blob: 585411bc59e16892c2856a1626f4d6a54f77df9d [file] [log] [blame]
//===----- CGHLSLRuntime.cpp - Interface to HLSL Runtimes -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides an abstract class for HLSL code generation. Concrete
// subclasses of this implement code generation for specific HLSL
// runtime libraries.
//
//===----------------------------------------------------------------------===//
#include "CGHLSLRuntime.h"
#include "CGDebugInfo.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/TargetOptions.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Frontend/HLSL/HLSLRootSignatureUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
using namespace clang;
using namespace CodeGen;
using namespace clang::hlsl;
using namespace llvm;
using llvm::hlsl::CBufferRowSizeInBytes;
namespace {
void addDxilValVersion(StringRef ValVersionStr, llvm::Module &M) {
// The validation of ValVersionStr is done at HLSLToolChain::TranslateArgs.
// Assume ValVersionStr is legal here.
VersionTuple Version;
if (Version.tryParse(ValVersionStr) || Version.getBuild() ||
Version.getSubminor() || !Version.getMinor()) {
return;
}
uint64_t Major = Version.getMajor();
uint64_t Minor = *Version.getMinor();
auto &Ctx = M.getContext();
IRBuilder<> B(M.getContext());
MDNode *Val = MDNode::get(Ctx, {ConstantAsMetadata::get(B.getInt32(Major)),
ConstantAsMetadata::get(B.getInt32(Minor))});
StringRef DXILValKey = "dx.valver";
auto *DXILValMD = M.getOrInsertNamedMetadata(DXILValKey);
DXILValMD->addOperand(Val);
}
void addRootSignature(ArrayRef<llvm::hlsl::rootsig::RootElement> Elements,
llvm::Function *Fn, llvm::Module &M) {
auto &Ctx = M.getContext();
llvm::hlsl::rootsig::MetadataBuilder Builder(Ctx, Elements);
MDNode *RootSignature = Builder.BuildRootSignature();
MDNode *FnPairing =
MDNode::get(Ctx, {ValueAsMetadata::get(Fn), RootSignature});
StringRef RootSignatureValKey = "dx.rootsignatures";
auto *RootSignatureValMD = M.getOrInsertNamedMetadata(RootSignatureValKey);
RootSignatureValMD->addOperand(FnPairing);
}
} // namespace
llvm::Type *
CGHLSLRuntime::convertHLSLSpecificType(const Type *T,
SmallVector<int32_t> *Packoffsets) {
assert(T->isHLSLSpecificType() && "Not an HLSL specific type!");
// Check if the target has a specific translation for this type first.
if (llvm::Type *TargetTy =
CGM.getTargetCodeGenInfo().getHLSLType(CGM, T, Packoffsets))
return TargetTy;
llvm_unreachable("Generic handling of HLSL types is not supported.");
}
llvm::Triple::ArchType CGHLSLRuntime::getArch() {
return CGM.getTarget().getTriple().getArch();
}
// Returns true if the type is an HLSL resource class or an array of them
static bool isResourceRecordTypeOrArrayOf(const clang::Type *Ty) {
while (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Ty))
Ty = CAT->getArrayElementTypeNoTypeQual();
return Ty->isHLSLResourceRecord();
}
// Emits constant global variables for buffer constants declarations
// and creates metadata linking the constant globals with the buffer global.
void CGHLSLRuntime::emitBufferGlobalsAndMetadata(const HLSLBufferDecl *BufDecl,
llvm::GlobalVariable *BufGV) {
LLVMContext &Ctx = CGM.getLLVMContext();
// get the layout struct from constant buffer target type
llvm::Type *BufType = BufGV->getValueType();
llvm::Type *BufLayoutType =
cast<llvm::TargetExtType>(BufType)->getTypeParameter(0);
llvm::StructType *LayoutStruct = cast<llvm::StructType>(
cast<llvm::TargetExtType>(BufLayoutType)->getTypeParameter(0));
// Start metadata list associating the buffer global variable with its
// constatns
SmallVector<llvm::Metadata *> BufGlobals;
BufGlobals.push_back(ValueAsMetadata::get(BufGV));
const auto *ElemIt = LayoutStruct->element_begin();
for (Decl *D : BufDecl->buffer_decls()) {
if (isa<CXXRecordDecl, EmptyDecl>(D))
// Nothing to do for this declaration.
continue;
if (isa<FunctionDecl>(D)) {
// A function within an cbuffer is effectively a top-level function.
CGM.EmitTopLevelDecl(D);
continue;
}
VarDecl *VD = dyn_cast<VarDecl>(D);
if (!VD)
continue;
QualType VDTy = VD->getType();
if (VDTy.getAddressSpace() != LangAS::hlsl_constant) {
if (VD->getStorageClass() == SC_Static ||
VDTy.getAddressSpace() == LangAS::hlsl_groupshared ||
isResourceRecordTypeOrArrayOf(VDTy.getTypePtr())) {
// Emit static and groupshared variables and resource classes inside
// cbuffer as regular globals
CGM.EmitGlobal(VD);
} else {
// Anything else that is not in the hlsl_constant address space must be
// an empty struct or a zero-sized array and can be ignored
assert(BufDecl->getASTContext().getTypeSize(VDTy) == 0 &&
"constant buffer decl with non-zero sized type outside of "
"hlsl_constant address space");
}
continue;
}
assert(ElemIt != LayoutStruct->element_end() &&
"number of elements in layout struct does not match");
llvm::Type *LayoutType = *ElemIt++;
// FIXME: handle resources inside user defined structs
// (llvm/wg-hlsl#175)
// create global variable for the constant and to metadata list
GlobalVariable *ElemGV =
cast<GlobalVariable>(CGM.GetAddrOfGlobalVar(VD, LayoutType));
BufGlobals.push_back(ValueAsMetadata::get(ElemGV));
}
assert(ElemIt == LayoutStruct->element_end() &&
"number of elements in layout struct does not match");
// add buffer metadata to the module
CGM.getModule()
.getOrInsertNamedMetadata("hlsl.cbs")
->addOperand(MDNode::get(Ctx, BufGlobals));
}
// Creates resource handle type for the HLSL buffer declaration
static const clang::HLSLAttributedResourceType *
createBufferHandleType(const HLSLBufferDecl *BufDecl) {
ASTContext &AST = BufDecl->getASTContext();
QualType QT = AST.getHLSLAttributedResourceType(
AST.HLSLResourceTy,
QualType(BufDecl->getLayoutStruct()->getTypeForDecl(), 0),
HLSLAttributedResourceType::Attributes(ResourceClass::CBuffer));
return cast<HLSLAttributedResourceType>(QT.getTypePtr());
}
// Iterates over all declarations in the HLSL buffer and based on the
// packoffset or register(c#) annotations it fills outs the Layout
// vector with the user-specified layout offsets.
// The buffer offsets can be specified 2 ways:
// 1. declarations in cbuffer {} block can have a packoffset annotation
// (translates to HLSLPackOffsetAttr)
// 2. default constant buffer declarations at global scope can have
// register(c#) annotations (translates to HLSLResourceBindingAttr with
// RegisterType::C)
// It is not guaranteed that all declarations in a buffer have an annotation.
// For those where it is not specified a -1 value is added to the Layout
// vector. In the final layout these declarations will be placed at the end
// of the HLSL buffer after all of the elements with specified offset.
static void fillPackoffsetLayout(const HLSLBufferDecl *BufDecl,
SmallVector<int32_t> &Layout) {
assert(Layout.empty() && "expected empty vector for layout");
assert(BufDecl->hasValidPackoffset());
for (Decl *D : BufDecl->buffer_decls()) {
if (isa<CXXRecordDecl, EmptyDecl>(D) || isa<FunctionDecl>(D)) {
continue;
}
VarDecl *VD = dyn_cast<VarDecl>(D);
if (!VD || VD->getType().getAddressSpace() != LangAS::hlsl_constant)
continue;
if (!VD->hasAttrs()) {
Layout.push_back(-1);
continue;
}
int32_t Offset = -1;
for (auto *Attr : VD->getAttrs()) {
if (auto *POA = dyn_cast<HLSLPackOffsetAttr>(Attr)) {
Offset = POA->getOffsetInBytes();
break;
}
auto *RBA = dyn_cast<HLSLResourceBindingAttr>(Attr);
if (RBA &&
RBA->getRegisterType() == HLSLResourceBindingAttr::RegisterType::C) {
Offset = RBA->getSlotNumber() * CBufferRowSizeInBytes;
break;
}
}
Layout.push_back(Offset);
}
}
// Codegen for HLSLBufferDecl
void CGHLSLRuntime::addBuffer(const HLSLBufferDecl *BufDecl) {
assert(BufDecl->isCBuffer() && "tbuffer codegen is not supported yet");
// create resource handle type for the buffer
const clang::HLSLAttributedResourceType *ResHandleTy =
createBufferHandleType(BufDecl);
// empty constant buffer is ignored
if (ResHandleTy->getContainedType()->getAsCXXRecordDecl()->isEmpty())
return;
// create global variable for the constant buffer
SmallVector<int32_t> Layout;
if (BufDecl->hasValidPackoffset())
fillPackoffsetLayout(BufDecl, Layout);
llvm::TargetExtType *TargetTy =
cast<llvm::TargetExtType>(convertHLSLSpecificType(
ResHandleTy, BufDecl->hasValidPackoffset() ? &Layout : nullptr));
llvm::GlobalVariable *BufGV = new GlobalVariable(
TargetTy, /*isConstant*/ false,
GlobalValue::LinkageTypes::ExternalLinkage, PoisonValue::get(TargetTy),
llvm::formatv("{0}{1}", BufDecl->getName(),
BufDecl->isCBuffer() ? ".cb" : ".tb"),
GlobalValue::NotThreadLocal);
CGM.getModule().insertGlobalVariable(BufGV);
// Add globals for constant buffer elements and create metadata nodes
emitBufferGlobalsAndMetadata(BufDecl, BufGV);
// Initialize cbuffer from binding (implicit or explicit)
HLSLResourceBindingAttr *RBA = BufDecl->getAttr<HLSLResourceBindingAttr>();
assert(RBA &&
"cbuffer/tbuffer should always have resource binding attribute");
initializeBufferFromBinding(BufDecl, BufGV, RBA);
}
llvm::TargetExtType *
CGHLSLRuntime::getHLSLBufferLayoutType(const RecordType *StructType) {
const auto Entry = LayoutTypes.find(StructType);
if (Entry != LayoutTypes.end())
return Entry->getSecond();
return nullptr;
}
void CGHLSLRuntime::addHLSLBufferLayoutType(const RecordType *StructType,
llvm::TargetExtType *LayoutTy) {
assert(getHLSLBufferLayoutType(StructType) == nullptr &&
"layout type for this struct already exist");
LayoutTypes[StructType] = LayoutTy;
}
void CGHLSLRuntime::finishCodeGen() {
auto &TargetOpts = CGM.getTarget().getTargetOpts();
auto &CodeGenOpts = CGM.getCodeGenOpts();
auto &LangOpts = CGM.getLangOpts();
llvm::Module &M = CGM.getModule();
Triple T(M.getTargetTriple());
if (T.getArch() == Triple::ArchType::dxil)
addDxilValVersion(TargetOpts.DxilValidatorVersion, M);
if (CodeGenOpts.ResMayAlias)
M.setModuleFlag(llvm::Module::ModFlagBehavior::Error, "dx.resmayalias", 1);
// NativeHalfType corresponds to the -fnative-half-type clang option which is
// aliased by clang-dxc's -enable-16bit-types option. This option is used to
// set the UseNativeLowPrecision DXIL module flag in the DirectX backend
if (LangOpts.NativeHalfType)
M.setModuleFlag(llvm::Module::ModFlagBehavior::Error, "dx.nativelowprec",
1);
generateGlobalCtorDtorCalls();
}
void clang::CodeGen::CGHLSLRuntime::setHLSLEntryAttributes(
const FunctionDecl *FD, llvm::Function *Fn) {
const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
assert(ShaderAttr && "All entry functions must have a HLSLShaderAttr");
const StringRef ShaderAttrKindStr = "hlsl.shader";
Fn->addFnAttr(ShaderAttrKindStr,
llvm::Triple::getEnvironmentTypeName(ShaderAttr->getType()));
if (HLSLNumThreadsAttr *NumThreadsAttr = FD->getAttr<HLSLNumThreadsAttr>()) {
const StringRef NumThreadsKindStr = "hlsl.numthreads";
std::string NumThreadsStr =
formatv("{0},{1},{2}", NumThreadsAttr->getX(), NumThreadsAttr->getY(),
NumThreadsAttr->getZ());
Fn->addFnAttr(NumThreadsKindStr, NumThreadsStr);
}
if (HLSLWaveSizeAttr *WaveSizeAttr = FD->getAttr<HLSLWaveSizeAttr>()) {
const StringRef WaveSizeKindStr = "hlsl.wavesize";
std::string WaveSizeStr =
formatv("{0},{1},{2}", WaveSizeAttr->getMin(), WaveSizeAttr->getMax(),
WaveSizeAttr->getPreferred());
Fn->addFnAttr(WaveSizeKindStr, WaveSizeStr);
}
// HLSL entry functions are materialized for module functions with
// HLSLShaderAttr attribute. SetLLVMFunctionAttributesForDefinition called
// later in the compiler-flow for such module functions is not aware of and
// hence not able to set attributes of the newly materialized entry functions.
// So, set attributes of entry function here, as appropriate.
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
Fn->addFnAttr(llvm::Attribute::OptimizeNone);
Fn->addFnAttr(llvm::Attribute::NoInline);
}
static Value *buildVectorInput(IRBuilder<> &B, Function *F, llvm::Type *Ty) {
if (const auto *VT = dyn_cast<FixedVectorType>(Ty)) {
Value *Result = PoisonValue::get(Ty);
for (unsigned I = 0; I < VT->getNumElements(); ++I) {
Value *Elt = B.CreateCall(F, {B.getInt32(I)});
Result = B.CreateInsertElement(Result, Elt, I);
}
return Result;
}
return B.CreateCall(F, {B.getInt32(0)});
}
static void addSPIRVBuiltinDecoration(llvm::GlobalVariable *GV,
unsigned BuiltIn) {
LLVMContext &Ctx = GV->getContext();
IRBuilder<> B(GV->getContext());
MDNode *Operands = MDNode::get(
Ctx,
{ConstantAsMetadata::get(B.getInt32(/* Spirv::Decoration::BuiltIn */ 11)),
ConstantAsMetadata::get(B.getInt32(BuiltIn))});
MDNode *Decoration = MDNode::get(Ctx, {Operands});
GV->addMetadata("spirv.Decorations", *Decoration);
}
static llvm::Value *createSPIRVBuiltinLoad(IRBuilder<> &B, llvm::Module &M,
llvm::Type *Ty, const Twine &Name,
unsigned BuiltInID) {
auto *GV = new llvm::GlobalVariable(
M, Ty, /* isConstant= */ true, llvm::GlobalValue::ExternalLinkage,
/* Initializer= */ nullptr, Name, /* insertBefore= */ nullptr,
llvm::GlobalVariable::GeneralDynamicTLSModel,
/* AddressSpace */ 7, /* isExternallyInitialized= */ true);
addSPIRVBuiltinDecoration(GV, BuiltInID);
return B.CreateLoad(Ty, GV);
}
llvm::Value *CGHLSLRuntime::emitInputSemantic(IRBuilder<> &B,
const ParmVarDecl &D,
llvm::Type *Ty) {
assert(D.hasAttrs() && "Entry parameter missing annotation attribute!");
if (D.hasAttr<HLSLSV_GroupIndexAttr>()) {
llvm::Function *GroupIndex =
CGM.getIntrinsic(getFlattenedThreadIdInGroupIntrinsic());
return B.CreateCall(FunctionCallee(GroupIndex));
}
if (D.hasAttr<HLSLSV_DispatchThreadIDAttr>()) {
llvm::Function *ThreadIDIntrinsic =
CGM.getIntrinsic(getThreadIdIntrinsic());
return buildVectorInput(B, ThreadIDIntrinsic, Ty);
}
if (D.hasAttr<HLSLSV_GroupThreadIDAttr>()) {
llvm::Function *GroupThreadIDIntrinsic =
CGM.getIntrinsic(getGroupThreadIdIntrinsic());
return buildVectorInput(B, GroupThreadIDIntrinsic, Ty);
}
if (D.hasAttr<HLSLSV_GroupIDAttr>()) {
llvm::Function *GroupIDIntrinsic = CGM.getIntrinsic(getGroupIdIntrinsic());
return buildVectorInput(B, GroupIDIntrinsic, Ty);
}
if (D.hasAttr<HLSLSV_PositionAttr>()) {
if (getArch() == llvm::Triple::spirv)
return createSPIRVBuiltinLoad(B, CGM.getModule(), Ty, "sv_position",
/* BuiltIn::Position */ 0);
llvm_unreachable("SV_Position semantic not implemented for this target.");
}
assert(false && "Unhandled parameter attribute");
return nullptr;
}
void CGHLSLRuntime::emitEntryFunction(const FunctionDecl *FD,
llvm::Function *Fn) {
llvm::Module &M = CGM.getModule();
llvm::LLVMContext &Ctx = M.getContext();
auto *EntryTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx), false);
Function *EntryFn =
Function::Create(EntryTy, Function::ExternalLinkage, FD->getName(), &M);
// Copy function attributes over, we have no argument or return attributes
// that can be valid on the real entry.
AttributeList NewAttrs = AttributeList::get(Ctx, AttributeList::FunctionIndex,
Fn->getAttributes().getFnAttrs());
EntryFn->setAttributes(NewAttrs);
setHLSLEntryAttributes(FD, EntryFn);
// Set the called function as internal linkage.
Fn->setLinkage(GlobalValue::InternalLinkage);
BasicBlock *BB = BasicBlock::Create(Ctx, "entry", EntryFn);
IRBuilder<> B(BB);
llvm::SmallVector<Value *> Args;
SmallVector<OperandBundleDef, 1> OB;
if (CGM.shouldEmitConvergenceTokens()) {
assert(EntryFn->isConvergent());
llvm::Value *I =
B.CreateIntrinsic(llvm::Intrinsic::experimental_convergence_entry, {});
llvm::Value *bundleArgs[] = {I};
OB.emplace_back("convergencectrl", bundleArgs);
}
// FIXME: support struct parameters where semantics are on members.
// See: https://github.com/llvm/llvm-project/issues/57874
unsigned SRetOffset = 0;
for (const auto &Param : Fn->args()) {
if (Param.hasStructRetAttr()) {
// FIXME: support output.
// See: https://github.com/llvm/llvm-project/issues/57874
SRetOffset = 1;
Args.emplace_back(PoisonValue::get(Param.getType()));
continue;
}
const ParmVarDecl *PD = FD->getParamDecl(Param.getArgNo() - SRetOffset);
Args.push_back(emitInputSemantic(B, *PD, Param.getType()));
}
CallInst *CI = B.CreateCall(FunctionCallee(Fn), Args, OB);
CI->setCallingConv(Fn->getCallingConv());
// FIXME: Handle codegen for return type semantics.
// See: https://github.com/llvm/llvm-project/issues/57875
B.CreateRetVoid();
// Add and identify root signature to function, if applicable
for (const Attr *Attr : FD->getAttrs()) {
if (const auto *RSAttr = dyn_cast<RootSignatureAttr>(Attr))
addRootSignature(RSAttr->getSignatureDecl()->getRootElements(), EntryFn,
M);
}
}
static void gatherFunctions(SmallVectorImpl<Function *> &Fns, llvm::Module &M,
bool CtorOrDtor) {
const auto *GV =
M.getNamedGlobal(CtorOrDtor ? "llvm.global_ctors" : "llvm.global_dtors");
if (!GV)
return;
const auto *CA = dyn_cast<ConstantArray>(GV->getInitializer());
if (!CA)
return;
// The global_ctor array elements are a struct [Priority, Fn *, COMDat].
// HLSL neither supports priorities or COMDat values, so we will check those
// in an assert but not handle them.
for (const auto &Ctor : CA->operands()) {
if (isa<ConstantAggregateZero>(Ctor))
continue;
ConstantStruct *CS = cast<ConstantStruct>(Ctor);
assert(cast<ConstantInt>(CS->getOperand(0))->getValue() == 65535 &&
"HLSL doesn't support setting priority for global ctors.");
assert(isa<ConstantPointerNull>(CS->getOperand(2)) &&
"HLSL doesn't support COMDat for global ctors.");
Fns.push_back(cast<Function>(CS->getOperand(1)));
}
}
void CGHLSLRuntime::generateGlobalCtorDtorCalls() {
llvm::Module &M = CGM.getModule();
SmallVector<Function *> CtorFns;
SmallVector<Function *> DtorFns;
gatherFunctions(CtorFns, M, true);
gatherFunctions(DtorFns, M, false);
// Insert a call to the global constructor at the beginning of the entry block
// to externally exported functions. This is a bit of a hack, but HLSL allows
// global constructors, but doesn't support driver initialization of globals.
for (auto &F : M.functions()) {
if (!F.hasFnAttribute("hlsl.shader"))
continue;
auto *Token = getConvergenceToken(F.getEntryBlock());
Instruction *IP = &*F.getEntryBlock().begin();
SmallVector<OperandBundleDef, 1> OB;
if (Token) {
llvm::Value *bundleArgs[] = {Token};
OB.emplace_back("convergencectrl", bundleArgs);
IP = Token->getNextNode();
}
IRBuilder<> B(IP);
for (auto *Fn : CtorFns) {
auto CI = B.CreateCall(FunctionCallee(Fn), {}, OB);
CI->setCallingConv(Fn->getCallingConv());
}
// Insert global dtors before the terminator of the last instruction
B.SetInsertPoint(F.back().getTerminator());
for (auto *Fn : DtorFns) {
auto CI = B.CreateCall(FunctionCallee(Fn), {}, OB);
CI->setCallingConv(Fn->getCallingConv());
}
}
// No need to keep global ctors/dtors for non-lib profile after call to
// ctors/dtors added for entry.
Triple T(M.getTargetTriple());
if (T.getEnvironment() != Triple::EnvironmentType::Library) {
if (auto *GV = M.getNamedGlobal("llvm.global_ctors"))
GV->eraseFromParent();
if (auto *GV = M.getNamedGlobal("llvm.global_dtors"))
GV->eraseFromParent();
}
}
static void initializeBuffer(CodeGenModule &CGM, llvm::GlobalVariable *GV,
Intrinsic::ID IntrID,
ArrayRef<llvm::Value *> Args) {
LLVMContext &Ctx = CGM.getLLVMContext();
llvm::Function *InitResFunc = llvm::Function::Create(
llvm::FunctionType::get(CGM.VoidTy, false),
llvm::GlobalValue::InternalLinkage,
("_init_buffer_" + GV->getName()).str(), CGM.getModule());
InitResFunc->addFnAttr(llvm::Attribute::AlwaysInline);
llvm::BasicBlock *EntryBB =
llvm::BasicBlock::Create(Ctx, "entry", InitResFunc);
CGBuilderTy Builder(CGM, Ctx);
const DataLayout &DL = CGM.getModule().getDataLayout();
Builder.SetInsertPoint(EntryBB);
// Make sure the global variable is buffer resource handle
llvm::Type *HandleTy = GV->getValueType();
assert(HandleTy->isTargetExtTy() && "unexpected type of the buffer global");
llvm::Value *CreateHandle = Builder.CreateIntrinsic(
/*ReturnType=*/HandleTy, IntrID, Args, nullptr,
Twine(GV->getName()).concat("_h"));
llvm::Value *HandleRef = Builder.CreateStructGEP(GV->getValueType(), GV, 0);
Builder.CreateAlignedStore(CreateHandle, HandleRef,
HandleRef->getPointerAlignment(DL));
Builder.CreateRetVoid();
CGM.AddCXXGlobalInit(InitResFunc);
}
void CGHLSLRuntime::initializeBufferFromBinding(const HLSLBufferDecl *BufDecl,
llvm::GlobalVariable *GV,
HLSLResourceBindingAttr *RBA) {
llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGM.getLLVMContext());
auto *NonUniform = llvm::ConstantInt::get(Int1Ty, false);
auto *Index = llvm::ConstantInt::get(CGM.IntTy, 0);
auto *RangeSize = llvm::ConstantInt::get(CGM.IntTy, 1);
auto *Space =
llvm::ConstantInt::get(CGM.IntTy, RBA ? RBA->getSpaceNumber() : 0);
Value *Name = nullptr;
llvm::Intrinsic::ID IntrinsicID =
RBA->hasRegisterSlot()
? CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic()
: CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic();
std::string Str(BufDecl->getName());
std::string GlobalName(Str + ".str");
Name = CGM.GetAddrOfConstantCString(Str, GlobalName.c_str()).getPointer();
// buffer with explicit binding
if (RBA->hasRegisterSlot()) {
auto *RegSlot = llvm::ConstantInt::get(CGM.IntTy, RBA->getSlotNumber());
SmallVector<Value *> Args{Space, RegSlot, RangeSize,
Index, NonUniform, Name};
initializeBuffer(CGM, GV, IntrinsicID, Args);
} else {
// buffer with implicit binding
auto *OrderID =
llvm::ConstantInt::get(CGM.IntTy, RBA->getImplicitBindingOrderID());
SmallVector<Value *> Args{OrderID, Space, RangeSize,
Index, NonUniform, Name};
initializeBuffer(CGM, GV, IntrinsicID, Args);
}
}
void CGHLSLRuntime::handleGlobalVarDefinition(const VarDecl *VD,
llvm::GlobalVariable *GV) {
if (auto Attr = VD->getAttr<HLSLVkExtBuiltinInputAttr>())
addSPIRVBuiltinDecoration(GV, Attr->getBuiltIn());
}
llvm::Instruction *CGHLSLRuntime::getConvergenceToken(BasicBlock &BB) {
if (!CGM.shouldEmitConvergenceTokens())
return nullptr;
auto E = BB.end();
for (auto I = BB.begin(); I != E; ++I) {
auto *II = dyn_cast<llvm::IntrinsicInst>(&*I);
if (II && llvm::isConvergenceControlIntrinsic(II->getIntrinsicID())) {
return II;
}
}
llvm_unreachable("Convergence token should have been emitted.");
return nullptr;
}
class OpaqueValueVisitor : public RecursiveASTVisitor<OpaqueValueVisitor> {
public:
llvm::SmallPtrSet<OpaqueValueExpr *, 8> OVEs;
OpaqueValueVisitor() {}
bool VisitOpaqueValueExpr(OpaqueValueExpr *E) {
OVEs.insert(E);
return true;
}
};
void CGHLSLRuntime::emitInitListOpaqueValues(CodeGenFunction &CGF,
InitListExpr *E) {
typedef CodeGenFunction::OpaqueValueMappingData OpaqueValueMappingData;
OpaqueValueVisitor Visitor;
Visitor.TraverseStmt(E);
for (auto *OVE : Visitor.OVEs) {
if (CGF.isOpaqueValueEmitted(OVE))
continue;
if (OpaqueValueMappingData::shouldBindAsLValue(OVE)) {
LValue LV = CGF.EmitLValue(OVE->getSourceExpr());
OpaqueValueMappingData::bind(CGF, OVE, LV);
} else {
RValue RV = CGF.EmitAnyExpr(OVE->getSourceExpr());
OpaqueValueMappingData::bind(CGF, OVE, RV);
}
}
}