| //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements loop fusion. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PassDetail.h" |
| #include "mlir/Analysis/AffineAnalysis.h" |
| #include "mlir/Analysis/AffineStructures.h" |
| #include "mlir/Analysis/LoopAnalysis.h" |
| #include "mlir/Analysis/Utils.h" |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/Transforms/LoopFusionUtils.h" |
| #include "mlir/Transforms/LoopUtils.h" |
| #include "mlir/Transforms/Passes.h" |
| #include "mlir/Transforms/Utils.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <iomanip> |
| #include <sstream> |
| #define DEBUG_TYPE "affine-loop-fusion" |
| |
| using namespace mlir; |
| |
| namespace { |
| /// Loop fusion pass. This pass currently supports a greedy fusion policy, |
| /// which fuses loop nests with single-writer/single-reader memref dependences |
| /// with the goal of improving locality. |
| |
| // TODO: Support fusion of source loop nests which write to multiple |
| // memrefs, where each memref can have multiple users (if profitable). |
| // TODO: Extend this pass to check for fusion preventing dependences, |
| // and add support for more general loop fusion algorithms. |
| |
| struct LoopFusion : public AffineLoopFusionBase<LoopFusion> { |
| LoopFusion() = default; |
| LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, |
| bool maximalFusion, enum FusionMode affineFusionMode) { |
| this->fastMemorySpace = fastMemorySpace; |
| this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; |
| this->maximalFusion = maximalFusion; |
| this->affineFusionMode = affineFusionMode; |
| } |
| |
| void runOnFunction() override; |
| }; |
| |
| } // end anonymous namespace |
| |
| std::unique_ptr<OperationPass<FuncOp>> |
| mlir::createLoopFusionPass(unsigned fastMemorySpace, |
| uint64_t localBufSizeThreshold, bool maximalFusion, |
| enum FusionMode affineFusionMode) { |
| return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold, |
| maximalFusion, affineFusionMode); |
| } |
| |
| namespace { |
| |
| // LoopNestStateCollector walks loop nests and collects load and store |
| // operations, and whether or not a region holding op other than ForOp and IfOp |
| // was encountered in the loop nest. |
| struct LoopNestStateCollector { |
| SmallVector<AffineForOp, 4> forOps; |
| SmallVector<Operation *, 4> loadOpInsts; |
| SmallVector<Operation *, 4> storeOpInsts; |
| bool hasNonAffineRegionOp = false; |
| |
| void collect(Operation *opToWalk) { |
| opToWalk->walk([&](Operation *op) { |
| if (isa<AffineForOp>(op)) |
| forOps.push_back(cast<AffineForOp>(op)); |
| else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op)) |
| hasNonAffineRegionOp = true; |
| else if (isa<AffineReadOpInterface>(op)) |
| loadOpInsts.push_back(op); |
| else if (isa<AffineWriteOpInterface>(op)) |
| storeOpInsts.push_back(op); |
| }); |
| } |
| }; |
| |
| // MemRefDependenceGraph is a graph data structure where graph nodes are |
| // top-level operations in a FuncOp which contain load/store ops, and edges |
| // are memref dependences between the nodes. |
| // TODO: Add a more flexible dependence graph representation. |
| // TODO: Add a depth parameter to dependence graph construction. |
| struct MemRefDependenceGraph { |
| public: |
| // Node represents a node in the graph. A Node is either an entire loop nest |
| // rooted at the top level which contains loads/stores, or a top level |
| // load/store. |
| struct Node { |
| // The unique identifier of this node in the graph. |
| unsigned id; |
| // The top-level statement which is (or contains) a load/store. |
| Operation *op; |
| // List of load operations. |
| SmallVector<Operation *, 4> loads; |
| // List of store op insts. |
| SmallVector<Operation *, 4> stores; |
| Node(unsigned id, Operation *op) : id(id), op(op) {} |
| |
| // Returns the load op count for 'memref'. |
| unsigned getLoadOpCount(Value memref) { |
| unsigned loadOpCount = 0; |
| for (auto *loadOpInst : loads) { |
| if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef()) |
| ++loadOpCount; |
| } |
| return loadOpCount; |
| } |
| |
| // Returns the store op count for 'memref'. |
| unsigned getStoreOpCount(Value memref) { |
| unsigned storeOpCount = 0; |
| for (auto *storeOpInst : stores) { |
| if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef()) |
| ++storeOpCount; |
| } |
| return storeOpCount; |
| } |
| |
| // Returns all store ops in 'storeOps' which access 'memref'. |
| void getStoreOpsForMemref(Value memref, |
| SmallVectorImpl<Operation *> *storeOps) { |
| for (auto *storeOpInst : stores) { |
| if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef()) |
| storeOps->push_back(storeOpInst); |
| } |
| } |
| |
| // Returns all load ops in 'loadOps' which access 'memref'. |
| void getLoadOpsForMemref(Value memref, |
| SmallVectorImpl<Operation *> *loadOps) { |
| for (auto *loadOpInst : loads) { |
| if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef()) |
| loadOps->push_back(loadOpInst); |
| } |
| } |
| |
| // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node |
| // has at least one load and store operation. |
| void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) { |
| llvm::SmallDenseSet<Value, 2> loadMemrefs; |
| for (auto *loadOpInst : loads) { |
| loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef()); |
| } |
| for (auto *storeOpInst : stores) { |
| auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); |
| if (loadMemrefs.count(memref) > 0) |
| loadAndStoreMemrefSet->insert(memref); |
| } |
| } |
| }; |
| |
| // Edge represents a data dependence between nodes in the graph. |
| struct Edge { |
| // The id of the node at the other end of the edge. |
| // If this edge is stored in Edge = Node.inEdges[i], then |
| // 'Node.inEdges[i].id' is the identifier of the source node of the edge. |
| // If this edge is stored in Edge = Node.outEdges[i], then |
| // 'Node.outEdges[i].id' is the identifier of the dest node of the edge. |
| unsigned id; |
| // The SSA value on which this edge represents a dependence. |
| // If the value is a memref, then the dependence is between graph nodes |
| // which contain accesses to the same memref 'value'. If the value is a |
| // non-memref value, then the dependence is between a graph node which |
| // defines an SSA value and another graph node which uses the SSA value |
| // (e.g. a constant or load operation defining a value which is used inside |
| // a loop nest). |
| Value value; |
| }; |
| |
| // Map from node id to Node. |
| DenseMap<unsigned, Node> nodes; |
| // Map from node id to list of input edges. |
| DenseMap<unsigned, SmallVector<Edge, 2>> inEdges; |
| // Map from node id to list of output edges. |
| DenseMap<unsigned, SmallVector<Edge, 2>> outEdges; |
| // Map from memref to a count on the dependence edges associated with that |
| // memref. |
| DenseMap<Value, unsigned> memrefEdgeCount; |
| // The next unique identifier to use for newly created graph nodes. |
| unsigned nextNodeId = 0; |
| |
| MemRefDependenceGraph() {} |
| |
| // Initializes the dependence graph based on operations in 'f'. |
| // Returns true on success, false otherwise. |
| bool init(FuncOp f); |
| |
| // Returns the graph node for 'id'. |
| Node *getNode(unsigned id) { |
| auto it = nodes.find(id); |
| assert(it != nodes.end()); |
| return &it->second; |
| } |
| |
| // Returns the graph node for 'forOp'. |
| Node *getForOpNode(AffineForOp forOp) { |
| for (auto &idAndNode : nodes) |
| if (idAndNode.second.op == forOp.getOperation()) |
| return &idAndNode.second; |
| return nullptr; |
| } |
| |
| // Adds a node with 'op' to the graph and returns its unique identifier. |
| unsigned addNode(Operation *op) { |
| Node node(nextNodeId++, op); |
| nodes.insert({node.id, node}); |
| return node.id; |
| } |
| |
| // Remove node 'id' (and its associated edges) from graph. |
| void removeNode(unsigned id) { |
| // Remove each edge in 'inEdges[id]'. |
| if (inEdges.count(id) > 0) { |
| SmallVector<Edge, 2> oldInEdges = inEdges[id]; |
| for (auto &inEdge : oldInEdges) { |
| removeEdge(inEdge.id, id, inEdge.value); |
| } |
| } |
| // Remove each edge in 'outEdges[id]'. |
| if (outEdges.count(id) > 0) { |
| SmallVector<Edge, 2> oldOutEdges = outEdges[id]; |
| for (auto &outEdge : oldOutEdges) { |
| removeEdge(id, outEdge.id, outEdge.value); |
| } |
| } |
| // Erase remaining node state. |
| inEdges.erase(id); |
| outEdges.erase(id); |
| nodes.erase(id); |
| } |
| |
| // Returns true if node 'id' writes to any memref which escapes (or is an |
| // argument to) the function/block. Returns false otherwise. |
| bool writesToLiveInOrEscapingMemrefs(unsigned id) { |
| Node *node = getNode(id); |
| for (auto *storeOpInst : node->stores) { |
| auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); |
| auto *op = memref.getDefiningOp(); |
| // Return true if 'memref' is a block argument. |
| if (!op) |
| return true; |
| // Return true if any use of 'memref' escapes the function. |
| for (auto *user : memref.getUsers()) |
| if (!isa<AffineMapAccessInterface>(*user)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns true iff there is an edge from node 'srcId' to node 'dstId' which |
| // is for 'value' if non-null, or for any value otherwise. Returns false |
| // otherwise. |
| bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) { |
| if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) { |
| return false; |
| } |
| bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) { |
| return edge.id == dstId && (!value || edge.value == value); |
| }); |
| bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) { |
| return edge.id == srcId && (!value || edge.value == value); |
| }); |
| return hasOutEdge && hasInEdge; |
| } |
| |
| // Adds an edge from node 'srcId' to node 'dstId' for 'value'. |
| void addEdge(unsigned srcId, unsigned dstId, Value value) { |
| if (!hasEdge(srcId, dstId, value)) { |
| outEdges[srcId].push_back({dstId, value}); |
| inEdges[dstId].push_back({srcId, value}); |
| if (value.getType().isa<MemRefType>()) |
| memrefEdgeCount[value]++; |
| } |
| } |
| |
| // Removes an edge from node 'srcId' to node 'dstId' for 'value'. |
| void removeEdge(unsigned srcId, unsigned dstId, Value value) { |
| assert(inEdges.count(dstId) > 0); |
| assert(outEdges.count(srcId) > 0); |
| if (value.getType().isa<MemRefType>()) { |
| assert(memrefEdgeCount.count(value) > 0); |
| memrefEdgeCount[value]--; |
| } |
| // Remove 'srcId' from 'inEdges[dstId]'. |
| for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) { |
| if ((*it).id == srcId && (*it).value == value) { |
| inEdges[dstId].erase(it); |
| break; |
| } |
| } |
| // Remove 'dstId' from 'outEdges[srcId]'. |
| for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) { |
| if ((*it).id == dstId && (*it).value == value) { |
| outEdges[srcId].erase(it); |
| break; |
| } |
| } |
| } |
| |
| // Returns true if there is a path in the dependence graph from node 'srcId' |
| // to node 'dstId'. Returns false otherwise. |
| bool hasDependencePath(unsigned srcId, unsigned dstId) { |
| // Worklist state is: <node-id, next-output-edge-index-to-visit> |
| SmallVector<std::pair<unsigned, unsigned>, 4> worklist; |
| worklist.push_back({srcId, 0}); |
| // Run DFS traversal to see if 'dstId' is reachable from 'srcId'. |
| while (!worklist.empty()) { |
| auto &idAndIndex = worklist.back(); |
| // Return true if we have reached 'dstId'. |
| if (idAndIndex.first == dstId) |
| return true; |
| // Pop and continue if node has no out edges, or if all out edges have |
| // already been visited. |
| if (outEdges.count(idAndIndex.first) == 0 || |
| idAndIndex.second == outEdges[idAndIndex.first].size()) { |
| worklist.pop_back(); |
| continue; |
| } |
| // Get graph edge to traverse. |
| Edge edge = outEdges[idAndIndex.first][idAndIndex.second]; |
| // Increment next output edge index for 'idAndIndex'. |
| ++idAndIndex.second; |
| // Add node at 'edge.id' to worklist. |
| worklist.push_back({edge.id, 0}); |
| } |
| return false; |
| } |
| |
| // Returns the input edge count for node 'id' and 'memref' from src nodes |
| // which access 'memref' with a store operation. |
| unsigned getIncomingMemRefAccesses(unsigned id, Value memref) { |
| unsigned inEdgeCount = 0; |
| if (inEdges.count(id) > 0) |
| for (auto &inEdge : inEdges[id]) |
| if (inEdge.value == memref) { |
| Node *srcNode = getNode(inEdge.id); |
| // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref' |
| if (srcNode->getStoreOpCount(memref) > 0) |
| ++inEdgeCount; |
| } |
| return inEdgeCount; |
| } |
| |
| // Returns the output edge count for node 'id' and 'memref' (if non-null), |
| // otherwise returns the total output edge count from node 'id'. |
| unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) { |
| unsigned outEdgeCount = 0; |
| if (outEdges.count(id) > 0) |
| for (auto &outEdge : outEdges[id]) |
| if (!memref || outEdge.value == memref) |
| ++outEdgeCount; |
| return outEdgeCount; |
| } |
| |
| /// Return all nodes which define SSA values used in node 'id'. |
| void gatherDefiningNodes(unsigned id, DenseSet<unsigned> &definingNodes) { |
| for (MemRefDependenceGraph::Edge edge : inEdges[id]) |
| // By definition of edge, if the edge value is a non-memref value, |
| // then the dependence is between a graph node which defines an SSA value |
| // and another graph node which uses the SSA value. |
| if (!edge.value.getType().isa<MemRefType>()) |
| definingNodes.insert(edge.id); |
| } |
| |
| // Computes and returns an insertion point operation, before which the |
| // the fused <srcId, dstId> loop nest can be inserted while preserving |
| // dependences. Returns nullptr if no such insertion point is found. |
| Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) { |
| if (outEdges.count(srcId) == 0) |
| return getNode(dstId)->op; |
| |
| // Skip if there is any defining node of 'dstId' that depends on 'srcId'. |
| DenseSet<unsigned> definingNodes; |
| gatherDefiningNodes(dstId, definingNodes); |
| if (llvm::any_of(definingNodes, [&](unsigned id) { |
| return hasDependencePath(srcId, id); |
| })) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Can't fuse: a defining op with a user in the dst " |
| "loop has dependence from the src loop\n"); |
| return nullptr; |
| } |
| |
| // Build set of insts in range (srcId, dstId) which depend on 'srcId'. |
| SmallPtrSet<Operation *, 2> srcDepInsts; |
| for (auto &outEdge : outEdges[srcId]) |
| if (outEdge.id != dstId) |
| srcDepInsts.insert(getNode(outEdge.id)->op); |
| |
| // Build set of insts in range (srcId, dstId) on which 'dstId' depends. |
| SmallPtrSet<Operation *, 2> dstDepInsts; |
| for (auto &inEdge : inEdges[dstId]) |
| if (inEdge.id != srcId) |
| dstDepInsts.insert(getNode(inEdge.id)->op); |
| |
| Operation *srcNodeInst = getNode(srcId)->op; |
| Operation *dstNodeInst = getNode(dstId)->op; |
| |
| // Computing insertion point: |
| // *) Walk all operation positions in Block operation list in the |
| // range (src, dst). For each operation 'op' visited in this search: |
| // *) Store in 'firstSrcDepPos' the first position where 'op' has a |
| // dependence edge from 'srcNode'. |
| // *) Store in 'lastDstDepPost' the last position where 'op' has a |
| // dependence edge to 'dstNode'. |
| // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the |
| // operation insertion point (or return null pointer if no such |
| // insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos'). |
| SmallVector<Operation *, 2> depInsts; |
| Optional<unsigned> firstSrcDepPos; |
| Optional<unsigned> lastDstDepPos; |
| unsigned pos = 0; |
| for (Block::iterator it = std::next(Block::iterator(srcNodeInst)); |
| it != Block::iterator(dstNodeInst); ++it) { |
| Operation *op = &(*it); |
| if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None) |
| firstSrcDepPos = pos; |
| if (dstDepInsts.count(op) > 0) |
| lastDstDepPos = pos; |
| depInsts.push_back(op); |
| ++pos; |
| } |
| |
| if (firstSrcDepPos.hasValue()) { |
| if (lastDstDepPos.hasValue()) { |
| if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) { |
| // No valid insertion point exists which preserves dependences. |
| return nullptr; |
| } |
| } |
| // Return the insertion point at 'firstSrcDepPos'. |
| return depInsts[firstSrcDepPos.getValue()]; |
| } |
| // No dependence targets in range (or only dst deps in range), return |
| // 'dstNodInst' insertion point. |
| return dstNodeInst; |
| } |
| |
| // Updates edge mappings from node 'srcId' to node 'dstId' after fusing them, |
| // taking into account that: |
| // *) if 'removeSrcId' is true, 'srcId' will be removed after fusion, |
| // *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a |
| // private memref. |
| void updateEdges(unsigned srcId, unsigned dstId, |
| const DenseSet<Value> &privateMemRefs, bool removeSrcId) { |
| // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'. |
| if (inEdges.count(srcId) > 0) { |
| SmallVector<Edge, 2> oldInEdges = inEdges[srcId]; |
| for (auto &inEdge : oldInEdges) { |
| // Add edge from 'inEdge.id' to 'dstId' if it's not a private memref. |
| if (privateMemRefs.count(inEdge.value) == 0) |
| addEdge(inEdge.id, dstId, inEdge.value); |
| } |
| } |
| // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'. |
| // If 'srcId' is going to be removed, remap all the out edges to 'dstId'. |
| if (outEdges.count(srcId) > 0) { |
| SmallVector<Edge, 2> oldOutEdges = outEdges[srcId]; |
| for (auto &outEdge : oldOutEdges) { |
| // Remove any out edges from 'srcId' to 'dstId' across memrefs. |
| if (outEdge.id == dstId) |
| removeEdge(srcId, outEdge.id, outEdge.value); |
| else if (removeSrcId) { |
| addEdge(dstId, outEdge.id, outEdge.value); |
| removeEdge(srcId, outEdge.id, outEdge.value); |
| } |
| } |
| } |
| // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being |
| // replaced by a private memref). These edges could come from nodes |
| // other than 'srcId' which were removed in the previous step. |
| if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) { |
| SmallVector<Edge, 2> oldInEdges = inEdges[dstId]; |
| for (auto &inEdge : oldInEdges) |
| if (privateMemRefs.count(inEdge.value) > 0) |
| removeEdge(inEdge.id, dstId, inEdge.value); |
| } |
| } |
| |
| // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion |
| // of sibling node 'sibId' into node 'dstId'. |
| void updateEdges(unsigned sibId, unsigned dstId) { |
| // For each edge in 'inEdges[sibId]': |
| // *) Add new edge from source node 'inEdge.id' to 'dstNode'. |
| // *) Remove edge from source node 'inEdge.id' to 'sibNode'. |
| if (inEdges.count(sibId) > 0) { |
| SmallVector<Edge, 2> oldInEdges = inEdges[sibId]; |
| for (auto &inEdge : oldInEdges) { |
| addEdge(inEdge.id, dstId, inEdge.value); |
| removeEdge(inEdge.id, sibId, inEdge.value); |
| } |
| } |
| |
| // For each edge in 'outEdges[sibId]' to node 'id' |
| // *) Add new edge from 'dstId' to 'outEdge.id'. |
| // *) Remove edge from 'sibId' to 'outEdge.id'. |
| if (outEdges.count(sibId) > 0) { |
| SmallVector<Edge, 2> oldOutEdges = outEdges[sibId]; |
| for (auto &outEdge : oldOutEdges) { |
| addEdge(dstId, outEdge.id, outEdge.value); |
| removeEdge(sibId, outEdge.id, outEdge.value); |
| } |
| } |
| } |
| |
| // Adds ops in 'loads' and 'stores' to node at 'id'. |
| void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads, |
| const SmallVectorImpl<Operation *> &stores) { |
| Node *node = getNode(id); |
| for (auto *loadOpInst : loads) |
| node->loads.push_back(loadOpInst); |
| for (auto *storeOpInst : stores) |
| node->stores.push_back(storeOpInst); |
| } |
| |
| void clearNodeLoadAndStores(unsigned id) { |
| Node *node = getNode(id); |
| node->loads.clear(); |
| node->stores.clear(); |
| } |
| |
| // Calls 'callback' for each input edge incident to node 'id' which carries a |
| // memref dependence. |
| void forEachMemRefInputEdge(unsigned id, |
| const std::function<void(Edge)> &callback) { |
| if (inEdges.count(id) > 0) |
| forEachMemRefEdge(inEdges[id], callback); |
| } |
| |
| // Calls 'callback' for each output edge from node 'id' which carries a |
| // memref dependence. |
| void forEachMemRefOutputEdge(unsigned id, |
| const std::function<void(Edge)> &callback) { |
| if (outEdges.count(id) > 0) |
| forEachMemRefEdge(outEdges[id], callback); |
| } |
| |
| // Calls 'callback' for each edge in 'edges' which carries a memref |
| // dependence. |
| void forEachMemRefEdge(ArrayRef<Edge> edges, |
| const std::function<void(Edge)> &callback) { |
| for (const auto &edge : edges) { |
| // Skip if 'edge' is not a memref dependence edge. |
| if (!edge.value.getType().isa<MemRefType>()) |
| continue; |
| assert(nodes.count(edge.id) > 0); |
| // Skip if 'edge.id' is not a loop nest. |
| if (!isa<AffineForOp>(getNode(edge.id)->op)) |
| continue; |
| // Visit current input edge 'edge'. |
| callback(edge); |
| } |
| } |
| |
| void print(raw_ostream &os) const { |
| os << "\nMemRefDependenceGraph\n"; |
| os << "\nNodes:\n"; |
| for (const auto &idAndNode : nodes) { |
| os << "Node: " << idAndNode.first << "\n"; |
| auto it = inEdges.find(idAndNode.first); |
| if (it != inEdges.end()) { |
| for (const auto &e : it->second) |
| os << " InEdge: " << e.id << " " << e.value << "\n"; |
| } |
| it = outEdges.find(idAndNode.first); |
| if (it != outEdges.end()) { |
| for (const auto &e : it->second) |
| os << " OutEdge: " << e.id << " " << e.value << "\n"; |
| } |
| } |
| } |
| void dump() const { print(llvm::errs()); } |
| }; |
| |
| /// Returns true if node 'srcId' can be removed after fusing it with node |
| /// 'dstId'. The node can be removed if any of the following conditions are met: |
| /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs. |
| /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs |
| /// and the fusion slice is maximal. |
| /// 3. 'srcId' has output dependences after fusion, the fusion slice is |
| /// maximal and the fusion insertion point dominates all the dependences. |
| static bool canRemoveSrcNodeAfterFusion( |
| unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice, |
| Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs, |
| MemRefDependenceGraph *mdg) { |
| |
| Operation *dstNodeOp = mdg->getNode(dstId)->op; |
| bool hasOutDepsAfterFusion = false; |
| |
| for (auto &outEdge : mdg->outEdges[srcId]) { |
| Operation *depNodeOp = mdg->getNode(outEdge.id)->op; |
| // Skip dependence with dstOp since it will be removed after fusion. |
| if (depNodeOp == dstNodeOp) |
| continue; |
| |
| // Only fusion within the same block is supported. Use domination analysis |
| // when needed. |
| if (depNodeOp->getBlock() != dstNodeOp->getBlock()) |
| return false; |
| |
| // Check if the insertion point of the fused loop dominates the dependence. |
| // Otherwise, the src loop can't be removed. |
| if (fusedLoopInsPoint != depNodeOp && |
| !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) { |
| LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't " |
| "dominate dependence\n"); |
| return false; |
| } |
| |
| hasOutDepsAfterFusion = true; |
| } |
| |
| // If src loop has dependences after fusion or it writes to an live-out or |
| // escaping memref, we can only remove it if the fusion slice is maximal so |
| // that all the dependences are preserved. |
| if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) { |
| Optional<bool> isMaximal = fusionSlice.isMaximal(); |
| if (!isMaximal.hasValue()) { |
| LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine " |
| "if fusion is maximal\n"); |
| return false; |
| } |
| |
| if (!isMaximal.getValue()) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Src loop can't be removed: fusion is not maximal\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer |
| /// 'dstId'. Candidates are sorted by node id order. This order corresponds to |
| /// the program order when the 'mdg' is created. However, program order is not |
| /// guaranteed and must not be required by the client. Program order won't be |
| /// held if the 'mdg' is reused from a previous fusion step or if the node |
| /// creation order changes in the future to support more advance cases. |
| // TODO: Move this to a loop fusion utility once 'mdg' is also moved. |
| static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg, |
| SmallVectorImpl<unsigned> &srcIdCandidates) { |
| // Skip if no input edges along which to fuse. |
| if (mdg->inEdges.count(dstId) == 0) |
| return; |
| |
| // Gather memrefs from loads in 'dstId'. |
| auto *dstNode = mdg->getNode(dstId); |
| DenseSet<Value> consumedMemrefs; |
| for (Operation *load : dstNode->loads) |
| consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef()); |
| |
| // Traverse 'dstId' incoming edges and gather the nodes that contain a store |
| // to one of the consumed memrefs. |
| for (auto &srcEdge : mdg->inEdges[dstId]) { |
| auto *srcNode = mdg->getNode(srcEdge.id); |
| // Skip if 'srcNode' is not a loop nest. |
| if (!isa<AffineForOp>(srcNode->op)) |
| continue; |
| |
| if (any_of(srcNode->stores, [&](Operation *op) { |
| auto storeOp = cast<AffineWriteOpInterface>(op); |
| return consumedMemrefs.count(storeOp.getMemRef()) > 0; |
| })) |
| srcIdCandidates.push_back(srcNode->id); |
| } |
| |
| std::sort(srcIdCandidates.begin(), srcIdCandidates.end()); |
| srcIdCandidates.erase( |
| std::unique(srcIdCandidates.begin(), srcIdCandidates.end()), |
| srcIdCandidates.end()); |
| } |
| |
| /// Returns in 'producerConsumerMemrefs' the memrefs involved in a |
| /// producer-consumer dependence between 'srcId' and 'dstId'. |
| static void |
| gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId, |
| MemRefDependenceGraph *mdg, |
| DenseSet<Value> &producerConsumerMemrefs) { |
| auto *dstNode = mdg->getNode(dstId); |
| auto *srcNode = mdg->getNode(srcId); |
| gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads, |
| producerConsumerMemrefs); |
| } |
| |
| /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id' |
| /// that escape the function. A memref escapes the function if either: |
| /// 1. It's a function argument, or |
| /// 2. It's used by a non-affine op (e.g., std load/store, std call, etc.) |
| void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg, |
| DenseSet<Value> &escapingMemRefs) { |
| auto *node = mdg->getNode(id); |
| for (auto *storeOpInst : node->stores) { |
| auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); |
| if (escapingMemRefs.count(memref)) |
| continue; |
| // Check if 'memref' escapes because it's a block argument. |
| if (memref.isa<BlockArgument>()) { |
| escapingMemRefs.insert(memref); |
| continue; |
| } |
| // Check if 'memref' escapes through a non-affine op (e.g., std load/store, |
| // call op, etc.). |
| for (Operation *user : memref.getUsers()) |
| if (!isa<AffineMapAccessInterface>(*user)) |
| escapingMemRefs.insert(memref); |
| } |
| } |
| |
| } // end anonymous namespace |
| |
| // Initializes the data dependence graph by walking operations in 'f'. |
| // Assigns each node in the graph a node id based on program order in 'f'. |
| // TODO: Add support for taking a Block arg to construct the |
| // dependence graph at a different depth. |
| bool MemRefDependenceGraph::init(FuncOp f) { |
| LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n"); |
| DenseMap<Value, SetVector<unsigned>> memrefAccesses; |
| |
| // TODO: support multi-block functions. |
| if (!llvm::hasSingleElement(f)) |
| return false; |
| |
| DenseMap<Operation *, unsigned> forToNodeMap; |
| for (auto &op : f.front()) { |
| if (auto forOp = dyn_cast<AffineForOp>(op)) { |
| // Create graph node 'id' to represent top-level 'forOp' and record |
| // all loads and store accesses it contains. |
| LoopNestStateCollector collector; |
| collector.collect(&op); |
| // Return false if a region holding op other than 'affine.for' and |
| // 'affine.if' was found (not currently supported). |
| if (collector.hasNonAffineRegionOp) |
| return false; |
| Node node(nextNodeId++, &op); |
| for (auto *opInst : collector.loadOpInsts) { |
| node.loads.push_back(opInst); |
| auto memref = cast<AffineReadOpInterface>(opInst).getMemRef(); |
| memrefAccesses[memref].insert(node.id); |
| } |
| for (auto *opInst : collector.storeOpInsts) { |
| node.stores.push_back(opInst); |
| auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef(); |
| memrefAccesses[memref].insert(node.id); |
| } |
| forToNodeMap[&op] = node.id; |
| nodes.insert({node.id, node}); |
| } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) { |
| // Create graph node for top-level load op. |
| Node node(nextNodeId++, &op); |
| node.loads.push_back(&op); |
| auto memref = cast<AffineReadOpInterface>(op).getMemRef(); |
| memrefAccesses[memref].insert(node.id); |
| nodes.insert({node.id, node}); |
| } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) { |
| // Create graph node for top-level store op. |
| Node node(nextNodeId++, &op); |
| node.stores.push_back(&op); |
| auto memref = cast<AffineWriteOpInterface>(op).getMemRef(); |
| memrefAccesses[memref].insert(node.id); |
| nodes.insert({node.id, node}); |
| } else if (op.getNumRegions() != 0) { |
| // Return false if another region is found (not currently supported). |
| return false; |
| } else if (op.getNumResults() > 0 && !op.use_empty()) { |
| // Create graph node for top-level producer of SSA values, which |
| // could be used by loop nest nodes. |
| Node node(nextNodeId++, &op); |
| nodes.insert({node.id, node}); |
| } else if (isa<CallOpInterface>(op)) { |
| // Create graph node for top-level Call Op that takes any argument of |
| // memref type. Call Op that returns one or more memref type results |
| // is already taken care of, by the previous conditions. |
| if (llvm::any_of(op.getOperandTypes(), |
| [&](Type t) { return t.isa<MemRefType>(); })) { |
| Node node(nextNodeId++, &op); |
| nodes.insert({node.id, node}); |
| } |
| } else if (auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op)) { |
| // Create graph node for top-level op, which could have a memory write |
| // side effect. |
| SmallVector<MemoryEffects::EffectInstance, 1> effects; |
| effectInterface.getEffects(effects); |
| if (llvm::any_of(effects, [](const MemoryEffects::EffectInstance &it) { |
| return isa<MemoryEffects::Write, MemoryEffects::Free>( |
| it.getEffect()); |
| })) { |
| Node node(nextNodeId++, &op); |
| nodes.insert({node.id, node}); |
| } |
| } |
| } |
| |
| for (auto &idAndNode : nodes) { |
| LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n" |
| << *(idAndNode.second.op) << "\n"); |
| (void)idAndNode; |
| } |
| |
| // Add dependence edges between nodes which produce SSA values and their |
| // users. Load ops can be considered as the ones producing SSA values. |
| for (auto &idAndNode : nodes) { |
| const Node &node = idAndNode.second; |
| // Stores don't define SSA values, skip them. |
| if (!node.stores.empty()) |
| continue; |
| auto *opInst = node.op; |
| for (auto value : opInst->getResults()) { |
| for (auto *user : value.getUsers()) { |
| SmallVector<AffineForOp, 4> loops; |
| getLoopIVs(*user, &loops); |
| if (loops.empty()) |
| continue; |
| assert(forToNodeMap.count(loops[0].getOperation()) > 0); |
| unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()]; |
| addEdge(node.id, userLoopNestId, value); |
| } |
| } |
| } |
| |
| // Walk memref access lists and add graph edges between dependent nodes. |
| for (auto &memrefAndList : memrefAccesses) { |
| unsigned n = memrefAndList.second.size(); |
| for (unsigned i = 0; i < n; ++i) { |
| unsigned srcId = memrefAndList.second[i]; |
| bool srcHasStore = |
| getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0; |
| for (unsigned j = i + 1; j < n; ++j) { |
| unsigned dstId = memrefAndList.second[j]; |
| bool dstHasStore = |
| getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0; |
| if (srcHasStore || dstHasStore) |
| addEdge(srcId, dstId, memrefAndList.first); |
| } |
| } |
| } |
| return true; |
| } |
| |
| // Sinks all sequential loops to the innermost levels (while preserving |
| // relative order among them) and moves all parallel loops to the |
| // outermost (while again preserving relative order among them). |
| // This can increase the loop depth at which we can fuse a slice, since we are |
| // pushing loop carried dependence to a greater depth in the loop nest. |
| static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { |
| assert(isa<AffineForOp>(node->op)); |
| AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); |
| node->op = newRootForOp.getOperation(); |
| } |
| |
| // TODO: improve/complete this when we have target data. |
| static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) { |
| auto elementType = memRefType.getElementType(); |
| |
| unsigned sizeInBits; |
| if (elementType.isIntOrFloat()) { |
| sizeInBits = elementType.getIntOrFloatBitWidth(); |
| } else { |
| auto vectorType = elementType.cast<VectorType>(); |
| sizeInBits = |
| vectorType.getElementTypeBitWidth() * vectorType.getNumElements(); |
| } |
| return llvm::divideCeil(sizeInBits, 8); |
| } |
| |
| // Creates and returns a private (single-user) memref for fused loop rooted |
| // at 'forOp', with (potentially reduced) memref size based on the |
| // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'. |
| // TODO: consider refactoring the common code from generateDma and |
| // this one. |
| static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst, |
| unsigned dstLoopDepth, |
| Optional<unsigned> fastMemorySpace, |
| uint64_t localBufSizeThreshold) { |
| auto *forInst = forOp.getOperation(); |
| |
| // Create builder to insert alloc op just before 'forOp'. |
| OpBuilder b(forInst); |
| // Builder to create constants at the top level. |
| OpBuilder top(forInst->getParentOfType<FuncOp>().getBody()); |
| // Create new memref type based on slice bounds. |
| auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef(); |
| auto oldMemRefType = oldMemRef.getType().cast<MemRefType>(); |
| unsigned rank = oldMemRefType.getRank(); |
| |
| // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. |
| MemRefRegion region(srcStoreOpInst->getLoc()); |
| bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth)); |
| (void)validRegion; |
| assert(validRegion && "unexpected memref region failure"); |
| SmallVector<int64_t, 4> newShape; |
| std::vector<SmallVector<int64_t, 4>> lbs; |
| SmallVector<int64_t, 8> lbDivisors; |
| lbs.reserve(rank); |
| // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed |
| // by 'srcStoreOpInst' at depth 'dstLoopDepth'. |
| Optional<int64_t> numElements = |
| region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors); |
| assert(numElements.hasValue() && |
| "non-constant number of elts in local buffer"); |
| |
| const FlatAffineValueConstraints *cst = region.getConstraints(); |
| // 'outerIVs' holds the values that this memory region is symbolic/parametric |
| // on; this would correspond to loop IVs surrounding the level at which the |
| // slice is being materialized. |
| SmallVector<Value, 8> outerIVs; |
| cst->getValues(rank, cst->getNumIds(), &outerIVs); |
| |
| // Build 'rank' AffineExprs from MemRefRegion 'lbs' |
| SmallVector<AffineExpr, 4> offsets; |
| offsets.reserve(rank); |
| for (unsigned d = 0; d < rank; ++d) { |
| assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size"); |
| |
| AffineExpr offset = top.getAffineConstantExpr(0); |
| for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) { |
| offset = offset + lbs[d][j] * top.getAffineDimExpr(j); |
| } |
| assert(lbDivisors[d] > 0); |
| offset = |
| (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]); |
| offsets.push_back(offset); |
| } |
| |
| // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed |
| // by 'srcStoreOpInst'. |
| uint64_t bufSize = |
| getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue(); |
| unsigned newMemSpace; |
| if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) { |
| newMemSpace = fastMemorySpace.getValue(); |
| } else { |
| newMemSpace = oldMemRefType.getMemorySpaceAsInt(); |
| } |
| auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), |
| {}, newMemSpace); |
| |
| // Create new private memref for fused loop 'forOp'. 'newShape' is always |
| // a constant shape. |
| // TODO: Create/move alloc ops for private memrefs closer to their |
| // consumer loop nests to reduce their live range. Currently they are added |
| // at the beginning of the function, because loop nests can be reordered |
| // during the fusion pass. |
| Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType); |
| |
| // Build an AffineMap to remap access functions based on lower bound offsets. |
| SmallVector<AffineExpr, 4> remapExprs; |
| remapExprs.reserve(rank); |
| for (unsigned i = 0; i < rank; i++) { |
| auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i); |
| |
| auto remapExpr = |
| simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); |
| remapExprs.push_back(remapExpr); |
| } |
| |
| auto indexRemap = |
| AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); |
| |
| // Replace all users of 'oldMemRef' with 'newMemRef'. |
| LogicalResult res = |
| replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap, |
| /*extraOperands=*/outerIVs, |
| /*symbolOperands=*/{}, |
| /*domInstFilter=*/&*forOp.getBody()->begin()); |
| assert(succeeded(res) && |
| "replaceAllMemrefUsesWith should always succeed here"); |
| (void)res; |
| return newMemRef; |
| } |
| |
| /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and |
| /// 'dstId'), if there is any non-affine operation accessing 'memref', return |
| /// true. Otherwise, return false. |
| static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId, |
| Value memref, |
| MemRefDependenceGraph *mdg) { |
| auto *srcNode = mdg->getNode(srcId); |
| auto *dstNode = mdg->getNode(dstId); |
| Value::user_range users = memref.getUsers(); |
| // For each MemRefDependenceGraph's node that is between 'srcNode' and |
| // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any |
| // non-affine operation in the node accesses the 'memref'. |
| for (auto &idAndNode : mdg->nodes) { |
| Operation *op = idAndNode.second.op; |
| // Take care of operations between 'srcNode' and 'dstNode'. |
| if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) { |
| // Walk inside the operation to find any use of the memref. |
| // Interrupt the walk if found. |
| auto walkResult = op->walk([&](Operation *user) { |
| // Skip affine ops. |
| if (isa<AffineMapAccessInterface>(*user)) |
| return WalkResult::advance(); |
| // Find a non-affine op that uses the memref. |
| if (llvm::is_contained(users, user)) |
| return WalkResult::interrupt(); |
| return WalkResult::advance(); |
| }); |
| if (walkResult.wasInterrupted()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Check whether a memref value in node 'srcId' has a non-affine that |
| /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and |
| /// 'dstNode'). |
| static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId, |
| MemRefDependenceGraph *mdg) { |
| // Collect memref values in node 'srcId'. |
| auto *srcNode = mdg->getNode(srcId); |
| llvm::SmallDenseSet<Value, 2> memRefValues; |
| srcNode->op->walk([&](Operation *op) { |
| // Skip affine ops. |
| if (isa<AffineForOp>(op)) |
| return WalkResult::advance(); |
| for (Value v : op->getOperands()) |
| // Collect memref values only. |
| if (v.getType().isa<MemRefType>()) |
| memRefValues.insert(v); |
| return WalkResult::advance(); |
| }); |
| // Looking for users between node 'srcId' and node 'dstId'. |
| for (Value memref : memRefValues) |
| if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg)) |
| return true; |
| return false; |
| } |
| |
| // Checks the profitability of fusing a backwards slice of the loop nest |
| // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'. |
| // The argument 'srcStoreOpInst' is used to calculate the storage reduction on |
| // the memref being produced and consumed, which is an input to the cost model. |
| // For producer-consumer fusion, 'srcStoreOpInst' will be the same as |
| // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse |
| // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the |
| // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the |
| // unique store op in the src node, which will be used to check that the write |
| // region is the same after input-reuse fusion. Computation slices are provided |
| // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which |
| // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is |
| // profitable to fuse the candidate loop nests. Returns false otherwise. |
| // `dstLoopDepth` is set to the most profitable depth at which to materialize |
| // the source loop nest slice. |
| // The profitability model executes the following steps: |
| // *) Computes the backward computation slice at 'srcOpInst'. This |
| // computation slice of the loop nest surrounding 'srcOpInst' is |
| // represented by modified src loop bounds in 'sliceState', which are |
| // functions of loop IVs in the loop nest surrounding 'srcOpInst'. |
| // *) Computes the cost of unfused src/dst loop nests (currently the cost of a |
| // loop nest is the total number of dynamic operation instances in the loop |
| // nest). |
| // *) Computes the cost of fusing a slice of the src loop nest into the dst |
| // loop nest at various values of dst loop depth, attempting to fuse |
| // the largest computation slice at the maximal dst loop depth (closest to |
| // the load) to minimize reuse distance and potentially enable subsequent |
| // load/store forwarding. |
| // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop |
| // nest, at which the src computation slice is inserted/fused. |
| // NOTE: We attempt to maximize the dst loop depth, but there are cases |
| // where a particular setting for 'dstLoopNest' might fuse an unsliced |
| // loop (within the src computation slice) at a depth which results in |
| // excessive recomputation (see unit tests for examples). |
| // *) Compares the total cost of the unfused loop nests to the min cost fused |
| // loop nest computed in the previous step, and returns true if the latter |
| // is lower. |
| // TODO: Extend profitability analysis to support scenarios with multiple |
| // stores. |
| static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst, |
| AffineForOp dstForOp, |
| ArrayRef<ComputationSliceState> depthSliceUnions, |
| unsigned maxLegalFusionDepth, |
| unsigned *dstLoopDepth, |
| double computeToleranceThreshold) { |
| LLVM_DEBUG({ |
| llvm::dbgs() << "Checking whether fusion is profitable between src op:\n"; |
| llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n"; |
| llvm::dbgs() << dstForOp << "\n"; |
| }); |
| |
| if (maxLegalFusionDepth == 0) { |
| LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n"); |
| return false; |
| } |
| |
| // Compute cost of sliced and unsliced src loop nest. |
| SmallVector<AffineForOp, 4> srcLoopIVs; |
| getLoopIVs(*srcOpInst, &srcLoopIVs); |
| |
| // Walk src loop nest and collect stats. |
| LoopNestStats srcLoopNestStats; |
| if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats)) |
| return false; |
| |
| // Compute cost of dst loop nest. |
| LoopNestStats dstLoopNestStats; |
| if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) |
| return false; |
| |
| // Search for min cost value for 'dstLoopDepth'. At each value of |
| // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice |
| // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union |
| // of these bounds). Next the union slice bounds are used to calculate |
| // the cost of the slice and the cost of the slice inserted into the dst |
| // loop nest at 'dstLoopDepth'. |
| uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); |
| double maxStorageReduction = 0.0; |
| Optional<uint64_t> sliceMemEstimate = None; |
| |
| // The best loop depth at which to materialize the slice. |
| Optional<unsigned> bestDstLoopDepth = None; |
| |
| // Compute op instance count for the src loop nest without iteration slicing. |
| uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats); |
| |
| // Compute src loop nest write region size. |
| MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc()); |
| if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Unable to compute MemRefRegion for source operation\n."); |
| return false; |
| } |
| |
| Optional<int64_t> maybeSrcWriteRegionSizeBytes = |
| srcWriteRegion.getRegionSize(); |
| if (!maybeSrcWriteRegionSizeBytes.hasValue()) |
| return false; |
| int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue(); |
| |
| // Compute op instance count for the src loop nest. |
| uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); |
| |
| // Evaluate all depth choices for materializing the slice in the destination |
| // loop nest. |
| for (unsigned i = maxLegalFusionDepth; i >= 1; --i) { |
| const ComputationSliceState &slice = depthSliceUnions[i - 1]; |
| // Skip slice union if it wasn't computed for this depth. |
| if (slice.isEmpty()) |
| continue; |
| |
| int64_t fusedLoopNestComputeCost; |
| if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp, |
| dstLoopNestStats, slice, |
| &fusedLoopNestComputeCost)) { |
| LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n."); |
| continue; |
| } |
| |
| double additionalComputeFraction = |
| fusedLoopNestComputeCost / |
| (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
| 1; |
| |
| // Determine what the slice write MemRefRegion would be, if the src loop |
| // nest slice 'slice' were to be inserted into the dst loop nest at loop |
| // depth 'i'. |
| MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc()); |
| if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0, |
| &slice))) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Failed to compute slice write region at loopDepth: " << i |
| << "\n"); |
| continue; |
| } |
| |
| Optional<int64_t> maybeSliceWriteRegionSizeBytes = |
| sliceWriteRegion.getRegionSize(); |
| if (!maybeSliceWriteRegionSizeBytes.hasValue() || |
| maybeSliceWriteRegionSizeBytes.getValue() == 0) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Failed to get slice write region size at loopDepth: " << i |
| << "\n"); |
| continue; |
| } |
| int64_t sliceWriteRegionSizeBytes = |
| maybeSliceWriteRegionSizeBytes.getValue(); |
| |
| // If we are fusing for reuse, check that write regions remain the same. |
| // TODO: Write region check should check sizes and offsets in |
| // each dimension, so that we are sure they are covering the same memref |
| // region. Also, move this out to a isMemRefRegionSuperSet helper function. |
| if (srcOpInst != srcStoreOpInst && |
| sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes) |
| continue; |
| |
| double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / |
| static_cast<double>(sliceWriteRegionSizeBytes); |
| |
| LLVM_DEBUG({ |
| std::stringstream msg; |
| msg << " evaluating fusion profitability at depth : " << i << "\n" |
| << std::fixed << std::setprecision(2) |
| << " additional compute fraction: " |
| << 100.0 * additionalComputeFraction << "%\n" |
| << " storage reduction factor: " << storageReduction << "x\n" |
| << " fused nest cost: " << fusedLoopNestComputeCost << "\n" |
| << " src write region size: " << srcWriteRegionSizeBytes << "\n" |
| << " slice write region size: " << sliceWriteRegionSizeBytes |
| << "\n"; |
| llvm::dbgs() << msg.str(); |
| }); |
| |
| // TODO: This is a placeholder cost model. |
| // Among all choices that add an acceptable amount of redundant computation |
| // (as per computeToleranceThreshold), we will simply pick the one that |
| // reduces the intermediary size the most. |
| if ((storageReduction > maxStorageReduction) && |
| (additionalComputeFraction < computeToleranceThreshold)) { |
| maxStorageReduction = storageReduction; |
| bestDstLoopDepth = i; |
| minFusedLoopNestComputeCost = fusedLoopNestComputeCost; |
| sliceMemEstimate = sliceWriteRegionSizeBytes; |
| } |
| } |
| |
| // A simple cost model: fuse if it reduces the memory footprint. |
| |
| if (!bestDstLoopDepth.hasValue()) { |
| LLVM_DEBUG( |
| llvm::dbgs() |
| << "All fusion choices involve more than the threshold amount of " |
| "redundant computation; NOT fusing.\n"); |
| return false; |
| } |
| |
| if (!bestDstLoopDepth.hasValue()) { |
| LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n"); |
| return false; |
| } |
| |
| // Set dstLoopDepth based on best values from search. |
| *dstLoopDepth = bestDstLoopDepth.getValue(); |
| |
| LLVM_DEBUG( |
| llvm::dbgs() << " LoopFusion fusion stats:" |
| << "\n best loop depth: " << bestDstLoopDepth |
| << "\n src loop nest compute cost: " << srcLoopNestCost |
| << "\n dst loop nest compute cost: " << dstLoopNestCost |
| << "\n fused loop nest compute cost: " |
| << minFusedLoopNestComputeCost << "\n"); |
| |
| auto dstMemSize = getMemoryFootprintBytes(dstForOp); |
| auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]); |
| |
| Optional<double> storageReduction = None; |
| |
| if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) { |
| LLVM_DEBUG(llvm::dbgs() |
| << " fusion memory benefit cannot be evaluated; NOT fusing.\n"); |
| return false; |
| } |
| |
| auto srcMemSizeVal = srcMemSize.getValue(); |
| auto dstMemSizeVal = dstMemSize.getValue(); |
| |
| assert(sliceMemEstimate.hasValue() && "expected value"); |
| auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue(); |
| |
| LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n" |
| << " dst mem: " << dstMemSizeVal << "\n" |
| << " fused mem: " << fusedMem << "\n" |
| << " slice mem: " << sliceMemEstimate << "\n"); |
| |
| if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { |
| LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n"); |
| return false; |
| } |
| storageReduction = |
| 100.0 * |
| (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); |
| |
| double additionalComputeFraction = |
| 100.0 * (minFusedLoopNestComputeCost / |
| (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
| 1); |
| (void)additionalComputeFraction; |
| LLVM_DEBUG({ |
| std::stringstream msg; |
| msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " |
| << std::setprecision(2) << additionalComputeFraction |
| << "% redundant computation and a "; |
| msg << (storageReduction.hasValue() |
| ? std::to_string(storageReduction.getValue()) |
| : "<unknown>"); |
| msg << "% storage reduction.\n"; |
| llvm::dbgs() << msg.str(); |
| }); |
| |
| return true; |
| } |
| |
| namespace { |
| |
| // GreedyFusion greedily fuses loop nests which have a producer/consumer or |
| // input-reuse relationship on a memref, with the goal of improving locality. |
| // |
| // The steps of the producer-consumer fusion algorithm are as follows: |
| // |
| // *) A worklist is initialized with node ids from the dependence graph. |
| // *) For each node id in the worklist: |
| // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a |
| // candidate destination AffineForOp into which fusion will be attempted. |
| // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. |
| // *) For each LoadOp in 'dstLoadOps' do: |
| // *) Look up dependent loop nests which have a single store op to the same |
| // memref. |
| // *) Check if dependences would be violated by the fusion. |
| // *) Get a computation slice of 'srcLoopNest', which adjusts its loop |
| // bounds to be functions of 'dstLoopNest' IVs and symbols. |
| // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', |
| // at a loop depth determined by the cost model in 'isFusionProfitable'. |
| // *) Add the newly fused load/store operations to the state, |
| // and also add newly fused load ops to 'dstLoopOps' to be considered |
| // as fusion dst load ops in another iteration. |
| // *) Remove old src loop nest and its associated state. |
| // |
| // The steps of the input-reuse fusion algorithm are as follows: |
| // |
| // *) Initialize 'worklist' with node ids from the dependence graph. |
| // *) For each 'dstNode' in the worklist: |
| // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which |
| // loads from the same memref, but which has no dependence paths to/from. |
| // *) Get a computation slice of 'sibLoopNest', which adjusts its loop |
| // bounds to be functions of 'dstLoopNest' IVs and symbols. |
| // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', |
| // at a loop depth determined by the cost model in 'isFusionProfitable'. |
| // This function also checks that the memref write region of 'sibLoopNest', |
| // is preserved in the fused loop nest. |
| // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. |
| // |
| // Given a graph where top-level operations are vertices in the set 'V' and |
| // edges in the set 'E' are dependences between vertices, this algorithm |
| // takes O(V) time for initialization, and has runtime O(V + E). |
| // |
| // This greedy algorithm is not 'maximal' due to the current restriction of |
| // fusing along single producer consumer edges, but there is a TODO: to fix |
| // this. |
| // |
| // TODO: Experiment with other fusion policies. |
| struct GreedyFusion { |
| public: |
| // The data dependence graph to traverse during fusion. |
| MemRefDependenceGraph *mdg; |
| // Worklist of graph nodes visited during the fusion pass. |
| SmallVector<unsigned, 8> worklist; |
| // Parameter for local buffer size threshold. |
| unsigned localBufSizeThreshold; |
| // Parameter for fast memory space. |
| Optional<unsigned> fastMemorySpace; |
| // If true, ignore any additional (redundant) computation tolerance threshold |
| // that would have prevented fusion. |
| bool maximalFusion; |
| // The amount of additional computation that is tolerated while fusing |
| // pair-wise as a fraction of the total computation. |
| double computeToleranceThreshold; |
| |
| using Node = MemRefDependenceGraph::Node; |
| |
| GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, |
| Optional<unsigned> fastMemorySpace, bool maximalFusion, |
| double computeToleranceThreshold) |
| : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), |
| fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), |
| computeToleranceThreshold(computeToleranceThreshold) {} |
| |
| /// Initializes 'worklist' with nodes from 'mdg'. |
| void init() { |
| // TODO: Add a priority queue for prioritizing nodes by different |
| // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). |
| worklist.clear(); |
| for (auto &idAndNode : mdg->nodes) { |
| const Node &node = idAndNode.second; |
| worklist.push_back(node.id); |
| } |
| } |
| /// Run only sibling fusion on the `mdg`. |
| void runSiblingFusionOnly() { |
| fuseSiblingNodes(); |
| eraseUnusedMemRefAllocations(); |
| } |
| |
| /// Run only producer/consumer fusion on the `mdg`. |
| void runProducerConsumerFusionOnly() { |
| fuseProducerConsumerNodes( |
| /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
| eraseUnusedMemRefAllocations(); |
| } |
| |
| // Run the GreedyFusion pass. |
| // *) First pass through the nodes fuses single-use producer nodes into their |
| // unique consumer. |
| // *) Second pass fuses sibling nodes which share no dependence edges. |
| // *) Third pass fuses any remaining producer nodes into their users. |
| void runGreedyFusion() { |
| // TODO: Run this repeatedly until a fixed-point is reached. |
| fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); |
| fuseSiblingNodes(); |
| fuseProducerConsumerNodes( |
| /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
| eraseUnusedMemRefAllocations(); |
| } |
| |
| void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { |
| LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n"); |
| init(); |
| while (!worklist.empty()) { |
| unsigned dstId = worklist.back(); |
| worklist.pop_back(); |
| |
| // Skip if this node was removed (fused into another node). |
| if (mdg->nodes.count(dstId) == 0) |
| continue; |
| // Get 'dstNode' into which to attempt fusion. |
| auto *dstNode = mdg->getNode(dstId); |
| // Skip if 'dstNode' is not a loop nest. |
| if (!isa<AffineForOp>(dstNode->op)) |
| continue; |
| // Skip if 'dstNode' is a loop nest returning values. |
| // TODO: support loop nests that return values. |
| if (dstNode->op->getNumResults() > 0) |
| continue; |
| |
| LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n"); |
| |
| // Sink sequential loops in 'dstNode' (and thus raise parallel loops) |
| // while preserving relative order. This can increase the maximum loop |
| // depth at which we can fuse a slice of a producer loop nest into a |
| // consumer loop nest. |
| sinkSequentialLoops(dstNode); |
| auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
| |
| // Try to fuse 'dstNode' with candidate producer loops until a fixed point |
| // is reached. Fusing two loops may expose new fusion opportunities. |
| bool dstNodeChanged; |
| do { |
| // Gather src loop candidates for 'dstNode' and visit them in "quasi" |
| // reverse program order to minimize the number of iterations needed to |
| // reach the fixed point. Note that this is a best effort approach since |
| // 'getProducerCandidates' does not always guarantee that program order |
| // in 'srcIdCandidates'. |
| dstNodeChanged = false; |
| SmallVector<unsigned, 16> srcIdCandidates; |
| getProducerCandidates(dstId, mdg, srcIdCandidates); |
| |
| for (unsigned srcId : llvm::reverse(srcIdCandidates)) { |
| // Get 'srcNode' from which to attempt fusion into 'dstNode'. |
| auto *srcNode = mdg->getNode(srcId); |
| auto srcAffineForOp = cast<AffineForOp>(srcNode->op); |
| LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId |
| << " for dst loop " << dstId << "\n"); |
| |
| // Skip if 'srcNode' is a loop nest returning values. |
| // TODO: support loop nests that return values. |
| if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0) |
| continue; |
| |
| DenseSet<Value> producerConsumerMemrefs; |
| gatherProducerConsumerMemrefs(srcId, dstId, mdg, |
| producerConsumerMemrefs); |
| |
| // Skip if 'srcNode' out edge count on any memref is greater than |
| // 'maxSrcUserCount'. |
| if (any_of(producerConsumerMemrefs, [&](Value memref) { |
| return mdg->getOutEdgeCount(srcNode->id, memref) > |
| maxSrcUserCount; |
| })) |
| continue; |
| |
| // Gather memrefs in 'srcNode' that are written and escape to the |
| // function (e.g., memref function arguments, returned memrefs, |
| // memrefs passed to function calls, etc.). |
| DenseSet<Value> srcEscapingMemRefs; |
| gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs); |
| |
| // Skip if there are non-affine operations in between the 'srcNode' |
| // and 'dstNode' using their memrefs. If so, we wouldn't be able to |
| // compute a legal insertion point for now. 'srcNode' and 'dstNode' |
| // memrefs with non-affine operation users would be considered |
| // escaping memrefs so we can limit this check to only scenarios with |
| // escaping memrefs. |
| if (!srcEscapingMemRefs.empty() && |
| hasNonAffineUsersOnThePath(srcId, dstId, mdg)) { |
| LLVM_DEBUG( |
| llvm::dbgs() |
| << "Can't fuse: non-affine users in between the loops\n."); |
| continue; |
| } |
| |
| // Compute an operation list insertion point for the fused loop |
| // nest which preserves dependences. |
| Operation *fusedLoopInsPoint = |
| mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id); |
| if (fusedLoopInsPoint == nullptr) |
| continue; |
| |
| // Compute the innermost common loop depth for dstNode |
| // producer-consumer loads/stores. |
| SmallVector<Operation *, 2> dstMemrefOps; |
| for (Operation *op : dstNode->loads) |
| if (producerConsumerMemrefs.count( |
| cast<AffineReadOpInterface>(op).getMemRef()) > 0) |
| dstMemrefOps.push_back(op); |
| for (Operation *op : dstNode->stores) |
| if (producerConsumerMemrefs.count( |
| cast<AffineWriteOpInterface>(op).getMemRef())) |
| dstMemrefOps.push_back(op); |
| unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps); |
| |
| // Check the feasibility of fusing src loop nest into dst loop nest |
| // at loop depths in range [1, dstLoopDepthTest]. |
| unsigned maxLegalFusionDepth = 0; |
| SmallVector<ComputationSliceState, 8> depthSliceUnions; |
| depthSliceUnions.resize(dstLoopDepthTest); |
| FusionStrategy strategy(FusionStrategy::ProducerConsumer); |
| for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
| FusionResult result = mlir::canFuseLoops( |
| srcAffineForOp, dstAffineForOp, |
| /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy); |
| |
| if (result.value == FusionResult::Success) |
| maxLegalFusionDepth = i; |
| } |
| |
| if (maxLegalFusionDepth == 0) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Can't fuse: fusion is not legal at any depth\n"); |
| continue; |
| } |
| |
| // Check if fusion would be profitable. We skip profitability analysis |
| // for maximal fusion since we already know the maximal legal depth to |
| // fuse. |
| unsigned bestDstLoopDepth = maxLegalFusionDepth; |
| if (!maximalFusion) { |
| // Retrieve producer stores from the src loop. |
| SmallVector<Operation *, 2> producerStores; |
| for (Operation *op : srcNode->stores) |
| if (producerConsumerMemrefs.count( |
| cast<AffineWriteOpInterface>(op).getMemRef())) |
| producerStores.push_back(op); |
| |
| // TODO: Suppport multiple producer stores in profitability |
| // analysis. We limit profitability analysis to only scenarios with |
| // a single producer store for now. Note that some multi-store |
| // producer scenarios will still go through profitability analysis |
| // if only one of the stores is involved the producer-consumer |
| // relationship of the candidate loops. |
| assert(!producerStores.empty() && "Expected producer store"); |
| if (producerStores.size() > 1) |
| LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not " |
| "supported for this case\n"); |
| else if (!isFusionProfitable(producerStores[0], producerStores[0], |
| dstAffineForOp, depthSliceUnions, |
| maxLegalFusionDepth, &bestDstLoopDepth, |
| computeToleranceThreshold)) |
| continue; |
| } |
| |
| assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); |
| ComputationSliceState &bestSlice = |
| depthSliceUnions[bestDstLoopDepth - 1]; |
| assert(!bestSlice.isEmpty() && "Missing slice union for depth"); |
| |
| // Determine if 'srcId' can be removed after fusion, taking into |
| // account remaining dependences, escaping memrefs and the fusion |
| // insertion point. |
| bool removeSrcNode = canRemoveSrcNodeAfterFusion( |
| srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs, |
| mdg); |
| |
| DenseSet<Value> privateMemrefs; |
| for (Value memref : producerConsumerMemrefs) { |
| // If `memref` is an escaping one, do not create a private memref |
| // for the below scenarios, since doing so will leave the escaping |
| // memref unmodified as all the writes originally meant for the |
| // escaping memref would be performed on the private memref: |
| // 1. The source is to be removed after fusion, |
| // OR |
| // 2. The destination writes to `memref`. |
| if (srcEscapingMemRefs.count(memref) > 0 && |
| (removeSrcNode || dstNode->getStoreOpCount(memref) > 0)) |
| continue; |
| |
| // Don't create a private memref if 'srcNode' has in edges on |
| // 'memref' or 'dstNode' has out edges on 'memref'. |
| if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 || |
| mdg->getOutEdgeCount(dstId, memref) > 0) |
| continue; |
| |
| // If 'srcNode' will be removed but it has out edges on 'memref' to |
| // nodes other than 'dstNode', we have to preserve dependences and |
| // cannot create a private memref. |
| if (removeSrcNode && |
| any_of(mdg->outEdges[srcId], [&](const auto &edge) { |
| return edge.value == memref && edge.id != dstId; |
| })) |
| continue; |
| |
| // Create a private version of this memref. |
| privateMemrefs.insert(memref); |
| } |
| |
| // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. |
| fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice); |
| dstNodeChanged = true; |
| |
| LLVM_DEBUG(llvm::dbgs() |
| << "Fused src loop " << srcId << " into dst loop " << dstId |
| << " at depth " << bestDstLoopDepth << ":\n" |
| << dstAffineForOp << "\n"); |
| |
| // Move 'dstAffineForOp' before 'insertPointInst' if needed. |
| if (fusedLoopInsPoint != dstAffineForOp.getOperation()) |
| dstAffineForOp.getOperation()->moveBefore(fusedLoopInsPoint); |
| |
| // Update edges between 'srcNode' and 'dstNode'. |
| mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs, |
| removeSrcNode); |
| |
| // Create private memrefs. |
| if (!privateMemrefs.empty()) { |
| // Gather stores for all the private-to-be memrefs. |
| DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores; |
| dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) { |
| Value storeMemRef = storeOp.getMemRef(); |
| if (privateMemrefs.count(storeMemRef) > 0) |
| privateMemRefToStores[storeMemRef].push_back( |
| storeOp.getOperation()); |
| }); |
| |
| // Replace original memrefs with private memrefs. Note that all the |
| // loads and stores on these memrefs will be replaced with a new |
| // loads and stores. Any reference to the original ones becomes |
| // invalid after this point. |
| for (auto &memrefToStoresPair : privateMemRefToStores) { |
| // TODO: Use union of memref write regions to compute |
| // private memref footprint. |
| SmallVector<Operation *, 4> &storesForMemref = |
| memrefToStoresPair.second; |
| Value newMemRef = createPrivateMemRef( |
| dstAffineForOp, storesForMemref[0], bestDstLoopDepth, |
| fastMemorySpace, localBufSizeThreshold); |
| // Create new node in dependence graph for 'newMemRef' alloc op. |
| unsigned newMemRefNodeId = |
| mdg->addNode(newMemRef.getDefiningOp()); |
| // Add edge from 'newMemRef' node to dstNode. |
| mdg->addEdge(newMemRefNodeId, dstId, newMemRef); |
| } |
| // One or more entries for 'newMemRef' alloc op are inserted into |
| // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to |
| // reallocate, update dstNode. |
| dstNode = mdg->getNode(dstId); |
| } |
| |
| // Collect dst loop stats after memref privatization transformation. |
| LoopNestStateCollector dstLoopCollector; |
| dstLoopCollector.collect(dstAffineForOp.getOperation()); |
| |
| // Clear and add back loads and stores. |
| mdg->clearNodeLoadAndStores(dstNode->id); |
| mdg->addToNode(dstId, dstLoopCollector.loadOpInsts, |
| dstLoopCollector.storeOpInsts); |
| |
| if (removeSrcNode) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Removing src loop " << srcId << " after fusion\n"); |
| // srcNode is no longer valid after it is removed from mdg. |
| srcAffineForOp.erase(); |
| mdg->removeNode(srcId); |
| srcNode = nullptr; |
| } |
| } |
| } while (dstNodeChanged); |
| } |
| } |
| |
| // Visits each node in the graph, and for each node, attempts to fuse it with |
| // its sibling nodes (nodes which share a parent, but no dependence edges). |
| void fuseSiblingNodes() { |
| LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n"); |
| init(); |
| while (!worklist.empty()) { |
| unsigned dstId = worklist.back(); |
| worklist.pop_back(); |
| |
| // Skip if this node was removed (fused into another node). |
| if (mdg->nodes.count(dstId) == 0) |
| continue; |
| // Get 'dstNode' into which to attempt fusion. |
| auto *dstNode = mdg->getNode(dstId); |
| // Skip if 'dstNode' is not a loop nest. |
| if (!isa<AffineForOp>(dstNode->op)) |
| continue; |
| // Attempt to fuse 'dstNode' with its sibling nodes in the graph. |
| fuseWithSiblingNodes(dstNode); |
| } |
| } |
| |
| // Attempt to fuse 'dstNode' with sibling nodes in the graph. |
| void fuseWithSiblingNodes(Node *dstNode) { |
| DenseSet<unsigned> visitedSibNodeIds; |
| std::pair<unsigned, Value> idAndMemref; |
| auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
| |
| while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) { |
| unsigned sibId = idAndMemref.first; |
| Value memref = idAndMemref.second; |
| // TODO: Check that 'sibStoreOpInst' post-dominates all other |
| // stores to the same memref in 'sibNode' loop nest. |
| auto *sibNode = mdg->getNode(sibId); |
| // Compute an operation list insertion point for the fused loop |
| // nest which preserves dependences. |
| assert(sibNode->op->getBlock() == dstNode->op->getBlock()); |
| Operation *insertPointInst = |
| sibNode->op->isBeforeInBlock(dstNode->op) |
| ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id) |
| : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id); |
| if (insertPointInst == nullptr) |
| continue; |
| |
| // Check if fusion would be profitable and at what depth. |
| |
| // Get unique 'sibNode' load op to 'memref'. |
| SmallVector<Operation *, 2> sibLoadOpInsts; |
| sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts); |
| // Currently findSiblingNodeToFuse searches for siblings with one load. |
| assert(sibLoadOpInsts.size() == 1); |
| Operation *sibLoadOpInst = sibLoadOpInsts[0]; |
| assert(!sibNode->stores.empty()); |
| // TODO: Choose the store which postdominates all other stores. |
| auto *sibStoreOpInst = sibNode->stores.back(); |
| |
| // Gather 'dstNode' load ops to 'memref'. |
| SmallVector<Operation *, 2> dstLoadOpInsts; |
| dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts); |
| |
| SmallVector<AffineForOp, 4> dstLoopIVs; |
| getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs); |
| unsigned dstLoopDepthTest = dstLoopIVs.size(); |
| auto sibAffineForOp = cast<AffineForOp>(sibNode->op); |
| |
| // Compute loop depth and slice union for fusion. |
| SmallVector<ComputationSliceState, 8> depthSliceUnions; |
| depthSliceUnions.resize(dstLoopDepthTest); |
| unsigned maxLegalFusionDepth = 0; |
| FusionStrategy strategy(memref); |
| for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
| FusionResult result = mlir::canFuseLoops( |
| sibAffineForOp, dstAffineForOp, |
| /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy); |
| |
| if (result.value == FusionResult::Success) |
| maxLegalFusionDepth = i; |
| } |
| |
| // Skip if fusion is not feasible at any loop depths. |
| if (maxLegalFusionDepth == 0) |
| continue; |
| |
| unsigned bestDstLoopDepth = maxLegalFusionDepth; |
| if (!maximalFusion) { |
| // Check if fusion would be profitable. |
| if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp, |
| depthSliceUnions, maxLegalFusionDepth, |
| &bestDstLoopDepth, computeToleranceThreshold)) |
| continue; |
| } |
| |
| assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); |
| assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() && |
| "Fusion depth has no computed slice union"); |
| // Check if source loop is being inserted in the innermost |
| // destination loop. Based on this, the fused loop may be optimized |
| // further inside `fuseLoops`. |
| bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest); |
| // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. |
| mlir::fuseLoops(sibAffineForOp, dstAffineForOp, |
| depthSliceUnions[bestDstLoopDepth - 1], |
| isInnermostInsertion); |
| |
| auto dstForInst = cast<AffineForOp>(dstNode->op); |
| // Update operation position of fused loop nest (if needed). |
| if (insertPointInst != dstForInst.getOperation()) { |
| dstForInst->moveBefore(insertPointInst); |
| } |
| // Update data dependence graph state post fusion. |
| updateStateAfterSiblingFusion(sibNode, dstNode); |
| } |
| } |
| |
| // Searches function argument uses and the graph from 'dstNode' looking for a |
| // fusion candidate sibling node which shares no dependences with 'dstNode' |
| // but which loads from the same memref. Returns true and sets |
| // 'idAndMemrefToFuse' on success. Returns false otherwise. |
| bool findSiblingNodeToFuse(Node *dstNode, |
| DenseSet<unsigned> *visitedSibNodeIds, |
| std::pair<unsigned, Value> *idAndMemrefToFuse) { |
| // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse |
| // on 'memref'. |
| auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { |
| // Skip if 'outEdge' is not a read-after-write dependence. |
| // TODO: Remove restrict to single load op restriction. |
| if (sibNode->getLoadOpCount(memref) != 1) |
| return false; |
| // Skip if there exists a path of dependent edges between |
| // 'sibNode' and 'dstNode'. |
| if (mdg->hasDependencePath(sibNode->id, dstNode->id) || |
| mdg->hasDependencePath(dstNode->id, sibNode->id)) |
| return false; |
| // Skip sib node if it loads to (and stores from) the same memref on |
| // which it also has an input dependence edge. |
| DenseSet<Value> loadAndStoreMemrefSet; |
| sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet); |
| if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) { |
| return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0; |
| })) |
| return false; |
| |
| // Check that all stores are to the same memref. |
| DenseSet<Value> storeMemrefs; |
| for (auto *storeOpInst : sibNode->stores) { |
| storeMemrefs.insert( |
| cast<AffineWriteOpInterface>(storeOpInst).getMemRef()); |
| } |
| if (storeMemrefs.size() != 1) |
| return false; |
| |
| // Skip if a memref value in one node is used by a non-affine memref |
| // access that lies between 'dstNode' and 'sibNode'. |
| if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) || |
| hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg)) |
| return false; |
| return true; |
| }; |
| |
| // Search for siblings which load the same memref function argument. |
| auto fn = dstNode->op->getParentOfType<FuncOp>(); |
| for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) { |
| for (auto *user : fn.getArgument(i).getUsers()) { |
| if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) { |
| // Gather loops surrounding 'use'. |
| SmallVector<AffineForOp, 4> loops; |
| getLoopIVs(*user, &loops); |
| // Skip 'use' if it is not within a loop nest. |
| if (loops.empty()) |
| continue; |
| Node *sibNode = mdg->getForOpNode(loops[0]); |
| assert(sibNode != nullptr); |
| // Skip 'use' if it not a sibling to 'dstNode'. |
| if (sibNode->id == dstNode->id) |
| continue; |
| // Skip 'use' if it has been visited. |
| if (visitedSibNodeIds->count(sibNode->id) > 0) |
| continue; |
| // Skip 'use' if it does not load from the same memref as 'dstNode'. |
| auto memref = loadOp.getMemRef(); |
| if (dstNode->getLoadOpCount(memref) == 0) |
| continue; |
| // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
| if (canFuseWithSibNode(sibNode, memref)) { |
| visitedSibNodeIds->insert(sibNode->id); |
| idAndMemrefToFuse->first = sibNode->id; |
| idAndMemrefToFuse->second = memref; |
| return true; |
| } |
| } |
| } |
| } |
| |
| // Search for siblings by following edges through an intermediate src node. |
| // Collect candidate 'dstNode' input edges in 'inEdges'. |
| SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; |
| mdg->forEachMemRefInputEdge( |
| dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) { |
| // Add 'inEdge' if it is a read-after-write dependence. |
| if (dstNode->getLoadOpCount(inEdge.value) > 0 && |
| mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0) |
| inEdges.push_back(inEdge); |
| }); |
| |
| // Search for sibling nodes to fuse by visiting output edges from each input |
| // edge in 'inEdges'. |
| for (auto &inEdge : inEdges) { |
| // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. |
| SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; |
| mdg->forEachMemRefOutputEdge( |
| inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) { |
| unsigned sibNodeId = outEdge.id; |
| if (visitedSibNodeIds->count(sibNodeId) > 0) |
| return; |
| // Skip output edge if not a sibling using the same memref. |
| if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) |
| return; |
| auto *sibNode = mdg->getNode(sibNodeId); |
| if (!isa<AffineForOp>(sibNode->op)) |
| return; |
| // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
| if (canFuseWithSibNode(sibNode, outEdge.value)) { |
| // Add candidate 'outEdge' to sibling node. |
| outEdges.push_back(outEdge); |
| } |
| }); |
| |
| // Add first candidate if any were returned. |
| if (!outEdges.empty()) { |
| visitedSibNodeIds->insert(outEdges[0].id); |
| idAndMemrefToFuse->first = outEdges[0].id; |
| idAndMemrefToFuse->second = outEdges[0].value; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Update data dependence graph state to reflect sibling fusion of 'sibNode' |
| /// into 'dstNode'. |
| void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) { |
| // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. |
| mdg->updateEdges(sibNode->id, dstNode->id); |
| |
| // Collect dst loop stats after memref privatization transformation. |
| auto dstForInst = cast<AffineForOp>(dstNode->op); |
| LoopNestStateCollector dstLoopCollector; |
| dstLoopCollector.collect(dstForInst.getOperation()); |
| // Clear and add back loads and stores |
| mdg->clearNodeLoadAndStores(dstNode->id); |
| mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts, |
| dstLoopCollector.storeOpInsts); |
| // Remove old sibling loop nest if it no longer has outgoing dependence |
| // edges, and it does not write to a memref which escapes the |
| // function. |
| if (mdg->getOutEdgeCount(sibNode->id) == 0) { |
| mdg->removeNode(sibNode->id); |
| sibNode->op->erase(); |
| } |
| } |
| |
| // Clean up any allocs with no users. |
| void eraseUnusedMemRefAllocations() { |
| for (auto &pair : mdg->memrefEdgeCount) { |
| if (pair.second > 0) |
| continue; |
| auto memref = pair.first; |
| // Skip if there exist other uses (return operation or function calls). |
| if (!memref.use_empty()) |
| continue; |
| // Use list expected to match the dep graph info. |
| auto *op = memref.getDefiningOp(); |
| if (isa_and_nonnull<memref::AllocOp>(op)) |
| op->erase(); |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void LoopFusion::runOnFunction() { |
| MemRefDependenceGraph g; |
| if (!g.init(getFunction())) |
| return; |
| |
| Optional<unsigned> fastMemorySpaceOpt; |
| if (fastMemorySpace.hasValue()) |
| fastMemorySpaceOpt = fastMemorySpace; |
| unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; |
| GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, |
| maximalFusion, computeToleranceThreshold); |
| |
| if (affineFusionMode == FusionMode::ProducerConsumer) |
| fusion.runProducerConsumerFusionOnly(); |
| else if (affineFusionMode == FusionMode::Sibling) |
| fusion.runSiblingFusionOnly(); |
| else |
| fusion.runGreedyFusion(); |
| } |