blob: cae713a1ce1d25b8817c409b5f3c16f492bf0895 [file] [log] [blame]
//===- SerializeNVVMTarget.cpp ----------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Config/mlir-config.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/InitAllDialects.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Target/LLVM/NVVM/Target.h"
#include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Dialect/GPU/GPUToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/Config/llvm-config.h" // for LLVM_HAS_NVPTX_TARGET
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "gmock/gmock.h"
#include <cstdint>
using namespace mlir;
// Skip the test if the NVPTX target was not built.
#if LLVM_HAS_NVPTX_TARGET
#define SKIP_WITHOUT_NVPTX(x) x
#else
#define SKIP_WITHOUT_NVPTX(x) DISABLED_##x
#endif
class MLIRTargetLLVMNVVM : public ::testing::Test {
protected:
void SetUp() override {
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
registerGPUDialectTranslation(registry);
registerNVVMDialectTranslation(registry);
NVVM::registerNVVMTargetInterfaceExternalModels(registry);
}
// Checks if PTXAS is in PATH.
bool hasPtxas() {
// Find the `ptxas` compiler.
std::optional<std::string> ptxasCompiler =
llvm::sys::Process::FindInEnvPath("PATH", "ptxas");
return ptxasCompiler.has_value();
}
// Dialect registry.
DialectRegistry registry;
// MLIR module used for the tests.
const std::string moduleStr = R"mlir(
gpu.module @nvvm_test {
llvm.func @nvvm_kernel(%arg0: f32) attributes {gpu.kernel, nvvm.kernel} {
llvm.return
}
})mlir";
};
// Test NVVM serialization to LLVM.
TEST_F(MLIRTargetLLVMNVVM, SKIP_WITHOUT_NVPTX(SerializeNVVMMToLLVM)) {
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
// Create an NVVM target.
NVVM::NVVMTargetAttr target = NVVM::NVVMTargetAttr::get(&context);
// Serialize the module.
auto serializer = dyn_cast<gpu::TargetAttrInterface>(target);
ASSERT_TRUE(!!serializer);
gpu::TargetOptions options("", {}, "", "", gpu::CompilationTarget::Offload);
for (auto gpuModule : (*module).getBody()->getOps<gpu::GPUModuleOp>()) {
std::optional<SmallVector<char, 0>> object =
serializer.serializeToObject(gpuModule, options);
// Check that the serializer was successful.
ASSERT_TRUE(object != std::nullopt);
ASSERT_TRUE(!object->empty());
// Read the serialized module.
llvm::MemoryBufferRef buffer(StringRef(object->data(), object->size()),
"module");
llvm::LLVMContext llvmContext;
llvm::Expected<std::unique_ptr<llvm::Module>> llvmModule =
llvm::getLazyBitcodeModule(buffer, llvmContext);
ASSERT_TRUE(!!llvmModule);
ASSERT_TRUE(!!*llvmModule);
// Check that it has a function named `foo`.
ASSERT_TRUE((*llvmModule)->getFunction("nvvm_kernel") != nullptr);
}
}
// Test NVVM serialization to PTX.
TEST_F(MLIRTargetLLVMNVVM, SKIP_WITHOUT_NVPTX(SerializeNVVMToPTX)) {
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
// Create an NVVM target.
NVVM::NVVMTargetAttr target = NVVM::NVVMTargetAttr::get(&context);
// Serialize the module.
auto serializer = dyn_cast<gpu::TargetAttrInterface>(target);
ASSERT_TRUE(!!serializer);
gpu::TargetOptions options("", {}, "", "", gpu::CompilationTarget::Assembly);
for (auto gpuModule : (*module).getBody()->getOps<gpu::GPUModuleOp>()) {
std::optional<SmallVector<char, 0>> object =
serializer.serializeToObject(gpuModule, options);
// Check that the serializer was successful.
ASSERT_TRUE(object != std::nullopt);
ASSERT_TRUE(!object->empty());
ASSERT_TRUE(
StringRef(object->data(), object->size()).contains("nvvm_kernel"));
ASSERT_TRUE(StringRef(object->data(), object->size()).count('\0') == 0);
}
}
// Test NVVM serialization to Binary.
TEST_F(MLIRTargetLLVMNVVM, SKIP_WITHOUT_NVPTX(SerializeNVVMToBinary)) {
if (!hasPtxas())
GTEST_SKIP() << "PTXAS compiler not found, skipping test.";
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
// Create an NVVM target.
NVVM::NVVMTargetAttr target = NVVM::NVVMTargetAttr::get(&context);
// Serialize the module.
auto serializer = dyn_cast<gpu::TargetAttrInterface>(target);
ASSERT_TRUE(!!serializer);
gpu::TargetOptions options("", {}, "", "", gpu::CompilationTarget::Binary);
for (auto gpuModule : (*module).getBody()->getOps<gpu::GPUModuleOp>()) {
std::optional<SmallVector<char, 0>> object =
serializer.serializeToObject(gpuModule, options);
// Check that the serializer was successful.
ASSERT_TRUE(object != std::nullopt);
ASSERT_TRUE(!object->empty());
}
}
// Test callback functions invoked with LLVM IR and ISA.
TEST_F(MLIRTargetLLVMNVVM,
SKIP_WITHOUT_NVPTX(CallbackInvokedWithLLVMIRAndISA)) {
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
NVVM::NVVMTargetAttr target = NVVM::NVVMTargetAttr::get(&context);
auto serializer = dyn_cast<gpu::TargetAttrInterface>(target);
ASSERT_TRUE(!!serializer);
std::string initialLLVMIR;
auto initialCallback = [&initialLLVMIR](llvm::Module &module) {
llvm::raw_string_ostream ros(initialLLVMIR);
module.print(ros, nullptr);
};
std::string linkedLLVMIR;
auto linkedCallback = [&linkedLLVMIR](llvm::Module &module) {
llvm::raw_string_ostream ros(linkedLLVMIR);
module.print(ros, nullptr);
};
std::string optimizedLLVMIR;
auto optimizedCallback = [&optimizedLLVMIR](llvm::Module &module) {
llvm::raw_string_ostream ros(optimizedLLVMIR);
module.print(ros, nullptr);
};
std::string isaResult;
auto isaCallback = [&isaResult](llvm::StringRef isa) {
isaResult = isa.str();
};
gpu::TargetOptions options({}, {}, {}, {}, gpu::CompilationTarget::Assembly,
{}, initialCallback, linkedCallback,
optimizedCallback, isaCallback);
for (auto gpuModule : (*module).getBody()->getOps<gpu::GPUModuleOp>()) {
std::optional<SmallVector<char, 0>> object =
serializer.serializeToObject(gpuModule, options);
ASSERT_TRUE(object != std::nullopt);
ASSERT_TRUE(!object->empty());
ASSERT_TRUE(!initialLLVMIR.empty());
ASSERT_TRUE(!linkedLLVMIR.empty());
ASSERT_TRUE(!optimizedLLVMIR.empty());
ASSERT_TRUE(!isaResult.empty());
initialLLVMIR.clear();
linkedLLVMIR.clear();
optimizedLLVMIR.clear();
isaResult.clear();
}
}
// Test linking LLVM IR from a resource attribute.
TEST_F(MLIRTargetLLVMNVVM, SKIP_WITHOUT_NVPTX(LinkedLLVMIRResource)) {
MLIRContext context(registry);
std::string moduleStr = R"mlir(
gpu.module @nvvm_test {
llvm.func @bar()
llvm.func @nvvm_kernel(%arg0: f32) attributes {gpu.kernel, nvvm.kernel} {
llvm.call @bar() : () -> ()
llvm.return
}
}
)mlir";
// Provide the library to link as a serialized bitcode blob.
SmallVector<char> bitcodeToLink;
{
std::string linkedLib = R"llvm(
define void @bar() {
ret void
}
)llvm";
llvm::SMDiagnostic err;
llvm::MemoryBufferRef buffer(linkedLib, "linkedLib");
llvm::LLVMContext llvmCtx;
std::unique_ptr<llvm::Module> module = llvm::parseIR(buffer, err, llvmCtx);
ASSERT_TRUE(module) << " Can't parse IR: " << err.getMessage();
{
llvm::raw_svector_ostream os(bitcodeToLink);
WriteBitcodeToFile(*module, os);
}
}
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
Builder builder(&context);
NVVM::NVVMTargetAttr target = NVVM::NVVMTargetAttr::get(&context);
auto serializer = dyn_cast<gpu::TargetAttrInterface>(target);
// Hook to intercept the LLVM IR after linking external libs.
std::string linkedLLVMIR;
auto linkedCallback = [&linkedLLVMIR](llvm::Module &module) {
llvm::raw_string_ostream ros(linkedLLVMIR);
module.print(ros, nullptr);
};
// Store the bitcode as a DenseI8ArrayAttr.
SmallVector<Attribute> librariesToLink;
librariesToLink.push_back(DenseI8ArrayAttr::get(
&context,
ArrayRef<int8_t>((int8_t *)bitcodeToLink.data(), bitcodeToLink.size())));
gpu::TargetOptions options({}, librariesToLink, {}, {},
gpu::CompilationTarget::Assembly, {}, {},
linkedCallback);
for (auto gpuModule : (*module).getBody()->getOps<gpu::GPUModuleOp>()) {
std::optional<SmallVector<char, 0>> object =
serializer.serializeToObject(gpuModule, options);
// Verify that we correctly linked in the library: the external call is
// replaced by the definition.
ASSERT_TRUE(!linkedLLVMIR.empty());
{
llvm::SMDiagnostic err;
llvm::MemoryBufferRef buffer(linkedLLVMIR, "linkedLLVMIR");
llvm::LLVMContext llvmCtx;
std::unique_ptr<llvm::Module> module =
llvm::parseIR(buffer, err, llvmCtx);
ASSERT_TRUE(module) << " Can't parse linkedLLVMIR: " << err.getMessage()
<< " IR: \n\b" << linkedLLVMIR;
llvm::Function *bar = module->getFunction("bar");
ASSERT_TRUE(bar);
ASSERT_FALSE(bar->empty());
}
ASSERT_TRUE(object != std::nullopt);
ASSERT_TRUE(!object->empty());
}
}