| //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for writing Microsoft CodeView debug info. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeViewDebug.h" |
| #include "DwarfExpression.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" |
| #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" |
| #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" |
| #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" |
| #include "llvm/DebugInfo/CodeView/EnumTables.h" |
| #include "llvm/DebugInfo/CodeView/Line.h" |
| #include "llvm/DebugInfo/CodeView/SymbolRecord.h" |
| #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" |
| #include "llvm/DebugInfo/CodeView/TypeRecord.h" |
| #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" |
| #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSectionCOFF.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/BinaryByteStream.h" |
| #include "llvm/Support/BinaryStreamReader.h" |
| #include "llvm/Support/BinaryStreamWriter.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/SMLoc.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cstddef> |
| #include <iterator> |
| #include <limits> |
| |
| using namespace llvm; |
| using namespace llvm::codeview; |
| |
| namespace { |
| class CVMCAdapter : public CodeViewRecordStreamer { |
| public: |
| CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) |
| : OS(&OS), TypeTable(TypeTable) {} |
| |
| void emitBytes(StringRef Data) override { OS->emitBytes(Data); } |
| |
| void emitIntValue(uint64_t Value, unsigned Size) override { |
| OS->emitIntValueInHex(Value, Size); |
| } |
| |
| void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } |
| |
| void AddComment(const Twine &T) override { OS->AddComment(T); } |
| |
| void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } |
| |
| bool isVerboseAsm() override { return OS->isVerboseAsm(); } |
| |
| std::string getTypeName(TypeIndex TI) override { |
| std::string TypeName; |
| if (!TI.isNoneType()) { |
| if (TI.isSimple()) |
| TypeName = std::string(TypeIndex::simpleTypeName(TI)); |
| else |
| TypeName = std::string(TypeTable.getTypeName(TI)); |
| } |
| return TypeName; |
| } |
| |
| private: |
| MCStreamer *OS = nullptr; |
| TypeCollection &TypeTable; |
| }; |
| } // namespace |
| |
| static CPUType mapArchToCVCPUType(Triple::ArchType Type) { |
| switch (Type) { |
| case Triple::ArchType::x86: |
| return CPUType::Pentium3; |
| case Triple::ArchType::x86_64: |
| return CPUType::X64; |
| case Triple::ArchType::thumb: |
| // LLVM currently doesn't support Windows CE and so thumb |
| // here is indiscriminately mapped to ARMNT specifically. |
| return CPUType::ARMNT; |
| case Triple::ArchType::aarch64: |
| return CPUType::ARM64; |
| default: |
| report_fatal_error("target architecture doesn't map to a CodeView CPUType"); |
| } |
| } |
| |
| CodeViewDebug::CodeViewDebug(AsmPrinter *AP) |
| : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} |
| |
| StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { |
| std::string &Filepath = FileToFilepathMap[File]; |
| if (!Filepath.empty()) |
| return Filepath; |
| |
| StringRef Dir = File->getDirectory(), Filename = File->getFilename(); |
| |
| // If this is a Unix-style path, just use it as is. Don't try to canonicalize |
| // it textually because one of the path components could be a symlink. |
| if (Dir.startswith("/") || Filename.startswith("/")) { |
| if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) |
| return Filename; |
| Filepath = std::string(Dir); |
| if (Dir.back() != '/') |
| Filepath += '/'; |
| Filepath += Filename; |
| return Filepath; |
| } |
| |
| // Clang emits directory and relative filename info into the IR, but CodeView |
| // operates on full paths. We could change Clang to emit full paths too, but |
| // that would increase the IR size and probably not needed for other users. |
| // For now, just concatenate and canonicalize the path here. |
| if (Filename.find(':') == 1) |
| Filepath = std::string(Filename); |
| else |
| Filepath = (Dir + "\\" + Filename).str(); |
| |
| // Canonicalize the path. We have to do it textually because we may no longer |
| // have access the file in the filesystem. |
| // First, replace all slashes with backslashes. |
| std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); |
| |
| // Remove all "\.\" with "\". |
| size_t Cursor = 0; |
| while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) |
| Filepath.erase(Cursor, 2); |
| |
| // Replace all "\XXX\..\" with "\". Don't try too hard though as the original |
| // path should be well-formatted, e.g. start with a drive letter, etc. |
| Cursor = 0; |
| while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { |
| // Something's wrong if the path starts with "\..\", abort. |
| if (Cursor == 0) |
| break; |
| |
| size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); |
| if (PrevSlash == std::string::npos) |
| // Something's wrong, abort. |
| break; |
| |
| Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); |
| // The next ".." might be following the one we've just erased. |
| Cursor = PrevSlash; |
| } |
| |
| // Remove all duplicate backslashes. |
| Cursor = 0; |
| while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) |
| Filepath.erase(Cursor, 1); |
| |
| return Filepath; |
| } |
| |
| unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { |
| StringRef FullPath = getFullFilepath(F); |
| unsigned NextId = FileIdMap.size() + 1; |
| auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); |
| if (Insertion.second) { |
| // We have to compute the full filepath and emit a .cv_file directive. |
| ArrayRef<uint8_t> ChecksumAsBytes; |
| FileChecksumKind CSKind = FileChecksumKind::None; |
| if (F->getChecksum()) { |
| std::string Checksum = fromHex(F->getChecksum()->Value); |
| void *CKMem = OS.getContext().allocate(Checksum.size(), 1); |
| memcpy(CKMem, Checksum.data(), Checksum.size()); |
| ChecksumAsBytes = ArrayRef<uint8_t>( |
| reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); |
| switch (F->getChecksum()->Kind) { |
| case DIFile::CSK_MD5: |
| CSKind = FileChecksumKind::MD5; |
| break; |
| case DIFile::CSK_SHA1: |
| CSKind = FileChecksumKind::SHA1; |
| break; |
| case DIFile::CSK_SHA256: |
| CSKind = FileChecksumKind::SHA256; |
| break; |
| } |
| } |
| bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, |
| static_cast<unsigned>(CSKind)); |
| (void)Success; |
| assert(Success && ".cv_file directive failed"); |
| } |
| return Insertion.first->second; |
| } |
| |
| CodeViewDebug::InlineSite & |
| CodeViewDebug::getInlineSite(const DILocation *InlinedAt, |
| const DISubprogram *Inlinee) { |
| auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); |
| InlineSite *Site = &SiteInsertion.first->second; |
| if (SiteInsertion.second) { |
| unsigned ParentFuncId = CurFn->FuncId; |
| if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) |
| ParentFuncId = |
| getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) |
| .SiteFuncId; |
| |
| Site->SiteFuncId = NextFuncId++; |
| OS.EmitCVInlineSiteIdDirective( |
| Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), |
| InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); |
| Site->Inlinee = Inlinee; |
| InlinedSubprograms.insert(Inlinee); |
| getFuncIdForSubprogram(Inlinee); |
| } |
| return *Site; |
| } |
| |
| static StringRef getPrettyScopeName(const DIScope *Scope) { |
| StringRef ScopeName = Scope->getName(); |
| if (!ScopeName.empty()) |
| return ScopeName; |
| |
| switch (Scope->getTag()) { |
| case dwarf::DW_TAG_enumeration_type: |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_union_type: |
| return "<unnamed-tag>"; |
| case dwarf::DW_TAG_namespace: |
| return "`anonymous namespace'"; |
| default: |
| return StringRef(); |
| } |
| } |
| |
| const DISubprogram *CodeViewDebug::collectParentScopeNames( |
| const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { |
| const DISubprogram *ClosestSubprogram = nullptr; |
| while (Scope != nullptr) { |
| if (ClosestSubprogram == nullptr) |
| ClosestSubprogram = dyn_cast<DISubprogram>(Scope); |
| |
| // If a type appears in a scope chain, make sure it gets emitted. The |
| // frontend will be responsible for deciding if this should be a forward |
| // declaration or a complete type. |
| if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) |
| DeferredCompleteTypes.push_back(Ty); |
| |
| StringRef ScopeName = getPrettyScopeName(Scope); |
| if (!ScopeName.empty()) |
| QualifiedNameComponents.push_back(ScopeName); |
| Scope = Scope->getScope(); |
| } |
| return ClosestSubprogram; |
| } |
| |
| static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, |
| StringRef TypeName) { |
| std::string FullyQualifiedName; |
| for (StringRef QualifiedNameComponent : |
| llvm::reverse(QualifiedNameComponents)) { |
| FullyQualifiedName.append(std::string(QualifiedNameComponent)); |
| FullyQualifiedName.append("::"); |
| } |
| FullyQualifiedName.append(std::string(TypeName)); |
| return FullyQualifiedName; |
| } |
| |
| struct CodeViewDebug::TypeLoweringScope { |
| TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } |
| ~TypeLoweringScope() { |
| // Don't decrement TypeEmissionLevel until after emitting deferred types, so |
| // inner TypeLoweringScopes don't attempt to emit deferred types. |
| if (CVD.TypeEmissionLevel == 1) |
| CVD.emitDeferredCompleteTypes(); |
| --CVD.TypeEmissionLevel; |
| } |
| CodeViewDebug &CVD; |
| }; |
| |
| std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, |
| StringRef Name) { |
| // Ensure types in the scope chain are emitted as soon as possible. |
| // This can create otherwise a situation where S_UDTs are emitted while |
| // looping in emitDebugInfoForUDTs. |
| TypeLoweringScope S(*this); |
| SmallVector<StringRef, 5> QualifiedNameComponents; |
| collectParentScopeNames(Scope, QualifiedNameComponents); |
| return formatNestedName(QualifiedNameComponents, Name); |
| } |
| |
| std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { |
| const DIScope *Scope = Ty->getScope(); |
| return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); |
| } |
| |
| TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { |
| // No scope means global scope and that uses the zero index. |
| // |
| // We also use zero index when the scope is a DISubprogram |
| // to suppress the emission of LF_STRING_ID for the function, |
| // which can trigger a link-time error with the linker in |
| // VS2019 version 16.11.2 or newer. |
| // Note, however, skipping the debug info emission for the DISubprogram |
| // is a temporary fix. The root issue here is that we need to figure out |
| // the proper way to encode a function nested in another function |
| // (as introduced by the Fortran 'contains' keyword) in CodeView. |
| if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope)) |
| return TypeIndex(); |
| |
| assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); |
| |
| // Check if we've already translated this scope. |
| auto I = TypeIndices.find({Scope, nullptr}); |
| if (I != TypeIndices.end()) |
| return I->second; |
| |
| // Build the fully qualified name of the scope. |
| std::string ScopeName = getFullyQualifiedName(Scope); |
| StringIdRecord SID(TypeIndex(), ScopeName); |
| auto TI = TypeTable.writeLeafType(SID); |
| return recordTypeIndexForDINode(Scope, TI); |
| } |
| |
| static StringRef removeTemplateArgs(StringRef Name) { |
| // Remove template args from the display name. Assume that the template args |
| // are the last thing in the name. |
| if (Name.empty() || Name.back() != '>') |
| return Name; |
| |
| int OpenBrackets = 0; |
| for (int i = Name.size() - 1; i >= 0; --i) { |
| if (Name[i] == '>') |
| ++OpenBrackets; |
| else if (Name[i] == '<') { |
| --OpenBrackets; |
| if (OpenBrackets == 0) |
| return Name.substr(0, i); |
| } |
| } |
| return Name; |
| } |
| |
| TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { |
| assert(SP); |
| |
| // Check if we've already translated this subprogram. |
| auto I = TypeIndices.find({SP, nullptr}); |
| if (I != TypeIndices.end()) |
| return I->second; |
| |
| // The display name includes function template arguments. Drop them to match |
| // MSVC. We need to have the template arguments in the DISubprogram name |
| // because they are used in other symbol records, such as S_GPROC32_IDs. |
| StringRef DisplayName = removeTemplateArgs(SP->getName()); |
| |
| const DIScope *Scope = SP->getScope(); |
| TypeIndex TI; |
| if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { |
| // If the scope is a DICompositeType, then this must be a method. Member |
| // function types take some special handling, and require access to the |
| // subprogram. |
| TypeIndex ClassType = getTypeIndex(Class); |
| MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), |
| DisplayName); |
| TI = TypeTable.writeLeafType(MFuncId); |
| } else { |
| // Otherwise, this must be a free function. |
| TypeIndex ParentScope = getScopeIndex(Scope); |
| FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); |
| TI = TypeTable.writeLeafType(FuncId); |
| } |
| |
| return recordTypeIndexForDINode(SP, TI); |
| } |
| |
| static bool isNonTrivial(const DICompositeType *DCTy) { |
| return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); |
| } |
| |
| static FunctionOptions |
| getFunctionOptions(const DISubroutineType *Ty, |
| const DICompositeType *ClassTy = nullptr, |
| StringRef SPName = StringRef("")) { |
| FunctionOptions FO = FunctionOptions::None; |
| const DIType *ReturnTy = nullptr; |
| if (auto TypeArray = Ty->getTypeArray()) { |
| if (TypeArray.size()) |
| ReturnTy = TypeArray[0]; |
| } |
| |
| // Add CxxReturnUdt option to functions that return nontrivial record types |
| // or methods that return record types. |
| if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) |
| if (isNonTrivial(ReturnDCTy) || ClassTy) |
| FO |= FunctionOptions::CxxReturnUdt; |
| |
| // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. |
| if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { |
| FO |= FunctionOptions::Constructor; |
| |
| // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. |
| |
| } |
| return FO; |
| } |
| |
| TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, |
| const DICompositeType *Class) { |
| // Always use the method declaration as the key for the function type. The |
| // method declaration contains the this adjustment. |
| if (SP->getDeclaration()) |
| SP = SP->getDeclaration(); |
| assert(!SP->getDeclaration() && "should use declaration as key"); |
| |
| // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide |
| // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. |
| auto I = TypeIndices.find({SP, Class}); |
| if (I != TypeIndices.end()) |
| return I->second; |
| |
| // Make sure complete type info for the class is emitted *after* the member |
| // function type, as the complete class type is likely to reference this |
| // member function type. |
| TypeLoweringScope S(*this); |
| const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; |
| |
| FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); |
| TypeIndex TI = lowerTypeMemberFunction( |
| SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); |
| return recordTypeIndexForDINode(SP, TI, Class); |
| } |
| |
| TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, |
| TypeIndex TI, |
| const DIType *ClassTy) { |
| auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); |
| (void)InsertResult; |
| assert(InsertResult.second && "DINode was already assigned a type index"); |
| return TI; |
| } |
| |
| unsigned CodeViewDebug::getPointerSizeInBytes() { |
| return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; |
| } |
| |
| void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, |
| const LexicalScope *LS) { |
| if (const DILocation *InlinedAt = LS->getInlinedAt()) { |
| // This variable was inlined. Associate it with the InlineSite. |
| const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); |
| InlineSite &Site = getInlineSite(InlinedAt, Inlinee); |
| Site.InlinedLocals.emplace_back(Var); |
| } else { |
| // This variable goes into the corresponding lexical scope. |
| ScopeVariables[LS].emplace_back(Var); |
| } |
| } |
| |
| static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, |
| const DILocation *Loc) { |
| if (!llvm::is_contained(Locs, Loc)) |
| Locs.push_back(Loc); |
| } |
| |
| void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, |
| const MachineFunction *MF) { |
| // Skip this instruction if it has the same location as the previous one. |
| if (!DL || DL == PrevInstLoc) |
| return; |
| |
| const DIScope *Scope = DL.get()->getScope(); |
| if (!Scope) |
| return; |
| |
| // Skip this line if it is longer than the maximum we can record. |
| LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); |
| if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || |
| LI.isNeverStepInto()) |
| return; |
| |
| ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); |
| if (CI.getStartColumn() != DL.getCol()) |
| return; |
| |
| if (!CurFn->HaveLineInfo) |
| CurFn->HaveLineInfo = true; |
| unsigned FileId = 0; |
| if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) |
| FileId = CurFn->LastFileId; |
| else |
| FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); |
| PrevInstLoc = DL; |
| |
| unsigned FuncId = CurFn->FuncId; |
| if (const DILocation *SiteLoc = DL->getInlinedAt()) { |
| const DILocation *Loc = DL.get(); |
| |
| // If this location was actually inlined from somewhere else, give it the ID |
| // of the inline call site. |
| FuncId = |
| getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; |
| |
| // Ensure we have links in the tree of inline call sites. |
| bool FirstLoc = true; |
| while ((SiteLoc = Loc->getInlinedAt())) { |
| InlineSite &Site = |
| getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); |
| if (!FirstLoc) |
| addLocIfNotPresent(Site.ChildSites, Loc); |
| FirstLoc = false; |
| Loc = SiteLoc; |
| } |
| addLocIfNotPresent(CurFn->ChildSites, Loc); |
| } |
| |
| OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), |
| /*PrologueEnd=*/false, /*IsStmt=*/false, |
| DL->getFilename(), SMLoc()); |
| } |
| |
| void CodeViewDebug::emitCodeViewMagicVersion() { |
| OS.emitValueToAlignment(4); |
| OS.AddComment("Debug section magic"); |
| OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); |
| } |
| |
| static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { |
| switch (DWLang) { |
| case dwarf::DW_LANG_C: |
| case dwarf::DW_LANG_C89: |
| case dwarf::DW_LANG_C99: |
| case dwarf::DW_LANG_C11: |
| case dwarf::DW_LANG_ObjC: |
| return SourceLanguage::C; |
| case dwarf::DW_LANG_C_plus_plus: |
| case dwarf::DW_LANG_C_plus_plus_03: |
| case dwarf::DW_LANG_C_plus_plus_11: |
| case dwarf::DW_LANG_C_plus_plus_14: |
| return SourceLanguage::Cpp; |
| case dwarf::DW_LANG_Fortran77: |
| case dwarf::DW_LANG_Fortran90: |
| case dwarf::DW_LANG_Fortran95: |
| case dwarf::DW_LANG_Fortran03: |
| case dwarf::DW_LANG_Fortran08: |
| return SourceLanguage::Fortran; |
| case dwarf::DW_LANG_Pascal83: |
| return SourceLanguage::Pascal; |
| case dwarf::DW_LANG_Cobol74: |
| case dwarf::DW_LANG_Cobol85: |
| return SourceLanguage::Cobol; |
| case dwarf::DW_LANG_Java: |
| return SourceLanguage::Java; |
| case dwarf::DW_LANG_D: |
| return SourceLanguage::D; |
| case dwarf::DW_LANG_Swift: |
| return SourceLanguage::Swift; |
| default: |
| // There's no CodeView representation for this language, and CV doesn't |
| // have an "unknown" option for the language field, so we'll use MASM, |
| // as it's very low level. |
| return SourceLanguage::Masm; |
| } |
| } |
| |
| void CodeViewDebug::beginModule(Module *M) { |
| // If module doesn't have named metadata anchors or COFF debug section |
| // is not available, skip any debug info related stuff. |
| if (!M->getNamedMetadata("llvm.dbg.cu") || |
| !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { |
| Asm = nullptr; |
| return; |
| } |
| // Tell MMI that we have and need debug info. |
| MMI->setDebugInfoAvailability(true); |
| |
| TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); |
| |
| // Get the current source language. |
| NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); |
| const MDNode *Node = *CUs->operands().begin(); |
| const auto *CU = cast<DICompileUnit>(Node); |
| |
| CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage()); |
| |
| collectGlobalVariableInfo(); |
| |
| // Check if we should emit type record hashes. |
| ConstantInt *GH = |
| mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); |
| EmitDebugGlobalHashes = GH && !GH->isZero(); |
| } |
| |
| void CodeViewDebug::endModule() { |
| if (!Asm || !MMI->hasDebugInfo()) |
| return; |
| |
| // The COFF .debug$S section consists of several subsections, each starting |
| // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length |
| // of the payload followed by the payload itself. The subsections are 4-byte |
| // aligned. |
| |
| // Use the generic .debug$S section, and make a subsection for all the inlined |
| // subprograms. |
| switchToDebugSectionForSymbol(nullptr); |
| |
| MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); |
| emitCompilerInformation(); |
| endCVSubsection(CompilerInfo); |
| |
| emitInlineeLinesSubsection(); |
| |
| // Emit per-function debug information. |
| for (auto &P : FnDebugInfo) |
| if (!P.first->isDeclarationForLinker()) |
| emitDebugInfoForFunction(P.first, *P.second); |
| |
| // Get types used by globals without emitting anything. |
| // This is meant to collect all static const data members so they can be |
| // emitted as globals. |
| collectDebugInfoForGlobals(); |
| |
| // Emit retained types. |
| emitDebugInfoForRetainedTypes(); |
| |
| // Emit global variable debug information. |
| setCurrentSubprogram(nullptr); |
| emitDebugInfoForGlobals(); |
| |
| // Switch back to the generic .debug$S section after potentially processing |
| // comdat symbol sections. |
| switchToDebugSectionForSymbol(nullptr); |
| |
| // Emit UDT records for any types used by global variables. |
| if (!GlobalUDTs.empty()) { |
| MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); |
| emitDebugInfoForUDTs(GlobalUDTs); |
| endCVSubsection(SymbolsEnd); |
| } |
| |
| // This subsection holds a file index to offset in string table table. |
| OS.AddComment("File index to string table offset subsection"); |
| OS.emitCVFileChecksumsDirective(); |
| |
| // This subsection holds the string table. |
| OS.AddComment("String table"); |
| OS.emitCVStringTableDirective(); |
| |
| // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol |
| // subsection in the generic .debug$S section at the end. There is no |
| // particular reason for this ordering other than to match MSVC. |
| emitBuildInfo(); |
| |
| // Emit type information and hashes last, so that any types we translate while |
| // emitting function info are included. |
| emitTypeInformation(); |
| |
| if (EmitDebugGlobalHashes) |
| emitTypeGlobalHashes(); |
| |
| clear(); |
| } |
| |
| static void |
| emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, |
| unsigned MaxFixedRecordLength = 0xF00) { |
| // The maximum CV record length is 0xFF00. Most of the strings we emit appear |
| // after a fixed length portion of the record. The fixed length portion should |
| // always be less than 0xF00 (3840) bytes, so truncate the string so that the |
| // overall record size is less than the maximum allowed. |
| SmallString<32> NullTerminatedString( |
| S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); |
| NullTerminatedString.push_back('\0'); |
| OS.emitBytes(NullTerminatedString); |
| } |
| |
| void CodeViewDebug::emitTypeInformation() { |
| if (TypeTable.empty()) |
| return; |
| |
| // Start the .debug$T or .debug$P section with 0x4. |
| OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); |
| emitCodeViewMagicVersion(); |
| |
| TypeTableCollection Table(TypeTable.records()); |
| TypeVisitorCallbackPipeline Pipeline; |
| |
| // To emit type record using Codeview MCStreamer adapter |
| CVMCAdapter CVMCOS(OS, Table); |
| TypeRecordMapping typeMapping(CVMCOS); |
| Pipeline.addCallbackToPipeline(typeMapping); |
| |
| Optional<TypeIndex> B = Table.getFirst(); |
| while (B) { |
| // This will fail if the record data is invalid. |
| CVType Record = Table.getType(*B); |
| |
| Error E = codeview::visitTypeRecord(Record, *B, Pipeline); |
| |
| if (E) { |
| logAllUnhandledErrors(std::move(E), errs(), "error: "); |
| llvm_unreachable("produced malformed type record"); |
| } |
| |
| B = Table.getNext(*B); |
| } |
| } |
| |
| void CodeViewDebug::emitTypeGlobalHashes() { |
| if (TypeTable.empty()) |
| return; |
| |
| // Start the .debug$H section with the version and hash algorithm, currently |
| // hardcoded to version 0, SHA1. |
| OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); |
| |
| OS.emitValueToAlignment(4); |
| OS.AddComment("Magic"); |
| OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); |
| OS.AddComment("Section Version"); |
| OS.emitInt16(0); |
| OS.AddComment("Hash Algorithm"); |
| OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); |
| |
| TypeIndex TI(TypeIndex::FirstNonSimpleIndex); |
| for (const auto &GHR : TypeTable.hashes()) { |
| if (OS.isVerboseAsm()) { |
| // Emit an EOL-comment describing which TypeIndex this hash corresponds |
| // to, as well as the stringified SHA1 hash. |
| SmallString<32> Comment; |
| raw_svector_ostream CommentOS(Comment); |
| CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); |
| OS.AddComment(Comment); |
| ++TI; |
| } |
| assert(GHR.Hash.size() == 8); |
| StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), |
| GHR.Hash.size()); |
| OS.emitBinaryData(S); |
| } |
| } |
| |
| namespace { |
| struct Version { |
| int Part[4]; |
| }; |
| } // end anonymous namespace |
| |
| // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out |
| // the version number. |
| static Version parseVersion(StringRef Name) { |
| Version V = {{0}}; |
| int N = 0; |
| for (const char C : Name) { |
| if (isdigit(C)) { |
| V.Part[N] *= 10; |
| V.Part[N] += C - '0'; |
| } else if (C == '.') { |
| ++N; |
| if (N >= 4) |
| return V; |
| } else if (N > 0) |
| return V; |
| } |
| return V; |
| } |
| |
| void CodeViewDebug::emitCompilerInformation() { |
| MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); |
| uint32_t Flags = 0; |
| |
| // The low byte of the flags indicates the source language. |
| Flags = CurrentSourceLanguage; |
| // TODO: Figure out which other flags need to be set. |
| if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) { |
| Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO); |
| } |
| |
| OS.AddComment("Flags and language"); |
| OS.emitInt32(Flags); |
| |
| OS.AddComment("CPUType"); |
| OS.emitInt16(static_cast<uint64_t>(TheCPU)); |
| |
| NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); |
| const MDNode *Node = *CUs->operands().begin(); |
| const auto *CU = cast<DICompileUnit>(Node); |
| |
| StringRef CompilerVersion = CU->getProducer(); |
| Version FrontVer = parseVersion(CompilerVersion); |
| OS.AddComment("Frontend version"); |
| for (int N : FrontVer.Part) |
| OS.emitInt16(N); |
| |
| // Some Microsoft tools, like Binscope, expect a backend version number of at |
| // least 8.something, so we'll coerce the LLVM version into a form that |
| // guarantees it'll be big enough without really lying about the version. |
| int Major = 1000 * LLVM_VERSION_MAJOR + |
| 10 * LLVM_VERSION_MINOR + |
| LLVM_VERSION_PATCH; |
| // Clamp it for builds that use unusually large version numbers. |
| Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); |
| Version BackVer = {{ Major, 0, 0, 0 }}; |
| OS.AddComment("Backend version"); |
| for (int N : BackVer.Part) |
| OS.emitInt16(N); |
| |
| OS.AddComment("Null-terminated compiler version string"); |
| emitNullTerminatedSymbolName(OS, CompilerVersion); |
| |
| endSymbolRecord(CompilerEnd); |
| } |
| |
| static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, |
| StringRef S) { |
| StringIdRecord SIR(TypeIndex(0x0), S); |
| return TypeTable.writeLeafType(SIR); |
| } |
| |
| void CodeViewDebug::emitBuildInfo() { |
| // First, make LF_BUILDINFO. It's a sequence of strings with various bits of |
| // build info. The known prefix is: |
| // - Absolute path of current directory |
| // - Compiler path |
| // - Main source file path, relative to CWD or absolute |
| // - Type server PDB file |
| // - Canonical compiler command line |
| // If frontend and backend compilation are separated (think llc or LTO), it's |
| // not clear if the compiler path should refer to the executable for the |
| // frontend or the backend. Leave it blank for now. |
| TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; |
| NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); |
| const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. |
| const auto *CU = cast<DICompileUnit>(Node); |
| const DIFile *MainSourceFile = CU->getFile(); |
| BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = |
| getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); |
| BuildInfoArgs[BuildInfoRecord::SourceFile] = |
| getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); |
| // FIXME: Path to compiler and command line. PDB is intentionally blank unless |
| // we implement /Zi type servers. |
| BuildInfoRecord BIR(BuildInfoArgs); |
| TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); |
| |
| // Make a new .debug$S subsection for the S_BUILDINFO record, which points |
| // from the module symbols into the type stream. |
| MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); |
| MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); |
| OS.AddComment("LF_BUILDINFO index"); |
| OS.emitInt32(BuildInfoIndex.getIndex()); |
| endSymbolRecord(BIEnd); |
| endCVSubsection(BISubsecEnd); |
| } |
| |
| void CodeViewDebug::emitInlineeLinesSubsection() { |
| if (InlinedSubprograms.empty()) |
| return; |
| |
| OS.AddComment("Inlinee lines subsection"); |
| MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); |
| |
| // We emit the checksum info for files. This is used by debuggers to |
| // determine if a pdb matches the source before loading it. Visual Studio, |
| // for instance, will display a warning that the breakpoints are not valid if |
| // the pdb does not match the source. |
| OS.AddComment("Inlinee lines signature"); |
| OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); |
| |
| for (const DISubprogram *SP : InlinedSubprograms) { |
| assert(TypeIndices.count({SP, nullptr})); |
| TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; |
| |
| OS.AddBlankLine(); |
| unsigned FileId = maybeRecordFile(SP->getFile()); |
| OS.AddComment("Inlined function " + SP->getName() + " starts at " + |
| SP->getFilename() + Twine(':') + Twine(SP->getLine())); |
| OS.AddBlankLine(); |
| OS.AddComment("Type index of inlined function"); |
| OS.emitInt32(InlineeIdx.getIndex()); |
| OS.AddComment("Offset into filechecksum table"); |
| OS.emitCVFileChecksumOffsetDirective(FileId); |
| OS.AddComment("Starting line number"); |
| OS.emitInt32(SP->getLine()); |
| } |
| |
| endCVSubsection(InlineEnd); |
| } |
| |
| void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, |
| const DILocation *InlinedAt, |
| const InlineSite &Site) { |
| assert(TypeIndices.count({Site.Inlinee, nullptr})); |
| TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; |
| |
| // SymbolRecord |
| MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); |
| |
| OS.AddComment("PtrParent"); |
| OS.emitInt32(0); |
| OS.AddComment("PtrEnd"); |
| OS.emitInt32(0); |
| OS.AddComment("Inlinee type index"); |
| OS.emitInt32(InlineeIdx.getIndex()); |
| |
| unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); |
| unsigned StartLineNum = Site.Inlinee->getLine(); |
| |
| OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, |
| FI.Begin, FI.End); |
| |
| endSymbolRecord(InlineEnd); |
| |
| emitLocalVariableList(FI, Site.InlinedLocals); |
| |
| // Recurse on child inlined call sites before closing the scope. |
| for (const DILocation *ChildSite : Site.ChildSites) { |
| auto I = FI.InlineSites.find(ChildSite); |
| assert(I != FI.InlineSites.end() && |
| "child site not in function inline site map"); |
| emitInlinedCallSite(FI, ChildSite, I->second); |
| } |
| |
| // Close the scope. |
| emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); |
| } |
| |
| void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { |
| // If we have a symbol, it may be in a section that is COMDAT. If so, find the |
| // comdat key. A section may be comdat because of -ffunction-sections or |
| // because it is comdat in the IR. |
| MCSectionCOFF *GVSec = |
| GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; |
| const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; |
| |
| MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( |
| Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); |
| DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); |
| |
| OS.SwitchSection(DebugSec); |
| |
| // Emit the magic version number if this is the first time we've switched to |
| // this section. |
| if (ComdatDebugSections.insert(DebugSec).second) |
| emitCodeViewMagicVersion(); |
| } |
| |
| // Emit an S_THUNK32/S_END symbol pair for a thunk routine. |
| // The only supported thunk ordinal is currently the standard type. |
| void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, |
| FunctionInfo &FI, |
| const MCSymbol *Fn) { |
| std::string FuncName = |
| std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); |
| const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. |
| |
| OS.AddComment("Symbol subsection for " + Twine(FuncName)); |
| MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); |
| |
| // Emit S_THUNK32 |
| MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); |
| OS.AddComment("PtrParent"); |
| OS.emitInt32(0); |
| OS.AddComment("PtrEnd"); |
| OS.emitInt32(0); |
| OS.AddComment("PtrNext"); |
| OS.emitInt32(0); |
| OS.AddComment("Thunk section relative address"); |
| OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); |
| OS.AddComment("Thunk section index"); |
| OS.EmitCOFFSectionIndex(Fn); |
| OS.AddComment("Code size"); |
| OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); |
| OS.AddComment("Ordinal"); |
| OS.emitInt8(unsigned(ordinal)); |
| OS.AddComment("Function name"); |
| emitNullTerminatedSymbolName(OS, FuncName); |
| // Additional fields specific to the thunk ordinal would go here. |
| endSymbolRecord(ThunkRecordEnd); |
| |
| // Local variables/inlined routines are purposely omitted here. The point of |
| // marking this as a thunk is so Visual Studio will NOT stop in this routine. |
| |
| // Emit S_PROC_ID_END |
| emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); |
| |
| endCVSubsection(SymbolsEnd); |
| } |
| |
| void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, |
| FunctionInfo &FI) { |
| // For each function there is a separate subsection which holds the PC to |
| // file:line table. |
| const MCSymbol *Fn = Asm->getSymbol(GV); |
| assert(Fn); |
| |
| // Switch to the to a comdat section, if appropriate. |
| switchToDebugSectionForSymbol(Fn); |
| |
| std::string FuncName; |
| auto *SP = GV->getSubprogram(); |
| assert(SP); |
| setCurrentSubprogram(SP); |
| |
| if (SP->isThunk()) { |
| emitDebugInfoForThunk(GV, FI, Fn); |
| return; |
| } |
| |
| // If we have a display name, build the fully qualified name by walking the |
| // chain of scopes. |
| if (!SP->getName().empty()) |
| FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); |
| |
| // If our DISubprogram name is empty, use the mangled name. |
| if (FuncName.empty()) |
| FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); |
| |
| // Emit FPO data, but only on 32-bit x86. No other platforms use it. |
| if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) |
| OS.EmitCVFPOData(Fn); |
| |
| // Emit a symbol subsection, required by VS2012+ to find function boundaries. |
| OS.AddComment("Symbol subsection for " + Twine(FuncName)); |
| MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); |
| { |
| SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID |
| : SymbolKind::S_GPROC32_ID; |
| MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); |
| |
| // These fields are filled in by tools like CVPACK which run after the fact. |
| OS.AddComment("PtrParent"); |
| OS.emitInt32(0); |
| OS.AddComment("PtrEnd"); |
| OS.emitInt32(0); |
| OS.AddComment("PtrNext"); |
| OS.emitInt32(0); |
| // This is the important bit that tells the debugger where the function |
| // code is located and what's its size: |
| OS.AddComment("Code size"); |
| OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); |
| OS.AddComment("Offset after prologue"); |
| OS.emitInt32(0); |
| OS.AddComment("Offset before epilogue"); |
| OS.emitInt32(0); |
| OS.AddComment("Function type index"); |
| OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); |
| OS.AddComment("Function section relative address"); |
| OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); |
| OS.AddComment("Function section index"); |
| OS.EmitCOFFSectionIndex(Fn); |
| OS.AddComment("Flags"); |
| OS.emitInt8(0); |
| // Emit the function display name as a null-terminated string. |
| OS.AddComment("Function name"); |
| // Truncate the name so we won't overflow the record length field. |
| emitNullTerminatedSymbolName(OS, FuncName); |
| endSymbolRecord(ProcRecordEnd); |
| |
| MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); |
| // Subtract out the CSR size since MSVC excludes that and we include it. |
| OS.AddComment("FrameSize"); |
| OS.emitInt32(FI.FrameSize - FI.CSRSize); |
| OS.AddComment("Padding"); |
| OS.emitInt32(0); |
| OS.AddComment("Offset of padding"); |
| OS.emitInt32(0); |
| OS.AddComment("Bytes of callee saved registers"); |
| OS.emitInt32(FI.CSRSize); |
| OS.AddComment("Exception handler offset"); |
| OS.emitInt32(0); |
| OS.AddComment("Exception handler section"); |
| OS.emitInt16(0); |
| OS.AddComment("Flags (defines frame register)"); |
| OS.emitInt32(uint32_t(FI.FrameProcOpts)); |
| endSymbolRecord(FrameProcEnd); |
| |
| emitLocalVariableList(FI, FI.Locals); |
| emitGlobalVariableList(FI.Globals); |
| emitLexicalBlockList(FI.ChildBlocks, FI); |
| |
| // Emit inlined call site information. Only emit functions inlined directly |
| // into the parent function. We'll emit the other sites recursively as part |
| // of their parent inline site. |
| for (const DILocation *InlinedAt : FI.ChildSites) { |
| auto I = FI.InlineSites.find(InlinedAt); |
| assert(I != FI.InlineSites.end() && |
| "child site not in function inline site map"); |
| emitInlinedCallSite(FI, InlinedAt, I->second); |
| } |
| |
| for (auto Annot : FI.Annotations) { |
| MCSymbol *Label = Annot.first; |
| MDTuple *Strs = cast<MDTuple>(Annot.second); |
| MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); |
| OS.EmitCOFFSecRel32(Label, /*Offset=*/0); |
| // FIXME: Make sure we don't overflow the max record size. |
| OS.EmitCOFFSectionIndex(Label); |
| OS.emitInt16(Strs->getNumOperands()); |
| for (Metadata *MD : Strs->operands()) { |
| // MDStrings are null terminated, so we can do EmitBytes and get the |
| // nice .asciz directive. |
| StringRef Str = cast<MDString>(MD)->getString(); |
| assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); |
| OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); |
| } |
| endSymbolRecord(AnnotEnd); |
| } |
| |
| for (auto HeapAllocSite : FI.HeapAllocSites) { |
| const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); |
| const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); |
| const DIType *DITy = std::get<2>(HeapAllocSite); |
| MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); |
| OS.AddComment("Call site offset"); |
| OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); |
| OS.AddComment("Call site section index"); |
| OS.EmitCOFFSectionIndex(BeginLabel); |
| OS.AddComment("Call instruction length"); |
| OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); |
| OS.AddComment("Type index"); |
| OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); |
| endSymbolRecord(HeapAllocEnd); |
| } |
| |
| if (SP != nullptr) |
| emitDebugInfoForUDTs(LocalUDTs); |
| |
| // We're done with this function. |
| emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); |
| } |
| endCVSubsection(SymbolsEnd); |
| |
| // We have an assembler directive that takes care of the whole line table. |
| OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); |
| } |
| |
| CodeViewDebug::LocalVarDefRange |
| CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { |
| LocalVarDefRange DR; |
| DR.InMemory = -1; |
| DR.DataOffset = Offset; |
| assert(DR.DataOffset == Offset && "truncation"); |
| DR.IsSubfield = 0; |
| DR.StructOffset = 0; |
| DR.CVRegister = CVRegister; |
| return DR; |
| } |
| |
| void CodeViewDebug::collectVariableInfoFromMFTable( |
| DenseSet<InlinedEntity> &Processed) { |
| const MachineFunction &MF = *Asm->MF; |
| const TargetSubtargetInfo &TSI = MF.getSubtarget(); |
| const TargetFrameLowering *TFI = TSI.getFrameLowering(); |
| const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); |
| |
| for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { |
| if (!VI.Var) |
| continue; |
| assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && |
| "Expected inlined-at fields to agree"); |
| |
| Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); |
| LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); |
| |
| // If variable scope is not found then skip this variable. |
| if (!Scope) |
| continue; |
| |
| // If the variable has an attached offset expression, extract it. |
| // FIXME: Try to handle DW_OP_deref as well. |
| int64_t ExprOffset = 0; |
| bool Deref = false; |
| if (VI.Expr) { |
| // If there is one DW_OP_deref element, use offset of 0 and keep going. |
| if (VI.Expr->getNumElements() == 1 && |
| VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) |
| Deref = true; |
| else if (!VI.Expr->extractIfOffset(ExprOffset)) |
| continue; |
| } |
| |
| // Get the frame register used and the offset. |
| Register FrameReg; |
| StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); |
| uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); |
| |
| assert(!FrameOffset.getScalable() && |
| "Frame offsets with a scalable component are not supported"); |
| |
| // Calculate the label ranges. |
| LocalVarDefRange DefRange = |
| createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); |
| |
| for (const InsnRange &Range : Scope->getRanges()) { |
| const MCSymbol *Begin = getLabelBeforeInsn(Range.first); |
| const MCSymbol *End = getLabelAfterInsn(Range.second); |
| End = End ? End : Asm->getFunctionEnd(); |
| DefRange.Ranges.emplace_back(Begin, End); |
| } |
| |
| LocalVariable Var; |
| Var.DIVar = VI.Var; |
| Var.DefRanges.emplace_back(std::move(DefRange)); |
| if (Deref) |
| Var.UseReferenceType = true; |
| |
| recordLocalVariable(std::move(Var), Scope); |
| } |
| } |
| |
| static bool canUseReferenceType(const DbgVariableLocation &Loc) { |
| return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; |
| } |
| |
| static bool needsReferenceType(const DbgVariableLocation &Loc) { |
| return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; |
| } |
| |
| void CodeViewDebug::calculateRanges( |
| LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { |
| const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); |
| |
| // Calculate the definition ranges. |
| for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { |
| const auto &Entry = *I; |
| if (!Entry.isDbgValue()) |
| continue; |
| const MachineInstr *DVInst = Entry.getInstr(); |
| assert(DVInst->isDebugValue() && "Invalid History entry"); |
| // FIXME: Find a way to represent constant variables, since they are |
| // relatively common. |
| Optional<DbgVariableLocation> Location = |
| DbgVariableLocation::extractFromMachineInstruction(*DVInst); |
| if (!Location) |
| continue; |
| |
| // CodeView can only express variables in register and variables in memory |
| // at a constant offset from a register. However, for variables passed |
| // indirectly by pointer, it is common for that pointer to be spilled to a |
| // stack location. For the special case of one offseted load followed by a |
| // zero offset load (a pointer spilled to the stack), we change the type of |
| // the local variable from a value type to a reference type. This tricks the |
| // debugger into doing the load for us. |
| if (Var.UseReferenceType) { |
| // We're using a reference type. Drop the last zero offset load. |
| if (canUseReferenceType(*Location)) |
| Location->LoadChain.pop_back(); |
| else |
| continue; |
| } else if (needsReferenceType(*Location)) { |
| // This location can't be expressed without switching to a reference type. |
| // Start over using that. |
| Var.UseReferenceType = true; |
| Var.DefRanges.clear(); |
| calculateRanges(Var, Entries); |
| return; |
| } |
| |
| // We can only handle a register or an offseted load of a register. |
| if (Location->Register == 0 || Location->LoadChain.size() > 1) |
| continue; |
| { |
| LocalVarDefRange DR; |
| DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); |
| DR.InMemory = !Location->LoadChain.empty(); |
| DR.DataOffset = |
| !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; |
| if (Location->FragmentInfo) { |
| DR.IsSubfield = true; |
| DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; |
| } else { |
| DR.IsSubfield = false; |
| DR.StructOffset = 0; |
| } |
| |
| if (Var.DefRanges.empty() || |
| Var.DefRanges.back().isDifferentLocation(DR)) { |
| Var.DefRanges.emplace_back(std::move(DR)); |
| } |
| } |
| |
| // Compute the label range. |
| const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); |
| const MCSymbol *End; |
| if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { |
| auto &EndingEntry = Entries[Entry.getEndIndex()]; |
| End = EndingEntry.isDbgValue() |
| ? getLabelBeforeInsn(EndingEntry.getInstr()) |
| : getLabelAfterInsn(EndingEntry.getInstr()); |
| } else |
| End = Asm->getFunctionEnd(); |
| |
| // If the last range end is our begin, just extend the last range. |
| // Otherwise make a new range. |
| SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = |
| Var.DefRanges.back().Ranges; |
| if (!R.empty() && R.back().second == Begin) |
| R.back().second = End; |
| else |
| R.emplace_back(Begin, End); |
| |
| // FIXME: Do more range combining. |
| } |
| } |
| |
| void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { |
| DenseSet<InlinedEntity> Processed; |
| // Grab the variable info that was squirreled away in the MMI side-table. |
| collectVariableInfoFromMFTable(Processed); |
| |
| for (const auto &I : DbgValues) { |
| InlinedEntity IV = I.first; |
| if (Processed.count(IV)) |
| continue; |
| const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); |
| const DILocation *InlinedAt = IV.second; |
| |
| // Instruction ranges, specifying where IV is accessible. |
| const auto &Entries = I.second; |
| |
| LexicalScope *Scope = nullptr; |
| if (InlinedAt) |
| Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); |
| else |
| Scope = LScopes.findLexicalScope(DIVar->getScope()); |
| // If variable scope is not found then skip this variable. |
| if (!Scope) |
| continue; |
| |
| LocalVariable Var; |
| Var.DIVar = DIVar; |
| |
| calculateRanges(Var, Entries); |
| recordLocalVariable(std::move(Var), Scope); |
| } |
| } |
| |
| void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { |
| const TargetSubtargetInfo &TSI = MF->getSubtarget(); |
| const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| const Function &GV = MF->getFunction(); |
| auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); |
| assert(Insertion.second && "function already has info"); |
| CurFn = Insertion.first->second.get(); |
| CurFn->FuncId = NextFuncId++; |
| CurFn->Begin = Asm->getFunctionBegin(); |
| |
| // The S_FRAMEPROC record reports the stack size, and how many bytes of |
| // callee-saved registers were used. For targets that don't use a PUSH |
| // instruction (AArch64), this will be zero. |
| CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); |
| CurFn->FrameSize = MFI.getStackSize(); |
| CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); |
| CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF); |
| |
| // For this function S_FRAMEPROC record, figure out which codeview register |
| // will be the frame pointer. |
| CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. |
| CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. |
| if (CurFn->FrameSize > 0) { |
| if (!TSI.getFrameLowering()->hasFP(*MF)) { |
| CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; |
| CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; |
| } else { |
| // If there is an FP, parameters are always relative to it. |
| CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; |
| if (CurFn->HasStackRealignment) { |
| // If the stack needs realignment, locals are relative to SP or VFRAME. |
| CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; |
| } else { |
| // Otherwise, locals are relative to EBP, and we probably have VLAs or |
| // other stack adjustments. |
| CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; |
| } |
| } |
| } |
| |
| // Compute other frame procedure options. |
| FrameProcedureOptions FPO = FrameProcedureOptions::None; |
| if (MFI.hasVarSizedObjects()) |
| FPO |= FrameProcedureOptions::HasAlloca; |
| if (MF->exposesReturnsTwice()) |
| FPO |= FrameProcedureOptions::HasSetJmp; |
| // FIXME: Set HasLongJmp if we ever track that info. |
| if (MF->hasInlineAsm()) |
| FPO |= FrameProcedureOptions::HasInlineAssembly; |
| if (GV.hasPersonalityFn()) { |
| if (isAsynchronousEHPersonality( |
| classifyEHPersonality(GV.getPersonalityFn()))) |
| FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; |
| else |
| FPO |= FrameProcedureOptions::HasExceptionHandling; |
| } |
| if (GV.hasFnAttribute(Attribute::InlineHint)) |
| FPO |= FrameProcedureOptions::MarkedInline; |
| if (GV.hasFnAttribute(Attribute::Naked)) |
| FPO |= FrameProcedureOptions::Naked; |
| if (MFI.hasStackProtectorIndex()) |
| FPO |= FrameProcedureOptions::SecurityChecks; |
| FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); |
| FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); |
| if (Asm->TM.getOptLevel() != CodeGenOpt::None && |
| !GV.hasOptSize() && !GV.hasOptNone()) |
| FPO |= FrameProcedureOptions::OptimizedForSpeed; |
| if (GV.hasProfileData()) { |
| FPO |= FrameProcedureOptions::ValidProfileCounts; |
| FPO |= FrameProcedureOptions::ProfileGuidedOptimization; |
| } |
| // FIXME: Set GuardCfg when it is implemented. |
| CurFn->FrameProcOpts = FPO; |
| |
| OS.EmitCVFuncIdDirective(CurFn->FuncId); |
| |
| // Find the end of the function prolog. First known non-DBG_VALUE and |
| // non-frame setup location marks the beginning of the function body. |
| // FIXME: is there a simpler a way to do this? Can we just search |
| // for the first instruction of the function, not the last of the prolog? |
| DebugLoc PrologEndLoc; |
| bool EmptyPrologue = true; |
| for (const auto &MBB : *MF) { |
| for (const auto &MI : MBB) { |
| if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && |
| MI.getDebugLoc()) { |
| PrologEndLoc = MI.getDebugLoc(); |
| break; |
| } else if (!MI.isMetaInstruction()) { |
| EmptyPrologue = false; |
| } |
| } |
| } |
| |
| // Record beginning of function if we have a non-empty prologue. |
| if (PrologEndLoc && !EmptyPrologue) { |
| DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); |
| maybeRecordLocation(FnStartDL, MF); |
| } |
| |
| // Find heap alloc sites and emit labels around them. |
| for (const auto &MBB : *MF) { |
| for (const auto &MI : MBB) { |
| if (MI.getHeapAllocMarker()) { |
| requestLabelBeforeInsn(&MI); |
| requestLabelAfterInsn(&MI); |
| } |
| } |
| } |
| } |
| |
| static bool shouldEmitUdt(const DIType *T) { |
| if (!T) |
| return false; |
| |
| // MSVC does not emit UDTs for typedefs that are scoped to classes. |
| if (T->getTag() == dwarf::DW_TAG_typedef) { |
| if (DIScope *Scope = T->getScope()) { |
| switch (Scope->getTag()) { |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_union_type: |
| return false; |
| default: |
| // do nothing. |
| ; |
| } |
| } |
| } |
| |
| while (true) { |
| if (!T || T->isForwardDecl()) |
| return false; |
| |
| const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); |
| if (!DT) |
| return true; |
| T = DT->getBaseType(); |
| } |
| return true; |
| } |
| |
| void CodeViewDebug::addToUDTs(const DIType *Ty) { |
| // Don't record empty UDTs. |
| if (Ty->getName().empty()) |
| return; |
| if (!shouldEmitUdt(Ty)) |
| return; |
| |
| SmallVector<StringRef, 5> ParentScopeNames; |
| const DISubprogram *ClosestSubprogram = |
| collectParentScopeNames(Ty->getScope(), ParentScopeNames); |
| |
| std::string FullyQualifiedName = |
| formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); |
| |
| if (ClosestSubprogram == nullptr) { |
| GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); |
| } else if (ClosestSubprogram == CurrentSubprogram) { |
| LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); |
| } |
| |
| // TODO: What if the ClosestSubprogram is neither null or the current |
| // subprogram? Currently, the UDT just gets dropped on the floor. |
| // |
| // The current behavior is not desirable. To get maximal fidelity, we would |
| // need to perform all type translation before beginning emission of .debug$S |
| // and then make LocalUDTs a member of FunctionInfo |
| } |
| |
| TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { |
| // Generic dispatch for lowering an unknown type. |
| switch (Ty->getTag()) { |
| case dwarf::DW_TAG_array_type: |
| return lowerTypeArray(cast<DICompositeType>(Ty)); |
| case dwarf::DW_TAG_typedef: |
| return lowerTypeAlias(cast<DIDerivedType>(Ty)); |
| case dwarf::DW_TAG_base_type: |
| return lowerTypeBasic(cast<DIBasicType>(Ty)); |
| case dwarf::DW_TAG_pointer_type: |
| if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") |
| return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); |
| LLVM_FALLTHROUGH; |
| case dwarf::DW_TAG_reference_type: |
| case dwarf::DW_TAG_rvalue_reference_type: |
| return lowerTypePointer(cast<DIDerivedType>(Ty)); |
| case dwarf::DW_TAG_ptr_to_member_type: |
| return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); |
| case dwarf::DW_TAG_restrict_type: |
| case dwarf::DW_TAG_const_type: |
| case dwarf::DW_TAG_volatile_type: |
| // TODO: add support for DW_TAG_atomic_type here |
| return lowerTypeModifier(cast<DIDerivedType>(Ty)); |
| case dwarf::DW_TAG_subroutine_type: |
| if (ClassTy) { |
| // The member function type of a member function pointer has no |
| // ThisAdjustment. |
| return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, |
| /*ThisAdjustment=*/0, |
| /*IsStaticMethod=*/false); |
| } |
| return lowerTypeFunction(cast<DISubroutineType>(Ty)); |
| case dwarf::DW_TAG_enumeration_type: |
| return lowerTypeEnum(cast<DICompositeType>(Ty)); |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| return lowerTypeClass(cast<DICompositeType>(Ty)); |
| case dwarf::DW_TAG_union_type: |
| return lowerTypeUnion(cast<DICompositeType>(Ty)); |
| case dwarf::DW_TAG_string_type: |
| return lowerTypeString(cast<DIStringType>(Ty)); |
| case dwarf::DW_TAG_unspecified_type: |
| if (Ty->getName() == "decltype(nullptr)") |
| return TypeIndex::NullptrT(); |
| return TypeIndex::None(); |
| default: |
| // Use the null type index. |
| return TypeIndex(); |
| } |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { |
| TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); |
| StringRef TypeName = Ty->getName(); |
| |
| addToUDTs(Ty); |
| |
| if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && |
| TypeName == "HRESULT") |
| return TypeIndex(SimpleTypeKind::HResult); |
| if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && |
| TypeName == "wchar_t") |
| return TypeIndex(SimpleTypeKind::WideCharacter); |
| |
| return UnderlyingTypeIndex; |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { |
| const DIType *ElementType = Ty->getBaseType(); |
| TypeIndex ElementTypeIndex = getTypeIndex(ElementType); |
| // IndexType is size_t, which depends on the bitness of the target. |
| TypeIndex IndexType = getPointerSizeInBytes() == 8 |
| ? TypeIndex(SimpleTypeKind::UInt64Quad) |
| : TypeIndex(SimpleTypeKind::UInt32Long); |
| |
| uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; |
| |
| // Add subranges to array type. |
| DINodeArray Elements = Ty->getElements(); |
| for (int i = Elements.size() - 1; i >= 0; --i) { |
| const DINode *Element = Elements[i]; |
| assert(Element->getTag() == dwarf::DW_TAG_subrange_type); |
| |
| const DISubrange *Subrange = cast<DISubrange>(Element); |
| int64_t Count = -1; |
| |
| // If Subrange has a Count field, use it. |
| // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1), |
| // where lowerbound is from the LowerBound field of the Subrange, |
| // or the language default lowerbound if that field is unspecified. |
| if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>()) |
| Count = CI->getSExtValue(); |
| else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) { |
| // Fortran uses 1 as the default lowerbound; other languages use 0. |
| int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0; |
| auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); |
| Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound; |
| Count = UI->getSExtValue() - Lowerbound + 1; |
| } |
| |
| // Forward declarations of arrays without a size and VLAs use a count of -1. |
| // Emit a count of zero in these cases to match what MSVC does for arrays |
| // without a size. MSVC doesn't support VLAs, so it's not clear what we |
| // should do for them even if we could distinguish them. |
| if (Count == -1) |
| Count = 0; |
| |
| // Update the element size and element type index for subsequent subranges. |
| ElementSize *= Count; |
| |
| // If this is the outermost array, use the size from the array. It will be |
| // more accurate if we had a VLA or an incomplete element type size. |
| uint64_t ArraySize = |
| (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; |
| |
| StringRef Name = (i == 0) ? Ty->getName() : ""; |
| ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); |
| ElementTypeIndex = TypeTable.writeLeafType(AR); |
| } |
| |
| return ElementTypeIndex; |
| } |
| |
| // This function lowers a Fortran character type (DIStringType). |
| // Note that it handles only the character*n variant (using SizeInBits |
| // field in DIString to describe the type size) at the moment. |
| // Other variants (leveraging the StringLength and StringLengthExp |
| // fields in DIStringType) remain TBD. |
| TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) { |
| TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter); |
| uint64_t ArraySize = Ty->getSizeInBits() >> 3; |
| StringRef Name = Ty->getName(); |
| // IndexType is size_t, which depends on the bitness of the target. |
| TypeIndex IndexType = getPointerSizeInBytes() == 8 |
| ? TypeIndex(SimpleTypeKind::UInt64Quad) |
| : TypeIndex(SimpleTypeKind::UInt32Long); |
| |
| // Create a type of character array of ArraySize. |
| ArrayRecord AR(CharType, IndexType, ArraySize, Name); |
| |
| return TypeTable.writeLeafType(AR); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { |
| TypeIndex Index; |
| dwarf::TypeKind Kind; |
| uint32_t ByteSize; |
| |
| Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); |
| ByteSize = Ty->getSizeInBits() / 8; |
| |
| SimpleTypeKind STK = SimpleTypeKind::None; |
| switch (Kind) { |
| case dwarf::DW_ATE_address: |
| // FIXME: Translate |
| break; |
| case dwarf::DW_ATE_boolean: |
| switch (ByteSize) { |
| case 1: STK = SimpleTypeKind::Boolean8; break; |
| case 2: STK = SimpleTypeKind::Boolean16; break; |
| case 4: STK = SimpleTypeKind::Boolean32; break; |
| case 8: STK = SimpleTypeKind::Boolean64; break; |
| case 16: STK = SimpleTypeKind::Boolean128; break; |
| } |
| break; |
| case dwarf::DW_ATE_complex_float: |
| switch (ByteSize) { |
| case 2: STK = SimpleTypeKind::Complex16; break; |
| case 4: STK = SimpleTypeKind::Complex32; break; |
| case 8: STK = SimpleTypeKind::Complex64; break; |
| case 10: STK = SimpleTypeKind::Complex80; break; |
| case 16: STK = SimpleTypeKind::Complex128; break; |
| } |
| break; |
| case dwarf::DW_ATE_float: |
| switch (ByteSize) { |
| case 2: STK = SimpleTypeKind::Float16; break; |
| case 4: STK = SimpleTypeKind::Float32; break; |
| case 6: STK = SimpleTypeKind::Float48; break; |
| case 8: STK = SimpleTypeKind::Float64; break; |
| case 10: STK = SimpleTypeKind::Float80; break; |
| case 16: STK = SimpleTypeKind::Float128; break; |
| } |
| break; |
| case dwarf::DW_ATE_signed: |
| switch (ByteSize) { |
| case 1: STK = SimpleTypeKind::SignedCharacter; break; |
| case 2: STK = SimpleTypeKind::Int16Short; break; |
| case 4: STK = SimpleTypeKind::Int32; break; |
| case 8: STK = SimpleTypeKind::Int64Quad; break; |
| case 16: STK = SimpleTypeKind::Int128Oct; break; |
| } |
| break; |
| case dwarf::DW_ATE_unsigned: |
| switch (ByteSize) { |
| case 1: STK = SimpleTypeKind::UnsignedCharacter; break; |
| case 2: STK = SimpleTypeKind::UInt16Short; break; |
| case 4: STK = SimpleTypeKind::UInt32; break; |
| case 8: STK = SimpleTypeKind::UInt64Quad; break; |
| case 16: STK = SimpleTypeKind::UInt128Oct; break; |
| } |
| break; |
| case dwarf::DW_ATE_UTF: |
| switch (ByteSize) { |
| case 2: STK = SimpleTypeKind::Character16; break; |
| case 4: STK = SimpleTypeKind::Character32; break; |
| } |
| break; |
| case dwarf::DW_ATE_signed_char: |
| if (ByteSize == 1) |
| STK = SimpleTypeKind::SignedCharacter; |
| break; |
| case dwarf::DW_ATE_unsigned_char: |
| if (ByteSize == 1) |
| STK = SimpleTypeKind::UnsignedCharacter; |
| break; |
| default: |
| break; |
| } |
| |
| // Apply some fixups based on the source-level type name. |
| // Include some amount of canonicalization from an old naming scheme Clang |
| // used to use for integer types (in an outdated effort to be compatible with |
| // GCC's debug info/GDB's behavior, which has since been addressed). |
| if (STK == SimpleTypeKind::Int32 && |
| (Ty->getName() == "long int" || Ty->getName() == "long")) |
| STK = SimpleTypeKind::Int32Long; |
| if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" || |
| Ty->getName() == "unsigned long")) |
| STK = SimpleTypeKind::UInt32Long; |
| if (STK == SimpleTypeKind::UInt16Short && |
| (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) |
| STK = SimpleTypeKind::WideCharacter; |
| if ((STK == SimpleTypeKind::SignedCharacter || |
| STK == SimpleTypeKind::UnsignedCharacter) && |
| Ty->getName() == "char") |
| STK = SimpleTypeKind::NarrowCharacter; |
| |
| return TypeIndex(STK); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, |
| PointerOptions PO) { |
| TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); |
| |
| // Pointers to simple types without any options can use SimpleTypeMode, rather |
| // than having a dedicated pointer type record. |
| if (PointeeTI.isSimple() && PO == PointerOptions::None && |
| PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && |
| Ty->getTag() == dwarf::DW_TAG_pointer_type) { |
| SimpleTypeMode Mode = Ty->getSizeInBits() == 64 |
| ? SimpleTypeMode::NearPointer64 |
| : SimpleTypeMode::NearPointer32; |
| return TypeIndex(PointeeTI.getSimpleKind(), Mode); |
| } |
| |
| PointerKind PK = |
| Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; |
| PointerMode PM = PointerMode::Pointer; |
| switch (Ty->getTag()) { |
| default: llvm_unreachable("not a pointer tag type"); |
| case dwarf::DW_TAG_pointer_type: |
| PM = PointerMode::Pointer; |
| break; |
| case dwarf::DW_TAG_reference_type: |
| PM = PointerMode::LValueReference; |
| break; |
| case dwarf::DW_TAG_rvalue_reference_type: |
| PM = PointerMode::RValueReference; |
| break; |
| } |
| |
| if (Ty->isObjectPointer()) |
| PO |= PointerOptions::Const; |
| |
| PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); |
| return TypeTable.writeLeafType(PR); |
| } |
| |
| static PointerToMemberRepresentation |
| translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { |
| // SizeInBytes being zero generally implies that the member pointer type was |
| // incomplete, which can happen if it is part of a function prototype. In this |
| // case, use the unknown model instead of the general model. |
| if (IsPMF) { |
| switch (Flags & DINode::FlagPtrToMemberRep) { |
| case 0: |
| return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown |
| : PointerToMemberRepresentation::GeneralFunction; |
| case DINode::FlagSingleInheritance: |
| return PointerToMemberRepresentation::SingleInheritanceFunction; |
| case DINode::FlagMultipleInheritance: |
| return PointerToMemberRepresentation::MultipleInheritanceFunction; |
| case DINode::FlagVirtualInheritance: |
| return PointerToMemberRepresentation::VirtualInheritanceFunction; |
| } |
| } else { |
| switch (Flags & DINode::FlagPtrToMemberRep) { |
| case 0: |
| return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown |
| : PointerToMemberRepresentation::GeneralData; |
| case DINode::FlagSingleInheritance: |
| return PointerToMemberRepresentation::SingleInheritanceData; |
| case DINode::FlagMultipleInheritance: |
| return PointerToMemberRepresentation::MultipleInheritanceData; |
| case DINode::FlagVirtualInheritance: |
| return PointerToMemberRepresentation::VirtualInheritanceData; |
| } |
| } |
| llvm_unreachable("invalid ptr to member representation"); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, |
| PointerOptions PO) { |
| assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); |
| bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); |
| TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); |
| TypeIndex PointeeTI = |
| getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); |
| PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 |
| : PointerKind::Near32; |
| PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction |
| : PointerMode::PointerToDataMember; |
| |
| assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); |
| uint8_t SizeInBytes = Ty->getSizeInBits() / 8; |
| MemberPointerInfo MPI( |
| ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); |
| PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); |
| return TypeTable.writeLeafType(PR); |
| } |
| |
| /// Given a DWARF calling convention, get the CodeView equivalent. If we don't |
| /// have a translation, use the NearC convention. |
| static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { |
| switch (DwarfCC) { |
| case dwarf::DW_CC_normal: return CallingConvention::NearC; |
| case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; |
| case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; |
| case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; |
| case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; |
| case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; |
| } |
| return CallingConvention::NearC; |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { |
| ModifierOptions Mods = ModifierOptions::None; |
| PointerOptions PO = PointerOptions::None; |
| bool IsModifier = true; |
| const DIType *BaseTy = Ty; |
| while (IsModifier && BaseTy) { |
| // FIXME: Need to add DWARF tags for __unaligned and _Atomic |
| switch (BaseTy->getTag()) { |
| case dwarf::DW_TAG_const_type: |
| Mods |= ModifierOptions::Const; |
| PO |= PointerOptions::Const; |
| break; |
| case dwarf::DW_TAG_volatile_type: |
| Mods |= ModifierOptions::Volatile; |
| PO |= PointerOptions::Volatile; |
| break; |
| case dwarf::DW_TAG_restrict_type: |
| // Only pointer types be marked with __restrict. There is no known flag |
| // for __restrict in LF_MODIFIER records. |
| PO |= PointerOptions::Restrict; |
| break; |
| default: |
| IsModifier = false; |
| break; |
| } |
| if (IsModifier) |
| BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); |
| } |
| |
| // Check if the inner type will use an LF_POINTER record. If so, the |
| // qualifiers will go in the LF_POINTER record. This comes up for types like |
| // 'int *const' and 'int *__restrict', not the more common cases like 'const |
| // char *'. |
| if (BaseTy) { |
| switch (BaseTy->getTag()) { |
| case dwarf::DW_TAG_pointer_type: |
| case dwarf::DW_TAG_reference_type: |
| case dwarf::DW_TAG_rvalue_reference_type: |
| return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); |
| case dwarf::DW_TAG_ptr_to_member_type: |
| return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); |
| default: |
| break; |
| } |
| } |
| |
| TypeIndex ModifiedTI = getTypeIndex(BaseTy); |
| |
| // Return the base type index if there aren't any modifiers. For example, the |
| // metadata could contain restrict wrappers around non-pointer types. |
| if (Mods == ModifierOptions::None) |
| return ModifiedTI; |
| |
| ModifierRecord MR(ModifiedTI, Mods); |
| return TypeTable.writeLeafType(MR); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { |
| SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; |
| for (const DIType *ArgType : Ty->getTypeArray()) |
| ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); |
| |
| // MSVC uses type none for variadic argument. |
| if (ReturnAndArgTypeIndices.size() > 1 && |
| ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { |
| ReturnAndArgTypeIndices.back() = TypeIndex::None(); |
| } |
| TypeIndex ReturnTypeIndex = TypeIndex::Void(); |
| ArrayRef<TypeIndex> ArgTypeIndices = None; |
| if (!ReturnAndArgTypeIndices.empty()) { |
| auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); |
| ReturnTypeIndex = ReturnAndArgTypesRef.front(); |
| ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); |
| } |
| |
| ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); |
| TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); |
| |
| CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); |
| |
| FunctionOptions FO = getFunctionOptions(Ty); |
| ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), |
| ArgListIndex); |
| return TypeTable.writeLeafType(Procedure); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, |
| const DIType *ClassTy, |
| int ThisAdjustment, |
| bool IsStaticMethod, |
| FunctionOptions FO) { |
| // Lower the containing class type. |
| TypeIndex ClassType = getTypeIndex(ClassTy); |
| |
| DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); |
| |
| unsigned Index = 0; |
| SmallVector<TypeIndex, 8> ArgTypeIndices; |
| TypeIndex ReturnTypeIndex = TypeIndex::Void(); |
| if (ReturnAndArgs.size() > Index) { |
| ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); |
| } |
| |
| // If the first argument is a pointer type and this isn't a static method, |
| // treat it as the special 'this' parameter, which is encoded separately from |
| // the arguments. |
| TypeIndex ThisTypeIndex; |
| if (!IsStaticMethod && ReturnAndArgs.size() > Index) { |
| if (const DIDerivedType *PtrTy = |
| dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { |
| if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { |
| ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); |
| Index++; |
| } |
| } |
| } |
| |
| while (Index < ReturnAndArgs.size()) |
| ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); |
| |
| // MSVC uses type none for variadic argument. |
| if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) |
| ArgTypeIndices.back() = TypeIndex::None(); |
| |
| ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); |
| TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); |
| |
| CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); |
| |
| MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, |
| ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); |
| return TypeTable.writeLeafType(MFR); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { |
| unsigned VSlotCount = |
| Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); |
| SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); |
| |
| VFTableShapeRecord VFTSR(Slots); |
| return TypeTable.writeLeafType(VFTSR); |
| } |
| |
| static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { |
| switch (Flags & DINode::FlagAccessibility) { |
| case DINode::FlagPrivate: return MemberAccess::Private; |
| case DINode::FlagPublic: return MemberAccess::Public; |
| case DINode::FlagProtected: return MemberAccess::Protected; |
| case 0: |
| // If there was no explicit access control, provide the default for the tag. |
| return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private |
| : MemberAccess::Public; |
| } |
| llvm_unreachable("access flags are exclusive"); |
| } |
| |
| static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { |
| if (SP->isArtificial()) |
| return MethodOptions::CompilerGenerated; |
| |
| // FIXME: Handle other MethodOptions. |
| |
| return MethodOptions::None; |
| } |
| |
| static MethodKind translateMethodKindFlags(const DISubprogram *SP, |
| bool Introduced) { |
| if (SP->getFlags() & DINode::FlagStaticMember) |
| return MethodKind::Static; |
| |
| switch (SP->getVirtuality()) { |
| case dwarf::DW_VIRTUALITY_none: |
| break; |
| case dwarf::DW_VIRTUALITY_virtual: |
| return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; |
| case dwarf::DW_VIRTUALITY_pure_virtual: |
| return Introduced ? MethodKind::PureIntroducingVirtual |
| : MethodKind::PureVirtual; |
| default: |
| llvm_unreachable("unhandled virtuality case"); |
| } |
| |
| return MethodKind::Vanilla; |
| } |
| |
| static TypeRecordKind getRecordKind(const DICompositeType *Ty) { |
| switch (Ty->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| return TypeRecordKind::Class; |
| case dwarf::DW_TAG_structure_type: |
| return TypeRecordKind::Struct; |
| default: |
| llvm_unreachable("unexpected tag"); |
| } |
| } |
| |
| /// Return ClassOptions that should be present on both the forward declaration |
| /// and the defintion of a tag type. |
| static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { |
| ClassOptions CO = ClassOptions::None; |
| |
| // MSVC always sets this flag, even for local types. Clang doesn't always |
| // appear to give every type a linkage name, which may be problematic for us. |
| // FIXME: Investigate the consequences of not following them here. |
| if (!Ty->getIdentifier().empty()) |
| CO |= ClassOptions::HasUniqueName; |
| |
| // Put the Nested flag on a type if it appears immediately inside a tag type. |
| // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass |
| // here. That flag is only set on definitions, and not forward declarations. |
| const DIScope *ImmediateScope = Ty->getScope(); |
| if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) |
| CO |= ClassOptions::Nested; |
| |
| // Put the Scoped flag on function-local types. MSVC puts this flag for enum |
| // type only when it has an immediate function scope. Clang never puts enums |
| // inside DILexicalBlock scopes. Enum types, as generated by clang, are |
| // always in function, class, or file scopes. |
| if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { |
| if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) |
| CO |= ClassOptions::Scoped; |
| } else { |
| for (const DIScope *Scope = ImmediateScope; Scope != nullptr; |
| Scope = Scope->getScope()) { |
| if (isa<DISubprogram>(Scope)) { |
| CO |= ClassOptions::Scoped; |
| break; |
| } |
| } |
| } |
| |
| return CO; |
| } |
| |
| void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { |
| switch (Ty->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_union_type: |
| case dwarf::DW_TAG_enumeration_type: |
| break; |
| default: |
| return; |
| } |
| |
| if (const auto *File = Ty->getFile()) { |
| StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); |
| TypeIndex SIDI = TypeTable.writeLeafType(SIDR); |
| |
| UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); |
| TypeTable.writeLeafType(USLR); |
| } |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { |
| ClassOptions CO = getCommonClassOptions(Ty); |
| TypeIndex FTI; |
| unsigned EnumeratorCount = 0; |
| |
| if (Ty->isForwardDecl()) { |
| CO |= ClassOptions::ForwardReference; |
| } else { |
| ContinuationRecordBuilder ContinuationBuilder; |
| ContinuationBuilder.begin(ContinuationRecordKind::FieldList); |
| for (const DINode *Element : Ty->getElements()) { |
| // We assume that the frontend provides all members in source declaration |
| // order, which is what MSVC does. |
| if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { |
| // FIXME: Is it correct to always emit these as unsigned here? |
| EnumeratorRecord ER(MemberAccess::Public, |
| APSInt(Enumerator->getValue(), true), |
| Enumerator->getName()); |
| ContinuationBuilder.writeMemberType(ER); |
| EnumeratorCount++; |
| } |
| } |
| FTI = TypeTable.insertRecord(ContinuationBuilder); |
| } |
| |
| std::string FullName = getFullyQualifiedName(Ty); |
| |
| EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), |
| getTypeIndex(Ty->getBaseType())); |
| TypeIndex EnumTI = TypeTable.writeLeafType(ER); |
| |
| addUDTSrcLine(Ty, EnumTI); |
| |
| return EnumTI; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ClassInfo |
| //===----------------------------------------------------------------------===// |
| |
| struct llvm::ClassInfo { |
| struct MemberInfo { |
| const DIDerivedType *MemberTypeNode; |
| uint64_t BaseOffset; |
| }; |
| // [MemberInfo] |
| using MemberList = std::vector<MemberInfo>; |
| |
| using MethodsList = TinyPtrVector<const DISubprogram *>; |
| // MethodName -> MethodsList |
| using MethodsMap = MapVector<MDString *, MethodsList>; |
| |
| /// Base classes. |
| std::vector<const DIDerivedType *> Inheritance; |
| |
| /// Direct members. |
| MemberList Members; |
| // Direct overloaded methods gathered by name. |
| MethodsMap Methods; |
| |
| TypeIndex VShapeTI; |
| |
| std::vector<const DIType *> NestedTypes; |
| }; |
| |
| void CodeViewDebug::clear() { |
| assert(CurFn == nullptr); |
| FileIdMap.clear(); |
| FnDebugInfo.clear(); |
| FileToFilepathMap.clear(); |
| LocalUDTs.clear(); |
| GlobalUDTs.clear(); |
| TypeIndices.clear(); |
| CompleteTypeIndices.clear(); |
| ScopeGlobals.clear(); |
| CVGlobalVariableOffsets.clear(); |
| } |
| |
| void CodeViewDebug::collectMemberInfo(ClassInfo &Info, |
| const DIDerivedType *DDTy) { |
| if (!DDTy->getName().empty()) { |
| Info.Members.push_back({DDTy, 0}); |
| |
| // Collect static const data members with values. |
| if ((DDTy->getFlags() & DINode::FlagStaticMember) == |
| DINode::FlagStaticMember) { |
| if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || |
| isa<ConstantFP>(DDTy->getConstant()))) |
| StaticConstMembers.push_back(DDTy); |
| } |
| |
| return; |
| } |
| |
| // An unnamed member may represent a nested struct or union. Attempt to |
| // interpret the unnamed member as a DICompositeType possibly wrapped in |
| // qualifier types. Add all the indirect fields to the current record if that |
| // succeeds, and drop the member if that fails. |
| assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); |
| uint64_t Offset = DDTy->getOffsetInBits(); |
| const DIType *Ty = DDTy->getBaseType(); |
| bool FullyResolved = false; |
| while (!FullyResolved) { |
| switch (Ty->getTag()) { |
| case dwarf::DW_TAG_const_type: |
| case dwarf::DW_TAG_volatile_type: |
| // FIXME: we should apply the qualifier types to the indirect fields |
| // rather than dropping them. |
| Ty = cast<DIDerivedType>(Ty)->getBaseType(); |
| break; |
| default: |
| FullyResolved = true; |
| break; |
| } |
| } |
| |
| const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); |
| if (!DCTy) |
| return; |
| |
| ClassInfo NestedInfo = collectClassInfo(DCTy); |
| for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) |
| Info.Members.push_back( |
| {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); |
| } |
| |
| ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { |
| ClassInfo Info; |
| // Add elements to structure type. |
| DINodeArray Elements = Ty->getElements(); |
| for (auto *Element : Elements) { |
| // We assume that the frontend provides all members in source declaration |
| // order, which is what MSVC does. |
| if (!Element) |
| continue; |
| if (auto *SP = dyn_cast<DISubprogram>(Element)) { |
| Info.Methods[SP->getRawName()].push_back(SP); |
| } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { |
| if (DDTy->getTag() == dwarf::DW_TAG_member) { |
| collectMemberInfo(Info, DDTy); |
| } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { |
| Info.Inheritance.push_back(DDTy); |
| } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && |
| DDTy->getName() == "__vtbl_ptr_type") { |
| Info.VShapeTI = getTypeIndex(DDTy); |
| } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { |
| Info.NestedTypes.push_back(DDTy); |
| } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { |
| // Ignore friend members. It appears that MSVC emitted info about |
| // friends in the past, but modern versions do not. |
| } |
| } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { |
| Info.NestedTypes.push_back(Composite); |
| } |
| // Skip other unrecognized kinds of elements. |
| } |
| return Info; |
| } |
| |
| static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { |
| // This routine is used by lowerTypeClass and lowerTypeUnion to determine |
| // if a complete type should be emitted instead of a forward reference. |
| return Ty->getName().empty() && Ty->getIdentifier().empty() && |
| !Ty->isForwardDecl(); |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { |
| // Emit the complete type for unnamed structs. C++ classes with methods |
| // which have a circular reference back to the class type are expected to |
| // be named by the front-end and should not be "unnamed". C unnamed |
| // structs should not have circular references. |
| if (shouldAlwaysEmitCompleteClassType(Ty)) { |
| // If this unnamed complete type is already in the process of being defined |
| // then the description of the type is malformed and cannot be emitted |
| // into CodeView correctly so report a fatal error. |
| auto I = CompleteTypeIndices.find(Ty); |
| if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) |
| report_fatal_error("cannot debug circular reference to unnamed type"); |
| return getCompleteTypeIndex(Ty); |
| } |
| |
| // First, construct the forward decl. Don't look into Ty to compute the |
| // forward decl options, since it might not be available in all TUs. |
| TypeRecordKind Kind = getRecordKind(Ty); |
| ClassOptions CO = |
| ClassOptions::ForwardReference | getCommonClassOptions(Ty); |
| std::string FullName = getFullyQualifiedName(Ty); |
| ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, |
| FullName, Ty->getIdentifier()); |
| TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); |
| if (!Ty->isForwardDecl()) |
| DeferredCompleteTypes.push_back(Ty); |
| return FwdDeclTI; |
| } |
| |
| TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { |
| // Construct the field list and complete type record. |
| TypeRecordKind Kind = getRecordKind(Ty); |
| ClassOptions CO = getCommonClassOptions(Ty); |
| TypeIndex FieldTI; |
| TypeIndex VShapeTI; |
| unsigned FieldCount; |
| bool ContainsNestedClass; |
| std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = |
| lowerRecordFieldList(Ty); |
| |
| if (ContainsNestedClass) |
| CO |= ClassOptions::ContainsNestedClass; |
| |
| // MSVC appears to set this flag by searching any destructor or method with |
| // FunctionOptions::Constructor among the emitted members. Clang AST has all |
| // the members, however special member functions are not yet emitted into |
| // debug information. For now checking a class's non-triviality seems enough. |
| // FIXME: not true for a nested unnamed struct. |
| if (isNonTrivial(Ty)) |
| CO |= ClassOptions::HasConstructorOrDestructor; |
| |
| std::string FullName = getFullyQualifiedName(Ty); |
| |
| uint64_t SizeInBytes = Ty->getSizeInBits() / 8; |
| |
| ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, |
| SizeInBytes, FullName, Ty->getIdentifier()); |
| TypeIndex ClassTI = TypeTable.writeLeafType(CR); |
| |
| addUDTSrcLine(Ty, ClassTI); |
| |
| addToUDTs(Ty); |
| |
| return ClassTI; |
| } |
| |
| TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { |
| // Emit the complete type for unnamed unions. |
| if (shouldAlwaysEmitCompleteClassType(Ty)) |
| return getCompleteTypeIndex(Ty); |
| |
| ClassOptions CO = |
| ClassOptions::ForwardReference | getCommonClassOptions(Ty); |
| std::string FullName = getFullyQualifiedName(Ty); |
| UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); |
| TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); |
| if (!Ty->isForwardDecl()) |
| DeferredCompleteTypes.push_back(Ty); |
| return FwdDeclTI; |
| } |
| |
| TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { |
| ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); |
| TypeIndex FieldTI; |
| unsigned FieldCount; |
| bool ContainsNestedClass; |
| std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = |
| lowerRecordFieldList(Ty); |
| |
| if (ContainsNestedClass) |
| CO |= ClassOptions::ContainsNestedClass; |
| |
| uint64_t SizeInBytes = Ty->getSizeInBits() / 8; |
| std::string FullName = getFullyQualifiedName(Ty); |
| |
| UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, |
| Ty->getIdentifier()); |
| TypeIndex UnionTI = TypeTable.writeLeafType(UR); |
| |
| addUDTSrcLine(Ty, UnionTI); |
| |
| addToUDTs(Ty); |
| |
| return UnionTI; |
| } |
| |
| std::tuple<TypeIndex, TypeIndex, unsigned, bool> |
| CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { |
| // Manually count members. MSVC appears to count everything that generates a |
| // field list record. Each individual overload in a method overload group |
| // contributes to this count, even though the overload group is a single field |
| // list record. |
| unsigned MemberCount = 0; |
| ClassInfo Info = collectClassInfo(Ty); |
| ContinuationRecordBuilder ContinuationBuilder; |
| ContinuationBuilder.begin(ContinuationRecordKind::FieldList); |
| |
| // Create base classes. |
| for (const DIDerivedType *I : Info.Inheritance) { |
| if (I->getFlags() & DINode::FlagVirtual) { |
| // Virtual base. |
| unsigned VBPtrOffset = I->getVBPtrOffset(); |
| // FIXME: Despite the accessor name, the offset is really in bytes. |
| unsigned VBTableIndex = I->getOffsetInBits() / 4; |
| auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase |
| ? TypeRecordKind::IndirectVirtualBaseClass |
| : TypeRecordKind::VirtualBaseClass; |
| VirtualBaseClassRecord VBCR( |
| RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), |
| getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, |
| VBTableIndex); |
| |
| ContinuationBuilder.writeMemberType(VBCR); |
| MemberCount++; |
| } else { |
| assert(I->getOffsetInBits() % 8 == 0 && |
| "bases must be on byte boundaries"); |
| BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), |
| getTypeIndex(I->getBaseType()), |
| I->getOffsetInBits() / 8); |
| ContinuationBuilder.writeMemberType(BCR); |
| MemberCount++; |
| } |
| } |
| |
| // Create members. |
| for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { |
| const DIDerivedType *Member = MemberInfo.MemberTypeNode; |
| TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); |
| StringRef MemberName = Member->getName(); |
| MemberAccess Access = |
| translateAccessFlags(Ty->getTag(), Member->getFlags()); |
| |
| if (Member->isStaticMember()) { |
| StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); |
| ContinuationBuilder.writeMemberType(SDMR); |
| MemberCount++; |
| continue; |
| } |
| |
| // Virtual function pointer member. |
| if ((Member->getFlags() & DINode::FlagArtificial) && |
| Member->getName().startswith("_vptr$")) { |
| VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); |
| ContinuationBuilder.writeMemberType(VFPR); |
| MemberCount++; |
| continue; |
| } |
| |
| // Data member. |
| uint64_t MemberOffsetInBits = |
| Member->getOffsetInBits() + MemberInfo.BaseOffset; |
| if (Member->isBitField()) { |
| uint64_t StartBitOffset = MemberOffsetInBits; |
| if (const auto *CI = |
| dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { |
| MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; |
| } |
| StartBitOffset -= MemberOffsetInBits; |
| BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), |
| StartBitOffset); |
| MemberBaseType = TypeTable.writeLeafType(BFR); |
| } |
| uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; |
| DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, |
| MemberName); |
| ContinuationBuilder.writeMemberType(DMR); |
| MemberCount++; |
| } |
| |
| // Create methods |
| for (auto &MethodItr : Info.Methods) { |
| StringRef Name = MethodItr.first->getString(); |
| |
| std::vector<OneMethodRecord> Methods; |
| for (const DISubprogram *SP : MethodItr.second) { |
| TypeIndex MethodType = getMemberFunctionType(SP, Ty); |
| bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; |
| |
| unsigned VFTableOffset = -1; |
| if (Introduced) |
| VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); |
| |
| Methods.push_back(OneMethodRecord( |
| MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), |
| translateMethodKindFlags(SP, Introduced), |
| translateMethodOptionFlags(SP), VFTableOffset, Name)); |
| MemberCount++; |
| } |
| assert(!Methods.empty() && "Empty methods map entry"); |
| if (Methods.size() == 1) |
| ContinuationBuilder.writeMemberType(Methods[0]); |
| else { |
| // FIXME: Make this use its own ContinuationBuilder so that |
| // MethodOverloadList can be split correctly. |
| MethodOverloadListRecord MOLR(Methods); |
| TypeIndex MethodList = TypeTable.writeLeafType(MOLR); |
| |
| OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); |
| ContinuationBuilder.writeMemberType(OMR); |
| } |
| } |
| |
| // Create nested classes. |
| for (const DIType *Nested : Info.NestedTypes) { |
| NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); |
| ContinuationBuilder.writeMemberType(R); |
| MemberCount++; |
| } |
| |
| TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); |
| return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, |
| !Info.NestedTypes.empty()); |
| } |
| |
| TypeIndex CodeViewDebug::getVBPTypeIndex() { |
| if (!VBPType.getIndex()) { |
| // Make a 'const int *' type. |
| ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); |
| TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); |
| |
| PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 |
| : PointerKind::Near32; |
| PointerMode PM = PointerMode::Pointer; |
| PointerOptions PO = PointerOptions::None; |
| PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); |
| VBPType = TypeTable.writeLeafType(PR); |
| } |
| |
| return VBPType; |
| } |
| |
| TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { |
| // The null DIType is the void type. Don't try to hash it. |
| if (!Ty) |
| return TypeIndex::Void(); |
| |
| // Check if we've already translated this type. Don't try to do a |
| // get-or-create style insertion that caches the hash lookup across the |
| // lowerType call. It will update the TypeIndices map. |
| auto I = TypeIndices.find({Ty, ClassTy}); |
| if (I != TypeIndices.end()) |
| return I->second; |
| |
| TypeLoweringScope S(*this); |
| TypeIndex TI = lowerType(Ty, ClassTy); |
| return recordTypeIndexForDINode(Ty, TI, ClassTy); |
| } |
| |
| codeview::TypeIndex |
| CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, |
| const DISubroutineType *SubroutineTy) { |
| assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && |
| "this type must be a pointer type"); |
| |
| PointerOptions Options = PointerOptions::None; |
| if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) |
| Options = PointerOptions::LValueRefThisPointer; |
| else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) |
| Options = PointerOptions::RValueRefThisPointer; |
| |
| // Check if we've already translated this type. If there is no ref qualifier |
| // on the function then we look up this pointer type with no associated class |
| // so that the TypeIndex for the this pointer can be shared with the type |
| // index for other pointers to this class type. If there is a ref qualifier |
| // then we lookup the pointer using the subroutine as the parent type. |
| auto I = TypeIndices.find({PtrTy, SubroutineTy}); |
| if (I != TypeIndices.end()) |
| return I->second; |
| |
| TypeLoweringScope S(*this); |
| TypeIndex TI = lowerTypePointer(PtrTy, Options); |
| return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); |
| } |
| |
| TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { |
| PointerRecord PR(getTypeIndex(Ty), |
| getPointerSizeInBytes() == 8 ? PointerKind::Near64 |
| : PointerKind::Near32, |
| PointerMode::LValueReference, PointerOptions::None, |
| Ty->getSizeInBits() / 8); |
| return TypeTable.writeLeafType(PR); |
| } |
| |
| TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { |
| // The null DIType is the void type. Don't try to hash it. |
| if (!Ty) |
| return TypeIndex::Void(); |
| |
| // Look through typedefs when getting the complete type index. Call |
| // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are |
| // emitted only once. |
| if (Ty->getTag() == dwarf::DW_TAG_typedef) |
| (void)getTypeIndex(Ty); |
| while (Ty->getTag() == dwarf::DW_TAG_typedef) |
| Ty = cast<DIDerivedType>(Ty)->getBaseType(); |
| |
| // If this is a non-record type, the complete type index is the same as the |
| // normal type index. Just call getTypeIndex. |
| switch (Ty->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_union_type: |
| break; |
| default: |
| return getTypeIndex(Ty); |
| } |
| |
| const auto *CTy = cast<DICompositeType>(Ty); |
| |
| TypeLoweringScope S(*this); |
| |
| // Make sure the forward declaration is emitted first. It's unclear if this |
| // is necessary, but MSVC does it, and we should follow suit until we can show |
| // otherwise. |
| // We only emit a forward declaration for named types. |
| if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { |
| TypeIndex FwdDeclTI = getTypeIndex(CTy); |
| |
| // Just use the forward decl if we don't have complete type info. This |
| // might happen if the frontend is using modules and expects the complete |
| // definition to be emitted elsewhere. |
| if (CTy->isForwardDecl()) |
| return FwdDeclTI; |
| } |
| |
| // Check if we've already translated the complete record type. |
| // Insert the type with a null TypeIndex to signify that the type is currently |
| // being lowered. |
| auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); |
| if (!InsertResult.second) |
| return InsertResult.first->second; |
| |
| TypeIndex TI; |
| switch (CTy->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| TI = lowerCompleteTypeClass(CTy); |
| break; |
| case dwarf::DW_TAG_union_type: |
| TI = lowerCompleteTypeUnion(CTy); |
| break; |
| default: |
| llvm_unreachable("not a record"); |
| } |
| |
| // Update the type index associated with this CompositeType. This cannot |
| // use the 'InsertResult' iterator above because it is potentially |
| // invalidated by map insertions which can occur while lowering the class |
| // type above. |
| CompleteTypeIndices[CTy] = TI; |
| return TI; |
| } |
| |
| /// Emit all the deferred complete record types. Try to do this in FIFO order, |
| /// and do this until fixpoint, as each complete record type typically |
| /// references |
| /// many other record types. |
| void CodeViewDebug::emitDeferredCompleteTypes() { |
| SmallVector<const DICompositeType *, 4> TypesToEmit; |
|