blob: 11afe1e7174228a8b182b569ed15320b2d4342fb [file] [log] [blame]
//===- Timing.cpp - Execution time measurement facilities -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Facilities to measure and provide statistics on execution time.
//
//===----------------------------------------------------------------------===//
#include "mlir/Support/Timing.h"
#include "mlir/Support/ThreadLocalCache.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
#include <atomic>
#include <chrono>
using namespace mlir;
using namespace detail;
using DisplayMode = DefaultTimingManager::DisplayMode;
constexpr llvm::StringLiteral kTimingDescription =
"... Execution time report ...";
//===----------------------------------------------------------------------===//
// TimingManager
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
/// Private implementation details of the `TimingManager`.
class TimingManagerImpl {
public:
// Identifier allocator, map, and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;
llvm::sys::SmartRWMutex<true> identifierMutex;
/// A thread local cache of identifiers to reduce lock contention.
ThreadLocalCache<llvm::StringMap<llvm::StringMapEntry<llvm::NoneType> *>>
localIdentifierCache;
TimingManagerImpl() : identifiers(identifierAllocator) {}
};
} // namespace detail
} // namespace mlir
TimingManager::TimingManager() : impl(std::make_unique<TimingManagerImpl>()) {}
TimingManager::~TimingManager() {}
/// Get the root timer of this timing manager.
Timer TimingManager::getRootTimer() {
auto rt = rootTimer();
return rt.hasValue() ? Timer(*this, rt.getValue()) : Timer();
}
/// Get the root timer of this timing manager wrapped in a `TimingScope`.
TimingScope TimingManager::getRootScope() {
return TimingScope(getRootTimer());
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
TimingIdentifier TimingIdentifier::get(StringRef str, TimingManager &tm) {
// Check for an existing instance in the local cache.
auto &impl = *tm.impl;
auto *&localEntry = (*impl.localIdentifierCache)[str];
if (localEntry)
return TimingIdentifier(localEntry);
// Check for an existing identifier in read-only mode.
{
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end()) {
localEntry = &*it;
return TimingIdentifier(localEntry);
}
}
// Acquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.insert(str).first;
localEntry = &*it;
return TimingIdentifier(localEntry);
}
//===----------------------------------------------------------------------===//
// Helpers for time record printing
//===----------------------------------------------------------------------===//
namespace {
/// Simple record class to record timing information.
struct TimeRecord {
TimeRecord(double wall = 0.0, double user = 0.0) : wall(wall), user(user) {}
TimeRecord &operator+=(const TimeRecord &other) {
wall += other.wall;
user += other.user;
return *this;
}
TimeRecord &operator-=(const TimeRecord &other) {
wall -= other.wall;
user -= other.user;
return *this;
}
/// Print the current time record to 'os', with a breakdown showing
/// contributions to the give 'total' time record.
void print(raw_ostream &os, const TimeRecord &total) {
if (total.user != total.wall)
os << llvm::format(" %8.4f (%5.1f%%)", user, 100.0 * user / total.user);
os << llvm::format(" %8.4f (%5.1f%%) ", wall, 100.0 * wall / total.wall);
}
double wall, user;
};
} // namespace
/// Utility to print a single line entry in the timer output.
static void printTimeEntry(raw_ostream &os, unsigned indent, StringRef name,
TimeRecord time, TimeRecord total) {
time.print(os, total);
os.indent(indent) << name << "\n";
}
/// Utility to print the timer heading information.
static void printTimeHeader(raw_ostream &os, TimeRecord total) {
// Figure out how many spaces to description name.
unsigned padding = (80 - kTimingDescription.size()) / 2;
os << "===" << std::string(73, '-') << "===\n";
os.indent(padding) << kTimingDescription << '\n';
os << "===" << std::string(73, '-') << "===\n";
// Print the total time followed by the section headers.
os << llvm::format(" Total Execution Time: %.4f seconds\n\n", total.wall);
if (total.user != total.wall)
os << " ----User Time----";
os << " ----Wall Time---- ----Name----\n";
}
//===----------------------------------------------------------------------===//
// Timer Implementation for DefaultTimingManager
//===----------------------------------------------------------------------===//
namespace {
/// A timer used to sample execution time.
///
/// Separately tracks wall time and user time to account for parallel threads of
/// execution. Timers are intended to be started and stopped multiple times.
/// Each start and stop will add to the timer's wall and user time.
class TimerImpl {
public:
using ChildrenMap = llvm::MapVector<const void *, std::unique_ptr<TimerImpl>>;
using AsyncChildrenMap = llvm::DenseMap<uint64_t, ChildrenMap>;
TimerImpl(std::string &&name) : threadId(llvm::get_threadid()), name(name) {}
/// Start the timer.
void start() { startTime = std::chrono::steady_clock::now(); }
/// Stop the timer.
void stop() {
auto newTime = std::chrono::steady_clock::now() - startTime;
wallTime += newTime;
userTime += newTime;
}
/// Create a child timer nested within this one. Multiple calls to this
/// function with the same unique identifier `id` will return the same child
/// timer.
///
/// This function can be called from other threads, as long as this timer
/// outlives any uses of the child timer on the other thread.
TimerImpl *nest(const void *id, function_ref<std::string()> nameBuilder) {
auto tid = llvm::get_threadid();
if (tid == threadId)
return nestTail(children[id], std::move(nameBuilder));
std::unique_lock<std::mutex> lock(asyncMutex);
return nestTail(asyncChildren[tid][id], std::move(nameBuilder));
}
/// Tail-called from `nest()`.
TimerImpl *nestTail(std::unique_ptr<TimerImpl> &child,
function_ref<std::string()> nameBuilder) {
if (!child)
child = std::make_unique<TimerImpl>(nameBuilder());
return child.get();
}
/// Finalize this timer and all its children.
///
/// If this timer has async children, which happens if `nest()` was called
/// from another thread, this function merges the async childr timers into the
/// main list of child timers.
///
/// Caution: Call this function only after all nested timers running on other
/// threads no longer need their timers!
void finalize() {
addAsyncUserTime();
mergeAsyncChildren();
}
/// Add the user time of all async children to this timer's user time. This is
/// necessary since the user time already contains all regular child timers,
/// but not the asynchronous ones (by the nesting nature of the timers).
std::chrono::nanoseconds addAsyncUserTime() {
auto added = std::chrono::nanoseconds(0);
for (auto &child : children)
added += child.second->addAsyncUserTime();
for (auto &thread : asyncChildren) {
for (auto &child : thread.second) {
child.second->addAsyncUserTime();
added += child.second->userTime;
}
}
userTime += added;
return added;
}
/// Ensure that this timer and recursively all its children have their async
/// children folded into the main map of children.
void mergeAsyncChildren() {
for (auto &child : children)
child.second->mergeAsyncChildren();
mergeChildren(std::move(asyncChildren));
assert(asyncChildren.empty());
}
/// Merge multiple child timers into this timer.
///
/// Children in `other` are added as children to this timer, or, if this timer
/// already contains a child with the corresponding unique identifier, are
/// merged into the existing child.
void mergeChildren(ChildrenMap &&other) {
if (children.empty()) {
children = std::move(other);
for (auto &child : children)
child.second->mergeAsyncChildren();
} else {
for (auto &child : other)
mergeChild(child.first, std::move(child.second));
other.clear();
}
}
/// See above.
void mergeChildren(AsyncChildrenMap &&other) {
for (auto &thread : other) {
mergeChildren(std::move(thread.second));
assert(thread.second.empty());
}
other.clear();
}
/// Merge a child timer into this timer for a given unique identifier.
///
/// Moves all child and async child timers of `other` into this timer's child
/// for the given unique identifier.
void mergeChild(const void *id, std::unique_ptr<TimerImpl> &&other) {
auto &into = children[id];
if (!into) {
into = std::move(other);
into->mergeAsyncChildren();
} else {
into->wallTime = std::max(into->wallTime, other->wallTime);
into->userTime += other->userTime;
into->mergeChildren(std::move(other->children));
into->mergeChildren(std::move(other->asyncChildren));
other.reset();
}
}
/// Dump a human-readable tree representation of the timer and its children.
/// This is useful for debugging the timing mechanisms and structure of the
/// timers.
void dump(raw_ostream &os, unsigned indent = 0, unsigned markThreadId = 0) {
auto time = getTimeRecord();
os << std::string(indent * 2, ' ') << name << " [" << threadId << "]"
<< llvm::format(" %7.4f / %7.4f", time.user, time.wall);
if (threadId != markThreadId && markThreadId != 0)
os << " (*)";
os << "\n";
for (auto &child : children)
child.second->dump(os, indent + 1, threadId);
for (auto &thread : asyncChildren)
for (auto &child : thread.second)
child.second->dump(os, indent + 1, threadId);
}
/// Returns the time for this timer in seconds.
TimeRecord getTimeRecord() {
return TimeRecord(
std::chrono::duration_cast<std::chrono::duration<double>>(wallTime)
.count(),
std::chrono::duration_cast<std::chrono::duration<double>>(userTime)
.count());
}
/// Print the timing result in list mode.
void printAsList(raw_ostream &os, TimeRecord total) {
// Flatten the leaf timers in the tree and merge them by name.
llvm::StringMap<TimeRecord> mergedTimers;
std::function<void(TimerImpl *)> addTimer = [&](TimerImpl *timer) {
mergedTimers[timer->name] += timer->getTimeRecord();
for (auto &children : timer->children)
addTimer(children.second.get());
};
addTimer(this);
// Sort the timing information by wall time.
std::vector<std::pair<StringRef, TimeRecord>> timerNameAndTime;
for (auto &it : mergedTimers)
timerNameAndTime.emplace_back(it.first(), it.second);
llvm::array_pod_sort(timerNameAndTime.begin(), timerNameAndTime.end(),
[](const std::pair<StringRef, TimeRecord> *lhs,
const std::pair<StringRef, TimeRecord> *rhs) {
return llvm::array_pod_sort_comparator<double>(
&rhs->second.wall, &lhs->second.wall);
});
// Print the timing information sequentially.
for (auto &timeData : timerNameAndTime)
printTimeEntry(os, 0, timeData.first, timeData.second, total);
}
/// Print the timing result in tree mode.
void printAsTree(raw_ostream &os, TimeRecord total, unsigned indent = 0) {
unsigned childIndent = indent;
if (!hidden) {
printTimeEntry(os, indent, name, getTimeRecord(), total);
childIndent += 2;
}
for (auto &child : children) {
child.second->printAsTree(os, total, childIndent);
}
}
/// Print the current timing information.
void print(raw_ostream &os, DisplayMode displayMode) {
// Print the banner.
auto total = getTimeRecord();
printTimeHeader(os, total);
// Defer to a specialized printer for each display mode.
switch (displayMode) {
case DisplayMode::List:
printAsList(os, total);
break;
case DisplayMode::Tree:
printAsTree(os, total);
break;
}
// Print the top-level time not accounted for by child timers, and the
// total.
auto rest = total;
for (auto &child : children)
rest -= child.second->getTimeRecord();
printTimeEntry(os, 0, "Rest", rest, total);
printTimeEntry(os, 0, "Total", total, total);
os.flush();
}
/// The last time instant at which the timer was started.
std::chrono::time_point<std::chrono::steady_clock> startTime;
/// Accumulated wall time. If multiple threads of execution are merged into
/// this timer, the wall time will hold the maximum wall time of each thread
/// of execution.
std::chrono::nanoseconds wallTime = std::chrono::nanoseconds(0);
/// Accumulated user time. If multiple threads of execution are merged into
/// this timer, each thread's user time is added here.
std::chrono::nanoseconds userTime = std::chrono::nanoseconds(0);
/// The thread on which this timer is running.
uint64_t threadId;
/// A descriptive name for this timer.
std::string name;
/// Whether to omit this timer from reports and directly show its children.
bool hidden = false;
/// Child timers on the same thread the timer itself. We keep at most one
/// timer per unique identifier.
ChildrenMap children;
/// Child timers on other threads. We keep at most one timer per unique
/// identifier.
AsyncChildrenMap asyncChildren;
/// Mutex for the async children.
std::mutex asyncMutex;
};
} // namespace
//===----------------------------------------------------------------------===//
// DefaultTimingManager
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
/// Implementation details of the `DefaultTimingManager`.
class DefaultTimingManagerImpl {
public:
/// Whether we should do our work or not.
bool enabled = false;
/// The configured display mode.
DisplayMode displayMode = DisplayMode::Tree;
/// The stream where we should print our output. This will always be non-null.
raw_ostream *output = &llvm::errs();
/// The root timer.
std::unique_ptr<TimerImpl> rootTimer;
};
} // namespace detail
} // namespace mlir
DefaultTimingManager::DefaultTimingManager()
: impl(std::make_unique<DefaultTimingManagerImpl>()) {
clear(); // initializes the root timer
}
DefaultTimingManager::~DefaultTimingManager() { print(); }
/// Enable or disable execution time sampling.
void DefaultTimingManager::setEnabled(bool enabled) { impl->enabled = enabled; }
/// Return whether execution time sampling is enabled.
bool DefaultTimingManager::isEnabled() const { return impl->enabled; }
/// Change the display mode.
void DefaultTimingManager::setDisplayMode(DisplayMode displayMode) {
impl->displayMode = displayMode;
}
/// Return the current display mode;
DefaultTimingManager::DisplayMode DefaultTimingManager::getDisplayMode() const {
return impl->displayMode;
}
/// Change the stream where the output will be printed to.
void DefaultTimingManager::setOutput(raw_ostream &os) { impl->output = &os; }
/// Return the current output stream where the output will be printed to.
raw_ostream &DefaultTimingManager::getOutput() const {
assert(impl->output);
return *impl->output;
}
/// Print and clear the timing results.
void DefaultTimingManager::print() {
if (impl->enabled) {
impl->rootTimer->finalize();
impl->rootTimer->print(*impl->output, impl->displayMode);
}
clear();
}
/// Clear the timing results.
void DefaultTimingManager::clear() {
impl->rootTimer = std::make_unique<TimerImpl>("root");
impl->rootTimer->hidden = true;
}
/// Debug print the timer data structures to an output stream.
void DefaultTimingManager::dumpTimers(raw_ostream &os) {
impl->rootTimer->dump(os);
}
/// Debug print the timers as a list.
void DefaultTimingManager::dumpAsList(raw_ostream &os) {
impl->rootTimer->finalize();
impl->rootTimer->print(os, DisplayMode::List);
}
/// Debug print the timers as a tree.
void DefaultTimingManager::dumpAsTree(raw_ostream &os) {
impl->rootTimer->finalize();
impl->rootTimer->print(os, DisplayMode::Tree);
}
Optional<void *> DefaultTimingManager::rootTimer() {
if (impl->enabled)
return impl->rootTimer.get();
return llvm::None;
}
void DefaultTimingManager::startTimer(void *handle) {
static_cast<TimerImpl *>(handle)->start();
}
void DefaultTimingManager::stopTimer(void *handle) {
static_cast<TimerImpl *>(handle)->stop();
}
void *DefaultTimingManager::nestTimer(void *handle, const void *id,
function_ref<std::string()> nameBuilder) {
return static_cast<TimerImpl *>(handle)->nest(id, std::move(nameBuilder));
}
void DefaultTimingManager::hideTimer(void *handle) {
static_cast<TimerImpl *>(handle)->hidden = true;
}
//===----------------------------------------------------------------------===//
// DefaultTimingManager Command Line Options
//===----------------------------------------------------------------------===//
namespace {
struct DefaultTimingManagerOptions {
llvm::cl::opt<bool> timing{"mlir-timing",
llvm::cl::desc("Display execution times"),
llvm::cl::init(false)};
llvm::cl::opt<DisplayMode> displayMode{
"mlir-timing-display", llvm::cl::desc("Display method for timing data"),
llvm::cl::init(DisplayMode::Tree),
llvm::cl::values(
clEnumValN(DisplayMode::List, "list",
"display the results in a list sorted by total time"),
clEnumValN(DisplayMode::Tree, "tree",
"display the results ina with a nested tree view"))};
};
} // end anonymous namespace
static llvm::ManagedStatic<DefaultTimingManagerOptions> options;
void mlir::registerDefaultTimingManagerCLOptions() {
// Make sure that the options struct has been constructed.
*options;
}
void mlir::applyDefaultTimingManagerCLOptions(DefaultTimingManager &tm) {
if (!options.isConstructed())
return;
tm.setEnabled(options->timing);
tm.setDisplayMode(options->displayMode);
}