| //===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/IR/AffineExpr.h" |
| #include "AffineExprDetail.h" |
| #include "mlir/IR/AffineExprVisitor.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/IntegerSet.h" |
| #include "mlir/Support/MathExtras.h" |
| #include "mlir/Support/TypeID.h" |
| #include "llvm/ADT/STLExtras.h" |
| |
| using namespace mlir; |
| using namespace mlir::detail; |
| |
| MLIRContext *AffineExpr::getContext() const { return expr->context; } |
| |
| AffineExprKind AffineExpr::getKind() const { return expr->kind; } |
| |
| /// Walk all of the AffineExprs in this subgraph in postorder. |
| void AffineExpr::walk(std::function<void(AffineExpr)> callback) const { |
| struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> { |
| std::function<void(AffineExpr)> callback; |
| |
| AffineExprWalker(std::function<void(AffineExpr)> callback) |
| : callback(callback) {} |
| |
| void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); } |
| void visitConstantExpr(AffineConstantExpr expr) { callback(expr); } |
| void visitDimExpr(AffineDimExpr expr) { callback(expr); } |
| void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); } |
| }; |
| |
| AffineExprWalker(callback).walkPostOrder(*this); |
| } |
| |
| // Dispatch affine expression construction based on kind. |
| AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, |
| AffineExpr rhs) { |
| if (kind == AffineExprKind::Add) |
| return lhs + rhs; |
| if (kind == AffineExprKind::Mul) |
| return lhs * rhs; |
| if (kind == AffineExprKind::FloorDiv) |
| return lhs.floorDiv(rhs); |
| if (kind == AffineExprKind::CeilDiv) |
| return lhs.ceilDiv(rhs); |
| if (kind == AffineExprKind::Mod) |
| return lhs % rhs; |
| |
| llvm_unreachable("unknown binary operation on affine expressions"); |
| } |
| |
| /// This method substitutes any uses of dimensions and symbols (e.g. |
| /// dim#0 with dimReplacements[0]) and returns the modified expression tree. |
| AffineExpr |
| AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements, |
| ArrayRef<AffineExpr> symReplacements) const { |
| switch (getKind()) { |
| case AffineExprKind::Constant: |
| return *this; |
| case AffineExprKind::DimId: { |
| unsigned dimId = cast<AffineDimExpr>().getPosition(); |
| if (dimId >= dimReplacements.size()) |
| return *this; |
| return dimReplacements[dimId]; |
| } |
| case AffineExprKind::SymbolId: { |
| unsigned symId = cast<AffineSymbolExpr>().getPosition(); |
| if (symId >= symReplacements.size()) |
| return *this; |
| return symReplacements[symId]; |
| } |
| case AffineExprKind::Add: |
| case AffineExprKind::Mul: |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: |
| case AffineExprKind::Mod: |
| auto binOp = cast<AffineBinaryOpExpr>(); |
| auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); |
| auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements); |
| auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements); |
| if (newLHS == lhs && newRHS == rhs) |
| return *this; |
| return getAffineBinaryOpExpr(getKind(), newLHS, newRHS); |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| AffineExpr AffineExpr::replaceDims(ArrayRef<AffineExpr> dimReplacements) const { |
| return replaceDimsAndSymbols(dimReplacements, {}); |
| } |
| |
| AffineExpr |
| AffineExpr::replaceSymbols(ArrayRef<AffineExpr> symReplacements) const { |
| return replaceDimsAndSymbols({}, symReplacements); |
| } |
| |
| /// Replace dims[offset ... numDims) |
| /// by dims[offset + shift ... shift + numDims). |
| AffineExpr AffineExpr::shiftDims(unsigned numDims, unsigned shift, |
| unsigned offset) const { |
| SmallVector<AffineExpr, 4> dims; |
| for (unsigned idx = 0; idx < offset; ++idx) |
| dims.push_back(getAffineDimExpr(idx, getContext())); |
| for (unsigned idx = offset; idx < numDims; ++idx) |
| dims.push_back(getAffineDimExpr(idx + shift, getContext())); |
| return replaceDimsAndSymbols(dims, {}); |
| } |
| |
| /// Replace symbols[offset ... numSymbols) |
| /// by symbols[offset + shift ... shift + numSymbols). |
| AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift, |
| unsigned offset) const { |
| SmallVector<AffineExpr, 4> symbols; |
| for (unsigned idx = 0; idx < offset; ++idx) |
| symbols.push_back(getAffineSymbolExpr(idx, getContext())); |
| for (unsigned idx = offset; idx < numSymbols; ++idx) |
| symbols.push_back(getAffineSymbolExpr(idx + shift, getContext())); |
| return replaceDimsAndSymbols({}, symbols); |
| } |
| |
| /// Sparse replace method. Return the modified expression tree. |
| AffineExpr |
| AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const { |
| auto it = map.find(*this); |
| if (it != map.end()) |
| return it->second; |
| switch (getKind()) { |
| default: |
| return *this; |
| case AffineExprKind::Add: |
| case AffineExprKind::Mul: |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: |
| case AffineExprKind::Mod: |
| auto binOp = cast<AffineBinaryOpExpr>(); |
| auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); |
| auto newLHS = lhs.replace(map); |
| auto newRHS = rhs.replace(map); |
| if (newLHS == lhs && newRHS == rhs) |
| return *this; |
| return getAffineBinaryOpExpr(getKind(), newLHS, newRHS); |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| /// Sparse replace method. Return the modified expression tree. |
| AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const { |
| DenseMap<AffineExpr, AffineExpr> map; |
| map.insert(std::make_pair(expr, replacement)); |
| return replace(map); |
| } |
| /// Returns true if this expression is made out of only symbols and |
| /// constants (no dimensional identifiers). |
| bool AffineExpr::isSymbolicOrConstant() const { |
| switch (getKind()) { |
| case AffineExprKind::Constant: |
| return true; |
| case AffineExprKind::DimId: |
| return false; |
| case AffineExprKind::SymbolId: |
| return true; |
| |
| case AffineExprKind::Add: |
| case AffineExprKind::Mul: |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: |
| case AffineExprKind::Mod: { |
| auto expr = this->cast<AffineBinaryOpExpr>(); |
| return expr.getLHS().isSymbolicOrConstant() && |
| expr.getRHS().isSymbolicOrConstant(); |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| /// Returns true if this is a pure affine expression, i.e., multiplication, |
| /// floordiv, ceildiv, and mod is only allowed w.r.t constants. |
| bool AffineExpr::isPureAffine() const { |
| switch (getKind()) { |
| case AffineExprKind::SymbolId: |
| case AffineExprKind::DimId: |
| case AffineExprKind::Constant: |
| return true; |
| case AffineExprKind::Add: { |
| auto op = cast<AffineBinaryOpExpr>(); |
| return op.getLHS().isPureAffine() && op.getRHS().isPureAffine(); |
| } |
| |
| case AffineExprKind::Mul: { |
| // TODO: Canonicalize the constants in binary operators to the RHS when |
| // possible, allowing this to merge into the next case. |
| auto op = cast<AffineBinaryOpExpr>(); |
| return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() && |
| (op.getLHS().template isa<AffineConstantExpr>() || |
| op.getRHS().template isa<AffineConstantExpr>()); |
| } |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: |
| case AffineExprKind::Mod: { |
| auto op = cast<AffineBinaryOpExpr>(); |
| return op.getLHS().isPureAffine() && |
| op.getRHS().template isa<AffineConstantExpr>(); |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| // Returns the greatest known integral divisor of this affine expression. |
| int64_t AffineExpr::getLargestKnownDivisor() const { |
| AffineBinaryOpExpr binExpr(nullptr); |
| switch (getKind()) { |
| case AffineExprKind::CeilDiv: |
| LLVM_FALLTHROUGH; |
| case AffineExprKind::DimId: |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::SymbolId: |
| return 1; |
| case AffineExprKind::Constant: |
| return std::abs(this->cast<AffineConstantExpr>().getValue()); |
| case AffineExprKind::Mul: { |
| binExpr = this->cast<AffineBinaryOpExpr>(); |
| return binExpr.getLHS().getLargestKnownDivisor() * |
| binExpr.getRHS().getLargestKnownDivisor(); |
| } |
| case AffineExprKind::Add: |
| LLVM_FALLTHROUGH; |
| case AffineExprKind::Mod: { |
| binExpr = cast<AffineBinaryOpExpr>(); |
| return llvm::GreatestCommonDivisor64( |
| binExpr.getLHS().getLargestKnownDivisor(), |
| binExpr.getRHS().getLargestKnownDivisor()); |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| bool AffineExpr::isMultipleOf(int64_t factor) const { |
| AffineBinaryOpExpr binExpr(nullptr); |
| uint64_t l, u; |
| switch (getKind()) { |
| case AffineExprKind::SymbolId: |
| LLVM_FALLTHROUGH; |
| case AffineExprKind::DimId: |
| return factor * factor == 1; |
| case AffineExprKind::Constant: |
| return cast<AffineConstantExpr>().getValue() % factor == 0; |
| case AffineExprKind::Mul: { |
| binExpr = cast<AffineBinaryOpExpr>(); |
| // It's probably not worth optimizing this further (to not traverse the |
| // whole sub-tree under - it that would require a version of isMultipleOf |
| // that on a 'false' return also returns the largest known divisor). |
| return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 || |
| (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 || |
| (l * u) % factor == 0; |
| } |
| case AffineExprKind::Add: |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: |
| case AffineExprKind::Mod: { |
| binExpr = cast<AffineBinaryOpExpr>(); |
| return llvm::GreatestCommonDivisor64( |
| binExpr.getLHS().getLargestKnownDivisor(), |
| binExpr.getRHS().getLargestKnownDivisor()) % |
| factor == |
| 0; |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| bool AffineExpr::isFunctionOfDim(unsigned position) const { |
| if (getKind() == AffineExprKind::DimId) { |
| return *this == mlir::getAffineDimExpr(position, getContext()); |
| } |
| if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) { |
| return expr.getLHS().isFunctionOfDim(position) || |
| expr.getRHS().isFunctionOfDim(position); |
| } |
| return false; |
| } |
| |
| bool AffineExpr::isFunctionOfSymbol(unsigned position) const { |
| if (getKind() == AffineExprKind::SymbolId) { |
| return *this == mlir::getAffineSymbolExpr(position, getContext()); |
| } |
| if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) { |
| return expr.getLHS().isFunctionOfSymbol(position) || |
| expr.getRHS().isFunctionOfSymbol(position); |
| } |
| return false; |
| } |
| |
| AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr) |
| : AffineExpr(ptr) {} |
| AffineExpr AffineBinaryOpExpr::getLHS() const { |
| return static_cast<ImplType *>(expr)->lhs; |
| } |
| AffineExpr AffineBinaryOpExpr::getRHS() const { |
| return static_cast<ImplType *>(expr)->rhs; |
| } |
| |
| AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} |
| unsigned AffineDimExpr::getPosition() const { |
| return static_cast<ImplType *>(expr)->position; |
| } |
| |
| /// Returns true if the expression is divisible by the given symbol with |
| /// position `symbolPos`. The argument `opKind` specifies here what kind of |
| /// division or mod operation called this division. It helps in implementing the |
| /// commutative property of the floordiv and ceildiv operations. If the argument |
| ///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv |
| /// operation, then the commutative property can be used otherwise, the floordiv |
| /// operation is not divisible. The same argument holds for ceildiv operation. |
| static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos, |
| AffineExprKind opKind) { |
| // The argument `opKind` can either be Modulo, Floordiv or Ceildiv only. |
| assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || |
| opKind == AffineExprKind::CeilDiv) && |
| "unexpected opKind"); |
| switch (expr.getKind()) { |
| case AffineExprKind::Constant: |
| if (expr.cast<AffineConstantExpr>().getValue()) |
| return false; |
| return true; |
| case AffineExprKind::DimId: |
| return false; |
| case AffineExprKind::SymbolId: |
| return (expr.cast<AffineSymbolExpr>().getPosition() == symbolPos); |
| // Checks divisibility by the given symbol for both operands. |
| case AffineExprKind::Add: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) && |
| isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind); |
| } |
| // Checks divisibility by the given symbol for both operands. Consider the |
| // expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`, |
| // this is a division by s1 and both the operands of modulo are divisible by |
| // s1 but it is not divisible by s1 always. The third argument is |
| // `AffineExprKind::Mod` for this reason. |
| case AffineExprKind::Mod: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, |
| AffineExprKind::Mod) && |
| isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, |
| AffineExprKind::Mod); |
| } |
| // Checks if any of the operand divisible by the given symbol. |
| case AffineExprKind::Mul: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) || |
| isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind); |
| } |
| // Floordiv and ceildiv are divisible by the given symbol when the first |
| // operand is divisible, and the affine expression kind of the argument expr |
| // is same as the argument `opKind`. This can be inferred from commutative |
| // property of floordiv and ceildiv operations and are as follow: |
| // (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2 |
| // (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2 |
| // It will fail if operations are not same. For example: |
| // (exps1 ceildiv exp2) floordiv exp3 can not be simplified. |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| if (opKind != expr.getKind()) |
| return false; |
| return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind()); |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| /// Divides the given expression by the given symbol at position `symbolPos`. It |
| /// considers the divisibility condition is checked before calling itself. A |
| /// null expression is returned whenever the divisibility condition fails. |
| static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos, |
| AffineExprKind opKind) { |
| // THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only. |
| assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || |
| opKind == AffineExprKind::CeilDiv) && |
| "unexpected opKind"); |
| switch (expr.getKind()) { |
| case AffineExprKind::Constant: |
| if (expr.cast<AffineConstantExpr>().getValue() != 0) |
| return nullptr; |
| return getAffineConstantExpr(0, expr.getContext()); |
| case AffineExprKind::DimId: |
| return nullptr; |
| case AffineExprKind::SymbolId: |
| return getAffineConstantExpr(1, expr.getContext()); |
| // Dividing both operands by the given symbol. |
| case AffineExprKind::Add: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return getAffineBinaryOpExpr( |
| expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind), |
| symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind)); |
| } |
| // Dividing both operands by the given symbol. |
| case AffineExprKind::Mod: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return getAffineBinaryOpExpr( |
| expr.getKind(), |
| symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()), |
| symbolicDivide(binaryExpr.getRHS(), symbolPos, expr.getKind())); |
| } |
| // Dividing any of the operand by the given symbol. |
| case AffineExprKind::Mul: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind)) |
| return binaryExpr.getLHS() * |
| symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind); |
| return symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind) * |
| binaryExpr.getRHS(); |
| } |
| // Dividing first operand only by the given symbol. |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return getAffineBinaryOpExpr( |
| expr.getKind(), |
| symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()), |
| binaryExpr.getRHS()); |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| /// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv |
| /// operations when the second operand simplifies to a symbol and the first |
| /// operand is divisible by that symbol. It can be applied to any semi-affine |
| /// expression. Returned expression can either be a semi-affine or pure affine |
| /// expression. |
| static AffineExpr simplifySemiAffine(AffineExpr expr) { |
| switch (expr.getKind()) { |
| case AffineExprKind::Constant: |
| case AffineExprKind::DimId: |
| case AffineExprKind::SymbolId: |
| return expr; |
| case AffineExprKind::Add: |
| case AffineExprKind::Mul: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| return getAffineBinaryOpExpr(expr.getKind(), |
| simplifySemiAffine(binaryExpr.getLHS()), |
| simplifySemiAffine(binaryExpr.getRHS())); |
| } |
| // Check if the simplification of the second operand is a symbol, and the |
| // first operand is divisible by it. If the operation is a modulo, a constant |
| // zero expression is returned. In the case of floordiv and ceildiv, the |
| // symbol from the simplification of the second operand divides the first |
| // operand. Otherwise, simplification is not possible. |
| case AffineExprKind::FloorDiv: |
| case AffineExprKind::CeilDiv: |
| case AffineExprKind::Mod: { |
| AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>(); |
| AffineExpr sLHS = simplifySemiAffine(binaryExpr.getLHS()); |
| AffineExpr sRHS = simplifySemiAffine(binaryExpr.getRHS()); |
| AffineSymbolExpr symbolExpr = |
| simplifySemiAffine(binaryExpr.getRHS()).dyn_cast<AffineSymbolExpr>(); |
| if (!symbolExpr) |
| return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS); |
| unsigned symbolPos = symbolExpr.getPosition(); |
| if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind())) |
| return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS); |
| if (expr.getKind() == AffineExprKind::Mod) |
| return getAffineConstantExpr(0, expr.getContext()); |
| return symbolicDivide(sLHS, symbolPos, expr.getKind()); |
| } |
| } |
| llvm_unreachable("Unknown AffineExpr"); |
| } |
| |
| static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position, |
| MLIRContext *context) { |
| auto assignCtx = [context](AffineDimExprStorage *storage) { |
| storage->context = context; |
| }; |
| |
| StorageUniquer &uniquer = context->getAffineUniquer(); |
| return uniquer.get<AffineDimExprStorage>( |
| assignCtx, static_cast<unsigned>(kind), position); |
| } |
| |
| AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) { |
| return getAffineDimOrSymbol(AffineExprKind::DimId, position, context); |
| } |
| |
| AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr) |
| : AffineExpr(ptr) {} |
| unsigned AffineSymbolExpr::getPosition() const { |
| return static_cast<ImplType *>(expr)->position; |
| } |
| |
| AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) { |
| return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context); |
| ; |
| } |
| |
| AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr) |
| : AffineExpr(ptr) {} |
| int64_t AffineConstantExpr::getValue() const { |
| return static_cast<ImplType *>(expr)->constant; |
| } |
| |
| bool AffineExpr::operator==(int64_t v) const { |
| return *this == getAffineConstantExpr(v, getContext()); |
| } |
| |
| AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) { |
| auto assignCtx = [context](AffineConstantExprStorage *storage) { |
| storage->context = context; |
| }; |
| |
| StorageUniquer &uniquer = context->getAffineUniquer(); |
| return uniquer.get<AffineConstantExprStorage>(assignCtx, constant); |
| } |
| |
| /// Simplify add expression. Return nullptr if it can't be simplified. |
| static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) { |
| auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); |
| auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); |
| // Fold if both LHS, RHS are a constant. |
| if (lhsConst && rhsConst) |
| return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(), |
| lhs.getContext()); |
| |
| // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4). |
| // If only one of them is a symbolic expressions, make it the RHS. |
| if (lhs.isa<AffineConstantExpr>() || |
| (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) { |
| return rhs + lhs; |
| } |
| |
| // At this point, if there was a constant, it would be on the right. |
| |
| // Addition with a zero is a noop, return the other input. |
| if (rhsConst) { |
| if (rhsConst.getValue() == 0) |
| return lhs; |
| } |
| // Fold successive additions like (d0 + 2) + 3 into d0 + 5. |
| auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) { |
| if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) |
| return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue()); |
| } |
| |
| // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr". |
| // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their |
| // respective multiplicands. |
| Optional<int64_t> rLhsConst, rRhsConst; |
| AffineExpr firstExpr, secondExpr; |
| AffineConstantExpr rLhsConstExpr; |
| auto lBinOpExpr = lhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul && |
| (rLhsConstExpr = lBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) { |
| rLhsConst = rLhsConstExpr.getValue(); |
| firstExpr = lBinOpExpr.getLHS(); |
| } else { |
| rLhsConst = 1; |
| firstExpr = lhs; |
| } |
| |
| auto rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>(); |
| AffineConstantExpr rRhsConstExpr; |
| if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul && |
| (rRhsConstExpr = rBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) { |
| rRhsConst = rRhsConstExpr.getValue(); |
| secondExpr = rBinOpExpr.getLHS(); |
| } else { |
| rRhsConst = 1; |
| secondExpr = rhs; |
| } |
| |
| if (rLhsConst && rRhsConst && firstExpr == secondExpr) |
| return getAffineBinaryOpExpr( |
| AffineExprKind::Mul, firstExpr, |
| getAffineConstantExpr(rLhsConst.getValue() + rRhsConst.getValue(), |
| lhs.getContext())); |
| |
| // When doing successive additions, bring constant to the right: turn (d0 + 2) |
| // + d1 into (d0 + d1) + 2. |
| if (lBin && lBin.getKind() == AffineExprKind::Add) { |
| if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { |
| return lBin.getLHS() + rhs + lrhs; |
| } |
| } |
| |
| // Detect and transform "expr - q * (expr floordiv q)" to "expr mod q", where |
| // q may be a constant or symbolic expression. This leads to a much more |
| // efficient form when 'c' is a power of two, and in general a more compact |
| // and readable form. |
| |
| // Process '(expr floordiv c) * (-c)'. |
| if (!rBinOpExpr) |
| return nullptr; |
| |
| auto lrhs = rBinOpExpr.getLHS(); |
| auto rrhs = rBinOpExpr.getRHS(); |
| |
| AffineExpr llrhs, rlrhs; |
| |
| // Check if lrhsBinOpExpr is of the form (expr floordiv q) * q, where q is a |
| // symbolic expression. |
| auto lrhsBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>(); |
| // Check rrhsConstOpExpr = -1. |
| auto rrhsConstOpExpr = rrhs.dyn_cast<AffineConstantExpr>(); |
| if (rrhsConstOpExpr && rrhsConstOpExpr.getValue() == -1 && lrhsBinOpExpr && |
| lrhsBinOpExpr.getKind() == AffineExprKind::Mul) { |
| // Check llrhs = expr floordiv q. |
| llrhs = lrhsBinOpExpr.getLHS(); |
| // Check rlrhs = q. |
| rlrhs = lrhsBinOpExpr.getRHS(); |
| auto llrhsBinOpExpr = llrhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (!llrhsBinOpExpr || llrhsBinOpExpr.getKind() != AffineExprKind::FloorDiv) |
| return nullptr; |
| if (llrhsBinOpExpr.getRHS() == rlrhs && lhs == llrhsBinOpExpr.getLHS()) |
| return lhs % rlrhs; |
| } |
| |
| // Process lrhs, which is 'expr floordiv c'. |
| AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv) |
| return nullptr; |
| |
| llrhs = lrBinOpExpr.getLHS(); |
| rlrhs = lrBinOpExpr.getRHS(); |
| |
| if (lhs == llrhs && rlrhs == -rrhs) { |
| return lhs % rlrhs; |
| } |
| return nullptr; |
| } |
| |
| AffineExpr AffineExpr::operator+(int64_t v) const { |
| return *this + getAffineConstantExpr(v, getContext()); |
| } |
| AffineExpr AffineExpr::operator+(AffineExpr other) const { |
| if (auto simplified = simplifyAdd(*this, other)) |
| return simplified; |
| |
| StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| return uniquer.get<AffineBinaryOpExprStorage>( |
| /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other); |
| } |
| |
| /// Simplify a multiply expression. Return nullptr if it can't be simplified. |
| static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) { |
| auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); |
| auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); |
| |
| if (lhsConst && rhsConst) |
| return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(), |
| lhs.getContext()); |
| |
| assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant()); |
| |
| // Canonicalize the mul expression so that the constant/symbolic term is the |
| // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a |
| // constant. (Note that a constant is trivially symbolic). |
| if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) { |
| // At least one of them has to be symbolic. |
| return rhs * lhs; |
| } |
| |
| // At this point, if there was a constant, it would be on the right. |
| |
| // Multiplication with a one is a noop, return the other input. |
| if (rhsConst) { |
| if (rhsConst.getValue() == 1) |
| return lhs; |
| // Multiplication with zero. |
| if (rhsConst.getValue() == 0) |
| return rhsConst; |
| } |
| |
| // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6. |
| auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) { |
| if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) |
| return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue()); |
| } |
| |
| // When doing successive multiplication, bring constant to the right: turn (d0 |
| // * 2) * d1 into (d0 * d1) * 2. |
| if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
| if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { |
| return (lBin.getLHS() * rhs) * lrhs; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| AffineExpr AffineExpr::operator*(int64_t v) const { |
| return *this * getAffineConstantExpr(v, getContext()); |
| } |
| AffineExpr AffineExpr::operator*(AffineExpr other) const { |
| if (auto simplified = simplifyMul(*this, other)) |
| return simplified; |
| |
| StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| return uniquer.get<AffineBinaryOpExprStorage>( |
| /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other); |
| } |
| |
| // Unary minus, delegate to operator*. |
| AffineExpr AffineExpr::operator-() const { |
| return *this * getAffineConstantExpr(-1, getContext()); |
| } |
| |
| // Delegate to operator+. |
| AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); } |
| AffineExpr AffineExpr::operator-(AffineExpr other) const { |
| return *this + (-other); |
| } |
| |
| static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) { |
| auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); |
| auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); |
| |
| // mlir floordiv by zero or negative numbers is undefined and preserved as is. |
| if (!rhsConst || rhsConst.getValue() < 1) |
| return nullptr; |
| |
| if (lhsConst) |
| return getAffineConstantExpr( |
| floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); |
| |
| // Fold floordiv of a multiply with a constant that is a multiple of the |
| // divisor. Eg: (i * 128) floordiv 64 = i * 2. |
| if (rhsConst == 1) |
| return lhs; |
| |
| // Simplify (expr * const) floordiv divConst when expr is known to be a |
| // multiple of divConst. |
| auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
| if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { |
| // rhsConst is known to be a positive constant. |
| if (lrhs.getValue() % rhsConst.getValue() == 0) |
| return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); |
| } |
| } |
| |
| // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is |
| // known to be a multiple of divConst. |
| if (lBin && lBin.getKind() == AffineExprKind::Add) { |
| int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); |
| int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); |
| // rhsConst is known to be a positive constant. |
| if (llhsDiv % rhsConst.getValue() == 0 || |
| lrhsDiv % rhsConst.getValue() == 0) |
| return lBin.getLHS().floorDiv(rhsConst.getValue()) + |
| lBin.getRHS().floorDiv(rhsConst.getValue()); |
| } |
| |
| return nullptr; |
| } |
| |
| AffineExpr AffineExpr::floorDiv(uint64_t v) const { |
| return floorDiv(getAffineConstantExpr(v, getContext())); |
| } |
| AffineExpr AffineExpr::floorDiv(AffineExpr other) const { |
| if (auto simplified = simplifyFloorDiv(*this, other)) |
| return simplified; |
| |
| StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| return uniquer.get<AffineBinaryOpExprStorage>( |
| /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this, |
| other); |
| } |
| |
| static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) { |
| auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); |
| auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); |
| |
| if (!rhsConst || rhsConst.getValue() < 1) |
| return nullptr; |
| |
| if (lhsConst) |
| return getAffineConstantExpr( |
| ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); |
| |
| // Fold ceildiv of a multiply with a constant that is a multiple of the |
| // divisor. Eg: (i * 128) ceildiv 64 = i * 2. |
| if (rhsConst.getValue() == 1) |
| return lhs; |
| |
| // Simplify (expr * const) ceildiv divConst when const is known to be a |
| // multiple of divConst. |
| auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (lBin && lBin.getKind() == AffineExprKind::Mul) { |
| if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { |
| // rhsConst is known to be a positive constant. |
| if (lrhs.getValue() % rhsConst.getValue() == 0) |
| return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| AffineExpr AffineExpr::ceilDiv(uint64_t v) const { |
| return ceilDiv(getAffineConstantExpr(v, getContext())); |
| } |
| AffineExpr AffineExpr::ceilDiv(AffineExpr other) const { |
| if (auto simplified = simplifyCeilDiv(*this, other)) |
| return simplified; |
| |
| StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| return uniquer.get<AffineBinaryOpExprStorage>( |
| /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this, |
| other); |
| } |
| |
| static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) { |
| auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); |
| auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); |
| |
| // mod w.r.t zero or negative numbers is undefined and preserved as is. |
| if (!rhsConst || rhsConst.getValue() < 1) |
| return nullptr; |
| |
| if (lhsConst) |
| return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()), |
| lhs.getContext()); |
| |
| // Fold modulo of an expression that is known to be a multiple of a constant |
| // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128) |
| // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0. |
| if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0) |
| return getAffineConstantExpr(0, lhs.getContext()); |
| |
| // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is |
| // known to be a multiple of divConst. |
| auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); |
| if (lBin && lBin.getKind() == AffineExprKind::Add) { |
| int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); |
| int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); |
| // rhsConst is known to be a positive constant. |
| if (llhsDiv % rhsConst.getValue() == 0) |
| return lBin.getRHS() % rhsConst.getValue(); |
| if (lrhsDiv % rhsConst.getValue() == 0) |
| return lBin.getLHS() % rhsConst.getValue(); |
| } |
| |
| // Simplify (e % a) % b to e % b when b evenly divides a |
| if (lBin && lBin.getKind() == AffineExprKind::Mod) { |
| auto intermediate = lBin.getRHS().dyn_cast<AffineConstantExpr>(); |
| if (intermediate && intermediate.getValue() >= 1 && |
| mod(intermediate.getValue(), rhsConst.getValue()) == 0) { |
| return lBin.getLHS() % rhsConst.getValue(); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| AffineExpr AffineExpr::operator%(uint64_t v) const { |
| return *this % getAffineConstantExpr(v, getContext()); |
| } |
| AffineExpr AffineExpr::operator%(AffineExpr other) const { |
| if (auto simplified = simplifyMod(*this, other)) |
| return simplified; |
| |
| StorageUniquer &uniquer = getContext()->getAffineUniquer(); |
| return uniquer.get<AffineBinaryOpExprStorage>( |
| /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other); |
| } |
| |
| AffineExpr AffineExpr::compose(AffineMap map) const { |
| SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(), |
| map.getResults().end()); |
| return replaceDimsAndSymbols(dimReplacements, {}); |
| } |
| raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) { |
| expr.print(os); |
| return os; |
| } |
| |
| /// Constructs an affine expression from a flat ArrayRef. If there are local |
| /// identifiers (neither dimensional nor symbolic) that appear in the sum of |
| /// products expression, `localExprs` is expected to have the AffineExpr |
| /// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be |
| /// in the format [dims, symbols, locals, constant term]. |
| AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, |
| unsigned numDims, |
| unsigned numSymbols, |
| ArrayRef<AffineExpr> localExprs, |
| MLIRContext *context) { |
| // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. |
| assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && |
| "unexpected number of local expressions"); |
| |
| auto expr = getAffineConstantExpr(0, context); |
| // Dimensions and symbols. |
| for (unsigned j = 0; j < numDims + numSymbols; j++) { |
| if (flatExprs[j] == 0) |
| continue; |
| auto id = j < numDims ? getAffineDimExpr(j, context) |
| : getAffineSymbolExpr(j - numDims, context); |
| expr = expr + id * flatExprs[j]; |
| } |
| |
| // Local identifiers. |
| for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; |
| j++) { |
| if (flatExprs[j] == 0) |
| continue; |
| auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; |
| expr = expr + term; |
| } |
| |
| // Constant term. |
| int64_t constTerm = flatExprs[flatExprs.size() - 1]; |
| if (constTerm != 0) |
| expr = expr + constTerm; |
| return expr; |
| } |
| |
| /// Constructs a semi-affine expression from a flat ArrayRef. If there are |
| /// local identifiers (neither dimensional nor symbolic) that appear in the sum |
| /// of products expression, `localExprs` is expected to have the AffineExprs for |
| /// it, and is substituted into. The ArrayRef `flatExprs` is expected to be in |
| /// the format [dims, symbols, locals, constant term]. The semi-affine |
| /// expression is constructed in the sorted order of dimension and symbol |
| /// position numbers. Note: local expressions/ids are used for mod, div as well |
| /// as symbolic RHS terms for terms that are not pure affine. |
| static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, |
| unsigned numDims, |
| unsigned numSymbols, |
| ArrayRef<AffineExpr> localExprs, |
| MLIRContext *context) { |
| assert(!flatExprs.empty() && "flatExprs cannot be empty"); |
| |
| // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. |
| assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && |
| "unexpected number of local expressions"); |
| |
| AffineExpr expr = getAffineConstantExpr(0, context); |
| |
| // We design indices as a pair which help us present the semi-affine map as |
| // sum of product where terms are sorted based on dimension or symbol |
| // position: <keyA, keyB> for expressions of the form dimension * symbol, |
| // where keyA is the position number of the dimension and keyB is the |
| // position number of the symbol. For dimensional expressions we set the index |
| // as (position number of the dimension, -1), as we want dimensional |
| // expressions to appear before symbolic and product of dimensional and |
| // symbolic expressions having the dimension with the same position number. |
| // For symbolic expression set the index as (position number of the symbol, |
| // maximum of last dimension and symbol position) number. For example, we want |
| // the expression we are constructing to look something like: d0 + d0 * s0 + |
| // s0 + d1*s1 + s1. |
| |
| // Stores the affine expression corresponding to a given index. |
| DenseMap<std::pair<unsigned, signed>, AffineExpr> indexToExprMap; |
| // Stores the constant coefficient value corresponding to a given |
| // dimension, symbol or a non-pure affine expression stored in `localExprs`. |
| DenseMap<std::pair<unsigned, signed>, int64_t> coefficients; |
| // Stores the indices as defined above, and later sorted to produce |
| // the semi-affine expression in the desired form. |
| SmallVector<std::pair<unsigned, signed>, 8> indices; |
| |
| // Example: expression = d0 + d0 * s0 + 2 * s0. |
| // indices = [{0,-1}, {0, 0}, {0, 1}] |
| // coefficients = [{{0, -1}, 1}, {{0, 0}, 1}, {{0, 1}, 2}] |
| // indexToExprMap = [{{0, -1}, d0}, {{0, 0}, d0 * s0}, {{0, 1}, s0}] |
| |
| // Adds entries to `indexToExprMap`, `coefficients` and `indices`. |
| auto addEntry = [&](std::pair<unsigned, signed> index, int64_t coefficient, |
| AffineExpr expr) { |
| assert(std::find(indices.begin(), indices.end(), index) == indices.end() && |
| "Key is already present in indices vector and overwriting will " |
| "happen in `indexToExprMap` and `coefficients`!"); |
| |
| indices.push_back(index); |
| coefficients.insert({index, coefficient}); |
| indexToExprMap.insert({index, expr}); |
| }; |
| |
| // Design indices for dimensional or symbolic terms, and store the indices, |
| // constant coefficient corresponding to the indices in `coefficients` map, |
| // and affine expression corresponding to indices in `indexToExprMap` map. |
| |
| for (unsigned j = 0; j < numDims; ++j) { |
| if (flatExprs[j] == 0) |
| continue; |
| // For dimensional expressions we set the index as <position number of the |
| // dimension, 0>, as we want dimensional expressions to appear before |
| // symbolic ones and products of dimensional and symbolic expressions |
| // having the dimension with the same position number. |
| std::pair<unsigned, signed> indexEntry(j, -1); |
| addEntry(indexEntry, flatExprs[j], getAffineDimExpr(j, context)); |
| } |
| for (unsigned j = numDims; j < numDims + numSymbols; ++j) { |
| if (flatExprs[j] == 0) |
| continue; |
| // For symbolic expression set the index as <position number |
| // of the symbol, max(dimCount, symCount)> number, |
| // as we want symbolic expressions with the same positional number to |
| // appear after dimensional expressions having the same positional number. |
| std::pair<unsigned, signed> indexEntry(j - numDims, |
| std::max(numDims, numSymbols)); |
| addEntry(indexEntry, flatExprs[j], |
| getAffineSymbolExpr(j - numDims, context)); |
| } |
| |
| // Denotes semi-affine product, modulo or division terms, which has been added |
| // to the `indexToExpr` map. |
| SmallVector<bool, 4> addedToMap(flatExprs.size() - numDims - numSymbols - 1, |
| false); |
| unsigned lhsPos, rhsPos; |
| // Construct indices for product terms involving dimension, symbol or constant |
| // as lhs/rhs, and store the indices, constant coefficient corresponding to |
| // the indices in `coefficients` map, and affine expression corresponding to |
| // in indices in `indexToExprMap` map. |
| for (auto it : llvm::enumerate(localExprs)) { |
| AffineExpr expr = it.value(); |
| if (flatExprs[numDims + numSymbols + it.index()] == 0) |
| continue; |
| AffineExpr lhs = expr.cast<AffineBinaryOpExpr>().getLHS(); |
| AffineExpr rhs = expr.cast<AffineBinaryOpExpr>().getRHS(); |
| if (!((lhs.isa<AffineDimExpr>() || lhs.isa<AffineSymbolExpr>()) && |
| (rhs.isa<AffineDimExpr>() || rhs.isa<AffineSymbolExpr>() || |
| rhs.isa<AffineConstantExpr>()))) { |
| continue; |
| } |
| if (rhs.isa<AffineConstantExpr>()) { |
| // For product/modulo/division expressions, when rhs of modulo/division |
| // expression is constant, we put 0 in place of keyB, because we want |
| // them to appear earlier in the semi-affine expression we are |
| // constructing. When rhs is constant, we place 0 in place of keyB. |
| if (lhs.isa<AffineDimExpr>()) { |
| lhsPos = lhs.cast<AffineDimExpr>().getPosition(); |
| std::pair<unsigned, signed> indexEntry(lhsPos, -1); |
| addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], |
| expr); |
| } else { |
| lhsPos = lhs.cast<AffineSymbolExpr>().getPosition(); |
| std::pair<unsigned, signed> indexEntry(lhsPos, |
| std::max(numDims, numSymbols)); |
| addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], |
| expr); |
| } |
| } else if (lhs.isa<AffineDimExpr>()) { |
| // For product/modulo/division expressions having lhs as dimension and rhs |
| // as symbol, we order the terms in the semi-affine expression based on |
| // the pair: <keyA, keyB> for expressions of the form dimension * symbol, |
| // where keyA is the position number of the dimension and keyB is the |
| // position number of the symbol. |
| lhsPos = lhs.cast<AffineDimExpr>().getPosition(); |
| rhsPos = rhs.cast<AffineSymbolExpr>().getPosition(); |
| std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos); |
| addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); |
| } else { |
| // For product/modulo/division expressions having both lhs and rhs as |
| // symbol, we design indices as a pair: <keyA, keyB> for expressions |
| // of the form dimension * symbol, where keyA is the position number of |
| // the dimension and keyB is the position number of the symbol. |
| lhsPos = lhs.cast<AffineSymbolExpr>().getPosition(); |
| rhsPos = rhs.cast<AffineSymbolExpr>().getPosition(); |
| std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos); |
| addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); |
| } |
| addedToMap[it.index()] = true; |
| } |
| |
| // Constructing the simplified semi-affine sum of product/division/mod |
| // expression from the flattened form in the desired sorted order of indices |
| // of the various individual product/division/mod expressions. |
| std::sort(indices.begin(), indices.end()); |
| for (const std::pair<unsigned, unsigned> index : indices) { |
| assert(indexToExprMap.lookup(index) && |
| "cannot find key in `indexToExprMap` map"); |
| expr = expr + indexToExprMap.lookup(index) * coefficients.lookup(index); |
| } |
| |
| // Local identifiers. |
| for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; |
| j++) { |
| // If the coefficient of the local expression is 0, continue as we need not |
| // add it in out final expression. |
| if (flatExprs[j] == 0 || addedToMap[j - numDims - numSymbols]) |
| continue; |
| auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; |
| expr = expr + term; |
| } |
| |
| // Constant term. |
| int64_t constTerm = flatExprs.back(); |
| if (constTerm != 0) |
| expr = expr + constTerm; |
| return expr; |
| } |
| |
| SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims, |
| unsigned numSymbols) |
| : numDims(numDims), numSymbols(numSymbols), numLocals(0) { |
| operandExprStack.reserve(8); |
| } |
| |
| // In pure affine t = expr * c, we multiply each coefficient of lhs with c. |
| // |
| // In case of semi affine multiplication expressions, t = expr * symbolic_expr, |
| // introduce a local variable p (= expr * symbolic_expr), and the affine |
| // expression expr * symbolic_expr is added to `localExprs`. |
| void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) { |
| assert(operandExprStack.size() >= 2); |
| SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
| operandExprStack.pop_back(); |
| SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
| |
| // Flatten semi-affine multiplication expressions by introducing a local |
| // variable in place of the product; the affine expression |
| // corresponding to the quantifier is added to `localExprs`. |
| if (!expr.getRHS().isa<AffineConstantExpr>()) { |
| MLIRContext *context = expr.getContext(); |
| AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols, |
| localExprs, context); |
| AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols, |
| localExprs, context); |
| addLocalVariableSemiAffine(a * b, lhs, lhs.size()); |
| return; |
| } |
| |
| // Get the RHS constant. |
| auto rhsConst = rhs[getConstantIndex()]; |
| for (unsigned i = 0, e = lhs.size(); i < e; i++) { |
| lhs[i] *= rhsConst; |
| } |
| } |
| |
| void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) { |
| assert(operandExprStack.size() >= 2); |
| const auto &rhs = operandExprStack.back(); |
| auto &lhs = operandExprStack[operandExprStack.size() - 2]; |
| assert(lhs.size() == rhs.size()); |
| // Update the LHS in place. |
| for (unsigned i = 0, e = rhs.size(); i < e; i++) { |
| lhs[i] += rhs[i]; |
| } |
| // Pop off the RHS. |
| operandExprStack.pop_back(); |
| } |
| |
| // |
| // t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1 |
| // |
| // A mod expression "expr mod c" is thus flattened by introducing a new local |
| // variable q (= expr floordiv c), such that expr mod c is replaced with |
| // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst. |
| // |
| // In case of semi-affine modulo expressions, t = expr mod symbolic_expr, |
| // introduce a local variable m (= expr mod symbolic_expr), and the affine |
| // expression expr mod symbolic_expr is added to `localExprs`. |
| void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) { |
| assert(operandExprStack.size() >= 2); |
| |
| SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
| operandExprStack.pop_back(); |
| SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
| MLIRContext *context = expr.getContext(); |
| |
| // Flatten semi affine modulo expressions by introducing a local |
| // variable in place of the modulo value, and the affine expression |
| // corresponding to the quantifier is added to `localExprs`. |
| if (!expr.getRHS().isa<AffineConstantExpr>()) { |
| AffineExpr dividendExpr = getAffineExprFromFlatForm( |
| lhs, numDims, numSymbols, localExprs, context); |
| AffineExpr divisorExpr = getAffineExprFromFlatForm(rhs, numDims, numSymbols, |
| localExprs, context); |
| AffineExpr modExpr = dividendExpr % divisorExpr; |
| addLocalVariableSemiAffine(modExpr, lhs, lhs.size()); |
| return; |
| } |
| |
| int64_t rhsConst = rhs[getConstantIndex()]; |
| // TODO: handle modulo by zero case when this issue is fixed |
| // at the other places in the IR. |
| assert(rhsConst > 0 && "RHS constant has to be positive"); |
| |
| // Check if the LHS expression is a multiple of modulo factor. |
| unsigned i, e; |
| for (i = 0, e = lhs.size(); i < e; i++) |
| if (lhs[i] % rhsConst != 0) |
| break; |
| // If yes, modulo expression here simplifies to zero. |
| if (i == lhs.size()) { |
| std::fill(lhs.begin(), lhs.end(), 0); |
| return; |
| } |
| |
| // Add a local variable for the quotient, i.e., expr % c is replaced by |
| // (expr - q * c) where q = expr floordiv c. Do this while canceling out |
| // the GCD of expr and c. |
| SmallVector<int64_t, 8> floorDividend(lhs); |
| uint64_t gcd = rhsConst; |
| for (unsigned i = 0, e = lhs.size(); i < e; i++) |
| gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); |
| // Simplify the numerator and the denominator. |
| if (gcd != 1) { |
| for (unsigned i = 0, e = floorDividend.size(); i < e; i++) |
| floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd); |
| } |
| int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd); |
| |
| // Construct the AffineExpr form of the floordiv to store in localExprs. |
| |
| AffineExpr dividendExpr = getAffineExprFromFlatForm( |
| floorDividend, numDims, numSymbols, localExprs, context); |
| AffineExpr divisorExpr = getAffineConstantExpr(floorDivisor, context); |
| AffineExpr floorDivExpr = dividendExpr.floorDiv(divisorExpr); |
| int loc; |
| if ((loc = findLocalId(floorDivExpr)) == -1) { |
| addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr); |
| // Set result at top of stack to "lhs - rhsConst * q". |
| lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; |
| } else { |
| // Reuse the existing local id. |
| lhs[getLocalVarStartIndex() + loc] = -rhsConst; |
| } |
| } |
| |
| void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) { |
| visitDivExpr(expr, /*isCeil=*/true); |
| } |
| void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) { |
| visitDivExpr(expr, /*isCeil=*/false); |
| } |
| |
| void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| assert(expr.getPosition() < numDims && "Inconsistent number of dims"); |
| eq[getDimStartIndex() + expr.getPosition()] = 1; |
| } |
| |
| void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| assert(expr.getPosition() < numSymbols && "inconsistent number of symbols"); |
| eq[getSymbolStartIndex() + expr.getPosition()] = 1; |
| } |
| |
| void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| eq[getConstantIndex()] = expr.getValue(); |
| } |
| |
| void SimpleAffineExprFlattener::addLocalVariableSemiAffine( |
| AffineExpr expr, SmallVectorImpl<int64_t> &result, |
| unsigned long resultSize) { |
| assert(result.size() == resultSize && |
| "`result` vector passed is not of correct size"); |
| int loc; |
| if ((loc = findLocalId(expr)) == -1) |
| addLocalIdSemiAffine(expr); |
| std::fill(result.begin(), result.end(), 0); |
| if (loc == -1) |
| result[getLocalVarStartIndex() + numLocals - 1] = 1; |
| else |
| result[getLocalVarStartIndex() + loc] = 1; |
| } |
| |
| // t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1 |
| // A floordiv is thus flattened by introducing a new local variable q, and |
| // replacing that expression with 'q' while adding the constraints |
| // c * q <= expr <= c * q + c - 1 to localVarCst (done by |
| // FlatAffineConstraints::addLocalFloorDiv). |
| // |
| // A ceildiv is similarly flattened: |
| // t = expr ceildiv c <=> t = (expr + c - 1) floordiv c |
| // |
| // In case of semi affine division expressions, t = expr floordiv symbolic_expr |
| // or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr |
| // floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to |
| // `localExprs`. |
| void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr, |
| bool isCeil) { |
| assert(operandExprStack.size() >= 2); |
| |
| MLIRContext *context = expr.getContext(); |
| SmallVector<int64_t, 8> rhs = operandExprStack.back(); |
| operandExprStack.pop_back(); |
| SmallVector<int64_t, 8> &lhs = operandExprStack.back(); |
| |
| // Flatten semi affine division expressions by introducing a local |
| // variable in place of the quotient, and the affine expression corresponding |
| // to the quantifier is added to `localExprs`. |
| if (!expr.getRHS().isa<AffineConstantExpr>()) { |
| AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols, |
| localExprs, context); |
| AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols, |
| localExprs, context); |
| AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b); |
| addLocalVariableSemiAffine(divExpr, lhs, lhs.size()); |
| return; |
| } |
| |
| // This is a pure affine expr; the RHS is a positive constant. |
| int64_t rhsConst = rhs[getConstantIndex()]; |
| // TODO: handle division by zero at the same time the issue is |
| // fixed at other places. |
| assert(rhsConst > 0 && "RHS constant has to be positive"); |
| |
| // Simplify the floordiv, ceildiv if possible by canceling out the greatest |
| // common divisors of the numerator and denominator. |
| uint64_t gcd = std::abs(rhsConst); |
| for (unsigned i = 0, e = lhs.size(); i < e; i++) |
| gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); |
| // Simplify the numerator and the denominator. |
| if (gcd != 1) { |
| for (unsigned i = 0, e = lhs.size(); i < e; i++) |
| lhs[i] = lhs[i] / static_cast<int64_t>(gcd); |
| } |
| int64_t divisor = rhsConst / static_cast<int64_t>(gcd); |
| // If the divisor becomes 1, the updated LHS is the result. (The |
| // divisor can't be negative since rhsConst is positive). |
| if (divisor == 1) |
| return; |
| |
| // If the divisor cannot be simplified to one, we will have to retain |
| // the ceil/floor expr (simplified up until here). Add an existential |
| // quantifier to express its result, i.e., expr1 div expr2 is replaced |
| // by a new identifier, q. |
| AffineExpr a = |
| getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context); |
| AffineExpr b = getAffineConstantExpr(divisor, context); |
| |
| int loc; |
| AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b); |
| if ((loc = findLocalId(divExpr)) == -1) { |
| if (!isCeil) { |
| SmallVector<int64_t, 8> dividend(lhs); |
| addLocalFloorDivId(dividend, divisor, divExpr); |
| } else { |
| // lhs ceildiv c <=> (lhs + c - 1) floordiv c |
| SmallVector<int64_t, 8> dividend(lhs); |
| dividend.back() += divisor - 1; |
| addLocalFloorDivId(dividend, divisor, divExpr); |
| } |
| } |
| // Set the expression on stack to the local var introduced to capture the |
| // result of the division (floor or ceil). |
| std::fill(lhs.begin(), lhs.end(), 0); |
| if (loc == -1) |
| lhs[getLocalVarStartIndex() + numLocals - 1] = 1; |
| else |
| lhs[getLocalVarStartIndex() + loc] = 1; |
| } |
| |
| // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). |
| // The local identifier added is always a floordiv of a pure add/mul affine |
| // function of other identifiers, coefficients of which are specified in |
| // dividend and with respect to a positive constant divisor. localExpr is the |
| // simplified tree expression (AffineExpr) corresponding to the quantifier. |
| void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend, |
| int64_t divisor, |
| AffineExpr localExpr) { |
| assert(divisor > 0 && "positive constant divisor expected"); |
| for (SmallVector<int64_t, 8> &subExpr : operandExprStack) |
| subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); |
| localExprs.push_back(localExpr); |
| numLocals++; |
| // dividend and divisor are not used here; an override of this method uses it. |
| } |
| |
| void SimpleAffineExprFlattener::addLocalIdSemiAffine(AffineExpr localExpr) { |
| for (SmallVector<int64_t, 8> &subExpr : operandExprStack) |
| subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); |
| localExprs.push_back(localExpr); |
| ++numLocals; |
| } |
| |
| int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) { |
| SmallVectorImpl<AffineExpr>::iterator it; |
| if ((it = llvm::find(localExprs, localExpr)) == localExprs.end()) |
| return -1; |
| return it - localExprs.begin(); |
| } |
| |
| /// Simplify the affine expression by flattening it and reconstructing it. |
| AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims, |
| unsigned numSymbols) { |
| // Simplify semi-affine expressions separately. |
| if (!expr.isPureAffine()) |
| expr = simplifySemiAffine(expr); |
| |
| SimpleAffineExprFlattener flattener(numDims, numSymbols); |
| flattener.walkPostOrder(expr); |
| ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); |
| if (!expr.isPureAffine() && |
| expr == getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, |
| flattener.localExprs, |
| expr.getContext())) |
| return expr; |
| AffineExpr simplifiedExpr = |
| expr.isPureAffine() |
| ? getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, |
| flattener.localExprs, expr.getContext()) |
| : getSemiAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, |
| flattener.localExprs, |
| expr.getContext()); |
| |
| flattener.operandExprStack.pop_back(); |
| assert(flattener.operandExprStack.empty()); |
| return simplifiedExpr; |
| } |