blob: f17de42ca246698f82c1168d01a3344977ee9020 [file] [log] [blame]
//===-- lib/Semantics/check-omp-structure.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-omp-structure.h"
#include "definable.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/openmp-modifiers.h"
#include "flang/Semantics/tools.h"
#include "llvm/ADT/STLExtras.h"
#include <variant>
namespace Fortran::semantics {
// Use when clause falls under 'struct OmpClause' in 'parse-tree.h'.
#define CHECK_SIMPLE_CLAUSE(X, Y) \
void OmpStructureChecker::Enter(const parser::OmpClause::X &) { \
CheckAllowedClause(llvm::omp::Clause::Y); \
}
#define CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(X, Y) \
void OmpStructureChecker::Enter(const parser::OmpClause::X &c) { \
CheckAllowedClause(llvm::omp::Clause::Y); \
RequiresConstantPositiveParameter(llvm::omp::Clause::Y, c.v); \
}
#define CHECK_REQ_SCALAR_INT_CLAUSE(X, Y) \
void OmpStructureChecker::Enter(const parser::OmpClause::X &c) { \
CheckAllowedClause(llvm::omp::Clause::Y); \
RequiresPositiveParameter(llvm::omp::Clause::Y, c.v); \
}
// Use when clause don't falls under 'struct OmpClause' in 'parse-tree.h'.
#define CHECK_SIMPLE_PARSER_CLAUSE(X, Y) \
void OmpStructureChecker::Enter(const parser::X &) { \
CheckAllowedClause(llvm::omp::Y); \
}
std::string ThisVersion(unsigned version) {
std::string tv{
std::to_string(version / 10) + "." + std::to_string(version % 10)};
return "OpenMP v" + tv;
}
std::string TryVersion(unsigned version) {
return "try -fopenmp-version=" + std::to_string(version);
}
static const parser::Designator *GetDesignatorFromObj(
const parser::OmpObject &object) {
return std::get_if<parser::Designator>(&object.u);
}
static const parser::DataRef *GetDataRefFromObj(
const parser::OmpObject &object) {
if (auto *desg{GetDesignatorFromObj(object)}) {
return std::get_if<parser::DataRef>(&desg->u);
}
return nullptr;
}
static const parser::ArrayElement *GetArrayElementFromObj(
const parser::OmpObject &object) {
if (auto *dataRef{GetDataRefFromObj(object)}) {
using ElementIndirection = common::Indirection<parser::ArrayElement>;
if (auto *ind{std::get_if<ElementIndirection>(&dataRef->u)}) {
return &ind->value();
}
}
return nullptr;
}
// 'OmpWorkshareBlockChecker' is used to check the validity of the assignment
// statements and the expressions enclosed in an OpenMP Workshare construct
class OmpWorkshareBlockChecker {
public:
OmpWorkshareBlockChecker(SemanticsContext &context, parser::CharBlock source)
: context_{context}, source_{source} {}
template <typename T> bool Pre(const T &) { return true; }
template <typename T> void Post(const T &) {}
bool Pre(const parser::AssignmentStmt &assignment) {
const auto &var{std::get<parser::Variable>(assignment.t)};
const auto &expr{std::get<parser::Expr>(assignment.t)};
const auto *lhs{GetExpr(context_, var)};
const auto *rhs{GetExpr(context_, expr)};
if (lhs && rhs) {
Tristate isDefined{semantics::IsDefinedAssignment(
lhs->GetType(), lhs->Rank(), rhs->GetType(), rhs->Rank())};
if (isDefined == Tristate::Yes) {
context_.Say(expr.source,
"Defined assignment statement is not "
"allowed in a WORKSHARE construct"_err_en_US);
}
}
return true;
}
bool Pre(const parser::Expr &expr) {
if (const auto *e{GetExpr(context_, expr)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*e)) {
const Symbol &root{GetAssociationRoot(symbol)};
if (IsFunction(root)) {
std::string attrs{""};
if (!IsElementalProcedure(root)) {
attrs = " non-ELEMENTAL";
}
if (root.attrs().test(Attr::IMPURE)) {
if (attrs != "") {
attrs = "," + attrs;
}
attrs = " IMPURE" + attrs;
}
if (attrs != "") {
context_.Say(expr.source,
"User defined%s function '%s' is not allowed in a "
"WORKSHARE construct"_err_en_US,
attrs, root.name());
}
}
}
}
return false;
}
private:
SemanticsContext &context_;
parser::CharBlock source_;
};
class AssociatedLoopChecker {
public:
AssociatedLoopChecker(SemanticsContext &context, std::int64_t level)
: context_{context}, level_{level} {}
template <typename T> bool Pre(const T &) { return true; }
template <typename T> void Post(const T &) {}
bool Pre(const parser::DoConstruct &dc) {
level_--;
const auto &doStmt{
std::get<parser::Statement<parser::NonLabelDoStmt>>(dc.t)};
const auto &constructName{
std::get<std::optional<parser::Name>>(doStmt.statement.t)};
if (constructName) {
constructNamesAndLevels_.emplace(
constructName.value().ToString(), level_);
}
if (level_ >= 0) {
if (dc.IsDoWhile()) {
context_.Say(doStmt.source,
"The associated loop of a loop-associated directive cannot be a DO WHILE."_err_en_US);
}
if (!dc.GetLoopControl()) {
context_.Say(doStmt.source,
"The associated loop of a loop-associated directive cannot be a DO without control."_err_en_US);
}
}
return true;
}
void Post(const parser::DoConstruct &dc) { level_++; }
bool Pre(const parser::CycleStmt &cyclestmt) {
std::map<std::string, std::int64_t>::iterator it;
bool err{false};
if (cyclestmt.v) {
it = constructNamesAndLevels_.find(cyclestmt.v->source.ToString());
err = (it != constructNamesAndLevels_.end() && it->second > 0);
} else { // If there is no label then use the level of the last enclosing DO
err = level_ > 0;
}
if (err) {
context_.Say(*source_,
"CYCLE statement to non-innermost associated loop of an OpenMP DO "
"construct"_err_en_US);
}
return true;
}
bool Pre(const parser::ExitStmt &exitStmt) {
std::map<std::string, std::int64_t>::iterator it;
bool err{false};
if (exitStmt.v) {
it = constructNamesAndLevels_.find(exitStmt.v->source.ToString());
err = (it != constructNamesAndLevels_.end() && it->second >= 0);
} else { // If there is no label then use the level of the last enclosing DO
err = level_ >= 0;
}
if (err) {
context_.Say(*source_,
"EXIT statement terminates associated loop of an OpenMP DO "
"construct"_err_en_US);
}
return true;
}
bool Pre(const parser::Statement<parser::ActionStmt> &actionstmt) {
source_ = &actionstmt.source;
return true;
}
private:
SemanticsContext &context_;
const parser::CharBlock *source_;
std::int64_t level_;
std::map<std::string, std::int64_t> constructNamesAndLevels_;
};
// `OmpUnitedTaskDesignatorChecker` is used to check if the designator
// can appear within the TASK construct
class OmpUnitedTaskDesignatorChecker {
public:
OmpUnitedTaskDesignatorChecker(SemanticsContext &context)
: context_{context} {}
template <typename T> bool Pre(const T &) { return true; }
template <typename T> void Post(const T &) {}
bool Pre(const parser::Name &name) {
if (name.symbol->test(Symbol::Flag::OmpThreadprivate)) {
// OpenMP 5.2: 5.2 threadprivate directive restriction
context_.Say(name.source,
"A THREADPRIVATE variable `%s` cannot appear in an UNTIED TASK region"_err_en_US,
name.source);
}
return true;
}
private:
SemanticsContext &context_;
};
bool OmpStructureChecker::CheckAllowedClause(llvmOmpClause clause) {
// Do not do clause checks while processing METADIRECTIVE.
// Context selectors can contain clauses that are not given as a part
// of a construct, but as trait properties. Testing whether they are
// valid or not is deferred to the checks of the context selectors.
// As it stands now, these clauses would appear as if they were present
// on METADIRECTIVE, leading to incorrect diagnostics.
if (GetDirectiveNest(ContextSelectorNest) > 0) {
return true;
}
unsigned version{context_.langOptions().OpenMPVersion};
DirectiveContext &dirCtx = GetContext();
llvm::omp::Directive dir{dirCtx.directive};
if (!llvm::omp::isAllowedClauseForDirective(dir, clause, version)) {
unsigned allowedInVersion{[&] {
for (unsigned v : llvm::omp::getOpenMPVersions()) {
if (v <= version) {
continue;
}
if (llvm::omp::isAllowedClauseForDirective(dir, clause, v)) {
return v;
}
}
return 0u;
}()};
// Only report it if there is a later version that allows it.
// If it's not allowed at all, it will be reported by CheckAllowed.
if (allowedInVersion != 0) {
auto clauseName{parser::ToUpperCaseLetters(getClauseName(clause).str())};
auto dirName{parser::ToUpperCaseLetters(getDirectiveName(dir).str())};
context_.Say(dirCtx.clauseSource,
"%s clause is not allowed on directive %s in %s, %s"_err_en_US,
clauseName, dirName, ThisVersion(version),
TryVersion(allowedInVersion));
}
}
return CheckAllowed(clause);
}
bool OmpStructureChecker::IsCommonBlock(const Symbol &sym) {
return sym.detailsIf<CommonBlockDetails>() != nullptr;
}
bool OmpStructureChecker::IsVariableListItem(const Symbol &sym) {
return evaluate::IsVariable(sym) || sym.attrs().test(Attr::POINTER);
}
bool OmpStructureChecker::IsExtendedListItem(const Symbol &sym) {
return IsVariableListItem(sym) || sym.IsSubprogram();
}
bool OmpStructureChecker::IsCloselyNestedRegion(const OmpDirectiveSet &set) {
// Definition of close nesting:
//
// `A region nested inside another region with no parallel region nested
// between them`
//
// Examples:
// non-parallel construct 1
// non-parallel construct 2
// parallel construct
// construct 3
// In the above example, construct 3 is NOT closely nested inside construct 1
// or 2
//
// non-parallel construct 1
// non-parallel construct 2
// construct 3
// In the above example, construct 3 is closely nested inside BOTH construct 1
// and 2
//
// Algorithm:
// Starting from the parent context, Check in a bottom-up fashion, each level
// of the context stack. If we have a match for one of the (supplied)
// violating directives, `close nesting` is satisfied. If no match is there in
// the entire stack, `close nesting` is not satisfied. If at any level, a
// `parallel` region is found, `close nesting` is not satisfied.
if (CurrentDirectiveIsNested()) {
int index = dirContext_.size() - 2;
while (index != -1) {
if (set.test(dirContext_[index].directive)) {
return true;
} else if (llvm::omp::allParallelSet.test(dirContext_[index].directive)) {
return false;
}
index--;
}
}
return false;
}
namespace {
struct ContiguousHelper {
ContiguousHelper(SemanticsContext &context)
: fctx_(context.foldingContext()) {}
template <typename Contained>
std::optional<bool> Visit(const common::Indirection<Contained> &x) {
return Visit(x.value());
}
template <typename Contained>
std::optional<bool> Visit(const common::Reference<Contained> &x) {
return Visit(x.get());
}
template <typename T> std::optional<bool> Visit(const evaluate::Expr<T> &x) {
return common::visit([&](auto &&s) { return Visit(s); }, x.u);
}
template <typename T>
std::optional<bool> Visit(const evaluate::Designator<T> &x) {
return common::visit(
[this](auto &&s) { return evaluate::IsContiguous(s, fctx_); }, x.u);
}
template <typename T> std::optional<bool> Visit(const T &) {
// Everything else.
return std::nullopt;
}
private:
evaluate::FoldingContext &fctx_;
};
} // namespace
// Return values:
// - std::optional<bool>{true} if the object is known to be contiguous
// - std::optional<bool>{false} if the object is known not to be contiguous
// - std::nullopt if the object contiguity cannot be determined
std::optional<bool> OmpStructureChecker::IsContiguous(
const parser::OmpObject &object) {
return common::visit( //
common::visitors{
[&](const parser::Name &x) {
// Any member of a common block must be contiguous.
return std::optional<bool>{true};
},
[&](const parser::Designator &x) {
evaluate::ExpressionAnalyzer ea{context_};
if (MaybeExpr maybeExpr{ea.Analyze(x)}) {
return ContiguousHelper{context_}.Visit(*maybeExpr);
}
return std::optional<bool>{};
},
},
object.u);
}
void OmpStructureChecker::CheckMultipleOccurrence(
semantics::UnorderedSymbolSet &listVars,
const std::list<parser::Name> &nameList, const parser::CharBlock &item,
const std::string &clauseName) {
for (auto const &var : nameList) {
if (llvm::is_contained(listVars, *(var.symbol))) {
context_.Say(item,
"List item '%s' present at multiple %s clauses"_err_en_US,
var.ToString(), clauseName);
}
listVars.insert(*(var.symbol));
}
}
void OmpStructureChecker::CheckMultListItems() {
semantics::UnorderedSymbolSet listVars;
// Aligned clause
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_aligned)) {
const auto &alignedClause{std::get<parser::OmpClause::Aligned>(clause->u)};
const auto &alignedList{std::get<0>(alignedClause.v.t)};
std::list<parser::Name> alignedNameList;
for (const auto &ompObject : alignedList.v) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (name->symbol) {
if (FindCommonBlockContaining(*(name->symbol))) {
context_.Say(clause->source,
"'%s' is a common block name and can not appear in an "
"ALIGNED clause"_err_en_US,
name->ToString());
} else if (!(IsBuiltinCPtr(*(name->symbol)) ||
IsAllocatableOrObjectPointer(
&name->symbol->GetUltimate()))) {
context_.Say(clause->source,
"'%s' in ALIGNED clause must be of type C_PTR, POINTER or "
"ALLOCATABLE"_err_en_US,
name->ToString());
} else {
alignedNameList.push_back(*name);
}
} else {
// The symbol is null, return early
return;
}
}
}
CheckMultipleOccurrence(
listVars, alignedNameList, clause->source, "ALIGNED");
}
// Nontemporal clause
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_nontemporal)) {
const auto &nontempClause{
std::get<parser::OmpClause::Nontemporal>(clause->u)};
const auto &nontempNameList{nontempClause.v};
CheckMultipleOccurrence(
listVars, nontempNameList, clause->source, "NONTEMPORAL");
}
// Linear clause
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_linear)) {
auto &linearClause{std::get<parser::OmpClause::Linear>(clause->u)};
std::list<parser::Name> nameList;
SymbolSourceMap symbols;
GetSymbolsInObjectList(
std::get<parser::OmpObjectList>(linearClause.v.t), symbols);
llvm::transform(symbols, std::back_inserter(nameList), [&](auto &&pair) {
return parser::Name{pair.second, const_cast<Symbol *>(pair.first)};
});
CheckMultipleOccurrence(listVars, nameList, clause->source, "LINEAR");
}
}
bool OmpStructureChecker::HasInvalidWorksharingNesting(
const parser::CharBlock &source, const OmpDirectiveSet &set) {
// set contains all the invalid closely nested directives
// for the given directive (`source` here)
if (IsCloselyNestedRegion(set)) {
context_.Say(source,
"A worksharing region may not be closely nested inside a "
"worksharing, explicit task, taskloop, critical, ordered, atomic, or "
"master region"_err_en_US);
return true;
}
return false;
}
void OmpStructureChecker::HasInvalidDistributeNesting(
const parser::OpenMPLoopConstruct &x) {
bool violation{false};
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
if (llvm::omp::topDistributeSet.test(beginDir.v)) {
// `distribute` region has to be nested
if (!CurrentDirectiveIsNested()) {
violation = true;
} else {
// `distribute` region has to be strictly nested inside `teams`
if (!llvm::omp::bottomTeamsSet.test(GetContextParent().directive)) {
violation = true;
}
}
}
if (violation) {
context_.Say(beginDir.source,
"`DISTRIBUTE` region has to be strictly nested inside `TEAMS` "
"region."_err_en_US);
}
}
void OmpStructureChecker::HasInvalidLoopBinding(
const parser::OpenMPLoopConstruct &x) {
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
auto teamsBindingChecker = [&](parser::MessageFixedText msg) {
const auto &clauseList{std::get<parser::OmpClauseList>(beginLoopDir.t)};
for (const auto &clause : clauseList.v) {
if (const auto *bindClause{
std::get_if<parser::OmpClause::Bind>(&clause.u)}) {
if (bindClause->v.v != parser::OmpBindClause::Binding::Teams) {
context_.Say(beginDir.source, msg);
}
}
}
};
if (llvm::omp::Directive::OMPD_loop == beginDir.v &&
CurrentDirectiveIsNested() &&
llvm::omp::bottomTeamsSet.test(GetContextParent().directive)) {
teamsBindingChecker(
"`BIND(TEAMS)` must be specified since the `LOOP` region is "
"strictly nested inside a `TEAMS` region."_err_en_US);
}
if (OmpDirectiveSet{
llvm::omp::OMPD_teams_loop, llvm::omp::OMPD_target_teams_loop}
.test(beginDir.v)) {
teamsBindingChecker(
"`BIND(TEAMS)` must be specified since the `LOOP` directive is "
"combined with a `TEAMS` construct."_err_en_US);
}
}
void OmpStructureChecker::HasInvalidTeamsNesting(
const llvm::omp::Directive &dir, const parser::CharBlock &source) {
if (!llvm::omp::nestedTeamsAllowedSet.test(dir)) {
context_.Say(source,
"Only `DISTRIBUTE`, `PARALLEL`, or `LOOP` regions are allowed to be "
"strictly nested inside `TEAMS` region."_err_en_US);
}
}
void OmpStructureChecker::CheckPredefinedAllocatorRestriction(
const parser::CharBlock &source, const parser::Name &name) {
if (const auto *symbol{name.symbol}) {
const auto *commonBlock{FindCommonBlockContaining(*symbol)};
const auto &scope{context_.FindScope(symbol->name())};
const Scope &containingScope{GetProgramUnitContaining(scope)};
if (!isPredefinedAllocator &&
(IsSaved(*symbol) || commonBlock ||
containingScope.kind() == Scope::Kind::Module)) {
context_.Say(source,
"If list items within the %s directive have the "
"SAVE attribute, are a common block name, or are "
"declared in the scope of a module, then only "
"predefined memory allocator parameters can be used "
"in the allocator clause"_err_en_US,
ContextDirectiveAsFortran());
}
}
}
void OmpStructureChecker::CheckPredefinedAllocatorRestriction(
const parser::CharBlock &source,
const parser::OmpObjectList &ompObjectList) {
for (const auto &ompObject : ompObjectList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *dataRef{
std::get_if<parser::DataRef>(&designator.u)}) {
if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
CheckPredefinedAllocatorRestriction(source, *name);
}
}
},
[&](const parser::Name &name) {
CheckPredefinedAllocatorRestriction(source, name);
},
},
ompObject.u);
}
}
template <class D>
void OmpStructureChecker::CheckHintClause(
D *leftOmpClauseList, D *rightOmpClauseList, std::string_view dirName) {
bool foundHint{false};
auto checkForValidHintClause = [&](const D *clauseList) {
for (const auto &clause : clauseList->v) {
const parser::OmpHintClause *ompHintClause = nullptr;
if constexpr (std::is_same_v<D, const parser::OmpAtomicClauseList>) {
ompHintClause = std::get_if<parser::OmpHintClause>(&clause.u);
} else if constexpr (std::is_same_v<D, const parser::OmpClauseList>) {
if (auto *hint{std::get_if<parser::OmpClause::Hint>(&clause.u)}) {
ompHintClause = &hint->v;
}
}
if (!ompHintClause)
continue;
if (foundHint) {
context_.Say(clause.source,
"At most one HINT clause can appear on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(dirName));
}
foundHint = true;
std::optional<std::int64_t> hintValue = GetIntValue(ompHintClause->v);
if (hintValue && *hintValue >= 0) {
/*`omp_sync_hint_nonspeculative` and `omp_lock_hint_speculative`*/
if ((*hintValue & 0xC) == 0xC
/*`omp_sync_hint_uncontended` and omp_sync_hint_contended*/
|| (*hintValue & 0x3) == 0x3)
context_.Say(clause.source,
"Hint clause value "
"is not a valid OpenMP synchronization value"_err_en_US);
} else {
context_.Say(clause.source,
"Hint clause must have non-negative constant "
"integer expression"_err_en_US);
}
}
};
if (leftOmpClauseList) {
checkForValidHintClause(leftOmpClauseList);
}
if (rightOmpClauseList) {
checkForValidHintClause(rightOmpClauseList);
}
}
void OmpStructureChecker::Enter(const parser::OmpDirectiveSpecification &x) {
// OmpDirectiveSpecification exists on its own only in METADIRECTIVE.
// In other cases it's a part of other constructs that handle directive
// context stack by themselves.
if (GetDirectiveNest(MetadirectiveNest)) {
PushContextAndClauseSets(
std::get<parser::OmpDirectiveName>(x.t).source, x.DirId());
}
}
void OmpStructureChecker::Leave(const parser::OmpDirectiveSpecification &) {
if (GetDirectiveNest(MetadirectiveNest)) {
dirContext_.pop_back();
}
}
void OmpStructureChecker::Enter(const parser::OmpMetadirectiveDirective &x) {
EnterDirectiveNest(MetadirectiveNest);
PushContextAndClauseSets(x.source, llvm::omp::Directive::OMPD_metadirective);
}
void OmpStructureChecker::Leave(const parser::OmpMetadirectiveDirective &) {
ExitDirectiveNest(MetadirectiveNest);
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPConstruct &x) {
// Simd Construct with Ordered Construct Nesting check
// We cannot use CurrentDirectiveIsNested() here because
// PushContextAndClauseSets() has not been called yet, it is
// called individually for each construct. Therefore a
// dirContext_ size `1` means the current construct is nested
if (dirContext_.size() >= 1) {
if (GetDirectiveNest(SIMDNest) > 0) {
CheckSIMDNest(x);
}
if (GetDirectiveNest(TargetNest) > 0) {
CheckTargetNest(x);
}
}
}
void OmpStructureChecker::Leave(const parser::OpenMPConstruct &) {
for (const auto &[sym, source] : deferredNonVariables_) {
context_.SayWithDecl(
*sym, source, "'%s' must be a variable"_err_en_US, sym->name());
}
deferredNonVariables_.clear();
}
void OmpStructureChecker::Enter(const parser::OpenMPDeclarativeConstruct &x) {
EnterDirectiveNest(DeclarativeNest);
}
void OmpStructureChecker::Leave(const parser::OpenMPDeclarativeConstruct &x) {
ExitDirectiveNest(DeclarativeNest);
}
void OmpStructureChecker::AddEndDirectiveClauses(
const parser::OmpClauseList &clauses) {
for (const parser::OmpClause &clause : clauses.v) {
GetContext().endDirectiveClauses.push_back(clause.Id());
}
}
void OmpStructureChecker::Enter(const parser::OpenMPLoopConstruct &x) {
loopStack_.push_back(&x);
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
PushContextAndClauseSets(beginDir.source, beginDir.v);
// check matching, End directive is optional
if (const auto &endLoopDir{
std::get<std::optional<parser::OmpEndLoopDirective>>(x.t)}) {
const auto &endDir{
std::get<parser::OmpLoopDirective>(endLoopDir.value().t)};
CheckMatching<parser::OmpLoopDirective>(beginDir, endDir);
AddEndDirectiveClauses(std::get<parser::OmpClauseList>(endLoopDir->t));
}
if (llvm::omp::allSimdSet.test(GetContext().directive)) {
EnterDirectiveNest(SIMDNest);
}
// Combined target loop constructs are target device constructs. Keep track of
// whether any such construct has been visited to later check that REQUIRES
// directives for target-related options don't appear after them.
if (llvm::omp::allTargetSet.test(beginDir.v)) {
deviceConstructFound_ = true;
}
if (beginDir.v == llvm::omp::Directive::OMPD_do) {
// 2.7.1 do-clause -> private-clause |
// firstprivate-clause |
// lastprivate-clause |
// linear-clause |
// reduction-clause |
// schedule-clause |
// collapse-clause |
// ordered-clause
// nesting check
HasInvalidWorksharingNesting(
beginDir.source, llvm::omp::nestedWorkshareErrSet);
}
SetLoopInfo(x);
if (const auto &doConstruct{
std::get<std::optional<parser::DoConstruct>>(x.t)}) {
const auto &doBlock{std::get<parser::Block>(doConstruct->t)};
CheckNoBranching(doBlock, beginDir.v, beginDir.source);
}
CheckLoopItrVariableIsInt(x);
CheckAssociatedLoopConstraints(x);
HasInvalidDistributeNesting(x);
HasInvalidLoopBinding(x);
if (CurrentDirectiveIsNested() &&
llvm::omp::bottomTeamsSet.test(GetContextParent().directive)) {
HasInvalidTeamsNesting(beginDir.v, beginDir.source);
}
if ((beginDir.v == llvm::omp::Directive::OMPD_distribute_parallel_do_simd) ||
(beginDir.v == llvm::omp::Directive::OMPD_distribute_simd)) {
CheckDistLinear(x);
}
}
const parser::Name OmpStructureChecker::GetLoopIndex(
const parser::DoConstruct *x) {
using Bounds = parser::LoopControl::Bounds;
return std::get<Bounds>(x->GetLoopControl()->u).name.thing;
}
void OmpStructureChecker::SetLoopInfo(const parser::OpenMPLoopConstruct &x) {
if (const auto &loopConstruct{
std::get<std::optional<parser::DoConstruct>>(x.t)}) {
const parser::DoConstruct *loop{&*loopConstruct};
if (loop && loop->IsDoNormal()) {
const parser::Name &itrVal{GetLoopIndex(loop)};
SetLoopIv(itrVal.symbol);
}
}
}
void OmpStructureChecker::CheckIteratorRange(
const parser::OmpIteratorSpecifier &x) {
// Check:
// 1. Whether begin/end are present.
// 2. Whether the step value is non-zero.
// 3. If the step has a known sign, whether the lower/upper bounds form
// a proper interval.
const auto &[begin, end, step]{std::get<parser::SubscriptTriplet>(x.t).t};
if (!begin || !end) {
context_.Say(x.source,
"The begin and end expressions in iterator range-specification are "
"mandatory"_err_en_US);
}
// [5.2:67:19] In a range-specification, if the step is not specified its
// value is implicitly defined to be 1.
if (auto stepv{step ? GetIntValue(*step) : std::optional<int64_t>{1}}) {
if (*stepv == 0) {
context_.Say(
x.source, "The step value in the iterator range is 0"_warn_en_US);
} else if (begin && end) {
std::optional<int64_t> beginv{GetIntValue(*begin)};
std::optional<int64_t> endv{GetIntValue(*end)};
if (beginv && endv) {
if (*stepv > 0 && *beginv > *endv) {
context_.Say(x.source,
"The begin value is greater than the end value in iterator "
"range-specification with a positive step"_warn_en_US);
} else if (*stepv < 0 && *beginv < *endv) {
context_.Say(x.source,
"The begin value is less than the end value in iterator "
"range-specification with a negative step"_warn_en_US);
}
}
}
}
}
void OmpStructureChecker::CheckIteratorModifier(const parser::OmpIterator &x) {
// Check if all iterator variables have integer type.
for (auto &&iterSpec : x.v) {
bool isInteger{true};
auto &typeDecl{std::get<parser::TypeDeclarationStmt>(iterSpec.t)};
auto &typeSpec{std::get<parser::DeclarationTypeSpec>(typeDecl.t)};
if (!std::holds_alternative<parser::IntrinsicTypeSpec>(typeSpec.u)) {
isInteger = false;
} else {
auto &intrinType{std::get<parser::IntrinsicTypeSpec>(typeSpec.u)};
if (!std::holds_alternative<parser::IntegerTypeSpec>(intrinType.u)) {
isInteger = false;
}
}
if (!isInteger) {
context_.Say(iterSpec.source,
"The iterator variable must be of integer type"_err_en_US);
}
CheckIteratorRange(iterSpec);
}
}
void OmpStructureChecker::CheckLoopItrVariableIsInt(
const parser::OpenMPLoopConstruct &x) {
if (const auto &loopConstruct{
std::get<std::optional<parser::DoConstruct>>(x.t)}) {
for (const parser::DoConstruct *loop{&*loopConstruct}; loop;) {
if (loop->IsDoNormal()) {
const parser::Name &itrVal{GetLoopIndex(loop)};
if (itrVal.symbol) {
const auto *type{itrVal.symbol->GetType()};
if (!type->IsNumeric(TypeCategory::Integer)) {
context_.Say(itrVal.source,
"The DO loop iteration"
" variable must be of the type integer."_err_en_US,
itrVal.ToString());
}
}
}
// Get the next DoConstruct if block is not empty.
const auto &block{std::get<parser::Block>(loop->t)};
const auto it{block.begin()};
loop = it != block.end() ? parser::Unwrap<parser::DoConstruct>(*it)
: nullptr;
}
}
}
void OmpStructureChecker::CheckSIMDNest(const parser::OpenMPConstruct &c) {
// Check the following:
// The only OpenMP constructs that can be encountered during execution of
// a simd region are the `atomic` construct, the `loop` construct, the `simd`
// construct and the `ordered` construct with the `simd` clause.
// Check if the parent context has the SIMD clause
// Please note that we use GetContext() instead of GetContextParent()
// because PushContextAndClauseSets() has not been called on the
// current context yet.
// TODO: Check for declare simd regions.
bool eligibleSIMD{false};
common::visit(
common::visitors{
// Allow `!$OMP ORDERED SIMD`
[&](const parser::OpenMPBlockConstruct &c) {
const auto &beginBlockDir{
std::get<parser::OmpBeginBlockDirective>(c.t)};
const auto &beginDir{
std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
if (beginDir.v == llvm::omp::Directive::OMPD_ordered) {
const auto &clauses{
std::get<parser::OmpClauseList>(beginBlockDir.t)};
for (const auto &clause : clauses.v) {
if (std::get_if<parser::OmpClause::Simd>(&clause.u)) {
eligibleSIMD = true;
break;
}
}
}
},
[&](const parser::OpenMPStandaloneConstruct &c) {
if (auto *ssc{std::get_if<parser::OpenMPSimpleStandaloneConstruct>(
&c.u)}) {
llvm::omp::Directive dirId{ssc->v.DirId()};
if (dirId == llvm::omp::Directive::OMPD_ordered) {
for (const parser::OmpClause &x : ssc->v.Clauses().v) {
if (x.Id() == llvm::omp::Clause::OMPC_simd) {
eligibleSIMD = true;
break;
}
}
} else if (dirId == llvm::omp::Directive::OMPD_scan) {
eligibleSIMD = true;
}
}
},
// Allowing SIMD and loop construct
[&](const parser::OpenMPLoopConstruct &c) {
const auto &beginLoopDir{
std::get<parser::OmpBeginLoopDirective>(c.t)};
const auto &beginDir{
std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
if ((beginDir.v == llvm::omp::Directive::OMPD_simd) ||
(beginDir.v == llvm::omp::Directive::OMPD_do_simd) ||
(beginDir.v == llvm::omp::Directive::OMPD_loop)) {
eligibleSIMD = true;
}
},
[&](const parser::OpenMPAtomicConstruct &c) {
// Allow `!$OMP ATOMIC`
eligibleSIMD = true;
},
[&](const auto &c) {},
},
c.u);
if (!eligibleSIMD) {
context_.Say(parser::FindSourceLocation(c),
"The only OpenMP constructs that can be encountered during execution "
"of a 'SIMD' region are the `ATOMIC` construct, the `LOOP` construct, "
"the `SIMD` construct, the `SCAN` construct and the `ORDERED` "
"construct with the `SIMD` clause."_err_en_US);
}
}
void OmpStructureChecker::CheckTargetNest(const parser::OpenMPConstruct &c) {
// 2.12.5 Target Construct Restriction
bool eligibleTarget{true};
llvm::omp::Directive ineligibleTargetDir;
common::visit(
common::visitors{
[&](const parser::OpenMPBlockConstruct &c) {
const auto &beginBlockDir{
std::get<parser::OmpBeginBlockDirective>(c.t)};
const auto &beginDir{
std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
if (beginDir.v == llvm::omp::Directive::OMPD_target_data) {
eligibleTarget = false;
ineligibleTargetDir = beginDir.v;
}
},
[&](const parser::OpenMPStandaloneConstruct &c) {
common::visit(
common::visitors{
[&](const parser::OpenMPSimpleStandaloneConstruct &c) {
switch (llvm::omp::Directive dirId{c.v.DirId()}) {
case llvm::omp::Directive::OMPD_target_update:
case llvm::omp::Directive::OMPD_target_enter_data:
case llvm::omp::Directive::OMPD_target_exit_data:
eligibleTarget = false;
ineligibleTargetDir = dirId;
break;
default:
break;
}
},
[&](const auto &c) {},
},
c.u);
},
[&](const parser::OpenMPLoopConstruct &c) {
const auto &beginLoopDir{
std::get<parser::OmpBeginLoopDirective>(c.t)};
const auto &beginDir{
std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
if (llvm::omp::allTargetSet.test(beginDir.v)) {
eligibleTarget = false;
ineligibleTargetDir = beginDir.v;
}
},
[&](const auto &c) {},
},
c.u);
if (!eligibleTarget) {
context_.Warn(common::UsageWarning::OpenMPUsage,
parser::FindSourceLocation(c),
"If %s directive is nested inside TARGET region, the behaviour is unspecified"_port_en_US,
parser::ToUpperCaseLetters(
getDirectiveName(ineligibleTargetDir).str()));
}
}
std::int64_t OmpStructureChecker::GetOrdCollapseLevel(
const parser::OpenMPLoopConstruct &x) {
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &clauseList{std::get<parser::OmpClauseList>(beginLoopDir.t)};
std::int64_t orderedCollapseLevel{1};
std::int64_t orderedLevel{1};
std::int64_t collapseLevel{1};
for (const auto &clause : clauseList.v) {
if (const auto *collapseClause{
std::get_if<parser::OmpClause::Collapse>(&clause.u)}) {
if (const auto v{GetIntValue(collapseClause->v)}) {
collapseLevel = *v;
}
}
if (const auto *orderedClause{
std::get_if<parser::OmpClause::Ordered>(&clause.u)}) {
if (const auto v{GetIntValue(orderedClause->v)}) {
orderedLevel = *v;
}
}
}
if (orderedLevel >= collapseLevel) {
orderedCollapseLevel = orderedLevel;
} else {
orderedCollapseLevel = collapseLevel;
}
return orderedCollapseLevel;
}
void OmpStructureChecker::CheckAssociatedLoopConstraints(
const parser::OpenMPLoopConstruct &x) {
std::int64_t ordCollapseLevel{GetOrdCollapseLevel(x)};
AssociatedLoopChecker checker{context_, ordCollapseLevel};
parser::Walk(x, checker);
}
void OmpStructureChecker::CheckDistLinear(
const parser::OpenMPLoopConstruct &x) {
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &clauses{std::get<parser::OmpClauseList>(beginLoopDir.t)};
SymbolSourceMap indexVars;
// Collect symbols of all the variables from linear clauses
for (auto &clause : clauses.v) {
if (auto *linearClause{std::get_if<parser::OmpClause::Linear>(&clause.u)}) {
auto &objects{std::get<parser::OmpObjectList>(linearClause->v.t)};
GetSymbolsInObjectList(objects, indexVars);
}
}
if (!indexVars.empty()) {
// Get collapse level, if given, to find which loops are "associated."
std::int64_t collapseVal{GetOrdCollapseLevel(x)};
// Include the top loop if no collapse is specified
if (collapseVal == 0) {
collapseVal = 1;
}
// Match the loop index variables with the collected symbols from linear
// clauses.
if (const auto &loopConstruct{
std::get<std::optional<parser::DoConstruct>>(x.t)}) {
for (const parser::DoConstruct *loop{&*loopConstruct}; loop;) {
if (loop->IsDoNormal()) {
const parser::Name &itrVal{GetLoopIndex(loop)};
if (itrVal.symbol) {
// Remove the symbol from the collected set
indexVars.erase(&itrVal.symbol->GetUltimate());
}
collapseVal--;
if (collapseVal == 0) {
break;
}
}
// Get the next DoConstruct if block is not empty.
const auto &block{std::get<parser::Block>(loop->t)};
const auto it{block.begin()};
loop = it != block.end() ? parser::Unwrap<parser::DoConstruct>(*it)
: nullptr;
}
}
// Show error for the remaining variables
for (auto &[symbol, source] : indexVars) {
const Symbol &root{GetAssociationRoot(*symbol)};
context_.Say(source,
"Variable '%s' not allowed in LINEAR clause, only loop iterator can be specified in LINEAR clause of a construct combined with DISTRIBUTE"_err_en_US,
root.name());
}
}
}
void OmpStructureChecker::Leave(const parser::OpenMPLoopConstruct &x) {
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &clauseList{std::get<parser::OmpClauseList>(beginLoopDir.t)};
// A few semantic checks for InScan reduction are performed below as SCAN
// constructs inside LOOP may add the relevant information. Scan reduction is
// supported only in loop constructs, so same checks are not applicable to
// other directives.
using ReductionModifier = parser::OmpReductionModifier;
for (const auto &clause : clauseList.v) {
if (const auto *reductionClause{
std::get_if<parser::OmpClause::Reduction>(&clause.u)}) {
auto &modifiers{OmpGetModifiers(reductionClause->v)};
auto *maybeModifier{OmpGetUniqueModifier<ReductionModifier>(modifiers)};
if (maybeModifier &&
maybeModifier->v == ReductionModifier::Value::Inscan) {
const auto &objectList{
std::get<parser::OmpObjectList>(reductionClause->v.t)};
auto checkReductionSymbolInScan = [&](const parser::Name *name) {
if (auto &symbol = name->symbol) {
if (!symbol->test(Symbol::Flag::OmpInclusiveScan) &&
!symbol->test(Symbol::Flag::OmpExclusiveScan)) {
context_.Say(name->source,
"List item %s must appear in EXCLUSIVE or "
"INCLUSIVE clause of an "
"enclosed SCAN directive"_err_en_US,
name->ToString());
}
}
};
for (const auto &ompObj : objectList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *name{semantics::getDesignatorNameIfDataRef(
designator)}) {
checkReductionSymbolInScan(name);
}
},
[&](const auto &name) { checkReductionSymbolInScan(&name); },
},
ompObj.u);
}
}
}
}
if (llvm::omp::allSimdSet.test(GetContext().directive)) {
ExitDirectiveNest(SIMDNest);
}
dirContext_.pop_back();
assert(!loopStack_.empty() && "Expecting non-empty loop stack");
#ifndef NDEBUG
const LoopConstruct &top{loopStack_.back()};
auto *loopc{std::get_if<const parser::OpenMPLoopConstruct *>(&top)};
assert(loopc != nullptr && *loopc == &x && "Mismatched loop constructs");
#endif
loopStack_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OmpEndLoopDirective &x) {
const auto &dir{std::get<parser::OmpLoopDirective>(x.t)};
ResetPartialContext(dir.source);
switch (dir.v) {
// 2.7.1 end-do -> END DO [nowait-clause]
// 2.8.3 end-do-simd -> END DO SIMD [nowait-clause]
case llvm::omp::Directive::OMPD_do:
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_do);
break;
case llvm::omp::Directive::OMPD_do_simd:
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_end_do_simd);
break;
default:
// no clauses are allowed
break;
}
}
void OmpStructureChecker::Leave(const parser::OmpEndLoopDirective &x) {
if ((GetContext().directive == llvm::omp::Directive::OMPD_end_do) ||
(GetContext().directive == llvm::omp::Directive::OMPD_end_do_simd)) {
dirContext_.pop_back();
}
}
void OmpStructureChecker::Enter(const parser::OpenMPBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)};
const auto &endBlockDir{std::get<parser::OmpEndBlockDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
const auto &endDir{std::get<parser::OmpBlockDirective>(endBlockDir.t)};
const parser::Block &block{std::get<parser::Block>(x.t)};
CheckMatching<parser::OmpBlockDirective>(beginDir, endDir);
PushContextAndClauseSets(beginDir.source, beginDir.v);
if (llvm::omp::allTargetSet.test(GetContext().directive)) {
EnterDirectiveNest(TargetNest);
}
if (CurrentDirectiveIsNested()) {
if (llvm::omp::bottomTeamsSet.test(GetContextParent().directive)) {
HasInvalidTeamsNesting(beginDir.v, beginDir.source);
}
if (GetContext().directive == llvm::omp::Directive::OMPD_master) {
CheckMasterNesting(x);
}
// A teams region can only be strictly nested within the implicit parallel
// region or a target region.
if (GetContext().directive == llvm::omp::Directive::OMPD_teams &&
GetContextParent().directive != llvm::omp::Directive::OMPD_target) {
context_.Say(parser::FindSourceLocation(x),
"%s region can only be strictly nested within the implicit parallel "
"region or TARGET region"_err_en_US,
ContextDirectiveAsFortran());
}
// If a teams construct is nested within a target construct, that target
// construct must contain no statements, declarations or directives outside
// of the teams construct.
if (GetContext().directive == llvm::omp::Directive::OMPD_teams &&
GetContextParent().directive == llvm::omp::Directive::OMPD_target &&
!GetDirectiveNest(TargetBlockOnlyTeams)) {
context_.Say(GetContextParent().directiveSource,
"TARGET construct with nested TEAMS region contains statements or "
"directives outside of the TEAMS construct"_err_en_US);
}
}
CheckNoBranching(block, beginDir.v, beginDir.source);
// Target block constructs are target device constructs. Keep track of
// whether any such construct has been visited to later check that REQUIRES
// directives for target-related options don't appear after them.
if (llvm::omp::allTargetSet.test(beginDir.v)) {
deviceConstructFound_ = true;
}
if (GetContext().directive == llvm::omp::Directive::OMPD_single) {
std::set<Symbol *> singleCopyprivateSyms;
std::set<Symbol *> endSingleCopyprivateSyms;
bool foundNowait{false};
parser::CharBlock NowaitSource;
auto catchCopyPrivateNowaitClauses = [&](const auto &dir, bool endDir) {
for (auto &clause : std::get<parser::OmpClauseList>(dir.t).v) {
if (clause.Id() == llvm::omp::Clause::OMPC_copyprivate) {
for (const auto &ompObject : GetOmpObjectList(clause)->v) {
const auto *name{parser::Unwrap<parser::Name>(ompObject)};
if (Symbol * symbol{name->symbol}) {
if (singleCopyprivateSyms.count(symbol)) {
if (endDir) {
context_.Warn(common::UsageWarning::OpenMPUsage, name->source,
"The COPYPRIVATE clause with '%s' is already used on the SINGLE directive"_warn_en_US,
name->ToString());
} else {
context_.Say(name->source,
"'%s' appears in more than one COPYPRIVATE clause on the SINGLE directive"_err_en_US,
name->ToString());
}
} else if (endSingleCopyprivateSyms.count(symbol)) {
context_.Say(name->source,
"'%s' appears in more than one COPYPRIVATE clause on the END SINGLE directive"_err_en_US,
name->ToString());
} else {
if (endDir) {
endSingleCopyprivateSyms.insert(symbol);
} else {
singleCopyprivateSyms.insert(symbol);
}
}
}
}
} else if (clause.Id() == llvm::omp::Clause::OMPC_nowait) {
if (foundNowait) {
context_.Say(clause.source,
"At most one NOWAIT clause can appear on the SINGLE directive"_err_en_US);
} else {
foundNowait = !endDir;
}
if (!NowaitSource.ToString().size()) {
NowaitSource = clause.source;
}
}
}
};
catchCopyPrivateNowaitClauses(beginBlockDir, false);
catchCopyPrivateNowaitClauses(endBlockDir, true);
unsigned version{context_.langOptions().OpenMPVersion};
if (version <= 52 && NowaitSource.ToString().size() &&
(singleCopyprivateSyms.size() || endSingleCopyprivateSyms.size())) {
context_.Say(NowaitSource,
"NOWAIT clause must not be used with COPYPRIVATE clause on the SINGLE directive"_err_en_US);
}
}
switch (beginDir.v) {
case llvm::omp::Directive::OMPD_target:
if (CheckTargetBlockOnlyTeams(block)) {
EnterDirectiveNest(TargetBlockOnlyTeams);
}
break;
case llvm::omp::OMPD_workshare:
case llvm::omp::OMPD_parallel_workshare:
CheckWorkshareBlockStmts(block, beginDir.source);
HasInvalidWorksharingNesting(
beginDir.source, llvm::omp::nestedWorkshareErrSet);
break;
case llvm::omp::Directive::OMPD_scope:
case llvm::omp::Directive::OMPD_single:
// TODO: This check needs to be extended while implementing nesting of
// regions checks.
HasInvalidWorksharingNesting(
beginDir.source, llvm::omp::nestedWorkshareErrSet);
break;
case llvm::omp::Directive::OMPD_task: {
const auto &clauses{std::get<parser::OmpClauseList>(beginBlockDir.t)};
for (const auto &clause : clauses.v) {
if (std::get_if<parser::OmpClause::Untied>(&clause.u)) {
OmpUnitedTaskDesignatorChecker check{context_};
parser::Walk(block, check);
}
}
break;
}
default:
break;
}
}
void OmpStructureChecker::CheckMasterNesting(
const parser::OpenMPBlockConstruct &x) {
// A MASTER region may not be `closely nested` inside a worksharing, loop,
// task, taskloop, or atomic region.
// TODO: Expand the check to include `LOOP` construct as well when it is
// supported.
if (IsCloselyNestedRegion(llvm::omp::nestedMasterErrSet)) {
context_.Say(parser::FindSourceLocation(x),
"`MASTER` region may not be closely nested inside of `WORKSHARING`, "
"`LOOP`, `TASK`, `TASKLOOP`,"
" or `ATOMIC` region."_err_en_US);
}
}
void OmpStructureChecker::Enter(const parser::OpenMPAssumeConstruct &x) {
PushContextAndClauseSets(x.source, llvm::omp::Directive::OMPD_assume);
}
void OmpStructureChecker::Leave(const parser::OpenMPAssumeConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPDeclarativeAssumes &x) {
PushContextAndClauseSets(x.source, llvm::omp::Directive::OMPD_assumes);
}
void OmpStructureChecker::Leave(const parser::OpenMPDeclarativeAssumes &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Leave(const parser::OpenMPBlockConstruct &) {
if (GetDirectiveNest(TargetBlockOnlyTeams)) {
ExitDirectiveNest(TargetBlockOnlyTeams);
}
if (llvm::omp::allTargetSet.test(GetContext().directive)) {
ExitDirectiveNest(TargetNest);
}
dirContext_.pop_back();
}
void OmpStructureChecker::ChecksOnOrderedAsBlock() {
if (FindClause(llvm::omp::Clause::OMPC_depend)) {
context_.Say(GetContext().clauseSource,
"DEPEND clauses are not allowed when ORDERED construct is a block construct with an ORDERED region"_err_en_US);
return;
}
bool isNestedInDo{false};
bool isNestedInDoSIMD{false};
bool isNestedInSIMD{false};
bool noOrderedClause{false};
bool isOrderedClauseWithPara{false};
bool isCloselyNestedRegion{true};
if (CurrentDirectiveIsNested()) {
for (int i = (int)dirContext_.size() - 2; i >= 0; i--) {
if (llvm::omp::nestedOrderedErrSet.test(dirContext_[i].directive)) {
context_.Say(GetContext().directiveSource,
"`ORDERED` region may not be closely nested inside of `CRITICAL`, "
"`ORDERED`, explicit `TASK` or `TASKLOOP` region."_err_en_US);
break;
} else if (llvm::omp::allDoSet.test(dirContext_[i].directive)) {
isNestedInDo = true;
isNestedInDoSIMD =
llvm::omp::allDoSimdSet.test(dirContext_[i].directive);
if (const auto *clause{
FindClause(dirContext_[i], llvm::omp::Clause::OMPC_ordered)}) {
const auto &orderedClause{
std::get<parser::OmpClause::Ordered>(clause->u)};
const auto orderedValue{GetIntValue(orderedClause.v)};
isOrderedClauseWithPara = orderedValue > 0;
} else {
noOrderedClause = true;
}
break;
} else if (llvm::omp::allSimdSet.test(dirContext_[i].directive)) {
isNestedInSIMD = true;
break;
} else if (llvm::omp::nestedOrderedParallelErrSet.test(
dirContext_[i].directive)) {
isCloselyNestedRegion = false;
break;
}
}
}
if (!isCloselyNestedRegion) {
context_.Say(GetContext().directiveSource,
"An ORDERED directive without the DEPEND clause must be closely nested "
"in a SIMD, worksharing-loop, or worksharing-loop SIMD "
"region"_err_en_US);
} else {
if (CurrentDirectiveIsNested() &&
FindClause(llvm::omp::Clause::OMPC_simd) &&
(!isNestedInDoSIMD && !isNestedInSIMD)) {
context_.Say(GetContext().directiveSource,
"An ORDERED directive with SIMD clause must be closely nested in a "
"SIMD or worksharing-loop SIMD region"_err_en_US);
}
if (isNestedInDo && (noOrderedClause || isOrderedClauseWithPara)) {
context_.Say(GetContext().directiveSource,
"An ORDERED directive without the DEPEND clause must be closely "
"nested in a worksharing-loop (or worksharing-loop SIMD) region with "
"ORDERED clause without the parameter"_err_en_US);
}
}
}
void OmpStructureChecker::Leave(const parser::OmpBeginBlockDirective &) {
switch (GetContext().directive) {
case llvm::omp::Directive::OMPD_ordered:
// [5.1] 2.19.9 Ordered Construct Restriction
ChecksOnOrderedAsBlock();
break;
default:
break;
}
}
void OmpStructureChecker::Enter(const parser::OpenMPSectionsConstruct &x) {
const auto &beginSectionsDir{
std::get<parser::OmpBeginSectionsDirective>(x.t)};
const auto &endSectionsDir{std::get<parser::OmpEndSectionsDirective>(x.t)};
const auto &beginDir{
std::get<parser::OmpSectionsDirective>(beginSectionsDir.t)};
const auto &endDir{std::get<parser::OmpSectionsDirective>(endSectionsDir.t)};
CheckMatching<parser::OmpSectionsDirective>(beginDir, endDir);
PushContextAndClauseSets(beginDir.source, beginDir.v);
AddEndDirectiveClauses(std::get<parser::OmpClauseList>(endSectionsDir.t));
const auto &sectionBlocks{std::get<parser::OmpSectionBlocks>(x.t)};
for (const parser::OpenMPConstruct &block : sectionBlocks.v) {
CheckNoBranching(std::get<parser::OpenMPSectionConstruct>(block.u).v,
beginDir.v, beginDir.source);
}
HasInvalidWorksharingNesting(
beginDir.source, llvm::omp::nestedWorkshareErrSet);
}
void OmpStructureChecker::Leave(const parser::OpenMPSectionsConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OmpEndSectionsDirective &x) {
const auto &dir{std::get<parser::OmpSectionsDirective>(x.t)};
ResetPartialContext(dir.source);
switch (dir.v) {
// 2.7.2 end-sections -> END SECTIONS [nowait-clause]
case llvm::omp::Directive::OMPD_sections:
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_end_sections);
break;
default:
// no clauses are allowed
break;
}
}
// TODO: Verify the popping of dirContext requirement after nowait
// implementation, as there is an implicit barrier at the end of the worksharing
// constructs unless a nowait clause is specified. Only OMPD_end_sections is
// popped becuase it is pushed while entering the EndSectionsDirective.
void OmpStructureChecker::Leave(const parser::OmpEndSectionsDirective &x) {
if (GetContext().directive == llvm::omp::Directive::OMPD_end_sections) {
dirContext_.pop_back();
}
}
void OmpStructureChecker::CheckThreadprivateOrDeclareTargetVar(
const parser::OmpObjectList &objList) {
for (const auto &ompObject : objList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
// The symbol is null, return early, CheckSymbolNames
// should have already reported the missing symbol as a
// diagnostic error
if (!name->symbol) {
return;
}
if (name->symbol->GetUltimate().IsSubprogram()) {
if (GetContext().directive ==
llvm::omp::Directive::OMPD_threadprivate)
context_.Say(name->source,
"The procedure name cannot be in a %s "
"directive"_err_en_US,
ContextDirectiveAsFortran());
// TODO: Check for procedure name in declare target directive.
} else if (name->symbol->attrs().test(Attr::PARAMETER)) {
if (GetContext().directive ==
llvm::omp::Directive::OMPD_threadprivate)
context_.Say(name->source,
"The entity with PARAMETER attribute cannot be in a %s "
"directive"_err_en_US,
ContextDirectiveAsFortran());
else if (GetContext().directive ==
llvm::omp::Directive::OMPD_declare_target)
context_.Warn(common::UsageWarning::OpenMPUsage,
name->source,
"The entity with PARAMETER attribute is used in a %s directive"_warn_en_US,
ContextDirectiveAsFortran());
} else if (FindCommonBlockContaining(*name->symbol)) {
context_.Say(name->source,
"A variable in a %s directive cannot be an element of a "
"common block"_err_en_US,
ContextDirectiveAsFortran());
} else if (FindEquivalenceSet(*name->symbol)) {
context_.Say(name->source,
"A variable in a %s directive cannot appear in an "
"EQUIVALENCE statement"_err_en_US,
ContextDirectiveAsFortran());
} else if (name->symbol->test(Symbol::Flag::OmpThreadprivate) &&
GetContext().directive ==
llvm::omp::Directive::OMPD_declare_target) {
context_.Say(name->source,
"A THREADPRIVATE variable cannot appear in a %s "
"directive"_err_en_US,
ContextDirectiveAsFortran());
} else {
const semantics::Scope &useScope{
context_.FindScope(GetContext().directiveSource)};
const semantics::Scope &curScope =
name->symbol->GetUltimate().owner();
if (!curScope.IsTopLevel()) {
const semantics::Scope &declScope =
GetProgramUnitOrBlockConstructContaining(curScope);
const semantics::Symbol *sym{
declScope.parent().FindSymbol(name->symbol->name())};
if (sym &&
(sym->has<MainProgramDetails>() ||
sym->has<ModuleDetails>())) {
context_.Say(name->source,
"The module name or main program name cannot be in a "
"%s "
"directive"_err_en_US,
ContextDirectiveAsFortran());
} else if (!IsSaved(*name->symbol) &&
declScope.kind() != Scope::Kind::MainProgram &&
declScope.kind() != Scope::Kind::Module) {
context_.Say(name->source,
"A variable that appears in a %s directive must be "
"declared in the scope of a module or have the SAVE "
"attribute, either explicitly or "
"implicitly"_err_en_US,
ContextDirectiveAsFortran());
} else if (useScope != declScope) {
context_.Say(name->source,
"The %s directive and the common block or variable "
"in it must appear in the same declaration section "
"of a scoping unit"_err_en_US,
ContextDirectiveAsFortran());
}
}
}
}
},
[&](const parser::Name &name) {
if (name.symbol) {
if (auto *cb{name.symbol->detailsIf<CommonBlockDetails>()}) {
for (const auto &obj : cb->objects()) {
if (FindEquivalenceSet(*obj)) {
context_.Say(name.source,
"A variable in a %s directive cannot appear in an EQUIVALENCE statement (variable '%s' from common block '/%s/')"_err_en_US,
ContextDirectiveAsFortran(), obj->name(),
name.symbol->name());
}
}
}
}
},
},
ompObject.u);
}
}
void OmpStructureChecker::Enter(const parser::OpenMPThreadprivate &c) {
const auto &dir{std::get<parser::Verbatim>(c.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_threadprivate);
}
void OmpStructureChecker::Leave(const parser::OpenMPThreadprivate &c) {
const auto &dir{std::get<parser::Verbatim>(c.t)};
const auto &objectList{std::get<parser::OmpObjectList>(c.t)};
CheckSymbolNames(dir.source, objectList);
CheckIsVarPartOfAnotherVar(dir.source, objectList);
CheckThreadprivateOrDeclareTargetVar(objectList);
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPDeclareSimdConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_declare_simd);
}
void OmpStructureChecker::Leave(const parser::OpenMPDeclareSimdConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OmpDeclareVariantDirective &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_declare_variant);
}
void OmpStructureChecker::Leave(const parser::OmpDeclareVariantDirective &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPDepobjConstruct &x) {
const auto &dirName{std::get<parser::OmpDirectiveName>(x.v.t)};
PushContextAndClauseSets(dirName.source, llvm::omp::Directive::OMPD_depobj);
unsigned version{context_.langOptions().OpenMPVersion};
const parser::OmpArgumentList &arguments{x.v.Arguments()};
const parser::OmpClauseList &clauses{x.v.Clauses()};
// Ref: [6.0:505-506]
if (version < 60) {
if (arguments.v.size() != 1) {
parser::CharBlock source(
arguments.v.empty() ? dirName.source : arguments.source);
context_.Say(
source, "The DEPOBJ directive requires a single argument"_err_en_US);
}
}
if (clauses.v.size() != 1) {
context_.Say(
x.source, "The DEPOBJ construct requires a single clause"_err_en_US);
return;
}
auto &clause{clauses.v.front()};
if (version >= 60 && arguments.v.empty()) {
context_.Say(x.source,
"DEPOBJ syntax with no argument is not handled yet"_err_en_US);
return;
}
// [5.2:73:27-28]
// If the destroy clause appears on a depobj construct, destroy-var must
// refer to the same depend object as the depobj argument of the construct.
if (clause.Id() == llvm::omp::Clause::OMPC_destroy) {
auto getObjSymbol{[&](const parser::OmpObject &obj) {
return common::visit(
[&](auto &&s) { return GetLastName(s).symbol; }, obj.u);
}};
auto getArgSymbol{[&](const parser::OmpArgument &arg) {
if (auto *locator{std::get_if<parser::OmpLocator>(&arg.u)}) {
if (auto *object{std::get_if<parser::OmpObject>(&locator->u)}) {
return getObjSymbol(*object);
}
}
return static_cast<Symbol *>(nullptr);
}};
auto &wrapper{std::get<parser::OmpClause::Destroy>(clause.u)};
if (const std::optional<parser::OmpDestroyClause> &destroy{wrapper.v}) {
const Symbol *constrSym{getArgSymbol(arguments.v.front())};
const Symbol *clauseSym{getObjSymbol(destroy->v)};
assert(constrSym && "Unresolved depobj construct symbol");
assert(clauseSym && "Unresolved destroy symbol on depobj construct");
if (constrSym != clauseSym) {
context_.Say(x.source,
"The DESTROY clause must refer to the same object as the "
"DEPOBJ construct"_err_en_US);
}
}
}
}
void OmpStructureChecker::Leave(const parser::OpenMPDepobjConstruct &x) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPRequiresConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_requires);
}
void OmpStructureChecker::Leave(const parser::OpenMPRequiresConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::CheckAlignValue(const parser::OmpClause &clause) {
if (auto *align{std::get_if<parser::OmpClause::Align>(&clause.u)}) {
if (const auto &v{GetIntValue(align->v)}; !v || *v <= 0) {
context_.Say(clause.source,
"The alignment value should be a constant positive integer"_err_en_US);
}
}
}
void OmpStructureChecker::Enter(const parser::OpenMPDeclarativeAllocate &x) {
isPredefinedAllocator = true;
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &objectList{std::get<parser::OmpObjectList>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocate);
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(objectList, currSymbols);
for (auto &[symbol, source] : currSymbols) {
if (IsPointer(*symbol)) {
context_.Say(source,
"List item '%s' in ALLOCATE directive must not have POINTER "
"attribute"_err_en_US,
source.ToString());
}
if (IsDummy(*symbol)) {
context_.Say(source,
"List item '%s' in ALLOCATE directive must not be a dummy "
"argument"_err_en_US,
source.ToString());
}
if (symbol->GetUltimate().has<AssocEntityDetails>()) {
context_.Say(source,
"List item '%s' in ALLOCATE directive must not be an associate "
"name"_err_en_US,
source.ToString());
}
}
for (const auto &clause : clauseList.v) {
CheckAlignValue(clause);
}
CheckIsVarPartOfAnotherVar(dir.source, objectList);
}
void OmpStructureChecker::Leave(const parser::OpenMPDeclarativeAllocate &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &objectList{std::get<parser::OmpObjectList>(x.t)};
CheckPredefinedAllocatorRestriction(dir.source, objectList);
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OmpClause::Allocator &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_allocator);
// Note: Predefined allocators are stored in ScalarExpr as numbers
// whereas custom allocators are stored as strings, so if the ScalarExpr
// actually has an int value, then it must be a predefined allocator
isPredefinedAllocator = GetIntValue(x.v).has_value();
RequiresPositiveParameter(llvm::omp::Clause::OMPC_allocator, x.v);
}
void OmpStructureChecker::Enter(const parser::OmpClause::Allocate &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_allocate);
if (OmpVerifyModifiers(
x.v, llvm::omp::OMPC_allocate, GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
if (auto *align{
OmpGetUniqueModifier<parser::OmpAlignModifier>(modifiers)}) {
if (const auto &v{GetIntValue(align->v)}; !v || *v <= 0) {
context_.Say(OmpGetModifierSource(modifiers, align),
"The alignment value should be a constant positive integer"_err_en_US);
}
}
// The simple and complex modifiers have the same structure. They only
// differ in their syntax.
if (auto *alloc{OmpGetUniqueModifier<parser::OmpAllocatorComplexModifier>(
modifiers)}) {
isPredefinedAllocator = GetIntValue(alloc->v).has_value();
}
if (auto *alloc{OmpGetUniqueModifier<parser::OmpAllocatorSimpleModifier>(
modifiers)}) {
isPredefinedAllocator = GetIntValue(alloc->v).has_value();
}
}
}
void OmpStructureChecker::Enter(const parser::OmpDeclareTargetWithClause &x) {
SetClauseSets(llvm::omp::Directive::OMPD_declare_target);
}
void OmpStructureChecker::Leave(const parser::OmpDeclareTargetWithClause &x) {
if (x.v.v.size() > 0) {
const parser::OmpClause *enterClause =
FindClause(llvm::omp::Clause::OMPC_enter);
const parser::OmpClause *toClause = FindClause(llvm::omp::Clause::OMPC_to);
const parser::OmpClause *linkClause =
FindClause(llvm::omp::Clause::OMPC_link);
if (!enterClause && !toClause && !linkClause) {
context_.Say(x.source,
"If the DECLARE TARGET directive has a clause, it must contain at least one ENTER clause or LINK clause"_err_en_US);
}
unsigned version{context_.langOptions().OpenMPVersion};
if (toClause && version >= 52) {
context_.Warn(common::UsageWarning::OpenMPUsage, toClause->source,
"The usage of TO clause on DECLARE TARGET directive has been deprecated. Use ENTER clause instead."_warn_en_US);
}
}
}
void OmpStructureChecker::Enter(const parser::OpenMPDeclareMapperConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_declare_mapper);
const auto &spec{std::get<parser::OmpMapperSpecifier>(x.t)};
const auto &type = std::get<parser::TypeSpec>(spec.t);
if (!std::get_if<parser::DerivedTypeSpec>(&type.u)) {
context_.Say(dir.source, "Type is not a derived type"_err_en_US);
}
}
void OmpStructureChecker::Leave(const parser::OpenMPDeclareMapperConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(
const parser::OpenMPDeclareReductionConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_declare_reduction);
}
void OmpStructureChecker::Leave(
const parser::OpenMPDeclareReductionConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPDeclareTargetConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContext(dir.source, llvm::omp::Directive::OMPD_declare_target);
}
void OmpStructureChecker::Enter(const parser::OmpDeclareTargetWithList &x) {
SymbolSourceMap symbols;
GetSymbolsInObjectList(x.v, symbols);
for (auto &[symbol, source] : symbols) {
const GenericDetails *genericDetails = symbol->detailsIf<GenericDetails>();
if (genericDetails) {
context_.Say(source,
"The procedure '%s' in DECLARE TARGET construct cannot be a generic name."_err_en_US,
symbol->name());
genericDetails->specific();
}
if (IsProcedurePointer(*symbol)) {
context_.Say(source,
"The procedure '%s' in DECLARE TARGET construct cannot be a procedure pointer."_err_en_US,
symbol->name());
}
const SubprogramDetails *entryDetails =
symbol->detailsIf<SubprogramDetails>();
if (entryDetails && entryDetails->entryScope()) {
context_.Say(source,
"The procedure '%s' in DECLARE TARGET construct cannot be an entry name."_err_en_US,
symbol->name());
}
if (IsStmtFunction(*symbol)) {
context_.Say(source,
"The procedure '%s' in DECLARE TARGET construct cannot be a statement function."_err_en_US,
symbol->name());
}
}
}
void OmpStructureChecker::CheckSymbolNames(
const parser::CharBlock &source, const parser::OmpObjectList &objList) {
for (const auto &ompObject : objList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (!name->symbol) {
context_.Say(source,
"The given %s directive clause has an invalid argument"_err_en_US,
ContextDirectiveAsFortran());
}
}
},
[&](const parser::Name &name) {
if (!name.symbol) {
context_.Say(source,
"The given %s directive clause has an invalid argument"_err_en_US,
ContextDirectiveAsFortran());
}
},
},
ompObject.u);
}
}
void OmpStructureChecker::Leave(const parser::OpenMPDeclareTargetConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &spec{std::get<parser::OmpDeclareTargetSpecifier>(x.t)};
// Handle both forms of DECLARE TARGET.
// - Extended list: It behaves as if there was an ENTER/TO clause with the
// list of objects as argument. It accepts no explicit clauses.
// - With clauses.
if (const auto *objectList{parser::Unwrap<parser::OmpObjectList>(spec.u)}) {
deviceConstructFound_ = true;
CheckSymbolNames(dir.source, *objectList);
CheckIsVarPartOfAnotherVar(dir.source, *objectList);
CheckThreadprivateOrDeclareTargetVar(*objectList);
} else if (const auto *clauseList{
parser::Unwrap<parser::OmpClauseList>(spec.u)}) {
bool toClauseFound{false}, deviceTypeClauseFound{false},
enterClauseFound{false};
for (const auto &clause : clauseList->v) {
common::visit(
common::visitors{
[&](const parser::OmpClause::To &toClause) {
toClauseFound = true;
auto &objList{std::get<parser::OmpObjectList>(toClause.v.t)};
CheckSymbolNames(dir.source, objList);
CheckIsVarPartOfAnotherVar(dir.source, objList);
CheckThreadprivateOrDeclareTargetVar(objList);
},
[&](const parser::OmpClause::Link &linkClause) {
CheckSymbolNames(dir.source, linkClause.v);
CheckIsVarPartOfAnotherVar(dir.source, linkClause.v);
CheckThreadprivateOrDeclareTargetVar(linkClause.v);
},
[&](const parser::OmpClause::Enter &enterClause) {
enterClauseFound = true;
CheckSymbolNames(dir.source, enterClause.v);
CheckIsVarPartOfAnotherVar(dir.source, enterClause.v);
CheckThreadprivateOrDeclareTargetVar(enterClause.v);
},
[&](const parser::OmpClause::DeviceType &deviceTypeClause) {
deviceTypeClauseFound = true;
if (deviceTypeClause.v.v !=
parser::OmpDeviceTypeClause::DeviceTypeDescription::Host) {
// Function / subroutine explicitly marked as runnable by the
// target device.
deviceConstructFound_ = true;
}
},
[&](const auto &) {},
},
clause.u);
if ((toClauseFound || enterClauseFound) && !deviceTypeClauseFound) {
deviceConstructFound_ = true;
}
}
}
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OmpErrorDirective &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_error);
}
void OmpStructureChecker::Enter(const parser::OpenMPDispatchConstruct &x) {
PushContextAndClauseSets(x.source, llvm::omp::Directive::OMPD_dispatch);
const auto &block{std::get<parser::Block>(x.t)};
if (block.empty() || block.size() > 1) {
context_.Say(x.source,
"The DISPATCH construct is empty or contains more than one statement"_err_en_US);
return;
}
auto it{block.begin()};
bool passChecks{false};
if (const parser::AssignmentStmt *
assignStmt{parser::Unwrap<parser::AssignmentStmt>(*it)}) {
if (parser::Unwrap<parser::FunctionReference>(assignStmt->t)) {
passChecks = true;
}
} else if (parser::Unwrap<parser::CallStmt>(*it)) {
passChecks = true;
}
if (!passChecks) {
context_.Say(x.source,
"The DISPATCH construct does not contain a SUBROUTINE or FUNCTION"_err_en_US);
}
}
void OmpStructureChecker::Leave(const parser::OpenMPDispatchConstruct &x) {
dirContext_.pop_back();
}
void OmpStructureChecker::Leave(const parser::OmpErrorDirective &x) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OmpClause::At &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_at);
if (GetDirectiveNest(DeclarativeNest) > 0) {
if (x.v.v == parser::OmpAtClause::ActionTime::Execution) {
context_.Say(GetContext().clauseSource,
"The ERROR directive with AT(EXECUTION) cannot appear in the specification part"_err_en_US);
}
}
}
void OmpStructureChecker::Enter(const parser::OpenMPExecutableAllocate &x) {
isPredefinedAllocator = true;
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &objectList{std::get<std::optional<parser::OmpObjectList>>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocate);
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
for (const auto &clause : clauseList.v) {
CheckAlignValue(clause);
}
if (objectList) {
CheckIsVarPartOfAnotherVar(dir.source, *objectList);
}
}
void OmpStructureChecker::Leave(const parser::OpenMPExecutableAllocate &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &objectList{std::get<std::optional<parser::OmpObjectList>>(x.t)};
if (objectList)
CheckPredefinedAllocatorRestriction(dir.source, *objectList);
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPAllocatorsConstruct &x) {
isPredefinedAllocator = true;
const auto &dir{std::get<parser::Verbatim>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocators);
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
for (const auto &clause : clauseList.v) {
if (const auto *allocClause{
parser::Unwrap<parser::OmpClause::Allocate>(clause)}) {
CheckIsVarPartOfAnotherVar(
dir.source, std::get<parser::OmpObjectList>(allocClause->v.t));
}
}
}
void OmpStructureChecker::Leave(const parser::OpenMPAllocatorsConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
for (const auto &clause : clauseList.v) {
if (const auto *allocClause{
std::get_if<parser::OmpClause::Allocate>(&clause.u)}) {
CheckPredefinedAllocatorRestriction(
dir.source, std::get<parser::OmpObjectList>(allocClause->v.t));
}
}
dirContext_.pop_back();
}
void OmpStructureChecker::CheckScan(
const parser::OpenMPSimpleStandaloneConstruct &x) {
if (x.v.Clauses().v.size() != 1) {
context_.Say(x.source,
"Exactly one of EXCLUSIVE or INCLUSIVE clause is expected"_err_en_US);
}
if (!CurrentDirectiveIsNested() ||
!llvm::omp::scanParentAllowedSet.test(GetContextParent().directive)) {
context_.Say(x.source,
"Orphaned SCAN directives are prohibited; perhaps you forgot "
"to enclose the directive in to a WORKSHARING LOOP, a WORKSHARING "
"LOOP SIMD or a SIMD directive."_err_en_US);
}
}
void OmpStructureChecker::CheckBarrierNesting(
const parser::OpenMPSimpleStandaloneConstruct &x) {
// A barrier region may not be `closely nested` inside a worksharing, loop,
// task, taskloop, critical, ordered, atomic, or master region.
// TODO: Expand the check to include `LOOP` construct as well when it is
// supported.
if (IsCloselyNestedRegion(llvm::omp::nestedBarrierErrSet)) {
context_.Say(parser::FindSourceLocation(x),
"`BARRIER` region may not be closely nested inside of `WORKSHARING`, "
"`LOOP`, `TASK`, `TASKLOOP`,"
"`CRITICAL`, `ORDERED`, `ATOMIC` or `MASTER` region."_err_en_US);
}
}
void OmpStructureChecker::ChecksOnOrderedAsStandalone() {
if (FindClause(llvm::omp::Clause::OMPC_threads) ||
FindClause(llvm::omp::Clause::OMPC_simd)) {
context_.Say(GetContext().clauseSource,
"THREADS and SIMD clauses are not allowed when ORDERED construct is a standalone construct with no ORDERED region"_err_en_US);
}
int dependSinkCount{0}, dependSourceCount{0};
bool exclusiveShown{false}, duplicateSourceShown{false};
auto visitDoacross{[&](const parser::OmpDoacross &doa,
const parser::CharBlock &src) {
common::visit(
common::visitors{
[&](const parser::OmpDoacross::Source &) { dependSourceCount++; },
[&](const parser::OmpDoacross::Sink &) { dependSinkCount++; }},
doa.u);
if (!exclusiveShown && dependSinkCount > 0 && dependSourceCount > 0) {
exclusiveShown = true;
context_.Say(src,
"The SINK and SOURCE dependence types are mutually exclusive"_err_en_US);
}
if (!duplicateSourceShown && dependSourceCount > 1) {
duplicateSourceShown = true;
context_.Say(src,
"At most one SOURCE dependence type can appear on the ORDERED directive"_err_en_US);
}
}};
// Visit the DEPEND and DOACROSS clauses.
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_depend)) {
const auto &dependClause{std::get<parser::OmpClause::Depend>(clause->u)};
if (auto *doAcross{std::get_if<parser::OmpDoacross>(&dependClause.v.u)}) {
visitDoacross(*doAcross, clause->source);
} else {
context_.Say(clause->source,
"Only SINK or SOURCE dependence types are allowed when ORDERED construct is a standalone construct with no ORDERED region"_err_en_US);
}
}
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_doacross)) {
auto &doaClause{std::get<parser::OmpClause::Doacross>(clause->u)};
visitDoacross(doaClause.v.v, clause->source);
}
bool isNestedInDoOrderedWithPara{false};
if (CurrentDirectiveIsNested() &&
llvm::omp::nestedOrderedDoAllowedSet.test(GetContextParent().directive)) {
if (const auto *clause{
FindClause(GetContextParent(), llvm::omp::Clause::OMPC_ordered)}) {
const auto &orderedClause{
std::get<parser::OmpClause::Ordered>(clause->u)};
const auto orderedValue{GetIntValue(orderedClause.v)};
if (orderedValue > 0) {
isNestedInDoOrderedWithPara = true;
CheckOrderedDependClause(orderedValue);
}
}
}
if (FindClause(llvm::omp::Clause::OMPC_depend) &&
!isNestedInDoOrderedWithPara) {
context_.Say(GetContext().clauseSource,
"An ORDERED construct with the DEPEND clause must be closely nested "
"in a worksharing-loop (or parallel worksharing-loop) construct with "
"ORDERED clause with a parameter"_err_en_US);
}
}
void OmpStructureChecker::CheckOrderedDependClause(
std::optional<int64_t> orderedValue) {
auto visitDoacross{[&](const parser::OmpDoacross &doa,
const parser::CharBlock &src) {
if (auto *sinkVector{std::get_if<parser::OmpDoacross::Sink>(&doa.u)}) {
int64_t numVar = sinkVector->v.v.size();
if (orderedValue != numVar) {
context_.Say(src,
"The number of variables in the SINK iteration vector does not match the parameter specified in ORDERED clause"_err_en_US);
}
}
}};
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_depend)) {
auto &dependClause{std::get<parser::OmpClause::Depend>(clause->u)};
if (auto *doAcross{std::get_if<parser::OmpDoacross>(&dependClause.v.u)}) {
visitDoacross(*doAcross, clause->source);
}
}
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_doacross)) {
auto &doaClause{std::get<parser::OmpClause::Doacross>(clause->u)};
visitDoacross(doaClause.v.v, clause->source);
}
}
void OmpStructureChecker::CheckTargetUpdate() {
const parser::OmpClause *toWrapper{FindClause(llvm::omp::Clause::OMPC_to)};
const parser::OmpClause *fromWrapper{
FindClause(llvm::omp::Clause::OMPC_from)};
if (!toWrapper && !fromWrapper) {
context_.Say(GetContext().directiveSource,
"At least one motion-clause (TO/FROM) must be specified on "
"TARGET UPDATE construct."_err_en_US);
}
if (toWrapper && fromWrapper) {
SymbolSourceMap toSymbols, fromSymbols;
auto &fromClause{std::get<parser::OmpClause::From>(fromWrapper->u).v};
auto &toClause{std::get<parser::OmpClause::To>(toWrapper->u).v};
GetSymbolsInObjectList(
std::get<parser::OmpObjectList>(fromClause.t), fromSymbols);
GetSymbolsInObjectList(
std::get<parser::OmpObjectList>(toClause.t), toSymbols);
for (auto &[symbol, source] : toSymbols) {
auto fromSymbol{fromSymbols.find(symbol)};
if (fromSymbol != fromSymbols.end()) {
context_.Say(source,
"A list item ('%s') can only appear in a TO or FROM clause, but not in both."_err_en_US,
symbol->name());
context_.Say(source, "'%s' appears in the TO clause."_because_en_US,
symbol->name());
context_.Say(fromSymbol->second,
"'%s' appears in the FROM clause."_because_en_US,
fromSymbol->first->name());
}
}
}
}
void OmpStructureChecker::CheckTaskDependenceType(
const parser::OmpTaskDependenceType::Value &x) {
// Common checks for task-dependence-type (DEPEND and UPDATE clauses).
unsigned version{context_.langOptions().OpenMPVersion};
unsigned since{0};
switch (x) {
case parser::OmpTaskDependenceType::Value::In:
case parser::OmpTaskDependenceType::Value::Out:
case parser::OmpTaskDependenceType::Value::Inout:
break;
case parser::OmpTaskDependenceType::Value::Mutexinoutset:
case parser::OmpTaskDependenceType::Value::Depobj:
since = 50;
break;
case parser::OmpTaskDependenceType::Value::Inoutset:
since = 52;
break;
}
if (version < since) {
context_.Say(GetContext().clauseSource,
"%s task dependence type is not supported in %s, %s"_warn_en_US,
parser::ToUpperCaseLetters(
parser::OmpTaskDependenceType::EnumToString(x)),
ThisVersion(version), TryVersion(since));
}
}
void OmpStructureChecker::CheckDependenceType(
const parser::OmpDependenceType::Value &x) {
// Common checks for dependence-type (DEPEND and UPDATE clauses).
unsigned version{context_.langOptions().OpenMPVersion};
unsigned deprecatedIn{~0u};
switch (x) {
case parser::OmpDependenceType::Value::Source:
case parser::OmpDependenceType::Value::Sink:
deprecatedIn = 52;
break;
}
if (version >= deprecatedIn) {
context_.Say(GetContext().clauseSource,
"%s dependence type is deprecated in %s"_warn_en_US,
parser::ToUpperCaseLetters(parser::OmpDependenceType::EnumToString(x)),
ThisVersion(deprecatedIn));
}
}
void OmpStructureChecker::Enter(
const parser::OpenMPSimpleStandaloneConstruct &x) {
const auto &dir{std::get<parser::OmpDirectiveName>(x.v.t)};
PushContextAndClauseSets(dir.source, dir.v);
switch (dir.v) {
case llvm::omp::Directive::OMPD_barrier:
CheckBarrierNesting(x);
break;
case llvm::omp::Directive::OMPD_scan:
CheckScan(x);
break;
default:
break;
}
}
void OmpStructureChecker::Leave(
const parser::OpenMPSimpleStandaloneConstruct &x) {
switch (GetContext().directive) {
case llvm::omp::Directive::OMPD_ordered:
// [5.1] 2.19.9 Ordered Construct Restriction
ChecksOnOrderedAsStandalone();
break;
case llvm::omp::Directive::OMPD_target_update:
CheckTargetUpdate();
break;
default:
break;
}
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPFlushConstruct &x) {
const auto &dirName{std::get<parser::OmpDirectiveName>(x.v.t)};
PushContextAndClauseSets(dirName.source, llvm::omp::Directive::OMPD_flush);
}
void OmpStructureChecker::Leave(const parser::OpenMPFlushConstruct &x) {
auto &flushList{std::get<std::optional<parser::OmpArgumentList>>(x.v.t)};
if (flushList) {
for (const parser::OmpArgument &arg : flushList->v) {
if (auto *sym{GetArgumentSymbol(arg)}; sym && !IsVariableListItem(*sym)) {
context_.Say(arg.source,
"FLUSH argument must be a variable list item"_err_en_US);
}
}
if (FindClause(llvm::omp::Clause::OMPC_acquire) ||
FindClause(llvm::omp::Clause::OMPC_release) ||
FindClause(llvm::omp::Clause::OMPC_acq_rel)) {
context_.Say(flushList->source,
"If memory-order-clause is RELEASE, ACQUIRE, or ACQ_REL, list items must not be specified on the FLUSH directive"_err_en_US);
}
}
unsigned version{context_.langOptions().OpenMPVersion};
if (version >= 52) {
using Flags = parser::OmpDirectiveSpecification::Flags;
if (std::get<Flags>(x.v.t) == Flags::DeprecatedSyntax) {
context_.Say(x.source,
"The syntax \"FLUSH clause (object, ...)\" has been deprecated, use \"FLUSH(object, ...) clause\" instead"_warn_en_US);
}
}
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPCancelConstruct &x) {
auto &dirName{std::get<parser::OmpDirectiveName>(x.v.t)};
auto &maybeClauses{std::get<std::optional<parser::OmpClauseList>>(x.v.t)};
PushContextAndClauseSets(dirName.source, llvm::omp::Directive::OMPD_cancel);
if (auto maybeConstruct{GetCancelType(
llvm::omp::Directive::OMPD_cancel, x.source, maybeClauses)}) {
CheckCancellationNest(dirName.source, *maybeConstruct);
if (CurrentDirectiveIsNested()) {
// nowait can be put on the end directive rather than the start directive
// so we need to check both
auto getParentClauses{[&]() {
const DirectiveContext &parent{GetContextParent()};
return llvm::concat<const llvm::omp::Clause>(
parent.actualClauses, parent.endDirectiveClauses);
}};
if (llvm::omp::nestedCancelDoAllowedSet.test(*maybeConstruct)) {
for (llvm::omp::Clause clause : getParentClauses()) {
if (clause == llvm::omp::Clause::OMPC_nowait) {
context_.Say(dirName.source,
"The CANCEL construct cannot be nested inside of a worksharing construct with the NOWAIT clause"_err_en_US);
}
if (clause == llvm::omp::Clause::OMPC_ordered) {
context_.Say(dirName.source,
"The CANCEL construct cannot be nested inside of a worksharing construct with the ORDERED clause"_err_en_US);
}
}
} else if (llvm::omp::nestedCancelSectionsAllowedSet.test(
*maybeConstruct)) {
for (llvm::omp::Clause clause : getParentClauses()) {
if (clause == llvm::omp::Clause::OMPC_nowait) {
context_.Say(dirName.source,
"The CANCEL construct cannot be nested inside of a worksharing construct with the NOWAIT clause"_err_en_US);
}
}
}
}
}
}
void OmpStructureChecker::Leave(const parser::OpenMPCancelConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(const parser::OpenMPCriticalConstruct &x) {
const auto &dir{std::get<parser::OmpCriticalDirective>(x.t)};
const auto &endDir{std::get<parser::OmpEndCriticalDirective>(x.t)};
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_critical);
const auto &block{std::get<parser::Block>(x.t)};
CheckNoBranching(block, llvm::omp::Directive::OMPD_critical, dir.source);
const auto &dirName{std::get<std::optional<parser::Name>>(dir.t)};
const auto &endDirName{std::get<std::optional<parser::Name>>(endDir.t)};
const auto &ompClause{std::get<parser::OmpClauseList>(dir.t)};
if (dirName && endDirName &&
dirName->ToString().compare(endDirName->ToString())) {
context_
.Say(endDirName->source,
parser::MessageFormattedText{
"CRITICAL directive names do not match"_err_en_US})
.Attach(dirName->source, "should be "_en_US);
} else if (dirName && !endDirName) {
context_
.Say(dirName->source,
parser::MessageFormattedText{
"CRITICAL directive names do not match"_err_en_US})
.Attach(dirName->source, "should be NULL"_en_US);
} else if (!dirName && endDirName) {
context_
.Say(endDirName->source,
parser::MessageFormattedText{
"CRITICAL directive names do not match"_err_en_US})
.Attach(endDirName->source, "should be NULL"_en_US);
}
if (!dirName && !ompClause.source.empty() &&
ompClause.source.NULTerminatedToString() != "hint(omp_sync_hint_none)") {
context_.Say(dir.source,
parser::MessageFormattedText{
"Hint clause other than omp_sync_hint_none cannot be specified for "
"an unnamed CRITICAL directive"_err_en_US});
}
CheckHintClause<const parser::OmpClauseList>(&ompClause, nullptr, "CRITICAL");
}
void OmpStructureChecker::Leave(const parser::OpenMPCriticalConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::Enter(
const parser::OmpClause::CancellationConstructType &x) {
// Do not call CheckAllowed/CheckAllowedClause, because in case of an error
// it will print "CANCELLATION_CONSTRUCT_TYPE" as the clause name instead of
// the contained construct name.
auto &dirName{std::get<parser::OmpDirectiveName>(x.v.t)};
switch (dirName.v) {
case llvm::omp::Directive::OMPD_do:
case llvm::omp::Directive::OMPD_parallel:
case llvm::omp::Directive::OMPD_sections:
case llvm::omp::Directive::OMPD_taskgroup:
break;
default:
context_.Say(dirName.source, "%s is not a cancellable construct"_err_en_US,
parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(dirName.v).str()));
break;
}
}
void OmpStructureChecker::Enter(
const parser::OpenMPCancellationPointConstruct &x) {
auto &dirName{std::get<parser::OmpDirectiveName>(x.v.t)};
auto &maybeClauses{std::get<std::optional<parser::OmpClauseList>>(x.v.t)};
PushContextAndClauseSets(
dirName.source, llvm::omp::Directive::OMPD_cancellation_point);
if (auto maybeConstruct{
GetCancelType(llvm::omp::Directive::OMPD_cancellation_point, x.source,
maybeClauses)}) {
CheckCancellationNest(dirName.source, *maybeConstruct);
}
}
void OmpStructureChecker::Leave(
const parser::OpenMPCancellationPointConstruct &) {
dirContext_.pop_back();
}
std::optional<llvm::omp::Directive> OmpStructureChecker::GetCancelType(
llvm::omp::Directive cancelDir, const parser::CharBlock &cancelSource,
const std::optional<parser::OmpClauseList> &maybeClauses) {
if (!maybeClauses) {
return std::nullopt;
}
// Given clauses from CANCEL or CANCELLATION_POINT, identify the construct
// to which the cancellation applies.
std::optional<llvm::omp::Directive> cancelee;
llvm::StringRef cancelName{llvm::omp::getOpenMPDirectiveName(cancelDir)};
for (const parser::OmpClause &clause : maybeClauses->v) {
using CancellationConstructType =
parser::OmpClause::CancellationConstructType;
if (auto *cctype{std::get_if<CancellationConstructType>(&clause.u)}) {
if (cancelee) {
context_.Say(cancelSource,
"Multiple cancel-directive-name clauses are not allowed on the %s construct"_err_en_US,
parser::ToUpperCaseLetters(cancelName.str()));
return std::nullopt;
}
cancelee = std::get<parser::OmpDirectiveName>(cctype->v.t).v;
}
}
if (!cancelee) {
context_.Say(cancelSource,
"Missing cancel-directive-name clause on the %s construct"_err_en_US,
parser::ToUpperCaseLetters(cancelName.str()));
return std::nullopt;
}
return cancelee;
}
void OmpStructureChecker::CheckCancellationNest(
const parser::CharBlock &source, llvm::omp::Directive type) {
llvm::StringRef typeName{llvm::omp::getOpenMPDirectiveName(type)};
if (CurrentDirectiveIsNested()) {
// If construct-type-clause is taskgroup, the cancellation construct must be
// closely nested inside a task or a taskloop construct and the cancellation
// region must be closely nested inside a taskgroup region. If
// construct-type-clause is sections, the cancellation construct must be
// closely nested inside a sections or section construct. Otherwise, the
// cancellation construct must be closely nested inside an OpenMP construct
// that matches the type specified in construct-type-clause of the
// cancellation construct.
bool eligibleCancellation{false};
switch (type) {
case llvm::omp::Directive::OMPD_taskgroup:
if (llvm::omp::nestedCancelTaskgroupAllowedSet.test(
GetContextParent().directive)) {
eligibleCancellation = true;
if (dirContext_.size() >= 3) {
// Check if the cancellation region is closely nested inside a
// taskgroup region when there are more than two levels of directives
// in the directive context stack.
if (GetContextParent().directive == llvm::omp::Directive::OMPD_task ||
FindClauseParent(llvm::omp::Clause::OMPC_nogroup)) {
for (int i = dirContext_.size() - 3; i >= 0; i--) {
if (dirContext_[i].directive ==
llvm::omp::Directive::OMPD_taskgroup) {
break;
}
if (llvm::omp::nestedCancelParallelAllowedSet.test(
dirContext_[i].directive)) {
eligibleCancellation = false;
break;
}
}
}
}
}
if (!eligibleCancellation) {
context_.Say(source,
"With %s clause, %s construct must be closely nested inside TASK or TASKLOOP construct and %s region must be closely nested inside TASKGROUP region"_err_en_US,
parser::ToUpperCaseLetters(typeName.str()),
ContextDirectiveAsFortran(), ContextDirectiveAsFortran());
}
return;
case llvm::omp::Directive::OMPD_sections:
if (llvm::omp::nestedCancelSectionsAllowedSet.test(
GetContextParent().directive)) {
eligibleCancellation = true;
}
break;
case llvm::omp::Directive::OMPD_do:
if (llvm::omp::nestedCancelDoAllowedSet.test(
GetContextParent().directive)) {
eligibleCancellation = true;
}
break;
case llvm::omp::Directive::OMPD_parallel:
if (llvm::omp::nestedCancelParallelAllowedSet.test(
GetContextParent().directive)) {
eligibleCancellation = true;
}
break;
default:
// This should have been diagnosed by this point.
llvm_unreachable("Unexpected directive");
}
if (!eligibleCancellation) {
context_.Say(source,
"With %s clause, %s construct cannot be closely nested inside %s construct"_err_en_US,
parser::ToUpperCaseLetters(typeName.str()),
ContextDirectiveAsFortran(),
parser::ToUpperCaseLetters(
getDirectiveName(GetContextParent().directive).str()));
}
} else {
// The cancellation directive cannot be orphaned.
switch (type) {
case llvm::omp::Directive::OMPD_taskgroup:
context_.Say(source,
"%s %s directive is not closely nested inside TASK or TASKLOOP"_err_en_US,
ContextDirectiveAsFortran(),
parser::ToUpperCaseLetters(typeName.str()));
break;
case llvm::omp::Directive::OMPD_sections:
context_.Say(source,
"%s %s directive is not closely nested inside SECTION or SECTIONS"_err_en_US,
ContextDirectiveAsFortran(),
parser::ToUpperCaseLetters(typeName.str()));
break;
case llvm::omp::Directive::OMPD_do:
context_.Say(source,
"%s %s directive is not closely nested inside the construct that matches the DO clause type"_err_en_US,
ContextDirectiveAsFortran(),
parser::ToUpperCaseLetters(typeName.str()));
break;
case llvm::omp::Directive::OMPD_parallel:
context_.Say(source,
"%s %s directive is not closely nested inside the construct that matches the PARALLEL clause type"_err_en_US,
ContextDirectiveAsFortran(),
parser::ToUpperCaseLetters(typeName.str()));
break;
default:
// This should have been diagnosed by this point.
llvm_unreachable("Unexpected directive");
}
}
}
void OmpStructureChecker::Enter(const parser::OmpEndBlockDirective &x) {
const auto &dir{std::get<parser::OmpBlockDirective>(x.t)};
ResetPartialContext(dir.source);
switch (dir.v) {
case llvm::omp::Directive::OMPD_scope:
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_scope);
break;
// 2.7.3 end-single-clause -> copyprivate-clause |
// nowait-clause
case llvm::omp::Directive::OMPD_single:
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_single);
break;
// 2.7.4 end-workshare -> END WORKSHARE [nowait-clause]
case llvm::omp::Directive::OMPD_workshare:
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_end_workshare);
break;
default:
// no clauses are allowed
break;
}
}
// TODO: Verify the popping of dirContext requirement after nowait
// implementation, as there is an implicit barrier at the end of the worksharing
// constructs unless a nowait clause is specified. Only OMPD_end_single and
// end_workshareare popped as they are pushed while entering the
// EndBlockDirective.
void OmpStructureChecker::Leave(const parser::OmpEndBlockDirective &x) {
if ((GetContext().directive == llvm::omp::Directive::OMPD_end_scope) ||
(GetContext().directive == llvm::omp::Directive::OMPD_end_single) ||
(GetContext().directive == llvm::omp::Directive::OMPD_end_workshare)) {
dirContext_.pop_back();
}
}
inline void OmpStructureChecker::ErrIfAllocatableVariable(
const parser::Variable &var) {
// Err out if the given symbol has
// ALLOCATABLE attribute
if (const auto *e{GetExpr(context_, var)})
for (const Symbol &symbol : evaluate::CollectSymbols(*e))
if (IsAllocatable(symbol)) {
const auto &designator =
std::get<common::Indirection<parser::Designator>>(var.u);
const auto *dataRef =
std::get_if<parser::DataRef>(&designator.value().u);
const parser::Name *name =
dataRef ? std::get_if<parser::Name>(&dataRef->u) : nullptr;
if (name)
context_.Say(name->source,
"%s must not have ALLOCATABLE "
"attribute"_err_en_US,
name->ToString());
}
}
inline void OmpStructureChecker::ErrIfLHSAndRHSSymbolsMatch(
const parser::Variable &var, const parser::Expr &expr) {
// Err out if the symbol on the LHS is also used on the RHS of the assignment
// statement
const auto *e{GetExpr(context_, expr)};
const auto *v{GetExpr(context_, var)};
if (e && v) {
auto vSyms{evaluate::GetSymbolVector(*v)};
const Symbol &varSymbol = vSyms.front();
for (const Symbol &symbol : evaluate::GetSymbolVector(*e)) {
if (varSymbol == symbol) {
const common::Indirection<parser::Designator> *designator =
std::get_if<common::Indirection<parser::Designator>>(&expr.u);
if (designator) {
auto *z{var.typedExpr.get()};
auto *c{expr.typedExpr.get()};
if (z->v == c->v) {
context_.Say(expr.source,
"RHS expression on atomic assignment statement cannot access '%s'"_err_en_US,
var.GetSource());
}
} else {
context_.Say(expr.source,
"RHS expression on atomic assignment statement cannot access '%s'"_err_en_US,
var.GetSource());
}
}
}
}
}
inline void OmpStructureChecker::ErrIfNonScalarAssignmentStmt(
const parser::Variable &var, const parser::Expr &expr) {
// Err out if either the variable on the LHS or the expression on the RHS of
// the assignment statement are non-scalar (i.e. have rank > 0 or is of
// CHARACTER type)
const auto *e{GetExpr(context_, expr)};
const auto *v{GetExpr(context_, var)};
if (e && v) {
if (e->Rank() != 0 ||
(e->GetType().has_value() &&
e->GetType().value().category() == common::TypeCategory::Character))
context_.Say(expr.source,
"Expected scalar expression "
"on the RHS of atomic assignment "
"statement"_err_en_US);
if (v->Rank() != 0 ||
(v->GetType().has_value() &&
v->GetType()->category() == common::TypeCategory::Character))
context_.Say(var.GetSource(),
"Expected scalar variable "
"on the LHS of atomic assignment "
"statement"_err_en_US);
}
}
template <typename T, typename D>
bool OmpStructureChecker::IsOperatorValid(const T &node, const D &variable) {
using AllowedBinaryOperators =
std::variant<parser::Expr::Add, parser::Expr::Multiply,
parser::Expr::Subtract, parser::Expr::Divide, parser::Expr::AND,
parser::Expr::OR, parser::Expr::EQV, parser::Expr::NEQV>;
using BinaryOperators = std::variant<parser::Expr::Add,
parser::Expr::Multiply, parser::Expr::Subtract, parser::Expr::Divide,
parser::Expr::AND, parser::Expr::OR, parser::Expr::EQV,
parser::Expr::NEQV, parser::Expr::Power, parser::Expr::Concat,
parser::Expr::LT, parser::Expr::LE, parser::Expr::EQ, parser::Expr::NE,
parser::Expr::GE, parser::Expr::GT>;
if constexpr (common::HasMember<T, BinaryOperators>) {
const auto &variableName{variable.GetSource().ToString()};
const auto &exprLeft{std::get<0>(node.t)};
const auto &exprRight{std::get<1>(node.t)};
if ((exprLeft.value().source.ToString() != variableName) &&
(exprRight.value().source.ToString() != variableName)) {
context_.Say(variable.GetSource(),
"Atomic update statement should be of form "
"`%s = %s operator expr` OR `%s = expr operator %s`"_err_en_US,
variableName, variableName, variableName, variableName);
}
return common::HasMember<T, AllowedBinaryOperators>;
}
return false;
}
void OmpStructureChecker::CheckAtomicCaptureStmt(
const parser::AssignmentStmt &assignmentStmt) {
const auto &var{std::get<parser::Variable>(assignmentStmt.t)};
const auto &expr{std::get<parser::Expr>(assignmentStmt.t)};
common::visit(
common::visitors{
[&](const common::Indirection<parser::Designator> &designator) {
const auto *dataRef =
std::get_if<parser::DataRef>(&designator.value().u);
const auto *name =
dataRef ? std::get_if<parser::Name>(&dataRef->u) : nullptr;
if (name && IsAllocatable(*name->symbol))
context_.Say(name->source,
"%s must not have ALLOCATABLE "
"attribute"_err_en_US,
name->ToString());
},
[&](const auto &) {
// Anything other than a `parser::Designator` is not allowed
context_.Say(expr.source,
"Expected scalar variable "
"of intrinsic type on RHS of atomic "
"assignment statement"_err_en_US);
}},
expr.u);
ErrIfLHSAndRHSSymbolsMatch(var, expr);
ErrIfNonScalarAssignmentStmt(var, expr);
}
void OmpStructureChecker::CheckAtomicWriteStmt(
const parser::AssignmentStmt &assignmentStmt) {
const auto &var{std::get<parser::Variable>(assignmentStmt.t)};
const auto &expr{std::get<parser::Expr>(assignmentStmt.t)};
ErrIfAllocatableVariable(var);
ErrIfLHSAndRHSSymbolsMatch(var, expr);
ErrIfNonScalarAssignmentStmt(var, expr);
}
void OmpStructureChecker::CheckAtomicUpdateStmt(
const parser::AssignmentStmt &assignment) {
const auto &expr{std::get<parser::Expr>(assignment.t)};
const auto &var{std::get<parser::Variable>(assignment.t)};
bool isIntrinsicProcedure{false};
bool isValidOperator{false};
common::visit(
common::visitors{
[&](const common::Indirection<parser::FunctionReference> &x) {
isIntrinsicProcedure = true;
const auto &procedureDesignator{
std::get<parser::ProcedureDesignator>(x.value().v.t)};
const parser::Name *name{
std::get_if<parser::Name>(&procedureDesignator.u)};
if (name &&
!(name->source == "max" || name->source == "min" ||
name->source == "iand" || name->source == "ior" ||
name->source == "ieor")) {
context_.Say(expr.source,
"Invalid intrinsic procedure name in "
"OpenMP ATOMIC (UPDATE) statement"_err_en_US);
}
},
[&](const auto &x) {
if (!IsOperatorValid(x, var)) {
context_.Say(expr.source,
"Invalid or missing operator in atomic update "
"statement"_err_en_US);
} else
isValidOperator = true;
},
},
expr.u);
if (const auto *e{GetExpr(context_, expr)}) {
const auto *v{GetExpr(context_, var)};
if (e->Rank() != 0 ||
(e->GetType().has_value() &&
e->GetType().value().category() == common::TypeCategory::Character))
context_.Say(expr.source,
"Expected scalar expression "
"on the RHS of atomic update assignment "
"statement"_err_en_US);
if (v->Rank() != 0 ||
(v->GetType().has_value() &&
v->GetType()->category() == common::TypeCategory::Character))
context_.Say(var.GetSource(),
"Expected scalar variable "
"on the LHS of atomic update assignment "
"statement"_err_en_US);
auto vSyms{evaluate::GetSymbolVector(*v)};
const Symbol &varSymbol = vSyms.front();
int numOfSymbolMatches{0};
SymbolVector exprSymbols{evaluate::GetSymbolVector(*e)};
for (const Symbol &symbol : exprSymbols) {
if (varSymbol == symbol) {
numOfSymbolMatches++;
}
}
if (isIntrinsicProcedure) {
std::string varName = var.GetSource().ToString();
if (numOfSymbolMatches != 1)
context_.Say(expr.source,
"Intrinsic procedure"
" arguments in atomic update statement"
" must have exactly one occurence of '%s'"_err_en_US,
varName);
else if (varSymbol != exprSymbols.front() &&
varSymbol != exprSymbols.back())
context_.Say(expr.source,
"Atomic update statement "
"should be of the form `%s = intrinsic_procedure(%s, expr_list)` "
"OR `%s = intrinsic_procedure(expr_list, %s)`"_err_en_US,
varName, varName, varName, varName);
} else if (isValidOperator) {
if (numOfSymbolMatches != 1)
context_.Say(expr.source,
"Exactly one occurence of '%s' "
"expected on the RHS of atomic update assignment statement"_err_en_US,
var.GetSource().ToString());
}
}
ErrIfAllocatableVariable(var);
}
void OmpStructureChecker::CheckAtomicCompareConstruct(
const parser::OmpAtomicCompare &atomicCompareConstruct) {
// TODO: Check that the if-stmt is `if (var == expr) var = new`
// [with or without then/end-do]
unsigned version{context_.langOptions().OpenMPVersion};
if (version < 51) {
context_.Say(atomicCompareConstruct.source,
"%s construct not allowed in %s, %s"_err_en_US,
atomicCompareConstruct.source, ThisVersion(version), TryVersion(51));
}
// TODO: More work needed here. Some of the Update restrictions need to
// be added, but Update isn't the same either.
}
// TODO: Allow cond-update-stmt once compare clause is supported.
void OmpStructureChecker::CheckAtomicCaptureConstruct(
const parser::OmpAtomicCapture &atomicCaptureConstruct) {
const parser::AssignmentStmt &stmt1 =
std::get<parser::OmpAtomicCapture::Stmt1>(atomicCaptureConstruct.t)
.v.statement;
const auto &stmt1Var{std::get<parser::Variable>(stmt1.t)};
const auto &stmt1Expr{std::get<parser::Expr>(stmt1.t)};
const parser::AssignmentStmt &stmt2 =
std::get<parser::OmpAtomicCapture::Stmt2>(atomicCaptureConstruct.t)
.v.statement;
const auto &stmt2Var{std::get<parser::Variable>(stmt2.t)};
const auto &stmt2Expr{std::get<parser::Expr>(stmt2.t)};
if (semantics::checkForSingleVariableOnRHS(stmt1)) {
CheckAtomicCaptureStmt(stmt1);
if (semantics::checkForSymbolMatch(stmt2)) {
// ATOMIC CAPTURE construct is of the form [capture-stmt, update-stmt]
CheckAtomicUpdateStmt(stmt2);
} else {
// ATOMIC CAPTURE construct is of the form [capture-stmt, write-stmt]
CheckAtomicWriteStmt(stmt2);
}
auto *v{stmt2Var.typedExpr.get()};
auto *e{stmt1Expr.typedExpr.get()};
if (v && e && !(v->v == e->v)) {
context_.Say(stmt1Expr.source,
"Captured variable/array element/derived-type component %s expected to be assigned in the second statement of ATOMIC CAPTURE construct"_err_en_US,
stmt1Expr.source);
}
} else if (semantics::checkForSymbolMatch(stmt1) &&
semantics::checkForSingleVariableOnRHS(stmt2)) {
// ATOMIC CAPTURE construct is of the form [update-stmt, capture-stmt]
CheckAtomicUpdateStmt(stmt1);
CheckAtomicCaptureStmt(stmt2);
// Variable updated in stmt1 should be captured in stmt2
auto *v{stmt1Var.typedExpr.get()};
auto *e{stmt2Expr.typedExpr.get()};
if (v && e && !(v->v == e->v)) {
context_.Say(stmt1Var.GetSource(),
"Updated variable/array element/derived-type component %s expected to be captured in the second statement of ATOMIC CAPTURE construct"_err_en_US,
stmt1Var.GetSource());
}
} else {
context_.Say(stmt1Expr.source,
"Invalid ATOMIC CAPTURE construct statements. Expected one of [update-stmt, capture-stmt], [capture-stmt, update-stmt], or [capture-stmt, write-stmt]"_err_en_US);
}
}
void OmpStructureChecker::CheckAtomicMemoryOrderClause(
const parser::OmpAtomicClauseList *leftHandClauseList,
const parser::OmpAtomicClauseList *rightHandClauseList) {
int numMemoryOrderClause{0};
int numFailClause{0};
auto checkForValidMemoryOrderClause = [&](const parser::OmpAtomicClauseList
*clauseList) {
for (const auto &clause : clauseList->v) {
if (std::get_if<parser::OmpFailClause>(&clause.u)) {
numFailClause++;
if (numFailClause > 1) {
context_.Say(clause.source,
"More than one FAIL clause not allowed on OpenMP ATOMIC construct"_err_en_US);
return;
}
} else {
if (std::get_if<parser::OmpMemoryOrderClause>(&clause.u)) {
numMemoryOrderClause++;
if (numMemoryOrderClause > 1) {
context_.Say(clause.source,
"More than one memory order clause not allowed on OpenMP ATOMIC construct"_err_en_US);
return;
}
}
}
}
};
if (leftHandClauseList) {
checkForValidMemoryOrderClause(leftHandClauseList);
}
if (rightHandClauseList) {
checkForValidMemoryOrderClause(rightHandClauseList);
}
}
void OmpStructureChecker::Enter(const parser::OpenMPAtomicConstruct &x) {
common::visit(
common::visitors{
[&](const parser::OmpAtomic &atomicConstruct) {
const auto &dir{std::get<parser::Verbatim>(atomicConstruct.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_atomic);
CheckAtomicUpdateStmt(
std::get<parser::Statement<parser::AssignmentStmt>>(
atomicConstruct.t)
.statement);
CheckAtomicMemoryOrderClause(
&std::get<parser::OmpAtomicClauseList>(atomicConstruct.t),
nullptr);
CheckHintClause<const parser::OmpAtomicClauseList>(
&std::get<parser::OmpAtomicClauseList>(atomicConstruct.t),
nullptr, "ATOMIC");
},
[&](const parser::OmpAtomicUpdate &atomicUpdate) {
const auto &dir{std::get<parser::Verbatim>(atomicUpdate.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_atomic);
CheckAtomicUpdateStmt(
std::get<parser::Statement<parser::AssignmentStmt>>(
atomicUpdate.t)
.statement);
CheckAtomicMemoryOrderClause(
&std::get<0>(atomicUpdate.t), &std::get<2>(atomicUpdate.t));
CheckHintClause<const parser::OmpAtomicClauseList>(
&std::get<0>(atomicUpdate.t), &std::get<2>(atomicUpdate.t),
"UPDATE");
},
[&](const parser::OmpAtomicRead &atomicRead) {
const auto &dir{std::get<parser::Verbatim>(atomicRead.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_atomic);
CheckAtomicMemoryOrderClause(
&std::get<0>(atomicRead.t), &std::get<2>(atomicRead.t));
CheckHintClause<const parser::OmpAtomicClauseList>(
&std::get<0>(atomicRead.t), &std::get<2>(atomicRead.t), "READ");
CheckAtomicCaptureStmt(
std::get<parser::Statement<parser::AssignmentStmt>>(
atomicRead.t)
.statement);
},
[&](const parser::OmpAtomicWrite &atomicWrite) {
const auto &dir{std::get<parser::Verbatim>(atomicWrite.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_atomic);
CheckAtomicMemoryOrderClause(
&std::get<0>(atomicWrite.t), &std::get<2>(atomicWrite.t));
CheckHintClause<const parser::OmpAtomicClauseList>(
&std::get<0>(atomicWrite.t), &std::get<2>(atomicWrite.t),
"WRITE");
CheckAtomicWriteStmt(
std::get<parser::Statement<parser::AssignmentStmt>>(
atomicWrite.t)
.statement);
},
[&](const parser::OmpAtomicCapture &atomicCapture) {
const auto &dir{std::get<parser::Verbatim>(atomicCapture.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_atomic);
CheckAtomicMemoryOrderClause(
&std::get<0>(atomicCapture.t), &std::get<2>(atomicCapture.t));
CheckHintClause<const parser::OmpAtomicClauseList>(
&std::get<0>(atomicCapture.t), &std::get<2>(atomicCapture.t),
"CAPTURE");
CheckAtomicCaptureConstruct(atomicCapture);
},
[&](const parser::OmpAtomicCompare &atomicCompare) {
const auto &dir{std::get<parser::Verbatim>(atomicCompare.t)};
PushContextAndClauseSets(
dir.source, llvm::omp::Directive::OMPD_atomic);
CheckAtomicMemoryOrderClause(
&std::get<0>(atomicCompare.t), &std::get<2>(atomicCompare.t));
CheckHintClause<const parser::OmpAtomicClauseList>(
&std::get<0>(atomicCompare.t), &std::get<2>(atomicCompare.t),
"CAPTURE");
CheckAtomicCompareConstruct(atomicCompare);
},
},
x.u);
}
void OmpStructureChecker::Leave(const parser::OpenMPAtomicConstruct &) {
dirContext_.pop_back();
}
// Clauses
// Mainly categorized as
// 1. Checks on 'OmpClauseList' from 'parse-tree.h'.
// 2. Checks on clauses which fall under 'struct OmpClause' from parse-tree.h.
// 3. Checks on clauses which are not in 'struct OmpClause' from parse-tree.h.
void OmpStructureChecker::Leave(const parser::OmpClauseList &) {
// 2.7.1 Loop Construct Restriction
if (llvm::omp::allDoSet.test(GetContext().directive)) {
if (auto *clause{FindClause(llvm::omp::Clause::OMPC_schedule)}) {
// only one schedule clause is allowed
const auto &schedClause{std::get<parser::OmpClause::Schedule>(clause->u)};
auto &modifiers{OmpGetModifiers(schedClause.v)};
auto *ordering{
OmpGetUniqueModifier<parser::OmpOrderingModifier>(modifiers)};
if (ordering &&
ordering->v == parser::OmpOrderingModifier::Value::Nonmonotonic) {
if (FindClause(llvm::omp::Clause::OMPC_ordered)) {
context_.Say(clause->source,
"The NONMONOTONIC modifier cannot be specified "
"if an ORDERED clause is specified"_err_en_US);
}
}
}
if (auto *clause{FindClause(llvm::omp::Clause::OMPC_ordered)}) {
// only one ordered clause is allowed
const auto &orderedClause{
std::get<parser::OmpClause::Ordered>(clause->u)};
if (orderedClause.v) {
CheckNotAllowedIfClause(
llvm::omp::Clause::OMPC_ordered, {llvm::omp::Clause::OMPC_linear});
if (auto *clause2{FindClause(llvm::omp::Clause::OMPC_collapse)}) {
const auto &collapseClause{
std::get<parser::OmpClause::Collapse>(clause2->u)};
// ordered and collapse both have parameters
if (const auto orderedValue{GetIntValue(orderedClause.v)}) {
if (const auto collapseValue{GetIntValue(collapseClause.v)}) {
if (*orderedValue > 0 && *orderedValue < *collapseValue) {
context_.Say(clause->source,
"The parameter of the ORDERED clause must be "
"greater than or equal to "
"the parameter of the COLLAPSE clause"_err_en_US);
}
}
}
}
}
// TODO: ordered region binding check (requires nesting implementation)
}
} // doSet
// 2.8.1 Simd Construct Restriction
if (llvm::omp::allSimdSet.test(GetContext().directive)) {
if (auto *clause{FindClause(llvm::omp::Clause::OMPC_simdlen)}) {
if (auto *clause2{FindClause(llvm::omp::Clause::OMPC_safelen)}) {
const auto &simdlenClause{
std::get<parser::OmpClause::Simdlen>(clause->u)};
const auto &safelenClause{
std::get<parser::OmpClause::Safelen>(clause2->u)};
// simdlen and safelen both have parameters
if (const auto simdlenValue{GetIntValue(simdlenClause.v)}) {
if (const auto safelenValue{GetIntValue(safelenClause.v)}) {
if (*safelenValue > 0 && *simdlenValue > *safelenValue) {
context_.Say(clause->source,
"The parameter of the SIMDLEN clause must be less than or "
"equal to the parameter of the SAFELEN clause"_err_en_US);
}
}
}
}
}
// 2.11.5 Simd construct restriction (OpenMP 5.1)
if (auto *sl_clause{FindClause(llvm::omp::Clause::OMPC_safelen)}) {
if (auto *o_clause{FindClause(llvm::omp::Clause::OMPC_order)}) {
const auto &orderClause{
std::get<parser::OmpClause::Order>(o_clause->u)};
if (std::get<parser::OmpOrderClause::Ordering>(orderClause.v.t) ==
parser::OmpOrderClause::Ordering::Concurrent) {
context_.Say(sl_clause->source,
"The `SAFELEN` clause cannot appear in the `SIMD` directive "
"with `ORDER(CONCURRENT)` clause"_err_en_US);
}
}
}
} // SIMD
// Semantic checks related to presence of multiple list items within the same
// clause
CheckMultListItems();
auto testThreadprivateVarErr = [&](Symbol sym, parser::Name name,
llvmOmpClause clauseTy) {
if (sym.test(Symbol::Flag::OmpThreadprivate))
context_.Say(name.source,
"A THREADPRIVATE variable cannot be in %s clause"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseTy).str()));
};
// [5.1] 2.21.2 Threadprivate Directive Restriction
OmpClauseSet threadprivateAllowedSet{llvm::omp::Clause::OMPC_copyin,
llvm::omp::Clause::OMPC_copyprivate, llvm::omp::Clause::OMPC_schedule,
llvm::omp::Clause::OMPC_num_threads, llvm::omp::Clause::OMPC_thread_limit,
llvm::omp::Clause::OMPC_if};
for (auto it : GetContext().clauseInfo) {
llvmOmpClause type = it.first;
const auto *clause = it.second;
if (!threadprivateAllowedSet.test(type)) {
if (const auto *objList{GetOmpObjectList(*clause)}) {
for (const auto &ompObject : objList->v) {
common::visit(
common::visitors{
[&](const parser::Designator &) {
if (const auto *name{
parser::Unwrap<parser::Name>(ompObject)}) {
if (name->symbol) {
testThreadprivateVarErr(
name->symbol->GetUltimate(), *name, type);
}
}
},
[&](const parser::Name &name) {
if (name.symbol) {
for (const auto &mem :
name.symbol->get<CommonBlockDetails>().objects()) {
testThreadprivateVarErr(mem->GetUltimate(), name, type);
break;
}
}
},
},
ompObject.u);
}
}
}
}
CheckRequireAtLeastOneOf();
}
void OmpStructureChecker::Enter(const parser::OmpClause &x) {
SetContextClause(x);
// The visitors for these clauses do their own checks.
switch (x.Id()) {
case llvm::omp::Clause::OMPC_copyprivate:
case llvm::omp::Clause::OMPC_enter:
case llvm::omp::Clause::OMPC_lastprivate:
case llvm::omp::Clause::OMPC_reduction:
case llvm::omp::Clause::OMPC_to:
return;
default:
break;
}
if (const parser::OmpObjectList *objList{GetOmpObjectList(x)}) {
SymbolSourceMap symbols;
GetSymbolsInObjectList(*objList, symbols);
for (const auto &[symbol, source] : symbols) {
if (!IsVariableListItem(*symbol)) {
deferredNonVariables_.insert({symbol, source});
}
}
}
}
// Following clauses do not have a separate node in parse-tree.h.
CHECK_SIMPLE_CLAUSE(Absent, OMPC_absent)
CHECK_SIMPLE_CLAUSE(Affinity, OMPC_affinity)
CHECK_SIMPLE_CLAUSE(Capture, OMPC_capture)
CHECK_SIMPLE_CLAUSE(Contains, OMPC_contains)
CHECK_SIMPLE_CLAUSE(Default, OMPC_default)
CHECK_SIMPLE_CLAUSE(Depobj, OMPC_depobj)
CHECK_SIMPLE_CLAUSE(Detach, OMPC_detach)
CHECK_SIMPLE_CLAUSE(DeviceType, OMPC_device_type)
CHECK_SIMPLE_CLAUSE(DistSchedule, OMPC_dist_schedule)
CHECK_SIMPLE_CLAUSE(Exclusive, OMPC_exclusive)
CHECK_SIMPLE_CLAUSE(Final, OMPC_final)
CHECK_SIMPLE_CLAUSE(Flush, OMPC_flush)
CHECK_SIMPLE_CLAUSE(Full, OMPC_full)
CHECK_SIMPLE_CLAUSE(Grainsize, OMPC_grainsize)
CHECK_SIMPLE_CLAUSE(Hint, OMPC_hint)
CHECK_SIMPLE_CLAUSE(Holds, OMPC_holds)
CHECK_SIMPLE_CLAUSE(Inclusive, OMPC_inclusive)
CHECK_SIMPLE_CLAUSE(Initializer, OMPC_initializer)
CHECK_SIMPLE_CLAUSE(Match, OMPC_match)
CHECK_SIMPLE_CLAUSE(Nontemporal, OMPC_nontemporal)
CHECK_SIMPLE_CLAUSE(NumTasks, OMPC_num_tasks)
CHECK_SIMPLE_CLAUSE(Order, OMPC_order)
CHECK_SIMPLE_CLAUSE(Read, OMPC_read)
CHECK_SIMPLE_CLAUSE(Threadprivate, OMPC_threadprivate)
CHECK_SIMPLE_CLAUSE(Threads, OMPC_threads)
CHECK_SIMPLE_CLAUSE(Inbranch, OMPC_inbranch)
CHECK_SIMPLE_CLAUSE(Link, OMPC_link)
CHECK_SIMPLE_CLAUSE(Indirect, OMPC_indirect)
CHECK_SIMPLE_CLAUSE(Mergeable, OMPC_mergeable)
CHECK_SIMPLE_CLAUSE(NoOpenmp, OMPC_no_openmp)
CHECK_SIMPLE_CLAUSE(NoOpenmpRoutines, OMPC_no_openmp_routines)
CHECK_SIMPLE_CLAUSE(NoOpenmpConstructs, OMPC_no_openmp_constructs)
CHECK_SIMPLE_CLAUSE(NoParallelism, OMPC_no_parallelism)
CHECK_SIMPLE_CLAUSE(Nogroup, OMPC_nogroup)
CHECK_SIMPLE_CLAUSE(Notinbranch, OMPC_notinbranch)
CHECK_SIMPLE_CLAUSE(Partial, OMPC_partial)
CHECK_SIMPLE_CLAUSE(ProcBind, OMPC_proc_bind)
CHECK_SIMPLE_CLAUSE(Simd, OMPC_simd)
CHECK_SIMPLE_CLAUSE(Sizes, OMPC_sizes)
CHECK_SIMPLE_CLAUSE(Permutation, OMPC_permutation)
CHECK_SIMPLE_CLAUSE(Uniform, OMPC_uniform)
CHECK_SIMPLE_CLAUSE(Unknown, OMPC_unknown)
CHECK_SIMPLE_CLAUSE(Untied, OMPC_untied)
CHECK_SIMPLE_CLAUSE(UsesAllocators, OMPC_uses_allocators)
CHECK_SIMPLE_CLAUSE(Write, OMPC_write)
CHECK_SIMPLE_CLAUSE(Init, OMPC_init)
CHECK_SIMPLE_CLAUSE(Use, OMPC_use)
CHECK_SIMPLE_CLAUSE(Novariants, OMPC_novariants)
CHECK_SIMPLE_CLAUSE(Nocontext, OMPC_nocontext)
CHECK_SIMPLE_CLAUSE(Severity, OMPC_severity)
CHECK_SIMPLE_CLAUSE(Message, OMPC_message)
CHECK_SIMPLE_CLAUSE(Filter, OMPC_filter)
CHECK_SIMPLE_CLAUSE(Otherwise, OMPC_otherwise)
CHECK_SIMPLE_CLAUSE(AdjustArgs, OMPC_adjust_args)
CHECK_SIMPLE_CLAUSE(AppendArgs, OMPC_append_args)
CHECK_SIMPLE_CLAUSE(MemoryOrder, OMPC_memory_order)
CHECK_SIMPLE_CLAUSE(Bind, OMPC_bind)
CHECK_SIMPLE_CLAUSE(Align, OMPC_align)
CHECK_SIMPLE_CLAUSE(Compare, OMPC_compare)
CHECK_SIMPLE_CLAUSE(OmpxAttribute, OMPC_ompx_attribute)
CHECK_SIMPLE_CLAUSE(Weak, OMPC_weak)
CHECK_SIMPLE_CLAUSE(AcqRel, OMPC_acq_rel)
CHECK_SIMPLE_CLAUSE(Acquire, OMPC_acquire)
CHECK_SIMPLE_CLAUSE(Relaxed, OMPC_relaxed)
CHECK_SIMPLE_CLAUSE(Release, OMPC_release)
CHECK_SIMPLE_CLAUSE(SeqCst, OMPC_seq_cst)
CHECK_SIMPLE_CLAUSE(Fail, OMPC_fail)
CHECK_REQ_SCALAR_INT_CLAUSE(NumTeams, OMPC_num_teams)
CHECK_REQ_SCALAR_INT_CLAUSE(NumThreads, OMPC_num_threads)
CHECK_REQ_SCALAR_INT_CLAUSE(OmpxDynCgroupMem, OMPC_ompx_dyn_cgroup_mem)
CHECK_REQ_SCALAR_INT_CLAUSE(Priority, OMPC_priority)
CHECK_REQ_SCALAR_INT_CLAUSE(ThreadLimit, OMPC_thread_limit)
CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Collapse, OMPC_collapse)
CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Safelen, OMPC_safelen)
CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Simdlen, OMPC_simdlen)
// Restrictions specific to each clause are implemented apart from the
// generalized restrictions.
void OmpStructureChecker::Enter(const parser::OmpClause::Destroy &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_destroy);
llvm::omp::Directive dir{GetContext().directive};
unsigned version{context_.langOptions().OpenMPVersion};
if (dir == llvm::omp::Directive::OMPD_depobj) {
unsigned argSince{52}, noargDeprecatedIn{52};
if (x.v) {
if (version < argSince) {
context_.Say(GetContext().clauseSource,
"The object parameter in DESTROY clause on DEPOPJ construct is not allowed in %s, %s"_warn_en_US,
ThisVersion(version), TryVersion(argSince));
}
} else {
if (version >= noargDeprecatedIn) {
context_.Say(GetContext().clauseSource,
"The DESTROY clause without argument on DEPOBJ construct is deprecated in %s"_warn_en_US,
ThisVersion(noargDeprecatedIn));
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Reduction &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_reduction);
auto &objects{std::get<parser::OmpObjectList>(x.v.t)};
if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_reduction,
GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
const auto *ident{
OmpGetUniqueModifier<parser::OmpReductionIdentifier>(modifiers)};
assert(ident && "reduction-identifier is a required modifier");
if (CheckReductionOperator(*ident, OmpGetModifierSource(modifiers, ident),
llvm::omp::OMPC_reduction)) {
CheckReductionObjectTypes(objects, *ident);
}
using ReductionModifier = parser::OmpReductionModifier;
if (auto *modifier{OmpGetUniqueModifier<ReductionModifier>(modifiers)}) {
CheckReductionModifier(*modifier);
}
}
CheckReductionObjects(objects, llvm::omp::Clause::OMPC_reduction);
// If this is a worksharing construct then ensure the reduction variable
// is not private in the parallel region that it binds to.
if (llvm::omp::nestedReduceWorkshareAllowedSet.test(GetContext().directive)) {
CheckSharedBindingInOuterContext(objects);
}
if (GetContext().directive == llvm::omp::Directive::OMPD_loop) {
for (auto clause : GetContext().clauseInfo) {
if (const auto *bindClause{
std::get_if<parser::OmpClause::Bind>(&clause.second->u)}) {
if (bindClause->v.v == parser::OmpBindClause::Binding::Teams) {
context_.Say(GetContext().clauseSource,
"'REDUCTION' clause not allowed with '!$OMP LOOP BIND(TEAMS)'."_err_en_US);
}
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::InReduction &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_in_reduction);
auto &objects{std::get<parser::OmpObjectList>(x.v.t)};
if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_in_reduction,
GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
const auto *ident{
OmpGetUniqueModifier<parser::OmpReductionIdentifier>(modifiers)};
assert(ident && "reduction-identifier is a required modifier");
if (CheckReductionOperator(*ident, OmpGetModifierSource(modifiers, ident),
llvm::omp::OMPC_in_reduction)) {
CheckReductionObjectTypes(objects, *ident);
}
}
CheckReductionObjects(objects, llvm::omp::Clause::OMPC_in_reduction);
}
void OmpStructureChecker::Enter(const parser::OmpClause::TaskReduction &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_task_reduction);
auto &objects{std::get<parser::OmpObjectList>(x.v.t)};
if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_task_reduction,
GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
const auto *ident{
OmpGetUniqueModifier<parser::OmpReductionIdentifier>(modifiers)};
assert(ident && "reduction-identifier is a required modifier");
if (CheckReductionOperator(*ident, OmpGetModifierSource(modifiers, ident),
llvm::omp::OMPC_task_reduction)) {
CheckReductionObjectTypes(objects, *ident);
}
}
CheckReductionObjects(objects, llvm::omp::Clause::OMPC_task_reduction);
}
bool OmpStructureChecker::CheckReductionOperator(
const parser::OmpReductionIdentifier &ident, parser::CharBlock source,
llvm::omp::Clause clauseId) {
auto visitOperator{[&](const parser::DefinedOperator &dOpr) {
if (const auto *intrinsicOp{
std::get_if<parser::DefinedOperator::IntrinsicOperator>(&dOpr.u)}) {
switch (*intrinsicOp) {
case parser::DefinedOperator::IntrinsicOperator::Add:
case parser::DefinedOperator::IntrinsicOperator::Multiply:
case parser::DefinedOperator::IntrinsicOperator::AND:
case parser::DefinedOperator::IntrinsicOperator::OR:
case parser::DefinedOperator::IntrinsicOperator::EQV:
case parser::DefinedOperator::IntrinsicOperator::NEQV:
return true;
case parser::DefinedOperator::IntrinsicOperator::Subtract:
context_.Say(GetContext().clauseSource,
"The minus reduction operator is deprecated since OpenMP 5.2 and is not supported in the REDUCTION clause."_err_en_US,
ContextDirectiveAsFortran());
return false;
default:
break;
}
}
context_.Say(source, "Invalid reduction operator in %s clause."_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
return false;
}};
auto visitDesignator{[&](const parser::ProcedureDesignator &procD) {
const parser::Name *name{std::get_if<parser::Name>(&procD.u)};
bool valid{false};
if (name && name->symbol) {
const SourceName &realName{name->symbol->GetUltimate().name()};
valid =
llvm::is_contained({"max", "min", "iand", "ior", "ieor"}, realName);
if (!valid) {
auto *misc{name->symbol->detailsIf<MiscDetails>()};
valid = misc && misc->kind() == MiscDetails::Kind::ConstructName;
}
}
if (!valid) {
context_.Say(source,
"Invalid reduction identifier in %s clause."_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
}
return valid;
}};
return common::visit(
common::visitors{visitOperator, visitDesignator}, ident.u);
}
/// Check restrictions on objects that are common to all reduction clauses.
void OmpStructureChecker::CheckReductionObjects(
const parser::OmpObjectList &objects, llvm::omp::Clause clauseId) {
unsigned version{context_.langOptions().OpenMPVersion};
SymbolSourceMap symbols;
GetSymbolsInObjectList(objects, symbols);
// Array sections must be a contiguous storage, have non-zero length.
for (const parser::OmpObject &object : objects.v) {
CheckIfContiguous(object);
}
CheckReductionArraySection(objects, clauseId);
// An object must be definable.
CheckDefinableObjects(symbols, clauseId);
// Procedure pointers are not allowed.
CheckProcedurePointer(symbols, clauseId);
// Pointers must not have INTENT(IN).
CheckIntentInPointer(symbols, clauseId);
// Disallow common blocks.
// Iterate on objects because `GetSymbolsInObjectList` expands common block
// names into the lists of their members.
for (const parser::OmpObject &object : objects.v) {
auto *symbol{GetObjectSymbol(object)};
assert(symbol && "Expecting a symbol for object");
if (IsCommonBlock(*symbol)) {
auto source{GetObjectSource(object)};
context_.Say(source ? *source : GetContext().clauseSource,
"Common block names are not allowed in %s clause"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
}
}
// Denied in all current versions of the standard because structure components
// are not definable (i.e. they are expressions not variables).
// Object cannot be a part of another object (except array elements).
CheckStructureComponent(objects, clauseId);
if (version >= 50) {
// If object is an array section or element, the base expression must be
// a language identifier.
for (const parser::OmpObject &object : objects.v) {
if (auto *elem{GetArrayElementFromObj(object)}) {
const parser::DataRef &base = elem->base;
if (!std::holds_alternative<parser::Name>(base.u)) {
auto source{GetObjectSource(object)};
context_.Say(source ? *source : GetContext().clauseSource,
"The base expression of an array element or section in %s clause must be an identifier"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
}
}
}
// Type parameter inquiries are not allowed.
for (const parser::OmpObject &object : objects.v) {
if (auto *dataRef{GetDataRefFromObj(object)}) {
if (IsDataRefTypeParamInquiry(dataRef)) {
auto source{GetObjectSource(object)};
context_.Say(source ? *source : GetContext().clauseSource,
"Type parameter inquiry is not permitted in %s clause"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
}
}
}
}
}
static bool IsReductionAllowedForType(
const parser::OmpReductionIdentifier &ident, const DeclTypeSpec &type) {
auto isLogical{[](const DeclTypeSpec &type) -> bool {
return type.category() == DeclTypeSpec::Logical;
}};
auto isCharacter{[](const DeclTypeSpec &type) -> bool {
return type.category() == DeclTypeSpec::Character;
}};
auto checkOperator{[&](const parser::DefinedOperator &dOpr) {
if (const auto *intrinsicOp{
std::get_if<parser::DefinedOperator::IntrinsicOperator>(&dOpr.u)}) {
// OMP5.2: The type [...] of a list item that appears in a
// reduction clause must be valid for the combiner expression
// See F2023: Table 10.2
// .LT., .LE., .GT., .GE. are handled as procedure designators
// below.
switch (*intrinsicOp) {
case parser::DefinedOperator::IntrinsicOperator::Multiply:
case parser::DefinedOperator::IntrinsicOperator::Add:
case parser::DefinedOperator::IntrinsicOperator::Subtract:
return type.IsNumeric(TypeCategory::Integer) ||
type.IsNumeric(TypeCategory::Real) ||
type.IsNumeric(TypeCategory::Complex);
case parser::DefinedOperator::IntrinsicOperator::AND:
case parser::DefinedOperator::IntrinsicOperator::OR:
case parser::DefinedOperator::IntrinsicOperator::EQV:
case parser::DefinedOperator::IntrinsicOperator::NEQV:
return isLogical(type);
// Reduction identifier is not in OMP5.2 Table 5.2
default:
DIE("This should have been caught in CheckIntrinsicOperator");
return false;
}
}
return true;
}};
auto checkDesignator{[&](const parser::ProcedureDesignator &procD) {
const parser::Name *name{std::get_if<parser::Name>(&procD.u)};
if (name && name->symbol) {
const SourceName &realName{name->symbol->GetUltimate().name()};
// OMP5.2: The type [...] of a list item that appears in a
// reduction clause must be valid for the combiner expression
if (realName == "iand" || realName == "ior" || realName == "ieor") {
// IAND: arguments must be integers: F2023 16.9.100
// IEOR: arguments must be integers: F2023 16.9.106
// IOR: arguments must be integers: F2023 16.9.111
return type.IsNumeric(TypeCategory::Integer);
} else if (realName == "max" || realName == "min") {
// MAX: arguments must be integer, real, or character:
// F2023 16.9.135
// MIN: arguments must be integer, real, or character:
// F2023 16.9.141
return type.IsNumeric(TypeCategory::Integer) ||
type.IsNumeric(TypeCategory::Real) || isCharacter(type);
}
}
// TODO: user defined reduction operators. Just allow everything for now.
return true;
}};
return common::visit(
common::visitors{checkOperator, checkDesignator}, ident.u);
}
void OmpStructureChecker::CheckReductionObjectTypes(
const parser::OmpObjectList &objects,
const parser::OmpReductionIdentifier &ident) {
SymbolSourceMap symbols;
GetSymbolsInObjectList(objects, symbols);
for (auto &[symbol, source] : symbols) {
if (auto *type{symbol->GetType()}) {
if (!IsReductionAllowedForType(ident, *type)) {
context_.Say(source,
"The type of '%s' is incompatible with the reduction operator."_err_en_US,
symbol->name());
}
} else {
assert(IsProcedurePointer(*symbol) && "Unexpected symbol properties");
}
}
}
void OmpStructureChecker::CheckReductionModifier(
const parser::OmpReductionModifier &modifier) {
using ReductionModifier = parser::OmpReductionModifier;
if (modifier.v == ReductionModifier::Value::Default) {
// The default one is always ok.
return;
}
const DirectiveContext &dirCtx{GetContext()};
if (dirCtx.directive == llvm::omp::Directive::OMPD_loop ||
dirCtx.directive == llvm::omp::Directive::OMPD_taskloop) {
// [5.2:257:33-34]
// If a reduction-modifier is specified in a reduction clause that
// appears on the directive, then the reduction modifier must be
// default.
// [5.2:268:16]
// The reduction-modifier must be default.
context_.Say(GetContext().clauseSource,
"REDUCTION modifier on %s directive must be DEFAULT"_err_en_US,
parser::ToUpperCaseLetters(GetContext().directiveSource.ToString()));
return;
}
if (modifier.v == ReductionModifier::Value::Task) {
// "Task" is only allowed on worksharing or "parallel" directive.
static llvm::omp::Directive worksharing[]{
llvm::omp::Directive::OMPD_do, llvm::omp::Directive::OMPD_scope,
llvm::omp::Directive::OMPD_sections,
// There are more worksharing directives, but they do not apply:
// "for" is C++ only,
// "single" and "workshare" don't allow reduction clause,
// "loop" has different restrictions (checked above).
};
if (dirCtx.directive != llvm::omp::Directive::OMPD_parallel &&
!llvm::is_contained(worksharing, dirCtx.directive)) {
context_.Say(GetContext().clauseSource,
"Modifier 'TASK' on REDUCTION clause is only allowed with "
"PARALLEL or worksharing directive"_err_en_US);
}
} else if (modifier.v == ReductionModifier::Value::Inscan) {
// "Inscan" is only allowed on worksharing-loop, worksharing-loop simd,
// or "simd" directive.
// The worksharing-loop directives are OMPD_do and OMPD_for. Only the
// former is allowed in Fortran.
if (!llvm::omp::scanParentAllowedSet.test(dirCtx.directive)) {
context_.Say(GetContext().clauseSource,
"Modifier 'INSCAN' on REDUCTION clause is only allowed with "
"WORKSHARING LOOP, WORKSHARING LOOP SIMD, "
"or SIMD directive"_err_en_US);
}
} else {
// Catch-all for potential future modifiers to make sure that this
// function is up-to-date.
context_.Say(GetContext().clauseSource,
"Unexpected modifier on REDUCTION clause"_err_en_US);
}
}
void OmpStructureChecker::CheckReductionArraySection(
const parser::OmpObjectList &ompObjectList, llvm::omp::Clause clauseId) {
for (const auto &ompObject : ompObjectList.v) {
if (const auto *dataRef{parser::Unwrap<parser::DataRef>(ompObject)}) {
if (const auto *arrayElement{
parser::Unwrap<parser::ArrayElement>(ompObject)}) {
CheckArraySection(*arrayElement, GetLastName(*dataRef), clauseId);
}
}
}
}
void OmpStructureChecker::CheckSharedBindingInOuterContext(
const parser::OmpObjectList &redObjectList) {
// TODO: Verify the assumption here that the immediately enclosing region is
// the parallel region to which the worksharing construct having reduction
// binds to.
if (auto *enclosingContext{GetEnclosingDirContext()}) {
for (auto it : enclosingContext->clauseInfo) {
llvmOmpClause type = it.first;
const auto *clause = it.second;
if (llvm::omp::privateReductionSet.test(type)) {
if (const auto *objList{GetOmpObjectList(*clause)}) {
for (const auto &ompObject : objList->v) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (const auto *symbol{name->symbol}) {
for (const auto &redOmpObject : redObjectList.v) {
if (const auto *rname{
parser::Unwrap<parser::Name>(redOmpObject)}) {
if (const auto *rsymbol{rname->symbol}) {
if (rsymbol->name() == symbol->name()) {
context_.Say(GetContext().clauseSource,
"%s variable '%s' is %s in outer context must"
" be shared in the parallel regions to which any"
" of the worksharing regions arising from the "
"worksharing construct bind."_err_en_US,
parser::ToUpperCaseLetters(
getClauseName(llvm::omp::Clause::OMPC_reduction)
.str()),
symbol->name(),
parser::ToUpperCaseLetters(
getClauseName(type).str()));
}
}
}
}
}
}
}
}
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Ordered &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_ordered);
// the parameter of ordered clause is optional
if (const auto &expr{x.v}) {
RequiresConstantPositiveParameter(llvm::omp::Clause::OMPC_ordered, *expr);
// 2.8.3 Loop SIMD Construct Restriction
if (llvm::omp::allDoSimdSet.test(GetContext().directive)) {
context_.Say(GetContext().clauseSource,
"No ORDERED clause with a parameter can be specified "
"on the %s directive"_err_en_US,
ContextDirectiveAsFortran());
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Shared &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_shared);
CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v, "SHARED");
CheckCrayPointee(x.v, "SHARED");
}
void OmpStructureChecker::Enter(const parser::OmpClause::Private &x) {
SymbolSourceMap symbols;
GetSymbolsInObjectList(x.v, symbols);
CheckAllowedClause(llvm::omp::Clause::OMPC_private);
CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v, "PRIVATE");
CheckIntentInPointer(symbols, llvm::omp::Clause::OMPC_private);
CheckCrayPointee(x.v, "PRIVATE");
}
void OmpStructureChecker::Enter(const parser::OmpClause::Nowait &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_nowait);
}
bool OmpStructureChecker::IsDataRefTypeParamInquiry(
const parser::DataRef *dataRef) {
bool dataRefIsTypeParamInquiry{false};
if (const auto *structComp{
parser::Unwrap<parser::StructureComponent>(dataRef)}) {
if (const auto *compSymbol{structComp->component.symbol}) {
if (const auto *compSymbolMiscDetails{
std::get_if<MiscDetails>(&compSymbol->details())}) {
const auto detailsKind = compSymbolMiscDetails->kind();
dataRefIsTypeParamInquiry =
(detailsKind == MiscDetails::Kind::KindParamInquiry ||
detailsKind == MiscDetails::Kind::LenParamInquiry);
} else if (compSymbol->has<TypeParamDetails>()) {
dataRefIsTypeParamInquiry = true;
}
}
}
return dataRefIsTypeParamInquiry;
}
void OmpStructureChecker::CheckIsVarPartOfAnotherVar(
const parser::CharBlock &source, const parser::OmpObjectList &objList,
llvm::StringRef clause) {
for (const auto &ompObject : objList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *dataRef{
std::get_if<parser::DataRef>(&designator.u)}) {
if (IsDataRefTypeParamInquiry(dataRef)) {
context_.Say(source,
"A type parameter inquiry cannot appear on the %s "
"directive"_err_en_US,
ContextDirectiveAsFortran());
} else if (parser::Unwrap<parser::StructureComponent>(
ompObject) ||
parser::Unwrap<parser::ArrayElement>(ompObject)) {
if (llvm::omp::nonPartialVarSet.test(
GetContext().directive)) {
context_.Say(source,
"A variable that is part of another variable (as an "
"array or structure element) cannot appear on the %s "
"directive"_err_en_US,
ContextDirectiveAsFortran());
} else {
context_.Say(source,
"A variable that is part of another variable (as an "
"array or structure element) cannot appear in a "
"%s clause"_err_en_US,
clause.data());
}
}
}
},
[&](const parser::Name &name) {},
},
ompObject.u);
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Firstprivate &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_firstprivate);
CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v, "FIRSTPRIVATE");
CheckCrayPointee(x.v, "FIRSTPRIVATE");
CheckIsLoopIvPartOfClause(llvmOmpClause::OMPC_firstprivate, x.v);
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(x.v, currSymbols);
CheckCopyingPolymorphicAllocatable(
currSymbols, llvm::omp::Clause::OMPC_firstprivate);
DirectivesClauseTriple dirClauseTriple;
// Check firstprivate variables in worksharing constructs
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_do,
std::make_pair(
llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet));
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_sections,
std::make_pair(
llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet));
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_single,
std::make_pair(
llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet));
// Check firstprivate variables in distribute construct
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_distribute,
std::make_pair(
llvm::omp::Directive::OMPD_teams, llvm::omp::privateReductionSet));
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_distribute,
std::make_pair(llvm::omp::Directive::OMPD_target_teams,
llvm::omp::privateReductionSet));
// Check firstprivate variables in task and taskloop constructs
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_task,
std::make_pair(llvm::omp::Directive::OMPD_parallel,
OmpClauseSet{llvm::omp::Clause::OMPC_reduction}));
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_taskloop,
std::make_pair(llvm::omp::Directive::OMPD_parallel,
OmpClauseSet{llvm::omp::Clause::OMPC_reduction}));
CheckPrivateSymbolsInOuterCxt(
currSymbols, dirClauseTriple, llvm::omp::Clause::OMPC_firstprivate);
}
void OmpStructureChecker::CheckIsLoopIvPartOfClause(
llvmOmpClause clause, const parser::OmpObjectList &ompObjectList) {
for (const auto &ompObject : ompObjectList.v) {
if (const parser::Name *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (name->symbol == GetContext().loopIV) {
context_.Say(name->source,
"DO iteration variable %s is not allowed in %s clause."_err_en_US,
name->ToString(),
parser::ToUpperCaseLetters(getClauseName(clause).str()));
}
}
}
}
// Following clauses have a separate node in parse-tree.h.
// Atomic-clause
CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicRead, OMPC_read)
CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicWrite, OMPC_write)
CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicUpdate, OMPC_update)
CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicCapture, OMPC_capture)
void OmpStructureChecker::Leave(const parser::OmpAtomicRead &) {
CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_read,
{llvm::omp::Clause::OMPC_release, llvm::omp::Clause::OMPC_acq_rel});
}
void OmpStructureChecker::Leave(const parser::OmpAtomicWrite &) {
CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_write,
{llvm::omp::Clause::OMPC_acquire, llvm::omp::Clause::OMPC_acq_rel});
}
void OmpStructureChecker::Leave(const parser::OmpAtomicUpdate &) {
CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_update,
{llvm::omp::Clause::OMPC_acquire, llvm::omp::Clause::OMPC_acq_rel});
}
// OmpAtomic node represents atomic directive without atomic-clause.
// atomic-clause - READ,WRITE,UPDATE,CAPTURE.
void OmpStructureChecker::Leave(const parser::OmpAtomic &) {
if (const auto *clause{FindClause(llvm::omp::Clause::OMPC_acquire)}) {
context_.Say(clause->source,
"Clause ACQUIRE is not allowed on the ATOMIC directive"_err_en_US);
}
if (const auto *clause{FindClause(llvm::omp::Clause::OMPC_acq_rel)}) {
context_.Say(clause->source,
"Clause ACQ_REL is not allowed on the ATOMIC directive"_err_en_US);
}
}
// Restrictions specific to each clause are implemented apart from the
// generalized restrictions.
void OmpStructureChecker::Enter(const parser::OmpClause::Aligned &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_aligned);
if (OmpVerifyModifiers(
x.v, llvm::omp::OMPC_aligned, GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
if (auto *align{OmpGetUniqueModifier<parser::OmpAlignment>(modifiers)}) {
if (const auto &v{GetIntValue(align->v)}; !v || *v <= 0) {
context_.Say(OmpGetModifierSource(modifiers, align),
"The alignment value should be a constant positive integer"_err_en_US);
}
}
}
// 2.8.1 TODO: list-item attribute check
}
void OmpStructureChecker::Enter(const parser::OmpClause::Defaultmap &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_defaultmap);
unsigned version{context_.langOptions().OpenMPVersion};
using ImplicitBehavior = parser::OmpDefaultmapClause::ImplicitBehavior;
auto behavior{std::get<ImplicitBehavior>(x.v.t)};
if (version <= 45) {
if (behavior != ImplicitBehavior::Tofrom) {
context_.Say(GetContext().clauseSource,
"%s is not allowed in %s, %s"_warn_en_US,
parser::ToUpperCaseLetters(
parser::OmpDefaultmapClause::EnumToString(behavior)),
ThisVersion(version), TryVersion(50));
}
}
if (!OmpVerifyModifiers(x.v, llvm::omp::OMPC_defaultmap,
GetContext().clauseSource, context_)) {
// If modifier verification fails, return early.
return;
}
auto &modifiers{OmpGetModifiers(x.v)};
auto *maybeCategory{
OmpGetUniqueModifier<parser::OmpVariableCategory>(modifiers)};
if (maybeCategory) {
using VariableCategory = parser::OmpVariableCategory;
VariableCategory::Value category{maybeCategory->v};
unsigned tryVersion{0};
if (version <= 45 && category != VariableCategory::Value::Scalar) {
tryVersion = 50;
}
if (version < 52 && category == VariableCategory::Value::All) {
tryVersion = 52;
}
if (tryVersion) {
context_.Say(GetContext().clauseSource,
"%s is not allowed in %s, %s"_warn_en_US,
parser::ToUpperCaseLetters(VariableCategory::EnumToString(category)),
ThisVersion(version), TryVersion(tryVersion));
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::If &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_if);
unsigned version{context_.langOptions().OpenMPVersion};
llvm::omp::Directive dir{GetContext().directive};
auto isConstituent{[](llvm::omp::Directive dir, llvm::omp::Directive part) {
using namespace llvm::omp;
llvm::ArrayRef<Directive> dirLeafs{getLeafConstructsOrSelf(dir)};
llvm::ArrayRef<Directive> partLeafs{getLeafConstructsOrSelf(part)};
// Maybe it's sufficient to check if every leaf of `part` is also a leaf
// of `dir`, but to be safe check if `partLeafs` is a sub-sequence of
// `dirLeafs`.
size_t dirSize{dirLeafs.size()}, partSize{partLeafs.size()};
// Find the first leaf from `part` in `dir`.
if (auto first = llvm::find(dirLeafs, partLeafs.front());
first != dirLeafs.end()) {
// A leaf can only appear once in a compound directive, so if `part`
// is a subsequence of `dir`, it must start here.
size_t firstPos{
static_cast<size_t>(std::distance(dirLeafs.begin(), first))};
llvm::ArrayRef<Directive> subSeq{
first, std::min<size_t>(dirSize - firstPos, partSize)};
return subSeq == partLeafs;
}
return false;
}};
if (OmpVerifyModifiers(
x.v, llvm::omp::OMPC_if, GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
if (auto *dnm{OmpGetUniqueModifier<parser::OmpDirectiveNameModifier>(
modifiers)}) {
llvm::omp::Directive sub{dnm->v};
std::string subName{parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(sub).str())};
std::string dirName{parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(dir).str())};
parser::CharBlock modifierSource{OmpGetModifierSource(modifiers, dnm)};
auto desc{OmpGetDescriptor<parser::OmpDirectiveNameModifier>()};
std::string modName{desc.name.str()};
if (!isConstituent(dir, sub)) {
context_
.Say(modifierSource,
"%s is not a constituent of the %s directive"_err_en_US,
subName, dirName)
.Attach(GetContext().directiveSource,
"Cannot apply to directive"_en_US);
} else {
static llvm::omp::Directive valid45[]{
llvm::omp::OMPD_cancel, //
llvm::omp::OMPD_parallel, //
/* OMP 5.0+ also allows OMPD_simd */
llvm::omp::OMPD_target, //
llvm::omp::OMPD_target_data, //
llvm::omp::OMPD_target_enter_data, //
llvm::omp::OMPD_target_exit_data, //
llvm::omp::OMPD_target_update, //
llvm::omp::OMPD_task, //
llvm::omp::OMPD_taskloop, //
/* OMP 5.2+ also allows OMPD_teams */
};
if (version < 50 && sub == llvm::omp::OMPD_simd) {
context_.Say(modifierSource,
"%s is not allowed as '%s' in %s, %s"_warn_en_US, subName,
modName, ThisVersion(version), TryVersion(50));
} else if (version < 52 && sub == llvm::omp::OMPD_teams) {
context_.Say(modifierSource,
"%s is not allowed as '%s' in %s, %s"_warn_en_US, subName,
modName, ThisVersion(version), TryVersion(52));
} else if (!llvm::is_contained(valid45, sub) &&
sub != llvm::omp::OMPD_simd && sub != llvm::omp::OMPD_teams) {
context_.Say(modifierSource,
"%s is not allowed as '%s' in %s"_err_en_US, subName, modName,
ThisVersion(version));
}
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Linear &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_linear);
unsigned version{context_.langOptions().OpenMPVersion};
llvm::omp::Directive dir{GetContext().directive};
parser::CharBlock clauseSource{GetContext().clauseSource};
const parser::OmpLinearModifier *linearMod{nullptr};
SymbolSourceMap symbols;
auto &objects{std::get<parser::OmpObjectList>(x.v.t)};
CheckCrayPointee(objects, "LINEAR", false);
GetSymbolsInObjectList(objects, symbols);
auto CheckIntegerNoRef{[&](const Symbol *symbol, parser::CharBlock source) {
if (!symbol->GetType()->IsNumeric(TypeCategory::Integer)) {
auto &desc{OmpGetDescriptor<parser::OmpLinearModifier>()};
context_.Say(source,
"The list item '%s' specified without the REF '%s' must be of INTEGER type"_err_en_US,
symbol->name(), desc.name.str());
}
}};
if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_linear, clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
linearMod = OmpGetUniqueModifier<parser::OmpLinearModifier>(modifiers);
if (linearMod) {
// 2.7 Loop Construct Restriction
if ((llvm::omp::allDoSet | llvm::omp::allSimdSet).test(dir)) {
context_.Say(clauseSource,
"A modifier may not be specified in a LINEAR clause on the %s directive"_err_en_US,
ContextDirectiveAsFortran());
return;
}
auto &desc{OmpGetDescriptor<parser::OmpLinearModifier>()};
for (auto &[symbol, source] : symbols) {
if (linearMod->v != parser::OmpLinearModifier::Value::Ref) {
CheckIntegerNoRef(symbol, source);
} else {
if (!IsAllocatable(*symbol) && !IsAssumedShape(*symbol) &&
!IsPolymorphic(*symbol)) {
context_.Say(source,
"The list item `%s` specified with the REF '%s' must be polymorphic variable, assumed-shape array, or a variable with the `ALLOCATABLE` attribute"_err_en_US,
symbol->name(), desc.name.str());
}
}
if (linearMod->v == parser::OmpLinearModifier::Value::Ref ||
linearMod->v == parser::OmpLinearModifier::Value::Uval) {
if (!IsDummy(*symbol) || IsValue(*symbol)) {
context_.Say(source,
"If the `%s` is REF or UVAL, the list item '%s' must be a dummy argument without the VALUE attribute"_err_en_US,
desc.name.str(), symbol->name());
}
}
} // for (symbol, source)
if (version >= 52 && !std::get</*PostModified=*/bool>(x.v.t)) {
context_.Say(OmpGetModifierSource(modifiers, linearMod),
"The 'modifier(<list>)' syntax is deprecated in %s, use '<list> : modifier' instead"_warn_en_US,
ThisVersion(version));
}
}
}
// OpenMP 5.2: Ordered clause restriction
if (const auto *clause{
FindClause(GetContext(), llvm::omp::Clause::OMPC_ordered)}) {
const auto &orderedClause{std::get<parser::OmpClause::Ordered>(clause->u)};
if (orderedClause.v) {
return;
}
}
// OpenMP 5.2: Linear clause Restrictions
for (auto &[symbol, source] : symbols) {
if (!linearMod) {
// Already checked this with the modifier present.
CheckIntegerNoRef(symbol, source);
}
if (dir == llvm::omp::Directive::OMPD_declare_simd && !IsDummy(*symbol)) {
context_.Say(source,
"The list item `%s` must be a dummy argument"_err_en_US,
symbol->name());
}
if (IsPointer(*symbol) || symbol->test(Symbol::Flag::CrayPointer)) {
context_.Say(source,
"The list item `%s` in a LINEAR clause must not be Cray Pointer or a variable with POINTER attribute"_err_en_US,
symbol->name());
}
if (FindCommonBlockContaining(*symbol)) {
context_.Say(source,
"'%s' is a common block name and must not appear in an LINEAR clause"_err_en_US,
symbol->name());
}
}
}
void OmpStructureChecker::CheckAllowedMapTypes(
const parser::OmpMapType::Value &type,
const std::list<parser::OmpMapType::Value> &allowedMapTypeList) {
if (!llvm::is_contained(allowedMapTypeList, type)) {
std::string commaSeparatedMapTypes;
llvm::interleave(
allowedMapTypeList.begin(), allowedMapTypeList.end(),
[&](const parser::OmpMapType::Value &mapType) {
commaSeparatedMapTypes.append(parser::ToUpperCaseLetters(
parser::OmpMapType::EnumToString(mapType)));
},
[&] { commaSeparatedMapTypes.append(", "); });
context_.Say(GetContext().clauseSource,
"Only the %s map types are permitted "
"for MAP clauses on the %s directive"_err_en_US,
commaSeparatedMapTypes, ContextDirectiveAsFortran());
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Map &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_map);
if (!OmpVerifyModifiers(
x.v, llvm::omp::OMPC_map, GetContext().clauseSource, context_)) {
return;
}
auto &modifiers{OmpGetModifiers(x.v)};
unsigned version{context_.langOptions().OpenMPVersion};
if (auto commas{std::get<bool>(x.v.t)}; !commas && version >= 52) {
context_.Say(GetContext().clauseSource,
"The specification of modifiers without comma separators for the "
"'MAP' clause has been deprecated in OpenMP 5.2"_port_en_US);
}
if (auto *iter{OmpGetUniqueModifier<parser::OmpIterator>(modifiers)}) {
CheckIteratorModifier(*iter);
}
if (auto *type{OmpGetUniqueModifier<parser::OmpMapType>(modifiers)}) {
using Value = parser::OmpMapType::Value;
switch (GetContext().directive) {
case llvm::omp::Directive::OMPD_target:
case llvm::omp::Directive::OMPD_target_teams:
case llvm::omp::Directive::OMPD_target_teams_distribute:
case llvm::omp::Directive::OMPD_target_teams_distribute_simd:
case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do:
case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do_simd:
case llvm::omp::Directive::OMPD_target_data:
CheckAllowedMapTypes(
type->v, {Value::To, Value::From, Value::Tofrom, Value::Alloc});
break;
case llvm::omp::Directive::OMPD_target_enter_data:
CheckAllowedMapTypes(type->v, {Value::To, Value::Alloc});
break;
case llvm::omp::Directive::OMPD_target_exit_data:
CheckAllowedMapTypes(
type->v, {Value::From, Value::Release, Value::Delete});
break;
default:
break;
}
}
auto &&typeMods{
OmpGetRepeatableModifier<parser::OmpMapTypeModifier>(modifiers)};
struct Less {
using Iterator = decltype(typeMods.begin());
bool operator()(Iterator a, Iterator b) const {
const parser::OmpMapTypeModifier *pa = *a;
const parser::OmpMapTypeModifier *pb = *b;
return pa->v < pb->v;
}
};
if (auto maybeIter{FindDuplicate<Less>(typeMods)}) {
context_.Say(GetContext().clauseSource,
"Duplicate map-type-modifier entry '%s' will be ignored"_warn_en_US,
parser::ToUpperCaseLetters(
parser::OmpMapTypeModifier::EnumToString((**maybeIter)->v)));
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Schedule &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_schedule);
const parser::OmpScheduleClause &scheduleClause = x.v;
if (!OmpVerifyModifiers(scheduleClause, llvm::omp::OMPC_schedule,
GetContext().clauseSource, context_)) {
return;
}
// 2.7 Loop Construct Restriction
if (llvm::omp::allDoSet.test(GetContext().directive)) {
auto &modifiers{OmpGetModifiers(scheduleClause)};
auto kind{std::get<parser::OmpScheduleClause::Kind>(scheduleClause.t)};
auto &chunk{
std::get<std::optional<parser::ScalarIntExpr>>(scheduleClause.t)};
if (chunk) {
if (kind == parser::OmpScheduleClause::Kind::Runtime ||
kind == parser::OmpScheduleClause::Kind::Auto) {
context_.Say(GetContext().clauseSource,
"When SCHEDULE clause has %s specified, "
"it must not have chunk size specified"_err_en_US,
parser::ToUpperCaseLetters(
parser::OmpScheduleClause::EnumToString(kind)));
}
if (const auto &chunkExpr{std::get<std::optional<parser::ScalarIntExpr>>(
scheduleClause.t)}) {
RequiresPositiveParameter(
llvm::omp::Clause::OMPC_schedule, *chunkExpr, "chunk size");
}
}
auto *ordering{
OmpGetUniqueModifier<parser::OmpOrderingModifier>(modifiers)};
if (ordering &&
ordering->v == parser::OmpOrderingModifier::Value::Nonmonotonic) {
if (kind != parser::OmpScheduleClause::Kind::Dynamic &&
kind != parser::OmpScheduleClause::Kind::Guided) {
context_.Say(GetContext().clauseSource,
"The NONMONOTONIC modifier can only be specified with "
"SCHEDULE(DYNAMIC) or SCHEDULE(GUIDED)"_err_en_US);
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Device &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_device);
const parser::OmpDeviceClause &deviceClause{x.v};
const auto &device{std::get<parser::ScalarIntExpr>(deviceClause.t)};
RequiresPositiveParameter(
llvm::omp::Clause::OMPC_device, device, "device expression");
llvm::omp::Directive dir{GetContext().directive};
if (OmpVerifyModifiers(deviceClause, llvm::omp::OMPC_device,
GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(deviceClause)};
if (auto *deviceMod{
OmpGetUniqueModifier<parser::OmpDeviceModifier>(modifiers)}) {
using Value = parser::OmpDeviceModifier::Value;
if (dir != llvm::omp::OMPD_target && deviceMod->v == Value::Ancestor) {
auto name{OmpGetDescriptor<parser::OmpDeviceModifier>().name};
context_.Say(OmpGetModifierSource(modifiers, deviceMod),
"The ANCESTOR %s must not appear on the DEVICE clause on any directive other than the TARGET construct. Found on %s construct."_err_en_US,
name.str(), parser::ToUpperCaseLetters(getDirectiveName(dir)));
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Depend &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_depend);
llvm::omp::Directive dir{GetContext().directive};
unsigned version{context_.langOptions().OpenMPVersion};
auto *doaDep{std::get_if<parser::OmpDoacross>(&x.v.u)};
auto *taskDep{std::get_if<parser::OmpDependClause::TaskDep>(&x.v.u)};
assert(((doaDep == nullptr) != (taskDep == nullptr)) &&
"Unexpected alternative in update clause");
if (doaDep) {
CheckDoacross(*doaDep);
CheckDependenceType(doaDep->GetDepType());
} else {
CheckTaskDependenceType(taskDep->GetTaskDepType());
}
if (dir == llvm::omp::OMPD_depobj) {
// [5.0:255:11], [5.1:288:3]
// A depend clause on a depobj construct must not have source, sink [or
// depobj](5.0) as dependence-type.
if (version >= 50) {
bool invalidDep{false};
if (taskDep) {
if (version == 50) {
invalidDep = taskDep->GetTaskDepType() ==
parser::OmpTaskDependenceType::Value::Depobj;
}
} else {
invalidDep = true;
}
if (invalidDep) {
context_.Say(GetContext().clauseSource,
"A DEPEND clause on a DEPOBJ construct must not have %s as dependence type"_err_en_US,
version == 50 ? "SINK, SOURCE or DEPOBJ" : "SINK or SOURCE");
}
}
} else if (dir != llvm::omp::OMPD_ordered) {
if (doaDep) {
context_.Say(GetContext().clauseSource,
"The SINK and SOURCE dependence types can only be used with the ORDERED directive, used here in the %s construct"_err_en_US,
parser::ToUpperCaseLetters(getDirectiveName(dir)));
}
}
if (taskDep) {
auto &objList{std::get<parser::OmpObjectList>(taskDep->t)};
if (dir == llvm::omp::OMPD_depobj) {
// [5.0:255:13], [5.1:288:6], [5.2:322:26]
// A depend clause on a depobj construct must only specify one locator.
if (objList.v.size() != 1) {
context_.Say(GetContext().clauseSource,
"A DEPEND clause on a DEPOBJ construct must only specify "
"one locator"_err_en_US);
}
}
for (const auto &object : objList.v) {
if (const auto *name{std::get_if<parser::Name>(&object.u)}) {
context_.Say(GetContext().clauseSource,
"Common block name ('%s') cannot appear in a DEPEND "
"clause"_err_en_US,
name->ToString());
} else if (auto *designator{std::get_if<parser::Designator>(&object.u)}) {
if (auto *dataRef{std::get_if<parser::DataRef>(&designator->u)}) {
CheckDependList(*dataRef);
if (const auto *arr{
std::get_if<common::Indirection<parser::ArrayElement>>(
&dataRef->u)}) {
CheckArraySection(arr->value(), GetLastName(*dataRef),
llvm::omp::Clause::OMPC_depend);
}
}
}
}
if (OmpVerifyModifiers(*taskDep, llvm::omp::OMPC_depend,
GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(*taskDep)};
if (OmpGetUniqueModifier<parser::OmpIterator>(modifiers)) {
if (dir == llvm::omp::OMPD_depobj) {
context_.Say(GetContext().clauseSource,
"An iterator-modifier may specify multiple locators, a DEPEND clause on a DEPOBJ construct must only specify one locator"_warn_en_US);
}
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Doacross &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_doacross);
CheckDoacross(x.v.v);
}
void OmpStructureChecker::CheckDoacross(const parser::OmpDoacross &doa) {
if (std::holds_alternative<parser::OmpDoacross::Source>(doa.u)) {
// Nothing to check here.
return;
}
// Process SINK dependence type. SINK may only appear in an ORDER construct,
// which references a prior ORDERED(n) clause on a DO or SIMD construct
// that marks the top of the loop nest.
auto &sink{std::get<parser::OmpDoacross::Sink>(doa.u)};
const std::list<parser::OmpIteration> &vec{sink.v.v};
// Check if the variables in the iteration vector are unique.
struct Less {
using Iterator = std::list<parser::OmpIteration>::const_iterator;
bool operator()(Iterator a, Iterator b) const {
auto namea{std::get<parser::Name>(a->t)};
auto nameb{std::get<parser::Name>(b->t)};
assert(namea.symbol && nameb.symbol && "Unresolved symbols");
// The non-determinism of the "<" doesn't matter, we only care about
// equality, i.e. a == b <=> !(a < b) && !(b < a)
return reinterpret_cast<uintptr_t>(namea.symbol) <
reinterpret_cast<uintptr_t>(nameb.symbol);
}
};
if (auto maybeIter{FindDuplicate<Less>(vec)}) {
auto name{std::get<parser::Name>((*maybeIter)->t)};
context_.Say(name.source,
"Duplicate variable '%s' in the iteration vector"_err_en_US,
name.ToString());
}
// Check if the variables in the iteration vector are induction variables.
// Ignore any mismatch between the size of the iteration vector and the
// number of DO constructs on the stack. This is checked elsewhere.
auto GetLoopDirective{[](const parser::OpenMPLoopConstruct &x) {
auto &begin{std::get<parser::OmpBeginLoopDirective>(x.t)};
return std::get<parser::OmpLoopDirective>(begin.t).v;
}};
auto GetLoopClauses{[](const parser::OpenMPLoopConstruct &x)
-> const std::list<parser::OmpClause> & {
auto &begin{std::get<parser::OmpBeginLoopDirective>(x.t)};
return std::get<parser::OmpClauseList>(begin.t).v;
}};
std::set<const Symbol *> inductionVars;
for (const LoopConstruct &loop : llvm::reverse(loopStack_)) {
if (auto *doc{std::get_if<const parser::DoConstruct *>(&loop)}) {
// Do-construct, collect the induction variable.
if (auto &control{(*doc)->GetLoopControl()}) {
if (auto *b{std::get_if<parser::LoopControl::Bounds>(&control->u)}) {
inductionVars.insert(b->name.thing.symbol);
}
}
} else {
// Omp-loop-construct, check if it's do/simd with an ORDERED clause.
auto *loopc{std::get_if<const parser::OpenMPLoopConstruct *>(&loop)};
assert(loopc && "Expecting OpenMPLoopConstruct");
llvm::omp::Directive loopDir{GetLoopDirective(**loopc)};
if (loopDir == llvm::omp::OMPD_do || loopDir == llvm::omp::OMPD_simd) {
auto IsOrdered{[](const parser::OmpClause &c) {
return c.Id() == llvm::omp::OMPC_ordered;
}};
// If it has ORDERED clause, stop the traversal.
if (llvm::any_of(GetLoopClauses(**loopc), IsOrdered)) {
break;
}
}
}
}
for (const parser::OmpIteration &iter : vec) {
auto &name{std::get<parser::Name>(iter.t)};
if (!inductionVars.count(name.symbol)) {
context_.Say(name.source,
"The iteration vector element '%s' is not an induction variable within the ORDERED loop nest"_err_en_US,
name.ToString());
}
}
}
void OmpStructureChecker::CheckCopyingPolymorphicAllocatable(
SymbolSourceMap &symbols, const llvm::omp::Clause clause) {
if (context_.ShouldWarn(common::UsageWarning::Portability)) {
for (auto &[symbol, source] : symbols) {
if (IsPolymorphicAllocatable(*symbol)) {
context_.Warn(common::UsageWarning::Portability, source,
"If a polymorphic variable with allocatable attribute '%s' is in %s clause, the behavior is unspecified"_port_en_US,
symbol->name(),
parser::ToUpperCaseLetters(getClauseName(clause).str()));
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Copyprivate &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_copyprivate);
SymbolSourceMap symbols;
GetSymbolsInObjectList(x.v, symbols);
CheckIntentInPointer(symbols, llvm::omp::Clause::OMPC_copyprivate);
CheckCopyingPolymorphicAllocatable(
symbols, llvm::omp::Clause::OMPC_copyprivate);
}
void OmpStructureChecker::Enter(const parser::OmpClause::Lastprivate &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_lastprivate);
const auto &objectList{std::get<parser::OmpObjectList>(x.v.t)};
CheckIsVarPartOfAnotherVar(
GetContext().clauseSource, objectList, "LASTPRIVATE");
CheckCrayPointee(objectList, "LASTPRIVATE");
DirectivesClauseTriple dirClauseTriple;
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(objectList, currSymbols);
CheckDefinableObjects(currSymbols, llvm::omp::Clause::OMPC_lastprivate);
CheckCopyingPolymorphicAllocatable(
currSymbols, llvm::omp::Clause::OMPC_lastprivate);
// Check lastprivate variables in worksharing constructs
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_do,
std::make_pair(
llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet));
dirClauseTriple.emplace(llvm::omp::Directive::OMPD_sections,
std::make_pair(
llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet));
CheckPrivateSymbolsInOuterCxt(
currSymbols, dirClauseTriple, llvm::omp::Clause::OMPC_lastprivate);
if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_lastprivate,
GetContext().clauseSource, context_)) {
auto &modifiers{OmpGetModifiers(x.v)};
using LastprivateModifier = parser::OmpLastprivateModifier;
if (auto *modifier{OmpGetUniqueModifier<LastprivateModifier>(modifiers)}) {
CheckLastprivateModifier(*modifier);
}
}
}
// Add any restrictions related to Modifiers/Directives with
// Lastprivate clause here:
void OmpStructureChecker::CheckLastprivateModifier(
const parser::OmpLastprivateModifier &modifier) {
using LastprivateModifier = parser::OmpLastprivateModifier;
const DirectiveContext &dirCtx{GetContext()};
if (modifier.v == LastprivateModifier::Value::Conditional &&
dirCtx.directive == llvm::omp::Directive::OMPD_taskloop) {
// [5.2:268:17]
// The conditional lastprivate-modifier must not be specified.
context_.Say(GetContext().clauseSource,
"'CONDITIONAL' modifier on lastprivate clause with TASKLOOP "
"directive is not allowed"_err_en_US);
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Copyin &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_copyin);
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(x.v, currSymbols);
CheckCopyingPolymorphicAllocatable(
currSymbols, llvm::omp::Clause::OMPC_copyin);
}
void OmpStructureChecker::CheckStructureComponent(
const parser::OmpObjectList &objects, llvm::omp::Clause clauseId) {
auto CheckComponent{[&](const parser::Designator &designator) {
if (auto *dataRef{std::get_if<parser::DataRef>(&designator.u)}) {
if (!IsDataRefTypeParamInquiry(dataRef)) {
if (auto *comp{parser::Unwrap<parser::StructureComponent>(*dataRef)}) {
context_.Say(comp->component.source,
"A variable that is part of another variable cannot appear on the %s clause"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
}
}
}
}};
for (const auto &object : objects.v) {
common::visit(
common::visitors{
CheckComponent,
[&](const parser::Name &name) {},
},
object.u);
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Update &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_update);
llvm::omp::Directive dir{GetContext().directive};
unsigned version{context_.langOptions().OpenMPVersion};
const parser::OmpDependenceType *depType{nullptr};
const parser::OmpTaskDependenceType *taskType{nullptr};
if (auto &maybeUpdate{x.v}) {
depType = std::get_if<parser::OmpDependenceType>(&maybeUpdate->u);
taskType = std::get_if<parser::OmpTaskDependenceType>(&maybeUpdate->u);
}
if (!depType && !taskType) {
assert(dir == llvm::omp::Directive::OMPD_atomic &&
"Unexpected alternative in update clause");
return;
}
if (depType) {
CheckDependenceType(depType->v);
} else if (taskType) {
CheckTaskDependenceType(taskType->v);
}
// [5.1:288:4-5]
// An update clause on a depobj construct must not have source, sink or depobj
// as dependence-type.
// [5.2:322:3]
// task-dependence-type must not be depobj.
if (dir == llvm::omp::OMPD_depobj) {
if (version >= 51) {
bool invalidDep{false};
if (taskType) {
invalidDep =
taskType->v == parser::OmpTaskDependenceType::Value::Depobj;
} else {
invalidDep = true;
}
if (invalidDep) {
context_.Say(GetContext().clauseSource,
"An UPDATE clause on a DEPOBJ construct must not have SINK, SOURCE or DEPOBJ as dependence type"_err_en_US);
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::UseDevicePtr &x) {
CheckStructureComponent(x.v, llvm::omp::Clause::OMPC_use_device_ptr);
CheckAllowedClause(llvm::omp::Clause::OMPC_use_device_ptr);
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(x.v, currSymbols);
semantics::UnorderedSymbolSet listVars;
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_use_device_ptr)) {
const auto &useDevicePtrClause{
std::get<parser::OmpClause::UseDevicePtr>(clause->u)};
const auto &useDevicePtrList{useDevicePtrClause.v};
std::list<parser::Name> useDevicePtrNameList;
for (const auto &ompObject : useDevicePtrList.v) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (name->symbol) {
if (!(IsBuiltinCPtr(*(name->symbol)))) {
context_.Warn(common::UsageWarning::OpenMPUsage, clause->source,
"Use of non-C_PTR type '%s' in USE_DEVICE_PTR is deprecated, use USE_DEVICE_ADDR instead"_warn_en_US,
name->ToString());
} else {
useDevicePtrNameList.push_back(*name);
}
}
}
}
CheckMultipleOccurrence(
listVars, useDevicePtrNameList, clause->source, "USE_DEVICE_PTR");
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::UseDeviceAddr &x) {
CheckStructureComponent(x.v, llvm::omp::Clause::OMPC_use_device_addr);
CheckAllowedClause(llvm::omp::Clause::OMPC_use_device_addr);
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(x.v, currSymbols);
semantics::UnorderedSymbolSet listVars;
for (auto [_, clause] :
FindClauses(llvm::omp::Clause::OMPC_use_device_addr)) {
const auto &useDeviceAddrClause{
std::get<parser::OmpClause::UseDeviceAddr>(clause->u)};
const auto &useDeviceAddrList{useDeviceAddrClause.v};
std::list<parser::Name> useDeviceAddrNameList;
for (const auto &ompObject : useDeviceAddrList.v) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (name->symbol) {
useDeviceAddrNameList.push_back(*name);
}
}
}
CheckMultipleOccurrence(
listVars, useDeviceAddrNameList, clause->source, "USE_DEVICE_ADDR");
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::IsDevicePtr &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_is_device_ptr);
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(x.v, currSymbols);
semantics::UnorderedSymbolSet listVars;
for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_is_device_ptr)) {
const auto &isDevicePtrClause{
std::get<parser::OmpClause::IsDevicePtr>(clause->u)};
const auto &isDevicePtrList{isDevicePtrClause.v};
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(isDevicePtrList, currSymbols);
for (auto &[symbol, source] : currSymbols) {
if (!(IsBuiltinCPtr(*symbol))) {
context_.Say(clause->source,
"Variable '%s' in IS_DEVICE_PTR clause must be of type C_PTR"_err_en_US,
source.ToString());
} else if (!(IsDummy(*symbol))) {
context_.Warn(common::UsageWarning::OpenMPUsage, clause->source,
"Variable '%s' in IS_DEVICE_PTR clause must be a dummy argument. "
"This semantic check is deprecated from OpenMP 5.2 and later."_warn_en_US,
source.ToString());
} else if (IsAllocatableOrPointer(*symbol) || IsValue(*symbol)) {
context_.Warn(common::UsageWarning::OpenMPUsage, clause->source,
"Variable '%s' in IS_DEVICE_PTR clause must be a dummy argument "
"that does not have the ALLOCATABLE, POINTER or VALUE attribute. "
"This semantic check is deprecated from OpenMP 5.2 and later."_warn_en_US,
source.ToString());
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::HasDeviceAddr &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_has_device_addr);
SymbolSourceMap currSymbols;
GetSymbolsInObjectList(x.v, currSymbols);
semantics::UnorderedSymbolSet listVars;
for (auto [_, clause] :
FindClauses(llvm::omp::Clause::OMPC_has_device_addr)) {
const auto &hasDeviceAddrClause{
std::get<parser::OmpClause::HasDeviceAddr>(clause->u)};
const auto &hasDeviceAddrList{hasDeviceAddrClause.v};
std::list<parser::Name> hasDeviceAddrNameList;
for (const auto &ompObject : hasDeviceAddrList.v) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (name->symbol) {
hasDeviceAddrNameList.push_back(*name);
}
}
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::Enter &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_enter);
const parser::OmpObjectList &objList{x.v};
SymbolSourceMap symbols;
GetSymbolsInObjectList(objList, symbols);
for (const auto &[symbol, source] : symbols) {
if (!IsExtendedListItem(*symbol)) {
context_.SayWithDecl(*symbol, source,
"'%s' must be a variable or a procedure"_err_en_US, symbol->name());
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::From &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_from);
if (!OmpVerifyModifiers(
x.v, llvm::omp::OMPC_from, GetContext().clauseSource, context_)) {
return;
}
auto &modifiers{OmpGetModifiers(x.v)};
unsigned version{context_.langOptions().OpenMPVersion};
if (auto *iter{OmpGetUniqueModifier<parser::OmpIterator>(modifiers)}) {
CheckIteratorModifier(*iter);
}
const auto &objList{std::get<parser::OmpObjectList>(x.v.t)};
SymbolSourceMap symbols;
GetSymbolsInObjectList(objList, symbols);
for (const auto &[symbol, source] : symbols) {
if (!IsVariableListItem(*symbol)) {
context_.SayWithDecl(
*symbol, source, "'%s' must be a variable"_err_en_US, symbol->name());
}
}
// Ref: [4.5:109:19]
// If a list item is an array section it must specify contiguous storage.
if (version <= 45) {
for (const parser::OmpObject &object : objList.v) {
CheckIfContiguous(object);
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::To &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_to);
if (!OmpVerifyModifiers(
x.v, llvm::omp::OMPC_to, GetContext().clauseSource, context_)) {
return;
}
auto &modifiers{OmpGetModifiers(x.v)};
unsigned version{context_.langOptions().OpenMPVersion};
// The "to" clause is only allowed on "declare target" (pre-5.1), and
// "target update". In the former case it can take an extended list item,
// in the latter a variable (a locator).
// The "declare target" construct (and the "to" clause on it) are already
// handled (in the declare-target checkers), so just look at "to" in "target
// update".
if (GetContext().directive == llvm::omp::OMPD_declare_target) {
return;
}
assert(GetContext().directive == llvm::omp::OMPD_target_update);
if (auto *iter{OmpGetUniqueModifier<parser::OmpIterator>(modifiers)}) {
CheckIteratorModifier(*iter);
}
const auto &objList{std::get<parser::OmpObjectList>(x.v.t)};
SymbolSourceMap symbols;
GetSymbolsInObjectList(objList, symbols);
for (const auto &[symbol, source] : symbols) {
if (!IsVariableListItem(*symbol)) {
context_.SayWithDecl(
*symbol, source, "'%s' must be a variable"_err_en_US, symbol->name());
}
}
// Ref: [4.5:109:19]
// If a list item is an array section it must specify contiguous storage.
if (version <= 45) {
for (const parser::OmpObject &object : objList.v) {
CheckIfContiguous(object);
}
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::OmpxBare &x) {
// Don't call CheckAllowedClause, because it allows "ompx_bare" on
// a non-combined "target" directive (for reasons of splitting combined
// directives). In source code it's only allowed on "target teams".
if (GetContext().directive != llvm::omp::Directive::OMPD_target_teams) {
context_.Say(GetContext().clauseSource,
"%s clause is only allowed on combined TARGET TEAMS"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(llvm::omp::OMPC_ompx_bare)));
}
}
void OmpStructureChecker::Enter(const parser::OmpClause::When &x) {
CheckAllowedClause(llvm::omp::Clause::OMPC_when);
OmpVerifyModifiers(
x.v, llvm::omp::OMPC_when, GetContext().clauseSource, context_);
}
void OmpStructureChecker::Enter(const parser::OmpContextSelector &ctx) {
EnterDirectiveNest(ContextSelectorNest);
using SetName = parser::OmpTraitSetSelectorName;
std::map<SetName::Value, const SetName *> visited;
for (const parser::OmpTraitSetSelector &traitSet : ctx.v) {
auto &name{std::get<SetName>(traitSet.t)};
auto [prev, unique]{visited.insert(std::make_pair(name.v, &name))};
if (!unique) {
std::string showName{parser::ToUpperCaseLetters(name.ToString())};
parser::MessageFormattedText txt(
"Repeated trait set name %s in a context specifier"_err_en_US,
showName);
parser::Message message(name.source, txt);
message.Attach(prev->second->source,
"Previous trait set %s provided here"_en_US, showName);
context_.Say(std::move(message));
}
CheckTraitSetSelector(traitSet);
}
}
void OmpStructureChecker::Leave(const parser::OmpContextSelector &) {
ExitDirectiveNest(ContextSelectorNest);
}
std::optional<evaluate::DynamicType> OmpStructureChecker::GetDynamicType(
const common::Indirection<parser::Expr> &parserExpr) {
// Indirection<parser::Expr> parserExpr
// `- parser::Expr ^.value()
const parser::TypedExpr &typedExpr{parserExpr.value().typedExpr};
// ForwardOwningPointer typedExpr
// `- GenericExprWrapper ^.get()
// `- std::optional<Expr> ^->v
if (auto maybeExpr{typedExpr.get()->v}) {
return maybeExpr->GetType();
} else {
return std::nullopt;
}
}
const std::list<parser::OmpTraitProperty> &
OmpStructureChecker::GetTraitPropertyList(
const parser::OmpTraitSelector &trait) {
static const std::list<parser::OmpTraitProperty> empty{};
auto &[_, maybeProps]{trait.t};
if (maybeProps) {
using PropertyList = std::list<parser::OmpTraitProperty>;
return std::get<PropertyList>(maybeProps->t);
} else {
return empty;
}
}
std::optional<llvm::omp::Clause> OmpStructureChecker::GetClauseFromProperty(
const parser::OmpTraitProperty &property) {
using MaybeClause = std::optional<llvm::omp::Clause>;
// The parser for OmpClause will only succeed if the clause was
// given with all required arguments.
// If this is a string or complex extension with a clause name,
// treat it as a clause and let the trait checker deal with it.
auto getClauseFromString{[&](const std::string &s) -> MaybeClause {
auto id{llvm::omp::getOpenMPClauseKind(parser::ToLowerCaseLetters(s))};
if (id != llvm::omp::Clause::OMPC_unknown) {
return id;
} else {
return std::nullopt;
}
}};
return common::visit( //
common::visitors{
[&](const parser::OmpTraitPropertyName &x) -> MaybeClause {
return getClauseFromString(x.v);
},
[&](const common::Indirection<parser::OmpClause> &x) -> MaybeClause {
return x.value().Id();
},
[&](const parser::ScalarExpr &x) -> MaybeClause {
return std::nullopt;
},
[&](const parser::OmpTraitPropertyExtension &x) -> MaybeClause {
using ExtProperty = parser::OmpTraitPropertyExtension;
if (auto *name{std::get_if<parser::OmpTraitPropertyName>(&x.u)}) {
return getClauseFromString(name->v);
} else if (auto *cpx{std::get_if<ExtProperty::Complex>(&x.u)}) {
return getClauseFromString(
std::get<parser::OmpTraitPropertyName>(cpx->t).v);
}
return std::nullopt;
},
},
property.u);
}
void OmpStructureChecker::CheckTraitSelectorList(
const std::list<parser::OmpTraitSelector> &traits) {
// [6.0:322:20]
// Each trait-selector-name may only be specified once in a trait selector
// set.
// Cannot store OmpTraitSelectorName directly, because it's not copyable.
using TraitName = parser::OmpTraitSelectorName;
using BareName = decltype(TraitName::u);
std::map<BareName, const TraitName *> visited;
for (const parser::OmpTraitSelector &trait : traits) {
auto &name{std::get<TraitName>(trait.t)};
auto [prev, unique]{visited.insert(std::make_pair(name.u, &name))};
if (!unique) {
std::string showName{parser::ToUpperCaseLetters(name.ToString())};
parser::MessageFormattedText txt(
"Repeated trait name %s in a trait set"_err_en_US, showName);
parser::Message message(name.source, txt);
message.Attach(prev->second->source,
"Previous trait %s provided here"_en_US, showName);
context_.Say(std::move(message));
}
}
}
void OmpStructureChecker::CheckTraitSetSelector(
const parser::OmpTraitSetSelector &traitSet) {
// Trait Set | Allowed traits | D-traits | X-traits | Score |
//
// Construct | Simd, directive-name | Yes | No | No |
// Device | Arch, Isa, Kind | No | Yes | No |
// Implementation | Atomic_Default_Mem_Order | No | Yes | Yes |
// | Extension, Requires | | | |
// | Vendor | | | |
// Target_Device | Arch, Device_Num, Isa | No | Yes | No |
// | Kind, Uid | | | |
// User | Condition | No | No | Yes |
struct TraitSetConfig {
std::set<parser::OmpTraitSelectorName::Value> allowed;
bool allowsDirectiveTraits;
bool allowsExtensionTraits;
bool allowsScore;
};
using SName = parser::OmpTraitSetSelectorName::Value;
using TName = parser::OmpTraitSelectorName::Value;
static const std::map<SName, TraitSetConfig> configs{
{SName::Construct, //
{{TName::Simd}, true, false, false}},
{SName::Device, //
{{TName::Arch, TName::Isa, TName::Kind}, false, true, false}},
{SName::Implementation, //
{{TName::Atomic_Default_Mem_Order, TName::Extension, TName::Requires,
TName::Vendor},
false, true, true}},
{SName::Target_Device, //
{{TName::Arch, TName::Device_Num, TName::Isa, TName::Kind,
TName::Uid},
false, true, false}},
{SName::User, //
{{TName::Condition}, false, false, true}},
};
auto checkTraitSet{[&](const TraitSetConfig &config) {
auto &[setName, traits]{traitSet.t};
auto usn{parser::ToUpperCaseLetters(setName.ToString())};
// Check if there are any duplicate traits.
CheckTraitSelectorList(traits);
for (const parser::OmpTraitSelector &trait : traits) {
// Don't use structured bindings here, because they cannot be captured
// before C++20.
auto &traitName = std::get<parser::OmpTraitSelectorName>(trait.t);
auto &maybeProps =
std::get<std::optional<parser::OmpTraitSelector::Properties>>(
trait.t);
// Check allowed traits
common::visit( //
common::visitors{
[&](parser::OmpTraitSelectorName::Value v) {
if (!config.allowed.count(v)) {
context_.Say(traitName.source,
"%s is not a valid trait for %s trait set"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()), usn);
}
},
[&](llvm::omp::Directive) {
if (!config.allowsDirectiveTraits) {
context_.Say(traitName.source,
"Directive name is not a valid trait for %s trait set"_err_en_US,
usn);
}
},
[&](const std::string &) {
if (!config.allowsExtensionTraits) {
context_.Say(traitName.source,
"Extension traits are not valid for %s trait set"_err_en_US,
usn);
}
},
},
traitName.u);
// Check score
if (maybeProps) {
auto &[maybeScore, _]{maybeProps->t};
if (maybeScore) {
CheckTraitScore(*maybeScore);
}
}
// Check the properties of the individual traits
CheckTraitSelector(traitSet, trait);
}
}};
checkTraitSet(
configs.at(std::get<parser::OmpTraitSetSelectorName>(traitSet.t).v));
}
void OmpStructureChecker::CheckTraitScore(const parser::OmpTraitScore &score) {
// [6.0:322:23]
// A score-expression must be a non-negative constant integer expression.
if (auto value{GetIntValue(score)}; !value || value < 0) {
context_.Say(score.source,
"SCORE expression must be a non-negative constant integer expression"_err_en_US);
}
}
bool OmpStructureChecker::VerifyTraitPropertyLists(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
using TraitName = parser::OmpTraitSelectorName;
using PropertyList = std::list<parser::OmpTraitProperty>;
auto &[traitName, maybeProps]{trait.t};
auto checkPropertyList{[&](const PropertyList &properties, auto isValid,
const std::string &message) {
bool foundInvalid{false};
for (const parser::OmpTraitProperty &prop : properties) {
if (!isValid(prop)) {
if (foundInvalid) {
context_.Say(
prop.source, "More invalid properties are present"_err_en_US);
break;
}
context_.Say(prop.source, "%s"_err_en_US, message);
foundInvalid = true;
}
}
return !foundInvalid;
}};
bool invalid{false};
if (std::holds_alternative<llvm::omp::Directive>(traitName.u)) {
// Directive-name traits don't have properties.
if (maybeProps) {
context_.Say(trait.source,
"Directive-name traits cannot have properties"_err_en_US);
invalid = true;
}
}
// Ignore properties on extension traits.
// See `TraitSelectorParser` in openmp-parser.cpp
if (auto *v{std::get_if<TraitName::Value>(&traitName.u)}) {
switch (*v) {
// name-list properties
case parser::OmpTraitSelectorName::Value::Arch:
case parser::OmpTraitSelectorName::Value::Extension:
case parser::OmpTraitSelectorName::Value::Isa:
case parser::OmpTraitSelectorName::Value::Kind:
case parser::OmpTraitSelectorName::Value::Uid:
case parser::OmpTraitSelectorName::Value::Vendor:
if (maybeProps) {
auto isName{[](const parser::OmpTraitProperty &prop) {
return std::holds_alternative<parser::OmpTraitPropertyName>(prop.u);
}};
invalid = !checkPropertyList(std::get<PropertyList>(maybeProps->t),
isName, "Trait property should be a name");
}
break;
// clause-list
case parser::OmpTraitSelectorName::Value::Atomic_Default_Mem_Order:
case parser::OmpTraitSelectorName::Value::Requires:
case parser::OmpTraitSelectorName::Value::Simd:
if (maybeProps) {
auto isClause{[&](const parser::OmpTraitProperty &prop) {
return GetClauseFromProperty(prop).has_value();
}};
invalid = !checkPropertyList(std::get<PropertyList>(maybeProps->t),
isClause, "Trait property should be a clause");
}
break;
// expr-list
case parser::OmpTraitSelectorName::Value::Condition:
case parser::OmpTraitSelectorName::Value::Device_Num:
if (maybeProps) {
auto isExpr{[](const parser::OmpTraitProperty &prop) {
return std::holds_alternative<parser::ScalarExpr>(prop.u);
}};
invalid = !checkPropertyList(std::get<PropertyList>(maybeProps->t),
isExpr, "Trait property should be a scalar expression");
}
break;
} // switch
}
return !invalid;
}
void OmpStructureChecker::CheckTraitSelector(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
using TraitName = parser::OmpTraitSelectorName;
auto &[traitName, maybeProps]{trait.t};
// Only do the detailed checks if the property lists are valid.
if (VerifyTraitPropertyLists(traitSet, trait)) {
if (std::holds_alternative<llvm::omp::Directive>(traitName.u) ||
std::holds_alternative<std::string>(traitName.u)) {
// No properties here: directives don't have properties, and
// we don't implement any extension traits now.
return;
}
// Specific traits we want to check.
// Limitations:
// (1) The properties for these traits are defined in "Additional
// Definitions for the OpenMP API Specification". It's not clear how
// to define them in a portable way, and how to verify their validity,
// especially if they get replaced by their integer values (in case
// they are defined as enums).
// (2) These are entirely implementation-defined, and at the moment
// there is no known schema to validate these values.
auto v{std::get<TraitName::Value>(traitName.u)};
switch (v) {
case TraitName::Value::Arch:
// Unchecked, TBD(1)
break;
case TraitName::Value::Atomic_Default_Mem_Order:
CheckTraitADMO(traitSet, trait);
break;
case TraitName::Value::Condition:
CheckTraitCondition(traitSet, trait);
break;
case TraitName::Value::Device_Num:
CheckTraitDeviceNum(traitSet, trait);
break;
case TraitName::Value::Extension:
// Ignore
break;
case TraitName::Value::Isa:
// Unchecked, TBD(1)
break;
case TraitName::Value::Kind:
// Unchecked, TBD(1)
break;
case TraitName::Value::Requires:
CheckTraitRequires(traitSet, trait);
break;
case TraitName::Value::Simd:
CheckTraitSimd(traitSet, trait);
break;
case TraitName::Value::Uid:
// Unchecked, TBD(2)
break;
case TraitName::Value::Vendor:
// Unchecked, TBD(1)
break;
}
}
}
void OmpStructureChecker::CheckTraitADMO(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
auto &traitName{std::get<parser::OmpTraitSelectorName>(trait.t)};
auto &properties{GetTraitPropertyList(trait)};
if (properties.size() != 1) {
context_.Say(trait.source,
"%s trait requires a single clause property"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()));
} else {
const parser::OmpTraitProperty &property{properties.front()};
auto clauseId{*GetClauseFromProperty(property)};
// Check that the clause belongs to the memory-order clause-set.
// Clause sets will hopefully be autogenerated at some point.
switch (clauseId) {
case llvm::omp::Clause::OMPC_acq_rel:
case llvm::omp::Clause::OMPC_acquire:
case llvm::omp::Clause::OMPC_relaxed:
case llvm::omp::Clause::OMPC_release:
case llvm::omp::Clause::OMPC_seq_cst:
break;
default:
context_.Say(property.source,
"%s trait requires a clause from the memory-order clause set"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()));
}
using ClauseProperty = common::Indirection<parser::OmpClause>;
if (!std::holds_alternative<ClauseProperty>(property.u)) {
context_.Say(property.source,
"Invalid clause specification for %s"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId)));
}
}
}
void OmpStructureChecker::CheckTraitCondition(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
auto &traitName{std::get<parser::OmpTraitSelectorName>(trait.t)};
auto &properties{GetTraitPropertyList(trait)};
if (properties.size() != 1) {
context_.Say(trait.source,
"%s trait requires a single expression property"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()));
} else {
const parser::OmpTraitProperty &property{properties.front()};
auto &scalarExpr{std::get<parser::ScalarExpr>(property.u)};
auto maybeType{GetDynamicType(scalarExpr.thing)};
if (!maybeType || maybeType->category() != TypeCategory::Logical) {
context_.Say(property.source,
"%s trait requires a single LOGICAL expression"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()));
}
}
}
void OmpStructureChecker::CheckTraitDeviceNum(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
auto &traitName{std::get<parser::OmpTraitSelectorName>(trait.t)};
auto &properties{GetTraitPropertyList(trait)};
if (properties.size() != 1) {
context_.Say(trait.source,
"%s trait requires a single expression property"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()));
}
// No other checks at the moment.
}
void OmpStructureChecker::CheckTraitRequires(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
unsigned version{context_.langOptions().OpenMPVersion};
auto &traitName{std::get<parser::OmpTraitSelectorName>(trait.t)};
auto &properties{GetTraitPropertyList(trait)};
for (const parser::OmpTraitProperty &property : properties) {
auto clauseId{*GetClauseFromProperty(property)};
if (!llvm::omp::isAllowedClauseForDirective(
llvm::omp::OMPD_requires, clauseId, version)) {
context_.Say(property.source,
"%s trait requires a clause from the requirement clause set"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()));
}
using ClauseProperty = common::Indirection<parser::OmpClause>;
if (!std::holds_alternative<ClauseProperty>(property.u)) {
context_.Say(property.source,
"Invalid clause specification for %s"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId)));
}
}
}
void OmpStructureChecker::CheckTraitSimd(
const parser::OmpTraitSetSelector &traitSet,
const parser::OmpTraitSelector &trait) {
unsigned version{context_.langOptions().OpenMPVersion};
auto &traitName{std::get<parser::OmpTraitSelectorName>(trait.t)};
auto &properties{GetTraitPropertyList(trait)};
for (const parser::OmpTraitProperty &property : properties) {
auto clauseId{*GetClauseFromProperty(property)};
if (!llvm::omp::isAllowedClauseForDirective(
llvm::omp::OMPD_declare_simd, clauseId, version)) {
context_.Say(property.source,
"%s trait requires a clause that is allowed on the %s directive"_err_en_US,
parser::ToUpperCaseLetters(traitName.ToString()),
parser::ToUpperCaseLetters(
getDirectiveName(llvm::omp::OMPD_declare_simd)));
}
using ClauseProperty = common::Indirection<parser::OmpClause>;
if (!std::holds_alternative<ClauseProperty>(property.u)) {
context_.Say(property.source,
"Invalid clause specification for %s"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clauseId)));
}
}
}
llvm::StringRef OmpStructureChecker::getClauseName(llvm::omp::Clause clause) {
return llvm::omp::getOpenMPClauseName(clause);
}
llvm::StringRef OmpStructureChecker::getDirectiveName(
llvm::omp::Directive directive) {
return llvm::omp::getOpenMPDirectiveName(directive);
}
const Symbol *OmpStructureChecker::GetObjectSymbol(
const parser::OmpObject &object) {
// Some symbols may be missing if the resolution failed, e.g. when an
// undeclared name is used with implicit none.
if (auto *name{std::get_if<parser::Name>(&object.u)}) {
return name->symbol ? &name->symbol->GetUltimate() : nullptr;
} else if (auto *desg{std::get_if<parser::Designator>(&object.u)}) {
auto &last{GetLastName(*desg)};
return last.symbol ? &GetLastName(*desg).symbol->GetUltimate() : nullptr;
}
return nullptr;
}
const Symbol *OmpStructureChecker::GetArgumentSymbol(
const parser::OmpArgument &argument) {
if (auto *locator{std::get_if<parser::OmpLocator>(&argument.u)}) {
if (auto *object{std::get_if<parser::OmpObject>(&locator->u)}) {
return GetObjectSymbol(*object);
}
}
return nullptr;
}
std::optional<parser::CharBlock> OmpStructureChecker::GetObjectSource(
const parser::OmpObject &object) {
if (auto *name{std::get_if<parser::Name>(&object.u)}) {
return name->source;
} else if (auto *desg{std::get_if<parser::Designator>(&object.u)}) {
return GetLastName(*desg).source;
}
return std::nullopt;
}
void OmpStructureChecker::CheckDependList(const parser::DataRef &d) {
common::visit(
common::visitors{
[&](const common::Indirection<parser::ArrayElement> &elem) {
// Check if the base element is valid on Depend Clause
CheckDependList(elem.value().base);
},
[&](const common::Indirection<parser::StructureComponent> &) {
context_.Say(GetContext().clauseSource,
"A variable that is part of another variable "
"(such as an element of a structure) but is not an array "
"element or an array section cannot appear in a DEPEND "
"clause"_err_en_US);
},
[&](const common::Indirection<parser::CoindexedNamedObject> &) {
context_.Say(GetContext().clauseSource,
"Coarrays are not supported in DEPEND clause"_err_en_US);
},
[&](const parser::Name &) {},
},
d.u);
}
// Called from both Reduction and Depend clause.
void OmpStructureChecker::CheckArraySection(
const parser::ArrayElement &arrayElement, const parser::Name &name,
const llvm::omp::Clause clause) {
if (!arrayElement.subscripts.empty()) {
for (const auto &subscript : arrayElement.subscripts) {
if (const auto *triplet{
std::get_if<parser::SubscriptTriplet>(&subscript.u)}) {
if (std::get<0>(triplet->t) && std::get<1>(triplet->t)) {
std::optional<int64_t> strideVal{std::nullopt};
if (const auto &strideExpr = std::get<2>(triplet->t)) {
// OpenMP 6.0 Section 5.2.5: Array Sections
// Restrictions: if a stride expression is specified it must be
// positive. A stride of 0 doesn't make sense.
strideVal = GetIntValue(strideExpr);
if (strideVal && *strideVal < 1) {
context_.Say(GetContext().clauseSource,
"'%s' in %s clause must have a positive stride"_err_en_US,
name.ToString(),
parser::ToUpperCaseLetters(getClauseName(clause).str()));
}
}
const auto &lower{std::get<0>(triplet->t)};
const auto &upper{std::get<1>(triplet->t)};
if (lower && upper) {
const auto lval{GetIntValue(lower)};
const auto uval{GetIntValue(upper)};
if (lval && uval) {
int64_t sectionLen = *uval - *lval;
if (strideVal) {
sectionLen = sectionLen / *strideVal;
}
if (sectionLen < 1) {
context_.Say(GetContext().clauseSource,
"'%s' in %s clause"
" is a zero size array section"_err_en_US,
name.ToString(),
parser::ToUpperCaseLetters(getClauseName(clause).str()));
break;
}
}
}
}
}
}
}
}
void OmpStructureChecker::CheckIntentInPointer(
SymbolSourceMap &symbols, llvm::omp::Clause clauseId) {
for (auto &[symbol, source] : symbols) {
if (IsPointer(*symbol) && IsIntentIn(*symbol)) {
context_.Say(source,
"Pointer '%s' with the INTENT(IN) attribute may not appear in a %s clause"_err_en_US,
symbol->name(),
parser::ToUpperCaseLetters(getClauseName(clauseId).str()));
}
}
}
void OmpStructureChecker::CheckProcedurePointer(
SymbolSourceMap &symbols, llvm::omp::Clause clause) {
for (const auto &[symbol, source] : symbols) {
if (IsProcedurePointer(*symbol)) {
context_.Say(source,
"Procedure pointer '%s' may not appear in a %s clause"_err_en_US,
symbol->name(),
parser::ToUpperCaseLetters(getClauseName(clause).str()));
}
}
}
void OmpStructureChecker::CheckCrayPointee(
const parser::OmpObjectList &objectList, llvm::StringRef clause,
bool suggestToUseCrayPointer) {
SymbolSourceMap symbols;
GetSymbolsInObjectList(objectList, symbols);
for (auto it{symbols.begin()}; it != symbols.end(); ++it) {
const auto *symbol{it->first};
const auto source{it->second};
if (symbol->test(Symbol::Flag::CrayPointee)) {
std::string suggestionMsg = "";
if (suggestToUseCrayPointer)
suggestionMsg = ", use Cray Pointer '" +
semantics::GetCrayPointer(*symbol).name().ToString() + "' instead";
context_.Say(source,
"Cray Pointee '%s' may not appear in %s clause%s"_err_en_US,
symbol->name(), clause.str(), suggestionMsg);
}
}
}
void OmpStructureChecker::GetSymbolsInObjectList(
const parser::OmpObjectList &objectList, SymbolSourceMap &symbols) {
for (const auto &ompObject : objectList.v) {
if (const auto *name{parser::Unwrap<parser::Name>(ompObject)}) {
if (const auto *symbol{name->symbol}) {
if (const auto *commonBlockDetails{
symbol->detailsIf<CommonBlockDetails>()}) {
for (const auto &object : commonBlockDetails->objects()) {
symbols.emplace(&object->GetUltimate(), name->source);
}
} else {
symbols.emplace(&symbol->GetUltimate(), name->source);
}
}
}
}
}
void OmpStructureChecker::CheckDefinableObjects(
SymbolSourceMap &symbols, const llvm::omp::Clause clause) {
for (auto &[symbol, source] : symbols) {
if (auto msg{WhyNotDefinable(source, context_.FindScope(source),
DefinabilityFlags{}, *symbol)}) {
context_
.Say(source,
"Variable '%s' on the %s clause is not definable"_err_en_US,
symbol->name(),
parser::ToUpperCaseLetters(getClauseName(clause).str()))
.Attach(std::move(msg->set_severity(parser::Severity::Because)));
}
}
}
void OmpStructureChecker::CheckPrivateSymbolsInOuterCxt(
SymbolSourceMap &currSymbols, DirectivesClauseTriple &dirClauseTriple,
const llvm::omp::Clause currClause) {
SymbolSourceMap enclosingSymbols;
auto range{dirClauseTriple.equal_range(GetContext().directive)};
for (auto dirIter{range.first}; dirIter != range.second; ++dirIter) {
auto enclosingDir{dirIter->second.first};
auto enclosingClauseSet{dirIter->second.second};
if (auto *enclosingContext{GetEnclosingContextWithDir(enclosingDir)}) {
for (auto it{enclosingContext->clauseInfo.begin()};
it != enclosingContext->clauseInfo.end(); ++it) {
if (enclosingClauseSet.test(it->first)) {
if (const auto *ompObjectList{GetOmpObjectList(*it->second)}) {
GetSymbolsInObjectList(*ompObjectList, enclosingSymbols);
}
}
}
// Check if the symbols in current context are private in outer context
for (auto &[symbol, source] : currSymbols) {
if (enclosingSymbols.find(symbol) != enclosingSymbols.end()) {
context_.Say(source,
"%s variable '%s' is PRIVATE in outer context"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(currClause).str()),
symbol->name());
}
}
}
}
}
bool OmpStructureChecker::CheckTargetBlockOnlyTeams(
const parser::Block &block) {
bool nestedTeams{false};
if (!block.empty()) {
auto it{block.begin()};
if (const auto *ompConstruct{
parser::Unwrap<parser::OpenMPConstruct>(*it)}) {
if (const auto *ompBlockConstruct{
std::get_if<parser::OpenMPBlockConstruct>(&ompConstruct->u)}) {
const auto &beginBlockDir{
std::get<parser::OmpBeginBlockDirective>(ompBlockConstruct->t)};
const auto &beginDir{
std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
if (beginDir.v == llvm::omp::Directive::OMPD_teams) {
nestedTeams = true;
}
}
}
if (nestedTeams && ++it == block.end()) {
return true;
}
}
return false;
}
void OmpStructureChecker::CheckWorkshareBlockStmts(
const parser::Block &block, parser::CharBlock source) {
OmpWorkshareBlockChecker ompWorkshareBlockChecker{context_, source};
for (auto it{block.begin()}; it != block.end(); ++it) {
if (parser::Unwrap<parser::AssignmentStmt>(*it) ||
parser::Unwrap<parser::ForallStmt>(*it) ||
parser::Unwrap<parser::ForallConstruct>(*it) ||
parser::Unwrap<parser::WhereStmt>(*it) ||
parser::Unwrap<parser::WhereConstruct>(*it)) {
parser::Walk(*it, ompWorkshareBlockChecker);
} else if (const auto *ompConstruct{
parser::Unwrap<parser::OpenMPConstruct>(*it)}) {
if (const auto *ompAtomicConstruct{
std::get_if<parser::OpenMPAtomicConstruct>(&ompConstruct->u)}) {
// Check if assignment statements in the enclosing OpenMP Atomic
// construct are allowed in the Workshare construct
parser::Walk(*ompAtomicConstruct, ompWorkshareBlockChecker);
} else if (const auto *ompCriticalConstruct{
std::get_if<parser::OpenMPCriticalConstruct>(
&ompConstruct->u)}) {
// All the restrictions on the Workshare construct apply to the
// statements in the enclosing critical constructs
const auto &criticalBlock{
std::get<parser::Block>(ompCriticalConstruct->t)};
CheckWorkshareBlockStmts(criticalBlock, source);
} else {
// Check if OpenMP constructs enclosed in the Workshare construct are
// 'Parallel' constructs
auto currentDir{llvm::omp::Directive::OMPD_unknown};
if (const auto *ompBlockConstruct{
std::get_if<parser::OpenMPBlockConstruct>(&ompConstruct->u)}) {
const auto &beginBlockDir{
std::get<parser::OmpBeginBlockDirective>(ompBlockConstruct->t)};
const auto &beginDir{
std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
currentDir = beginDir.v;
} else if (const auto *ompLoopConstruct{
std::get_if<parser::OpenMPLoopConstruct>(
&ompConstruct->u)}) {
const auto &beginLoopDir{
std::get<parser::OmpBeginLoopDirective>(ompLoopConstruct->t)};
const auto &beginDir{
std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
currentDir = beginDir.v;
} else if (const auto *ompSectionsConstruct{
std::get_if<parser::OpenMPSectionsConstruct>(
&ompConstruct->u)}) {
const auto &beginSectionsDir{
std::get<parser::OmpBeginSectionsDirective>(
ompSectionsConstruct->t)};
const auto &beginDir{
std::get<parser::OmpSectionsDirective>(beginSectionsDir.t)};
currentDir = beginDir.v;
}
if (!llvm::omp::topParallelSet.test(currentDir)) {
context_.Say(source,
"OpenMP constructs enclosed in WORKSHARE construct may consist "
"of ATOMIC, CRITICAL or PARALLEL constructs only"_err_en_US);
}
}
} else {
context_.Say(source,
"The structured block in a WORKSHARE construct may consist of only "
"SCALAR or ARRAY assignments, FORALL or WHERE statements, "
"FORALL, WHERE, ATOMIC, CRITICAL or PARALLEL constructs"_err_en_US);
}
}
}
void OmpStructureChecker::CheckIfContiguous(const parser::OmpObject &object) {
if (auto contig{IsContiguous(object)}; contig && !*contig) {
const parser::Name *name{GetObjectName(object)};
assert(name && "Expecting name component");
context_.Say(name->source,
"Reference to '%s' must be a contiguous object"_err_en_US,
name->ToString());
}
}
namespace {
struct NameHelper {
template <typename T>
static const parser::Name *Visit(const common::Indirection<T> &x) {
return Visit(x.value());
}
static const parser::Name *Visit(const parser::Substring &x) {
return Visit(std::get<parser::DataRef>(x.t));
}
static const parser::Name *Visit(const parser::ArrayElement &x) {
return Visit(x.base);
}
static const parser::Name *Visit(const parser::Designator &x) {
return common::visit([](auto &&s) { return Visit(s); }, x.u);
}
static const parser::Name *Visit(const parser::DataRef &x) {
return common::visit([](auto &&s) { return Visit(s); }, x.u);
}
static const parser::Name *Visit(const parser::OmpObject &x) {
return common::visit([](auto &&s) { return Visit(s); }, x.u);
}
template <typename T> static const parser::Name *Visit(T &&) {
return nullptr;
}
static const parser::Name *Visit(const parser::Name &x) { return &x; }
};
} // namespace
const parser::Name *OmpStructureChecker::GetObjectName(
const parser::OmpObject &object) {
return NameHelper::Visit(object);
}
const parser::OmpObjectList *OmpStructureChecker::GetOmpObjectList(
const parser::OmpClause &clause) {
// Clauses with OmpObjectList as its data member
using MemberObjectListClauses = std::tuple<parser::OmpClause::Copyprivate,
parser::OmpClause::Copyin, parser::OmpClause::Enter,
parser::OmpClause::Firstprivate, parser::OmpClause::Link,
parser::OmpClause::Private, parser::OmpClause::Shared,
parser::OmpClause::UseDevicePtr, parser::OmpClause::UseDeviceAddr>;
// Clauses with OmpObjectList in the tuple
using TupleObjectListClauses = std::tuple<parser::OmpClause::Aligned,
parser::OmpClause::Allocate, parser::OmpClause::From,
parser::OmpClause::Lastprivate, parser::OmpClause::Map,
parser::OmpClause::Reduction, parser::OmpClause::To>;
// TODO:: Generate the tuples using TableGen.
// Handle other constructs with OmpObjectList such as OpenMPThreadprivate.
return common::visit(
common::visitors{
[&](const auto &x) -> const parser::OmpObjectList * {
using Ty = std::decay_t<decltype(x)>;
if constexpr (common::HasMember<Ty, MemberObjectListClauses>) {
return &x.v;
} else if constexpr (common::HasMember<Ty,
TupleObjectListClauses>) {
return &(std::get<parser::OmpObjectList>(x.v.t));
} else {
return nullptr;
}
},
},
clause.u);
}
void OmpStructureChecker::Enter(
const parser::OmpClause::AtomicDefaultMemOrder &x) {
CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_atomic_default_mem_order);
}
void OmpStructureChecker::Enter(const parser::OmpClause::DynamicAllocators &x) {
CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_dynamic_allocators);
}
void OmpStructureChecker::Enter(const parser::OmpClause::ReverseOffload &x) {
CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_reverse_offload);
}
void OmpStructureChecker::Enter(const parser::OmpClause::UnifiedAddress &x) {
CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_unified_address);
}
void OmpStructureChecker::Enter(
const parser::OmpClause::UnifiedSharedMemory &x) {
CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_unified_shared_memory);
}
void OmpStructureChecker::Enter(const parser::OmpClause::SelfMaps &x) {
CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_self_maps);
}
void OmpStructureChecker::Enter(const parser::DoConstruct &x) {
Base::Enter(x);
loopStack_.push_back(&x);
}
void OmpStructureChecker::Leave(const parser::DoConstruct &x) {
assert(!loopStack_.empty() && "Expecting non-empty loop stack");
#ifndef NDEBUG
const LoopConstruct &top = loopStack_.back();
auto *doc{std::get_if<const parser::DoConstruct *>(&top)};
assert(doc != nullptr && *doc == &x && "Mismatched loop constructs");
#endif
loopStack_.pop_back();
Base::Leave(x);
}
void OmpStructureChecker::Enter(const parser::OpenMPInteropConstruct &x) {
bool isDependClauseOccured{false};
int targetCount{0}, targetSyncCount{0};
const auto &dir{std::get<parser::OmpDirectiveName>(x.v.t)};
std::set<const Symbol *> objectSymbolList;
PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_interop);
const auto &clauseList{std::get<std::optional<parser::OmpClauseList>>(x.v.t)};
for (const auto &clause : clauseList->v) {
common::visit(
common::visitors{
[&](const parser::OmpClause::Init &initClause) {
if (OmpVerifyModifiers(initClause.v, llvm::omp::OMPC_init,
GetContext().directiveSource, context_)) {
auto &modifiers{OmpGetModifiers(initClause.v)};
auto &&interopTypeModifier{
OmpGetRepeatableModifier<parser::OmpInteropType>(
modifiers)};
for (const auto &it : interopTypeModifier) {
if (it->v == parser::OmpInteropType::Value::TargetSync) {
++targetSyncCount;
} else {
++targetCount;
}
}
}
const auto &interopVar{parser::Unwrap<parser::OmpObject>(
std::get<parser::OmpObject>(initClause.v.t))};
const auto *name{parser::Unwrap<parser::Name>(interopVar)};
const auto *objectSymbol{name->symbol};
if (llvm::is_contained(objectSymbolList, objectSymbol)) {
context_.Say(GetContext().directiveSource,
"Each interop-var may be specified for at most one action-clause of each INTEROP construct."_err_en_US);
} else {
objectSymbolList.insert(objectSymbol);
}
},
[&](const parser::OmpClause::Depend &dependClause) {
isDependClauseOccured = true;
},
[&](const parser::OmpClause::Destroy &destroyClause) {
const auto &interopVar{
parser::Unwrap<parser::OmpObject>(destroyClause.v)};
const auto *name{parser::Unwrap<parser::Name>(interopVar)};
const auto *objectSymbol{name->symbol};
if (llvm::is_contained(objectSymbolList, objectSymbol)) {
context_.Say(GetContext().directiveSource,
"Each interop-var may be specified for at most one action-clause of each INTEROP construct."_err_en_US);
} else {
objectSymbolList.insert(objectSymbol);
}
},
[&](const parser::OmpClause::Use &useClause) {
const auto &interopVar{
parser::Unwrap<parser::OmpObject>(useClause.v)};
const auto *name{parser::Unwrap<parser::Name>(interopVar)};
const auto *objectSymbol{name->symbol};
if (llvm::is_contained(objectSymbolList, objectSymbol)) {
context_.Say(GetContext().directiveSource,
"Each interop-var may be specified for at most one action-clause of each INTEROP construct."_err_en_US);
} else {
objectSymbolList.insert(objectSymbol);
}
},
[&](const auto &) {},
},
clause.u);
}
if (targetCount > 1 || targetSyncCount > 1) {
context_.Say(GetContext().directiveSource,
"Each interop-type may be specified at most once."_err_en_US);
}
if (isDependClauseOccured && !targetSyncCount) {
context_.Say(GetContext().directiveSource,
"A DEPEND clause can only appear on the directive if the interop-type includes TARGETSYNC"_err_en_US);
}
}
void OmpStructureChecker::Leave(const parser::OpenMPInteropConstruct &) {
dirContext_.pop_back();
}
void OmpStructureChecker::CheckAllowedRequiresClause(llvmOmpClause clause) {
CheckAllowedClause(clause);
if (clause != llvm::omp::Clause::OMPC_atomic_default_mem_order) {
// Check that it does not appear after a device construct
if (deviceConstructFound_) {
context_.Say(GetContext().clauseSource,
"REQUIRES directive with '%s' clause found lexically after device "
"construct"_err_en_US,
parser::ToUpperCaseLetters(getClauseName(clause).str()));
}
}
}
} // namespace Fortran::semantics