blob: 10d8a5847ebd2dac534a6c874301fefa18f75ed9 [file] [log] [blame]
//===- BuiltinTypes.h - MLIR Builtin Type Classes ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_IR_BUILTINTYPES_H
#define MLIR_IR_BUILTINTYPES_H
#include "BuiltinAttributeInterfaces.h"
#include "SubElementInterfaces.h"
namespace llvm {
struct fltSemantics;
} // namespace llvm
namespace mlir {
class AffineExpr;
class AffineMap;
class FloatType;
class IndexType;
class IntegerType;
class StringAttr;
class TypeRange;
//===----------------------------------------------------------------------===//
// FloatType
//===----------------------------------------------------------------------===//
class FloatType : public Type {
public:
using Type::Type;
// Convenience factories.
static FloatType getBF16(MLIRContext *ctx);
static FloatType getF16(MLIRContext *ctx);
static FloatType getF32(MLIRContext *ctx);
static FloatType getF64(MLIRContext *ctx);
static FloatType getF80(MLIRContext *ctx);
static FloatType getF128(MLIRContext *ctx);
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(Type type);
/// Return the bitwidth of this float type.
unsigned getWidth();
/// Get or create a new FloatType with bitwidth scaled by `scale`.
/// Return null if the scaled element type cannot be represented.
FloatType scaleElementBitwidth(unsigned scale);
/// Return the floating semantics of this float type.
const llvm::fltSemantics &getFloatSemantics();
};
//===----------------------------------------------------------------------===//
// ShapedType
//===----------------------------------------------------------------------===//
/// This is a common base class between Vector, UnrankedTensor, RankedTensor,
/// and MemRef types because they share behavior and semantics around shape,
/// rank, and fixed element type. Any type with these semantics should inherit
/// from ShapedType.
class ShapedType : public Type {
public:
using Type::Type;
// TODO: merge these two special values in a single one used everywhere.
// Unfortunately, uses of `-1` have crept deep into the codebase now and are
// hard to track.
static constexpr int64_t kDynamicSize = -1;
static constexpr int64_t kDynamicStrideOrOffset =
std::numeric_limits<int64_t>::min();
/// Return clone of this type with new shape and element type.
ShapedType clone(ArrayRef<int64_t> shape, Type elementType);
ShapedType clone(ArrayRef<int64_t> shape);
ShapedType clone(Type elementType);
/// Return the element type.
Type getElementType() const;
/// If an element type is an integer or a float, return its width. Otherwise,
/// abort.
unsigned getElementTypeBitWidth() const;
/// If it has static shape, return the number of elements. Otherwise, abort.
int64_t getNumElements() const;
/// If this is a ranked type, return the rank. Otherwise, abort.
int64_t getRank() const;
/// Whether or not this is a ranked type. Memrefs, vectors and ranked tensors
/// have a rank, while unranked tensors do not.
bool hasRank() const;
/// If this is a ranked type, return the shape. Otherwise, abort.
ArrayRef<int64_t> getShape() const;
/// If this is unranked type or any dimension has unknown size (<0), it
/// doesn't have static shape. If all dimensions have known size (>= 0), it
/// has static shape.
bool hasStaticShape() const;
/// If this has a static shape and the shape is equal to `shape` return true.
bool hasStaticShape(ArrayRef<int64_t> shape) const;
/// If this is a ranked type, return the number of dimensions with dynamic
/// size. Otherwise, abort.
int64_t getNumDynamicDims() const;
/// If this is ranked type, return the size of the specified dimension.
/// Otherwise, abort.
int64_t getDimSize(unsigned idx) const;
/// Returns true if this dimension has a dynamic size (for ranked types);
/// aborts for unranked types.
bool isDynamicDim(unsigned idx) const;
/// Returns the position of the dynamic dimension relative to just the dynamic
/// dimensions, given its `index` within the shape.
unsigned getDynamicDimIndex(unsigned index) const;
/// Get the total amount of bits occupied by a value of this type. This does
/// not take into account any memory layout or widening constraints, e.g. a
/// vector<3xi57> is reported to occupy 3x57=171 bit, even though in practice
/// it will likely be stored as in a 4xi64 vector register. Fail an assertion
/// if the size cannot be computed statically, i.e. if the type has a dynamic
/// shape or if its elemental type does not have a known bit width.
int64_t getSizeInBits() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(Type type);
/// Whether the given dimension size indicates a dynamic dimension.
static constexpr bool isDynamic(int64_t dSize) {
return dSize == kDynamicSize;
}
static constexpr bool isDynamicStrideOrOffset(int64_t dStrideOrOffset) {
return dStrideOrOffset == kDynamicStrideOrOffset;
}
};
//===----------------------------------------------------------------------===//
// TensorType
//===----------------------------------------------------------------------===//
/// Tensor types represent multi-dimensional arrays, and have two variants:
/// RankedTensorType and UnrankedTensorType.
class TensorType : public ShapedType {
public:
using ShapedType::ShapedType;
/// Return true if the specified element type is ok in a tensor.
static bool isValidElementType(Type type);
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(Type type);
};
//===----------------------------------------------------------------------===//
// BaseMemRefType
//===----------------------------------------------------------------------===//
/// Base MemRef for Ranked and Unranked variants
class BaseMemRefType : public ShapedType {
public:
using ShapedType::ShapedType;
/// Return true if the specified element type is ok in a memref.
static bool isValidElementType(Type type);
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(Type type);
/// Returns the memory space in which data referred to by this memref resides.
Attribute getMemorySpace() const;
/// [deprecated] Returns the memory space in old raw integer representation.
/// New `Attribute getMemorySpace()` method should be used instead.
unsigned getMemorySpaceAsInt() const;
};
} // end namespace mlir
//===----------------------------------------------------------------------===//
// Tablegen Type Declarations
//===----------------------------------------------------------------------===//
#define GET_TYPEDEF_CLASSES
#include "mlir/IR/BuiltinTypes.h.inc"
//===----------------------------------------------------------------------===//
// Tablegen Interface Declarations
//===----------------------------------------------------------------------===//
#include "mlir/IR/BuiltinTypeInterfaces.h.inc"
namespace mlir {
//===----------------------------------------------------------------------===//
// MemRefType
//===----------------------------------------------------------------------===//
/// This is a builder type that keeps local references to arguments. Arguments
/// that are passed into the builder must outlive the builder.
class MemRefType::Builder {
public:
// Build from another MemRefType.
explicit Builder(MemRefType other)
: shape(other.getShape()), elementType(other.getElementType()),
layout(other.getLayout()), memorySpace(other.getMemorySpace()) {}
// Build from scratch.
Builder(ArrayRef<int64_t> shape, Type elementType)
: shape(shape), elementType(elementType) {}
Builder &setShape(ArrayRef<int64_t> newShape) {
shape = newShape;
return *this;
}
Builder &setElementType(Type newElementType) {
elementType = newElementType;
return *this;
}
Builder &setLayout(MemRefLayoutAttrInterface newLayout) {
layout = newLayout;
return *this;
}
Builder &setMemorySpace(Attribute newMemorySpace) {
memorySpace = newMemorySpace;
return *this;
}
// [deprecated] `setMemorySpace(Attribute)` should be used instead.
Builder &setMemorySpace(unsigned newMemorySpace);
operator MemRefType() {
return MemRefType::get(shape, elementType, layout, memorySpace);
}
private:
ArrayRef<int64_t> shape;
Type elementType;
MemRefLayoutAttrInterface layout;
Attribute memorySpace;
};
//===----------------------------------------------------------------------===//
// RankedTensorType
//===----------------------------------------------------------------------===//
/// This is a builder type that keeps local references to arguments. Arguments
/// that are passed into the builder must outlive the builder.
class RankedTensorType::Builder {
public:
/// Build from another RankedTensorType.
explicit Builder(RankedTensorType other)
: shape(other.getShape()), elementType(other.getElementType()),
encoding(other.getEncoding()) {}
/// Build from scratch.
Builder(ArrayRef<int64_t> shape, Type elementType, Attribute encoding)
: shape(shape), elementType(elementType), encoding(encoding) {}
Builder &setShape(ArrayRef<int64_t> newShape) {
shape = newShape;
return *this;
}
Builder &setElementType(Type newElementType) {
elementType = newElementType;
return *this;
}
Builder &setEncoding(Attribute newEncoding) {
encoding = newEncoding;
return *this;
}
/// Erase a dim from shape @pos.
Builder &dropDim(unsigned pos) {
assert(pos < shape.size() && "overflow");
if (storage.empty())
storage.append(shape.begin(), shape.end());
storage.erase(storage.begin() + pos);
shape = {storage.data(), storage.size()};
return *this;
}
operator RankedTensorType() {
return RankedTensorType::get(shape, elementType, encoding);
}
private:
ArrayRef<int64_t> shape;
// Owning shape data for copy-on-write operations.
SmallVector<int64_t> storage;
Type elementType;
Attribute encoding;
};
//===----------------------------------------------------------------------===//
// VectorType
//===----------------------------------------------------------------------===//
/// This is a builder type that keeps local references to arguments. Arguments
/// that are passed into the builder must outlive the builder.
class VectorType::Builder {
public:
/// Build from another VectorType.
explicit Builder(VectorType other)
: shape(other.getShape()), elementType(other.getElementType()) {}
/// Build from scratch.
Builder(ArrayRef<int64_t> shape, Type elementType)
: shape(shape), elementType(elementType) {}
Builder &setShape(ArrayRef<int64_t> newShape) {
shape = newShape;
return *this;
}
Builder &setElementType(Type newElementType) {
elementType = newElementType;
return *this;
}
/// Erase a dim from shape @pos.
Builder &dropDim(unsigned pos) {
assert(pos < shape.size() && "overflow");
if (storage.empty())
storage.append(shape.begin(), shape.end());
storage.erase(storage.begin() + pos);
shape = {storage.data(), storage.size()};
return *this;
}
/// In the particular case where the vector has a single dimension that we
/// drop, return the scalar element type.
// TODO: unify once we have a VectorType that supports 0-D.
operator Type() {
if (shape.empty())
return elementType;
return VectorType::get(shape, elementType);
}
private:
ArrayRef<int64_t> shape;
// Owning shape data for copy-on-write operations.
SmallVector<int64_t> storage;
Type elementType;
};
/// Given an `originalShape` and a `reducedShape` assumed to be a subset of
/// `originalShape` with some `1` entries erased, return the set of indices
/// that specifies which of the entries of `originalShape` are dropped to obtain
/// `reducedShape`. The returned mask can be applied as a projection to
/// `originalShape` to obtain the `reducedShape`. This mask is useful to track
/// which dimensions must be kept when e.g. compute MemRef strides under
/// rank-reducing operations. Return None if reducedShape cannot be obtained
/// by dropping only `1` entries in `originalShape`.
llvm::Optional<llvm::SmallDenseSet<unsigned>>
computeRankReductionMask(ArrayRef<int64_t> originalShape,
ArrayRef<int64_t> reducedShape);
/// Enum that captures information related to verifier error conditions on
/// slice insert/extract type of ops.
enum class SliceVerificationResult {
Success,
RankTooLarge,
SizeMismatch,
ElemTypeMismatch,
// Error codes to ops with a memory space and a layout annotation.
MemSpaceMismatch,
LayoutMismatch
};
/// Check if `originalType` can be rank reduced to `candidateReducedType` type
/// by dropping some dimensions with static size `1`.
/// Return `SliceVerificationResult::Success` on success or an appropriate error
/// code.
SliceVerificationResult isRankReducedType(ShapedType originalType,
ShapedType candidateReducedType);
//===----------------------------------------------------------------------===//
// Deferred Method Definitions
//===----------------------------------------------------------------------===//
inline bool BaseMemRefType::classof(Type type) {
return type.isa<MemRefType, UnrankedMemRefType>();
}
inline bool BaseMemRefType::isValidElementType(Type type) {
return type.isIntOrIndexOrFloat() ||
type.isa<ComplexType, MemRefType, VectorType, UnrankedMemRefType>() ||
type.isa<MemRefElementTypeInterface>();
}
inline bool FloatType::classof(Type type) {
return type.isa<BFloat16Type, Float16Type, Float32Type, Float64Type,
Float80Type, Float128Type>();
}
inline FloatType FloatType::getBF16(MLIRContext *ctx) {
return BFloat16Type::get(ctx);
}
inline FloatType FloatType::getF16(MLIRContext *ctx) {
return Float16Type::get(ctx);
}
inline FloatType FloatType::getF32(MLIRContext *ctx) {
return Float32Type::get(ctx);
}
inline FloatType FloatType::getF64(MLIRContext *ctx) {
return Float64Type::get(ctx);
}
inline FloatType FloatType::getF80(MLIRContext *ctx) {
return Float80Type::get(ctx);
}
inline FloatType FloatType::getF128(MLIRContext *ctx) {
return Float128Type::get(ctx);
}
inline bool ShapedType::classof(Type type) {
return type.isa<RankedTensorType, VectorType, UnrankedTensorType,
UnrankedMemRefType, MemRefType>();
}
inline bool TensorType::classof(Type type) {
return type.isa<RankedTensorType, UnrankedTensorType>();
}
//===----------------------------------------------------------------------===//
// Type Utilities
//===----------------------------------------------------------------------===//
/// Returns the strides of the MemRef if the layout map is in strided form.
/// MemRefs with a layout map in strided form include:
/// 1. empty or identity layout map, in which case the stride information is
/// the canonical form computed from sizes;
/// 2. single affine map layout of the form `K + k0 * d0 + ... kn * dn`,
/// where K and ki's are constants or symbols.
///
/// A stride specification is a list of integer values that are either static
/// or dynamic (encoded with getDynamicStrideOrOffset()). Strides encode the
/// distance in the number of elements between successive entries along a
/// particular dimension.
///
/// For example, `memref<42x16xf32, (64 * d0 + d1)>` specifies a view into a
/// non-contiguous memory region of `42` by `16` `f32` elements in which the
/// distance between two consecutive elements along the outer dimension is `1`
/// and the distance between two consecutive elements along the inner dimension
/// is `64`.
///
/// The convention is that the strides for dimensions d0, .. dn appear in
/// order to make indexing intuitive into the result.
LogicalResult getStridesAndOffset(MemRefType t,
SmallVectorImpl<int64_t> &strides,
int64_t &offset);
LogicalResult getStridesAndOffset(MemRefType t,
SmallVectorImpl<AffineExpr> &strides,
AffineExpr &offset);
/// Given a list of strides (in which MemRefType::getDynamicStrideOrOffset()
/// represents a dynamic value), return the single result AffineMap which
/// represents the linearized strided layout map. Dimensions correspond to the
/// offset followed by the strides in order. Symbols are inserted for each
/// dynamic dimension in order. A stride cannot take value `0`.
///
/// Examples:
/// =========
///
/// 1. For offset: 0 strides: ?, ?, 1 return
/// (i, j, k)[M, N]->(M * i + N * j + k)
///
/// 2. For offset: 3 strides: 32, ?, 16 return
/// (i, j, k)[M]->(3 + 32 * i + M * j + 16 * k)
///
/// 3. For offset: ? strides: ?, ?, ? return
/// (i, j, k)[off, M, N, P]->(off + M * i + N * j + P * k)
AffineMap makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, int64_t offset,
MLIRContext *context);
/// Return a version of `t` with identity layout if it can be determined
/// statically that the layout is the canonical contiguous strided layout.
/// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of
/// `t` with simplified layout.
MemRefType canonicalizeStridedLayout(MemRefType t);
/// Return a version of `t` with a layout that has all dynamic offset and
/// strides. This is used to erase the static layout.
MemRefType eraseStridedLayout(MemRefType t);
/// Given MemRef `sizes` that are either static or dynamic, returns the
/// canonical "contiguous" strides AffineExpr. Strides are multiplicative and
/// once a dynamic dimension is encountered, all canonical strides become
/// dynamic and need to be encoded with a different symbol.
/// For canonical strides expressions, the offset is always 0 and and fastest
/// varying stride is always `1`.
///
/// Examples:
/// - memref<3x4x5xf32> has canonical stride expression
/// `20*exprs[0] + 5*exprs[1] + exprs[2]`.
/// - memref<3x?x5xf32> has canonical stride expression
/// `s0*exprs[0] + 5*exprs[1] + exprs[2]`.
/// - memref<3x4x?xf32> has canonical stride expression
/// `s1*exprs[0] + s0*exprs[1] + exprs[2]`.
AffineExpr makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
ArrayRef<AffineExpr> exprs,
MLIRContext *context);
/// Return the result of makeCanonicalStrudedLayoutExpr for the common case
/// where `exprs` is {d0, d1, .., d_(sizes.size()-1)}
AffineExpr makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
MLIRContext *context);
/// Return true if the layout for `t` is compatible with strided semantics.
bool isStrided(MemRefType t);
/// Return the layout map in strided linear layout AffineMap form.
/// Return null if the layout is not compatible with a strided layout.
AffineMap getStridedLinearLayoutMap(MemRefType t);
} // end namespace mlir
#endif // MLIR_IR_BUILTINTYPES_H