| //===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/LinearTransform.h" |
| #include "mlir/Analysis/AffineStructures.h" |
| |
| namespace mlir { |
| |
| LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {} |
| LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {} |
| |
| // Set M(row, targetCol) to its remainder on division by M(row, sourceCol) |
| // by subtracting from column targetCol an appropriate integer multiple of |
| // sourceCol. This brings M(row, targetCol) to the range [0, M(row, sourceCol)). |
| // Apply the same column operation to otherMatrix, with the same integer |
| // multiple. |
| static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol, |
| unsigned targetCol, Matrix &otherMatrix) { |
| assert(m(row, sourceCol) != 0 && "Cannot divide by zero!"); |
| assert((m(row, sourceCol) > 0 && m(row, targetCol) > 0) && |
| "Operands must be positive!"); |
| int64_t ratio = m(row, targetCol) / m(row, sourceCol); |
| m.addToColumn(sourceCol, targetCol, -ratio); |
| otherMatrix.addToColumn(sourceCol, targetCol, -ratio); |
| } |
| |
| std::pair<unsigned, LinearTransform> |
| LinearTransform::makeTransformToColumnEchelon(Matrix m) { |
| // We start with an identity result matrix and perform operations on m |
| // until m is in column echelon form. We apply the same sequence of operations |
| // on resultMatrix to obtain a transform that takes m to column echelon |
| // form. |
| Matrix resultMatrix = Matrix::identity(m.getNumColumns()); |
| |
| unsigned echelonCol = 0; |
| // Invariant: in all rows above row, all columns from echelonCol onwards |
| // are all zero elements. In an iteration, if the curent row has any non-zero |
| // elements echelonCol onwards, we bring one to echelonCol and use it to |
| // make all elements echelonCol + 1 onwards zero. |
| for (unsigned row = 0; row < m.getNumRows(); ++row) { |
| // Search row for a non-empty entry, starting at echelonCol. |
| unsigned nonZeroCol = echelonCol; |
| for (unsigned e = m.getNumColumns(); nonZeroCol < e; ++nonZeroCol) { |
| if (m(row, nonZeroCol) == 0) |
| continue; |
| break; |
| } |
| |
| // Continue to the next row with the same echelonCol if this row is all |
| // zeros from echelonCol onwards. |
| if (nonZeroCol == m.getNumColumns()) |
| continue; |
| |
| // Bring the non-zero column to echelonCol. This doesn't affect rows |
| // above since they are all zero at these columns. |
| if (nonZeroCol != echelonCol) { |
| m.swapColumns(nonZeroCol, echelonCol); |
| resultMatrix.swapColumns(nonZeroCol, echelonCol); |
| } |
| |
| // Make m(row, echelonCol) non-negative. |
| if (m(row, echelonCol) < 0) { |
| m.negateColumn(echelonCol); |
| resultMatrix.negateColumn(echelonCol); |
| } |
| |
| // Make all the entries in row after echelonCol zero. |
| for (unsigned i = echelonCol + 1, e = m.getNumColumns(); i < e; ++i) { |
| // We make m(row, i) non-negative, and then apply the Euclidean GCD |
| // algorithm to (row, i) and (row, echelonCol). At the end, one of them |
| // has value equal to the gcd of the two entries, and the other is zero. |
| |
| if (m(row, i) < 0) { |
| m.negateColumn(i); |
| resultMatrix.negateColumn(i); |
| } |
| |
| unsigned targetCol = i, sourceCol = echelonCol; |
| // At every step, we set m(row, targetCol) %= m(row, sourceCol), and |
| // swap the indices sourceCol and targetCol. (not the columns themselves) |
| // This modulo is implemented as a subtraction |
| // m(row, targetCol) -= quotient * m(row, sourceCol), |
| // where quotient = floor(m(row, targetCol) / m(row, sourceCol)), |
| // which brings m(row, targetCol) to the range [0, m(row, sourceCol)). |
| // |
| // We are only allowed column operations; we perform the above |
| // for every row, i.e., the above subtraction is done as a column |
| // operation. This does not affect any rows above us since they are |
| // guaranteed to be zero at these columns. |
| while (m(row, targetCol) != 0 && m(row, sourceCol) != 0) { |
| modEntryColumnOperation(m, row, sourceCol, targetCol, resultMatrix); |
| std::swap(targetCol, sourceCol); |
| } |
| |
| // One of (row, echelonCol) and (row, i) is zero and the other is the gcd. |
| // Make it so that (row, echelonCol) holds the non-zero value. |
| if (m(row, echelonCol) == 0) { |
| m.swapColumns(i, echelonCol); |
| resultMatrix.swapColumns(i, echelonCol); |
| } |
| } |
| |
| ++echelonCol; |
| } |
| |
| return {echelonCol, LinearTransform(std::move(resultMatrix))}; |
| } |
| |
| SmallVector<int64_t, 8> |
| LinearTransform::postMultiplyRow(ArrayRef<int64_t> rowVec) const { |
| assert(rowVec.size() == matrix.getNumRows() && |
| "row vector dimension should match transform output dimension"); |
| |
| SmallVector<int64_t, 8> result(matrix.getNumColumns(), 0); |
| for (unsigned col = 0, e = matrix.getNumColumns(); col < e; ++col) |
| for (unsigned i = 0, e = matrix.getNumRows(); i < e; ++i) |
| result[col] += rowVec[i] * matrix(i, col); |
| return result; |
| } |
| |
| SmallVector<int64_t, 8> |
| LinearTransform::preMultiplyColumn(ArrayRef<int64_t> colVec) const { |
| assert(matrix.getNumColumns() == colVec.size() && |
| "column vector dimension should match transform input dimension"); |
| |
| SmallVector<int64_t, 8> result(matrix.getNumRows(), 0); |
| for (unsigned row = 0, e = matrix.getNumRows(); row < e; row++) |
| for (unsigned i = 0, e = matrix.getNumColumns(); i < e; i++) |
| result[row] += matrix(row, i) * colVec[i]; |
| return result; |
| } |
| |
| FlatAffineConstraints |
| LinearTransform::applyTo(const FlatAffineConstraints &fac) const { |
| FlatAffineConstraints result(fac.getNumIds()); |
| |
| for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) { |
| ArrayRef<int64_t> eq = fac.getEquality(i); |
| |
| int64_t c = eq.back(); |
| |
| SmallVector<int64_t, 8> newEq = postMultiplyRow(eq.drop_back()); |
| newEq.push_back(c); |
| result.addEquality(newEq); |
| } |
| |
| for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) { |
| ArrayRef<int64_t> ineq = fac.getInequality(i); |
| |
| int64_t c = ineq.back(); |
| |
| SmallVector<int64_t, 8> newIneq = postMultiplyRow(ineq.drop_back()); |
| newIneq.push_back(c); |
| result.addInequality(newIneq); |
| } |
| |
| return result; |
| } |
| |
| } // namespace mlir |