx); | 
 |     return DAG.getNode(ISD::BITCAST, DL, ScalarVT, Elt); | 
 |   } | 
 |  | 
 |   // Make sure we found a non-volatile load and the extractelement is | 
 |   // the only use. | 
 |   if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) | 
 |     return SDValue(); | 
 |  | 
 |   // If Idx was -1 above, Elt is going to be -1, so just return undef. | 
 |   if (Elt == -1) | 
 |     return DAG.getUNDEF(LVT); | 
 |  | 
 |   if (SDValue Scalarized = | 
 |           TLI.scalarizeExtractedVectorLoad(LVT, DL, VecVT, Index, LN0, DAG)) { | 
 |     ++OpsNarrowed; | 
 |     return Scalarized; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Simplify (build_vec (ext )) to (bitcast (build_vec )) | 
 | SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { | 
 |   // We perform this optimization post type-legalization because | 
 |   // the type-legalizer often scalarizes integer-promoted vectors. | 
 |   // Performing this optimization before may create bit-casts which | 
 |   // will be type-legalized to complex code sequences. | 
 |   // We perform this optimization only before the operation legalizer because we | 
 |   // may introduce illegal operations. | 
 |   if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned NumInScalars = N->getNumOperands(); | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // Check to see if this is a BUILD_VECTOR of a bunch of values | 
 |   // which come from any_extend or zero_extend nodes. If so, we can create | 
 |   // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR | 
 |   // optimizations. We do not handle sign-extend because we can't fill the sign | 
 |   // using shuffles. | 
 |   EVT SourceType = MVT::Other; | 
 |   bool AllAnyExt = true; | 
 |  | 
 |   for (unsigned i = 0; i != NumInScalars; ++i) { | 
 |     SDValue In = N->getOperand(i); | 
 |     // Ignore undef inputs. | 
 |     if (In.isUndef()) continue; | 
 |  | 
 |     bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND; | 
 |     bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; | 
 |  | 
 |     // Abort if the element is not an extension. | 
 |     if (!ZeroExt && !AnyExt) { | 
 |       SourceType = MVT::Other; | 
 |       break; | 
 |     } | 
 |  | 
 |     // The input is a ZeroExt or AnyExt. Check the original type. | 
 |     EVT InTy = In.getOperand(0).getValueType(); | 
 |  | 
 |     // Check that all of the widened source types are the same. | 
 |     if (SourceType == MVT::Other) | 
 |       // First time. | 
 |       SourceType = InTy; | 
 |     else if (InTy != SourceType) { | 
 |       // Multiple income types. Abort. | 
 |       SourceType = MVT::Other; | 
 |       break; | 
 |     } | 
 |  | 
 |     // Check if all of the extends are ANY_EXTENDs. | 
 |     AllAnyExt &= AnyExt; | 
 |   } | 
 |  | 
 |   // In order to have valid types, all of the inputs must be extended from the | 
 |   // same source type and all of the inputs must be any or zero extend. | 
 |   // Scalar sizes must be a power of two. | 
 |   EVT OutScalarTy = VT.getScalarType(); | 
 |   bool ValidTypes = | 
 |       SourceType != MVT::Other && | 
 |       llvm::has_single_bit<uint32_t>(OutScalarTy.getSizeInBits()) && | 
 |       llvm::has_single_bit<uint32_t>(SourceType.getSizeInBits()); | 
 |  | 
 |   // Create a new simpler BUILD_VECTOR sequence which other optimizations can | 
 |   // turn into a single shuffle instruction. | 
 |   if (!ValidTypes) | 
 |     return SDValue(); | 
 |  | 
 |   // If we already have a splat buildvector, then don't fold it if it means | 
 |   // introducing zeros. | 
 |   if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) | 
 |     return SDValue(); | 
 |  | 
 |   bool isLE = DAG.getDataLayout().isLittleEndian(); | 
 |   unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); | 
 |   assert(ElemRatio > 1 && "Invalid element size ratio"); | 
 |   SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): | 
 |                                DAG.getConstant(0, DL, SourceType); | 
 |  | 
 |   unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); | 
 |   SmallVector<SDValue, 8> Ops(NewBVElems, Filler); | 
 |  | 
 |   // Populate the new build_vector | 
 |   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
 |     SDValue Cast = N->getOperand(i); | 
 |     assert((Cast.getOpcode() == ISD::ANY_EXTEND || | 
 |             Cast.getOpcode() == ISD::ZERO_EXTEND || | 
 |             Cast.isUndef()) && "Invalid cast opcode"); | 
 |     SDValue In; | 
 |     if (Cast.isUndef()) | 
 |       In = DAG.getUNDEF(SourceType); | 
 |     else | 
 |       In = Cast->getOperand(0); | 
 |     unsigned Index = isLE ? (i * ElemRatio) : | 
 |                             (i * ElemRatio + (ElemRatio - 1)); | 
 |  | 
 |     assert(Index < Ops.size() && "Invalid index"); | 
 |     Ops[Index] = In; | 
 |   } | 
 |  | 
 |   // The type of the new BUILD_VECTOR node. | 
 |   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); | 
 |   assert(VecVT.getSizeInBits() == VT.getSizeInBits() && | 
 |          "Invalid vector size"); | 
 |   // Check if the new vector type is legal. | 
 |   if (!isTypeLegal(VecVT) || | 
 |       (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && | 
 |        TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) | 
 |     return SDValue(); | 
 |  | 
 |   // Make the new BUILD_VECTOR. | 
 |   SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); | 
 |  | 
 |   // The new BUILD_VECTOR node has the potential to be further optimized. | 
 |   AddToWorklist(BV.getNode()); | 
 |   // Bitcast to the desired type. | 
 |   return DAG.getBitcast(VT, BV); | 
 | } | 
 |  | 
 | // Simplify (build_vec (trunc $1) | 
 | //                     (trunc (srl $1 half-width)) | 
 | //                     (trunc (srl $1 (2 * half-width)))) | 
 | // to (bitcast $1) | 
 | SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // Don't run this before LegalizeTypes if VT is legal. | 
 |   // Targets may have other preferences. | 
 |   if (Level < AfterLegalizeTypes && TLI.isTypeLegal(VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Only for little endian | 
 |   if (!DAG.getDataLayout().isLittleEndian()) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT OutScalarTy = VT.getScalarType(); | 
 |   uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); | 
 |  | 
 |   // Only for power of two types to be sure that bitcast works well | 
 |   if (!isPowerOf2_64(ScalarTypeBitsize)) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned NumInScalars = N->getNumOperands(); | 
 |  | 
 |   // Look through bitcasts | 
 |   auto PeekThroughBitcast = [](SDValue Op) { | 
 |     if (Op.getOpcode() == ISD::BITCAST) | 
 |       return Op.getOperand(0); | 
 |     return Op; | 
 |   }; | 
 |  | 
 |   // The source value where all the parts are extracted. | 
 |   SDValue Src; | 
 |   for (unsigned i = 0; i != NumInScalars; ++i) { | 
 |     SDValue In = PeekThroughBitcast(N->getOperand(i)); | 
 |     // Ignore undef inputs. | 
 |     if (In.isUndef()) continue; | 
 |  | 
 |     if (In.getOpcode() != ISD::TRUNCATE) | 
 |       return SDValue(); | 
 |  | 
 |     In = PeekThroughBitcast(In.getOperand(0)); | 
 |  | 
 |     if (In.getOpcode() != ISD::SRL) { | 
 |       // For now only build_vec without shuffling, handle shifts here in the | 
 |       // future. | 
 |       if (i != 0) | 
 |         return SDValue(); | 
 |  | 
 |       Src = In; | 
 |     } else { | 
 |       // In is SRL | 
 |       SDValue part = PeekThroughBitcast(In.getOperand(0)); | 
 |  | 
 |       if (!Src) { | 
 |         Src = part; | 
 |       } else if (Src != part) { | 
 |         // Vector parts do not stem from the same variable | 
 |         return SDValue(); | 
 |       } | 
 |  | 
 |       SDValue ShiftAmtVal = In.getOperand(1); | 
 |       if (!isa<ConstantSDNode>(ShiftAmtVal)) | 
 |         return SDValue(); | 
 |  | 
 |       uint64_t ShiftAmt = In.getConstantOperandVal(1); | 
 |  | 
 |       // The extracted value is not extracted at the right position | 
 |       if (ShiftAmt != i * ScalarTypeBitsize) | 
 |         return SDValue(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Only cast if the size is the same | 
 |   if (!Src || Src.getValueType().getSizeInBits() != VT.getSizeInBits()) | 
 |     return SDValue(); | 
 |  | 
 |   return DAG.getBitcast(VT, Src); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, | 
 |                                            ArrayRef<int> VectorMask, | 
 |                                            SDValue VecIn1, SDValue VecIn2, | 
 |                                            unsigned LeftIdx, bool DidSplitVec) { | 
 |   SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT InVT1 = VecIn1.getValueType(); | 
 |   EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; | 
 |  | 
 |   unsigned NumElems = VT.getVectorNumElements(); | 
 |   unsigned ShuffleNumElems = NumElems; | 
 |  | 
 |   // If we artificially split a vector in two already, then the offsets in the | 
 |   // operands will all be based off of VecIn1, even those in VecIn2. | 
 |   unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); | 
 |  | 
 |   uint64_t VTSize = VT.getFixedSizeInBits(); | 
 |   uint64_t InVT1Size = InVT1.getFixedSizeInBits(); | 
 |   uint64_t InVT2Size = InVT2.getFixedSizeInBits(); | 
 |  | 
 |   assert(InVT2Size <= InVT1Size && | 
 |          "Inputs must be sorted to be in non-increasing vector size order."); | 
 |  | 
 |   // We can't generate a shuffle node with mismatched input and output types. | 
 |   // Try to make the types match the type of the output. | 
 |   if (InVT1 != VT || InVT2 != VT) { | 
 |     if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { | 
 |       // If the output vector length is a multiple of both input lengths, | 
 |       // we can concatenate them and pad the rest with undefs. | 
 |       unsigned NumConcats = VTSize / InVT1Size; | 
 |       assert(NumConcats >= 2 && "Concat needs at least two inputs!"); | 
 |       SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); | 
 |       ConcatOps[0] = VecIn1; | 
 |       ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); | 
 |       VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); | 
 |       VecIn2 = SDValue(); | 
 |     } else if (InVT1Size == VTSize * 2) { | 
 |       if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) | 
 |         return SDValue(); | 
 |  | 
 |       if (!VecIn2.getNode()) { | 
 |         // If we only have one input vector, and it's twice the size of the | 
 |         // output, split it in two. | 
 |         VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, | 
 |                              DAG.getVectorIdxConstant(NumElems, DL)); | 
 |         VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); | 
 |         // Since we now have shorter input vectors, adjust the offset of the | 
 |         // second vector's start. | 
 |         Vec2Offset = NumElems; | 
 |       } else { | 
 |         assert(InVT2Size <= InVT1Size && | 
 |                "Second input is not going to be larger than the first one."); | 
 |  | 
 |         // VecIn1 is wider than the output, and we have another, possibly | 
 |         // smaller input. Pad the smaller input with undefs, shuffle at the | 
 |         // input vector width, and extract the output. | 
 |         // The shuffle type is different than VT, so check legality again. | 
 |         if (LegalOperations && | 
 |             !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) | 
 |           return SDValue(); | 
 |  | 
 |         // Legalizing INSERT_SUBVECTOR is tricky - you basically have to | 
 |         // lower it back into a BUILD_VECTOR. So if the inserted type is | 
 |         // illegal, don't even try. | 
 |         if (InVT1 != InVT2) { | 
 |           if (!TLI.isTypeLegal(InVT2)) | 
 |             return SDValue(); | 
 |           VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, | 
 |                                DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); | 
 |         } | 
 |         ShuffleNumElems = NumElems * 2; | 
 |       } | 
 |     } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { | 
 |       SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); | 
 |       ConcatOps[0] = VecIn2; | 
 |       VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); | 
 |     } else if (InVT1Size / VTSize > 1 && InVT1Size % VTSize == 0) { | 
 |       if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems) || | 
 |           !TLI.isTypeLegal(InVT1) || !TLI.isTypeLegal(InVT2)) | 
 |         return SDValue(); | 
 |       // If dest vector has less than two elements, then use shuffle and extract | 
 |       // from larger regs will cost even more. | 
 |       if (VT.getVectorNumElements() <= 2 || !VecIn2.getNode()) | 
 |         return SDValue(); | 
 |       assert(InVT2Size <= InVT1Size && | 
 |              "Second input is not going to be larger than the first one."); | 
 |  | 
 |       // VecIn1 is wider than the output, and we have another, possibly | 
 |       // smaller input. Pad the smaller input with undefs, shuffle at the | 
 |       // input vector width, and extract the output. | 
 |       // The shuffle type is different than VT, so check legality again. | 
 |       if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) | 
 |         return SDValue(); | 
 |  | 
 |       if (InVT1 != InVT2) { | 
 |         VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, | 
 |                              DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); | 
 |       } | 
 |       ShuffleNumElems = InVT1Size / VTSize * NumElems; | 
 |     } else { | 
 |       // TODO: Support cases where the length mismatch isn't exactly by a | 
 |       // factor of 2. | 
 |       // TODO: Move this check upwards, so that if we have bad type | 
 |       // mismatches, we don't create any DAG nodes. | 
 |       return SDValue(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Initialize mask to undef. | 
 |   SmallVector<int, 8> Mask(ShuffleNumElems, -1); | 
 |  | 
 |   // Only need to run up to the number of elements actually used, not the | 
 |   // total number of elements in the shuffle - if we are shuffling a wider | 
 |   // vector, the high lanes should be set to undef. | 
 |   for (unsigned i = 0; i != NumElems; ++i) { | 
 |     if (VectorMask[i] <= 0) | 
 |       continue; | 
 |  | 
 |     unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); | 
 |     if (VectorMask[i] == (int)LeftIdx) { | 
 |       Mask[i] = ExtIndex; | 
 |     } else if (VectorMask[i] == (int)LeftIdx + 1) { | 
 |       Mask[i] = Vec2Offset + ExtIndex; | 
 |     } | 
 |   } | 
 |  | 
 |   // The type the input vectors may have changed above. | 
 |   InVT1 = VecIn1.getValueType(); | 
 |  | 
 |   // If we already have a VecIn2, it should have the same type as VecIn1. | 
 |   // If we don't, get an undef/zero vector of the appropriate type. | 
 |   VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); | 
 |   assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); | 
 |  | 
 |   SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); | 
 |   if (ShuffleNumElems > NumElems) | 
 |     Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); | 
 |  | 
 |   return Shuffle; | 
 | } | 
 |  | 
 | static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { | 
 |   assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); | 
 |  | 
 |   // First, determine where the build vector is not undef. | 
 |   // TODO: We could extend this to handle zero elements as well as undefs. | 
 |   int NumBVOps = BV->getNumOperands(); | 
 |   int ZextElt = -1; | 
 |   for (int i = 0; i != NumBVOps; ++i) { | 
 |     SDValue Op = BV->getOperand(i); | 
 |     if (Op.isUndef()) | 
 |       continue; | 
 |     if (ZextElt == -1) | 
 |       ZextElt = i; | 
 |     else | 
 |       return SDValue(); | 
 |   } | 
 |   // Bail out if there's no non-undef element. | 
 |   if (ZextElt == -1) | 
 |     return SDValue(); | 
 |  | 
 |   // The build vector contains some number of undef elements and exactly | 
 |   // one other element. That other element must be a zero-extended scalar | 
 |   // extracted from a vector at a constant index to turn this into a shuffle. | 
 |   // Also, require that the build vector does not implicitly truncate/extend | 
 |   // its elements. | 
 |   // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. | 
 |   EVT VT = BV->getValueType(0); | 
 |   SDValue Zext = BV->getOperand(ZextElt); | 
 |   if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || | 
 |       Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || | 
 |       !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || | 
 |       Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) | 
 |     return SDValue(); | 
 |  | 
 |   // The zero-extend must be a multiple of the source size, and we must be | 
 |   // building a vector of the same size as the source of the extract element. | 
 |   SDValue Extract = Zext.getOperand(0); | 
 |   unsigned DestSize = Zext.getValueSizeInBits(); | 
 |   unsigned SrcSize = Extract.getValueSizeInBits(); | 
 |   if (DestSize % SrcSize != 0 || | 
 |       Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) | 
 |     return SDValue(); | 
 |  | 
 |   // Create a shuffle mask that will combine the extracted element with zeros | 
 |   // and undefs. | 
 |   int ZextRatio = DestSize / SrcSize; | 
 |   int NumMaskElts = NumBVOps * ZextRatio; | 
 |   SmallVector<int, 32> ShufMask(NumMaskElts, -1); | 
 |   for (int i = 0; i != NumMaskElts; ++i) { | 
 |     if (i / ZextRatio == ZextElt) { | 
 |       // The low bits of the (potentially translated) extracted element map to | 
 |       // the source vector. The high bits map to zero. We will use a zero vector | 
 |       // as the 2nd source operand of the shuffle, so use the 1st element of | 
 |       // that vector (mask value is number-of-elements) for the high bits. | 
 |       int Low = DAG.getDataLayout().isBigEndian() ? (ZextRatio - 1) : 0; | 
 |       ShufMask[i] = (i % ZextRatio == Low) ? Extract.getConstantOperandVal(1) | 
 |                                            : NumMaskElts; | 
 |     } | 
 |  | 
 |     // Undef elements of the build vector remain undef because we initialize | 
 |     // the shuffle mask with -1. | 
 |   } | 
 |  | 
 |   // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> | 
 |   // bitcast (shuffle V, ZeroVec, VectorMask) | 
 |   SDLoc DL(BV); | 
 |   EVT VecVT = Extract.getOperand(0).getValueType(); | 
 |   SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), | 
 |                                              ZeroVec, ShufMask, DAG); | 
 |   if (!Shuf) | 
 |     return SDValue(); | 
 |   return DAG.getBitcast(VT, Shuf); | 
 | } | 
 |  | 
 | // FIXME: promote to STLExtras. | 
 | template <typename R, typename T> | 
 | static auto getFirstIndexOf(R &&Range, const T &Val) { | 
 |   auto I = find(Range, Val); | 
 |   if (I == Range.end()) | 
 |     return static_cast<decltype(std::distance(Range.begin(), I))>(-1); | 
 |   return std::distance(Range.begin(), I); | 
 | } | 
 |  | 
 | // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT | 
 | // operations. If the types of the vectors we're extracting from allow it, | 
 | // turn this into a vector_shuffle node. | 
 | SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. | 
 |   if (!isTypeLegal(VT)) | 
 |     return SDValue(); | 
 |  | 
 |   if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) | 
 |     return V; | 
 |  | 
 |   // May only combine to shuffle after legalize if shuffle is legal. | 
 |   if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   bool UsesZeroVector = false; | 
 |   unsigned NumElems = N->getNumOperands(); | 
 |  | 
 |   // Record, for each element of the newly built vector, which input vector | 
 |   // that element comes from. -1 stands for undef, 0 for the zero vector, | 
 |   // and positive values for the input vectors. | 
 |   // VectorMask maps each element to its vector number, and VecIn maps vector | 
 |   // numbers to their initial SDValues. | 
 |  | 
 |   SmallVector<int, 8> VectorMask(NumElems, -1); | 
 |   SmallVector<SDValue, 8> VecIn; | 
 |   VecIn.push_back(SDValue()); | 
 |  | 
 |   // If we have a single extract_element with a constant index, track the index | 
 |   // value. | 
 |   unsigned OneConstExtractIndex = ~0u; | 
 |  | 
 |   // Count the number of extract_vector_elt sources (i.e. non-constant or undef) | 
 |   unsigned NumExtracts = 0; | 
 |  | 
 |   for (unsigned i = 0; i != NumElems; ++i) { | 
 |     SDValue Op = N->getOperand(i); | 
 |  | 
 |     if (Op.isUndef()) | 
 |       continue; | 
 |  | 
 |     // See if we can use a blend with a zero vector. | 
 |     // TODO: Should we generalize this to a blend with an arbitrary constant | 
 |     // vector? | 
 |     if (isNullConstant(Op) || isNullFPConstant(Op)) { | 
 |       UsesZeroVector = true; | 
 |       VectorMask[i] = 0; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Not an undef or zero. If the input is something other than an | 
 |     // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. | 
 |     if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
 |       return SDValue(); | 
 |  | 
 |     SDValue ExtractedFromVec = Op.getOperand(0); | 
 |     if (ExtractedFromVec.getValueType().isScalableVector()) | 
 |       return SDValue(); | 
 |     auto *ExtractIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
 |     if (!ExtractIdx) | 
 |       return SDValue(); | 
 |  | 
 |     if (ExtractIdx->getAsAPIntVal().uge( | 
 |             ExtractedFromVec.getValueType().getVectorNumElements())) | 
 |       return SDValue(); | 
 |  | 
 |     // All inputs must have the same element type as the output. | 
 |     if (VT.getVectorElementType() != | 
 |         ExtractedFromVec.getValueType().getVectorElementType()) | 
 |       return SDValue(); | 
 |  | 
 |     OneConstExtractIndex = ExtractIdx->getZExtValue(); | 
 |     ++NumExtracts; | 
 |  | 
 |     // Have we seen this input vector before? | 
 |     // The vectors are expected to be tiny (usually 1 or 2 elements), so using | 
 |     // a map back from SDValues to numbers isn't worth it. | 
 |     int Idx = getFirstIndexOf(VecIn, ExtractedFromVec); | 
 |     if (Idx == -1) { // A new source vector? | 
 |       Idx = VecIn.size(); | 
 |       VecIn.push_back(ExtractedFromVec); | 
 |     } | 
 |  | 
 |     VectorMask[i] = Idx; | 
 |   } | 
 |  | 
 |   // If we didn't find at least one input vector, bail out. | 
 |   if (VecIn.size() < 2) | 
 |     return SDValue(); | 
 |  | 
 |   // If all the Operands of BUILD_VECTOR extract from same | 
 |   // vector, then split the vector efficiently based on the maximum | 
 |   // vector access index and adjust the VectorMask and | 
 |   // VecIn accordingly. | 
 |   bool DidSplitVec = false; | 
 |   if (VecIn.size() == 2) { | 
 |     // If we only found a single constant indexed extract_vector_elt feeding the | 
 |     // build_vector, do not produce a more complicated shuffle if the extract is | 
 |     // cheap with other constant/undef elements. Skip broadcast patterns with | 
 |     // multiple uses in the build_vector. | 
 |  | 
 |     // TODO: This should be more aggressive about skipping the shuffle | 
 |     // formation, particularly if VecIn[1].hasOneUse(), and regardless of the | 
 |     // index. | 
 |     if (NumExtracts == 1 && | 
 |         TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, VT) && | 
 |         TLI.isTypeLegal(VT.getVectorElementType()) && | 
 |         TLI.isExtractVecEltCheap(VT, OneConstExtractIndex)) | 
 |       return SDValue(); | 
 |  | 
 |     unsigned MaxIndex = 0; | 
 |     unsigned NearestPow2 = 0; | 
 |     SDValue Vec = VecIn.back(); | 
 |     EVT InVT = Vec.getValueType(); | 
 |     SmallVector<unsigned, 8> IndexVec(NumElems, 0); | 
 |  | 
 |     for (unsigned i = 0; i < NumElems; i++) { | 
 |       if (VectorMask[i] <= 0) | 
 |         continue; | 
 |       unsigned Index = N->getOperand(i).getConstantOperandVal(1); | 
 |       IndexVec[i] = Index; | 
 |       MaxIndex = std::max(MaxIndex, Index); | 
 |     } | 
 |  | 
 |     NearestPow2 = PowerOf2Ceil(MaxIndex); | 
 |     if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && | 
 |         NumElems * 2 < NearestPow2) { | 
 |       unsigned SplitSize = NearestPow2 / 2; | 
 |       EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), | 
 |                                      InVT.getVectorElementType(), SplitSize); | 
 |       if (TLI.isTypeLegal(SplitVT) && | 
 |           SplitSize + SplitVT.getVectorNumElements() <= | 
 |               InVT.getVectorNumElements()) { | 
 |         SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, | 
 |                                      DAG.getVectorIdxConstant(SplitSize, DL)); | 
 |         SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, | 
 |                                      DAG.getVectorIdxConstant(0, DL)); | 
 |         VecIn.pop_back(); | 
 |         VecIn.push_back(VecIn1); | 
 |         VecIn.push_back(VecIn2); | 
 |         DidSplitVec = true; | 
 |  | 
 |         for (unsigned i = 0; i < NumElems; i++) { | 
 |           if (VectorMask[i] <= 0) | 
 |             continue; | 
 |           VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort input vectors by decreasing vector element count, | 
 |   // while preserving the relative order of equally-sized vectors. | 
 |   // Note that we keep the first "implicit zero vector as-is. | 
 |   SmallVector<SDValue, 8> SortedVecIn(VecIn); | 
 |   llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(), | 
 |                     [](const SDValue &a, const SDValue &b) { | 
 |                       return a.getValueType().getVectorNumElements() > | 
 |                              b.getValueType().getVectorNumElements(); | 
 |                     }); | 
 |  | 
 |   // We now also need to rebuild the VectorMask, because it referenced element | 
 |   // order in VecIn, and we just sorted them. | 
 |   for (int &SourceVectorIndex : VectorMask) { | 
 |     if (SourceVectorIndex <= 0) | 
 |       continue; | 
 |     unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]); | 
 |     assert(Idx > 0 && Idx < SortedVecIn.size() && | 
 |            VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure"); | 
 |     SourceVectorIndex = Idx; | 
 |   } | 
 |  | 
 |   VecIn = std::move(SortedVecIn); | 
 |  | 
 |   // TODO: Should this fire if some of the input vectors has illegal type (like | 
 |   // it does now), or should we let legalization run its course first? | 
 |  | 
 |   // Shuffle phase: | 
 |   // Take pairs of vectors, and shuffle them so that the result has elements | 
 |   // from these vectors in the correct places. | 
 |   // For example, given: | 
 |   // t10: i32 = extract_vector_elt t1, Constant:i64<0> | 
 |   // t11: i32 = extract_vector_elt t2, Constant:i64<0> | 
 |   // t12: i32 = extract_vector_elt t3, Constant:i64<0> | 
 |   // t13: i32 = extract_vector_elt t1, Constant:i64<1> | 
 |   // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 | 
 |   // We will generate: | 
 |   // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 | 
 |   // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef | 
 |   SmallVector<SDValue, 4> Shuffles; | 
 |   for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { | 
 |     unsigned LeftIdx = 2 * In + 1; | 
 |     SDValue VecLeft = VecIn[LeftIdx]; | 
 |     SDValue VecRight = | 
 |         (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); | 
 |  | 
 |     if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, | 
 |                                                 VecRight, LeftIdx, DidSplitVec)) | 
 |       Shuffles.push_back(Shuffle); | 
 |     else | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // If we need the zero vector as an "ingredient" in the blend tree, add it | 
 |   // to the list of shuffles. | 
 |   if (UsesZeroVector) | 
 |     Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) | 
 |                                       : DAG.getConstantFP(0.0, DL, VT)); | 
 |  | 
 |   // If we only have one shuffle, we're done. | 
 |   if (Shuffles.size() == 1) | 
 |     return Shuffles[0]; | 
 |  | 
 |   // Update the vector mask to point to the post-shuffle vectors. | 
 |   for (int &Vec : VectorMask) | 
 |     if (Vec == 0) | 
 |       Vec = Shuffles.size() - 1; | 
 |     else | 
 |       Vec = (Vec - 1) / 2; | 
 |  | 
 |   // More than one shuffle. Generate a binary tree of blends, e.g. if from | 
 |   // the previous step we got the set of shuffles t10, t11, t12, t13, we will | 
 |   // generate: | 
 |   // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 | 
 |   // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 | 
 |   // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 | 
 |   // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 | 
 |   // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 | 
 |   // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 | 
 |   // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 | 
 |  | 
 |   // Make sure the initial size of the shuffle list is even. | 
 |   if (Shuffles.size() % 2) | 
 |     Shuffles.push_back(DAG.getUNDEF(VT)); | 
 |  | 
 |   for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { | 
 |     if (CurSize % 2) { | 
 |       Shuffles[CurSize] = DAG.getUNDEF(VT); | 
 |       CurSize++; | 
 |     } | 
 |     for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { | 
 |       int Left = 2 * In; | 
 |       int Right = 2 * In + 1; | 
 |       SmallVector<int, 8> Mask(NumElems, -1); | 
 |       SDValue L = Shuffles[Left]; | 
 |       ArrayRef<int> LMask; | 
 |       bool IsLeftShuffle = L.getOpcode() == ISD::VECTOR_SHUFFLE && | 
 |                            L.use_empty() && L.getOperand(1).isUndef() && | 
 |                            L.getOperand(0).getValueType() == L.getValueType(); | 
 |       if (IsLeftShuffle) { | 
 |         LMask = cast<ShuffleVectorSDNode>(L.getNode())->getMask(); | 
 |         L = L.getOperand(0); | 
 |       } | 
 |       SDValue R = Shuffles[Right]; | 
 |       ArrayRef<int> RMask; | 
 |       bool IsRightShuffle = R.getOpcode() == ISD::VECTOR_SHUFFLE && | 
 |                             R.use_empty() && R.getOperand(1).isUndef() && | 
 |                             R.getOperand(0).getValueType() == R.getValueType(); | 
 |       if (IsRightShuffle) { | 
 |         RMask = cast<ShuffleVectorSDNode>(R.getNode())->getMask(); | 
 |         R = R.getOperand(0); | 
 |       } | 
 |       for (unsigned I = 0; I != NumElems; ++I) { | 
 |         if (VectorMask[I] == Left) { | 
 |           Mask[I] = I; | 
 |           if (IsLeftShuffle) | 
 |             Mask[I] = LMask[I]; | 
 |           VectorMask[I] = In; | 
 |         } else if (VectorMask[I] == Right) { | 
 |           Mask[I] = I + NumElems; | 
 |           if (IsRightShuffle) | 
 |             Mask[I] = RMask[I] + NumElems; | 
 |           VectorMask[I] = In; | 
 |         } | 
 |       } | 
 |  | 
 |       Shuffles[In] = DAG.getVectorShuffle(VT, DL, L, R, Mask); | 
 |     } | 
 |   } | 
 |   return Shuffles[0]; | 
 | } | 
 |  | 
 | // Try to turn a build vector of zero extends of extract vector elts into a | 
 | // a vector zero extend and possibly an extract subvector. | 
 | // TODO: Support sign extend? | 
 | // TODO: Allow undef elements? | 
 | SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { | 
 |   if (LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   bool FoundZeroExtend = false; | 
 |   SDValue Op0 = N->getOperand(0); | 
 |   auto checkElem = [&](SDValue Op) -> int64_t { | 
 |     unsigned Opc = Op.getOpcode(); | 
 |     FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); | 
 |     if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && | 
 |         Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
 |         Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) | 
 |       if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) | 
 |         return C->getZExtValue(); | 
 |     return -1; | 
 |   }; | 
 |  | 
 |   // Make sure the first element matches | 
 |   // (zext (extract_vector_elt X, C)) | 
 |   // Offset must be a constant multiple of the | 
 |   // known-minimum vector length of the result type. | 
 |   int64_t Offset = checkElem(Op0); | 
 |   if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned NumElems = N->getNumOperands(); | 
 |   SDValue In = Op0.getOperand(0).getOperand(0); | 
 |   EVT InSVT = In.getValueType().getScalarType(); | 
 |   EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); | 
 |  | 
 |   // Don't create an illegal input type after type legalization. | 
 |   if (LegalTypes && !TLI.isTypeLegal(InVT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Ensure all the elements come from the same vector and are adjacent. | 
 |   for (unsigned i = 1; i != NumElems; ++i) { | 
 |     if ((Offset + i) != checkElem(N->getOperand(i))) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   SDLoc DL(N); | 
 |   In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, | 
 |                    Op0.getOperand(0).getOperand(1)); | 
 |   return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, | 
 |                      VT, In); | 
 | } | 
 |  | 
 | // If this is a very simple BUILD_VECTOR with first element being a ZERO_EXTEND, | 
 | // and all other elements being constant zero's, granularize the BUILD_VECTOR's | 
 | // element width, absorbing the ZERO_EXTEND, turning it into a constant zero op. | 
 | // This patten can appear during legalization. | 
 | // | 
 | // NOTE: This can be generalized to allow more than a single | 
 | //       non-constant-zero op, UNDEF's, and to be KnownBits-based, | 
 | SDValue DAGCombiner::convertBuildVecZextToBuildVecWithZeros(SDNode *N) { | 
 |   // Don't run this after legalization. Targets may have other preferences. | 
 |   if (Level >= AfterLegalizeDAG) | 
 |     return SDValue(); | 
 |  | 
 |   // FIXME: support big-endian. | 
 |   if (DAG.getDataLayout().isBigEndian()) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT OpVT = N->getOperand(0).getValueType(); | 
 |   assert(!VT.isScalableVector() && "Encountered scalable BUILD_VECTOR?"); | 
 |  | 
 |   EVT OpIntVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); | 
 |  | 
 |   if (!TLI.isTypeLegal(OpIntVT) || | 
 |       (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::BITCAST, OpIntVT))) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned EltBitwidth = VT.getScalarSizeInBits(); | 
 |   // NOTE: the actual width of operands may be wider than that! | 
 |  | 
 |   // Analyze all operands of this BUILD_VECTOR. What is the largest number of | 
 |   // active bits they all have? We'll want to truncate them all to that width. | 
 |   unsigned ActiveBits = 0; | 
 |   APInt KnownZeroOps(VT.getVectorNumElements(), 0); | 
 |   for (auto I : enumerate(N->ops())) { | 
 |     SDValue Op = I.value(); | 
 |     // FIXME: support UNDEF elements? | 
 |     if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) { | 
 |       unsigned OpActiveBits = | 
 |           Cst->getAPIntValue().trunc(EltBitwidth).getActiveBits(); | 
 |       if (OpActiveBits == 0) { | 
 |         KnownZeroOps.setBit(I.index()); | 
 |         continue; | 
 |       } | 
 |       // Profitability check: don't allow non-zero constant operands. | 
 |       return SDValue(); | 
 |     } | 
 |     // Profitability check: there must only be a single non-zero operand, | 
 |     // and it must be the first operand of the BUILD_VECTOR. | 
 |     if (I.index() != 0) | 
 |       return SDValue(); | 
 |     // The operand must be a zero-extension itself. | 
 |     // FIXME: this could be generalized to known leading zeros check. | 
 |     if (Op.getOpcode() != ISD::ZERO_EXTEND) | 
 |       return SDValue(); | 
 |     unsigned CurrActiveBits = | 
 |         Op.getOperand(0).getValueSizeInBits().getFixedValue(); | 
 |     assert(!ActiveBits && "Already encountered non-constant-zero operand?"); | 
 |     ActiveBits = CurrActiveBits; | 
 |     // We want to at least halve the element size. | 
 |     if (2 * ActiveBits > EltBitwidth) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // This BUILD_VECTOR must have at least one non-constant-zero operand. | 
 |   if (ActiveBits == 0) | 
 |     return SDValue(); | 
 |  | 
 |   // We have EltBitwidth bits, the *minimal* chunk size is ActiveBits, | 
 |   // into how many chunks can we split our element width? | 
 |   EVT NewScalarIntVT, NewIntVT; | 
 |   std::optional<unsigned> Factor; | 
 |   // We can split the element into at least two chunks, but not into more | 
 |   // than |_ EltBitwidth / ActiveBits _| chunks. Find a largest split factor | 
 |   // for which the element width is a multiple of it, | 
 |   // and the resulting types/operations on that chunk width are legal. | 
 |   assert(2 * ActiveBits <= EltBitwidth && | 
 |          "We know that half or less bits of the element are active."); | 
 |   for (unsigned Scale = EltBitwidth / ActiveBits; Scale >= 2; --Scale) { | 
 |     if (EltBitwidth % Scale != 0) | 
 |       continue; | 
 |     unsigned ChunkBitwidth = EltBitwidth / Scale; | 
 |     assert(ChunkBitwidth >= ActiveBits && "As per starting point."); | 
 |     NewScalarIntVT = EVT::getIntegerVT(*DAG.getContext(), ChunkBitwidth); | 
 |     NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewScalarIntVT, | 
 |                                 Scale * N->getNumOperands()); | 
 |     if (!TLI.isTypeLegal(NewScalarIntVT) || !TLI.isTypeLegal(NewIntVT) || | 
 |         (LegalOperations && | 
 |          !(TLI.isOperationLegalOrCustom(ISD::TRUNCATE, NewScalarIntVT) && | 
 |            TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, NewIntVT)))) | 
 |       continue; | 
 |     Factor = Scale; | 
 |     break; | 
 |   } | 
 |   if (!Factor) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   SDValue ZeroOp = DAG.getConstant(0, DL, NewScalarIntVT); | 
 |  | 
 |   // Recreate the BUILD_VECTOR, with elements now being Factor times smaller. | 
 |   SmallVector<SDValue, 16> NewOps; | 
 |   NewOps.reserve(NewIntVT.getVectorNumElements()); | 
 |   for (auto I : enumerate(N->ops())) { | 
 |     SDValue Op = I.value(); | 
 |     assert(!Op.isUndef() && "FIXME: after allowing UNDEF's, handle them here."); | 
 |     unsigned SrcOpIdx = I.index(); | 
 |     if (KnownZeroOps[SrcOpIdx]) { | 
 |       NewOps.append(*Factor, ZeroOp); | 
 |       continue; | 
 |     } | 
 |     Op = DAG.getBitcast(OpIntVT, Op); | 
 |     Op = DAG.getNode(ISD::TRUNCATE, DL, NewScalarIntVT, Op); | 
 |     NewOps.emplace_back(Op); | 
 |     NewOps.append(*Factor - 1, ZeroOp); | 
 |   } | 
 |   assert(NewOps.size() == NewIntVT.getVectorNumElements()); | 
 |   SDValue NewBV = DAG.getBuildVector(NewIntVT, DL, NewOps); | 
 |   NewBV = DAG.getBitcast(VT, NewBV); | 
 |   return NewBV; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // A vector built entirely of undefs is undef. | 
 |   if (ISD::allOperandsUndef(N)) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // If this is a splat of a bitcast from another vector, change to a | 
 |   // concat_vector. | 
 |   // For example: | 
 |   //   (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> | 
 |   //     (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) | 
 |   // | 
 |   // If X is a build_vector itself, the concat can become a larger build_vector. | 
 |   // TODO: Maybe this is useful for non-splat too? | 
 |   if (!LegalOperations) { | 
 |     SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue(); | 
 |     // Only change build_vector to a concat_vector if the splat value type is | 
 |     // same as the vector element type. | 
 |     if (Splat && Splat.getValueType() == VT.getVectorElementType()) { | 
 |       Splat = peekThroughBitcasts(Splat); | 
 |       EVT SrcVT = Splat.getValueType(); | 
 |       if (SrcVT.isVector()) { | 
 |         unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); | 
 |         EVT NewVT = EVT::getVectorVT(*DAG.getContext(), | 
 |                                      SrcVT.getVectorElementType(), NumElts); | 
 |         if (!LegalTypes || TLI.isTypeLegal(NewVT)) { | 
 |           SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); | 
 |           SDValue Concat = | 
 |               DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), NewVT, Ops); | 
 |           return DAG.getBitcast(VT, Concat); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Check if we can express BUILD VECTOR via subvector extract. | 
 |   if (!LegalTypes && (N->getNumOperands() > 1)) { | 
 |     SDValue Op0 = N->getOperand(0); | 
 |     auto checkElem = [&](SDValue Op) -> uint64_t { | 
 |       if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && | 
 |           (Op0.getOperand(0) == Op.getOperand(0))) | 
 |         if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) | 
 |           return CNode->getZExtValue(); | 
 |       return -1; | 
 |     }; | 
 |  | 
 |     int Offset = checkElem(Op0); | 
 |     for (unsigned i = 0; i < N->getNumOperands(); ++i) { | 
 |       if (Offset + i != checkElem(N->getOperand(i))) { | 
 |         Offset = -1; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if ((Offset == 0) && | 
 |         (Op0.getOperand(0).getValueType() == N->getValueType(0))) | 
 |       return Op0.getOperand(0); | 
 |     if ((Offset != -1) && | 
 |         ((Offset % N->getValueType(0).getVectorNumElements()) == | 
 |          0)) // IDX must be multiple of output size. | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), | 
 |                          Op0.getOperand(0), Op0.getOperand(1)); | 
 |   } | 
 |  | 
 |   if (SDValue V = convertBuildVecZextToZext(N)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = convertBuildVecZextToBuildVecWithZeros(N)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = reduceBuildVecTruncToBitCast(N)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = reduceBuildVecToShuffle(N)) | 
 |     return V; | 
 |  | 
 |   // A splat of a single element is a SPLAT_VECTOR if supported on the target. | 
 |   // Do this late as some of the above may replace the splat. | 
 |   if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) | 
 |     if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { | 
 |       assert(!V.isUndef() && "Splat of undef should have been handled earlier"); | 
 |       return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); | 
 |     } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   EVT OpVT = N->getOperand(0).getValueType(); | 
 |  | 
 |   // If the operands are legal vectors, leave them alone. | 
 |   if (TLI.isTypeLegal(OpVT) || OpVT.isScalableVector()) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |   EVT VT = N->getValueType(0); | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); | 
 |  | 
 |   // Keep track of what we encounter. | 
 |   EVT AnyFPVT; | 
 |  | 
 |   for (const SDValue &Op : N->ops()) { | 
 |     if (ISD::BITCAST == Op.getOpcode() && | 
 |         !Op.getOperand(0).getValueType().isVector()) | 
 |       Ops.push_back(Op.getOperand(0)); | 
 |     else if (Op.isUndef()) | 
 |       Ops.push_back(DAG.getNode(ISD::UNDEF, DL, SVT)); | 
 |     else | 
 |       return SDValue(); | 
 |  | 
 |     // Note whether we encounter an integer or floating point scalar. | 
 |     // If it's neither, bail out, it could be something weird like x86mmx. | 
 |     EVT LastOpVT = Ops.back().getValueType(); | 
 |     if (LastOpVT.isFloatingPoint()) | 
 |       AnyFPVT = LastOpVT; | 
 |     else if (!LastOpVT.isInteger()) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // If any of the operands is a floating point scalar bitcast to a vector, | 
 |   // use floating point types throughout, and bitcast everything. | 
 |   // Replace UNDEFs by another scalar UNDEF node, of the final desired type. | 
 |   if (AnyFPVT != EVT()) { | 
 |     SVT = AnyFPVT; | 
 |     for (SDValue &Op : Ops) { | 
 |       if (Op.getValueType() == SVT) | 
 |         continue; | 
 |       if (Op.isUndef()) | 
 |         Op = DAG.getNode(ISD::UNDEF, DL, SVT); | 
 |       else | 
 |         Op = DAG.getBitcast(SVT, Op); | 
 |     } | 
 |   } | 
 |  | 
 |   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, | 
 |                                VT.getSizeInBits() / SVT.getSizeInBits()); | 
 |   return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); | 
 | } | 
 |  | 
 | // Attempt to merge nested concat_vectors/undefs. | 
 | // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d)) | 
 | //  --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d) | 
 | static SDValue combineConcatVectorOfConcatVectors(SDNode *N, | 
 |                                                   SelectionDAG &DAG) { | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types. | 
 |   EVT SubVT; | 
 |   SDValue FirstConcat; | 
 |   for (const SDValue &Op : N->ops()) { | 
 |     if (Op.isUndef()) | 
 |       continue; | 
 |     if (Op.getOpcode() != ISD::CONCAT_VECTORS) | 
 |       return SDValue(); | 
 |     if (!FirstConcat) { | 
 |       SubVT = Op.getOperand(0).getValueType(); | 
 |       if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) | 
 |         return SDValue(); | 
 |       FirstConcat = Op; | 
 |       continue; | 
 |     } | 
 |     if (SubVT != Op.getOperand(0).getValueType()) | 
 |       return SDValue(); | 
 |   } | 
 |   assert(FirstConcat && "Concat of all-undefs found"); | 
 |  | 
 |   SmallVector<SDValue> ConcatOps; | 
 |   for (const SDValue &Op : N->ops()) { | 
 |     if (Op.isUndef()) { | 
 |       ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT)); | 
 |       continue; | 
 |     } | 
 |     ConcatOps.append(Op->op_begin(), Op->op_end()); | 
 |   } | 
 |   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps); | 
 | } | 
 |  | 
 | // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR | 
 | // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at | 
 | // most two distinct vectors the same size as the result, attempt to turn this | 
 | // into a legal shuffle. | 
 | static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT OpVT = N->getOperand(0).getValueType(); | 
 |  | 
 |   // We currently can't generate an appropriate shuffle for a scalable vector. | 
 |   if (VT.isScalableVector()) | 
 |     return SDValue(); | 
 |  | 
 |   int NumElts = VT.getVectorNumElements(); | 
 |   int NumOpElts = OpVT.getVectorNumElements(); | 
 |  | 
 |   SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); | 
 |   SmallVector<int, 8> Mask; | 
 |  | 
 |   for (SDValue Op : N->ops()) { | 
 |     Op = peekThroughBitcasts(Op); | 
 |  | 
 |     // UNDEF nodes convert to UNDEF shuffle mask values. | 
 |     if (Op.isUndef()) { | 
 |       Mask.append((unsigned)NumOpElts, -1); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
 |       return SDValue(); | 
 |  | 
 |     // What vector are we extracting the subvector from and at what index? | 
 |     SDValue ExtVec = Op.getOperand(0); | 
 |     int ExtIdx = Op.getConstantOperandVal(1); | 
 |  | 
 |     // We want the EVT of the original extraction to correctly scale the | 
 |     // extraction index. | 
 |     EVT ExtVT = ExtVec.getValueType(); | 
 |     ExtVec = peekThroughBitcasts(ExtVec); | 
 |  | 
 |     // UNDEF nodes convert to UNDEF shuffle mask values. | 
 |     if (ExtVec.isUndef()) { | 
 |       Mask.append((unsigned)NumOpElts, -1); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Ensure that we are extracting a subvector from a vector the same | 
 |     // size as the result. | 
 |     if (ExtVT.getSizeInBits() != VT.getSizeInBits()) | 
 |       return SDValue(); | 
 |  | 
 |     // Scale the subvector index to account for any bitcast. | 
 |     int NumExtElts = ExtVT.getVectorNumElements(); | 
 |     if (0 == (NumExtElts % NumElts)) | 
 |       ExtIdx /= (NumExtElts / NumElts); | 
 |     else if (0 == (NumElts % NumExtElts)) | 
 |       ExtIdx *= (NumElts / NumExtElts); | 
 |     else | 
 |       return SDValue(); | 
 |  | 
 |     // At most we can reference 2 inputs in the final shuffle. | 
 |     if (SV0.isUndef() || SV0 == ExtVec) { | 
 |       SV0 = ExtVec; | 
 |       for (int i = 0; i != NumOpElts; ++i) | 
 |         Mask.push_back(i + ExtIdx); | 
 |     } else if (SV1.isUndef() || SV1 == ExtVec) { | 
 |       SV1 = ExtVec; | 
 |       for (int i = 0; i != NumOpElts; ++i) | 
 |         Mask.push_back(i + ExtIdx + NumElts); | 
 |     } else { | 
 |       return SDValue(); | 
 |     } | 
 |   } | 
 |  | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), | 
 |                                      DAG.getBitcast(VT, SV1), Mask, DAG); | 
 | } | 
 |  | 
 | static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { | 
 |   unsigned CastOpcode = N->getOperand(0).getOpcode(); | 
 |   switch (CastOpcode) { | 
 |   case ISD::SINT_TO_FP: | 
 |   case ISD::UINT_TO_FP: | 
 |   case ISD::FP_TO_SINT: | 
 |   case ISD::FP_TO_UINT: | 
 |     // TODO: Allow more opcodes? | 
 |     //  case ISD::BITCAST: | 
 |     //  case ISD::TRUNCATE: | 
 |     //  case ISD::ZERO_EXTEND: | 
 |     //  case ISD::SIGN_EXTEND: | 
 |     //  case ISD::FP_EXTEND: | 
 |     break; | 
 |   default: | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); | 
 |   if (!SrcVT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // All operands of the concat must be the same kind of cast from the same | 
 |   // source type. | 
 |   SmallVector<SDValue, 4> SrcOps; | 
 |   for (SDValue Op : N->ops()) { | 
 |     if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || | 
 |         Op.getOperand(0).getValueType() != SrcVT) | 
 |       return SDValue(); | 
 |     SrcOps.push_back(Op.getOperand(0)); | 
 |   } | 
 |  | 
 |   // The wider cast must be supported by the target. This is unusual because | 
 |   // the operation support type parameter depends on the opcode. In addition, | 
 |   // check the other type in the cast to make sure this is really legal. | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT SrcEltVT = SrcVT.getVectorElementType(); | 
 |   ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); | 
 |   EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   switch (CastOpcode) { | 
 |   case ISD::SINT_TO_FP: | 
 |   case ISD::UINT_TO_FP: | 
 |     if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || | 
 |         !TLI.isTypeLegal(VT)) | 
 |       return SDValue(); | 
 |     break; | 
 |   case ISD::FP_TO_SINT: | 
 |   case ISD::FP_TO_UINT: | 
 |     if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || | 
 |         !TLI.isTypeLegal(ConcatSrcVT)) | 
 |       return SDValue(); | 
 |     break; | 
 |   default: | 
 |     llvm_unreachable("Unexpected cast opcode"); | 
 |   } | 
 |  | 
 |   // concat (cast X), (cast Y)... -> cast (concat X, Y...) | 
 |   SDLoc DL(N); | 
 |   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); | 
 |   return DAG.getNode(CastOpcode, DL, VT, NewConcat); | 
 | } | 
 |  | 
 | // See if this is a simple CONCAT_VECTORS with no UNDEF operands, and if one of | 
 | // the operands is a SHUFFLE_VECTOR, and all other operands are also operands | 
 | // to that SHUFFLE_VECTOR, create wider SHUFFLE_VECTOR. | 
 | static SDValue combineConcatVectorOfShuffleAndItsOperands( | 
 |     SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, | 
 |     bool LegalOperations) { | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT OpVT = N->getOperand(0).getValueType(); | 
 |   if (VT.isScalableVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // For now, only allow simple 2-operand concatenations. | 
 |   if (N->getNumOperands() != 2) | 
 |     return SDValue(); | 
 |  | 
 |   // Don't create illegal types/shuffles when not allowed to. | 
 |   if ((LegalTypes && !TLI.isTypeLegal(VT)) || | 
 |       (LegalOperations && | 
 |        !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) | 
 |     return SDValue(); | 
 |  | 
 |   // Analyze all of the operands of the CONCAT_VECTORS. Out of all of them, | 
 |   // we want to find one that is: (1) a SHUFFLE_VECTOR (2) only used by us, | 
 |   // and (3) all operands of CONCAT_VECTORS must be either that SHUFFLE_VECTOR, | 
 |   // or one of the operands of that SHUFFLE_VECTOR (but not UNDEF!). | 
 |   // (4) and for now, the SHUFFLE_VECTOR must be unary. | 
 |   ShuffleVectorSDNode *SVN = nullptr; | 
 |   for (SDValue Op : N->ops()) { | 
 |     if (auto *CurSVN = dyn_cast<ShuffleVectorSDNode>(Op); | 
 |         CurSVN && CurSVN->getOperand(1).isUndef() && N->isOnlyUserOf(CurSVN) && | 
 |         all_of(N->ops(), [CurSVN](SDValue Op) { | 
 |           // FIXME: can we allow UNDEF operands? | 
 |           return !Op.isUndef() && | 
 |                  (Op.getNode() == CurSVN || is_contained(CurSVN->ops(), Op)); | 
 |         })) { | 
 |       SVN = CurSVN; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (!SVN) | 
 |     return SDValue(); | 
 |  | 
 |   // We are going to pad the shuffle operands, so any indice, that was picking | 
 |   // from the second operand, must be adjusted. | 
 |   SmallVector<int, 16> AdjustedMask(SVN->getMask()); | 
 |   assert(SVN->getOperand(1).isUndef() && "Expected unary shuffle!"); | 
 |  | 
 |   // Identity masks for the operands of the (padded) shuffle. | 
 |   SmallVector<int, 32> IdentityMask(2 * OpVT.getVectorNumElements()); | 
 |   MutableArrayRef<int> FirstShufOpIdentityMask = | 
 |       MutableArrayRef<int>(IdentityMask) | 
 |           .take_front(OpVT.getVectorNumElements()); | 
 |   MutableArrayRef<int> SecondShufOpIdentityMask = | 
 |       MutableArrayRef<int>(IdentityMask).take_back(OpVT.getVectorNumElements()); | 
 |   std::iota(FirstShufOpIdentityMask.begin(), FirstShufOpIdentityMask.end(), 0); | 
 |   std::iota(SecondShufOpIdentityMask.begin(), SecondShufOpIdentityMask.end(), | 
 |             VT.getVectorNumElements()); | 
 |  | 
 |   // New combined shuffle mask. | 
 |   SmallVector<int, 32> Mask; | 
 |   Mask.reserve(VT.getVectorNumElements()); | 
 |   for (SDValue Op : N->ops()) { | 
 |     assert(!Op.isUndef() && "Not expecting to concatenate UNDEF."); | 
 |     if (Op.getNode() == SVN) { | 
 |       append_range(Mask, AdjustedMask); | 
 |       continue; | 
 |     } | 
 |     if (Op == SVN->getOperand(0)) { | 
 |       append_range(Mask, FirstShufOpIdentityMask); | 
 |       continue; | 
 |     } | 
 |     if (Op == SVN->getOperand(1)) { | 
 |       append_range(Mask, SecondShufOpIdentityMask); | 
 |       continue; | 
 |     } | 
 |     llvm_unreachable("Unexpected operand!"); | 
 |   } | 
 |  | 
 |   // Don't create illegal shuffle masks. | 
 |   if (!TLI.isShuffleMaskLegal(Mask, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Pad the shuffle operands with UNDEF. | 
 |   SDLoc dl(N); | 
 |   std::array<SDValue, 2> ShufOps; | 
 |   for (auto I : zip(SVN->ops(), ShufOps)) { | 
 |     SDValue ShufOp = std::get<0>(I); | 
 |     SDValue &NewShufOp = std::get<1>(I); | 
 |     if (ShufOp.isUndef()) | 
 |       NewShufOp = DAG.getUNDEF(VT); | 
 |     else { | 
 |       SmallVector<SDValue, 2> ShufOpParts(N->getNumOperands(), | 
 |                                           DAG.getUNDEF(OpVT)); | 
 |       ShufOpParts[0] = ShufOp; | 
 |       NewShufOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, ShufOpParts); | 
 |     } | 
 |   } | 
 |   // Finally, create the new wide shuffle. | 
 |   return DAG.getVectorShuffle(VT, dl, ShufOps[0], ShufOps[1], Mask); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { | 
 |   // If we only have one input vector, we don't need to do any concatenation. | 
 |   if (N->getNumOperands() == 1) | 
 |     return N->getOperand(0); | 
 |  | 
 |   // Check if all of the operands are undefs. | 
 |   EVT VT = N->getValueType(0); | 
 |   if (ISD::allOperandsUndef(N)) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   // Optimize concat_vectors where all but the first of the vectors are undef. | 
 |   if (all_of(drop_begin(N->ops()), | 
 |              [](const SDValue &Op) { return Op.isUndef(); })) { | 
 |     SDValue In = N->getOperand(0); | 
 |     assert(In.getValueType().isVector() && "Must concat vectors"); | 
 |  | 
 |     // If the input is a concat_vectors, just make a larger concat by padding | 
 |     // with smaller undefs. | 
 |     // | 
 |     // Legalizing in AArch64TargetLowering::LowerCONCAT_VECTORS() and combining | 
 |     // here could cause an infinite loop. That legalizing happens when LegalDAG | 
 |     // is true and input of AArch64TargetLowering::LowerCONCAT_VECTORS() is | 
 |     // scalable. | 
 |     if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse() && | 
 |         !(LegalDAG && In.getValueType().isScalableVector())) { | 
 |       unsigned NumOps = N->getNumOperands() * In.getNumOperands(); | 
 |       SmallVector<SDValue, 4> Ops(In->ops()); | 
 |       Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); | 
 |       return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | 
 |     } | 
 |  | 
 |     SDValue Scalar = peekThroughOneUseBitcasts(In); | 
 |  | 
 |     // concat_vectors(scalar_to_vector(scalar), undef) -> | 
 |     //     scalar_to_vector(scalar) | 
 |     if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
 |          Scalar.hasOneUse()) { | 
 |       EVT SVT = Scalar.getValueType().getVectorElementType(); | 
 |       if (SVT == Scalar.getOperand(0).getValueType()) | 
 |         Scalar = Scalar.getOperand(0); | 
 |     } | 
 |  | 
 |     // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) | 
 |     if (!Scalar.getValueType().isVector() && In.hasOneUse()) { | 
 |       // If the bitcast type isn't legal, it might be a trunc of a legal type; | 
 |       // look through the trunc so we can still do the transform: | 
 |       //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) | 
 |       if (Scalar->getOpcode() == ISD::TRUNCATE && | 
 |           !TLI.isTypeLegal(Scalar.getValueType()) && | 
 |           TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) | 
 |         Scalar = Scalar->getOperand(0); | 
 |  | 
 |       EVT SclTy = Scalar.getValueType(); | 
 |  | 
 |       if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) | 
 |         return SDValue(); | 
 |  | 
 |       // Bail out if the vector size is not a multiple of the scalar size. | 
 |       if (VT.getSizeInBits() % SclTy.getSizeInBits()) | 
 |         return SDValue(); | 
 |  | 
 |       unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); | 
 |       if (VNTNumElms < 2) | 
 |         return SDValue(); | 
 |  | 
 |       EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); | 
 |       if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) | 
 |         return SDValue(); | 
 |  | 
 |       SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); | 
 |       return DAG.getBitcast(VT, Res); | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. | 
 |   // We have already tested above for an UNDEF only concatenation. | 
 |   // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) | 
 |   // -> (BUILD_VECTOR A, B, ..., C, D, ...) | 
 |   auto IsBuildVectorOrUndef = [](const SDValue &Op) { | 
 |     return Op.isUndef() || ISD::BUILD_VECTOR == Op.getOpcode(); | 
 |   }; | 
 |   if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { | 
 |     SmallVector<SDValue, 8> Opnds; | 
 |     EVT SVT = VT.getScalarType(); | 
 |  | 
 |     EVT MinVT = SVT; | 
 |     if (!SVT.isFloatingPoint()) { | 
 |       // If BUILD_VECTOR are from built from integer, they may have different | 
 |       // operand types. Get the smallest type and truncate all operands to it. | 
 |       bool FoundMinVT = false; | 
 |       for (const SDValue &Op : N->ops()) | 
 |         if (ISD::BUILD_VECTOR == Op.getOpcode()) { | 
 |           EVT OpSVT = Op.getOperand(0).getValueType(); | 
 |           MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; | 
 |           FoundMinVT = true; | 
 |         } | 
 |       assert(FoundMinVT && "Concat vector type mismatch"); | 
 |     } | 
 |  | 
 |     for (const SDValue &Op : N->ops()) { | 
 |       EVT OpVT = Op.getValueType(); | 
 |       unsigned NumElts = OpVT.getVectorNumElements(); | 
 |  | 
 |       if (Op.isUndef()) | 
 |         Opnds.append(NumElts, DAG.getUNDEF(MinVT)); | 
 |  | 
 |       if (ISD::BUILD_VECTOR == Op.getOpcode()) { | 
 |         if (SVT.isFloatingPoint()) { | 
 |           assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); | 
 |           Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); | 
 |         } else { | 
 |           for (unsigned i = 0; i != NumElts; ++i) | 
 |             Opnds.push_back( | 
 |                 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     assert(VT.getVectorNumElements() == Opnds.size() && | 
 |            "Concat vector type mismatch"); | 
 |     return DAG.getBuildVector(VT, SDLoc(N), Opnds); | 
 |   } | 
 |  | 
 |   // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. | 
 |   // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...). | 
 |   if (SDValue V = combineConcatVectorOfScalars(N, DAG)) | 
 |     return V; | 
 |  | 
 |   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { | 
 |     // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE. | 
 |     if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG)) | 
 |       return V; | 
 |  | 
 |     // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. | 
 |     if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) | 
 |       return V; | 
 |   } | 
 |  | 
 |   if (SDValue V = combineConcatVectorOfCasts(N, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = combineConcatVectorOfShuffleAndItsOperands( | 
 |           N, DAG, TLI, LegalTypes, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR | 
 |   // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR | 
 |   // operands and look for a CONCAT operations that place the incoming vectors | 
 |   // at the exact same location. | 
 |   // | 
 |   // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. | 
 |   SDValue SingleSource = SDValue(); | 
 |   unsigned PartNumElem = | 
 |       N->getOperand(0).getValueType().getVectorMinNumElements(); | 
 |  | 
 |   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
 |     SDValue Op = N->getOperand(i); | 
 |  | 
 |     if (Op.isUndef()) | 
 |       continue; | 
 |  | 
 |     // Check if this is the identity extract: | 
 |     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) | 
 |       return SDValue(); | 
 |  | 
 |     // Find the single incoming vector for the extract_subvector. | 
 |     if (SingleSource.getNode()) { | 
 |       if (Op.getOperand(0) != SingleSource) | 
 |         return SDValue(); | 
 |     } else { | 
 |       SingleSource = Op.getOperand(0); | 
 |  | 
 |       // Check the source type is the same as the type of the result. | 
 |       // If not, this concat may extend the vector, so we can not | 
 |       // optimize it away. | 
 |       if (SingleSource.getValueType() != N->getValueType(0)) | 
 |         return SDValue(); | 
 |     } | 
 |  | 
 |     // Check that we are reading from the identity index. | 
 |     unsigned IdentityIndex = i * PartNumElem; | 
 |     if (Op.getConstantOperandAPInt(1) != IdentityIndex) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   if (SingleSource.getNode()) | 
 |     return SingleSource; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find | 
 | // if the subvector can be sourced for free. | 
 | static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { | 
 |   if (V.getOpcode() == ISD::INSERT_SUBVECTOR && | 
 |       V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { | 
 |     return V.getOperand(1); | 
 |   } | 
 |   auto *IndexC = dyn_cast<ConstantSDNode>(Index); | 
 |   if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && | 
 |       V.getOperand(0).getValueType() == SubVT && | 
 |       (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { | 
 |     uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); | 
 |     return V.getOperand(SubIdx); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, | 
 |                                               SelectionDAG &DAG, | 
 |                                               bool LegalOperations) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   SDValue BinOp = Extract->getOperand(0); | 
 |   unsigned BinOpcode = BinOp.getOpcode(); | 
 |   if (!TLI.isBinOp(BinOpcode) || BinOp->getNumValues() != 1) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VecVT = BinOp.getValueType(); | 
 |   SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); | 
 |   if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Index = Extract->getOperand(1); | 
 |   EVT SubVT = Extract->getValueType(0); | 
 |   if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); | 
 |   SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); | 
 |  | 
 |   // TODO: We could handle the case where only 1 operand is being inserted by | 
 |   //       creating an extract of the other operand, but that requires checking | 
 |   //       number of uses and/or costs. | 
 |   if (!Sub0 || !Sub1) | 
 |     return SDValue(); | 
 |  | 
 |   // We are inserting both operands of the wide binop only to extract back | 
 |   // to the narrow vector size. Eliminate all of the insert/extract: | 
 |   // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y | 
 |   return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, | 
 |                      BinOp->getFlags()); | 
 | } | 
 |  | 
 | /// If we are extracting a subvector produced by a wide binary operator try | 
 | /// to use a narrow binary operator and/or avoid concatenation and extraction. | 
 | static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, | 
 |                                           bool LegalOperations) { | 
 |   // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share | 
 |   // some of these bailouts with other transforms. | 
 |  | 
 |   if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   // The extract index must be a constant, so we can map it to a concat operand. | 
 |   auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); | 
 |   if (!ExtractIndexC) | 
 |     return SDValue(); | 
 |  | 
 |   // We are looking for an optionally bitcasted wide vector binary operator | 
 |   // feeding an extract subvector. | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); | 
 |   unsigned BOpcode = BinOp.getOpcode(); | 
 |   if (!TLI.isBinOp(BOpcode) || BinOp->getNumValues() != 1) | 
 |     return SDValue(); | 
 |  | 
 |   // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be | 
 |   // reduced to the unary fneg when it is visited, and we probably want to deal | 
 |   // with fneg in a target-specific way. | 
 |   if (BOpcode == ISD::FSUB) { | 
 |     auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); | 
 |     if (C && C->getValueAPF().isNegZero()) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // The binop must be a vector type, so we can extract some fraction of it. | 
 |   EVT WideBVT = BinOp.getValueType(); | 
 |   // The optimisations below currently assume we are dealing with fixed length | 
 |   // vectors. It is possible to add support for scalable vectors, but at the | 
 |   // moment we've done no analysis to prove whether they are profitable or not. | 
 |   if (!WideBVT.isFixedLengthVector()) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = Extract->getValueType(0); | 
 |   unsigned ExtractIndex = ExtractIndexC->getZExtValue(); | 
 |   assert(ExtractIndex % VT.getVectorNumElements() == 0 && | 
 |          "Extract index is not a multiple of the vector length."); | 
 |  | 
 |   // Bail out if this is not a proper multiple width extraction. | 
 |   unsigned WideWidth = WideBVT.getSizeInBits(); | 
 |   unsigned NarrowWidth = VT.getSizeInBits(); | 
 |   if (WideWidth % NarrowWidth != 0) | 
 |     return SDValue(); | 
 |  | 
 |   // Bail out if we are extracting a fraction of a single operation. This can | 
 |   // occur because we potentially looked through a bitcast of the binop. | 
 |   unsigned NarrowingRatio = WideWidth / NarrowWidth; | 
 |   unsigned WideNumElts = WideBVT.getVectorNumElements(); | 
 |   if (WideNumElts % NarrowingRatio != 0) | 
 |     return SDValue(); | 
 |  | 
 |   // Bail out if the target does not support a narrower version of the binop. | 
 |   EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), | 
 |                                    WideNumElts / NarrowingRatio); | 
 |   if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT, | 
 |                                              LegalOperations)) | 
 |     return SDValue(); | 
 |  | 
 |   // If extraction is cheap, we don't need to look at the binop operands | 
 |   // for concat ops. The narrow binop alone makes this transform profitable. | 
 |   // We can't just reuse the original extract index operand because we may have | 
 |   // bitcasted. | 
 |   unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); | 
 |   unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); | 
 |   if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && | 
 |       BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { | 
 |     // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) | 
 |     SDLoc DL(Extract); | 
 |     SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); | 
 |     SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
 |                             BinOp.getOperand(0), NewExtIndex); | 
 |     SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
 |                             BinOp.getOperand(1), NewExtIndex); | 
 |     SDValue NarrowBinOp = | 
 |         DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, BinOp->getFlags()); | 
 |     return DAG.getBitcast(VT, NarrowBinOp); | 
 |   } | 
 |  | 
 |   // Only handle the case where we are doubling and then halving. A larger ratio | 
 |   // may require more than two narrow binops to replace the wide binop. | 
 |   if (NarrowingRatio != 2) | 
 |     return SDValue(); | 
 |  | 
 |   // TODO: The motivating case for this transform is an x86 AVX1 target. That | 
 |   // target has temptingly almost legal versions of bitwise logic ops in 256-bit | 
 |   // flavors, but no other 256-bit integer support. This could be extended to | 
 |   // handle any binop, but that may require fixing/adding other folds to avoid | 
 |   // codegen regressions. | 
 |   if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) | 
 |     return SDValue(); | 
 |  | 
 |   // We need at least one concatenation operation of a binop operand to make | 
 |   // this transform worthwhile. The concat must double the input vector sizes. | 
 |   auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { | 
 |     if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) | 
 |       return V.getOperand(ConcatOpNum); | 
 |     return SDValue(); | 
 |   }; | 
 |   SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); | 
 |   SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); | 
 |  | 
 |   if (SubVecL || SubVecR) { | 
 |     // If a binop operand was not the result of a concat, we must extract a | 
 |     // half-sized operand for our new narrow binop: | 
 |     // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN | 
 |     // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) | 
 |     // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN | 
 |     SDLoc DL(Extract); | 
 |     SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); | 
 |     SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) | 
 |                         : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
 |                                       BinOp.getOperand(0), IndexC); | 
 |  | 
 |     SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) | 
 |                         : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, | 
 |                                       BinOp.getOperand(1), IndexC); | 
 |  | 
 |     SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); | 
 |     return DAG.getBitcast(VT, NarrowBinOp); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If we are extracting a subvector from a wide vector load, convert to a | 
 | /// narrow load to eliminate the extraction: | 
 | /// (extract_subvector (load wide vector)) --> (load narrow vector) | 
 | static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { | 
 |   // TODO: Add support for big-endian. The offset calculation must be adjusted. | 
 |   if (DAG.getDataLayout().isBigEndian()) | 
 |     return SDValue(); | 
 |  | 
 |   auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); | 
 |   if (!Ld || !ISD::isNormalLoad(Ld) || !Ld->isSimple()) | 
 |     return SDValue(); | 
 |  | 
 |   // Allow targets to opt-out. | 
 |   EVT VT = Extract->getValueType(0); | 
 |  | 
 |   // We can only create byte sized loads. | 
 |   if (!VT.isByteSized()) | 
 |     return SDValue(); | 
 |  | 
 |   unsigned Index = Extract->getConstantOperandVal(1); | 
 |   unsigned NumElts = VT.getVectorMinNumElements(); | 
 |   // A fixed length vector being extracted from a scalable vector | 
 |   // may not be any *smaller* than the scalable one. | 
 |   if (Index == 0 && NumElts >= Ld->getValueType(0).getVectorMinNumElements()) | 
 |     return SDValue(); | 
 |  | 
 |   // The definition of EXTRACT_SUBVECTOR states that the index must be a | 
 |   // multiple of the minimum number of elements in the result type. | 
 |   assert(Index % NumElts == 0 && "The extract subvector index is not a " | 
 |                                  "multiple of the result's element count"); | 
 |  | 
 |   // It's fine to use TypeSize here as we know the offset will not be negative. | 
 |   TypeSize Offset = VT.getStoreSize() * (Index / NumElts); | 
 |   std::optional<unsigned> ByteOffset; | 
 |   if (Offset.isFixed()) | 
 |     ByteOffset = Offset.getFixedValue(); | 
 |  | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT, ByteOffset)) | 
 |     return SDValue(); | 
 |  | 
 |   // The narrow load will be offset from the base address of the old load if | 
 |   // we are extracting from something besides index 0 (little-endian). | 
 |   SDLoc DL(Extract); | 
 |  | 
 |   // TODO: Use "BaseIndexOffset" to make this more effective. | 
 |   SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); | 
 |  | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineMemOperand *MMO; | 
 |   if (Offset.isScalable()) { | 
 |     MachinePointerInfo MPI = | 
 |         MachinePointerInfo(Ld->getPointerInfo().getAddrSpace()); | 
 |     MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, VT.getStoreSize()); | 
 |   } else | 
 |     MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedValue(), | 
 |                                   VT.getStoreSize()); | 
 |  | 
 |   SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); | 
 |   DAG.makeEquivalentMemoryOrdering(Ld, NewLd); | 
 |   return NewLd; | 
 | } | 
 |  | 
 | /// Given  EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), | 
 | /// try to produce  VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?), | 
 | ///                                EXTRACT_SUBVECTOR(Op?, ?), | 
 | ///                                Mask')) | 
 | /// iff it is legal and profitable to do so. Notably, the trimmed mask | 
 | /// (containing only the elements that are extracted) | 
 | /// must reference at most two subvectors. | 
 | static SDValue foldExtractSubvectorFromShuffleVector(SDNode *N, | 
 |                                                      SelectionDAG &DAG, | 
 |                                                      const TargetLowering &TLI, | 
 |                                                      bool LegalOperations) { | 
 |   assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
 |          "Must only be called on EXTRACT_SUBVECTOR's"); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // Only deal with non-scalable vectors. | 
 |   EVT NarrowVT = N->getValueType(0); | 
 |   EVT WideVT = N0.getValueType(); | 
 |   if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // The operand must be a shufflevector. | 
 |   auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(N0); | 
 |   if (!WideShuffleVector) | 
 |     return SDValue(); | 
 |  | 
 |   // The old shuffleneeds to go away. | 
 |   if (!WideShuffleVector->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // And the narrow shufflevector that we'll form must be legal. | 
 |   if (LegalOperations && | 
 |       !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, NarrowVT)) | 
 |     return SDValue(); | 
 |  | 
 |   uint64_t FirstExtractedEltIdx = N->getConstantOperandVal(1); | 
 |   int NumEltsExtracted = NarrowVT.getVectorNumElements(); | 
 |   assert((FirstExtractedEltIdx % NumEltsExtracted) == 0 && | 
 |          "Extract index is not a multiple of the output vector length."); | 
 |  | 
 |   int WideNumElts = WideVT.getVectorNumElements(); | 
 |  | 
 |   SmallVector<int, 16> NewMask; | 
 |   NewMask.reserve(NumEltsExtracted); | 
 |   SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2> | 
 |       DemandedSubvectors; | 
 |  | 
 |   // Try to decode the wide mask into narrow mask from at most two subvectors. | 
 |   for (int M : WideShuffleVector->getMask().slice(FirstExtractedEltIdx, | 
 |                                                   NumEltsExtracted)) { | 
 |     assert((M >= -1) && (M < (2 * WideNumElts)) && | 
 |            "Out-of-bounds shuffle mask?"); | 
 |  | 
 |     if (M < 0) { | 
 |       // Does not depend on operands, does not require adjustment. | 
 |       NewMask.emplace_back(M); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // From which operand of the shuffle does this shuffle mask element pick? | 
 |     int WideShufOpIdx = M / WideNumElts; | 
 |     // Which element of that operand is picked? | 
 |     int OpEltIdx = M % WideNumElts; | 
 |  | 
 |     assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M && | 
 |            "Shuffle mask vector decomposition failure."); | 
 |  | 
 |     // And which NumEltsExtracted-sized subvector of that operand is that? | 
 |     int OpSubvecIdx = OpEltIdx / NumEltsExtracted; | 
 |     // And which element within that subvector of that operand is that? | 
 |     int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted; | 
 |  | 
 |     assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx && | 
 |            "Shuffle mask subvector decomposition failure."); | 
 |  | 
 |     assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted + | 
 |             WideShufOpIdx * WideNumElts) == M && | 
 |            "Shuffle mask full decomposition failure."); | 
 |  | 
 |     SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx); | 
 |  | 
 |     if (Op.isUndef()) { | 
 |       // Picking from an undef operand. Let's adjust mask instead. | 
 |       NewMask.emplace_back(-1); | 
 |       continue; | 
 |     } | 
 |  | 
 |     const std::pair<SDValue, int> DemandedSubvector = | 
 |         std::make_pair(Op, OpSubvecIdx); | 
 |  | 
 |     if (DemandedSubvectors.insert(DemandedSubvector)) { | 
 |       if (DemandedSubvectors.size() > 2) | 
 |         return SDValue(); // We can't handle more than two subvectors. | 
 |       // How many elements into the WideVT does this subvector start? | 
 |       int Index = NumEltsExtracted * OpSubvecIdx; | 
 |       // Bail out if the extraction isn't going to be cheap. | 
 |       if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index)) | 
 |         return SDValue(); | 
 |     } | 
 |  | 
 |     // Ok, but from which operand of the new shuffle will this element pick? | 
 |     int NewOpIdx = | 
 |         getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector); | 
 |     assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index."); | 
 |  | 
 |     int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted; | 
 |     NewMask.emplace_back(AdjM); | 
 |   } | 
 |   assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask."); | 
 |   assert(DemandedSubvectors.size() <= 2 && | 
 |          "Should have ended up demanding at most two subvectors."); | 
 |  | 
 |   // Did we discover that the shuffle does not actually depend on operands? | 
 |   if (DemandedSubvectors.empty()) | 
 |     return DAG.getUNDEF(NarrowVT); | 
 |  | 
 |   // Profitability check: only deal with extractions from the first subvector | 
 |   // unless the mask becomes an identity mask. | 
 |   if (!ShuffleVectorInst::isIdentityMask(NewMask, NewMask.size()) || | 
 |       any_of(NewMask, [](int M) { return M < 0; })) | 
 |     for (auto &DemandedSubvector : DemandedSubvectors) | 
 |       if (DemandedSubvector.second != 0) | 
 |         return SDValue(); | 
 |  | 
 |   // We still perform the exact same EXTRACT_SUBVECTOR,  just on different | 
 |   // operand[s]/index[es], so there is no point in checking for it's legality. | 
 |  | 
 |   // Do not turn a legal shuffle into an illegal one. | 
 |   if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) && | 
 |       !TLI.isShuffleMaskLegal(NewMask, NarrowVT)) | 
 |     return SDValue(); | 
 |  | 
 |   SDLoc DL(N); | 
 |  | 
 |   SmallVector<SDValue, 2> NewOps; | 
 |   for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/> | 
 |            &DemandedSubvector : DemandedSubvectors) { | 
 |     // How many elements into the WideVT does this subvector start? | 
 |     int Index = NumEltsExtracted * DemandedSubvector.second; | 
 |     SDValue IndexC = DAG.getVectorIdxConstant(Index, DL); | 
 |     NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT, | 
 |                                     DemandedSubvector.first, IndexC)); | 
 |   } | 
 |   assert((NewOps.size() == 1 || NewOps.size() == 2) && | 
 |          "Should end up with either one or two ops"); | 
 |  | 
 |   // If we ended up with only one operand, pad with an undef. | 
 |   if (NewOps.size() == 1) | 
 |     NewOps.emplace_back(DAG.getUNDEF(NarrowVT)); | 
 |  | 
 |   return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { | 
 |   EVT NVT = N->getValueType(0); | 
 |   SDValue V = N->getOperand(0); | 
 |   uint64_t ExtIdx = N->getConstantOperandVal(1); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Extract from UNDEF is UNDEF. | 
 |   if (V.isUndef()) | 
 |     return DAG.getUNDEF(NVT); | 
 |  | 
 |   if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) | 
 |     if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) | 
 |       return NarrowLoad; | 
 |  | 
 |   // Combine an extract of an extract into a single extract_subvector. | 
 |   // ext (ext X, C), 0 --> ext X, C | 
 |   if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { | 
 |     if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), | 
 |                                     V.getConstantOperandVal(1)) && | 
 |         TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, V.getOperand(0), | 
 |                          V.getOperand(1)); | 
 |     } | 
 |   } | 
 |  | 
 |   // ty1 extract_vector(ty2 splat(V))) -> ty1 splat(V) | 
 |   if (V.getOpcode() == ISD::SPLAT_VECTOR) | 
 |     if (DAG.isConstantValueOfAnyType(V.getOperand(0)) || V.hasOneUse()) | 
 |       if (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, NVT)) | 
 |         return DAG.getSplatVector(NVT, DL, V.getOperand(0)); | 
 |  | 
 |   // extract_subvector(insert_subvector(x,y,c1),c2) | 
 |   //  --> extract_subvector(y,c2-c1) | 
 |   // iff we're just extracting from the inserted subvector. | 
 |   if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { | 
 |     SDValue InsSub = V.getOperand(1); | 
 |     EVT InsSubVT = InsSub.getValueType(); | 
 |     unsigned NumInsElts = InsSubVT.getVectorMinNumElements(); | 
 |     unsigned InsIdx = V.getConstantOperandVal(2); | 
 |     unsigned NumSubElts = NVT.getVectorMinNumElements(); | 
 |     if (InsIdx <= ExtIdx && (ExtIdx + NumSubElts) <= (InsIdx + NumInsElts) && | 
 |         TLI.isExtractSubvectorCheap(NVT, InsSubVT, ExtIdx - InsIdx) && | 
 |         InsSubVT.isFixedLengthVector() && NVT.isFixedLengthVector() && | 
 |         V.getValueType().isFixedLengthVector()) | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, InsSub, | 
 |                          DAG.getVectorIdxConstant(ExtIdx - InsIdx, DL)); | 
 |   } | 
 |  | 
 |   // Try to move vector bitcast after extract_subv by scaling extraction index: | 
 |   // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') | 
 |   if (V.getOpcode() == ISD::BITCAST && | 
 |       V.getOperand(0).getValueType().isVector() && | 
 |       (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) { | 
 |     SDValue SrcOp = V.getOperand(0); | 
 |     EVT SrcVT = SrcOp.getValueType(); | 
 |     unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); | 
 |     unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); | 
 |     if ((SrcNumElts % DestNumElts) == 0) { | 
 |       unsigned SrcDestRatio = SrcNumElts / DestNumElts; | 
 |       ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; | 
 |       EVT NewExtVT = | 
 |           EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), NewExtEC); | 
 |       if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { | 
 |         SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); | 
 |         SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, | 
 |                                          V.getOperand(0), NewIndex); | 
 |         return DAG.getBitcast(NVT, NewExtract); | 
 |       } | 
 |     } | 
 |     if ((DestNumElts % SrcNumElts) == 0) { | 
 |       unsigned DestSrcRatio = DestNumElts / SrcNumElts; | 
 |       if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { | 
 |         ElementCount NewExtEC = | 
 |             NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); | 
 |         EVT ScalarVT = SrcVT.getScalarType(); | 
 |         if ((ExtIdx % DestSrcRatio) == 0) { | 
 |           unsigned IndexValScaled = ExtIdx / DestSrcRatio; | 
 |           EVT NewExtVT = | 
 |               EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); | 
 |           if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { | 
 |             SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); | 
 |             SDValue NewExtract = | 
 |                 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, | 
 |                             V.getOperand(0), NewIndex); | 
 |             return DAG.getBitcast(NVT, NewExtract); | 
 |           } | 
 |           if (NewExtEC.isScalar() && | 
 |               TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { | 
 |             SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); | 
 |             SDValue NewExtract = | 
 |                 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, | 
 |                             V.getOperand(0), NewIndex); | 
 |             return DAG.getBitcast(NVT, NewExtract); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (V.getOpcode() == ISD::CONCAT_VECTORS) { | 
 |     unsigned ExtNumElts = NVT.getVectorMinNumElements(); | 
 |     EVT ConcatSrcVT = V.getOperand(0).getValueType(); | 
 |     assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && | 
 |            "Concat and extract subvector do not change element type"); | 
 |     assert((ExtIdx % ExtNumElts) == 0 && | 
 |            "Extract index is not a multiple of the input vector length."); | 
 |  | 
 |     unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); | 
 |     unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; | 
 |  | 
 |     // If the concatenated source types match this extract, it's a direct | 
 |     // simplification: | 
 |     // extract_subvec (concat V1, V2, ...), i --> Vi | 
 |     if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount()) | 
 |       return V.getOperand(ConcatOpIdx); | 
 |  | 
 |     // If the concatenated source vectors are a multiple length of this extract, | 
 |     // then extract a fraction of one of those source vectors directly from a | 
 |     // concat operand. Example: | 
 |     //   v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> | 
 |     //   v2i8 extract_subvec v8i8 Y, 6 | 
 |     if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() && | 
 |         ConcatSrcNumElts % ExtNumElts == 0) { | 
 |       unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; | 
 |       assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && | 
 |              "Trying to extract from >1 concat operand?"); | 
 |       assert(NewExtIdx % ExtNumElts == 0 && | 
 |              "Extract index is not a multiple of the input vector length."); | 
 |       SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, | 
 |                          V.getOperand(ConcatOpIdx), NewIndexC); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = | 
 |           foldExtractSubvectorFromShuffleVector(N, DAG, TLI, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   V = peekThroughBitcasts(V); | 
 |  | 
 |   // If the input is a build vector. Try to make a smaller build vector. | 
 |   if (V.getOpcode() == ISD::BUILD_VECTOR) { | 
 |     EVT InVT = V.getValueType(); | 
 |     unsigned ExtractSize = NVT.getSizeInBits(); | 
 |     unsigned EltSize = InVT.getScalarSizeInBits(); | 
 |     // Only do this if we won't split any elements. | 
 |     if (ExtractSize % EltSize == 0) { | 
 |       unsigned NumElems = ExtractSize / EltSize; | 
 |       EVT EltVT = InVT.getVectorElementType(); | 
 |       EVT ExtractVT = | 
 |           NumElems == 1 ? EltVT | 
 |                         : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); | 
 |       if ((Level < AfterLegalizeDAG || | 
 |            (NumElems == 1 || | 
 |             TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && | 
 |           (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { | 
 |         unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; | 
 |  | 
 |         if (NumElems == 1) { | 
 |           SDValue Src = V->getOperand(IdxVal); | 
 |           if (EltVT != Src.getValueType()) | 
 |             Src = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Src); | 
 |           return DAG.getBitcast(NVT, Src); | 
 |         } | 
 |  | 
 |         // Extract the pieces from the original build_vector. | 
 |         SDValue BuildVec = | 
 |             DAG.getBuildVector(ExtractVT, DL, V->ops().slice(IdxVal, NumElems)); | 
 |         return DAG.getBitcast(NVT, BuildVec); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { | 
 |     // Handle only simple case where vector being inserted and vector | 
 |     // being extracted are of same size. | 
 |     EVT SmallVT = V.getOperand(1).getValueType(); | 
 |     if (NVT.bitsEq(SmallVT)) { | 
 |       // Combine: | 
 |       //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) | 
 |       // Into: | 
 |       //    indices are equal or bit offsets are equal => V1 | 
 |       //    otherwise => (extract_subvec V1, ExtIdx) | 
 |       uint64_t InsIdx = V.getConstantOperandVal(2); | 
 |       if (InsIdx * SmallVT.getScalarSizeInBits() == | 
 |           ExtIdx * NVT.getScalarSizeInBits()) { | 
 |         if (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT)) | 
 |           return DAG.getBitcast(NVT, V.getOperand(1)); | 
 |       } else { | 
 |         return DAG.getNode( | 
 |             ISD::EXTRACT_SUBVECTOR, DL, NVT, | 
 |             DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), | 
 |             N->getOperand(1)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) | 
 |     return NarrowBOp; | 
 |  | 
 |   // If only EXTRACT_SUBVECTOR nodes use the source vector we can | 
 |   // simplify it based on the (valid) extractions. | 
 |   if (!V.getValueType().isScalableVector() && | 
 |       llvm::all_of(V->users(), [&](SDNode *Use) { | 
 |         return Use->getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
 |                Use->getOperand(0) == V; | 
 |       })) { | 
 |     unsigned NumElts = V.getValueType().getVectorNumElements(); | 
 |     APInt DemandedElts = APInt::getZero(NumElts); | 
 |     for (SDNode *User : V->users()) { | 
 |       unsigned ExtIdx = User->getConstantOperandVal(1); | 
 |       unsigned NumSubElts = User->getValueType(0).getVectorNumElements(); | 
 |       DemandedElts.setBits(ExtIdx, ExtIdx + NumSubElts); | 
 |     } | 
 |     if (SimplifyDemandedVectorElts(V, DemandedElts, /*AssumeSingleUse=*/true)) { | 
 |       // We simplified the vector operand of this extract subvector. If this | 
 |       // extract is not dead, visit it again so it is folded properly. | 
 |       if (N->getOpcode() != ISD::DELETED_NODE) | 
 |         AddToWorklist(N); | 
 |       return SDValue(N, 0); | 
 |     } | 
 |   } else { | 
 |     if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
 |       return SDValue(N, 0); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles | 
 | /// followed by concatenation. Narrow vector ops may have better performance | 
 | /// than wide ops, and this can unlock further narrowing of other vector ops. | 
 | /// Targets can invert this transform later if it is not profitable. | 
 | static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, | 
 |                                          SelectionDAG &DAG) { | 
 |   SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); | 
 |   if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || | 
 |       N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || | 
 |       !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) | 
 |     return SDValue(); | 
 |  | 
 |   // Split the wide shuffle mask into halves. Any mask element that is accessing | 
 |   // operand 1 is offset down to account for narrowing of the vectors. | 
 |   ArrayRef<int> Mask = Shuf->getMask(); | 
 |   EVT VT = Shuf->getValueType(0); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   unsigned HalfNumElts = NumElts / 2; | 
 |   SmallVector<int, 16> Mask0(HalfNumElts, -1); | 
 |   SmallVector<int, 16> Mask1(HalfNumElts, -1); | 
 |   for (unsigned i = 0; i != NumElts; ++i) { | 
 |     if (Mask[i] == -1) | 
 |       continue; | 
 |     // If we reference the upper (undef) subvector then the element is undef. | 
 |     if ((Mask[i] % NumElts) >= HalfNumElts) | 
 |       continue; | 
 |     int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; | 
 |     if (i < HalfNumElts) | 
 |       Mask0[i] = M; | 
 |     else | 
 |       Mask1[i - HalfNumElts] = M; | 
 |   } | 
 |  | 
 |   // Ask the target if this is a valid transform. | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), | 
 |                                 HalfNumElts); | 
 |   if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || | 
 |       !TLI.isShuffleMaskLegal(Mask1, HalfVT)) | 
 |     return SDValue(); | 
 |  | 
 |   // shuffle (concat X, undef), (concat Y, undef), Mask --> | 
 |   // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) | 
 |   SDValue X = N0.getOperand(0), Y = N1.getOperand(0); | 
 |   SDLoc DL(Shuf); | 
 |   SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); | 
 |   SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); | 
 |   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); | 
 | } | 
 |  | 
 | // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, | 
 | // or turn a shuffle of a single concat into simpler shuffle then concat. | 
 | static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
 |   ArrayRef<int> Mask = SVN->getMask(); | 
 |  | 
 |   SmallVector<SDValue, 4> Ops; | 
 |   EVT ConcatVT = N0.getOperand(0).getValueType(); | 
 |   unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); | 
 |   unsigned NumConcats = NumElts / NumElemsPerConcat; | 
 |  | 
 |   auto IsUndefMaskElt = [](int i) { return i == -1; }; | 
 |  | 
 |   // Special case: shuffle(concat(A,B)) can be more efficiently represented | 
 |   // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high | 
 |   // half vector elements. | 
 |   if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && | 
 |       llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), | 
 |                    IsUndefMaskElt)) { | 
 |     N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), | 
 |                               N0.getOperand(1), | 
 |                               Mask.slice(0, NumElemsPerConcat)); | 
 |     N1 = DAG.getUNDEF(ConcatVT); | 
 |     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); | 
 |   } | 
 |  | 
 |   // Look at every vector that's inserted. We're looking for exact | 
 |   // subvector-sized copies from a concatenated vector | 
 |   for (unsigned I = 0; I != NumConcats; ++I) { | 
 |     unsigned Begin = I * NumElemsPerConcat; | 
 |     ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); | 
 |  | 
 |     // Make sure we're dealing with a copy. | 
 |     if (llvm::all_of(SubMask, IsUndefMaskElt)) { | 
 |       Ops.push_back(DAG.getUNDEF(ConcatVT)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     int OpIdx = -1; | 
 |     for (int i = 0; i != (int)NumElemsPerConcat; ++i) { | 
 |       if (IsUndefMaskElt(SubMask[i])) | 
 |         continue; | 
 |       if ((SubMask[i] % (int)NumElemsPerConcat) != i) | 
 |         return SDValue(); | 
 |       int EltOpIdx = SubMask[i] / NumElemsPerConcat; | 
 |       if (0 <= OpIdx && EltOpIdx != OpIdx) | 
 |         return SDValue(); | 
 |       OpIdx = EltOpIdx; | 
 |     } | 
 |     assert(0 <= OpIdx && "Unknown concat_vectors op"); | 
 |  | 
 |     if (OpIdx < (int)N0.getNumOperands()) | 
 |       Ops.push_back(N0.getOperand(OpIdx)); | 
 |     else | 
 |       Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); | 
 |   } | 
 |  | 
 |   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | 
 | } | 
 |  | 
 | // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | 
 | // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | 
 | // | 
 | // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always | 
 | // a simplification in some sense, but it isn't appropriate in general: some | 
 | // BUILD_VECTORs are substantially cheaper than others. The general case | 
 | // of a BUILD_VECTOR requires inserting each element individually (or | 
 | // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of | 
 | // all constants is a single constant pool load.  A BUILD_VECTOR where each | 
 | // element is identical is a splat.  A BUILD_VECTOR where most of the operands | 
 | // are undef lowers to a small number of element insertions. | 
 | // | 
 | // To deal with this, we currently use a bunch of mostly arbitrary heuristics. | 
 | // We don't fold shuffles where one side is a non-zero constant, and we don't | 
 | // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate | 
 | // non-constant operands. This seems to work out reasonably well in practice. | 
 | static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, | 
 |                                        SelectionDAG &DAG, | 
 |                                        const TargetLowering &TLI) { | 
 |   EVT VT = SVN->getValueType(0); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   SDValue N0 = SVN->getOperand(0); | 
 |   SDValue N1 = SVN->getOperand(1); | 
 |  | 
 |   if (!N0->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as | 
 |   // discussed above. | 
 |   if (!N1.isUndef()) { | 
 |     if (!N1->hasOneUse()) | 
 |       return SDValue(); | 
 |  | 
 |     bool N0AnyConst = isAnyConstantBuildVector(N0); | 
 |     bool N1AnyConst = isAnyConstantBuildVector(N1); | 
 |     if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) | 
 |       return SDValue(); | 
 |     if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) | 
 |       return SDValue(); | 
 |   } | 
 |  | 
 |   // If both inputs are splats of the same value then we can safely merge this | 
 |   // to a single BUILD_VECTOR with undef elements based on the shuffle mask. | 
 |   bool IsSplat = false; | 
 |   auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); | 
 |   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); | 
 |   if (BV0 && BV1) | 
 |     if (SDValue Splat0 = BV0->getSplatValue()) | 
 |       IsSplat = (Splat0 == BV1->getSplatValue()); | 
 |  | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   SmallSet<SDValue, 16> DuplicateOps; | 
 |   for (int M : SVN->getMask()) { | 
 |     SDValue Op = DAG.getUNDEF(VT.getScalarType()); | 
 |     if (M >= 0) { | 
 |       int Idx = M < (int)NumElts ? M : M - NumElts; | 
 |       SDValue &S = (M < (int)NumElts ? N0 : N1); | 
 |       if (S.getOpcode() == ISD::BUILD_VECTOR) { | 
 |         Op = S.getOperand(Idx); | 
 |       } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
 |         SDValue Op0 = S.getOperand(0); | 
 |         Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); | 
 |       } else { | 
 |         // Operand can't be combined - bail out. | 
 |         return SDValue(); | 
 |       } | 
 |     } | 
 |  | 
 |     // Don't duplicate a non-constant BUILD_VECTOR operand unless we're | 
 |     // generating a splat; semantically, this is fine, but it's likely to | 
 |     // generate low-quality code if the target can't reconstruct an appropriate | 
 |     // shuffle. | 
 |     if (!Op.isUndef() && !isIntOrFPConstant(Op)) | 
 |       if (!IsSplat && !DuplicateOps.insert(Op).second) | 
 |         return SDValue(); | 
 |  | 
 |     Ops.push_back(Op); | 
 |   } | 
 |  | 
 |   // BUILD_VECTOR requires all inputs to be of the same type, find the | 
 |   // maximum type and extend them all. | 
 |   EVT SVT = VT.getScalarType(); | 
 |   if (SVT.isInteger()) | 
 |     for (SDValue &Op : Ops) | 
 |       SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); | 
 |   if (SVT != VT.getScalarType()) | 
 |     for (SDValue &Op : Ops) | 
 |       Op = Op.isUndef() ? DAG.getUNDEF(SVT) | 
 |                         : (TLI.isZExtFree(Op.getValueType(), SVT) | 
 |                                ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) | 
 |                                : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT)); | 
 |   return DAG.getBuildVector(VT, SDLoc(SVN), Ops); | 
 | } | 
 |  | 
 | // Match shuffles that can be converted to *_vector_extend_in_reg. | 
 | // This is often generated during legalization. | 
 | // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)), | 
 | // and returns the EVT to which the extension should be performed. | 
 | // NOTE: this assumes that the src is the first operand of the shuffle. | 
 | static std::optional<EVT> canCombineShuffleToExtendVectorInreg( | 
 |     unsigned Opcode, EVT VT, std::function<bool(unsigned)> Match, | 
 |     SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, | 
 |     bool LegalOperations) { | 
 |   bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | 
 |  | 
 |   // TODO Add support for big-endian when we have a test case. | 
 |   if (!VT.isInteger() || IsBigEndian) | 
 |     return std::nullopt; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for | 
 |   // power-of-2 extensions as they are the most likely. | 
 |   // FIXME: should try Scale == NumElts case too, | 
 |   for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { | 
 |     // The vector width must be a multiple of Scale. | 
 |     if (NumElts % Scale != 0) | 
 |       continue; | 
 |  | 
 |     EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); | 
 |     EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); | 
 |  | 
 |     if ((LegalTypes && !TLI.isTypeLegal(OutVT)) || | 
 |         (LegalOperations && !TLI.isOperationLegalOrCustom(Opcode, OutVT))) | 
 |       continue; | 
 |  | 
 |     if (Match(Scale)) | 
 |       return OutVT; | 
 |   } | 
 |  | 
 |   return std::nullopt; | 
 | } | 
 |  | 
 | // Match shuffles that can be converted to any_vector_extend_in_reg. | 
 | // This is often generated during legalization. | 
 | // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) | 
 | static SDValue combineShuffleToAnyExtendVectorInreg(ShuffleVectorSDNode *SVN, | 
 |                                                     SelectionDAG &DAG, | 
 |                                                     const TargetLowering &TLI, | 
 |                                                     bool LegalOperations) { | 
 |   EVT VT = SVN->getValueType(0); | 
 |   bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | 
 |  | 
 |   // TODO Add support for big-endian when we have a test case. | 
 |   if (!VT.isInteger() || IsBigEndian) | 
 |     return SDValue(); | 
 |  | 
 |   // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) | 
 |   auto isAnyExtend = [NumElts = VT.getVectorNumElements(), | 
 |                       Mask = SVN->getMask()](unsigned Scale) { | 
 |     for (unsigned i = 0; i != NumElts; ++i) { | 
 |       if (Mask[i] < 0) | 
 |         continue; | 
 |       if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) | 
 |         continue; | 
 |       return false; | 
 |     } | 
 |     return true; | 
 |   }; | 
 |  | 
 |   unsigned Opcode = ISD::ANY_EXTEND_VECTOR_INREG; | 
 |   SDValue N0 = SVN->getOperand(0); | 
 |   // Never create an illegal type. Only create unsupported operations if we | 
 |   // are pre-legalization. | 
 |   std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg( | 
 |       Opcode, VT, isAnyExtend, DAG, TLI, /*LegalTypes=*/true, LegalOperations); | 
 |   if (!OutVT) | 
 |     return SDValue(); | 
 |   return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, N0)); | 
 | } | 
 |  | 
 | // Match shuffles that can be converted to zero_extend_vector_inreg. | 
 | // This is often generated during legalization. | 
 | // e.g. v4i32 <0,z,1,u> -> (v2i64 zero_extend_vector_inreg(v4i32 src)) | 
 | static SDValue combineShuffleToZeroExtendVectorInReg(ShuffleVectorSDNode *SVN, | 
 |                                                      SelectionDAG &DAG, | 
 |                                                      const TargetLowering &TLI, | 
 |                                                      bool LegalOperations) { | 
 |   bool LegalTypes = true; | 
 |   EVT VT = SVN->getValueType(0); | 
 |   assert(!VT.isScalableVector() && "Encountered scalable shuffle?"); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
 |  | 
 |   // TODO: add support for big-endian when we have a test case. | 
 |   bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | 
 |   if (!VT.isInteger() || IsBigEndian) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<int, 16> Mask(SVN->getMask()); | 
 |   auto ForEachDecomposedIndice = [NumElts, &Mask](auto Fn) { | 
 |     for (int &Indice : Mask) { | 
 |       if (Indice < 0) | 
 |         continue; | 
 |       int OpIdx = (unsigned)Indice < NumElts ? 0 : 1; | 
 |       int OpEltIdx = (unsigned)Indice < NumElts ? Indice : Indice - NumElts; | 
 |       Fn(Indice, OpIdx, OpEltIdx); | 
 |     } | 
 |   }; | 
 |  | 
 |   // Which elements of which operand does this shuffle demand? | 
 |   std::array<APInt, 2> OpsDemandedElts; | 
 |   for (APInt &OpDemandedElts : OpsDemandedElts) | 
 |     OpDemandedElts = APInt::getZero(NumElts); | 
 |   ForEachDecomposedIndice( | 
 |       [&OpsDemandedElts](int &Indice, int OpIdx, int OpEltIdx) { | 
 |         OpsDemandedElts[OpIdx].setBit(OpEltIdx); | 
 |       }); | 
 |  | 
 |   // Element-wise(!), which of these demanded elements are know to be zero? | 
 |   std::array<APInt, 2> OpsKnownZeroElts; | 
 |   for (auto I : zip(SVN->ops(), OpsDemandedElts, OpsKnownZeroElts)) | 
 |     std::get<2>(I) = | 
 |         DAG.computeVectorKnownZeroElements(std::get<0>(I), std::get<1>(I)); | 
 |  | 
 |   // Manifest zeroable element knowledge in the shuffle mask. | 
 |   // NOTE: we don't have 'zeroable' sentinel value in generic DAG, | 
 |   //       this is a local invention, but it won't leak into DAG. | 
 |   // FIXME: should we not manifest them, but just check when matching? | 
 |   bool HadZeroableElts = false; | 
 |   ForEachDecomposedIndice([&OpsKnownZeroElts, &HadZeroableElts]( | 
 |                               int &Indice, int OpIdx, int OpEltIdx) { | 
 |     if (OpsKnownZeroElts[OpIdx][OpEltIdx]) { | 
 |       Indice = -2; // Zeroable element. | 
 |       HadZeroableElts = true; | 
 |     } | 
 |   }); | 
 |  | 
 |   // Don't proceed unless we've refined at least one zeroable mask indice. | 
 |   // If we didn't, then we are still trying to match the same shuffle mask | 
 |   // we previously tried to match as ISD::ANY_EXTEND_VECTOR_INREG, | 
 |   // and evidently failed. Proceeding will lead to endless combine loops. | 
 |   if (!HadZeroableElts) | 
 |     return SDValue(); | 
 |  | 
 |   // The shuffle may be more fine-grained than we want. Widen elements first. | 
 |   // FIXME: should we do this before manifesting zeroable shuffle mask indices? | 
 |   SmallVector<int, 16> ScaledMask; | 
 |   getShuffleMaskWithWidestElts(Mask, ScaledMask); | 
 |   assert(Mask.size() >= ScaledMask.size() && | 
 |          Mask.size() % ScaledMask.size() == 0 && "Unexpected mask widening."); | 
 |   int Prescale = Mask.size() / ScaledMask.size(); | 
 |  | 
 |   NumElts = ScaledMask.size(); | 
 |   EltSizeInBits *= Prescale; | 
 |  | 
 |   EVT PrescaledVT = EVT::getVectorVT( | 
 |       *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits), | 
 |       NumElts); | 
 |  | 
 |   if (LegalTypes && !TLI.isTypeLegal(PrescaledVT) && TLI.isTypeLegal(VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // For example, | 
 |   // shuffle<0,z,1,-1> == (v2i64 zero_extend_vector_inreg(v4i32)) | 
 |   // But not shuffle<z,z,1,-1> and not shuffle<0,z,z,-1> ! (for same types) | 
 |   auto isZeroExtend = [NumElts, &ScaledMask](unsigned Scale) { | 
 |     assert(Scale >= 2 && Scale <= NumElts && NumElts % Scale == 0 && | 
 |            "Unexpected mask scaling factor."); | 
 |     ArrayRef<int> Mask = ScaledMask; | 
 |     for (unsigned SrcElt = 0, NumSrcElts = NumElts / Scale; | 
 |          SrcElt != NumSrcElts; ++SrcElt) { | 
 |       // Analyze the shuffle mask in Scale-sized chunks. | 
 |       ArrayRef<int> MaskChunk = Mask.take_front(Scale); | 
 |       assert(MaskChunk.size() == Scale && "Unexpected mask size."); | 
 |       Mask = Mask.drop_front(MaskChunk.size()); | 
 |       // The first indice in this chunk must be SrcElt, but not zero! | 
 |       // FIXME: undef should be fine, but that results in more-defined result. | 
 |       if (int FirstIndice = MaskChunk[0]; (unsigned)FirstIndice != SrcElt) | 
 |         return false; | 
 |       // The rest of the indices in this chunk must be zeros. | 
 |       // FIXME: undef should be fine, but that results in more-defined result. | 
 |       if (!all_of(MaskChunk.drop_front(1), | 
 |                   [](int Indice) { return Indice == -2; })) | 
 |         return false; | 
 |     } | 
 |     assert(Mask.empty() && "Did not process the whole mask?"); | 
 |     return true; | 
 |   }; | 
 |  | 
 |   unsigned Opcode = ISD::ZERO_EXTEND_VECTOR_INREG; | 
 |   for (bool Commuted : {false, true}) { | 
 |     SDValue Op = SVN->getOperand(!Commuted ? 0 : 1); | 
 |     if (Commuted) | 
 |       ShuffleVectorSDNode::commuteMask(ScaledMask); | 
 |     std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg( | 
 |         Opcode, PrescaledVT, isZeroExtend, DAG, TLI, LegalTypes, | 
 |         LegalOperations); | 
 |     if (OutVT) | 
 |       return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, | 
 |                                             DAG.getBitcast(PrescaledVT, Op))); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of | 
 | // each source element of a large type into the lowest elements of a smaller | 
 | // destination type. This is often generated during legalization. | 
 | // If the source node itself was a '*_extend_vector_inreg' node then we should | 
 | // then be able to remove it. | 
 | static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, | 
 |                                         SelectionDAG &DAG) { | 
 |   EVT VT = SVN->getValueType(0); | 
 |   bool IsBigEndian = DAG.getDataLayout().isBigEndian(); | 
 |  | 
 |   // TODO Add support for big-endian when we have a test case. | 
 |   if (!VT.isInteger() || IsBigEndian) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); | 
 |  | 
 |   unsigned Opcode = N0.getOpcode(); | 
 |   if (!ISD::isExtVecInRegOpcode(Opcode)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue N00 = N0.getOperand(0); | 
 |   ArrayRef<int> Mask = SVN->getMask(); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
 |   unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); | 
 |   unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); | 
 |  | 
 |   if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) | 
 |     return SDValue(); | 
 |   unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; | 
 |  | 
 |   // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> | 
 |   // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> | 
 |   // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> | 
 |   auto isTruncate = [&Mask, &NumElts](unsigned Scale) { | 
 |     for (unsigned i = 0; i != NumElts; ++i) { | 
 |       if (Mask[i] < 0) | 
 |         continue; | 
 |       if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) | 
 |         continue; | 
 |       return false; | 
 |     } | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // At the moment we just handle the case where we've truncated back to the | 
 |   // same size as before the extension. | 
 |   // TODO: handle more extension/truncation cases as cases arise. | 
 |   if (EltSizeInBits != ExtSrcSizeInBits) | 
 |     return SDValue(); | 
 |  | 
 |   // We can remove *extend_vector_inreg only if the truncation happens at | 
 |   // the same scale as the extension. | 
 |   if (isTruncate(ExtScale)) | 
 |     return DAG.getBitcast(VT, N00); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Combine shuffles of splat-shuffles of the form: | 
 | // shuffle (shuffle V, undef, splat-mask), undef, M | 
 | // If splat-mask contains undef elements, we need to be careful about | 
 | // introducing undef's in the folded mask which are not the result of composing | 
 | // the masks of the shuffles. | 
 | static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, | 
 |                                         SelectionDAG &DAG) { | 
 |   EVT VT = Shuf->getValueType(0); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |  | 
 |   if (!Shuf->getOperand(1).isUndef()) | 
 |     return SDValue(); | 
 |  | 
 |   // See if this unary non-splat shuffle actually *is* a splat shuffle, | 
 |   // in disguise, with all demanded elements being identical. | 
 |   // FIXME: this can be done per-operand. | 
 |   if (!Shuf->isSplat()) { | 
 |     APInt DemandedElts(NumElts, 0); | 
 |     for (int Idx : Shuf->getMask()) { | 
 |       if (Idx < 0) | 
 |         continue; // Ignore sentinel indices. | 
 |       assert((unsigned)Idx < NumElts && "Out-of-bounds shuffle indice?"); | 
 |       DemandedElts.setBit(Idx); | 
 |     } | 
 |     assert(DemandedElts.popcount() > 1 && "Is a splat shuffle already?"); | 
 |     APInt UndefElts; | 
 |     if (DAG.isSplatValue(Shuf->getOperand(0), DemandedElts, UndefElts)) { | 
 |       // Even if all demanded elements are splat, some of them could be undef. | 
 |       // Which lowest demanded element is *not* known-undef? | 
 |       std::optional<unsigned> MinNonUndefIdx; | 
 |       for (int Idx : Shuf->getMask()) { | 
 |         if (Idx < 0 || UndefElts[Idx]) | 
 |           continue; // Ignore sentinel indices, and undef elements. | 
 |         MinNonUndefIdx = std::min<unsigned>(Idx, MinNonUndefIdx.value_or(~0U)); | 
 |       } | 
 |       if (!MinNonUndefIdx) | 
 |         return DAG.getUNDEF(VT); // All undef - result is undef. | 
 |       assert(*MinNonUndefIdx < NumElts && "Expected valid element index."); | 
 |       SmallVector<int, 8> SplatMask(Shuf->getMask()); | 
 |       for (int &Idx : SplatMask) { | 
 |         if (Idx < 0) | 
 |           continue; // Passthrough sentinel indices. | 
 |         // Otherwise, just pick the lowest demanded non-undef element. | 
 |         // Or sentinel undef, if we know we'd pick a known-undef element. | 
 |         Idx = UndefElts[Idx] ? -1 : *MinNonUndefIdx; | 
 |       } | 
 |       assert(SplatMask != Shuf->getMask() && "Expected mask to change!"); | 
 |       return DAG.getVectorShuffle(VT, SDLoc(Shuf), Shuf->getOperand(0), | 
 |                                   Shuf->getOperand(1), SplatMask); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the inner operand is a known splat with no undefs, just return that directly. | 
 |   // TODO: Create DemandedElts mask from Shuf's mask. | 
 |   // TODO: Allow undef elements and merge with the shuffle code below. | 
 |   if (DAG.isSplatValue(Shuf->getOperand(0), /*AllowUndefs*/ false)) | 
 |     return Shuf->getOperand(0); | 
 |  | 
 |   auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); | 
 |   if (!Splat || !Splat->isSplat()) | 
 |     return SDValue(); | 
 |  | 
 |   ArrayRef<int> ShufMask = Shuf->getMask(); | 
 |   ArrayRef<int> SplatMask = Splat->getMask(); | 
 |   assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); | 
 |  | 
 |   // Prefer simplifying to the splat-shuffle, if possible. This is legal if | 
 |   // every undef mask element in the splat-shuffle has a corresponding undef | 
 |   // element in the user-shuffle's mask or if the composition of mask elements | 
 |   // would result in undef. | 
 |   // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): | 
 |   // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] | 
 |   //   In this case it is not legal to simplify to the splat-shuffle because we | 
 |   //   may be exposing the users of the shuffle an undef element at index 1 | 
 |   //   which was not there before the combine. | 
 |   // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] | 
 |   //   In this case the composition of masks yields SplatMask, so it's ok to | 
 |   //   simplify to the splat-shuffle. | 
 |   // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] | 
 |   //   In this case the composed mask includes all undef elements of SplatMask | 
 |   //   and in addition sets element zero to undef. It is safe to simplify to | 
 |   //   the splat-shuffle. | 
 |   auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, | 
 |                                        ArrayRef<int> SplatMask) { | 
 |     for (unsigned i = 0, e = UserMask.size(); i != e; ++i) | 
 |       if (UserMask[i] != -1 && SplatMask[i] == -1 && | 
 |           SplatMask[UserMask[i]] != -1) | 
 |         return false; | 
 |     return true; | 
 |   }; | 
 |   if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) | 
 |     return Shuf->getOperand(0); | 
 |  | 
 |   // Create a new shuffle with a mask that is composed of the two shuffles' | 
 |   // masks. | 
 |   SmallVector<int, 32> NewMask; | 
 |   for (int Idx : ShufMask) | 
 |     NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); | 
 |  | 
 |   return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), | 
 |                               Splat->getOperand(0), Splat->getOperand(1), | 
 |                               NewMask); | 
 | } | 
 |  | 
 | // Combine shuffles of bitcasts into a shuffle of the bitcast type, providing | 
 | // the mask can be treated as a larger type. | 
 | static SDValue combineShuffleOfBitcast(ShuffleVectorSDNode *SVN, | 
 |                                        SelectionDAG &DAG, | 
 |                                        const TargetLowering &TLI, | 
 |                                        bool LegalOperations) { | 
 |   SDValue Op0 = SVN->getOperand(0); | 
 |   SDValue Op1 = SVN->getOperand(1); | 
 |   EVT VT = SVN->getValueType(0); | 
 |   if (Op0.getOpcode() != ISD::BITCAST) | 
 |     return SDValue(); | 
 |   EVT InVT = Op0.getOperand(0).getValueType(); | 
 |   if (!InVT.isVector() || | 
 |       (!Op1.isUndef() && (Op1.getOpcode() != ISD::BITCAST || | 
 |                           Op1.getOperand(0).getValueType() != InVT))) | 
 |     return SDValue(); | 
 |   if (isAnyConstantBuildVector(Op0.getOperand(0)) && | 
 |       (Op1.isUndef() || isAnyConstantBuildVector(Op1.getOperand(0)))) | 
 |     return SDValue(); | 
 |  | 
 |   int VTLanes = VT.getVectorNumElements(); | 
 |   int InLanes = InVT.getVectorNumElements(); | 
 |   if (VTLanes <= InLanes || VTLanes % InLanes != 0 || | 
 |       (LegalOperations && | 
 |        !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, InVT))) | 
 |     return SDValue(); | 
 |   int Factor = VTLanes / InLanes; | 
 |  | 
 |   // Check that each group of lanes in the mask are either undef or make a valid | 
 |   // mask for the wider lane type. | 
 |   ArrayRef<int> Mask = SVN->getMask(); | 
 |   SmallVector<int> NewMask; | 
 |   if (!widenShuffleMaskElts(Factor, Mask, NewMask)) | 
 |     return SDValue(); | 
 |  | 
 |   if (!TLI.isShuffleMaskLegal(NewMask, InVT)) | 
 |     return SDValue(); | 
 |  | 
 |   // Create the new shuffle with the new mask and bitcast it back to the | 
 |   // original type. | 
 |   SDLoc DL(SVN); | 
 |   Op0 = Op0.getOperand(0); | 
 |   Op1 = Op1.isUndef() ? DAG.getUNDEF(InVT) : Op1.getOperand(0); | 
 |   SDValue NewShuf = DAG.getVectorShuffle(InVT, DL, Op0, Op1, NewMask); | 
 |   return DAG.getBitcast(VT, NewShuf); | 
 | } | 
 |  | 
 | /// Combine shuffle of shuffle of the form: | 
 | /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X | 
 | static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, | 
 |                                      SelectionDAG &DAG) { | 
 |   if (!OuterShuf->getOperand(1).isUndef()) | 
 |     return SDValue(); | 
 |   auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); | 
 |   if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) | 
 |     return SDValue(); | 
 |  | 
 |   ArrayRef<int> OuterMask = OuterShuf->getMask(); | 
 |   ArrayRef<int> InnerMask = InnerShuf->getMask(); | 
 |   unsigned NumElts = OuterMask.size(); | 
 |   assert(NumElts == InnerMask.size() && "Mask length mismatch"); | 
 |   SmallVector<int, 32> CombinedMask(NumElts, -1); | 
 |   int SplatIndex = -1; | 
 |   for (unsigned i = 0; i != NumElts; ++i) { | 
 |     // Undef lanes remain undef. | 
 |     int OuterMaskElt = OuterMask[i]; | 
 |     if (OuterMaskElt == -1) | 
 |       continue; | 
 |  | 
 |     // Peek through the shuffle masks to get the underlying source element. | 
 |     int InnerMaskElt = InnerMask[OuterMaskElt]; | 
 |     if (InnerMaskElt == -1) | 
 |       continue; | 
 |  | 
 |     // Initialize the splatted element. | 
 |     if (SplatIndex == -1) | 
 |       SplatIndex = InnerMaskElt; | 
 |  | 
 |     // Non-matching index - this is not a splat. | 
 |     if (SplatIndex != InnerMaskElt) | 
 |       return SDValue(); | 
 |  | 
 |     CombinedMask[i] = InnerMaskElt; | 
 |   } | 
 |   assert((all_of(CombinedMask, [](int M) { return M == -1; }) || | 
 |           getSplatIndex(CombinedMask) != -1) && | 
 |          "Expected a splat mask"); | 
 |  | 
 |   // TODO: The transform may be a win even if the mask is not legal. | 
 |   EVT VT = OuterShuf->getValueType(0); | 
 |   assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); | 
 |   if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) | 
 |     return SDValue(); | 
 |  | 
 |   return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), | 
 |                               InnerShuf->getOperand(1), CombinedMask); | 
 | } | 
 |  | 
 | /// If the shuffle mask is taking exactly one element from the first vector | 
 | /// operand and passing through all other elements from the second vector | 
 | /// operand, return the index of the mask element that is choosing an element | 
 | /// from the first operand. Otherwise, return -1. | 
 | static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { | 
 |   int MaskSize = Mask.size(); | 
 |   int EltFromOp0 = -1; | 
 |   // TODO: This does not match if there are undef elements in the shuffle mask. | 
 |   // Should we ignore undefs in the shuffle mask instead? The trade-off is | 
 |   // removing an instruction (a shuffle), but losing the knowledge that some | 
 |   // vector lanes are not needed. | 
 |   for (int i = 0; i != MaskSize; ++i) { | 
 |     if (Mask[i] >= 0 && Mask[i] < MaskSize) { | 
 |       // We're looking for a shuffle of exactly one element from operand 0. | 
 |       if (EltFromOp0 != -1) | 
 |         return -1; | 
 |       EltFromOp0 = i; | 
 |     } else if (Mask[i] != i + MaskSize) { | 
 |       // Nothing from operand 1 can change lanes. | 
 |       return -1; | 
 |     } | 
 |   } | 
 |   return EltFromOp0; | 
 | } | 
 |  | 
 | /// If a shuffle inserts exactly one element from a source vector operand into | 
 | /// another vector operand and we can access the specified element as a scalar, | 
 | /// then we can eliminate the shuffle. | 
 | SDValue DAGCombiner::replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf) { | 
 |   // First, check if we are taking one element of a vector and shuffling that | 
 |   // element into another vector. | 
 |   ArrayRef<int> Mask = Shuf->getMask(); | 
 |   SmallVector<int, 16> CommutedMask(Mask); | 
 |   SDValue Op0 = Shuf->getOperand(0); | 
 |   SDValue Op1 = Shuf->getOperand(1); | 
 |   int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); | 
 |   if (ShufOp0Index == -1) { | 
 |     // Commute mask and check again. | 
 |     ShuffleVectorSDNode::commuteMask(CommutedMask); | 
 |     ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); | 
 |     if (ShufOp0Index == -1) | 
 |       return SDValue(); | 
 |     // Commute operands to match the commuted shuffle mask. | 
 |     std::swap(Op0, Op1); | 
 |     Mask = CommutedMask; | 
 |   } | 
 |  | 
 |   // The shuffle inserts exactly one element from operand 0 into operand 1. | 
 |   // Now see if we can access that element as a scalar via a real insert element | 
 |   // instruction. | 
 |   // TODO: We can try harder to locate the element as a scalar. Examples: it | 
 |   // could be an operand of BUILD_VECTOR, or a constant. | 
 |   assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && | 
 |          "Shuffle mask value must be from operand 0"); | 
 |  | 
 |   SDValue Elt; | 
 |   if (sd_match(Op0, m_InsertElt(m_Value(), m_Value(Elt), | 
 |                                 m_SpecificInt(Mask[ShufOp0Index])))) { | 
 |     // There's an existing insertelement with constant insertion index, so we | 
 |     // don't need to check the legality/profitability of a replacement operation | 
 |     // that differs at most in the constant value. The target should be able to | 
 |     // lower any of those in a similar way. If not, legalization will expand | 
 |     // this to a scalar-to-vector plus shuffle. | 
 |     // | 
 |     // Note that the shuffle may move the scalar from the position that the | 
 |     // insert element used. Therefore, our new insert element occurs at the | 
 |     // shuffle's mask index value, not the insert's index value. | 
 |     // | 
 |     // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' | 
 |     SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); | 
 |     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), | 
 |                        Op1, Elt, NewInsIndex); | 
 |   } | 
 |  | 
 |   if (!hasOperation(ISD::INSERT_VECTOR_ELT, Op0.getValueType())) | 
 |     return SDValue(); | 
 |  | 
 |   if (sd_match(Op0, m_UnaryOp(ISD::SCALAR_TO_VECTOR, m_Value(Elt))) && | 
 |       Mask[ShufOp0Index] == 0) { | 
 |     SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); | 
 |     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), | 
 |                        Op1, Elt, NewInsIndex); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If we have a unary shuffle of a shuffle, see if it can be folded away | 
 | /// completely. This has the potential to lose undef knowledge because the first | 
 | /// shuffle may not have an undef mask element where the second one does. So | 
 | /// only call this after doing simplifications based on demanded elements. | 
 | static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { | 
 |   // shuf (shuf0 X, Y, Mask0), undef, Mask | 
 |   auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); | 
 |   if (!Shuf0 || !Shuf->getOperand(1).isUndef()) | 
 |     return SDValue(); | 
 |  | 
 |   ArrayRef<int> Mask = Shuf->getMask(); | 
 |   ArrayRef<int> Mask0 = Shuf0->getMask(); | 
 |   for (int i = 0, e = (int)Mask.size(); i != e; ++i) { | 
 |     // Ignore undef elements. | 
 |     if (Mask[i] == -1) | 
 |       continue; | 
 |     assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); | 
 |  | 
 |     // Is the element of the shuffle operand chosen by this shuffle the same as | 
 |     // the element chosen by the shuffle operand itself? | 
 |     if (Mask0[Mask[i]] != Mask0[i]) | 
 |       return SDValue(); | 
 |   } | 
 |   // Every element of this shuffle is identical to the result of the previous | 
 |   // shuffle, so we can replace this value. | 
 |   return Shuf->getOperand(0); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |  | 
 |   assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); | 
 |  | 
 |   // Canonicalize shuffle undef, undef -> undef | 
 |   if (N0.isUndef() && N1.isUndef()) | 
 |     return DAG.getUNDEF(VT); | 
 |  | 
 |   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
 |  | 
 |   // Canonicalize shuffle v, v -> v, undef | 
 |   if (N0 == N1) | 
 |     return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), | 
 |                                 createUnaryMask(SVN->getMask(), NumElts)); | 
 |  | 
 |   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask. | 
 |   if (N0.isUndef()) | 
 |     return DAG.getCommutedVectorShuffle(*SVN); | 
 |  | 
 |   // Remove references to rhs if it is undef | 
 |   if (N1.isUndef()) { | 
 |     bool Changed = false; | 
 |     SmallVector<int, 8> NewMask; | 
 |     for (unsigned i = 0; i != NumElts; ++i) { | 
 |       int Idx = SVN->getMaskElt(i); | 
 |       if (Idx >= (int)NumElts) { | 
 |         Idx = -1; | 
 |         Changed = true; | 
 |       } | 
 |       NewMask.push_back(Idx); | 
 |     } | 
 |     if (Changed) | 
 |       return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); | 
 |   } | 
 |  | 
 |   if (SDValue InsElt = replaceShuffleOfInsert(SVN)) | 
 |     return InsElt; | 
 |  | 
 |   // A shuffle of a single vector that is a splatted value can always be folded. | 
 |   if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = formSplatFromShuffles(SVN, DAG)) | 
 |     return V; | 
 |  | 
 |   // If it is a splat, check if the argument vector is another splat or a | 
 |   // build_vector. | 
 |   if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { | 
 |     int SplatIndex = SVN->getSplatIndex(); | 
 |     if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && | 
 |         TLI.isBinOp(N0.getOpcode()) && N0->getNumValues() == 1) { | 
 |       // splat (vector_bo L, R), Index --> | 
 |       // splat (scalar_bo (extelt L, Index), (extelt R, Index)) | 
 |       SDValue L = N0.getOperand(0), R = N0.getOperand(1); | 
 |       SDLoc DL(N); | 
 |       EVT EltVT = VT.getScalarType(); | 
 |       SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); | 
 |       SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); | 
 |       SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); | 
 |       SDValue NewBO = | 
 |           DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, N0->getFlags()); | 
 |       SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); | 
 |       SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); | 
 |       return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); | 
 |     } | 
 |  | 
 |     // splat(scalar_to_vector(x), 0) -> build_vector(x,...,x) | 
 |     // splat(insert_vector_elt(v, x, c), c) -> build_vector(x,...,x) | 
 |     if ((!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) && | 
 |         N0.hasOneUse()) { | 
 |       if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && SplatIndex == 0) | 
 |         return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(0)); | 
 |  | 
 |       if (N0.getOpcode() == ISD::INSERT_VECTOR_ELT) | 
 |         if (auto *Idx = dyn_cast<ConstantSDNode>(N0.getOperand(2))) | 
 |           if (Idx->getAPIntValue() == SplatIndex) | 
 |             return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(1)); | 
 |  | 
 |       // Look through a bitcast if LE and splatting lane 0, through to a | 
 |       // scalar_to_vector or a build_vector. | 
 |       if (N0.getOpcode() == ISD::BITCAST && N0.getOperand(0).hasOneUse() && | 
 |           SplatIndex == 0 && DAG.getDataLayout().isLittleEndian() && | 
 |           (N0.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR || | 
 |            N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR)) { | 
 |         EVT N00VT = N0.getOperand(0).getValueType(); | 
 |         if (VT.getScalarSizeInBits() <= N00VT.getScalarSizeInBits() && | 
 |             VT.isInteger() && N00VT.isInteger()) { | 
 |           EVT InVT = | 
 |               TLI.getTypeToTransformTo(*DAG.getContext(), VT.getScalarType()); | 
 |           SDValue Op = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), | 
 |                                           SDLoc(N), InVT); | 
 |           return DAG.getSplatBuildVector(VT, SDLoc(N), Op); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // If this is a bit convert that changes the element type of the vector but | 
 |     // not the number of vector elements, look through it.  Be careful not to | 
 |     // look though conversions that change things like v4f32 to v2f64. | 
 |     SDNode *V = N0.getNode(); | 
 |     if (V->getOpcode() == ISD::BITCAST) { | 
 |       SDValue ConvInput = V->getOperand(0); | 
 |       if (ConvInput.getValueType().isVector() && | 
 |           ConvInput.getValueType().getVectorNumElements() == NumElts) | 
 |         V = ConvInput.getNode(); | 
 |     } | 
 |  | 
 |     if (V->getOpcode() == ISD::BUILD_VECTOR) { | 
 |       assert(V->getNumOperands() == NumElts && | 
 |              "BUILD_VECTOR has wrong number of operands"); | 
 |       SDValue Base; | 
 |       bool AllSame = true; | 
 |       for (unsigned i = 0; i != NumElts; ++i) { | 
 |         if (!V->getOperand(i).isUndef()) { | 
 |           Base = V->getOperand(i); | 
 |           break; | 
 |         } | 
 |       } | 
 |       // Splat of <u, u, u, u>, return <u, u, u, u> | 
 |       if (!Base.getNode()) | 
 |         return N0; | 
 |       for (unsigned i = 0; i != NumElts; ++i) { | 
 |         if (V->getOperand(i) != Base) { | 
 |           AllSame = false; | 
 |           break; | 
 |         } | 
 |       } | 
 |       // Splat of <x, x, x, x>, return <x, x, x, x> | 
 |       if (AllSame) | 
 |         return N0; | 
 |  | 
 |       // Canonicalize any other splat as a build_vector, but avoid defining any | 
 |       // undefined elements in the mask. | 
 |       SDValue Splatted = V->getOperand(SplatIndex); | 
 |       SmallVector<SDValue, 8> Ops(NumElts, Splatted); | 
 |       EVT EltVT = Splatted.getValueType(); | 
 |  | 
 |       for (unsigned i = 0; i != NumElts; ++i) { | 
 |         if (SVN->getMaskElt(i) < 0) | 
 |           Ops[i] = DAG.getUNDEF(EltVT); | 
 |       } | 
 |  | 
 |       SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); | 
 |  | 
 |       // We may have jumped through bitcasts, so the type of the | 
 |       // BUILD_VECTOR may not match the type of the shuffle. | 
 |       if (V->getValueType(0) != VT) | 
 |         NewBV = DAG.getBitcast(VT, NewBV); | 
 |       return NewBV; | 
 |     } | 
 |   } | 
 |  | 
 |   // Simplify source operands based on shuffle mask. | 
 |   if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   // This is intentionally placed after demanded elements simplification because | 
 |   // it could eliminate knowledge of undef elements created by this shuffle. | 
 |   if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) | 
 |     return ShufOp; | 
 |  | 
 |   // Match shuffles that can be converted to any_vector_extend_in_reg. | 
 |   if (SDValue V = | 
 |           combineShuffleToAnyExtendVectorInreg(SVN, DAG, TLI, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   // Combine "truncate_vector_in_reg" style shuffles. | 
 |   if (SDValue V = combineTruncationShuffle(SVN, DAG)) | 
 |     return V; | 
 |  | 
 |   if (N0.getOpcode() == ISD::CONCAT_VECTORS && | 
 |       Level < AfterLegalizeVectorOps && | 
 |       (N1.isUndef() || | 
 |       (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
 |        N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { | 
 |     if (SDValue V = partitionShuffleOfConcats(N, DAG)) | 
 |       return V; | 
 |   } | 
 |  | 
 |   // A shuffle of a concat of the same narrow vector can be reduced to use | 
 |   // only low-half elements of a concat with undef: | 
 |   // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' | 
 |   if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && | 
 |       N0.getNumOperands() == 2 && | 
 |       N0.getOperand(0) == N0.getOperand(1)) { | 
 |     int HalfNumElts = (int)NumElts / 2; | 
 |     SmallVector<int, 8> NewMask; | 
 |     for (unsigned i = 0; i != NumElts; ++i) { | 
 |       int Idx = SVN->getMaskElt(i); | 
 |       if (Idx >= HalfNumElts) { | 
 |         assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); | 
 |         Idx -= HalfNumElts; | 
 |       } | 
 |       NewMask.push_back(Idx); | 
 |     } | 
 |     if (TLI.isShuffleMaskLegal(NewMask, VT)) { | 
 |       SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); | 
 |       SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, | 
 |                                    N0.getOperand(0), UndefVec); | 
 |       return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); | 
 |     } | 
 |   } | 
 |  | 
 |   // See if we can replace a shuffle with an insert_subvector. | 
 |   // e.g. v2i32 into v8i32: | 
 |   // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7). | 
 |   // --> insert_subvector(lhs,rhs1,4). | 
 |   if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) && | 
 |       TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) { | 
 |     auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) { | 
 |       // Ensure RHS subvectors are legal. | 
 |       assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors"); | 
 |       EVT SubVT = RHS.getOperand(0).getValueType(); | 
 |       int NumSubVecs = RHS.getNumOperands(); | 
 |       int NumSubElts = SubVT.getVectorNumElements(); | 
 |       assert((NumElts % NumSubElts) == 0 && "Subvector mismatch"); | 
 |       if (!TLI.isTypeLegal(SubVT)) | 
 |         return SDValue(); | 
 |  | 
 |       // Don't bother if we have an unary shuffle (matches undef + LHS elts). | 
 |       if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; })) | 
 |         return SDValue(); | 
 |  | 
 |       // Search [NumSubElts] spans for RHS sequence. | 
 |       // TODO: Can we avoid nested loops to increase performance? | 
 |       SmallVector<int> InsertionMask(NumElts); | 
 |       for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) { | 
 |         for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) { | 
 |           // Reset mask to identity. | 
 |           std::iota(InsertionMask.begin(), InsertionMask.end(), 0); | 
 |  | 
 |           // Add subvector insertion. | 
 |           std::iota(InsertionMask.begin() + SubIdx, | 
 |                     InsertionMask.begin() + SubIdx + NumSubElts, | 
 |                     NumElts + (SubVec * NumSubElts)); | 
 |  | 
 |           // See if the shuffle mask matches the reference insertion mask. | 
 |           bool MatchingShuffle = true; | 
 |           for (int i = 0; i != (int)NumElts; ++i) { | 
 |             int ExpectIdx = InsertionMask[i]; | 
 |             int ActualIdx = Mask[i]; | 
 |             if (0 <= ActualIdx && ExpectIdx != ActualIdx) { | 
 |               MatchingShuffle = false; | 
 |               break; | 
 |             } | 
 |           } | 
 |  | 
 |           if (MatchingShuffle) | 
 |             return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS, | 
 |                                RHS.getOperand(SubVec), | 
 |                                DAG.getVectorIdxConstant(SubIdx, SDLoc(N))); | 
 |         } | 
 |       } | 
 |       return SDValue(); | 
 |     }; | 
 |     ArrayRef<int> Mask = SVN->getMask(); | 
 |     if (N1.getOpcode() == ISD::CONCAT_VECTORS) | 
 |       if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask)) | 
 |         return InsertN1; | 
 |     if (N0.getOpcode() == ISD::CONCAT_VECTORS) { | 
 |       SmallVector<int> CommuteMask(Mask); | 
 |       ShuffleVectorSDNode::commuteMask(CommuteMask); | 
 |       if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask)) | 
 |         return InsertN0; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we're not performing a select/blend shuffle, see if we can convert the | 
 |   // shuffle into a AND node, with all the out-of-lane elements are known zero. | 
 |   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { | 
 |     bool IsInLaneMask = true; | 
 |     ArrayRef<int> Mask = SVN->getMask(); | 
 |     SmallVector<int, 16> ClearMask(NumElts, -1); | 
 |     APInt DemandedLHS = APInt::getZero(NumElts); | 
 |     APInt DemandedRHS = APInt::getZero(NumElts); | 
 |     for (int I = 0; I != (int)NumElts; ++I) { | 
 |       int M = Mask[I]; | 
 |       if (M < 0) | 
 |         continue; | 
 |       ClearMask[I] = M == I ? I : (I + NumElts); | 
 |       IsInLaneMask &= (M == I) || (M == (int)(I + NumElts)); | 
 |       if (M != I) { | 
 |         APInt &Demanded = M < (int)NumElts ? DemandedLHS : DemandedRHS; | 
 |         Demanded.setBit(M % NumElts); | 
 |       } | 
 |     } | 
 |     // TODO: Should we try to mask with N1 as well? | 
 |     if (!IsInLaneMask && (!DemandedLHS.isZero() || !DemandedRHS.isZero()) && | 
 |         (DemandedLHS.isZero() || DAG.MaskedVectorIsZero(N0, DemandedLHS)) && | 
 |         (DemandedRHS.isZero() || DAG.MaskedVectorIsZero(N1, DemandedRHS))) { | 
 |       SDLoc DL(N); | 
 |       EVT IntVT = VT.changeVectorElementTypeToInteger(); | 
 |       EVT IntSVT = VT.getVectorElementType().changeTypeToInteger(); | 
 |       // Transform the type to a legal type so that the buildvector constant | 
 |       // elements are not illegal. Make sure that the result is larger than the | 
 |       // original type, incase the value is split into two (eg i64->i32). | 
 |       if (!TLI.isTypeLegal(IntSVT) && LegalTypes) | 
 |         IntSVT = TLI.getTypeToTransformTo(*DAG.getContext(), IntSVT); | 
 |       if (IntSVT.getSizeInBits() >= IntVT.getScalarSizeInBits()) { | 
 |         SDValue ZeroElt = DAG.getConstant(0, DL, IntSVT); | 
 |         SDValue AllOnesElt = DAG.getAllOnesConstant(DL, IntSVT); | 
 |         SmallVector<SDValue, 16> AndMask(NumElts, DAG.getUNDEF(IntSVT)); | 
 |         for (int I = 0; I != (int)NumElts; ++I) | 
 |           if (0 <= Mask[I]) | 
 |             AndMask[I] = Mask[I] == I ? AllOnesElt : ZeroElt; | 
 |  | 
 |         // See if a clear mask is legal instead of going via | 
 |         // XformToShuffleWithZero which loses UNDEF mask elements. | 
 |         if (TLI.isVectorClearMaskLegal(ClearMask, IntVT)) | 
 |           return DAG.getBitcast( | 
 |               VT, DAG.getVectorShuffle(IntVT, DL, DAG.getBitcast(IntVT, N0), | 
 |                                       DAG.getConstant(0, DL, IntVT), ClearMask)); | 
 |  | 
 |         if (TLI.isOperationLegalOrCustom(ISD::AND, IntVT)) | 
 |           return DAG.getBitcast( | 
 |               VT, DAG.getNode(ISD::AND, DL, IntVT, DAG.getBitcast(IntVT, N0), | 
 |                               DAG.getBuildVector(IntVT, DL, AndMask))); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - | 
 |   // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. | 
 |   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) | 
 |     if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) | 
 |       return Res; | 
 |  | 
 |   // If this shuffle only has a single input that is a bitcasted shuffle, | 
 |   // attempt to merge the 2 shuffles and suitably bitcast the inputs/output | 
 |   // back to their original types. | 
 |   if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && | 
 |       N1.isUndef() && Level < AfterLegalizeVectorOps && | 
 |       TLI.isTypeLegal(VT)) { | 
 |  | 
 |     SDValue BC0 = peekThroughOneUseBitcasts(N0); | 
 |     if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { | 
 |       EVT SVT = VT.getScalarType(); | 
 |       EVT InnerVT = BC0->getValueType(0); | 
 |       EVT InnerSVT = InnerVT.getScalarType(); | 
 |  | 
 |       // Determine which shuffle works with the smaller scalar type. | 
 |       EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; | 
 |       EVT ScaleSVT = ScaleVT.getScalarType(); | 
 |  | 
 |       if (TLI.isTypeLegal(ScaleVT) && | 
 |           0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && | 
 |           0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { | 
 |         int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | 
 |         int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); | 
 |  | 
 |         // Scale the shuffle masks to the smaller scalar type. | 
 |         ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); | 
 |         SmallVector<int, 8> InnerMask; | 
 |         SmallVector<int, 8> OuterMask; | 
 |         narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); | 
 |         narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); | 
 |  | 
 |         // Merge the shuffle masks. | 
 |         SmallVector<int, 8> NewMask; | 
 |         for (int M : OuterMask) | 
 |           NewMask.push_back(M < 0 ? -1 : InnerMask[M]); | 
 |  | 
 |         // Test for shuffle mask legality over both commutations. | 
 |         SDValue SV0 = BC0->getOperand(0); | 
 |         SDValue SV1 = BC0->getOperand(1); | 
 |         bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | 
 |         if (!LegalMask) { | 
 |           std::swap(SV0, SV1); | 
 |           ShuffleVectorSDNode::commuteMask(NewMask); | 
 |           LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); | 
 |         } | 
 |  | 
 |         if (LegalMask) { | 
 |           SV0 = DAG.getBitcast(ScaleVT, SV0); | 
 |           SV1 = DAG.getBitcast(ScaleVT, SV1); | 
 |           return DAG.getBitcast( | 
 |               VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Match shuffles of bitcasts, so long as the mask can be treated as the | 
 |   // larger type. | 
 |   if (SDValue V = combineShuffleOfBitcast(SVN, DAG, TLI, LegalOperations)) | 
 |     return V; | 
 |  | 
 |   // Compute the combined shuffle mask for a shuffle with SV0 as the first | 
 |   // operand, and SV1 as the second operand. | 
 |   // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false | 
 |   //      Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true | 
 |   auto MergeInnerShuffle = | 
 |       [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN, | 
 |                      ShuffleVectorSDNode *OtherSVN, SDValue N1, | 
 |                      const TargetLowering &TLI, SDValue &SV0, SDValue &SV1, | 
 |                      SmallVectorImpl<int> &Mask) -> bool { | 
 |     // Don't try to fold splats; they're likely to simplify somehow, or they | 
 |     // might be free. | 
 |     if (OtherSVN->isSplat()) | 
 |       return false; | 
 |  | 
 |     SV0 = SV1 = SDValue(); | 
 |     Mask.clear(); | 
 |  | 
 |     for (unsigned i = 0; i != NumElts; ++i) { | 
 |       int Idx = SVN->getMaskElt(i); | 
 |       if (Idx < 0) { | 
 |         // Propagate Undef. | 
 |         Mask.push_back(Idx); | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (Commute) | 
 |         Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts); | 
 |  | 
 |       SDValue CurrentVec; | 
 |       if (Idx < (int)NumElts) { | 
 |         // This shuffle index refers to the inner shuffle N0. Lookup the inner | 
 |         // shuffle mask to identify which vector is actually referenced. | 
 |         Idx = OtherSVN->getMaskElt(Idx); | 
 |         if (Idx < 0) { | 
 |           // Propagate Undef. | 
 |           Mask.push_back(Idx); | 
 |           continue; | 
 |         } | 
 |         CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) | 
 |                                           : OtherSVN->getOperand(1); | 
 |       } else { | 
 |         // This shuffle index references an element within N1. | 
 |         CurrentVec = N1; | 
 |       } | 
 |  | 
 |       // Simple case where 'CurrentVec' is UNDEF. | 
 |       if (CurrentVec.isUndef()) { | 
 |         Mask.push_back(-1); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Canonicalize the shuffle index. We don't know yet if CurrentVec | 
 |       // will be the first or second operand of the combined shuffle. | 
 |       Idx = Idx % NumElts; | 
 |       if (!SV0.getNode() || SV0 == CurrentVec) { | 
 |         // Ok. CurrentVec is the left hand side. | 
 |         // Update the mask accordingly. | 
 |         SV0 = CurrentVec; | 
 |         Mask.push_back(Idx); | 
 |         continue; | 
 |       } | 
 |       if (!SV1.getNode() || SV1 == CurrentVec) { | 
 |         // Ok. CurrentVec is the right hand side. | 
 |         // Update the mask accordingly. | 
 |         SV1 = CurrentVec; | 
 |         Mask.push_back(Idx + NumElts); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Last chance - see if the vector is another shuffle and if it | 
 |       // uses one of the existing candidate shuffle ops. | 
 |       if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { | 
 |         int InnerIdx = CurrentSVN->getMaskElt(Idx); | 
 |         if (InnerIdx < 0) { | 
 |           Mask.push_back(-1); | 
 |           continue; | 
 |         } | 
 |         SDValue InnerVec = (InnerIdx < (int)NumElts) | 
 |                                ? CurrentSVN->getOperand(0) | 
 |                                : CurrentSVN->getOperand(1); | 
 |         if (InnerVec.isUndef()) { | 
 |           Mask.push_back(-1); | 
 |           continue; | 
 |         } | 
 |         InnerIdx %= NumElts; | 
 |         if (InnerVec == SV0) { | 
 |           Mask.push_back(InnerIdx); | 
 |           continue; | 
 |         } | 
 |         if (InnerVec == SV1) { | 
 |           Mask.push_back(InnerIdx + NumElts); | 
 |           continue; | 
 |         } | 
 |       } | 
 |  | 
 |       // Bail out if we cannot convert the shuffle pair into a single shuffle. | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (llvm::all_of(Mask, [](int M) { return M < 0; })) | 
 |       return true; | 
 |  | 
 |     // Avoid introducing shuffles with illegal mask. | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) | 
 |     if (TLI.isShuffleMaskLegal(Mask, VT)) | 
 |       return true; | 
 |  | 
 |     std::swap(SV0, SV1); | 
 |     ShuffleVectorSDNode::commuteMask(Mask); | 
 |     return TLI.isShuffleMaskLegal(Mask, VT); | 
 |   }; | 
 |  | 
 |   if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { | 
 |     // Canonicalize shuffles according to rules: | 
 |     //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) | 
 |     //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) | 
 |     //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) | 
 |     if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && | 
 |         N0.getOpcode() != ISD::VECTOR_SHUFFLE) { | 
 |       // The incoming shuffle must be of the same type as the result of the | 
 |       // current shuffle. | 
 |       assert(N1->getOperand(0).getValueType() == VT && | 
 |              "Shuffle types don't match"); | 
 |  | 
 |       SDValue SV0 = N1->getOperand(0); | 
 |       SDValue SV1 = N1->getOperand(1); | 
 |       bool HasSameOp0 = N0 == SV0; | 
 |       bool IsSV1Undef = SV1.isUndef(); | 
 |       if (HasSameOp0 || IsSV1Undef || N0 == SV1) | 
 |         // Commute the operands of this shuffle so merging below will trigger. | 
 |         return DAG.getCommutedVectorShuffle(*SVN); | 
 |     } | 
 |  | 
 |     // Canonicalize splat shuffles to the RHS to improve merging below. | 
 |     //  shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u)) | 
 |     if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && | 
 |         N1.getOpcode() == ISD::VECTOR_SHUFFLE && | 
 |         cast<ShuffleVectorSDNode>(N0)->isSplat() && | 
 |         !cast<ShuffleVectorSDNode>(N1)->isSplat()) { | 
 |       return DAG.getCommutedVectorShuffle(*SVN); | 
 |     } | 
 |  | 
 |     // Try to fold according to rules: | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) | 
 |     //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) | 
 |     // Don't try to fold shuffles with illegal type. | 
 |     // Only fold if this shuffle is the only user of the other shuffle. | 
 |     // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well. | 
 |     for (int i = 0; i != 2; ++i) { | 
 |       if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE && | 
 |           N->isOnlyUserOf(N->getOperand(i).getNode())) { | 
 |         // The incoming shuffle must be of the same type as the result of the | 
 |         // current shuffle. | 
 |         auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i)); | 
 |         assert(OtherSV->getOperand(0).getValueType() == VT && | 
 |                "Shuffle types don't match"); | 
 |  | 
 |         SDValue SV0, SV1; | 
 |         SmallVector<int, 4> Mask; | 
 |         if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI, | 
 |                               SV0, SV1, Mask)) { | 
 |           // Check if all indices in Mask are Undef. In case, propagate Undef. | 
 |           if (llvm::all_of(Mask, [](int M) { return M < 0; })) | 
 |             return DAG.getUNDEF(VT); | 
 |  | 
 |           return DAG.getVectorShuffle(VT, SDLoc(N), | 
 |                                       SV0 ? SV0 : DAG.getUNDEF(VT), | 
 |                                       SV1 ? SV1 : DAG.getUNDEF(VT), Mask); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Merge shuffles through binops if we are able to merge it with at least | 
 |     // one other shuffles. | 
 |     // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef) | 
 |     // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) | 
 |     unsigned SrcOpcode = N0.getOpcode(); | 
 |     if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) && | 
 |         (N1.isUndef() || | 
 |          (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) { | 
 |       // Get binop source ops, or just pass on the undef. | 
 |       SDValue Op00 = N0.getOperand(0); | 
 |       SDValue Op01 = N0.getOperand(1); | 
 |       SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0); | 
 |       SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1); | 
 |       // TODO: We might be able to relax the VT check but we don't currently | 
 |       // have any isBinOp() that has different result/ops VTs so play safe until | 
 |       // we have test coverage. | 
 |       if (Op00.getValueType() == VT && Op10.getValueType() == VT && | 
 |           Op01.getValueType() == VT && Op11.getValueType() == VT && | 
 |           (Op00.getOpcode() == ISD::VECTOR_SHUFFLE || | 
 |            Op10.getOpcode() == ISD::VECTOR_SHUFFLE || | 
 |            Op01.getOpcode() == ISD::VECTOR_SHUFFLE || | 
 |            Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) { | 
 |         auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1, | 
 |                                         SmallVectorImpl<int> &Mask, bool LeftOp, | 
 |                                         bool Commute) { | 
 |           SDValue InnerN = Commute ? N1 : N0; | 
 |           SDValue Op0 = LeftOp ? Op00 : Op01; | 
 |           SDValue Op1 = LeftOp ? Op10 : Op11; | 
 |           if (Commute) | 
 |             std::swap(Op0, Op1); | 
 |           // Only accept the merged shuffle if we don't introduce undef elements, | 
 |           // or the inner shuffle already contained undef elements. | 
 |           auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0); | 
 |           return SVN0 && InnerN->isOnlyUserOf(SVN0) && | 
 |                  MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1, | 
 |                                    Mask) && | 
 |                  (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) || | 
 |                   llvm::none_of(Mask, [](int M) { return M < 0; })); | 
 |         }; | 
 |  | 
 |         // Ensure we don't increase the number of shuffles - we must merge a | 
 |         // shuffle from at least one of the LHS and RHS ops. | 
 |         bool MergedLeft = false; | 
 |         SDValue LeftSV0, LeftSV1; | 
 |         SmallVector<int, 4> LeftMask; | 
 |         if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) || | 
 |             CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) { | 
 |           MergedLeft = true; | 
 |         } else { | 
 |           LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end()); | 
 |           LeftSV0 = Op00, LeftSV1 = Op10; | 
 |         } | 
 |  | 
 |         bool MergedRight = false; | 
 |         SDValue RightSV0, RightSV1; | 
 |         SmallVector<int, 4> RightMask; | 
 |         if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) || | 
 |             CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) { | 
 |           MergedRight = true; | 
 |         } else { | 
 |           RightMask.assign(SVN->getMask().begin(), SVN->getMask().end()); | 
 |           RightSV0 = Op01, RightSV1 = Op11; | 
 |         } | 
 |  | 
 |         if (MergedLeft || MergedRight) { | 
 |           SDLoc DL(N); | 
 |           SDValue LHS = DAG.getVectorShuffle( | 
 |               VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT), | 
 |               LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask); | 
 |           SDValue RHS = DAG.getVectorShuffle( | 
 |               VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT), | 
 |               RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask); | 
 |           return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) | 
 |     return V; | 
 |  | 
 |   // Match shuffles that can be converted to ISD::ZERO_EXTEND_VECTOR_INREG. | 
 |   // Perform this really late, because it could eliminate knowledge | 
 |   // of undef elements created by this shuffle. | 
 |   if (Level < AfterLegalizeTypes) | 
 |     if (SDValue V = combineShuffleToZeroExtendVectorInReg(SVN, DAG, TLI, | 
 |                                                           LegalOperations)) | 
 |       return V; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   if (!VT.isFixedLengthVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // Try to convert a scalar binop with an extracted vector element to a vector | 
 |   // binop. This is intended to reduce potentially expensive register moves. | 
 |   // TODO: Check if both operands are extracted. | 
 |   // TODO: How to prefer scalar/vector ops with multiple uses of the extact? | 
 |   // TODO: Generalize this, so it can be called from visitINSERT_VECTOR_ELT(). | 
 |   SDValue Scalar = N->getOperand(0); | 
 |   unsigned Opcode = Scalar.getOpcode(); | 
 |   EVT VecEltVT = VT.getScalarType(); | 
 |   if (Scalar.hasOneUse() && Scalar->getNumValues() == 1 && | 
 |       TLI.isBinOp(Opcode) && Scalar.getValueType() == VecEltVT && | 
 |       Scalar.getOperand(0).getValueType() == VecEltVT && | 
 |       Scalar.getOperand(1).getValueType() == VecEltVT && | 
 |       Scalar->isOnlyUserOf(Scalar.getOperand(0).getNode()) && | 
 |       Scalar->isOnlyUserOf(Scalar.getOperand(1).getNode()) && | 
 |       DAG.isSafeToSpeculativelyExecute(Opcode) && hasOperation(Opcode, VT)) { | 
 |     // Match an extract element and get a shuffle mask equivalent. | 
 |     SmallVector<int, 8> ShufMask(VT.getVectorNumElements(), -1); | 
 |  | 
 |     for (int i : {0, 1}) { | 
 |       // s2v (bo (extelt V, Idx), C) --> shuffle (bo V, C'), {Idx, -1, -1...} | 
 |       // s2v (bo C, (extelt V, Idx)) --> shuffle (bo C', V), {Idx, -1, -1...} | 
 |       SDValue EE = Scalar.getOperand(i); | 
 |       auto *C = dyn_cast<ConstantSDNode>(Scalar.getOperand(i ? 0 : 1)); | 
 |       if (C && EE.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
 |           EE.getOperand(0).getValueType() == VT && | 
 |           isa<ConstantSDNode>(EE.getOperand(1))) { | 
 |         // Mask = {ExtractIndex, undef, undef....} | 
 |         ShufMask[0] = EE.getConstantOperandVal(1); | 
 |         // Make sure the shuffle is legal if we are crossing lanes. | 
 |         if (TLI.isShuffleMaskLegal(ShufMask, VT)) { | 
 |           SDLoc DL(N); | 
 |           SDValue V[] = {EE.getOperand(0), | 
 |                          DAG.getConstant(C->getAPIntValue(), DL, VT)}; | 
 |           SDValue VecBO = DAG.getNode(Opcode, DL, VT, V[i], V[1 - i]); | 
 |           return DAG.getVectorShuffle(VT, DL, VecBO, DAG.getUNDEF(VT), | 
 |                                       ShufMask); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern | 
 |   // with a VECTOR_SHUFFLE and possible truncate. | 
 |   if (Opcode != ISD::EXTRACT_VECTOR_ELT || | 
 |       !Scalar.getOperand(0).getValueType().isFixedLengthVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // If we have an implicit truncate, truncate here if it is legal. | 
 |   if (VecEltVT != Scalar.getValueType() && | 
 |       Scalar.getValueType().isScalarInteger() && isTypeLegal(VecEltVT)) { | 
 |     SDValue Val = DAG.getNode(ISD::TRUNCATE, SDLoc(Scalar), VecEltVT, Scalar); | 
 |     return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); | 
 |   } | 
 |  | 
 |   auto *ExtIndexC = dyn_cast<ConstantSDNode>(Scalar.getOperand(1)); | 
 |   if (!ExtIndexC) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue SrcVec = Scalar.getOperand(0); | 
 |   EVT SrcVT = SrcVec.getValueType(); | 
 |   unsigned SrcNumElts = SrcVT.getVectorNumElements(); | 
 |   unsigned VTNumElts = VT.getVectorNumElements(); | 
 |   if (VecEltVT == SrcVT.getScalarType() && VTNumElts <= SrcNumElts) { | 
 |     // Create a shuffle equivalent for scalar-to-vector: {ExtIndex, -1, -1, ...} | 
 |     SmallVector<int, 8> Mask(SrcNumElts, -1); | 
 |     Mask[0] = ExtIndexC->getZExtValue(); | 
 |     SDValue LegalShuffle = TLI.buildLegalVectorShuffle( | 
 |         SrcVT, SDLoc(N), SrcVec, DAG.getUNDEF(SrcVT), Mask, DAG); | 
 |     if (!LegalShuffle) | 
 |       return SDValue(); | 
 |  | 
 |     // If the initial vector is the same size, the shuffle is the result. | 
 |     if (VT == SrcVT) | 
 |       return LegalShuffle; | 
 |  | 
 |     // If not, shorten the shuffled vector. | 
 |     if (VTNumElts != SrcNumElts) { | 
 |       SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); | 
 |       EVT SubVT = EVT::getVectorVT(*DAG.getContext(), | 
 |                                    SrcVT.getVectorElementType(), VTNumElts); | 
 |       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, LegalShuffle, | 
 |                          ZeroIdx); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   uint64_t InsIdx = N->getConstantOperandVal(2); | 
 |  | 
 |   // If inserting an UNDEF, just return the original vector. | 
 |   if (N1.isUndef()) | 
 |     return N0; | 
 |  | 
 |   // If this is an insert of an extracted vector into an undef vector, we can | 
 |   // just use the input to the extract if the types match, and can simplify | 
 |   // in some cases even if they don't. | 
 |   if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
 |       N1.getOperand(1) == N2) { | 
 |     EVT SrcVT = N1.getOperand(0).getValueType(); | 
 |     if (SrcVT == VT) | 
 |       return N1.getOperand(0); | 
 |     // TODO: To remove the zero check, need to adjust the offset to | 
 |     // a multiple of the new src type. | 
 |     if (isNullConstant(N2)) { | 
 |       if (VT.knownBitsGE(SrcVT) && | 
 |           !(VT.isFixedLengthVector() && SrcVT.isScalableVector())) | 
 |         return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), | 
 |                            VT, N0, N1.getOperand(0), N2); | 
 |       else if (VT.knownBitsLE(SrcVT) && | 
 |                !(VT.isScalableVector() && SrcVT.isFixedLengthVector())) | 
 |         return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), | 
 |                            VT, N1.getOperand(0), N2); | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle case where we've ended up inserting back into the source vector | 
 |   // we extracted the subvector from. | 
 |   // insert_subvector(N0, extract_subvector(N0, N2), N2) --> N0 | 
 |   if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && N1.getOperand(0) == N0 && | 
 |       N1.getOperand(1) == N2) | 
 |     return N0; | 
 |  | 
 |   // Simplify scalar inserts into an undef vector: | 
 |   // insert_subvector undef, (splat X), N2 -> splat X | 
 |   if (N0.isUndef() && N1.getOpcode() == ISD::SPLAT_VECTOR) | 
 |     if (DAG.isConstantValueOfAnyType(N1.getOperand(0)) || N1.hasOneUse()) | 
 |       return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, N1.getOperand(0)); | 
 |  | 
 |   // If we are inserting a bitcast value into an undef, with the same | 
 |   // number of elements, just use the bitcast input of the extract. | 
 |   // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> | 
 |   //        BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) | 
 |   if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && | 
 |       N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && | 
 |       N1.getOperand(0).getOperand(1) == N2 && | 
 |       N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == | 
 |           VT.getVectorElementCount() && | 
 |       N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == | 
 |           VT.getSizeInBits()) { | 
 |     return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); | 
 |   } | 
 |  | 
 |   // If both N1 and N2 are bitcast values on which insert_subvector | 
 |   // would makes sense, pull the bitcast through. | 
 |   // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> | 
 |   //        BITCAST (INSERT_SUBVECTOR N0 N1 N2) | 
 |   if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { | 
 |     SDValue CN0 = N0.getOperand(0); | 
 |     SDValue CN1 = N1.getOperand(0); | 
 |     EVT CN0VT = CN0.getValueType(); | 
 |     EVT CN1VT = CN1.getValueType(); | 
 |     if (CN0VT.isVector() && CN1VT.isVector() && | 
 |         CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && | 
 |         CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { | 
 |       SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), | 
 |                                       CN0.getValueType(), CN0, CN1, N2); | 
 |       return DAG.getBitcast(VT, NewINSERT); | 
 |     } | 
 |   } | 
 |  | 
 |   // Combine INSERT_SUBVECTORs where we are inserting to the same index. | 
 |   // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) | 
 |   // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) | 
 |   if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && | 
 |       N0.getOperand(1).getValueType() == N1.getValueType() && | 
 |       N0.getOperand(2) == N2) | 
 |     return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), | 
 |                        N1, N2); | 
 |  | 
 |   // Eliminate an intermediate insert into an undef vector: | 
 |   // insert_subvector undef, (insert_subvector undef, X, 0), 0 --> | 
 |   // insert_subvector undef, X, 0 | 
 |   if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && | 
 |       N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)) && | 
 |       isNullConstant(N2)) | 
 |     return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, | 
 |                        N1.getOperand(1), N2); | 
 |  | 
 |   // Push subvector bitcasts to the output, adjusting the index as we go. | 
 |   // insert_subvector(bitcast(v), bitcast(s), c1) | 
 |   // -> bitcast(insert_subvector(v, s, c2)) | 
 |   if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && | 
 |       N1.getOpcode() == ISD::BITCAST) { | 
 |     SDValue N0Src = peekThroughBitcasts(N0); | 
 |     SDValue N1Src = peekThroughBitcasts(N1); | 
 |     EVT N0SrcSVT = N0Src.getValueType().getScalarType(); | 
 |     EVT N1SrcSVT = N1Src.getValueType().getScalarType(); | 
 |     if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && | 
 |         N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { | 
 |       EVT NewVT; | 
 |       SDLoc DL(N); | 
 |       SDValue NewIdx; | 
 |       LLVMContext &Ctx = *DAG.getContext(); | 
 |       ElementCount NumElts = VT.getVectorElementCount(); | 
 |       unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
 |       if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { | 
 |         unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); | 
 |         NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); | 
 |         NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); | 
 |       } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { | 
 |         unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; | 
 |         if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { | 
 |           NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, | 
 |                                    NumElts.divideCoefficientBy(Scale)); | 
 |           NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); | 
 |         } | 
 |       } | 
 |       if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { | 
 |         SDValue Res = DAG.getBitcast(NewVT, N0Src); | 
 |         Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); | 
 |         return DAG.getBitcast(VT, Res); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Canonicalize insert_subvector dag nodes. | 
 |   // Example: | 
 |   // (insert_subvector (insert_subvector A, Idx0), Idx1) | 
 |   // -> (insert_subvector (insert_subvector A, Idx1), Idx0) | 
 |   if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && | 
 |       N1.getValueType() == N0.getOperand(1).getValueType()) { | 
 |     unsigned OtherIdx = N0.getConstantOperandVal(2); | 
 |     if (InsIdx < OtherIdx) { | 
 |       // Swap nodes. | 
 |       SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, | 
 |                                   N0.getOperand(0), N1, N2); | 
 |       AddToWorklist(NewOp.getNode()); | 
 |       return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), | 
 |                          VT, NewOp, N0.getOperand(1), N0.getOperand(2)); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the input vector is a concatenation, and the insert replaces | 
 |   // one of the pieces, we can optimize into a single concat_vectors. | 
 |   if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && | 
 |       N0.getOperand(0).getValueType() == N1.getValueType() && | 
 |       N0.getOperand(0).getValueType().isScalableVector() == | 
 |           N1.getValueType().isScalableVector()) { | 
 |     unsigned Factor = N1.getValueType().getVectorMinNumElements(); | 
 |     SmallVector<SDValue, 8> Ops(N0->ops()); | 
 |     Ops[InsIdx / Factor] = N1; | 
 |     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); | 
 |   } | 
 |  | 
 |   // Simplify source operands based on insertion. | 
 |   if (SimplifyDemandedVectorElts(SDValue(N, 0))) | 
 |     return SDValue(N, 0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // fold (fp_to_fp16 (fp16_to_fp op)) -> op | 
 |   if (N0->getOpcode() == ISD::FP16_TO_FP) | 
 |     return N0->getOperand(0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { | 
 |   auto Op = N->getOpcode(); | 
 |   assert((Op == ISD::FP16_TO_FP || Op == ISD::BF16_TO_FP) && | 
 |          "opcode should be FP16_TO_FP or BF16_TO_FP."); | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) or | 
 |   // fold bf16_to_fp(op & 0xffff) -> bf16_to_fp(op) | 
 |   if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { | 
 |     ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); | 
 |     if (AndConst && AndConst->getAPIntValue() == 0xffff) { | 
 |       return DAG.getNode(Op, SDLoc(N), N->getValueType(0), N0.getOperand(0)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Sometimes constants manage to survive very late in the pipeline, e.g., | 
 |   // because they are wrapped inside the <1 x f16> type. Try one last time to | 
 |   // get rid of them. | 
 |   SDValue Folded = DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), | 
 |                                               N->getValueType(0), {N0}); | 
 |   return Folded; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitFP_TO_BF16(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // fold (fp_to_bf16 (bf16_to_fp op)) -> op | 
 |   if (N0->getOpcode() == ISD::BF16_TO_FP) | 
 |     return N0->getOperand(0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitBF16_TO_FP(SDNode *N) { | 
 |   // fold bf16_to_fp(op & 0xffff) -> bf16_to_fp(op) | 
 |   return visitFP16_TO_FP(N); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N0.getValueType(); | 
 |   unsigned Opcode = N->getOpcode(); | 
 |  | 
 |   // VECREDUCE over 1-element vector is just an extract. | 
 |   if (VT.getVectorElementCount().isScalar()) { | 
 |     SDLoc dl(N); | 
 |     SDValue Res = | 
 |         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, | 
 |                     DAG.getVectorIdxConstant(0, dl)); | 
 |     if (Res.getValueType() != N->getValueType(0)) | 
 |       Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); | 
 |     return Res; | 
 |   } | 
 |  | 
 |   // On an boolean vector an and/or reduction is the same as a umin/umax | 
 |   // reduction. Convert them if the latter is legal while the former isn't. | 
 |   if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { | 
 |     unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND | 
 |         ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; | 
 |     if (!TLI.isOperationLegalOrCustom(Opcode, VT) && | 
 |         TLI.isOperationLegalOrCustom(NewOpcode, VT) && | 
 |         DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) | 
 |       return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); | 
 |   } | 
 |  | 
 |   // vecreduce_or(insert_subvector(zero or undef, val)) -> vecreduce_or(val) | 
 |   // vecreduce_and(insert_subvector(ones or undef, val)) -> vecreduce_and(val) | 
 |   if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && | 
 |       TLI.isTypeLegal(N0.getOperand(1).getValueType())) { | 
 |     SDValue Vec = N0.getOperand(0); | 
 |     SDValue Subvec = N0.getOperand(1); | 
 |     if ((Opcode == ISD::VECREDUCE_OR && | 
 |          (N0.getOperand(0).isUndef() || isNullOrNullSplat(Vec))) || | 
 |         (Opcode == ISD::VECREDUCE_AND && | 
 |          (N0.getOperand(0).isUndef() || isAllOnesOrAllOnesSplat(Vec)))) | 
 |       return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), Subvec); | 
 |   } | 
 |  | 
 |   // vecreduce_or(sext(x)) -> sext(vecreduce_or(x)) | 
 |   // Same for zext and anyext, and for and/or/xor reductions. | 
 |   if ((Opcode == ISD::VECREDUCE_OR || Opcode == ISD::VECREDUCE_AND || | 
 |        Opcode == ISD::VECREDUCE_XOR) && | 
 |       (N0.getOpcode() == ISD::SIGN_EXTEND || | 
 |        N0.getOpcode() == ISD::ZERO_EXTEND || | 
 |        N0.getOpcode() == ISD::ANY_EXTEND) && | 
 |       TLI.isOperationLegalOrCustom(Opcode, N0.getOperand(0).getValueType())) { | 
 |     SDValue Red = DAG.getNode(Opcode, SDLoc(N), | 
 |                               N0.getOperand(0).getValueType().getScalarType(), | 
 |                               N0.getOperand(0)); | 
 |     return DAG.getNode(N0.getOpcode(), SDLoc(N), N->getValueType(0), Red); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVP_FSUB(SDNode *N) { | 
 |   SelectionDAG::FlagInserter FlagsInserter(DAG, N); | 
 |  | 
 |   // FSUB -> FMA combines: | 
 |   if (SDValue Fused = visitFSUBForFMACombine<VPMatchContext>(N)) { | 
 |     AddToWorklist(Fused.getNode()); | 
 |     return Fused; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitVPOp(SDNode *N) { | 
 |  | 
 |   if (N->getOpcode() == ISD::VP_GATHER) | 
 |     if (SDValue SD = visitVPGATHER(N)) | 
 |       return SD; | 
 |  | 
 |   if (N->getOpcode() == ISD::VP_SCATTER) | 
 |     if (SDValue SD = visitVPSCATTER(N)) | 
 |       return SD; | 
 |  | 
 |   if (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD) | 
 |     if (SDValue SD = visitVP_STRIDED_LOAD(N)) | 
 |       return SD; | 
 |  | 
 |   if (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE) | 
 |     if (SDValue SD = visitVP_STRIDED_STORE(N)) | 
 |       return SD; | 
 |  | 
 |   // VP operations in which all vector elements are disabled - either by | 
 |   // determining that the mask is all false or that the EVL is 0 - can be | 
 |   // eliminated. | 
 |   bool AreAllEltsDisabled = false; | 
 |   if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode())) | 
 |     AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx)); | 
 |   if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode())) | 
 |     AreAllEltsDisabled |= | 
 |         ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode()); | 
 |  | 
 |   // This is the only generic VP combine we support for now. | 
 |   if (!AreAllEltsDisabled) { | 
 |     switch (N->getOpcode()) { | 
 |     case ISD::VP_FADD: | 
 |       return visitVP_FADD(N); | 
 |     case ISD::VP_FSUB: | 
 |       return visitVP_FSUB(N); | 
 |     case ISD::VP_FMA: | 
 |       return visitFMA<VPMatchContext>(N); | 
 |     case ISD::VP_SELECT: | 
 |       return visitVP_SELECT(N); | 
 |     case ISD::VP_MUL: | 
 |       return visitMUL<VPMatchContext>(N); | 
 |     case ISD::VP_SUB: | 
 |       return foldSubCtlzNot<VPMatchContext>(N, DAG); | 
 |     default: | 
 |       break; | 
 |     } | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   // Binary operations can be replaced by UNDEF. | 
 |   if (ISD::isVPBinaryOp(N->getOpcode())) | 
 |     return DAG.getUNDEF(N->getValueType(0)); | 
 |  | 
 |   // VP Memory operations can be replaced by either the chain (stores) or the | 
 |   // chain + undef (loads). | 
 |   if (const auto *MemSD = dyn_cast<MemSDNode>(N)) { | 
 |     if (MemSD->writeMem()) | 
 |       return MemSD->getChain(); | 
 |     return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain()); | 
 |   } | 
 |  | 
 |   // Reduction operations return the start operand when no elements are active. | 
 |   if (ISD::isVPReduction(N->getOpcode())) | 
 |     return N->getOperand(0); | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitGET_FPENV_MEM(SDNode *N) { | 
 |   SDValue Chain = N->getOperand(0); | 
 |   SDValue Ptr = N->getOperand(1); | 
 |   EVT MemVT = cast<FPStateAccessSDNode>(N)->getMemoryVT(); | 
 |  | 
 |   // Check if the memory, where FP state is written to, is used only in a single | 
 |   // load operation. | 
 |   LoadSDNode *LdNode = nullptr; | 
 |   for (auto *U : Ptr->users()) { | 
 |     if (U == N) | 
 |       continue; | 
 |     if (auto *Ld = dyn_cast<LoadSDNode>(U)) { | 
 |       if (LdNode && LdNode != Ld) | 
 |         return SDValue(); | 
 |       LdNode = Ld; | 
 |       continue; | 
 |     } | 
 |     return SDValue(); | 
 |   } | 
 |   if (!LdNode || !LdNode->isSimple() || LdNode->isIndexed() || | 
 |       !LdNode->getOffset().isUndef() || LdNode->getMemoryVT() != MemVT || | 
 |       !LdNode->getChain().reachesChainWithoutSideEffects(SDValue(N, 0))) | 
 |     return SDValue(); | 
 |  | 
 |   // Check if the loaded value is used only in a store operation. | 
 |   StoreSDNode *StNode = nullptr; | 
 |   for (SDUse &U : LdNode->uses()) { | 
 |     if (U.getResNo() == 0) { | 
 |       if (auto *St = dyn_cast<StoreSDNode>(U.getUser())) { | 
 |         if (StNode) | 
 |           return SDValue(); | 
 |         StNode = St; | 
 |       } else { | 
 |         return SDValue(); | 
 |       } | 
 |     } | 
 |   } | 
 |   if (!StNode || !StNode->isSimple() || StNode->isIndexed() || | 
 |       !StNode->getOffset().isUndef() || StNode->getMemoryVT() != MemVT || | 
 |       !StNode->getChain().reachesChainWithoutSideEffects(SDValue(LdNode, 1))) | 
 |     return SDValue(); | 
 |  | 
 |   // Create new node GET_FPENV_MEM, which uses the store address to write FP | 
 |   // environment. | 
 |   SDValue Res = DAG.getGetFPEnv(Chain, SDLoc(N), StNode->getBasePtr(), MemVT, | 
 |                                 StNode->getMemOperand()); | 
 |   CombineTo(StNode, Res, false); | 
 |   return Res; | 
 | } | 
 |  | 
 | SDValue DAGCombiner::visitSET_FPENV_MEM(SDNode *N) { | 
 |   SDValue Chain = N->getOperand(0); | 
 |   SDValue Ptr = N->getOperand(1); | 
 |   EVT MemVT = cast<FPStateAccessSDNode>(N)->getMemoryVT(); | 
 |  | 
 |   // Check if the address of FP state is used also in a store operation only. | 
 |   StoreSDNode *StNode = nullptr; | 
 |   for (auto *U : Ptr->users()) { | 
 |     if (U == N) | 
 |       continue; | 
 |     if (auto *St = dyn_cast<StoreSDNode>(U)) { | 
 |       if (StNode && StNode != St) | 
 |         return SDValue(); | 
 |       StNode = St; | 
 |       continue; | 
 |     } | 
 |     return SDValue(); | 
 |   } | 
 |   if (!StNode || !StNode->isSimple() || StNode->isIndexed() || | 
 |       !StNode->getOffset().isUndef() || StNode->getMemoryVT() != MemVT || | 
 |       !Chain.reachesChainWithoutSideEffects(SDValue(StNode, 0))) | 
 |     return SDValue(); | 
 |  | 
 |   // Check if the stored value is loaded from some location and the loaded | 
 |   // value is used only in the store operation. | 
 |   SDValue StValue = StNode->getValue(); | 
 |   auto *LdNode = dyn_cast<LoadSDNode>(StValue); | 
 |   if (!LdNode || !LdNode->isSimple() || LdNode->isIndexed() || | 
 |       !LdNode->getOffset().isUndef() || LdNode->getMemoryVT() != MemVT || | 
 |       !StNode->getChain().reachesChainWithoutSideEffects(SDValue(LdNode, 1))) | 
 |     return SDValue(); | 
 |  | 
 |   // Create new node SET_FPENV_MEM, which uses the load address to read FP | 
 |   // environment. | 
 |   SDValue Res = | 
 |       DAG.getSetFPEnv(LdNode->getChain(), SDLoc(N), LdNode->getBasePtr(), MemVT, | 
 |                       LdNode->getMemOperand()); | 
 |   return Res; | 
 | } | 
 |  | 
 | /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle | 
 | /// with the destination vector and a zero vector. | 
 | /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> | 
 | ///      vector_shuffle V, Zero, <0, 4, 2, 4> | 
 | SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { | 
 |   assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue LHS = N->getOperand(0); | 
 |   SDValue RHS = peekThroughBitcasts(N->getOperand(1)); | 
 |   SDLoc DL(N); | 
 |  | 
 |   // Make sure we're not running after operation legalization where it | 
 |   // may have custom lowered the vector shuffles. | 
 |   if (LegalOperations) | 
 |     return SDValue(); | 
 |  | 
 |   if (RHS.getOpcode() != ISD::BUILD_VECTOR) | 
 |     return SDValue(); | 
 |  | 
 |   EVT RVT = RHS.getValueType(); | 
 |   unsigned NumElts = RHS.getNumOperands(); | 
 |  | 
 |   // Attempt to create a valid clear mask, splitting the mask into | 
 |   // sub elements and checking to see if each is | 
 |   // all zeros or all ones - suitable for shuffle masking. | 
 |   auto BuildClearMask = [&](int Split) { | 
 |     int NumSubElts = NumElts * Split; | 
 |     int NumSubBits = RVT.getScalarSizeInBits() / Split; | 
 |  | 
 |     SmallVector<int, 8> Indices; | 
 |     for (int i = 0; i != NumSubElts; ++i) { | 
 |       int EltIdx = i / Split; | 
 |       int SubIdx = i % Split; | 
 |       SDValue Elt = RHS.getOperand(EltIdx); | 
 |       // X & undef --> 0 (not undef). So this lane must be converted to choose | 
 |       // from the zero constant vector (same as if the element had all 0-bits). | 
 |       if (Elt.isUndef()) { | 
 |         Indices.push_back(i + NumSubElts); | 
 |         continue; | 
 |       } | 
 |  | 
 |       std::optional<APInt> Bits = Elt->bitcastToAPInt(); | 
 |       if (!Bits) | 
 |         return SDValue(); | 
 |  | 
 |       // Extract the sub element from the constant bit mask. | 
 |       if (DAG.getDataLayout().isBigEndian()) | 
 |         *Bits = | 
 |             Bits->extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); | 
 |       else | 
 |         *Bits = Bits->extractBits(NumSubBits, SubIdx * NumSubBits); | 
 |  | 
 |       if (Bits->isAllOnes()) | 
 |         Indices.push_back(i); | 
 |       else if (*Bits == 0) | 
 |         Indices.push_back(i + NumSubElts); | 
 |       else | 
 |         return SDValue(); | 
 |     } | 
 |  | 
 |     // Let's see if the target supports this vector_shuffle. | 
 |     EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); | 
 |     EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); | 
 |     if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) | 
 |       return SDValue(); | 
 |  | 
 |     SDValue Zero = DAG.getConstant(0, DL, ClearVT); | 
 |     return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, | 
 |                                                    DAG.getBitcast(ClearVT, LHS), | 
 |                                                    Zero, Indices)); | 
 |   }; | 
 |  | 
 |   // Determine maximum split level (byte level masking). | 
 |   int MaxSplit = 1; | 
 |   if (RVT.getScalarSizeInBits() % 8 == 0) | 
 |     MaxSplit = RVT.getScalarSizeInBits() / 8; | 
 |  | 
 |   for (int Split = 1; Split <= MaxSplit; ++Split) | 
 |     if (RVT.getScalarSizeInBits() % Split == 0) | 
 |       if (SDValue S = BuildClearMask(Split)) | 
 |         return S; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// If a vector binop is performed on splat values, it may be profitable to | 
 | /// extract, scalarize, and insert/splat. | 
 | static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, | 
 |                                       const SDLoc &DL, bool LegalTypes) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   EVT VT = N->getValueType(0); | 
 |   EVT EltVT = VT.getVectorElementType(); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |  | 
 |   // TODO: Remove/replace the extract cost check? If the elements are available | 
 |   //       as scalars, then there may be no extract cost. Should we ask if | 
 |   //       inserting a scalar back into a vector is cheap instead? | 
 |   int Index0, Index1; | 
 |   SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); | 
 |   SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); | 
 |   // Extract element from splat_vector should be free. | 
 |   // TODO: use DAG.isSplatValue instead? | 
 |   bool IsBothSplatVector = N0.getOpcode() == ISD::SPLAT_VECTOR && | 
 |                            N1.getOpcode() == ISD::SPLAT_VECTOR; | 
 |   if (!Src0 || !Src1 || Index0 != Index1 || | 
 |       Src0.getValueType().getVectorElementType() != EltVT || | 
 |       Src1.getValueType().getVectorElementType() != EltVT || | 
 |       !(IsBothSplatVector || TLI.isExtractVecEltCheap(VT, Index0)) || | 
 |       // If before type legalization, allow scalar types that will eventually be | 
 |       // made legal. | 
 |       !TLI.isOperationLegalOrCustom( | 
 |           Opcode, LegalTypes | 
 |                       ? EltVT | 
 |                       : TLI.getTypeToTransformTo(*DAG.getContext(), EltVT))) | 
 |     return SDValue(); | 
 |  | 
 |   // FIXME: Type legalization can't handle illegal MULHS/MULHU. | 
 |   if ((Opcode == ISD::MULHS || Opcode == ISD::MULHU) && !TLI.isTypeLegal(EltVT)) | 
 |     return SDValue(); | 
 |  | 
 |   if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode()) { | 
 |     // All but one element should have an undef input, which will fold to a | 
 |     // constant or undef. Avoid splatting which would over-define potentially | 
 |     // undefined elements. | 
 |  | 
 |     // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> | 
 |     //   build_vec ..undef, (bo X, Y), undef... | 
 |     SmallVector<SDValue, 16> EltsX, EltsY, EltsResult; | 
 |     DAG.ExtractVectorElements(Src0, EltsX); | 
 |     DAG.ExtractVectorElements(Src1, EltsY); | 
 |  | 
 |     for (auto [X, Y] : zip(EltsX, EltsY)) | 
 |       EltsResult.push_back(DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags())); | 
 |     return DAG.getBuildVector(VT, DL, EltsResult); | 
 |   } | 
 |  | 
 |   SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); | 
 |   SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); | 
 |   SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); | 
 |   SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); | 
 |  | 
 |   // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index | 
 |   return DAG.getSplat(VT, DL, ScalarBO); | 
 | } | 
 |  | 
 | /// Visit a vector cast operation, like FP_EXTEND. | 
 | SDValue DAGCombiner::SimplifyVCastOp(SDNode *N, const SDLoc &DL) { | 
 |   EVT VT = N->getValueType(0); | 
 |   assert(VT.isVector() && "SimplifyVCastOp only works on vectors!"); | 
 |   EVT EltVT = VT.getVectorElementType(); | 
 |   unsigned Opcode = N->getOpcode(); | 
 |  | 
 |   SDValue N0 = N->getOperand(0); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |  | 
 |   // TODO: promote operation might be also good here? | 
 |   int Index0; | 
 |   SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); | 
 |   if (Src0 && | 
 |       (N0.getOpcode() == ISD::SPLAT_VECTOR || | 
 |        TLI.isExtractVecEltCheap(VT, Index0)) && | 
 |       TLI.isOperationLegalOrCustom(Opcode, EltVT) && | 
 |       TLI.preferScalarizeSplat(N)) { | 
 |     EVT SrcVT = N0.getValueType(); | 
 |     EVT SrcEltVT = SrcVT.getVectorElementType(); | 
 |     SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); | 
 |     SDValue Elt = | 
 |         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcEltVT, Src0, IndexC); | 
 |     SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, Elt, N->getFlags()); | 
 |     if (VT.isScalableVector()) | 
 |       return DAG.getSplatVector(VT, DL, ScalarBO); | 
 |     SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); | 
 |     return DAG.getBuildVector(VT, DL, Ops); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Visit a binary vector operation, like ADD. | 
 | SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) { | 
 |   EVT VT = N->getValueType(0); | 
 |   assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); | 
 |  | 
 |   SDValue LHS = N->getOperand(0); | 
 |   SDValue RHS = N->getOperand(1); | 
 |   unsigned Opcode = N->getOpcode(); | 
 |   SDNodeFlags Flags = N->getFlags(); | 
 |  | 
 |   // Move unary shuffles with identical masks after a vector binop: | 
 |   // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) | 
 |   //   --> shuffle (VBinOp A, B), Undef, Mask | 
 |   // This does not require type legality checks because we are creating the | 
 |   // same types of operations that are in the original sequence. We do have to | 
 |   // restrict ops like integer div that have immediate UB (eg, div-by-zero) | 
 |   // though. This code is adapted from the identical transform in instcombine. | 
 |   if (DAG.isSafeToSpeculativelyExecute(Opcode)) { | 
 |     auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); | 
 |     auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); | 
 |     if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && | 
 |         LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && | 
 |         (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { | 
 |       SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), | 
 |                                      RHS.getOperand(0), Flags); | 
 |       SDValue UndefV = LHS.getOperand(1); | 
 |       return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); | 
 |     } | 
 |  | 
 |     // Try to sink a splat shuffle after a binop with a uniform constant. | 
 |     // This is limited to cases where neither the shuffle nor the constant have | 
 |     // undefined elements because that could be poison-unsafe or inhibit | 
 |     // demanded elements analysis. It is further limited to not change a splat | 
 |     // of an inserted scalar because that may be optimized better by | 
 |     // load-folding or other target-specific behaviors. | 
 |     if (isConstOrConstSplat(RHS) && Shuf0 && all_equal(Shuf0->getMask()) && | 
 |         Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && | 
 |         Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { | 
 |       // binop (splat X), (splat C) --> splat (binop X, C) | 
 |       SDValue X = Shuf0->getOperand(0); | 
 |       SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); | 
 |       return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), | 
 |                                   Shuf0->getMask()); | 
 |     } | 
 |     if (isConstOrConstSplat(LHS) && Shuf1 && all_equal(Shuf1->getMask()) && | 
 |         Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && | 
 |         Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { | 
 |       // binop (splat C), (splat X) --> splat (binop C, X) | 
 |       SDValue X = Shuf1->getOperand(0); | 
 |       SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); | 
 |       return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), | 
 |                                   Shuf1->getMask()); | 
 |     } | 
 |   } | 
 |  | 
 |   // The following pattern is likely to emerge with vector reduction ops. Moving | 
 |   // the binary operation ahead of insertion may allow using a narrower vector | 
 |   // instruction that has better performance than the wide version of the op: | 
 |   // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z | 
 |   if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && | 
 |       RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && | 
 |       LHS.getOperand(2) == RHS.getOperand(2) && | 
 |       (LHS.hasOneUse() || RHS.hasOneUse())) { | 
 |     SDValue X = LHS.getOperand(1); | 
 |     SDValue Y = RHS.getOperand(1); | 
 |     SDValue Z = LHS.getOperand(2); | 
 |     EVT NarrowVT = X.getValueType(); | 
 |     if (NarrowVT == Y.getValueType() && | 
 |         TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, | 
 |                                               LegalOperations)) { | 
 |       // (binop undef, undef) may not return undef, so compute that result. | 
 |       SDValue VecC = | 
 |           DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); | 
 |       SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); | 
 |       return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); | 
 |     } | 
 |   } | 
 |  | 
 |   // Make sure all but the first op are undef or constant. | 
 |   auto ConcatWithConstantOrUndef = [](SDValue Concat) { | 
 |     return Concat.getOpcode() == ISD::CONCAT_VECTORS && | 
 |            all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { | 
 |              return Op.isUndef() || | 
 |                     ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); | 
 |            }); | 
 |   }; | 
 |  | 
 |   // The following pattern is likely to emerge with vector reduction ops. Moving | 
 |   // the binary operation ahead of the concat may allow using a narrower vector | 
 |   // instruction that has better performance than the wide version of the op: | 
 |   // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> | 
 |   //   concat (VBinOp X, Y), VecC | 
 |   if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && | 
 |       (LHS.hasOneUse() || RHS.hasOneUse())) { | 
 |     EVT NarrowVT = LHS.getOperand(0).getValueType(); | 
 |     if (NarrowVT == RHS.getOperand(0).getValueType() && | 
 |         TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { | 
 |       unsigned NumOperands = LHS.getNumOperands(); | 
 |       SmallVector<SDValue, 4> ConcatOps; | 
 |       for (unsigned i = 0; i != NumOperands; ++i) { | 
 |         // This constant fold for operands 1 and up. | 
 |         ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), | 
 |                                         RHS.getOperand(i))); | 
 |       } | 
 |  | 
 |       return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL, LegalTypes)) | 
 |     return V; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, | 
 |                                     SDValue N2) { | 
 |   assert(N0.getOpcode() == ISD::SETCC && | 
 |          "First argument must be a SetCC node!"); | 
 |  | 
 |   SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, | 
 |                                  cast<CondCodeSDNode>(N0.getOperand(2))->get()); | 
 |  | 
 |   // If we got a simplified select_cc node back from SimplifySelectCC, then | 
 |   // break it down into a new SETCC node, and a new SELECT node, and then return | 
 |   // the SELECT node, since we were called with a SELECT node. | 
 |   if (SCC.getNode()) { | 
 |     // Check to see if we got a select_cc back (to turn into setcc/select). | 
 |     // Otherwise, just return whatever node we got back, like fabs. | 
 |     if (SCC.getOpcode() == ISD::SELECT_CC) { | 
 |       const SDNodeFlags Flags = N0->getFlags(); | 
 |       SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), | 
 |                                   N0.getValueType(), | 
 |                                   SCC.getOperand(0), SCC.getOperand(1), | 
 |                                   SCC.getOperand(4), Flags); | 
 |       AddToWorklist(SETCC.getNode()); | 
 |       SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, | 
 |                                          SCC.getOperand(2), SCC.getOperand(3)); | 
 |       SelectNode->setFlags(Flags); | 
 |       return SelectNode; | 
 |     } | 
 |  | 
 |     return SCC; | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values | 
 | /// being selected between, see if we can simplify the select.  Callers of this | 
 | /// should assume that TheSelect is deleted if this returns true.  As such, they | 
 | /// should return the appropriate thing (e.g. the node) back to the top-level of | 
 | /// the DAG combiner loop to avoid it being looked at. | 
 | bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, | 
 |                                     SDValue RHS) { | 
 |   // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | 
 |   // The select + setcc is redundant, because fsqrt returns NaN for X < 0. | 
 |   if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { | 
 |     if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { | 
 |       // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) | 
 |       SDValue Sqrt = RHS; | 
 |       ISD::CondCode CC; | 
 |       SDValue CmpLHS; | 
 |       const ConstantFPSDNode *Zero = nullptr; | 
 |  | 
 |       if (TheSelect->getOpcode() == ISD::SELECT_CC) { | 
 |         CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); | 
 |         CmpLHS = TheSelect->getOperand(0); | 
 |         Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); | 
 |       } else { | 
 |         // SELECT or VSELECT | 
 |         SDValue Cmp = TheSelect->getOperand(0); | 
 |         if (Cmp.getOpcode() == ISD::SETCC) { | 
 |           CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); | 
 |           CmpLHS = Cmp.getOperand(0); | 
 |           Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); | 
 |         } | 
 |       } | 
 |       if (Zero && Zero->isZero() && | 
 |           Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || | 
 |           CC == ISD::SETULT || CC == ISD::SETLT)) { | 
 |         // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) | 
 |         CombineTo(TheSelect, Sqrt); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   // Cannot simplify select with vector condition | 
 |   if (TheSelect->getOperand(0).getValueType().isVector()) return false; | 
 |  | 
 |   // If this is a select from two identical things, try to pull the operation | 
 |   // through the select. | 
 |   if (LHS.getOpcode() != RHS.getOpcode() || | 
 |       !LHS.hasOneUse() || !RHS.hasOneUse()) | 
 |     return false; | 
 |  | 
 |   // If this is a load and the token chain is identical, replace the select | 
 |   // of two loads with a load through a select of the address to load from. | 
 |   // This triggers in things like "select bool X, 10.0, 123.0" after the FP | 
 |   // constants have been dropped into the constant pool. | 
 |   if (LHS.getOpcode() == ISD::LOAD) { | 
 |     LoadSDNode *LLD = cast<LoadSDNode>(LHS); | 
 |     LoadSDNode *RLD = cast<LoadSDNode>(RHS); | 
 |  | 
 |     // Token chains must be identical. | 
 |     if (LHS.getOperand(0) != RHS.getOperand(0) || | 
 |         // Do not let this transformation reduce the number of volatile loads. | 
 |         // Be conservative for atomics for the moment | 
 |         // TODO: This does appear to be legal for unordered atomics (see D66309) | 
 |         !LLD->isSimple() || !RLD->isSimple() || | 
 |         // FIXME: If either is a pre/post inc/dec load, | 
 |         // we'd need to split out the address adjustment. | 
 |         LLD->isIndexed() || RLD->isIndexed() || | 
 |         // If this is an EXTLOAD, the VT's must match. | 
 |         LLD->getMemoryVT() != RLD->getMemoryVT() || | 
 |         // If this is an EXTLOAD, the kind of extension must match. | 
 |         (LLD->getExtensionType() != RLD->getExtensionType() && | 
 |          // The only exception is if one of the extensions is anyext. | 
 |          LLD->getExtensionType() != ISD::EXTLOAD && | 
 |          RLD->getExtensionType() != ISD::EXTLOAD) || | 
 |         // FIXME: this discards src value information.  This is | 
 |         // over-conservative. It would be beneficial to be able to remember | 
 |         // both potential memory locations.  Since we are discarding | 
 |         // src value info, don't do the transformation if the memory | 
 |         // locations are not in the default address space. | 
 |         LLD->getPointerInfo().getAddrSpace() != 0 || | 
 |         RLD->getPointerInfo().getAddrSpace() != 0 || | 
 |         // We can't produce a CMOV of a TargetFrameIndex since we won't | 
 |         // generate the address generation required. | 
 |         LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || | 
 |         RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || | 
 |         !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), | 
 |                                       LLD->getBasePtr().getValueType())) | 
 |       return false; | 
 |  | 
 |     // The loads must not depend on one another. | 
 |     if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) | 
 |       return false; | 
 |  | 
 |     // Check that the select condition doesn't reach either load.  If so, | 
 |     // folding this will induce a cycle into the DAG.  If not, this is safe to | 
 |     // xform, so create a select of the addresses. | 
 |  | 
 |     SmallPtrSet<const SDNode *, 32> Visited; | 
 |     SmallVector<const SDNode *, 16> Worklist; | 
 |  | 
 |     // Always fail if LLD and RLD are not independent. TheSelect is a | 
 |     // predecessor to all Nodes in question so we need not search past it. | 
 |  | 
 |     Visited.insert(TheSelect); | 
 |     Worklist.push_back(LLD); | 
 |     Worklist.push_back(RLD); | 
 |  | 
 |     if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || | 
 |         SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) | 
 |       return false; | 
 |  | 
 |     SDValue Addr; | 
 |     if (TheSelect->getOpcode() == ISD::SELECT) { | 
 |       // We cannot do this optimization if any pair of {RLD, LLD} is a | 
 |       // predecessor to {RLD, LLD, CondNode}. As we've already compared the | 
 |       // Loads, we only need to check if CondNode is a successor to one of the | 
 |       // loads. We can further avoid this if there's no use of their chain | 
 |       // value. | 
 |       SDNode *CondNode = TheSelect->getOperand(0).getNode(); | 
 |       Worklist.push_back(CondNode); | 
 |  | 
 |       if ((LLD->hasAnyUseOfValue(1) && | 
 |            SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || | 
 |           (RLD->hasAnyUseOfValue(1) && | 
 |            SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) | 
 |         return false; | 
 |  | 
 |       Addr = DAG.getSelect(SDLoc(TheSelect), | 
 |                            LLD->getBasePtr().getValueType(), | 
 |                            TheSelect->getOperand(0), LLD->getBasePtr(), | 
 |                            RLD->getBasePtr()); | 
 |     } else {  // Otherwise SELECT_CC | 
 |       // We cannot do this optimization if any pair of {RLD, LLD} is a | 
 |       // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared | 
 |       // the Loads, we only need to check if CondLHS/CondRHS is a successor to | 
 |       // one of the loads. We can further avoid this if there's no use of their | 
 |       // chain value. | 
 |  | 
 |       SDNode *CondLHS = TheSelect->getOperand(0).getNode(); | 
 |       SDNode *CondRHS = TheSelect->getOperand(1).getNode(); | 
 |       Worklist.push_back(CondLHS); | 
 |       Worklist.push_back(CondRHS); | 
 |  | 
 |       if ((LLD->hasAnyUseOfValue(1) && | 
 |            SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || | 
 |           (RLD->hasAnyUseOfValue(1) && | 
 |            SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) | 
 |         return false; | 
 |  | 
 |       Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), | 
 |                          LLD->getBasePtr().getValueType(), | 
 |                          TheSelect->getOperand(0), | 
 |                          TheSelect->getOperand(1), | 
 |                          LLD->getBasePtr(), RLD->getBasePtr(), | 
 |                          TheSelect->getOperand(4)); | 
 |     } | 
 |  | 
 |     SDValue Load; | 
 |     // It is safe to replace the two loads if they have different alignments, | 
 |     // but the new load must be the minimum (most restrictive) alignment of the | 
 |     // inputs. | 
 |     Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); | 
 |     MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); | 
 |     if (!RLD->isInvariant()) | 
 |       MMOFlags &= ~MachineMemOperand::MOInvariant; | 
 |     if (!RLD->isDereferenceable()) | 
 |       MMOFlags &= ~MachineMemOperand::MODereferenceable; | 
 |     if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { | 
 |       // FIXME: Discards pointer and AA info. | 
 |       Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), | 
 |                          LLD->getChain(), Addr, MachinePointerInfo(), Alignment, | 
 |                          MMOFlags); | 
 |     } else { | 
 |       // FIXME: Discards pointer and AA info. | 
 |       Load = DAG.getExtLoad( | 
 |           LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() | 
 |                                                   : LLD->getExtensionType(), | 
 |           SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, | 
 |           MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); | 
 |     } | 
 |  | 
 |     // Users of the select now use the result of the load. | 
 |     CombineTo(TheSelect, Load); | 
 |  | 
 |     // Users of the old loads now use the new load's chain.  We know the | 
 |     // old-load value is dead now. | 
 |     CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
 |     CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and | 
 | /// bitwise 'and'. | 
 | SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, | 
 |                                             SDValue N1, SDValue N2, SDValue N3, | 
 |                                             ISD::CondCode CC) { | 
 |   // If this is a select where the false operand is zero and the compare is a | 
 |   // check of the sign bit, see if we can perform the "gzip trick": | 
 |   // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A | 
 |   // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A | 
 |   EVT XType = N0.getValueType(); | 
 |   EVT AType = N2.getValueType(); | 
 |   if (!isNullConstant(N3) || !XType.bitsGE(AType)) | 
 |     return SDValue(); | 
 |  | 
 |   // If the comparison is testing for a positive value, we have to invert | 
 |   // the sign bit mask, so only do that transform if the target has a bitwise | 
 |   // 'and not' instruction (the invert is free). | 
 |   if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { | 
 |     // (X > -1) ? A : 0 | 
 |     // (X >  0) ? X : 0 <-- This is canonical signed max. | 
 |     if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) | 
 |       return SDValue(); | 
 |   } else if (CC == ISD::SETLT) { | 
 |     // (X <  0) ? A : 0 | 
 |     // (X <  1) ? X : 0 <-- This is un-canonicalized signed min. | 
 |     if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) | 
 |       return SDValue(); | 
 |   } else { | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit | 
 |   // constant. | 
 |   auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
 |   if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { | 
 |     unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; | 
 |     if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { | 
 |       SDValue ShiftAmt = DAG.getShiftAmountConstant(ShCt, XType, DL); | 
 |       SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); | 
 |       AddToWorklist(Shift.getNode()); | 
 |  | 
 |       if (XType.bitsGT(AType)) { | 
 |         Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
 |         AddToWorklist(Shift.getNode()); | 
 |       } | 
 |  | 
 |       if (CC == ISD::SETGT) | 
 |         Shift = DAG.getNOT(DL, Shift, AType); | 
 |  | 
 |       return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned ShCt = XType.getSizeInBits() - 1; | 
 |   if (TLI.shouldAvoidTransformToShift(XType, ShCt)) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue ShiftAmt = DAG.getShiftAmountConstant(ShCt, XType, DL); | 
 |   SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); | 
 |   AddToWorklist(Shift.getNode()); | 
 |  | 
 |   if (XType.bitsGT(AType)) { | 
 |     Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); | 
 |     AddToWorklist(Shift.getNode()); | 
 |   } | 
 |  | 
 |   if (CC == ISD::SETGT) | 
 |     Shift = DAG.getNOT(DL, Shift, AType); | 
 |  | 
 |   return DAG.getNode(ISD::AND, DL, AType, Shift, N2); | 
 | } | 
 |  | 
 | // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc. | 
 | SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   SDValue N2 = N->getOperand(2); | 
 |   SDLoc DL(N); | 
 |  | 
 |   unsigned BinOpc = N1.getOpcode(); | 
 |   if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc) || | 
 |       (N1.getResNo() != N2.getResNo())) | 
 |     return SDValue(); | 
 |  | 
 |   // The use checks are intentionally on SDNode because we may be dealing | 
 |   // with opcodes that produce more than one SDValue. | 
 |   // TODO: Do we really need to check N0 (the condition operand of the select)? | 
 |   //       But removing that clause could cause an infinite loop... | 
 |   if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   // Binops may include opcodes that return multiple values, so all values | 
 |   // must be created/propagated from the newly created binops below. | 
 |   SDVTList OpVTs = N1->getVTList(); | 
 |  | 
 |   // Fold select(cond, binop(x, y), binop(z, y)) | 
 |   //  --> binop(select(cond, x, z), y) | 
 |   if (N1.getOperand(1) == N2.getOperand(1)) { | 
 |     SDValue N10 = N1.getOperand(0); | 
 |     SDValue N20 = N2.getOperand(0); | 
 |     SDValue NewSel = DAG.getSelect(DL, N10.getValueType(), N0, N10, N20); | 
 |     SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1)); | 
 |     NewBinOp->setFlags(N1->getFlags()); | 
 |     NewBinOp->intersectFlagsWith(N2->getFlags()); | 
 |     return SDValue(NewBinOp.getNode(), N1.getResNo()); | 
 |   } | 
 |  | 
 |   // Fold select(cond, binop(x, y), binop(x, z)) | 
 |   //  --> binop(x, select(cond, y, z)) | 
 |   if (N1.getOperand(0) == N2.getOperand(0)) { | 
 |     SDValue N11 = N1.getOperand(1); | 
 |     SDValue N21 = N2.getOperand(1); | 
 |     // Second op VT might be different (e.g. shift amount type) | 
 |     if (N11.getValueType() == N21.getValueType()) { | 
 |       SDValue NewSel = DAG.getSelect(DL, N11.getValueType(), N0, N11, N21); | 
 |       SDValue NewBinOp = | 
 |           DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel); | 
 |       NewBinOp->setFlags(N1->getFlags()); | 
 |       NewBinOp->intersectFlagsWith(N2->getFlags()); | 
 |       return SDValue(NewBinOp.getNode(), N1.getResNo()); | 
 |     } | 
 |   } | 
 |  | 
 |   // TODO: Handle isCommutativeBinOp patterns as well? | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. | 
 | SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   EVT VT = N->getValueType(0); | 
 |   bool IsFabs = N->getOpcode() == ISD::FABS; | 
 |   bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT); | 
 |  | 
 |   if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Int = N0.getOperand(0); | 
 |   EVT IntVT = Int.getValueType(); | 
 |  | 
 |   // The operand to cast should be integer. | 
 |   if (!IntVT.isInteger() || IntVT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   // (fneg (bitconvert x)) -> (bitconvert (xor x sign)) | 
 |   // (fabs (bitconvert x)) -> (bitconvert (and x ~sign)) | 
 |   APInt SignMask; | 
 |   if (N0.getValueType().isVector()) { | 
 |     // For vector, create a sign mask (0x80...) or its inverse (for fabs, | 
 |     // 0x7f...) per element and splat it. | 
 |     SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); | 
 |     if (IsFabs) | 
 |       SignMask = ~SignMask; | 
 |     SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); | 
 |   } else { | 
 |     // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...) | 
 |     SignMask = APInt::getSignMask(IntVT.getSizeInBits()); | 
 |     if (IsFabs) | 
 |       SignMask = ~SignMask; | 
 |   } | 
 |   SDLoc DL(N0); | 
 |   Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int, | 
 |                     DAG.getConstant(SignMask, DL, IntVT)); | 
 |   AddToWorklist(Int.getNode()); | 
 |   return DAG.getBitcast(VT, Int); | 
 | } | 
 |  | 
 | /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" | 
 | /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 | 
 | /// in it. This may be a win when the constant is not otherwise available | 
 | /// because it replaces two constant pool loads with one. | 
 | SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( | 
 |     const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, | 
 |     ISD::CondCode CC) { | 
 |   if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) | 
 |     return SDValue(); | 
 |  | 
 |   // If we are before legalize types, we want the other legalization to happen | 
 |   // first (for example, to avoid messing with soft float). | 
 |   auto *TV = dyn_cast<ConstantFPSDNode>(N2); | 
 |   auto *FV = dyn_cast<ConstantFPSDNode>(N3); | 
 |   EVT VT = N2.getValueType(); | 
 |   if (!TV || !FV || !TLI.isTypeLegal(VT)) | 
 |     return SDValue(); | 
 |  | 
 |   // If a constant can be materialized without loads, this does not make sense. | 
 |   if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || | 
 |       TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || | 
 |       TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) | 
 |     return SDValue(); | 
 |  | 
 |   // If both constants have multiple uses, then we won't need to do an extra | 
 |   // load. The values are likely around in registers for other users. | 
 |   if (!TV->hasOneUse() && !FV->hasOneUse()) | 
 |     return SDValue(); | 
 |  | 
 |   Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), | 
 |                        const_cast<ConstantFP*>(TV->getConstantFPValue()) }; | 
 |   Type *FPTy = Elts[0]->getType(); | 
 |   const DataLayout &TD = DAG.getDataLayout(); | 
 |  | 
 |   // Create a ConstantArray of the two constants. | 
 |   Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); | 
 |   SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), | 
 |                                       TD.getPrefTypeAlign(FPTy)); | 
 |   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); | 
 |  | 
 |   // Get offsets to the 0 and 1 elements of the array, so we can select between | 
 |   // them. | 
 |   SDValue Zero = DAG.getIntPtrConstant(0, DL); | 
 |   unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); | 
 |   SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); | 
 |   SDValue Cond = | 
 |       DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); | 
 |   AddToWorklist(Cond.getNode()); | 
 |   SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); | 
 |   AddToWorklist(CstOffset.getNode()); | 
 |   CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); | 
 |   AddToWorklist(CPIdx.getNode()); | 
 |   return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, | 
 |                      MachinePointerInfo::getConstantPool( | 
 |                          DAG.getMachineFunction()), Alignment); | 
 | } | 
 |  | 
 | /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 | 
 | /// where 'cond' is the comparison specified by CC. | 
 | SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, | 
 |                                       SDValue N2, SDValue N3, ISD::CondCode CC, | 
 |                                       bool NotExtCompare) { | 
 |   // (x ? y : y) -> y. | 
 |   if (N2 == N3) return N2; | 
 |  | 
 |   EVT CmpOpVT = N0.getValueType(); | 
 |   EVT CmpResVT = getSetCCResultType(CmpOpVT); | 
 |   EVT VT = N2.getValueType(); | 
 |   auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); | 
 |   auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); | 
 |   auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); | 
 |  | 
 |   // Determine if the condition we're dealing with is constant. | 
 |   if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { | 
 |     AddToWorklist(SCC.getNode()); | 
 |     if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { | 
 |       // fold select_cc true, x, y -> x | 
 |       // fold select_cc false, x, y -> y | 
 |       return !(SCCC->isZero()) ? N2 : N3; | 
 |     } | 
 |   } | 
 |  | 
 |   if (SDValue V = | 
 |           convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) | 
 |     return V; | 
 |  | 
 |   if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) | 
 |     return V; | 
 |  | 
 |   // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A) | 
 |   // where y is has a single bit set. | 
 |   // A plaintext description would be, we can turn the SELECT_CC into an AND | 
 |   // when the condition can be materialized as an all-ones register.  Any | 
 |   // single bit-test can be materialized as an all-ones register with | 
 |   // shift-left and shift-right-arith. | 
 |   if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && | 
 |       N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { | 
 |     SDValue AndLHS = N0->getOperand(0); | 
 |     auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
 |     if (ConstAndRHS && ConstAndRHS->getAPIntValue().popcount() == 1) { | 
 |       // Shift the tested bit over the sign bit. | 
 |       const APInt &AndMask = ConstAndRHS->getAPIntValue(); | 
 |       if (TLI.shouldFoldSelectWithSingleBitTest(VT, AndMask)) { | 
 |         unsigned ShCt = AndMask.getBitWidth() - 1; | 
 |         SDValue ShlAmt = DAG.getShiftAmountConstant(AndMask.countl_zero(), VT, | 
 |                                                     SDLoc(AndLHS)); | 
 |         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); | 
 |  | 
 |         // Now arithmetic right shift it all the way over, so the result is | 
 |         // either all-ones, or zero. | 
 |         SDValue ShrAmt = DAG.getShiftAmountConstant(ShCt, VT, SDLoc(Shl)); | 
 |         SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); | 
 |  | 
 |         return DAG.getNode(ISD::AND, DL, VT, Shr, N3); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // fold select C, 16, 0 -> shl C, 4 | 
 |   bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); | 
 |   bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); | 
 |  | 
 |   if ((Fold || Swap) && | 
 |       TLI.getBooleanContents(CmpOpVT) == | 
 |           TargetLowering::ZeroOrOneBooleanContent && | 
 |       (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT)) && | 
 |       TLI.convertSelectOfConstantsToMath(VT)) { | 
 |  | 
 |     if (Swap) { | 
 |       CC = ISD::getSetCCInverse(CC, CmpOpVT); | 
 |       std::swap(N2C, N3C); | 
 |     } | 
 |  | 
 |     // If the caller doesn't want us to simplify this into a zext of a compare, | 
 |     // don't do it. | 
 |     if (NotExtCompare && N2C->isOne()) | 
 |       return SDValue(); | 
 |  | 
 |     SDValue Temp, SCC; | 
 |     // zext (setcc n0, n1) | 
 |     if (LegalTypes) { | 
 |       SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); | 
 |       Temp = DAG.getZExtOrTrunc(SCC, SDLoc(N2), VT); | 
 |     } else { | 
 |       SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); | 
 |       Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); | 
 |     } | 
 |  | 
 |     AddToWorklist(SCC.getNode()); | 
 |     AddToWorklist(Temp.getNode()); | 
 |  | 
 |     if (N2C->isOne()) | 
 |       return Temp; | 
 |  | 
 |     unsigned ShCt = N2C->getAPIntValue().logBase2(); | 
 |     if (TLI.shouldAvoidTransformToShift(VT, ShCt)) | 
 |       return SDValue(); | 
 |  | 
 |     // shl setcc result by log2 n2c | 
 |     return DAG.getNode( | 
 |         ISD::SHL, DL, N2.getValueType(), Temp, | 
 |         DAG.getShiftAmountConstant(ShCt, N2.getValueType(), SDLoc(Temp))); | 
 |   } | 
 |  | 
 |   // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) | 
 |   // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) | 
 |   // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) | 
 |   // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) | 
 |   // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) | 
 |   // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) | 
 |   // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) | 
 |   // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) | 
 |   if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | 
 |     SDValue ValueOnZero = N2; | 
 |     SDValue Count = N3; | 
 |     // If the condition is NE instead of E, swap the operands. | 
 |     if (CC == ISD::SETNE) | 
 |       std::swap(ValueOnZero, Count); | 
 |     // Check if the value on zero is a constant equal to the bits in the type. | 
 |     if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { | 
 |       if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { | 
 |         // If the other operand is cttz/cttz_zero_undef of N0, and cttz is | 
 |         // legal, combine to just cttz. | 
 |         if ((Count.getOpcode() == ISD::CTTZ || | 
 |              Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && | 
 |             N0 == Count.getOperand(0) && | 
 |             (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) | 
 |           return DAG.getNode(ISD::CTTZ, DL, VT, N0); | 
 |         // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is | 
 |         // legal, combine to just ctlz. | 
 |         if ((Count.getOpcode() == ISD::CTLZ || | 
 |              Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && | 
 |             N0 == Count.getOperand(0) && | 
 |             (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) | 
 |           return DAG.getNode(ISD::CTLZ, DL, VT, N0); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C | 
 |   // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C | 
 |   if (!NotExtCompare && N1C && N2C && N3C && | 
 |       N2C->getAPIntValue() == ~N3C->getAPIntValue() && | 
 |       ((N1C->isAllOnes() && CC == ISD::SETGT) || | 
 |        (N1C->isZero() && CC == ISD::SETLT)) && | 
 |       !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) { | 
 |     SDValue ASR = DAG.getNode( | 
 |         ISD::SRA, DL, CmpOpVT, N0, | 
 |         DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT)); | 
 |     return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT), | 
 |                        DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT)); | 
 |   } | 
 |  | 
 |   if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG)) | 
 |     return S; | 
 |   if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG)) | 
 |     return S; | 
 |   if (SDValue ABD = foldSelectToABD(N0, N1, N2, N3, CC, DL)) | 
 |     return ABD; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// This is a stub for TargetLowering::SimplifySetCC. | 
 | SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, | 
 |                                    ISD::CondCode Cond, const SDLoc &DL, | 
 |                                    bool foldBooleans) { | 
 |   TargetLowering::DAGCombinerInfo | 
 |     DagCombineInfo(DAG, Level, false, this); | 
 |   return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); | 
 | } | 
 |  | 
 | /// Given an ISD::SDIV node expressing a divide by constant, return | 
 | /// a DAG expression to select that will generate the same value by multiplying | 
 | /// by a magic number. | 
 | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
 | SDValue DAGCombiner::BuildSDIV(SDNode *N) { | 
 |   // when optimising for minimum size, we don't want to expand a div to a mul | 
 |   // and a shift. | 
 |   if (DAG.getMachineFunction().getFunction().hasMinSize()) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<SDNode *, 8> Built; | 
 |   if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, LegalTypes, Built)) { | 
 |     for (SDNode *N : Built) | 
 |       AddToWorklist(N); | 
 |     return S; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a | 
 | /// DAG expression that will generate the same value by right shifting. | 
 | SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { | 
 |   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | 
 |   if (!C) | 
 |     return SDValue(); | 
 |  | 
 |   // Avoid division by zero. | 
 |   if (C->isZero()) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<SDNode *, 8> Built; | 
 |   if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { | 
 |     for (SDNode *N : Built) | 
 |       AddToWorklist(N); | 
 |     return S; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Given an ISD::UDIV node expressing a divide by constant, return a DAG | 
 | /// expression that will generate the same value by multiplying by a magic | 
 | /// number. | 
 | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
 | SDValue DAGCombiner::BuildUDIV(SDNode *N) { | 
 |   // when optimising for minimum size, we don't want to expand a div to a mul | 
 |   // and a shift. | 
 |   if (DAG.getMachineFunction().getFunction().hasMinSize()) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<SDNode *, 8> Built; | 
 |   if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, LegalTypes, Built)) { | 
 |     for (SDNode *N : Built) | 
 |       AddToWorklist(N); | 
 |     return S; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Given an ISD::SREM node expressing a remainder by constant power of 2, | 
 | /// return a DAG expression that will generate the same value. | 
 | SDValue DAGCombiner::BuildSREMPow2(SDNode *N) { | 
 |   ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); | 
 |   if (!C) | 
 |     return SDValue(); | 
 |  | 
 |   // Avoid division by zero. | 
 |   if (C->isZero()) | 
 |     return SDValue(); | 
 |  | 
 |   SmallVector<SDNode *, 8> Built; | 
 |   if (SDValue S = TLI.BuildSREMPow2(N, C->getAPIntValue(), DAG, Built)) { | 
 |     for (SDNode *N : Built) | 
 |       AddToWorklist(N); | 
 |     return S; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // This is basically just a port of takeLog2 from InstCombineMulDivRem.cpp | 
 | // | 
 | // Returns the node that represents `Log2(Op)`. This may create a new node. If | 
 | // we are unable to compute `Log2(Op)` its return `SDValue()`. | 
 | // | 
 | // All nodes will be created at `DL` and the output will be of type `VT`. | 
 | // | 
 | // This will only return `Log2(Op)` if we can prove `Op` is non-zero. Set | 
 | // `AssumeNonZero` if this function should simply assume (not require proving | 
 | // `Op` is non-zero). | 
 | static SDValue takeInexpensiveLog2(SelectionDAG &DAG, const SDLoc &DL, EVT VT, | 
 |                                    SDValue Op, unsigned Depth, | 
 |                                    bool AssumeNonZero) { | 
 |   assert(VT.isInteger() && "Only integer types are supported!"); | 
 |  | 
 |   auto PeekThroughCastsAndTrunc = [](SDValue V) { | 
 |     while (true) { | 
 |       switch (V.getOpcode()) { | 
 |       case ISD::TRUNCATE: | 
 |       case ISD::ZERO_EXTEND: | 
 |         V = V.getOperand(0); | 
 |         break; | 
 |       default: | 
 |         return V; | 
 |       } | 
 |     } | 
 |   }; | 
 |  | 
 |   if (VT.isScalableVector()) | 
 |     return SDValue(); | 
 |  | 
 |   Op = PeekThroughCastsAndTrunc(Op); | 
 |  | 
 |   // Helper for determining whether a value is a power-2 constant scalar or a | 
 |   // vector of such elements. | 
 |   SmallVector<APInt> Pow2Constants; | 
 |   auto IsPowerOfTwo = [&Pow2Constants](ConstantSDNode *C) { | 
 |     if (C->isZero() || C->isOpaque()) | 
 |       return false; | 
 |     // TODO: We may also be able to support negative powers of 2 here. | 
 |     if (C->getAPIntValue().isPowerOf2()) { | 
 |       Pow2Constants.emplace_back(C->getAPIntValue()); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   }; | 
 |  | 
 |   if (ISD::matchUnaryPredicate(Op, IsPowerOfTwo)) { | 
 |     if (!VT.isVector()) | 
 |       return DAG.getConstant(Pow2Constants.back().logBase2(), DL, VT); | 
 |     // We need to create a build vector | 
 |     if (Op.getOpcode() == ISD::SPLAT_VECTOR) | 
 |       return DAG.getSplat(VT, DL, | 
 |                           DAG.getConstant(Pow2Constants.back().logBase2(), DL, | 
 |                                           VT.getScalarType())); | 
 |     SmallVector<SDValue> Log2Ops; | 
 |     for (const APInt &Pow2 : Pow2Constants) | 
 |       Log2Ops.emplace_back( | 
 |           DAG.getConstant(Pow2.logBase2(), DL, VT.getScalarType())); | 
 |     return DAG.getBuildVector(VT, DL, Log2Ops); | 
 |   } | 
 |  | 
 |   if (Depth >= DAG.MaxRecursionDepth) | 
 |     return SDValue(); | 
 |  | 
 |   auto CastToVT = [&](EVT NewVT, SDValue ToCast) { | 
 |     // Peek through zero extend. We can't peek through truncates since this | 
 |     // function is called on a shift amount. We must ensure that all of the bits | 
 |     // above the original shift amount are zeroed by this function. | 
 |     while (ToCast.getOpcode() == ISD::ZERO_EXTEND) | 
 |       ToCast = ToCast.getOperand(0); | 
 |     EVT CurVT = ToCast.getValueType(); | 
 |     if (NewVT == CurVT) | 
 |       return ToCast; | 
 |  | 
 |     if (NewVT.getSizeInBits() == CurVT.getSizeInBits()) | 
 |       return DAG.getBitcast(NewVT, ToCast); | 
 |  | 
 |     return DAG.getZExtOrTrunc(ToCast, DL, NewVT); | 
 |   }; | 
 |  | 
 |   // log2(X << Y) -> log2(X) + Y | 
 |   if (Op.getOpcode() == ISD::SHL) { | 
 |     // 1 << Y and X nuw/nsw << Y are all non-zero. | 
 |     if (AssumeNonZero || Op->getFlags().hasNoUnsignedWrap() || | 
 |         Op->getFlags().hasNoSignedWrap() || isOneConstant(Op.getOperand(0))) | 
 |       if (SDValue LogX = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(0), | 
 |                                              Depth + 1, AssumeNonZero)) | 
 |         return DAG.getNode(ISD::ADD, DL, VT, LogX, | 
 |                            CastToVT(VT, Op.getOperand(1))); | 
 |   } | 
 |  | 
 |   // c ? X : Y -> c ? Log2(X) : Log2(Y) | 
 |   if ((Op.getOpcode() == ISD::SELECT || Op.getOpcode() == ISD::VSELECT) && | 
 |       Op.hasOneUse()) { | 
 |     if (SDValue LogX = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(1), | 
 |                                            Depth + 1, AssumeNonZero)) | 
 |       if (SDValue LogY = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(2), | 
 |                                              Depth + 1, AssumeNonZero)) | 
 |         return DAG.getSelect(DL, VT, Op.getOperand(0), LogX, LogY); | 
 |   } | 
 |  | 
 |   // log2(umin(X, Y)) -> umin(log2(X), log2(Y)) | 
 |   // log2(umax(X, Y)) -> umax(log2(X), log2(Y)) | 
 |   if ((Op.getOpcode() == ISD::UMIN || Op.getOpcode() == ISD::UMAX) && | 
 |       Op.hasOneUse()) { | 
 |     // Use AssumeNonZero as false here. Otherwise we can hit case where | 
 |     // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow). | 
 |     if (SDValue LogX = | 
 |             takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(0), Depth + 1, | 
 |                                 /*AssumeNonZero*/ false)) | 
 |       if (SDValue LogY = | 
 |               takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(1), Depth + 1, | 
 |                                   /*AssumeNonZero*/ false)) | 
 |         return DAG.getNode(Op.getOpcode(), DL, VT, LogX, LogY); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Determines the LogBase2 value for a non-null input value using the | 
 | /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). | 
 | SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL, | 
 |                                    bool KnownNonZero, bool InexpensiveOnly, | 
 |                                    std::optional<EVT> OutVT) { | 
 |   EVT VT = OutVT ? *OutVT : V.getValueType(); | 
 |   SDValue InexpensiveLogBase2 = | 
 |       takeInexpensiveLog2(DAG, DL, VT, V, /*Depth*/ 0, KnownNonZero); | 
 |   if (InexpensiveLogBase2 || InexpensiveOnly || !DAG.isKnownToBeAPowerOfTwo(V)) | 
 |     return InexpensiveLogBase2; | 
 |  | 
 |   SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); | 
 |   SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); | 
 |   SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); | 
 |   return LogBase2; | 
 | } | 
 |  | 
 | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
 | /// For the reciprocal, we need to find the zero of the function: | 
 | ///   F(X) = 1/X - A [which has a zero at X = 1/A] | 
 | ///     => | 
 | ///   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form | 
 | ///     does not require additional intermediate precision] | 
 | /// For the last iteration, put numerator N into it to gain more precision: | 
 | ///   Result = N X_i + X_i (N - N A X_i) | 
 | SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, | 
 |                                       SDNodeFlags Flags) { | 
 |   if (LegalDAG) | 
 |     return SDValue(); | 
 |  | 
 |   // TODO: Handle extended types? | 
 |   EVT VT = Op.getValueType(); | 
 |   if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && | 
 |       VT.getScalarType() != MVT::f64) | 
 |     return SDValue(); | 
 |  | 
 |   // If estimates are explicitly disabled for this function, we're done. | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); | 
 |   if (Enabled == TLI.ReciprocalEstimate::Disabled) | 
 |     return SDValue(); | 
 |  | 
 |   // Estimates may be explicitly enabled for this type with a custom number of | 
 |   // refinement steps. | 
 |   int Iterations = TLI.getDivRefinementSteps(VT, MF); | 
 |   if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { | 
 |     AddToWorklist(Est.getNode()); | 
 |  | 
 |     SDLoc DL(Op); | 
 |     if (Iterations) { | 
 |       SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); | 
 |  | 
 |       // Newton iterations: Est = Est + Est (N - Arg * Est) | 
 |       // If this is the last iteration, also multiply by the numerator. | 
 |       for (int i = 0; i < Iterations; ++i) { | 
 |         SDValue MulEst = Est; | 
 |  | 
 |         if (i == Iterations - 1) { | 
 |           MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); | 
 |           AddToWorklist(MulEst.getNode()); | 
 |         } | 
 |  | 
 |         SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); | 
 |         AddToWorklist(NewEst.getNode()); | 
 |  | 
 |         NewEst = DAG.getNode(ISD::FSUB, DL, VT, | 
 |                              (i == Iterations - 1 ? N : FPOne), NewEst, Flags); | 
 |         AddToWorklist(NewEst.getNode()); | 
 |  | 
 |         NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | 
 |         AddToWorklist(NewEst.getNode()); | 
 |  | 
 |         Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); | 
 |         AddToWorklist(Est.getNode()); | 
 |       } | 
 |     } else { | 
 |       // If no iterations are available, multiply with N. | 
 |       Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); | 
 |       AddToWorklist(Est.getNode()); | 
 |     } | 
 |  | 
 |     return Est; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
 | /// For the reciprocal sqrt, we need to find the zero of the function: | 
 | ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
 | ///     => | 
 | ///   X_{i+1} = X_i (1.5 - A X_i^2 / 2) | 
 | /// As a result, we precompute A/2 prior to the iteration loop. | 
 | SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, | 
 |                                          unsigned Iterations, | 
 |                                          SDNodeFlags Flags, bool Reciprocal) { | 
 |   EVT VT = Arg.getValueType(); | 
 |   SDLoc DL(Arg); | 
 |   SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); | 
 |  | 
 |   // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that | 
 |   // this entire sequence requires only one FP constant. | 
 |   SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); | 
 |   HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); | 
 |  | 
 |   // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) | 
 |   for (unsigned i = 0; i < Iterations; ++i) { | 
 |     SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); | 
 |     NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); | 
 |     NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); | 
 |     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); | 
 |   } | 
 |  | 
 |   // If non-reciprocal square root is requested, multiply the result by Arg. | 
 |   if (!Reciprocal) | 
 |     Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); | 
 |  | 
 |   return Est; | 
 | } | 
 |  | 
 | /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) | 
 | /// For the reciprocal sqrt, we need to find the zero of the function: | 
 | ///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] | 
 | ///     => | 
 | ///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) | 
 | SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, | 
 |                                          unsigned Iterations, | 
 |                                          SDNodeFlags Flags, bool Reciprocal) { | 
 |   EVT VT = Arg.getValueType(); | 
 |   SDLoc DL(Arg); | 
 |   SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); | 
 |   SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); | 
 |  | 
 |   // This routine must enter the loop below to work correctly | 
 |   // when (Reciprocal == false). | 
 |   assert(Iterations > 0); | 
 |  | 
 |   // Newton iterations for reciprocal square root: | 
 |   // E = (E * -0.5) * ((A * E) * E + -3.0) | 
 |   for (unsigned i = 0; i < Iterations; ++i) { | 
 |     SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); | 
 |     SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); | 
 |     SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); | 
 |  | 
 |     // When calculating a square root at the last iteration build: | 
 |     // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) | 
 |     // (notice a common subexpression) | 
 |     SDValue LHS; | 
 |     if (Reciprocal || (i + 1) < Iterations) { | 
 |       // RSQRT: LHS = (E * -0.5) | 
 |       LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); | 
 |     } else { | 
 |       // SQRT: LHS = (A * E) * -0.5 | 
 |       LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); | 
 |     } | 
 |  | 
 |     Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); | 
 |   } | 
 |  | 
 |   return Est; | 
 | } | 
 |  | 
 | /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case | 
 | /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if | 
 | /// Op can be zero. | 
 | SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, | 
 |                                            bool Reciprocal) { | 
 |   if (LegalDAG) | 
 |     return SDValue(); | 
 |  | 
 |   // TODO: Handle extended types? | 
 |   EVT VT = Op.getValueType(); | 
 |   if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 && | 
 |       VT.getScalarType() != MVT::f64) | 
 |     return SDValue(); | 
 |  | 
 |   // If estimates are explicitly disabled for this function, we're done. | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); | 
 |   if (Enabled == TLI.ReciprocalEstimate::Disabled) | 
 |     return SDValue(); | 
 |  | 
 |   // Estimates may be explicitly enabled for this type with a custom number of | 
 |   // refinement steps. | 
 |   int Iterations = TLI.getSqrtRefinementSteps(VT, MF); | 
 |  | 
 |   bool UseOneConstNR = false; | 
 |   if (SDValue Est = | 
 |       TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, | 
 |                           Reciprocal)) { | 
 |     AddToWorklist(Est.getNode()); | 
 |  | 
 |     if (Iterations > 0) | 
 |       Est = UseOneConstNR | 
 |             ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) | 
 |             : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); | 
 |     if (!Reciprocal) { | 
 |       SDLoc DL(Op); | 
 |       // Try the target specific test first. | 
 |       SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); | 
 |  | 
 |       // The estimate is now completely wrong if the input was exactly 0.0 or | 
 |       // possibly a denormal. Force the answer to 0.0 or value provided by | 
 |       // target for those cases. | 
 |       Est = DAG.getNode( | 
 |           Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, | 
 |           Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); | 
 |     } | 
 |     return Est; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { | 
 |   return buildSqrtEstimateImpl(Op, Flags, true); | 
 | } | 
 |  | 
 | SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { | 
 |   return buildSqrtEstimateImpl(Op, Flags, false); | 
 | } | 
 |  | 
 | /// Return true if there is any possibility that the two addresses overlap. | 
 | bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const { | 
 |  | 
 |   struct MemUseCharacteristics { | 
 |     bool IsVolatile; | 
 |     bool IsAtomic; | 
 |     SDValue BasePtr; | 
 |     int64_t Offset; | 
 |     LocationSize NumBytes; | 
 |     MachineMemOperand *MMO; | 
 |   }; | 
 |  | 
 |   auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { | 
 |     if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { | 
 |       int64_t Offset = 0; | 
 |       if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) | 
 |         Offset = (LSN->getAddressingMode() == ISD::PRE_INC) ? C->getSExtValue() | 
 |                  : (LSN->getAddressingMode() == ISD::PRE_DEC) | 
 |                      ? -1 * C->getSExtValue() | 
 |                      : 0; | 
 |       TypeSize Size = LSN->getMemoryVT().getStoreSize(); | 
 |       return {LSN->isVolatile(),           LSN->isAtomic(), | 
 |               LSN->getBasePtr(),           Offset /*base offset*/, | 
 |               LocationSize::precise(Size), LSN->getMemOperand()}; | 
 |     } | 
 |     if (const auto *LN = cast<LifetimeSDNode>(N)) | 
 |       return {false /*isVolatile*/, | 
 |               /*isAtomic*/ false, | 
 |               LN->getOperand(1), | 
 |               (LN->hasOffset()) ? LN->getOffset() : 0, | 
 |               (LN->hasOffset()) ? LocationSize::precise(LN->getSize()) | 
 |                                 : LocationSize::beforeOrAfterPointer(), | 
 |               (MachineMemOperand *)nullptr}; | 
 |     // Default. | 
 |     return {false /*isvolatile*/, | 
 |             /*isAtomic*/ false, | 
 |             SDValue(), | 
 |             (int64_t)0 /*offset*/, | 
 |             LocationSize::beforeOrAfterPointer() /*size*/, | 
 |             (MachineMemOperand *)nullptr}; | 
 |   }; | 
 |  | 
 |   MemUseCharacteristics MUC0 = getCharacteristics(Op0), | 
 |                         MUC1 = getCharacteristics(Op1); | 
 |  | 
 |   // If they are to the same address, then they must be aliases. | 
 |   if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && | 
 |       MUC0.Offset == MUC1.Offset) | 
 |     return true; | 
 |  | 
 |   // If they are both volatile then they cannot be reordered. | 
 |   if (MUC0.IsVolatile && MUC1.IsVolatile) | 
 |     return true; | 
 |  | 
 |   // Be conservative about atomics for the moment | 
 |   // TODO: This is way overconservative for unordered atomics (see D66309) | 
 |   if (MUC0.IsAtomic && MUC1.IsAtomic) | 
 |     return true; | 
 |  | 
 |   if (MUC0.MMO && MUC1.MMO) { | 
 |     if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || | 
 |         (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // If NumBytes is scalable and offset is not 0, conservatively return may | 
 |   // alias | 
 |   if ((MUC0.NumBytes.hasValue() && MUC0.NumBytes.isScalable() && | 
 |        MUC0.Offset != 0) || | 
 |       (MUC1.NumBytes.hasValue() && MUC1.NumBytes.isScalable() && | 
 |        MUC1.Offset != 0)) | 
 |     return true; | 
 |   // Try to prove that there is aliasing, or that there is no aliasing. Either | 
 |   // way, we can return now. If nothing can be proved, proceed with more tests. | 
 |   bool IsAlias; | 
 |   if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, | 
 |                                        DAG, IsAlias)) | 
 |     return IsAlias; | 
 |  | 
 |   // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if | 
 |   // either are not known. | 
 |   if (!MUC0.MMO || !MUC1.MMO) | 
 |     return true; | 
 |  | 
 |   // If one operation reads from invariant memory, and the other may store, they | 
 |   // cannot alias. These should really be checking the equivalent of mayWrite, | 
 |   // but it only matters for memory nodes other than load /store. | 
 |   if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || | 
 |       (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) | 
 |     return false; | 
 |  | 
 |   // If we know required SrcValue1 and SrcValue2 have relatively large | 
 |   // alignment compared to the size and offset of the access, we may be able | 
 |   // to prove they do not alias. This check is conservative for now to catch | 
 |   // cases created by splitting vector types, it only works when the offsets are | 
 |   // multiples of the size of the data. | 
 |   int64_t SrcValOffset0 = MUC0.MMO->getOffset(); | 
 |   int64_t SrcValOffset1 = MUC1.MMO->getOffset(); | 
 |   Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); | 
 |   Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); | 
 |   LocationSize Size0 = MUC0.NumBytes; | 
 |   LocationSize Size1 = MUC1.NumBytes; | 
 |  | 
 |   if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && | 
 |       Size0.hasValue() && Size1.hasValue() && !Size0.isScalable() && | 
 |       !Size1.isScalable() && Size0 == Size1 && | 
 |       OrigAlignment0 > Size0.getValue().getKnownMinValue() && | 
 |       SrcValOffset0 % Size0.getValue().getKnownMinValue() == 0 && | 
 |       SrcValOffset1 % Size1.getValue().getKnownMinValue() == 0) { | 
 |     int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); | 
 |     int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); | 
 |  | 
 |     // There is no overlap between these relatively aligned accesses of | 
 |     // similar size. Return no alias. | 
 |     if ((OffAlign0 + static_cast<int64_t>( | 
 |                          Size0.getValue().getKnownMinValue())) <= OffAlign1 || | 
 |         (OffAlign1 + static_cast<int64_t>( | 
 |                          Size1.getValue().getKnownMinValue())) <= OffAlign0) | 
 |       return false; | 
 |   } | 
 |  | 
 |   bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 | 
 |                    ? CombinerGlobalAA | 
 |                    : DAG.getSubtarget().useAA(); | 
 | #ifndef NDEBUG | 
 |   if (CombinerAAOnlyFunc.getNumOccurrences() && | 
 |       CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) | 
 |     UseAA = false; | 
 | #endif | 
 |  | 
 |   if (UseAA && BatchAA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && | 
 |       Size0.hasValue() && Size1.hasValue() && | 
 |       // Can't represent a scalable size + fixed offset in LocationSize | 
 |       (!Size0.isScalable() || SrcValOffset0 == 0) && | 
 |       (!Size1.isScalable() || SrcValOffset1 == 0)) { | 
 |     // Use alias analysis information. | 
 |     int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); | 
 |     int64_t Overlap0 = | 
 |         Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; | 
 |     int64_t Overlap1 = | 
 |         Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; | 
 |     LocationSize Loc0 = | 
 |         Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0); | 
 |     LocationSize Loc1 = | 
 |         Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1); | 
 |     if (BatchAA->isNoAlias( | 
 |             MemoryLocation(MUC0.MMO->getValue(), Loc0, | 
 |                            UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), | 
 |             MemoryLocation(MUC1.MMO->getValue(), Loc1, | 
 |                            UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()))) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Otherwise we have to assume they alias. | 
 |   return true; | 
 | } | 
 |  | 
 | /// Walk up chain skipping non-aliasing memory nodes, | 
 | /// looking for aliasing nodes and adding them to the Aliases vector. | 
 | void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, | 
 |                                    SmallVectorImpl<SDValue> &Aliases) { | 
 |   SmallVector<SDValue, 8> Chains;     // List of chains to visit. | 
 |   SmallPtrSet<SDNode *, 16> Visited;  // Visited node set. | 
 |  | 
 |   // Get alias information for node. | 
 |   // TODO: relax aliasing for unordered atomics (see D66309) | 
 |   const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); | 
 |  | 
 |   // Starting off. | 
 |   Chains.push_back(OriginalChain); | 
 |   unsigned Depth = 0; | 
 |  | 
 |   // Attempt to improve chain by a single step | 
 |   auto ImproveChain = [&](SDValue &C) -> bool { | 
 |     switch (C.getOpcode()) { | 
 |     case ISD::EntryToken: | 
 |       // No need to mark EntryToken. | 
 |       C = SDValue(); | 
 |       return true; | 
 |     case ISD::LOAD: | 
 |     case ISD::STORE: { | 
 |       // Get alias information for C. | 
 |       // TODO: Relax aliasing for unordered atomics (see D66309) | 
 |       bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && | 
 |                       cast<LSBaseSDNode>(C.getNode())->isSimple(); | 
 |       if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) { | 
 |         // Look further up the chain. | 
 |         C = C.getOperand(0); | 
 |         return true; | 
 |       } | 
 |       // Alias, so stop here. | 
 |       return false; | 
 |     } | 
 |  | 
 |     case ISD::CopyFromReg: | 
 |       // Always forward past CopyFromReg. | 
 |       C = C.getOperand(0); | 
 |       return true; | 
 |  | 
 |     case ISD::LIFETIME_START: | 
 |     case ISD::LIFETIME_END: { | 
 |       // We can forward past any lifetime start/end that can be proven not to | 
 |       // alias the memory access. | 
 |       if (!mayAlias(N, C.getNode())) { | 
 |         // Look further up the chain. | 
 |         C = C.getOperand(0); | 
 |         return true; | 
 |       } | 
 |       return false; | 
 |     } | 
 |     default: | 
 |       return false; | 
 |     } | 
 |   }; | 
 |  | 
 |   // Look at each chain and determine if it is an alias.  If so, add it to the | 
 |   // aliases list.  If not, then continue up the chain looking for the next | 
 |   // candidate. | 
 |   while (!Chains.empty()) { | 
 |     SDValue Chain = Chains.pop_back_val(); | 
 |  | 
 |     // Don't bother if we've seen Chain before. | 
 |     if (!Visited.insert(Chain.getNode()).second) | 
 |       continue; | 
 |  | 
 |     // For TokenFactor nodes, look at each operand and only continue up the | 
 |     // chain until we reach the depth limit. | 
 |     // | 
 |     // FIXME: The depth check could be made to return the last non-aliasing | 
 |     // chain we found before we hit a tokenfactor rather than the original | 
 |     // chain. | 
 |     if (Depth > TLI.getGatherAllAliasesMaxDepth()) { | 
 |       Aliases.clear(); | 
 |       Aliases.push_back(OriginalChain); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (Chain.getOpcode() == ISD::TokenFactor) { | 
 |       // We have to check each of the operands of the token factor for "small" | 
 |       // token factors, so we queue them up.  Adding the operands to the queue | 
 |       // (stack) in reverse order maintains the original order and increases the | 
 |       // likelihood that getNode will find a matching token factor (CSE.) | 
 |       if (Chain.getNumOperands() > 16) { | 
 |         Aliases.push_back(Chain); | 
 |         continue; | 
 |       } | 
 |       for (unsigned n = Chain.getNumOperands(); n;) | 
 |         Chains.push_back(Chain.getOperand(--n)); | 
 |       ++Depth; | 
 |       continue; | 
 |     } | 
 |     // Everything else | 
 |     if (ImproveChain(Chain)) { | 
 |       // Updated Chain Found, Consider new chain if one exists. | 
 |       if (Chain.getNode()) | 
 |         Chains.push_back(Chain); | 
 |       ++Depth; | 
 |       continue; | 
 |     } | 
 |     // No Improved Chain Possible, treat as Alias. | 
 |     Aliases.push_back(Chain); | 
 |   } | 
 | } | 
 |  | 
 | /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain | 
 | /// (aliasing node.) | 
 | SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { | 
 |   if (OptLevel == CodeGenOptLevel::None) | 
 |     return OldChain; | 
 |  | 
 |   // Ops for replacing token factor. | 
 |   SmallVector<SDValue, 8> Aliases; | 
 |  | 
 |   // Accumulate all the aliases to this node. | 
 |   GatherAllAliases(N, OldChain, Aliases); | 
 |  | 
 |   // If no operands then chain to entry token. | 
 |   if (Aliases.empty()) | 
 |     return DAG.getEntryNode(); | 
 |  | 
 |   // If a single operand then chain to it.  We don't need to revisit it. | 
 |   if (Aliases.size() == 1) | 
 |     return Aliases[0]; | 
 |  | 
 |   // Construct a custom tailored token factor. | 
 |   return DAG.getTokenFactor(SDLoc(N), Aliases); | 
 | } | 
 |  | 
 | // This function tries to collect a bunch of potentially interesting | 
 | // nodes to improve the chains of, all at once. This might seem | 
 | // redundant, as this function gets called when visiting every store | 
 | // node, so why not let the work be done on each store as it's visited? | 
 | // | 
 | // I believe this is mainly important because mergeConsecutiveStores | 
 | // is unable to deal with merging stores of different sizes, so unless | 
 | // we improve the chains of all the potential candidates up-front | 
 | // before running mergeConsecutiveStores, it might only see some of | 
 | // the nodes that will eventually be candidates, and then not be able | 
 | // to go from a partially-merged state to the desired final | 
 | // fully-merged state. | 
 |  | 
 | bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { | 
 |   SmallVector<StoreSDNode *, 8> ChainedStores; | 
 |   StoreSDNode *STChain = St; | 
 |   // Intervals records which offsets from BaseIndex have been covered. In | 
 |   // the common case, every store writes to the immediately previous address | 
 |   // space and thus merged with the previous interval at insertion time. | 
 |  | 
 |   using IMap = llvm::IntervalMap<int64_t, std::monostate, 8, | 
 |                                  IntervalMapHalfOpenInfo<int64_t>>; | 
 |   IMap::Allocator A; | 
 |   IMap Intervals(A); | 
 |  | 
 |   // This holds the base pointer, index, and the offset in bytes from the base | 
 |   // pointer. | 
 |   const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); | 
 |  | 
 |   // We must have a base and an offset. | 
 |   if (!BasePtr.getBase().getNode()) | 
 |     return false; | 
 |  | 
 |   // Do not handle stores to undef base pointers. | 
 |   if (BasePtr.getBase().isUndef()) | 
 |     return false; | 
 |  | 
 |   // Do not handle stores to opaque types | 
 |   if (St->getMemoryVT().isZeroSized()) | 
 |     return false; | 
 |  | 
 |   // BaseIndexOffset assumes that offsets are fixed-size, which | 
 |   // is not valid for scalable vectors where the offsets are | 
 |   // scaled by `vscale`, so bail out early. | 
 |   if (St->getMemoryVT().isScalableVT()) | 
 |     return false; | 
 |  | 
 |   // Add ST's interval. | 
 |   Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, | 
 |                    std::monostate{}); | 
 |  | 
 |   while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { | 
 |     if (Chain->getMemoryVT().isScalableVector()) | 
 |       return false; | 
 |  | 
 |     // If the chain has more than one use, then we can't reorder the mem ops. | 
 |     if (!SDValue(Chain, 0)->hasOneUse()) | 
 |       break; | 
 |     // TODO: Relax for unordered atomics (see D66309) | 
 |     if (!Chain->isSimple() || Chain->isIndexed()) | 
 |       break; | 
 |  | 
 |     // Find the base pointer and offset for this memory node. | 
 |     const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); | 
 |     // Check that the base pointer is the same as the original one. | 
 |     int64_t Offset; | 
 |     if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) | 
 |       break; | 
 |     int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; | 
 |     // Make sure we don't overlap with other intervals by checking the ones to | 
 |     // the left or right before inserting. | 
 |     auto I = Intervals.find(Offset); | 
 |     // If there's a next interval, we should end before it. | 
 |     if (I != Intervals.end() && I.start() < (Offset + Length)) | 
 |       break; | 
 |     // If there's a previous interval, we should start after it. | 
 |     if (I != Intervals.begin() && (--I).stop() <= Offset) | 
 |       break; | 
 |     Intervals.insert(Offset, Offset + Length, std::monostate{}); | 
 |  | 
 |     ChainedStores.push_back(Chain); | 
 |     STChain = Chain; | 
 |   } | 
 |  | 
 |   // If we didn't find a chained store, exit. | 
 |   if (ChainedStores.empty()) | 
 |     return false; | 
 |  | 
 |   // Improve all chained stores (St and ChainedStores members) starting from | 
 |   // where the store chain ended and return single TokenFactor. | 
 |   SDValue NewChain = STChain->getChain(); | 
 |   SmallVector<SDValue, 8> TFOps; | 
 |   for (unsigned I = ChainedStores.size(); I;) { | 
 |     StoreSDNode *S = ChainedStores[--I]; | 
 |     SDValue BetterChain = FindBetterChain(S, NewChain); | 
 |     S = cast<StoreSDNode>(DAG.UpdateNodeOperands( | 
 |         S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); | 
 |     TFOps.push_back(SDValue(S, 0)); | 
 |     ChainedStores[I] = S; | 
 |   } | 
 |  | 
 |   // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. | 
 |   SDValue BetterChain = FindBetterChain(St, NewChain); | 
 |   SDValue NewST; | 
 |   if (St->isTruncatingStore()) | 
 |     NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), | 
 |                               St->getBasePtr(), St->getMemoryVT(), | 
 |                               St->getMemOperand()); | 
 |   else | 
 |     NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), | 
 |                          St->getBasePtr(), St->getMemOperand()); | 
 |  | 
 |   TFOps.push_back(NewST); | 
 |  | 
 |   // If we improved every element of TFOps, then we've lost the dependence on | 
 |   // NewChain to successors of St and we need to add it back to TFOps. Do so at | 
 |   // the beginning to keep relative order consistent with FindBetterChains. | 
 |   auto hasImprovedChain = [&](SDValue ST) -> bool { | 
 |     return ST->getOperand(0) != NewChain; | 
 |   }; | 
 |   bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); | 
 |   if (AddNewChain) | 
 |     TFOps.insert(TFOps.begin(), NewChain); | 
 |  | 
 |   SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); | 
 |   CombineTo(St, TF); | 
 |  | 
 |   // Add TF and its operands to the worklist. | 
 |   AddToWorklist(TF.getNode()); | 
 |   for (const SDValue &Op : TF->ops()) | 
 |     AddToWorklist(Op.getNode()); | 
 |   AddToWorklist(STChain); | 
 |   return true; | 
 | } | 
 |  | 
 | bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { | 
 |   if (OptLevel == CodeGenOptLevel::None) | 
 |     return false; | 
 |  | 
 |   const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); | 
 |  | 
 |   // We must have a base and an offset. | 
 |   if (!BasePtr.getBase().getNode()) | 
 |     return false; | 
 |  | 
 |   // Do not handle stores to undef base pointers. | 
 |   if (BasePtr.getBase().isUndef()) | 
 |     return false; | 
 |  | 
 |   // Directly improve a chain of disjoint stores starting at St. | 
 |   if (parallelizeChainedStores(St)) | 
 |     return true; | 
 |  | 
 |   // Improve St's Chain.. | 
 |   SDValue BetterChain = FindBetterChain(St, St->getChain()); | 
 |   if (St->getChain() != BetterChain) { | 
 |     replaceStoreChain(St, BetterChain); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// This is the entry point for the file. | 
 | void SelectionDAG::Combine(CombineLevel Level, BatchAAResults *BatchAA, | 
 |                            CodeGenOptLevel OptLevel) { | 
 |   /// This is the main entry point to this class. | 
 |   DAGCombiner(*this, BatchAA, OptLevel).Run(Level); | 
 | } |