blob: 3ae2d9d5181a3fcd28315ab5f07cdf2a1d7eb816 [file] [log] [blame]
//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "NVPTXTargetTransformInfo.h"
#include "NVPTXUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/NVPTXAddrSpace.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "NVPTXtti"
// Whether the given intrinsic reads threadIdx.x/y/z.
static bool readsThreadIndex(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
return true;
}
}
static bool readsLaneId(const IntrinsicInst *II) {
return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
}
// Whether the given intrinsic is an atomic instruction in PTX.
static bool isNVVMAtomic(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default:
return false;
case Intrinsic::nvvm_atomic_add_gen_f_cta:
case Intrinsic::nvvm_atomic_add_gen_f_sys:
case Intrinsic::nvvm_atomic_add_gen_i_cta:
case Intrinsic::nvvm_atomic_add_gen_i_sys:
case Intrinsic::nvvm_atomic_and_gen_i_cta:
case Intrinsic::nvvm_atomic_and_gen_i_sys:
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
case Intrinsic::nvvm_atomic_max_gen_i_cta:
case Intrinsic::nvvm_atomic_max_gen_i_sys:
case Intrinsic::nvvm_atomic_min_gen_i_cta:
case Intrinsic::nvvm_atomic_min_gen_i_sys:
case Intrinsic::nvvm_atomic_or_gen_i_cta:
case Intrinsic::nvvm_atomic_or_gen_i_sys:
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
case Intrinsic::nvvm_atomic_xor_gen_i_sys:
return true;
}
}
bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) const {
// Without inter-procedural analysis, we conservatively assume that arguments
// to __device__ functions are divergent.
if (const Argument *Arg = dyn_cast<Argument>(V))
return !isKernelFunction(*Arg->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V)) {
// Without pointer analysis, we conservatively assume values loaded from
// generic or local address space are divergent.
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
unsigned AS = LI->getPointerAddressSpace();
return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
}
// Atomic instructions may cause divergence. Atomic instructions are
// executed sequentially across all threads in a warp. Therefore, an earlier
// executed thread may see different memory inputs than a later executed
// thread. For example, suppose *a = 0 initially.
//
// atom.global.add.s32 d, [a], 1
//
// returns 0 for the first thread that enters the critical region, and 1 for
// the second thread.
if (I->isAtomic())
return true;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
// Instructions that read threadIdx are obviously divergent.
if (readsThreadIndex(II) || readsLaneId(II))
return true;
// Handle the NVPTX atomic intrinsics that cannot be represented as an
// atomic IR instruction.
if (isNVVMAtomic(II))
return true;
}
// Conservatively consider the return value of function calls as divergent.
// We could analyze callees with bodies more precisely using
// inter-procedural analysis.
if (isa<CallInst>(I))
return true;
}
return false;
}
// Convert NVVM intrinsics to target-generic LLVM code where possible.
static Instruction *convertNvvmIntrinsicToLlvm(InstCombiner &IC,
IntrinsicInst *II) {
// Each NVVM intrinsic we can simplify can be replaced with one of:
//
// * an LLVM intrinsic,
// * an LLVM cast operation,
// * an LLVM binary operation, or
// * ad-hoc LLVM IR for the particular operation.
// Some transformations are only valid when the module's
// flush-denormals-to-zero (ftz) setting is true/false, whereas other
// transformations are valid regardless of the module's ftz setting.
enum FtzRequirementTy {
FTZ_Any, // Any ftz setting is ok.
FTZ_MustBeOn, // Transformation is valid only if ftz is on.
FTZ_MustBeOff, // Transformation is valid only if ftz is off.
};
// Classes of NVVM intrinsics that can't be replaced one-to-one with a
// target-generic intrinsic, cast op, or binary op but that we can nonetheless
// simplify.
enum SpecialCase {
SPC_Reciprocal,
SCP_FunnelShiftClamp,
};
// SimplifyAction is a poor-man's variant (plus an additional flag) that
// represents how to replace an NVVM intrinsic with target-generic LLVM IR.
struct SimplifyAction {
// Invariant: At most one of these Optionals has a value.
std::optional<Intrinsic::ID> IID;
std::optional<Instruction::CastOps> CastOp;
std::optional<Instruction::BinaryOps> BinaryOp;
std::optional<SpecialCase> Special;
FtzRequirementTy FtzRequirement = FTZ_Any;
// Denormal handling is guarded by different attributes depending on the
// type (denormal-fp-math vs denormal-fp-math-f32), take note of halfs.
bool IsHalfTy = false;
SimplifyAction() = default;
SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq,
bool IsHalfTy = false)
: IID(IID), FtzRequirement(FtzReq), IsHalfTy(IsHalfTy) {}
// Cast operations don't have anything to do with FTZ, so we skip that
// argument.
SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
: BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
: Special(Special), FtzRequirement(FtzReq) {}
};
// Try to generate a SimplifyAction describing how to replace our
// IntrinsicInstr with target-generic LLVM IR.
const SimplifyAction Action = [II]() -> SimplifyAction {
switch (II->getIntrinsicID()) {
// NVVM intrinsics that map directly to LLVM intrinsics.
case Intrinsic::nvvm_ceil_d:
return {Intrinsic::ceil, FTZ_Any};
case Intrinsic::nvvm_ceil_f:
return {Intrinsic::ceil, FTZ_MustBeOff};
case Intrinsic::nvvm_ceil_ftz_f:
return {Intrinsic::ceil, FTZ_MustBeOn};
case Intrinsic::nvvm_floor_d:
return {Intrinsic::floor, FTZ_Any};
case Intrinsic::nvvm_floor_f:
return {Intrinsic::floor, FTZ_MustBeOff};
case Intrinsic::nvvm_floor_ftz_f:
return {Intrinsic::floor, FTZ_MustBeOn};
case Intrinsic::nvvm_fma_rn_d:
return {Intrinsic::fma, FTZ_Any};
case Intrinsic::nvvm_fma_rn_f:
return {Intrinsic::fma, FTZ_MustBeOff};
case Intrinsic::nvvm_fma_rn_ftz_f:
return {Intrinsic::fma, FTZ_MustBeOn};
case Intrinsic::nvvm_fma_rn_f16:
return {Intrinsic::fma, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fma_rn_ftz_f16:
return {Intrinsic::fma, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fma_rn_f16x2:
return {Intrinsic::fma, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fma_rn_ftz_f16x2:
return {Intrinsic::fma, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fma_rn_bf16:
return {Intrinsic::fma, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fma_rn_ftz_bf16:
return {Intrinsic::fma, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fma_rn_bf16x2:
return {Intrinsic::fma, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fma_rn_ftz_bf16x2:
return {Intrinsic::fma, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmax_d:
return {Intrinsic::maxnum, FTZ_Any};
case Intrinsic::nvvm_fmax_f:
return {Intrinsic::maxnum, FTZ_MustBeOff};
case Intrinsic::nvvm_fmax_ftz_f:
return {Intrinsic::maxnum, FTZ_MustBeOn};
case Intrinsic::nvvm_fmax_nan_f:
return {Intrinsic::maximum, FTZ_MustBeOff};
case Intrinsic::nvvm_fmax_ftz_nan_f:
return {Intrinsic::maximum, FTZ_MustBeOn};
case Intrinsic::nvvm_fmax_f16:
return {Intrinsic::maxnum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmax_ftz_f16:
return {Intrinsic::maxnum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmax_f16x2:
return {Intrinsic::maxnum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmax_ftz_f16x2:
return {Intrinsic::maxnum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmax_nan_f16:
return {Intrinsic::maximum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmax_ftz_nan_f16:
return {Intrinsic::maximum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmax_nan_f16x2:
return {Intrinsic::maximum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmax_ftz_nan_f16x2:
return {Intrinsic::maximum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmin_d:
return {Intrinsic::minnum, FTZ_Any};
case Intrinsic::nvvm_fmin_f:
return {Intrinsic::minnum, FTZ_MustBeOff};
case Intrinsic::nvvm_fmin_ftz_f:
return {Intrinsic::minnum, FTZ_MustBeOn};
case Intrinsic::nvvm_fmin_nan_f:
return {Intrinsic::minimum, FTZ_MustBeOff};
case Intrinsic::nvvm_fmin_ftz_nan_f:
return {Intrinsic::minimum, FTZ_MustBeOn};
case Intrinsic::nvvm_fmin_f16:
return {Intrinsic::minnum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmin_ftz_f16:
return {Intrinsic::minnum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmin_f16x2:
return {Intrinsic::minnum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmin_ftz_f16x2:
return {Intrinsic::minnum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmin_nan_f16:
return {Intrinsic::minimum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmin_ftz_nan_f16:
return {Intrinsic::minimum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_fmin_nan_f16x2:
return {Intrinsic::minimum, FTZ_MustBeOff, true};
case Intrinsic::nvvm_fmin_ftz_nan_f16x2:
return {Intrinsic::minimum, FTZ_MustBeOn, true};
case Intrinsic::nvvm_sqrt_rn_d:
return {Intrinsic::sqrt, FTZ_Any};
case Intrinsic::nvvm_sqrt_f:
// nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
// ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
// the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
// the versions with explicit ftz-ness.
return {Intrinsic::sqrt, FTZ_Any};
case Intrinsic::nvvm_trunc_d:
return {Intrinsic::trunc, FTZ_Any};
case Intrinsic::nvvm_trunc_f:
return {Intrinsic::trunc, FTZ_MustBeOff};
case Intrinsic::nvvm_trunc_ftz_f:
return {Intrinsic::trunc, FTZ_MustBeOn};
// NVVM intrinsics that map to LLVM cast operations.
//
// Note that llvm's target-generic conversion operators correspond to the rz
// (round to zero) versions of the nvvm conversion intrinsics, even though
// most everything else here uses the rn (round to nearest even) nvvm ops.
case Intrinsic::nvvm_d2i_rz:
case Intrinsic::nvvm_f2i_rz:
case Intrinsic::nvvm_d2ll_rz:
case Intrinsic::nvvm_f2ll_rz:
return {Instruction::FPToSI};
case Intrinsic::nvvm_d2ui_rz:
case Intrinsic::nvvm_f2ui_rz:
case Intrinsic::nvvm_d2ull_rz:
case Intrinsic::nvvm_f2ull_rz:
return {Instruction::FPToUI};
// Integer to floating-point uses RN rounding, not RZ
case Intrinsic::nvvm_i2d_rn:
case Intrinsic::nvvm_i2f_rn:
case Intrinsic::nvvm_ll2d_rn:
case Intrinsic::nvvm_ll2f_rn:
return {Instruction::SIToFP};
case Intrinsic::nvvm_ui2d_rn:
case Intrinsic::nvvm_ui2f_rn:
case Intrinsic::nvvm_ull2d_rn:
case Intrinsic::nvvm_ull2f_rn:
return {Instruction::UIToFP};
// NVVM intrinsics that map to LLVM binary ops.
case Intrinsic::nvvm_div_rn_d:
return {Instruction::FDiv, FTZ_Any};
// The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
// need special handling.
//
// We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
// as well.
case Intrinsic::nvvm_rcp_rn_d:
return {SPC_Reciprocal, FTZ_Any};
case Intrinsic::nvvm_fshl_clamp:
case Intrinsic::nvvm_fshr_clamp:
return {SCP_FunnelShiftClamp, FTZ_Any};
// We do not currently simplify intrinsics that give an approximate
// answer. These include:
//
// - nvvm_cos_approx_{f,ftz_f}
// - nvvm_ex2_approx_{d,f,ftz_f}
// - nvvm_lg2_approx_{d,f,ftz_f}
// - nvvm_sin_approx_{f,ftz_f}
// - nvvm_sqrt_approx_{f,ftz_f}
// - nvvm_rsqrt_approx_{d,f,ftz_f}
// - nvvm_div_approx_{ftz_d,ftz_f,f}
// - nvvm_rcp_approx_ftz_d
//
// Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
// means that fastmath is enabled in the intrinsic. Unfortunately only
// binary operators (currently) have a fastmath bit in SelectionDAG, so
// this information gets lost and we can't select on it.
//
// TODO: div and rcp are lowered to a binary op, so these we could in
// theory lower them to "fast fdiv".
default:
return {};
}
}();
// If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
// can bail out now. (Notice that in the case that IID is not an NVVM
// intrinsic, we don't have to look up any module metadata, as
// FtzRequirementTy will be FTZ_Any.)
if (Action.FtzRequirement != FTZ_Any) {
// FIXME: Broken for f64
DenormalMode Mode = II->getFunction()->getDenormalMode(
Action.IsHalfTy ? APFloat::IEEEhalf() : APFloat::IEEEsingle());
bool FtzEnabled = Mode.Output == DenormalMode::PreserveSign;
if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
return nullptr;
}
// Simplify to target-generic intrinsic.
if (Action.IID) {
SmallVector<Value *, 4> Args(II->args());
// All the target-generic intrinsics currently of interest to us have one
// type argument, equal to that of the nvvm intrinsic's argument.
Type *Tys[] = {II->getArgOperand(0)->getType()};
return CallInst::Create(
Intrinsic::getOrInsertDeclaration(II->getModule(), *Action.IID, Tys),
Args);
}
// Simplify to target-generic binary op.
if (Action.BinaryOp)
return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
II->getArgOperand(1), II->getName());
// Simplify to target-generic cast op.
if (Action.CastOp)
return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
II->getName());
// All that's left are the special cases.
if (!Action.Special)
return nullptr;
switch (*Action.Special) {
case SPC_Reciprocal:
// Simplify reciprocal.
return BinaryOperator::Create(
Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
II->getArgOperand(0), II->getName());
case SCP_FunnelShiftClamp: {
// Canonicalize a clamping funnel shift to the generic llvm funnel shift
// when possible, as this is easier for llvm to optimize further.
if (const auto *ShiftConst = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
const bool IsLeft = II->getIntrinsicID() == Intrinsic::nvvm_fshl_clamp;
if (ShiftConst->getZExtValue() >= II->getType()->getIntegerBitWidth())
return IC.replaceInstUsesWith(*II, II->getArgOperand(IsLeft ? 1 : 0));
const unsigned FshIID = IsLeft ? Intrinsic::fshl : Intrinsic::fshr;
return CallInst::Create(Intrinsic::getOrInsertDeclaration(
II->getModule(), FshIID, II->getType()),
SmallVector<Value *, 3>(II->args()));
}
return nullptr;
}
}
llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
}
// Returns true/false when we know the answer, nullopt otherwise.
static std::optional<bool> evaluateIsSpace(Intrinsic::ID IID, unsigned AS) {
if (AS == NVPTXAS::ADDRESS_SPACE_GENERIC ||
AS == NVPTXAS::ADDRESS_SPACE_PARAM)
return std::nullopt; // Got to check at run-time.
switch (IID) {
case Intrinsic::nvvm_isspacep_global:
return AS == NVPTXAS::ADDRESS_SPACE_GLOBAL;
case Intrinsic::nvvm_isspacep_local:
return AS == NVPTXAS::ADDRESS_SPACE_LOCAL;
case Intrinsic::nvvm_isspacep_shared:
// If shared cluster this can't be evaluated at compile time.
if (AS == NVPTXAS::ADDRESS_SPACE_SHARED_CLUSTER)
return std::nullopt;
return AS == NVPTXAS::ADDRESS_SPACE_SHARED;
case Intrinsic::nvvm_isspacep_shared_cluster:
return AS == NVPTXAS::ADDRESS_SPACE_SHARED_CLUSTER ||
AS == NVPTXAS::ADDRESS_SPACE_SHARED;
case Intrinsic::nvvm_isspacep_const:
return AS == NVPTXAS::ADDRESS_SPACE_CONST;
default:
llvm_unreachable("Unexpected intrinsic");
}
}
// Returns an instruction pointer (may be nullptr if we do not know the answer).
// Returns nullopt if `II` is not one of the `isspacep` intrinsics.
//
// TODO: If InferAddressSpaces were run early enough in the pipeline this could
// be removed in favor of the constant folding that occurs there through
// rewriteIntrinsicWithAddressSpace
static std::optional<Instruction *>
handleSpaceCheckIntrinsics(InstCombiner &IC, IntrinsicInst &II) {
switch (auto IID = II.getIntrinsicID()) {
case Intrinsic::nvvm_isspacep_global:
case Intrinsic::nvvm_isspacep_local:
case Intrinsic::nvvm_isspacep_shared:
case Intrinsic::nvvm_isspacep_shared_cluster:
case Intrinsic::nvvm_isspacep_const: {
Value *Op0 = II.getArgOperand(0);
unsigned AS = Op0->getType()->getPointerAddressSpace();
// Peek through ASC to generic AS.
// TODO: we could dig deeper through both ASCs and GEPs.
if (AS == NVPTXAS::ADDRESS_SPACE_GENERIC)
if (auto *ASCO = dyn_cast<AddrSpaceCastOperator>(Op0))
AS = ASCO->getOperand(0)->getType()->getPointerAddressSpace();
if (std::optional<bool> Answer = evaluateIsSpace(IID, AS))
return IC.replaceInstUsesWith(II,
ConstantInt::get(II.getType(), *Answer));
return nullptr; // Don't know the answer, got to check at run time.
}
default:
return std::nullopt;
}
}
std::optional<Instruction *>
NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
if (std::optional<Instruction *> I = handleSpaceCheckIntrinsics(IC, II))
return *I;
if (Instruction *I = convertNvvmIntrinsicToLlvm(IC, &II))
return I;
return std::nullopt;
}
InstructionCost
NVPTXTTIImpl::getInstructionCost(const User *U,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) const {
if (const auto *CI = dyn_cast<CallInst>(U))
if (const auto *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
// Without this implementation getCallCost() would return the number
// of arguments+1 as the cost. Because the cost-model assumes it is a call
// since it is classified as a call in the IR. A better cost model would
// be to return the number of asm instructions embedded in the asm
// string.
StringRef AsmStr = IA->getAsmString();
const unsigned InstCount =
count_if(split(AsmStr, ';'), [](StringRef AsmInst) {
// Trim off scopes denoted by '{' and '}' as these can be ignored
AsmInst = AsmInst.trim().ltrim("{} \t\n\v\f\r");
// This is pretty coarse but does a reasonably good job of
// identifying things that look like instructions, possibly with a
// predicate ("@").
return !AsmInst.empty() &&
(AsmInst[0] == '@' || isAlpha(AsmInst[0]) ||
AsmInst.find(".pragma") != StringRef::npos);
});
return InstCount * TargetTransformInfo::TCC_Basic;
}
return BaseT::getInstructionCost(U, Operands, CostKind);
}
InstructionCost NVPTXTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) const {
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
switch (ISD) {
default:
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
Op2Info);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// The machine code (SASS) simulates an i64 with two i32. Therefore, we
// estimate that arithmetic operations on i64 are twice as expensive as
// those on types that can fit into one machine register.
if (LT.second.SimpleTy == MVT::i64)
return 2 * LT.first;
// Delegate other cases to the basic TTI.
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
Op2Info);
}
}
void NVPTXTTIImpl::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const {
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
// Enable partial unrolling and runtime unrolling, but reduce the
// threshold. This partially unrolls small loops which are often
// unrolled by the PTX to SASS compiler and unrolling earlier can be
// beneficial.
UP.Partial = UP.Runtime = true;
UP.PartialThreshold = UP.Threshold / 4;
}
void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) const {
BaseT::getPeelingPreferences(L, SE, PP);
}
bool NVPTXTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
switch (IID) {
case Intrinsic::nvvm_isspacep_const:
case Intrinsic::nvvm_isspacep_global:
case Intrinsic::nvvm_isspacep_local:
case Intrinsic::nvvm_isspacep_shared:
case Intrinsic::nvvm_isspacep_shared_cluster: {
OpIndexes.push_back(0);
return true;
}
}
return false;
}
Value *NVPTXTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
Value *OldV,
Value *NewV) const {
const Intrinsic::ID IID = II->getIntrinsicID();
switch (IID) {
case Intrinsic::nvvm_isspacep_const:
case Intrinsic::nvvm_isspacep_global:
case Intrinsic::nvvm_isspacep_local:
case Intrinsic::nvvm_isspacep_shared:
case Intrinsic::nvvm_isspacep_shared_cluster: {
const unsigned NewAS = NewV->getType()->getPointerAddressSpace();
if (const auto R = evaluateIsSpace(IID, NewAS))
return ConstantInt::get(II->getType(), *R);
return nullptr;
}
}
return nullptr;
}
unsigned NVPTXTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
// 256 bit loads/stores are currently only supported for global address space
if (ST->has256BitVectorLoadStore(AddrSpace))
return 256;
return 128;
}
unsigned NVPTXTTIImpl::getAssumedAddrSpace(const Value *V) const {
if (isa<AllocaInst>(V))
return ADDRESS_SPACE_LOCAL;
if (const Argument *Arg = dyn_cast<Argument>(V)) {
if (isKernelFunction(*Arg->getParent())) {
const NVPTXTargetMachine &TM =
static_cast<const NVPTXTargetMachine &>(getTLI()->getTargetMachine());
if (TM.getDrvInterface() == NVPTX::CUDA && !Arg->hasByValAttr())
return ADDRESS_SPACE_GLOBAL;
} else {
// We assume that all device parameters that are passed byval will be
// placed in the local AS. Very simple cases will be updated after ISel to
// use the device param space where possible.
if (Arg->hasByValAttr())
return ADDRESS_SPACE_LOCAL;
}
}
return -1;
}
void NVPTXTTIImpl::collectKernelLaunchBounds(
const Function &F,
SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const {
if (const auto Val = getMaxClusterRank(F))
LB.push_back({"maxclusterrank", *Val});
const auto MaxNTID = getMaxNTID(F);
if (MaxNTID.size() > 0)
LB.push_back({"maxntidx", MaxNTID[0]});
if (MaxNTID.size() > 1)
LB.push_back({"maxntidy", MaxNTID[1]});
if (MaxNTID.size() > 2)
LB.push_back({"maxntidz", MaxNTID[2]});
}