| //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for writing dwarf debug info into asm files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DwarfDebug.h" |
| #include "ByteStreamer.h" |
| #include "DIEHash.h" |
| #include "DwarfCompileUnit.h" |
| #include "DwarfExpression.h" |
| #include "DwarfUnit.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/DIE.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/DebugInfo/DWARF/DWARFExpression.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/MachineLocation.h" |
| #include "llvm/MC/SectionKind.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cstddef> |
| #include <iterator> |
| #include <string> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dwarfdebug" |
| |
| STATISTIC(NumCSParams, "Number of dbg call site params created"); |
| |
| static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( |
| "use-dwarf-ranges-base-address-specifier", cl::Hidden, |
| cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); |
| |
| static cl::opt<bool> GenerateARangeSection("generate-arange-section", |
| cl::Hidden, |
| cl::desc("Generate dwarf aranges"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, |
| cl::desc("Generate DWARF4 type units."), |
| cl::init(false)); |
| |
| static cl::opt<bool> SplitDwarfCrossCuReferences( |
| "split-dwarf-cross-cu-references", cl::Hidden, |
| cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); |
| |
| enum DefaultOnOff { Default, Enable, Disable }; |
| |
| static cl::opt<DefaultOnOff> UnknownLocations( |
| "use-unknown-locations", cl::Hidden, |
| cl::desc("Make an absence of debug location information explicit."), |
| cl::values(clEnumVal(Default, "At top of block or after label"), |
| clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), |
| cl::init(Default)); |
| |
| static cl::opt<AccelTableKind> AccelTables( |
| "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), |
| cl::values(clEnumValN(AccelTableKind::Default, "Default", |
| "Default for platform"), |
| clEnumValN(AccelTableKind::None, "Disable", "Disabled."), |
| clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), |
| clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), |
| cl::init(AccelTableKind::Default)); |
| |
| static cl::opt<DefaultOnOff> |
| DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, |
| cl::desc("Use inlined strings rather than string section."), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), |
| clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| static cl::opt<bool> |
| NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, |
| cl::desc("Disable emission .debug_ranges section."), |
| cl::init(false)); |
| |
| static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( |
| "dwarf-sections-as-references", cl::Hidden, |
| cl::desc("Use sections+offset as references rather than labels."), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| static cl::opt<bool> |
| UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, |
| cl::desc("Emit the GNU .debug_macro format with DWARF <5"), |
| cl::init(false)); |
| |
| static cl::opt<DefaultOnOff> DwarfOpConvert( |
| "dwarf-op-convert", cl::Hidden, |
| cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| enum LinkageNameOption { |
| DefaultLinkageNames, |
| AllLinkageNames, |
| AbstractLinkageNames |
| }; |
| |
| static cl::opt<LinkageNameOption> |
| DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, |
| cl::desc("Which DWARF linkage-name attributes to emit."), |
| cl::values(clEnumValN(DefaultLinkageNames, "Default", |
| "Default for platform"), |
| clEnumValN(AllLinkageNames, "All", "All"), |
| clEnumValN(AbstractLinkageNames, "Abstract", |
| "Abstract subprograms")), |
| cl::init(DefaultLinkageNames)); |
| |
| static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( |
| "minimize-addr-in-v5", cl::Hidden, |
| cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " |
| "address pool entry sharing to reduce relocations/object size"), |
| cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", |
| "Default address minimization strategy"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", |
| "Use rnglists for contiguous ranges if that allows " |
| "using a pre-existing base address"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, |
| "Expressions", |
| "Use exprloc addrx+offset expressions for any " |
| "address with a prior base address"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", |
| "Use addrx+offset extension form for any address " |
| "with a prior base address"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", |
| "Stuff")), |
| cl::init(DwarfDebug::MinimizeAddrInV5::Default)); |
| |
| static constexpr unsigned ULEB128PadSize = 4; |
| |
| void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { |
| getActiveStreamer().emitInt8( |
| Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) |
| : dwarf::OperationEncodingString(Op)); |
| } |
| |
| void DebugLocDwarfExpression::emitSigned(int64_t Value) { |
| getActiveStreamer().emitSLEB128(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { |
| getActiveStreamer().emitULEB128(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitData1(uint8_t Value) { |
| getActiveStreamer().emitInt8(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { |
| assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); |
| getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); |
| } |
| |
| bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, |
| llvm::Register MachineReg) { |
| // This information is not available while emitting .debug_loc entries. |
| return false; |
| } |
| |
| void DebugLocDwarfExpression::enableTemporaryBuffer() { |
| assert(!IsBuffering && "Already buffering?"); |
| if (!TmpBuf) |
| TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); |
| IsBuffering = true; |
| } |
| |
| void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } |
| |
| unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { |
| return TmpBuf ? TmpBuf->Bytes.size() : 0; |
| } |
| |
| void DebugLocDwarfExpression::commitTemporaryBuffer() { |
| if (!TmpBuf) |
| return; |
| for (auto Byte : enumerate(TmpBuf->Bytes)) { |
| const char *Comment = (Byte.index() < TmpBuf->Comments.size()) |
| ? TmpBuf->Comments[Byte.index()].c_str() |
| : ""; |
| OutBS.emitInt8(Byte.value(), Comment); |
| } |
| TmpBuf->Bytes.clear(); |
| TmpBuf->Comments.clear(); |
| } |
| |
| const DIType *DbgVariable::getType() const { |
| return getVariable()->getType(); |
| } |
| |
| /// Get .debug_loc entry for the instruction range starting at MI. |
| static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { |
| const DIExpression *Expr = MI->getDebugExpression(); |
| const bool IsVariadic = MI->isDebugValueList(); |
| assert(MI->getNumOperands() >= 3); |
| SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; |
| for (const MachineOperand &Op : MI->debug_operands()) { |
| if (Op.isReg()) { |
| MachineLocation MLoc(Op.getReg(), |
| MI->isNonListDebugValue() && MI->isDebugOffsetImm()); |
| DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); |
| } else if (Op.isTargetIndex()) { |
| DbgValueLocEntries.push_back( |
| DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); |
| } else if (Op.isImm()) |
| DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); |
| else if (Op.isFPImm()) |
| DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); |
| else if (Op.isCImm()) |
| DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); |
| else |
| llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); |
| } |
| return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); |
| } |
| |
| void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { |
| assert(FrameIndexExprs.empty() && "Already initialized?"); |
| assert(!ValueLoc.get() && "Already initialized?"); |
| |
| assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); |
| assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && |
| "Wrong inlined-at"); |
| |
| ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); |
| if (auto *E = DbgValue->getDebugExpression()) |
| if (E->getNumElements()) |
| FrameIndexExprs.push_back({0, E}); |
| } |
| |
| ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { |
| if (FrameIndexExprs.size() == 1) |
| return FrameIndexExprs; |
| |
| assert(llvm::all_of(FrameIndexExprs, |
| [](const FrameIndexExpr &A) { |
| return A.Expr->isFragment(); |
| }) && |
| "multiple FI expressions without DW_OP_LLVM_fragment"); |
| llvm::sort(FrameIndexExprs, |
| [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { |
| return A.Expr->getFragmentInfo()->OffsetInBits < |
| B.Expr->getFragmentInfo()->OffsetInBits; |
| }); |
| |
| return FrameIndexExprs; |
| } |
| |
| void DbgVariable::addMMIEntry(const DbgVariable &V) { |
| assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); |
| assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); |
| assert(V.getVariable() == getVariable() && "conflicting variable"); |
| assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); |
| |
| assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); |
| assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); |
| |
| // FIXME: This logic should not be necessary anymore, as we now have proper |
| // deduplication. However, without it, we currently run into the assertion |
| // below, which means that we are likely dealing with broken input, i.e. two |
| // non-fragment entries for the same variable at different frame indices. |
| if (FrameIndexExprs.size()) { |
| auto *Expr = FrameIndexExprs.back().Expr; |
| if (!Expr || !Expr->isFragment()) |
| return; |
| } |
| |
| for (const auto &FIE : V.FrameIndexExprs) |
| // Ignore duplicate entries. |
| if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { |
| return FIE.FI == Other.FI && FIE.Expr == Other.Expr; |
| })) |
| FrameIndexExprs.push_back(FIE); |
| |
| assert((FrameIndexExprs.size() == 1 || |
| llvm::all_of(FrameIndexExprs, |
| [](FrameIndexExpr &FIE) { |
| return FIE.Expr && FIE.Expr->isFragment(); |
| })) && |
| "conflicting locations for variable"); |
| } |
| |
| static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, |
| bool GenerateTypeUnits, |
| DebuggerKind Tuning, |
| const Triple &TT) { |
| // Honor an explicit request. |
| if (AccelTables != AccelTableKind::Default) |
| return AccelTables; |
| |
| // Accelerator tables with type units are currently not supported. |
| if (GenerateTypeUnits) |
| return AccelTableKind::None; |
| |
| // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 |
| // always implies debug_names. For lower standard versions we use apple |
| // accelerator tables on apple platforms and debug_names elsewhere. |
| if (DwarfVersion >= 5) |
| return AccelTableKind::Dwarf; |
| if (Tuning == DebuggerKind::LLDB) |
| return TT.isOSBinFormatMachO() ? AccelTableKind::Apple |
| : AccelTableKind::Dwarf; |
| return AccelTableKind::None; |
| } |
| |
| DwarfDebug::DwarfDebug(AsmPrinter *A) |
| : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), |
| InfoHolder(A, "info_string", DIEValueAllocator), |
| SkeletonHolder(A, "skel_string", DIEValueAllocator), |
| IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { |
| const Triple &TT = Asm->TM.getTargetTriple(); |
| |
| // Make sure we know our "debugger tuning". The target option takes |
| // precedence; fall back to triple-based defaults. |
| if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) |
| DebuggerTuning = Asm->TM.Options.DebuggerTuning; |
| else if (IsDarwin) |
| DebuggerTuning = DebuggerKind::LLDB; |
| else if (TT.isPS4CPU()) |
| DebuggerTuning = DebuggerKind::SCE; |
| else if (TT.isOSAIX()) |
| DebuggerTuning = DebuggerKind::DBX; |
| else |
| DebuggerTuning = DebuggerKind::GDB; |
| |
| if (DwarfInlinedStrings == Default) |
| UseInlineStrings = TT.isNVPTX() || tuneForDBX(); |
| else |
| UseInlineStrings = DwarfInlinedStrings == Enable; |
| |
| UseLocSection = !TT.isNVPTX(); |
| |
| HasAppleExtensionAttributes = tuneForLLDB(); |
| |
| // Handle split DWARF. |
| HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); |
| |
| // SCE defaults to linkage names only for abstract subprograms. |
| if (DwarfLinkageNames == DefaultLinkageNames) |
| UseAllLinkageNames = !tuneForSCE(); |
| else |
| UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; |
| |
| unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; |
| unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber |
| : MMI->getModule()->getDwarfVersion(); |
| // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. |
| DwarfVersion = |
| TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); |
| |
| bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. |
| TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. |
| |
| // Support DWARF64 |
| // 1: For ELF when requested. |
| // 2: For XCOFF64: the AIX assembler will fill in debug section lengths |
| // according to the DWARF64 format for 64-bit assembly, so we must use |
| // DWARF64 in the compiler too for 64-bit mode. |
| Dwarf64 &= |
| ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && |
| TT.isOSBinFormatELF()) || |
| TT.isOSBinFormatXCOFF(); |
| |
| if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) |
| report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); |
| |
| UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); |
| |
| // Use sections as references. Force for NVPTX. |
| if (DwarfSectionsAsReferences == Default) |
| UseSectionsAsReferences = TT.isNVPTX(); |
| else |
| UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; |
| |
| // Don't generate type units for unsupported object file formats. |
| GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || |
| A->TM.getTargetTriple().isOSBinFormatWasm()) && |
| GenerateDwarfTypeUnits; |
| |
| TheAccelTableKind = computeAccelTableKind( |
| DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); |
| |
| // Work around a GDB bug. GDB doesn't support the standard opcode; |
| // SCE doesn't support GNU's; LLDB prefers the standard opcode, which |
| // is defined as of DWARF 3. |
| // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 |
| UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; |
| |
| // GDB does not fully support the DWARF 4 representation for bitfields. |
| UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); |
| |
| // The DWARF v5 string offsets table has - possibly shared - contributions |
| // from each compile and type unit each preceded by a header. The string |
| // offsets table used by the pre-DWARF v5 split-DWARF implementation uses |
| // a monolithic string offsets table without any header. |
| UseSegmentedStringOffsetsTable = DwarfVersion >= 5; |
| |
| // Emit call-site-param debug info for GDB and LLDB, if the target supports |
| // the debug entry values feature. It can also be enabled explicitly. |
| EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); |
| |
| // It is unclear if the GCC .debug_macro extension is well-specified |
| // for split DWARF. For now, do not allow LLVM to emit it. |
| UseDebugMacroSection = |
| DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); |
| if (DwarfOpConvert == Default) |
| EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); |
| else |
| EnableOpConvert = (DwarfOpConvert == Enable); |
| |
| // Split DWARF would benefit object size significantly by trading reductions |
| // in address pool usage for slightly increased range list encodings. |
| if (DwarfVersion >= 5) { |
| MinimizeAddr = MinimizeAddrInV5Option; |
| // FIXME: In the future, enable this by default for Split DWARF where the |
| // tradeoff is more pronounced due to being able to offload the range |
| // lists to the dwo file and shrink object files/reduce relocations there. |
| if (MinimizeAddr == MinimizeAddrInV5::Default) |
| MinimizeAddr = MinimizeAddrInV5::Disabled; |
| } |
| |
| Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); |
| Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 |
| : dwarf::DWARF32); |
| } |
| |
| // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. |
| DwarfDebug::~DwarfDebug() = default; |
| |
| static bool isObjCClass(StringRef Name) { |
| return Name.startswith("+") || Name.startswith("-"); |
| } |
| |
| static bool hasObjCCategory(StringRef Name) { |
| if (!isObjCClass(Name)) |
| return false; |
| |
| return Name.contains(") "); |
| } |
| |
| static void getObjCClassCategory(StringRef In, StringRef &Class, |
| StringRef &Category) { |
| if (!hasObjCCategory(In)) { |
| Class = In.slice(In.find('[') + 1, In.find(' ')); |
| Category = ""; |
| return; |
| } |
| |
| Class = In.slice(In.find('[') + 1, In.find('(')); |
| Category = In.slice(In.find('[') + 1, In.find(' ')); |
| } |
| |
| static StringRef getObjCMethodName(StringRef In) { |
| return In.slice(In.find(' ') + 1, In.find(']')); |
| } |
| |
| // Add the various names to the Dwarf accelerator table names. |
| void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, |
| const DISubprogram *SP, DIE &Die) { |
| if (getAccelTableKind() != AccelTableKind::Apple && |
| CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) |
| return; |
| |
| if (!SP->isDefinition()) |
| return; |
| |
| if (SP->getName() != "") |
| addAccelName(CU, SP->getName(), Die); |
| |
| // If the linkage name is different than the name, go ahead and output that as |
| // well into the name table. Only do that if we are going to actually emit |
| // that name. |
| if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && |
| (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) |
| addAccelName(CU, SP->getLinkageName(), Die); |
| |
| // If this is an Objective-C selector name add it to the ObjC accelerator |
| // too. |
| if (isObjCClass(SP->getName())) { |
| StringRef Class, Category; |
| getObjCClassCategory(SP->getName(), Class, Category); |
| addAccelObjC(CU, Class, Die); |
| if (Category != "") |
| addAccelObjC(CU, Category, Die); |
| // Also add the base method name to the name table. |
| addAccelName(CU, getObjCMethodName(SP->getName()), Die); |
| } |
| } |
| |
| /// Check whether we should create a DIE for the given Scope, return true |
| /// if we don't create a DIE (the corresponding DIE is null). |
| bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { |
| if (Scope->isAbstractScope()) |
| return false; |
| |
| // We don't create a DIE if there is no Range. |
| const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); |
| if (Ranges.empty()) |
| return true; |
| |
| if (Ranges.size() > 1) |
| return false; |
| |
| // We don't create a DIE if we have a single Range and the end label |
| // is null. |
| return !getLabelAfterInsn(Ranges.front().second); |
| } |
| |
| template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { |
| F(CU); |
| if (auto *SkelCU = CU.getSkeleton()) |
| if (CU.getCUNode()->getSplitDebugInlining()) |
| F(*SkelCU); |
| } |
| |
| bool DwarfDebug::shareAcrossDWOCUs() const { |
| return SplitDwarfCrossCuReferences; |
| } |
| |
| void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, |
| LexicalScope *Scope) { |
| assert(Scope && Scope->getScopeNode()); |
| assert(Scope->isAbstractScope()); |
| assert(!Scope->getInlinedAt()); |
| |
| auto *SP = cast<DISubprogram>(Scope->getScopeNode()); |
| |
| // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram |
| // was inlined from another compile unit. |
| if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) |
| // Avoid building the original CU if it won't be used |
| SrcCU.constructAbstractSubprogramScopeDIE(Scope); |
| else { |
| auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| if (auto *SkelCU = CU.getSkeleton()) { |
| (shareAcrossDWOCUs() ? CU : SrcCU) |
| .constructAbstractSubprogramScopeDIE(Scope); |
| if (CU.getCUNode()->getSplitDebugInlining()) |
| SkelCU->constructAbstractSubprogramScopeDIE(Scope); |
| } else |
| CU.constructAbstractSubprogramScopeDIE(Scope); |
| } |
| } |
| |
| /// Represents a parameter whose call site value can be described by applying a |
| /// debug expression to a register in the forwarded register worklist. |
| struct FwdRegParamInfo { |
| /// The described parameter register. |
| unsigned ParamReg; |
| |
| /// Debug expression that has been built up when walking through the |
| /// instruction chain that produces the parameter's value. |
| const DIExpression *Expr; |
| }; |
| |
| /// Register worklist for finding call site values. |
| using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; |
| |
| /// Append the expression \p Addition to \p Original and return the result. |
| static const DIExpression *combineDIExpressions(const DIExpression *Original, |
| const DIExpression *Addition) { |
| std::vector<uint64_t> Elts = Addition->getElements().vec(); |
| // Avoid multiple DW_OP_stack_values. |
| if (Original->isImplicit() && Addition->isImplicit()) |
| erase_value(Elts, dwarf::DW_OP_stack_value); |
| const DIExpression *CombinedExpr = |
| (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; |
| return CombinedExpr; |
| } |
| |
| /// Emit call site parameter entries that are described by the given value and |
| /// debug expression. |
| template <typename ValT> |
| static void finishCallSiteParams(ValT Val, const DIExpression *Expr, |
| ArrayRef<FwdRegParamInfo> DescribedParams, |
| ParamSet &Params) { |
| for (auto Param : DescribedParams) { |
| bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; |
| |
| // TODO: Entry value operations can currently not be combined with any |
| // other expressions, so we can't emit call site entries in those cases. |
| if (ShouldCombineExpressions && Expr->isEntryValue()) |
| continue; |
| |
| // If a parameter's call site value is produced by a chain of |
| // instructions we may have already created an expression for the |
| // parameter when walking through the instructions. Append that to the |
| // base expression. |
| const DIExpression *CombinedExpr = |
| ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) |
| : Expr; |
| assert((!CombinedExpr || CombinedExpr->isValid()) && |
| "Combined debug expression is invalid"); |
| |
| DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); |
| DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); |
| Params.push_back(CSParm); |
| ++NumCSParams; |
| } |
| } |
| |
| /// Add \p Reg to the worklist, if it's not already present, and mark that the |
| /// given parameter registers' values can (potentially) be described using |
| /// that register and an debug expression. |
| static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, |
| const DIExpression *Expr, |
| ArrayRef<FwdRegParamInfo> ParamsToAdd) { |
| auto I = Worklist.insert({Reg, {}}); |
| auto &ParamsForFwdReg = I.first->second; |
| for (auto Param : ParamsToAdd) { |
| assert(none_of(ParamsForFwdReg, |
| [Param](const FwdRegParamInfo &D) { |
| return D.ParamReg == Param.ParamReg; |
| }) && |
| "Same parameter described twice by forwarding reg"); |
| |
| // If a parameter's call site value is produced by a chain of |
| // instructions we may have already created an expression for the |
| // parameter when walking through the instructions. Append that to the |
| // new expression. |
| const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); |
| ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); |
| } |
| } |
| |
| /// Interpret values loaded into registers by \p CurMI. |
| static void interpretValues(const MachineInstr *CurMI, |
| FwdRegWorklist &ForwardedRegWorklist, |
| ParamSet &Params) { |
| |
| const MachineFunction *MF = CurMI->getMF(); |
| const DIExpression *EmptyExpr = |
| DIExpression::get(MF->getFunction().getContext(), {}); |
| const auto &TRI = *MF->getSubtarget().getRegisterInfo(); |
| const auto &TII = *MF->getSubtarget().getInstrInfo(); |
| const auto &TLI = *MF->getSubtarget().getTargetLowering(); |
| |
| // If an instruction defines more than one item in the worklist, we may run |
| // into situations where a worklist register's value is (potentially) |
| // described by the previous value of another register that is also defined |
| // by that instruction. |
| // |
| // This can for example occur in cases like this: |
| // |
| // $r1 = mov 123 |
| // $r0, $r1 = mvrr $r1, 456 |
| // call @foo, $r0, $r1 |
| // |
| // When describing $r1's value for the mvrr instruction, we need to make sure |
| // that we don't finalize an entry value for $r0, as that is dependent on the |
| // previous value of $r1 (123 rather than 456). |
| // |
| // In order to not have to distinguish between those cases when finalizing |
| // entry values, we simply postpone adding new parameter registers to the |
| // worklist, by first keeping them in this temporary container until the |
| // instruction has been handled. |
| FwdRegWorklist TmpWorklistItems; |
| |
| // If the MI is an instruction defining one or more parameters' forwarding |
| // registers, add those defines. |
| auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, |
| SmallSetVector<unsigned, 4> &Defs) { |
| if (MI.isDebugInstr()) |
| return; |
| |
| for (const MachineOperand &MO : MI.operands()) { |
| if (MO.isReg() && MO.isDef() && |
| Register::isPhysicalRegister(MO.getReg())) { |
| for (auto &FwdReg : ForwardedRegWorklist) |
| if (TRI.regsOverlap(FwdReg.first, MO.getReg())) |
| Defs.insert(FwdReg.first); |
| } |
| } |
| }; |
| |
| // Set of worklist registers that are defined by this instruction. |
| SmallSetVector<unsigned, 4> FwdRegDefs; |
| |
| getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); |
| if (FwdRegDefs.empty()) |
| return; |
| |
| for (auto ParamFwdReg : FwdRegDefs) { |
| if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { |
| if (ParamValue->first.isImm()) { |
| int64_t Val = ParamValue->first.getImm(); |
| finishCallSiteParams(Val, ParamValue->second, |
| ForwardedRegWorklist[ParamFwdReg], Params); |
| } else if (ParamValue->first.isReg()) { |
| Register RegLoc = ParamValue->first.getReg(); |
| Register SP = TLI.getStackPointerRegisterToSaveRestore(); |
| Register FP = TRI.getFrameRegister(*MF); |
| bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); |
| if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { |
| MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); |
| finishCallSiteParams(MLoc, ParamValue->second, |
| ForwardedRegWorklist[ParamFwdReg], Params); |
| } else { |
| // ParamFwdReg was described by the non-callee saved register |
| // RegLoc. Mark that the call site values for the parameters are |
| // dependent on that register instead of ParamFwdReg. Since RegLoc |
| // may be a register that will be handled in this iteration, we |
| // postpone adding the items to the worklist, and instead keep them |
| // in a temporary container. |
| addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, |
| ForwardedRegWorklist[ParamFwdReg]); |
| } |
| } |
| } |
| } |
| |
| // Remove all registers that this instruction defines from the worklist. |
| for (auto ParamFwdReg : FwdRegDefs) |
| ForwardedRegWorklist.erase(ParamFwdReg); |
| |
| // Now that we are done handling this instruction, add items from the |
| // temporary worklist to the real one. |
| for (auto &New : TmpWorklistItems) |
| addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); |
| TmpWorklistItems.clear(); |
| } |
| |
| static bool interpretNextInstr(const MachineInstr *CurMI, |
| FwdRegWorklist &ForwardedRegWorklist, |
| ParamSet &Params) { |
| // Skip bundle headers. |
| if (CurMI->isBundle()) |
| return true; |
| |
| // If the next instruction is a call we can not interpret parameter's |
| // forwarding registers or we finished the interpretation of all |
| // parameters. |
| if (CurMI->isCall()) |
| return false; |
| |
| if (ForwardedRegWorklist.empty()) |
| return false; |
| |
| // Avoid NOP description. |
| if (CurMI->getNumOperands() == 0) |
| return true; |
| |
| interpretValues(CurMI, ForwardedRegWorklist, Params); |
| |
| return true; |
| } |
| |
| /// Try to interpret values loaded into registers that forward parameters |
| /// for \p CallMI. Store parameters with interpreted value into \p Params. |
| static void collectCallSiteParameters(const MachineInstr *CallMI, |
| ParamSet &Params) { |
| const MachineFunction *MF = CallMI->getMF(); |
| const auto &CalleesMap = MF->getCallSitesInfo(); |
| auto CallFwdRegsInfo = CalleesMap.find(CallMI); |
| |
| // There is no information for the call instruction. |
| if (CallFwdRegsInfo == CalleesMap.end()) |
| return; |
| |
| const MachineBasicBlock *MBB = CallMI->getParent(); |
| |
| // Skip the call instruction. |
| auto I = std::next(CallMI->getReverseIterator()); |
| |
| FwdRegWorklist ForwardedRegWorklist; |
| |
| const DIExpression *EmptyExpr = |
| DIExpression::get(MF->getFunction().getContext(), {}); |
| |
| // Add all the forwarding registers into the ForwardedRegWorklist. |
| for (const auto &ArgReg : CallFwdRegsInfo->second) { |
| bool InsertedReg = |
| ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) |
| .second; |
| assert(InsertedReg && "Single register used to forward two arguments?"); |
| (void)InsertedReg; |
| } |
| |
| // Do not emit CSInfo for undef forwarding registers. |
| for (auto &MO : CallMI->uses()) |
| if (MO.isReg() && MO.isUndef()) |
| ForwardedRegWorklist.erase(MO.getReg()); |
| |
| // We erase, from the ForwardedRegWorklist, those forwarding registers for |
| // which we successfully describe a loaded value (by using |
| // the describeLoadedValue()). For those remaining arguments in the working |
| // list, for which we do not describe a loaded value by |
| // the describeLoadedValue(), we try to generate an entry value expression |
| // for their call site value description, if the call is within the entry MBB. |
| // TODO: Handle situations when call site parameter value can be described |
| // as the entry value within basic blocks other than the first one. |
| bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); |
| |
| // Search for a loading value in forwarding registers inside call delay slot. |
| if (CallMI->hasDelaySlot()) { |
| auto Suc = std::next(CallMI->getIterator()); |
| // Only one-instruction delay slot is supported. |
| auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); |
| (void)BundleEnd; |
| assert(std::next(Suc) == BundleEnd && |
| "More than one instruction in call delay slot"); |
| // Try to interpret value loaded by instruction. |
| if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) |
| return; |
| } |
| |
| // Search for a loading value in forwarding registers. |
| for (; I != MBB->rend(); ++I) { |
| // Try to interpret values loaded by instruction. |
| if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) |
| return; |
| } |
| |
| // Emit the call site parameter's value as an entry value. |
| if (ShouldTryEmitEntryVals) { |
| // Create an expression where the register's entry value is used. |
| DIExpression *EntryExpr = DIExpression::get( |
| MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); |
| for (auto &RegEntry : ForwardedRegWorklist) { |
| MachineLocation MLoc(RegEntry.first); |
| finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); |
| } |
| } |
| } |
| |
| void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, |
| DwarfCompileUnit &CU, DIE &ScopeDIE, |
| const MachineFunction &MF) { |
| // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if |
| // the subprogram is required to have one. |
| if (!SP.areAllCallsDescribed() || !SP.isDefinition()) |
| return; |
| |
| // Use DW_AT_call_all_calls to express that call site entries are present |
| // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls |
| // because one of its requirements is not met: call site entries for |
| // optimized-out calls are elided. |
| CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); |
| |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| assert(TII && "TargetInstrInfo not found: cannot label tail calls"); |
| |
| // Delay slot support check. |
| auto delaySlotSupported = [&](const MachineInstr &MI) { |
| if (!MI.isBundledWithSucc()) |
| return false; |
| auto Suc = std::next(MI.getIterator()); |
| auto CallInstrBundle = getBundleStart(MI.getIterator()); |
| (void)CallInstrBundle; |
| auto DelaySlotBundle = getBundleStart(Suc); |
| (void)DelaySlotBundle; |
| // Ensure that label after call is following delay slot instruction. |
| // Ex. CALL_INSTRUCTION { |
| // DELAY_SLOT_INSTRUCTION } |
| // LABEL_AFTER_CALL |
| assert(getLabelAfterInsn(&*CallInstrBundle) == |
| getLabelAfterInsn(&*DelaySlotBundle) && |
| "Call and its successor instruction don't have same label after."); |
| return true; |
| }; |
| |
| // Emit call site entries for each call or tail call in the function. |
| for (const MachineBasicBlock &MBB : MF) { |
| for (const MachineInstr &MI : MBB.instrs()) { |
| // Bundles with call in them will pass the isCall() test below but do not |
| // have callee operand information so skip them here. Iterator will |
| // eventually reach the call MI. |
| if (MI.isBundle()) |
| continue; |
| |
| // Skip instructions which aren't calls. Both calls and tail-calling jump |
| // instructions (e.g TAILJMPd64) are classified correctly here. |
| if (!MI.isCandidateForCallSiteEntry()) |
| continue; |
| |
| // Skip instructions marked as frame setup, as they are not interesting to |
| // the user. |
| if (MI.getFlag(MachineInstr::FrameSetup)) |
| continue; |
| |
| // Check if delay slot support is enabled. |
| if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) |
| return; |
| |
| // If this is a direct call, find the callee's subprogram. |
| // In the case of an indirect call find the register that holds |
| // the callee. |
| const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); |
| if (!CalleeOp.isGlobal() && |
| (!CalleeOp.isReg() || |
| !Register::isPhysicalRegister(CalleeOp.getReg()))) |
| continue; |
| |
| unsigned CallReg = 0; |
| const DISubprogram *CalleeSP = nullptr; |
| const Function *CalleeDecl = nullptr; |
| if (CalleeOp.isReg()) { |
| CallReg = CalleeOp.getReg(); |
| if (!CallReg) |
| continue; |
| } else { |
| CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); |
| if (!CalleeDecl || !CalleeDecl->getSubprogram()) |
| continue; |
| CalleeSP = CalleeDecl->getSubprogram(); |
| } |
| |
| // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). |
| |
| bool IsTail = TII->isTailCall(MI); |
| |
| // If MI is in a bundle, the label was created after the bundle since |
| // EmitFunctionBody iterates over top-level MIs. Get that top-level MI |
| // to search for that label below. |
| const MachineInstr *TopLevelCallMI = |
| MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; |
| |
| // For non-tail calls, the return PC is needed to disambiguate paths in |
| // the call graph which could lead to some target function. For tail |
| // calls, no return PC information is needed, unless tuning for GDB in |
| // DWARF4 mode in which case we fake a return PC for compatibility. |
| const MCSymbol *PCAddr = |
| (!IsTail || CU.useGNUAnalogForDwarf5Feature()) |
| ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) |
| : nullptr; |
| |
| // For tail calls, it's necessary to record the address of the branch |
| // instruction so that the debugger can show where the tail call occurred. |
| const MCSymbol *CallAddr = |
| IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; |
| |
| assert((IsTail || PCAddr) && "Non-tail call without return PC"); |
| |
| LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " |
| << (CalleeDecl ? CalleeDecl->getName() |
| : StringRef(MF.getSubtarget() |
| .getRegisterInfo() |
| ->getName(CallReg))) |
| << (IsTail ? " [IsTail]" : "") << "\n"); |
| |
| DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( |
| ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); |
| |
| // Optionally emit call-site-param debug info. |
| if (emitDebugEntryValues()) { |
| ParamSet Params; |
| // Try to interpret values of call site parameters. |
| collectCallSiteParameters(&MI, Params); |
| CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); |
| } |
| } |
| } |
| } |
| |
| void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { |
| if (!U.hasDwarfPubSections()) |
| return; |
| |
| U.addFlag(D, dwarf::DW_AT_GNU_pubnames); |
| } |
| |
| void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, |
| DwarfCompileUnit &NewCU) { |
| DIE &Die = NewCU.getUnitDie(); |
| StringRef FN = DIUnit->getFilename(); |
| |
| StringRef Producer = DIUnit->getProducer(); |
| StringRef Flags = DIUnit->getFlags(); |
| if (!Flags.empty() && !useAppleExtensionAttributes()) { |
| std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); |
| NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); |
| } else |
| NewCU.addString(Die, dwarf::DW_AT_producer, Producer); |
| |
| NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, |
| DIUnit->getSourceLanguage()); |
| NewCU.addString(Die, dwarf::DW_AT_name, FN); |
| StringRef SysRoot = DIUnit->getSysRoot(); |
| if (!SysRoot.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); |
| StringRef SDK = DIUnit->getSDK(); |
| if (!SDK.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); |
| |
| // Add DW_str_offsets_base to the unit DIE, except for split units. |
| if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) |
| NewCU.addStringOffsetsStart(); |
| |
| if (!useSplitDwarf()) { |
| NewCU.initStmtList(); |
| |
| // If we're using split dwarf the compilation dir is going to be in the |
| // skeleton CU and so we don't need to duplicate it here. |
| if (!CompilationDir.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); |
| addGnuPubAttributes(NewCU, Die); |
| } |
| |
| if (useAppleExtensionAttributes()) { |
| if (DIUnit->isOptimized()) |
| NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); |
| |
| StringRef Flags = DIUnit->getFlags(); |
| if (!Flags.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); |
| |
| if (unsigned RVer = DIUnit->getRuntimeVersion()) |
| NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, |
| dwarf::DW_FORM_data1, RVer); |
| } |
| |
| if (DIUnit->getDWOId()) { |
| // This CU is either a clang module DWO or a skeleton CU. |
| NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, |
| DIUnit->getDWOId()); |
| if (!DIUnit->getSplitDebugFilename().empty()) { |
| // This is a prefabricated skeleton CU. |
| dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 |
| ? dwarf::DW_AT_dwo_name |
| : dwarf::DW_AT_GNU_dwo_name; |
| NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); |
| } |
| } |
| } |
| // Create new DwarfCompileUnit for the given metadata node with tag |
| // DW_TAG_compile_unit. |
| DwarfCompileUnit & |
| DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { |
| if (auto *CU = CUMap.lookup(DIUnit)) |
| return *CU; |
| |
| CompilationDir = DIUnit->getDirectory(); |
| |
| auto OwnedUnit = std::make_unique<DwarfCompileUnit>( |
| InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); |
| DwarfCompileUnit &NewCU = *OwnedUnit; |
| InfoHolder.addUnit(std::move(OwnedUnit)); |
| |
| for (auto *IE : DIUnit->getImportedEntities()) |
| NewCU.addImportedEntity(IE); |
| |
| // LTO with assembly output shares a single line table amongst multiple CUs. |
| // To avoid the compilation directory being ambiguous, let the line table |
| // explicitly describe the directory of all files, never relying on the |
| // compilation directory. |
| if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) |
| Asm->OutStreamer->emitDwarfFile0Directive( |
| CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), |
| DIUnit->getSource(), NewCU.getUniqueID()); |
| |
| if (useSplitDwarf()) { |
| NewCU.setSkeleton(constructSkeletonCU(NewCU)); |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); |
| } else { |
| finishUnitAttributes(DIUnit, NewCU); |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); |
| } |
| |
| CUMap.insert({DIUnit, &NewCU}); |
| CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); |
| return NewCU; |
| } |
| |
| void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, |
| const DIImportedEntity *N) { |
| if (isa<DILocalScope>(N->getScope())) |
| return; |
| if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) |
| D->addChild(TheCU.constructImportedEntityDIE(N)); |
| } |
| |
| /// Sort and unique GVEs by comparing their fragment offset. |
| static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & |
| sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { |
| llvm::sort( |
| GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { |
| // Sort order: first null exprs, then exprs without fragment |
| // info, then sort by fragment offset in bits. |
| // FIXME: Come up with a more comprehensive comparator so |
| // the sorting isn't non-deterministic, and so the following |
| // std::unique call works correctly. |
| if (!A.Expr || !B.Expr) |
| return !!B.Expr; |
| auto FragmentA = A.Expr->getFragmentInfo(); |
| auto FragmentB = B.Expr->getFragmentInfo(); |
| if (!FragmentA || !FragmentB) |
| return !!FragmentB; |
| return FragmentA->OffsetInBits < FragmentB->OffsetInBits; |
| }); |
| GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), |
| [](DwarfCompileUnit::GlobalExpr A, |
| DwarfCompileUnit::GlobalExpr B) { |
| return A.Expr == B.Expr; |
| }), |
| GVEs.end()); |
| return GVEs; |
| } |
| |
| // Emit all Dwarf sections that should come prior to the content. Create |
| // global DIEs and emit initial debug info sections. This is invoked by |
| // the target AsmPrinter. |
| void DwarfDebug::beginModule(Module *M) { |
| DebugHandlerBase::beginModule(M); |
| |
| if (!Asm || !MMI->hasDebugInfo()) |
| return; |
| |
| unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), |
| M->debug_compile_units_end()); |
| assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); |
| assert(MMI->hasDebugInfo() && |
| "DebugInfoAvailabilty unexpectedly not initialized"); |
| SingleCU = NumDebugCUs == 1; |
| DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> |
| GVMap; |
| for (const GlobalVariable &Global : M->globals()) { |
| SmallVector<DIGlobalVariableExpression *, 1> GVs; |
| Global.getDebugInfo(GVs); |
| for (auto *GVE : GVs) |
| GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); |
| } |
| |
| // Create the symbol that designates the start of the unit's contribution |
| // to the string offsets table. In a split DWARF scenario, only the skeleton |
| // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). |
| if (useSegmentedStringOffsetsTable()) |
| (useSplitDwarf() ? SkeletonHolder : InfoHolder) |
| .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); |
| |
| |
| // Create the symbols that designates the start of the DWARF v5 range list |
| // and locations list tables. They are located past the table headers. |
| if (getDwarfVersion() >= 5) { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.setRnglistsTableBaseSym( |
| Asm->createTempSymbol("rnglists_table_base")); |
| |
| if (useSplitDwarf()) |
| InfoHolder.setRnglistsTableBaseSym( |
| Asm->createTempSymbol("rnglists_dwo_table_base")); |
| } |
| |
| // Create the symbol that points to the first entry following the debug |
| // address table (.debug_addr) header. |
| AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); |
| DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); |
| |
| for (DICompileUnit *CUNode : M->debug_compile_units()) { |
| // FIXME: Move local imported entities into a list attached to the |
| // subprogram, then this search won't be needed and a |
| // getImportedEntities().empty() test should go below with the rest. |
| bool HasNonLocalImportedEntities = llvm::any_of( |
| CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { |
| return !isa<DILocalScope>(IE->getScope()); |
| }); |
| |
| if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && |
| CUNode->getRetainedTypes().empty() && |
| CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) |
| continue; |
| |
| DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); |
| |
| // Global Variables. |
| for (auto *GVE : CUNode->getGlobalVariables()) { |
| // Don't bother adding DIGlobalVariableExpressions listed in the CU if we |
| // already know about the variable and it isn't adding a constant |
| // expression. |
| auto &GVMapEntry = GVMap[GVE->getVariable()]; |
| auto *Expr = GVE->getExpression(); |
| if (!GVMapEntry.size() || (Expr && Expr->isConstant())) |
| GVMapEntry.push_back({nullptr, Expr}); |
| } |
| |
| DenseSet<DIGlobalVariable *> Processed; |
| for (auto *GVE : CUNode->getGlobalVariables()) { |
| DIGlobalVariable *GV = GVE->getVariable(); |
| if (Processed.insert(GV).second) |
| CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); |
| } |
| |
| for (auto *Ty : CUNode->getEnumTypes()) { |
| // The enum types array by design contains pointers to |
| // MDNodes rather than DIRefs. Unique them here. |
| CU.getOrCreateTypeDIE(cast<DIType>(Ty)); |
| } |
| for (auto *Ty : CUNode->getRetainedTypes()) { |
| // The retained types array by design contains pointers to |
| // MDNodes rather than DIRefs. Unique them here. |
| if (DIType *RT = dyn_cast<DIType>(Ty)) |
| // There is no point in force-emitting a forward declaration. |
| CU.getOrCreateTypeDIE(RT); |
| } |
| // Emit imported_modules last so that the relevant context is already |
| // available. |
| for (auto *IE : CUNode->getImportedEntities()) |
| constructAndAddImportedEntityDIE(CU, IE); |
| } |
| } |
| |
| void DwarfDebug::finishEntityDefinitions() { |
| for (const auto &Entity : ConcreteEntities) { |
| DIE *Die = Entity->getDIE(); |
| assert(Die); |
| // FIXME: Consider the time-space tradeoff of just storing the unit pointer |
| // in the ConcreteEntities list, rather than looking it up again here. |
| // DIE::getUnit isn't simple - it walks parent pointers, etc. |
| DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); |
| assert(Unit); |
| Unit->finishEntityDefinition(Entity.get()); |
| } |
| } |
| |
| void DwarfDebug::finishSubprogramDefinitions() { |
| for (const DISubprogram *SP : ProcessedSPNodes) { |
| assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); |
| forBothCUs( |
| getOrCreateDwarfCompileUnit(SP->getUnit()), |
| [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); |
| } |
| } |
| |
| void DwarfDebug::finalizeModuleInfo() { |
| const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); |
| |
| finishSubprogramDefinitions(); |
| |
| finishEntityDefinitions(); |
| |
| // Include the DWO file name in the hash if there's more than one CU. |
| // This handles ThinLTO's situation where imported CUs may very easily be |
| // duplicate with the same CU partially imported into another ThinLTO unit. |
| StringRef DWOName; |
| if (CUMap.size() > 1) |
| DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; |
| |
| // Handle anything that needs to be done on a per-unit basis after |
| // all other generation. |
| for (const auto &P : CUMap) { |
| auto &TheCU = *P.second; |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) |
| continue; |
| // Emit DW_AT_containing_type attribute to connect types with their |
| // vtable holding type. |
| TheCU.constructContainingTypeDIEs(); |
| |
| // Add CU specific attributes if we need to add any. |
| // If we're splitting the dwarf out now that we've got the entire |
| // CU then add the dwo id to it. |
| auto *SkCU = TheCU.getSkeleton(); |
| |
| bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); |
| |
| if (HasSplitUnit) { |
| dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 |
| ? dwarf::DW_AT_dwo_name |
| : dwarf::DW_AT_GNU_dwo_name; |
| finishUnitAttributes(TheCU.getCUNode(), TheCU); |
| TheCU.addString(TheCU.getUnitDie(), attrDWOName, |
| Asm->TM.Options.MCOptions.SplitDwarfFile); |
| SkCU->addString(SkCU->getUnitDie(), attrDWOName, |
| Asm->TM.Options.MCOptions.SplitDwarfFile); |
| // Emit a unique identifier for this CU. |
| uint64_t ID = |
| DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); |
| if (getDwarfVersion() >= 5) { |
| TheCU.setDWOId(ID); |
| SkCU->setDWOId(ID); |
| } else { |
| TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, |
| dwarf::DW_FORM_data8, ID); |
| SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, |
| dwarf::DW_FORM_data8, ID); |
| } |
| |
| if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { |
| const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); |
| SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, |
| Sym, Sym); |
| } |
| } else if (SkCU) { |
| finishUnitAttributes(SkCU->getCUNode(), *SkCU); |
| } |
| |
| // If we have code split among multiple sections or non-contiguous |
| // ranges of code then emit a DW_AT_ranges attribute on the unit that will |
| // remain in the .o file, otherwise add a DW_AT_low_pc. |
| // FIXME: We should use ranges allow reordering of code ala |
| // .subsections_via_symbols in mach-o. This would mean turning on |
| // ranges for all subprogram DIEs for mach-o. |
| DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; |
| |
| if (unsigned NumRanges = TheCU.getRanges().size()) { |
| if (NumRanges > 1 && useRangesSection()) |
| // A DW_AT_low_pc attribute may also be specified in combination with |
| // DW_AT_ranges to specify the default base address for use in |
| // location lists (see Section 2.6.2) and range lists (see Section |
| // 2.17.3). |
| U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); |
| else |
| U.setBaseAddress(TheCU.getRanges().front().Begin); |
| U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); |
| } |
| |
| // We don't keep track of which addresses are used in which CU so this |
| // is a bit pessimistic under LTO. |
| if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) |
| U.addAddrTableBase(); |
| |
| if (getDwarfVersion() >= 5) { |
| if (U.hasRangeLists()) |
| U.addRnglistsBase(); |
| |
| if (!DebugLocs.getLists().empty()) { |
| if (!useSplitDwarf()) |
| U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, |
| DebugLocs.getSym(), |
| TLOF.getDwarfLoclistsSection()->getBeginSymbol()); |
| } |
| } |
| |
| auto *CUNode = cast<DICompileUnit>(P.first); |
| // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" |
| // attribute. |
| if (CUNode->getMacros()) { |
| if (UseDebugMacroSection) { |
| if (useSplitDwarf()) |
| TheCU.addSectionDelta( |
| TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), |
| TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); |
| else { |
| dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 |
| ? dwarf::DW_AT_macros |
| : dwarf::DW_AT_GNU_macros; |
| U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), |
| TLOF.getDwarfMacroSection()->getBeginSymbol()); |
| } |
| } else { |
| if (useSplitDwarf()) |
| TheCU.addSectionDelta( |
| TheCU.getUnitDie(), dwarf::DW_AT_macro_info, |
| U.getMacroLabelBegin(), |
| TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); |
| else |
| U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, |
| U.getMacroLabelBegin(), |
| TLOF.getDwarfMacinfoSection()->getBeginSymbol()); |
| } |
| } |
| } |
| |
| // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. |
| for (auto *CUNode : MMI->getModule()->debug_compile_units()) |
| if (CUNode->getDWOId()) |
| getOrCreateDwarfCompileUnit(CUNode); |
| |
| // Compute DIE offsets and sizes. |
| InfoHolder.computeSizeAndOffsets(); |
| if (useSplitDwarf()) |
| SkeletonHolder.computeSizeAndOffsets(); |
| } |
| |
| // Emit all Dwarf sections that should come after the content. |
| void DwarfDebug::endModule() { |
| // Terminate the pending line table. |
| if (PrevCU) |
| terminateLineTable(PrevCU); |
| PrevCU = nullptr; |
| assert(CurFn == nullptr); |
| assert(CurMI == nullptr); |
| |
| for (const auto &P : CUMap) { |
| auto &CU = *P.second; |
| CU.createBaseTypeDIEs(); |
| } |
| |
| // If we aren't actually generating debug info (check beginModule - |
| // conditionalized on the presence of the llvm.dbg.cu metadata node) |
| if (!Asm || !MMI->hasDebugInfo()) |
| return; |
| |
| // Finalize the debug info for the module. |
| finalizeModuleInfo(); |
| |
| if (useSplitDwarf()) |
| // Emit debug_loc.dwo/debug_loclists.dwo section. |
| emitDebugLocDWO(); |
| else |
| // Emit debug_loc/debug_loclists section. |
| emitDebugLoc(); |
| |
| // Corresponding abbreviations into a abbrev section. |
| emitAbbreviations(); |
| |
| // Emit all the DIEs into a debug info section. |
| emitDebugInfo(); |
| |
| // Emit info into a debug aranges section. |
| if (GenerateARangeSection) |
| emitDebugARanges(); |
| |
| // Emit info into a debug ranges section. |
| emitDebugRanges(); |
| |
| if (useSplitDwarf()) |
| // Emit info into a debug macinfo.dwo section. |
| emitDebugMacinfoDWO(); |
| else |
| // Emit info into a debug macinfo/macro section. |
| emitDebugMacinfo(); |
| |
| emitDebugStr(); |
| |
| if (useSplitDwarf()) { |
| emitDebugStrDWO(); |
| emitDebugInfoDWO(); |
| emitDebugAbbrevDWO(); |
| emitDebugLineDWO(); |
| emitDebugRangesDWO(); |
| } |
| |
| emitDebugAddr(); |
| |
| // Emit info into the dwarf accelerator table sections. |
| switch (getAccelTableKind()) { |
| case AccelTableKind::Apple: |
| emitAccelNames(); |
| emitAccelObjC(); |
| emitAccelNamespaces(); |
| emitAccelTypes(); |
| break; |
| case AccelTableKind::Dwarf: |
| emitAccelDebugNames(); |
| break; |
| case AccelTableKind::None: |
| break; |
| case AccelTableKind::Default: |
| llvm_unreachable("Default should have already been resolved."); |
| } |
| |
| // Emit the pubnames and pubtypes sections if requested. |
| emitDebugPubSections(); |
| |
| // clean up. |
| // FIXME: AbstractVariables.clear(); |
| } |
| |
| void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, |
| const DINode *Node, |
| const MDNode *ScopeNode) { |
| if (CU.getExistingAbstractEntity(Node)) |
| return; |
| |
| CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( |
| cast<DILocalScope>(ScopeNode))); |
| } |
| |
| void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, |
| const DINode *Node, const MDNode *ScopeNode) { |
| if (CU.getExistingAbstractEntity(Node)) |
| return; |
| |
| if (LexicalScope *Scope = |
| LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) |
| CU.createAbstractEntity(Node, Scope); |
| } |
| |
| // Collect variable information from side table maintained by MF. |
| void DwarfDebug::collectVariableInfoFromMFTable( |
| DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { |
| SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; |
| LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); |
| for (const auto &VI : Asm->MF->getVariableDbgInfo()) { |
| if (!VI.Var) |
| continue; |
| assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && |
| "Expected inlined-at fields to agree"); |
| |
| InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); |
| Processed.insert(Var); |
| LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); |
| |
| // If variable scope is not found then skip this variable. |
| if (!Scope) { |
| LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() |
| << ", no variable scope found\n"); |
| continue; |
| } |
| |
| ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); |
| auto RegVar = std::make_unique<DbgVariable>( |
| cast<DILocalVariable>(Var.first), Var.second); |
| RegVar->initializeMMI(VI.Expr, VI.Slot); |
| LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() |
| << "\n"); |
| |
| if (DbgVariable *DbgVar = MFVars.lookup(Var)) |
| DbgVar->addMMIEntry(*RegVar); |
| else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { |
| MFVars.insert({Var, RegVar.get()}); |
| ConcreteEntities.push_back(std::move(RegVar)); |
| } |
| } |
| } |
| |
| /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its |
| /// enclosing lexical scope. The check ensures there are no other instructions |
| /// in the same lexical scope preceding the DBG_VALUE and that its range is |
| /// either open or otherwise rolls off the end of the scope. |
| static bool validThroughout(LexicalScopes &LScopes, |
| const MachineInstr *DbgValue, |
| const MachineInstr *RangeEnd, |
| const InstructionOrdering &Ordering) { |
| assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); |
| auto MBB = DbgValue->getParent(); |
| auto DL = DbgValue->getDebugLoc(); |
| auto *LScope = LScopes.findLexicalScope(DL); |
| // Scope doesn't exist; this is a dead DBG_VALUE. |
| if (!LScope) |
| return false; |
| auto &LSRange = LScope->getRanges(); |
| if (LSRange.size() == 0) |
| return false; |
| |
| const MachineInstr *LScopeBegin = LSRange.front().first; |
| // If the scope starts before the DBG_VALUE then we may have a negative |
| // result. Otherwise the location is live coming into the scope and we |
| // can skip the following checks. |
| if (!Ordering.isBefore(DbgValue, LScopeBegin)) { |
| // Exit if the lexical scope begins outside of the current block. |
| if (LScopeBegin->getParent() != MBB) |
| return false; |
| |
| MachineBasicBlock::const_reverse_iterator Pred(DbgValue); |
| for (++Pred; Pred != MBB->rend(); ++Pred) { |
| if (Pred->getFlag(MachineInstr::FrameSetup)) |
| break; |
| auto PredDL = Pred->getDebugLoc(); |
| if (!PredDL || Pred->isMetaInstruction()) |
| continue; |
| // Check whether the instruction preceding the DBG_VALUE is in the same |
| // (sub)scope as the DBG_VALUE. |
| if (DL->getScope() == PredDL->getScope()) |
| return false; |
| auto *PredScope = LScopes.findLexicalScope(PredDL); |
| if (!PredScope || LScope->dominates(PredScope)) |
| return false; |
| } |
| } |
| |
| // If the range of the DBG_VALUE is open-ended, report success. |
| if (!RangeEnd) |
| return true; |
| |
| // Single, constant DBG_VALUEs in the prologue are promoted to be live |
| // throughout the function. This is a hack, presumably for DWARF v2 and not |
| // necessarily correct. It would be much better to use a dbg.declare instead |
| // if we know the constant is live throughout the scope. |
| if (MBB->pred_empty() && |
| all_of(DbgValue->debug_operands(), |
| [](const MachineOperand &Op) { return Op.isImm(); })) |
| return true; |
| |
| // Test if the location terminates before the end of the scope. |
| const MachineInstr *LScopeEnd = LSRange.back().second; |
| if (Ordering.isBefore(RangeEnd, LScopeEnd)) |
| return false; |
| |
| // There's a single location which starts at the scope start, and ends at or |
| // after the scope end. |
| return true; |
| } |
| |
| /// Build the location list for all DBG_VALUEs in the function that |
| /// describe the same variable. The resulting DebugLocEntries will have |
| /// strict monotonically increasing begin addresses and will never |
| /// overlap. If the resulting list has only one entry that is valid |
| /// throughout variable's scope return true. |
| // |
| // See the definition of DbgValueHistoryMap::Entry for an explanation of the |
| // different kinds of history map entries. One thing to be aware of is that if |
| // a debug value is ended by another entry (rather than being valid until the |
| // end of the function), that entry's instruction may or may not be included in |
| // the range, depending on if the entry is a clobbering entry (it has an |
| // instruction that clobbers one or more preceding locations), or if it is an |
| // (overlapping) debug value entry. This distinction can be seen in the example |
| // below. The first debug value is ended by the clobbering entry 2, and the |
| // second and third debug values are ended by the overlapping debug value entry |
| // 4. |
| // |
| // Input: |
| // |
| // History map entries [type, end index, mi] |
| // |
| // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] |
| // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] |
| // 2 | | [Clobber, $reg0 = [...], -, -] |
| // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] |
| // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] |
| // |
| // Output [start, end) [Value...]: |
| // |
| // [0-1) [(reg0, fragment 0, 32)] |
| // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] |
| // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] |
| // [4-) [(@g, fragment 0, 96)] |
| bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, |
| const DbgValueHistoryMap::Entries &Entries) { |
| using OpenRange = |
| std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; |
| SmallVector<OpenRange, 4> OpenRanges; |
| bool isSafeForSingleLocation = true; |
| const MachineInstr *StartDebugMI = nullptr; |
| const MachineInstr *EndMI = nullptr; |
| |
| for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { |
| const MachineInstr *Instr = EI->getInstr(); |
| |
| // Remove all values that are no longer live. |
| size_t Index = std::distance(EB, EI); |
| erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); |
| |
| // If we are dealing with a clobbering entry, this iteration will result in |
| // a location list entry starting after the clobbering instruction. |
| const MCSymbol *StartLabel = |
| EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); |
| assert(StartLabel && |
| "Forgot label before/after instruction starting a range!"); |
| |
| const MCSymbol *EndLabel; |
| if (std::next(EI) == Entries.end()) { |
| const MachineBasicBlock &EndMBB = Asm->MF->back(); |
| EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; |
| if (EI->isClobber()) |
| EndMI = EI->getInstr(); |
| } |
| else if (std::next(EI)->isClobber()) |
| EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); |
| else |
| EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); |
| assert(EndLabel && "Forgot label after instruction ending a range!"); |
| |
| if (EI->isDbgValue()) |
| LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); |
| |
| // If this history map entry has a debug value, add that to the list of |
| // open ranges and check if its location is valid for a single value |
| // location. |
| if (EI->isDbgValue()) { |
| // Do not add undef debug values, as they are redundant information in |
| // the location list entries. An undef debug results in an empty location |
| // description. If there are any non-undef fragments then padding pieces |
| // with empty location descriptions will automatically be inserted, and if |
| // all fragments are undef then the whole location list entry is |
| // redundant. |
| if (!Instr->isUndefDebugValue()) { |
| auto Value = getDebugLocValue(Instr); |
| OpenRanges.emplace_back(EI->getEndIndex(), Value); |
| |
| // TODO: Add support for single value fragment locations. |
| if (Instr->getDebugExpression()->isFragment()) |
| isSafeForSingleLocation = false; |
| |
| if (!StartDebugMI) |
| StartDebugMI = Instr; |
| } else { |
| isSafeForSingleLocation = false; |
| } |
| } |
| |
| // Location list entries with empty location descriptions are redundant |
| // information in DWARF, so do not emit those. |
| if (OpenRanges.empty()) |
| continue; |
| |
| // Omit entries with empty ranges as they do not have any effect in DWARF. |
| if (StartLabel == EndLabel) { |
| LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); |
| continue; |
| } |
| |
| SmallVector<DbgValueLoc, 4> Values; |
| for (auto &R : OpenRanges) |
| Values.push_back(R.second); |
| |
| // With Basic block sections, it is posssible that the StartLabel and the |
| // Instr are not in the same section. This happens when the StartLabel is |
| // the function begin label and the dbg value appears in a basic block |
| // that is not the entry. In this case, the range needs to be split to |
| // span each individual section in the range from StartLabel to EndLabel. |
| if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && |
| !Instr->getParent()->sameSection(&Asm->MF->front())) { |
| const MCSymbol *BeginSectionLabel = StartLabel; |
| |
| for (const MachineBasicBlock &MBB : *Asm->MF) { |
| if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) |
| BeginSectionLabel = MBB.getSymbol(); |
| |
| if (MBB.sameSection(Instr->getParent())) { |
| DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); |
| break; |
| } |
| if (MBB.isEndSection()) |
| DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); |
| } |
| } else { |
| DebugLoc.emplace_back(StartLabel, EndLabel, Values); |
| } |
| |
| // Attempt to coalesce the ranges of two otherwise identical |
| // DebugLocEntries. |
| auto CurEntry = DebugLoc.rbegin(); |
| LLVM_DEBUG({ |
| dbgs() << CurEntry->getValues().size() << " Values:\n"; |
| for (auto &Value : CurEntry->getValues()) |
| Value.dump(); |
| dbgs() << "-----\n"; |
| }); |
| |
| auto PrevEntry = std::next(CurEntry); |
| if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) |
| DebugLoc.pop_back(); |
| } |
| |
| if (!isSafeForSingleLocation || |
| !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) |
| return false; |
| |
| if (DebugLoc.size() == 1) |
| return true; |
| |
| if (!Asm->MF->hasBBSections()) |
| return false; |
| |
| // Check here to see if loclist can be merged into a single range. If not, |
| // we must keep the split loclists per section. This does exactly what |
| // MergeRanges does without sections. We don't actually merge the ranges |
| // as the split ranges must be kept intact if this cannot be collapsed |
| // into a single range. |
| const MachineBasicBlock *RangeMBB = nullptr; |
| if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) |
| RangeMBB = &Asm->MF->front(); |
| else |
| RangeMBB = Entries.begin()->getInstr()->getParent(); |
| auto *CurEntry = DebugLoc.begin(); |
| auto *NextEntry = std::next(CurEntry); |
| while (NextEntry != DebugLoc.end()) { |
| // Get the last machine basic block of this section. |
| while (!RangeMBB->isEndSection()) |
| RangeMBB = RangeMBB->getNextNode(); |
| if (!RangeMBB->getNextNode()) |
| return false; |
| // CurEntry should end the current section and NextEntry should start |
| // the next section and the Values must match for these two ranges to be |
| // merged. |
| if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || |
| NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || |
| CurEntry->getValues() != NextEntry->getValues()) |
| return false; |
| RangeMBB = RangeMBB->getNextNode(); |
| CurEntry = NextEntry; |
| NextEntry = std::next(CurEntry); |
| } |
| return true; |
| } |
| |
| DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, |
| LexicalScope &Scope, |
| const DINode *Node, |
| const DILocation *Location, |
| const MCSymbol *Sym) { |
| ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); |
| if (isa<const DILocalVariable>(Node)) { |
| ConcreteEntities.push_back( |
| std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), |
| Location)); |
| InfoHolder.addScopeVariable(&Scope, |
| cast<DbgVariable>(ConcreteEntities.back().get())); |
| } else if (isa<const DILabel>(Node)) { |
| ConcreteEntities.push_back( |
| std::make_unique<DbgLabel>(cast<const DILabel>(Node), |
| Location, Sym)); |
| InfoHolder.addScopeLabel(&Scope, |
| cast<DbgLabel>(ConcreteEntities.back().get())); |
| } |
| return ConcreteEntities.back().get(); |
| } |
| |
| // Find variables for each lexical scope. |
| void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, |
| const DISubprogram *SP, |
| DenseSet<InlinedEntity> &Processed) { |
| // Grab the variable info that was squirreled away in the MMI side-table. |
| collectVariableInfoFromMFTable(TheCU, Processed); |
| |
| for (const auto &I : DbgValues) { |
| InlinedEntity IV = I.first; |
| if (Processed.count(IV)) |
| continue; |
| |
| // Instruction ranges, specifying where IV is accessible. |
| const auto &HistoryMapEntries = I.second; |
| |
| // Try to find any non-empty variable location. Do not create a concrete |
| // entity if there are no locations. |
| if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) |
| continue; |
| |
| LexicalScope *Scope = nullptr; |
| const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); |
| if (const DILocation *IA = IV.second) |
| Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); |
| else |
| Scope = LScopes.findLexicalScope(LocalVar->getScope()); |
| // If variable scope is not found then skip this variable. |
| if (!Scope) |
| continue; |
| |
| Processed.insert(IV); |
| DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, |
| *Scope, LocalVar, IV.second)); |
| |
| const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); |
| assert(MInsn->isDebugValue() && "History must begin with debug value"); |
| |
| // Check if there is a single DBG_VALUE, valid throughout the var's scope. |
| // If the history map contains a single debug value, there may be an |
| // additional entry which clobbers the debug value. |
| size_t HistSize = HistoryMapEntries.size(); |
| bool SingleValueWithClobber = |
| HistSize == 2 && HistoryMapEntries[1].isClobber(); |
| if (HistSize == 1 || SingleValueWithClobber) { |
| const auto *End = |
| SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; |
| if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { |
| RegVar->initializeDbgValue(MInsn); |
| continue; |
| } |
| } |
| |
| // Do not emit location lists if .debug_loc secton is disabled. |
| if (!useLocSection()) |
| continue; |
| |
| // Handle multiple DBG_VALUE instructions describing one variable. |
| DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); |
| |
| // Build the location list for this variable. |
| SmallVector<DebugLocEntry, 8> Entries; |
| bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); |
| |
| // Check whether buildLocationList managed to merge all locations to one |
| // that is valid throughout the variable's scope. If so, produce single |
| // value location. |
| if (isValidSingleLocation) { |
| RegVar->initializeDbgValue(Entries[0].getValues()[0]); |
| continue; |
| } |
| |
| // If the variable has a DIBasicType, extract it. Basic types cannot have |
| // unique identifiers, so don't bother resolving the type with the |
| // identifier map. |
| const DIBasicType *BT = dyn_cast<DIBasicType>( |
| static_cast<const Metadata *>(LocalVar->getType())); |
| |
| // Finalize the entry by lowering it into a DWARF bytestream. |
| for (auto &Entry : Entries) |
| Entry.finalize(*Asm, List, BT, TheCU); |
| } |
| |
| // For each InlinedEntity collected from DBG_LABEL instructions, convert to |
| // DWARF-related DbgLabel. |
| for (const auto &I : DbgLabels) { |
| InlinedEntity IL = I.first; |
| const MachineInstr *MI = I.second; |
| if (MI == nullptr) |
| continue; |
| |
| LexicalScope *Scope = nullptr; |
| const DILabel *Label = cast<DILabel>(IL.first); |
| // The scope could have an extra lexical block file. |
| const DILocalScope *LocalScope = |
| Label->getScope()->getNonLexicalBlockFileScope(); |
| // Get inlined DILocation if it is inlined label. |
| if (const DILocation *IA = IL.second) |
| Scope = LScopes.findInlinedScope(LocalScope, IA); |
| else |
| Scope = LScopes.findLexicalScope(LocalScope); |
| // If label scope is not found then skip this label. |
| if (!Scope) |
| continue; |
| |
| Processed.insert(IL); |
| /// At this point, the temporary label is created. |
| /// Save the temporary label to DbgLabel entity to get the |
| /// actually address when generating Dwarf DIE. |
| MCSymbol *Sym = getLabelBeforeInsn(MI); |
| createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); |
| } |
| |
| // Collect info for variables/labels that were optimized out. |
| for (const DINode *DN : SP->getRetainedNodes()) { |
| if (!Processed.insert(InlinedEntity(DN, nullptr)).second) |
| continue; |
| LexicalScope *Scope = nullptr; |
| if (auto *DV = dyn_cast<DILocalVariable>(DN)) { |
| Scope = LScopes.findLexicalScope(DV->getScope()); |
| } else if (auto *DL = dyn_cast<DILabel>(DN)) { |
| Scope = LScopes.findLexicalScope(DL->getScope()); |
| } |
| |
| if (Scope) |
| createConcreteEntity(TheCU, *Scope, DN, nullptr); |
| } |
| } |
| |
| // Process beginning of an instruction. |
| void DwarfDebug::beginInstruction(const MachineInstr *MI) { |
| const MachineFunction &MF = *MI->getMF(); |
| const auto *SP = MF.getFunction().getSubprogram(); |
| bool NoDebug = |
| !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; |
| |
| // Delay slot support check. |
| auto delaySlotSupported = [](const MachineInstr &MI) { |
| if (!MI.isBundledWithSucc()) |
| return false; |
| auto Suc = std::next(MI.getIterator()); |
| (void)Suc; |
| // Ensure that delay slot instruction is successor of the call instruction. |
| // Ex. CALL_INSTRUCTION { |
| // DELAY_SLOT_INSTRUCTION } |
| assert(Suc->isBundledWithPred() && |
| "Call bundle instructions are out of order"); |
| return true; |
| }; |
| |
| // When describing calls, we need a label for the call instruction. |
| if (!NoDebug && SP->areAllCallsDescribed() && |
| MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && |
| (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| bool IsTail = TII->isTailCall(*MI); |
| // For tail calls, we need the address of the branch instruction for |
| // DW_AT_call_pc. |
| if (IsTail) |
| requestLabelBeforeInsn(MI); |
| // For non-tail calls, we need the return address for the call for |
| // DW_AT_call_return_pc. Under GDB tuning, this information is needed for |
| // tail calls as well. |
| requestLabelAfterInsn(MI); |
| } |
| |
| DebugHandlerBase::beginInstruction(MI); |
| if (!CurMI) |
| return; |
| |
| if (NoDebug) |
| return; |
| |
| // Check if source location changes, but ignore DBG_VALUE and CFI locations. |
| // If the instruction is part of the function frame setup code, do not emit |
| // any line record, as there is no correspondence with any user code. |
| if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) |
| return; |
| const DebugLoc &DL = MI->getDebugLoc(); |
| // When we emit a line-0 record, we don't update PrevInstLoc; so look at |
| // the last line number actually emitted, to see if it was line 0. |
| unsigned LastAsmLine = |
| Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); |
| |
| if (DL == PrevInstLoc) { |
| // If we have an ongoing unspecified location, nothing to do here. |
| if (!DL) |
| return; |
| // We have an explicit location, same as the previous location. |
| // But we might be coming back to it after a line 0 record. |
| if (LastAsmLine == 0 && DL.getLine() != 0) { |
| // Reinstate the source location but not marked as a statement. |
| const MDNode *Scope = DL.getScope(); |
| recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); |
| } |
| return; |
| } |
| |
| if (!DL) { |
| // We have an unspecified location, which might want to be line 0. |
| // If we have already emitted a line-0 record, don't repeat it. |
| if (LastAsmLine == 0) |
| return; |
| // If user said Don't Do That, don't do that. |
| if (UnknownLocations == Disable) |
| return; |
| // See if we have a reason to emit a line-0 record now. |
| // Reasons to emit a line-0 record include: |
| // - User asked for it (UnknownLocations). |
| // - Instruction has a label, so it's referenced from somewhere else, |
| // possibly debug information; we want it to have a source location. |
| // - Instruction is at the top of a block; we don't want to inherit the |
| // location from the physically previous (maybe unrelated) block. |
| if (UnknownLocations == Enable || PrevLabel || |
| (PrevInstBB && PrevInstBB != MI->getParent())) { |
| // Preserve the file and column numbers, if we can, to save space in |
| // the encoded line table. |
| // Do not update PrevInstLoc, it remembers the last non-0 line. |
| const MDNode *Scope = nullptr; |
| unsigned Column = 0; |
| if (PrevInstLoc) { |
| Scope = PrevInstLoc.getScope(); |
| Column = PrevInstLoc.getCol(); |
| } |
| recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); |
| } |
| return; |
| } |
| |
| // We have an explicit location, different from the previous location. |
| // Don't repeat a line-0 record, but otherwise emit the new location. |
| // (The new location might be an explicit line 0, which we do emit.) |
| if (DL.getLine() == 0 && LastAsmLine == 0) |
| return; |
| unsigned Flags = 0; |
| if (DL == PrologEndLoc) { |
| Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; |
| PrologEndLoc = DebugLoc(); |
| } |
| // If the line changed, we call that a new statement; unless we went to |
| // line 0 and came back, in which case it is not a new statement. |
| unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; |
| if (DL.getLine() && DL.getLine() != OldLine) |
| Flags |= DWARF2_FLAG_IS_STMT; |
| |
| const MDNode *Scope = DL.getScope(); |
| recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); |
| |
| // If we're not at line 0, remember this location. |
| if (DL.getLine()) |
| PrevInstLoc = DL; |
| } |
| |
| static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { |
| // First known non-DBG_VALUE and non-frame setup location marks |
| // the beginning of the function body. |
| DebugLoc LineZeroLoc; |
| for (const auto &MBB : *MF) { |
| for (const auto &MI : MBB) { |
| if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && |
| MI.getDebugLoc()) { |
| // Scan forward to try to find a non-zero line number. The prologue_end |
| // marks the first breakpoint in the function after the frame setup, and |
| // a compiler-generated line 0 location is not a meaningful breakpoint. |
| // If none is found, return the first location after the frame setup. |
| if (MI.getDebugLoc().getLine()) |
| return MI.getDebugLoc(); |
| LineZeroLoc = MI.getDebugLoc(); |
| } |
| } |
| } |
| return LineZeroLoc; |
| } |
| |
| /// Register a source line with debug info. Returns the unique label that was |
| /// emitted and which provides correspondence to the source line list. |
| static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, |
| const MDNode *S, unsigned Flags, unsigned CUID, |
| uint16_t DwarfVersion, |
| ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { |
| StringRef Fn; |
| unsigned FileNo = 1; |
| unsigned Discriminator = 0; |
| if (auto *Scope = cast_or_null<DIScope>(S)) { |
| Fn = Scope->getFilename(); |
| if (Line != 0 && DwarfVersion >= 4) |
| if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) |
| Discriminator = LBF->getDiscriminator(); |
| |
| FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) |
| .getOrCreateSourceID(Scope->getFile()); |
| } |
| Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, |
| Discriminator, Fn); |
| } |
| |
| DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, |
| unsigned CUID) { |
| // Get beginning of function. |
| if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { |
| // Ensure the compile unit is created if the function is called before |
| // beginFunction(). |
| (void)getOrCreateDwarfCompileUnit( |
| MF.getFunction().getSubprogram()->getUnit()); |
| // We'd like to list the prologue as "not statements" but GDB behaves |
| // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. |
| const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); |
| ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, |
| CUID, getDwarfVersion(), getUnits()); |
| return PrologEndLoc; |
| } |
| return DebugLoc(); |
| } |
| |
| // Gather pre-function debug information. Assumes being called immediately |
| // after the function entry point has been emitted. |
| void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { |
| CurFn = MF; |
| |
| auto *SP = MF->getFunction().getSubprogram(); |
| assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); |
| if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) |
| return; |
| |
| DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID( |
| getDwarfCompileUnitIDForLineTable(CU)); |
| |
| // Record beginning of function. |
| PrologEndLoc = emitInitialLocDirective( |
| *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); |
| } |
| |
| unsigned |
| DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { |
| // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function |
| // belongs to so that we add to the correct per-cu line table in the |
| // non-asm case. |
| if (Asm->OutStreamer->hasRawTextSupport()) |
| // Use a single line table if we are generating assembly. |
| return 0; |
| else |
| return CU.getUniqueID(); |
| } |
| |
| void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { |
| const auto &CURanges = CU->getRanges(); |
| auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( |
| getDwarfCompileUnitIDForLineTable(*CU)); |
| // Add the last range label for the given CU. |
| LineTable.getMCLineSections().addEndEntry( |
| const_cast<MCSymbol *>(CURanges.back().End)); |
| } |
| |
| void DwarfDebug::skippedNonDebugFunction() { |
| // If we don't have a subprogram for this function then there will be a hole |
| // in the range information. Keep note of this by setting the previously used |
| // section to nullptr. |
| // Terminate the pending line table. |
| if (PrevCU) |
| terminateLineTable(PrevCU); |
| PrevCU = nullptr; |
| CurFn = nullptr; |
| } |
| |
| // Gather and emit post-function debug information. |
| void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { |
| const DISubprogram *SP = MF->getFunction().getSubprogram(); |
| |
| assert(CurFn == MF && |
| "endFunction should be called with the same function as beginFunction"); |
| |
| // Set DwarfDwarfCompileUnitID in MCContext to default value. |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); |
| |
| LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); |
| assert(!FnScope || SP == FnScope->getScopeNode()); |
| DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) { |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| return; |
| } |
| |
| DenseSet<InlinedEntity> Processed; |
| collectEntityInfo(TheCU, SP, Processed); |
| |
| // Add the range of this function to the list of ranges for the CU. |
| // With basic block sections, add ranges for all basic block sections. |
| for (const auto &R : Asm->MBBSectionRanges) |
| TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); |
| |
| // Under -gmlt, skip building the subprogram if there are no inlined |
| // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram |
| // is still needed as we need its source location. |
| if (!TheCU.getCUNode()->getDebugInfoForProfiling() && |
| TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && |
| LScopes.getAbstractScopesList().empty() && !IsDarwin) { |
| assert(InfoHolder.getScopeVariables().empty()); |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); |
| #endif |
| // Construct abstract scopes. |
| for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { |
| auto *SP = cast<DISubprogram>(AScope->getScopeNode()); |
| for (const DINode *DN : SP->getRetainedNodes()) { |
| if (!Processed.insert(InlinedEntity(DN, nullptr)).second) |
| continue; |
| |
| const MDNode *Scope = nullptr; |
| if (auto *DV = dyn_cast<DILocalVariable>(DN)) |
| Scope = DV->getScope(); |
| else if (auto *DL = dyn_cast<DILabel>(DN)) |
| Scope = DL->getScope(); |
| else |
| llvm_unreachable("Unexpected DI type!"); |
| |
| // Collect info for variables/labels that were optimized out. |
| ensureAbstractEntityIsCreated(TheCU, DN, Scope); |
| assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes |
| && "ensureAbstractEntityIsCreated inserted abstract scopes"); |
| } |
| constructAbstractSubprogramScopeDIE(TheCU, AScope); |
| } |
| |
| ProcessedSPNodes.insert(SP); |
| DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); |
| if (auto *SkelCU = TheCU.getSkeleton()) |
| if (!LScopes.getAbstractScopesList().empty() && |
| TheCU.getCUNode()->getSplitDebugInlining()) |
| SkelCU->constructSubprogramScopeDIE(SP, FnScope); |
| |
| // Construct call site entries. |
| constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); |
| |
| // Clear debug info |
| // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the |
| // DbgVariables except those that are also in AbstractVariables (since they |
| // can be used cross-function) |
| InfoHolder.getScopeVariables().clear(); |
| InfoHolder.getScopeLabels().clear(); |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| } |
| |
| // Register a source line with debug info. Returns the unique label that was |
| // emitted and which provides correspondence to the source line list. |
| void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, |
| unsigned Flags) { |
| ::recordSourceLine(*Asm, Line, Col, S, Flags, |
| Asm->OutStreamer->getContext().getDwarfCompileUnitID(), |
| getDwarfVersion(), getUnits()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Emit Methods |
| //===----------------------------------------------------------------------===// |
| |
| // Emit the debug info section. |
| void DwarfDebug::emitDebugInfo() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.emitUnits(/* UseOffsets */ false); |
| } |
| |
| // Emit the abbreviation section. |
| void DwarfDebug::emitAbbreviations() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| |
| Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); |
| } |
| |
| void DwarfDebug::emitStringOffsetsTableHeader() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.getStringPool().emitStringOffsetsTableHeader( |
| *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), |
| Holder.getStringOffsetsStartSym()); |
| } |
| |
| template <typename AccelTableT> |
| void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, |
| StringRef TableName) { |
| Asm->OutStreamer->SwitchSection(Section); |
| |
| // Emit the full data. |
| emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); |
| } |
| |
| void DwarfDebug::emitAccelDebugNames() { |
| // Don't emit anything if we have no compilation units to index. |
| if (getUnits().empty()) |
| return; |
| |
| emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); |
| } |
| |
| // Emit visible names into a hashed accelerator table section. |
| void DwarfDebug::emitAccelNames() { |
| emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), |
| "Names"); |
| } |
| |
| // Emit objective C classes and categories into a hashed accelerator table |
| // section. |
| void DwarfDebug::emitAccelObjC() { |
| emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), |
| "ObjC"); |
| } |
| |
| // Emit namespace dies into a hashed accelerator table. |
| void DwarfDebug::emitAccelNamespaces() { |
| emitAccel(AccelNamespace, |
| Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), |
| "namespac"); |
| } |
| |
| // Emit type dies into a hashed accelerator table. |
| void DwarfDebug::emitAccelTypes() { |
| emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), |
| "types"); |
| } |
| |
| // Public name handling. |
| // The format for the various pubnames: |
| // |
| // dwarf pubnames - offset/name pairs where the offset is the offset into the CU |
| // for the DIE that is named. |
| // |
| // gnu pubnames - offset/index value/name tuples where the offset is the offset |
| // into the CU and the index value is computed according to the type of value |
| // for the DIE that is named. |
| // |
| // For type units the offset is the offset of the skeleton DIE. For split dwarf |
| // it's the offset within the debug_info/debug_types dwo section, however, the |
| // reference in the pubname header doesn't change. |
| |
| /// computeIndexValue - Compute the gdb index value for the DIE and CU. |
| static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, |
| const DIE *Die) { |
| // Entities that ended up only in a Type Unit reference the CU instead (since |
| // the pub entry has offsets within the CU there's no real offset that can be |
| // provided anyway). As it happens all such entities (namespaces and types, |
| // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out |
| // not to be true it would be necessary to persist this information from the |
| // point at which the entry is added to the index data structure - since by |
| // the time the index is built from that, the original type/namespace DIE in a |
| // type unit has already been destroyed so it can't be queried for properties |
| // like tag, etc. |
| if (Die->getTag() == dwarf::DW_TAG_compile_unit) |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, |
| dwarf::GIEL_EXTERNAL); |
| dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; |
| |
| // We could have a specification DIE that has our most of our knowledge, |
| // look for that now. |
| if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { |
| DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); |
| if (SpecDIE.findAttribute(dwarf::DW_AT_external)) |
| Linkage = dwarf::GIEL_EXTERNAL; |
| } else if (Die->findAttribute(dwarf::DW_AT_external)) |
| Linkage = dwarf::GIEL_EXTERNAL; |
| |
| switch (Die->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_union_type: |
| case dwarf::DW_TAG_enumeration_type: |
| return dwarf::PubIndexEntryDescriptor( |
| dwarf::GIEK_TYPE, |
| dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) |
| ? dwarf::GIEL_EXTERNAL |
| : dwarf::GIEL_STATIC); |
| case dwarf::DW_TAG_typedef: |
| case dwarf::DW_TAG_base_type: |
| case dwarf::DW_TAG_subrange_type: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); |
| case dwarf::DW_TAG_namespace: |
| return dwarf::GIEK_TYPE; |
| case dwarf::DW_TAG_subprogram: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); |
| case dwarf::DW_TAG_variable: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); |
| case dwarf::DW_TAG_enumerator: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, |
| dwarf::GIEL_STATIC); |
| default: |
| return dwarf::GIEK_NONE; |
| } |
| } |
| |
| /// emitDebugPubSections - Emit visible names and types into debug pubnames and |
| /// pubtypes sections. |
| void DwarfDebug::emitDebugPubSections() { |
| for (const auto &NU : CUMap) { |
| DwarfCompileUnit *TheU = NU.second; |
| if (!TheU->hasDwarfPubSections()) |
| continue; |
| |
| bool GnuStyle = TheU->getCUNode()->getNameTableKind() == |
| DICompileUnit::DebugNameTableKind::GNU; |
| |
| Asm->OutStreamer->SwitchSection( |
| GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() |
| : Asm->getObjFileLowering().getDwarfPubNamesSection()); |
| emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); |
| |
| Asm->OutStreamer->SwitchSection( |
| GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() |
| : Asm->getObjFileLowering().getDwarfPubTypesSection()); |
| emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); |
| } |
| } |
| |
| void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { |
| if (useSectionsAsReferences()) |
| Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), |
| CU.getDebugSectionOffset()); |
| else |
| Asm->emitDwarfSymbolReference(CU.getLabelBegin()); |
| } |
| |
| void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, |
| DwarfCompileUnit *TheU, |
| const StringMap<const DIE *> &Globals) { |
| if (auto *Skeleton = TheU->getSkeleton()) |
| TheU = Skeleton; |
| |
| // Emit the header. |
| MCSymbol *EndLabel = Asm->emitDwarfUnitLength( |
| "pub" + Name, "Length of Public " + Name + " Info"); |
| |
| Asm->OutStreamer->AddComment("DWARF Version"); |
| Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); |
| |
| Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); |
| emitSectionReference(*TheU); |
| |
| Asm->OutStreamer->AddComment("Compilation Unit Length"); |
| Asm->emitDwarfLengthOrOffset(TheU->getLength()); |
| |
| // Emit the pubnames for this compilation unit. |
| for (const auto &GI : Globals) { |
| const char *Name = GI.getKeyData(); |
| const DIE *Entity = GI.second; |
| |
| Asm->OutStreamer->AddComment("DIE offset"); |
| Asm->emitDwarfLengthOrOffset(Entity->getOffset()); |
| |
| if (GnuStyle) { |
| dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); |
| Asm->OutStreamer->AddComment( |
| Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + |
| ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); |
| Asm->emitInt8(Desc.toBits()); |
| } |
| |
| Asm->OutStreamer->AddComment("External Name"); |
| Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); |
| } |
| |
| Asm->OutStreamer->AddComment("End Mark"); |
| Asm->emitDwarfLengthOrOffset(0); |
| Asm->OutStreamer->emitLabel(EndLabel); |
| } |
| |
| /// Emit null-terminated strings into a debug str section. |
| void DwarfDebug::emitDebugStr() { |
| MCSection *StringOffsetsSection = nullptr; |
| if (useSegmentedStringOffsetsTable()) { |
| emitStringOffsetsTableHeader(); |
| StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); |
| } |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), |
| StringOffsetsSection, /* UseRelativeOffsets = */ true); |
| } |
| |
| void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, |
| const DebugLocStream::Entry &Entry, |
| const DwarfCompileUnit *CU) { |
| auto &&Comments = DebugLocs.getComments(Entry); |
| auto Comment = Comments.begin(); |
| auto End = Comments.end(); |
| |
| // The expressions are inserted into a byte stream rather early (see |
| // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that |
| // need to reference a base_type DIE the offset of that DIE is not yet known. |
| // To deal with this we instead insert a placeholder early and then extract |
| // it here and replace it with the real reference. |
| unsigned PtrSize = Asm->MAI->getCodePointerSize(); |
| DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), |
| DebugLocs.getBytes(Entry).size()), |
| Asm->getDataLayout().isLittleEndian(), PtrSize); |
| DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); |
| |
| using Encoding = DWARFExpression::Operation::Encoding; |
| uint64_t Offset = 0; |
| for (auto &Op : Expr) { |
| assert(Op.getCode() != dwarf::DW_OP_const_type && |
| "3 operand ops not yet supported"); |
| Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); |
| Offset++; |
| for (unsigned I = 0; I < 2; ++I) { |
| if (Op.getDescription().Op[I] == Encoding::SizeNA) |
| continue; |
| if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { |
| uint64_t Offset = |
| CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); |
| assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); |
| Streamer.emitULEB128(Offset, "", ULEB128PadSize); |
| // Make sure comments stay aligned. |
| for (unsigned J = 0; J < ULEB128PadSize; ++J) |
| if (Comment != End) |
| Comment++; |
| } else { |
| for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) |
| Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); |
| } |
| Offset = Op.getOperandEndOffset(I); |
| } |
| assert(Offset == Op.getEndOffset()); |
| } |
| } |
| |
| void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, |
| const DbgValueLoc &Value, |
| DwarfExpression &DwarfExpr) { |
| auto *DIExpr = Value.getExpression(); |
| DIExpressionCursor ExprCursor(DIExpr); |
| DwarfExpr.addFragmentOffset(DIExpr); |
| |
| // If the DIExpr is is an Entry Value, we want to follow the same code path |
| // regardless of whether the DBG_VALUE is variadic or not. |
| if (DIExpr && DIExpr->isEntryValue()) { |
| // Entry values can only be a single register with no additional DIExpr, |
| // so just add it directly. |
| assert(Value.getLocEntries().size() == 1); |
| assert(Value.getLocEntries()[0].isLocation()); |
| MachineLocation Location = Value.getLocEntries()[0].getLoc(); |
| DwarfExpr.setLocation(Location, DIExpr); |
| |
| DwarfExpr.beginEntryValueExpression(ExprCursor); |
| |
| const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); |
| if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) |
| return; |
| return DwarfExpr.addExpression(std::move(ExprCursor)); |
| } |
| |
| // Regular entry. |
| auto EmitValueLocEntry = [&DwarfExpr, &BT, |
| &AP](const DbgValueLocEntry &Entry, |
| DIExpressionCursor &Cursor) -> bool { |
| if (Entry.isInt()) { |
| if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || |
| BT->getEncoding() == dwarf::DW_ATE_signed_char)) |
| DwarfExpr.addSignedConstant(Entry.getInt()); |
| else |
| DwarfExpr.addUnsignedConstant(Entry.getInt()); |
| } else if (Entry.isLocation()) { |
| MachineLocation Location = Entry.getLoc(); |
| if (Location.isIndirect()) |
| DwarfExpr.setMemoryLocationKind(); |
| |
| const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); |
| if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) |
| return false; |
| } else if (Entry.isTargetIndexLocation()) { |
| TargetIndexLocation Loc = Entry.getTargetIndexLocation(); |
| // TODO TargetIndexLocation is a target-independent. Currently only the |
| // WebAssembly-specific encoding is supported. |
| assert(AP.TM.getTargetTriple().isWasm()); |
| DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); |
| } else if (Entry.isConstantFP()) { |
| if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && |
| !Cursor) { |
| DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); |
| } else if (Entry.getConstantFP() |
| ->getValueAPF() |
| .bitcastToAPInt() |
| .getBitWidth() <= 64 /*bits*/) { |
| DwarfExpr.addUnsignedConstant( |
| Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); |
| } else { |
| LLVM_DEBUG( |
| dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" |
| << Entry.getConstantFP() |
| ->getValueAPF() |
| .bitcastToAPInt() |
| .getBitWidth() |
| << " bits\n"); |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| if (!Value.isVariadic()) { |
| if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) |
| return; |
| DwarfExpr.addExpression(std::move(ExprCursor)); |
| return; |
| } |
| |
| // If any of the location entries are registers with the value 0, then the |
| // location is undefined. |
| if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { |
| return Entry.isLocation() && !Entry.getLoc().getReg(); |
| })) |
| return; |
| |
| DwarfExpr.addExpression( |
| std::move(ExprCursor), |
| [EmitValueLocEntry, &Value](unsigned Idx, |
| DIExpressionCursor &Cursor) -> bool { |
| return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); |
| }); |
| } |
| |
| void DebugLocEntry::finalize(const AsmPrinter &AP, |
| DebugLocStream::ListBuilder &List, |
| const DIBasicType *BT, |
| DwarfCompileUnit &TheCU) { |
| assert(!Values.empty() && |
| "location list entries without values are redundant"); |
| assert(Begin != End && "unexpected location list entry with empty range"); |
| DebugLocStream::EntryBuilder Entry(List, Begin, End); |
| BufferByteStreamer Streamer = Entry.getStreamer(); |
| DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); |
| const DbgValueLoc &Value = Values[0]; |
| if (Value.isFragment()) { |
| // Emit all fragments that belong to the same variable and range. |
| assert(llvm::all_of(Values, [](DbgValueLoc P) { |
| return P.isFragment(); |
| }) && "all values are expected to be fragments"); |
| assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); |
| |
| for (const auto &Fragment : Values) |
| DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); |
| |
| } else { |
| assert(Values.size() == 1 && "only fragments may have >1 value"); |
| DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); |
| } |
| DwarfExpr.finalize(); |
| if (DwarfExpr.TagOffset) |
| List.setTagOffset(*DwarfExpr.TagOffset); |
| } |
| |
| void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, |
| const DwarfCompileUnit *CU) { |
| // Emit the size. |
| Asm->OutStreamer->AddComment("Loc expr size"); |
| if (getDwarfVersion() >= 5) |
| Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); |
| else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) |
| Asm->emitInt16(DebugLocs.getBytes(Entry).size()); |
| else { |
| // The entry is too big to fit into 16 bit, drop it as there is nothing we |
| // can do. |
| Asm->emitInt16(0); |
| return; |
|