| //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SampleProfileLoader transformation. This pass |
| // reads a profile file generated by a sampling profiler (e.g. Linux Perf - |
| // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the |
| // profile information in the given profile. |
| // |
| // This pass generates branch weight annotations on the IR: |
| // |
| // - prof: Represents branch weights. This annotation is added to branches |
| // to indicate the weights of each edge coming out of the branch. |
| // The weight of each edge is the weight of the target block for |
| // that edge. The weight of a block B is computed as the maximum |
| // number of samples found in B. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/SampleProfile.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/CallGraphSCCPass.h" |
| #include "llvm/Analysis/InlineAdvisor.h" |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/ReplayInlineAdvisor.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/ProfileData/InstrProf.h" |
| #include "llvm/ProfileData/SampleProf.h" |
| #include "llvm/ProfileData/SampleProfReader.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ErrorOr.h" |
| #include "llvm/Support/GenericDomTree.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/ProfiledCallGraph.h" |
| #include "llvm/Transforms/IPO/SampleContextTracker.h" |
| #include "llvm/Transforms/IPO/SampleProfileProbe.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/CallPromotionUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h" |
| #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <queue> |
| #include <string> |
| #include <system_error> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace sampleprof; |
| using namespace llvm::sampleprofutil; |
| using ProfileCount = Function::ProfileCount; |
| #define DEBUG_TYPE "sample-profile" |
| #define CSINLINE_DEBUG DEBUG_TYPE "-inline" |
| |
| STATISTIC(NumCSInlined, |
| "Number of functions inlined with context sensitive profile"); |
| STATISTIC(NumCSNotInlined, |
| "Number of functions not inlined with context sensitive profile"); |
| STATISTIC(NumMismatchedProfile, |
| "Number of functions with CFG mismatched profile"); |
| STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); |
| STATISTIC(NumDuplicatedInlinesite, |
| "Number of inlined callsites with a partial distribution factor"); |
| |
| STATISTIC(NumCSInlinedHitMinLimit, |
| "Number of functions with FDO inline stopped due to min size limit"); |
| STATISTIC(NumCSInlinedHitMaxLimit, |
| "Number of functions with FDO inline stopped due to max size limit"); |
| STATISTIC( |
| NumCSInlinedHitGrowthLimit, |
| "Number of functions with FDO inline stopped due to growth size limit"); |
| |
| // Command line option to specify the file to read samples from. This is |
| // mainly used for debugging. |
| static cl::opt<std::string> SampleProfileFile( |
| "sample-profile-file", cl::init(""), cl::value_desc("filename"), |
| cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); |
| |
| // The named file contains a set of transformations that may have been applied |
| // to the symbol names between the program from which the sample data was |
| // collected and the current program's symbols. |
| static cl::opt<std::string> SampleProfileRemappingFile( |
| "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), |
| cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); |
| |
| static cl::opt<bool> ProfileSampleAccurate( |
| "profile-sample-accurate", cl::Hidden, cl::init(false), |
| cl::desc("If the sample profile is accurate, we will mark all un-sampled " |
| "callsite and function as having 0 samples. Otherwise, treat " |
| "un-sampled callsites and functions conservatively as unknown. ")); |
| |
| static cl::opt<bool> ProfileSampleBlockAccurate( |
| "profile-sample-block-accurate", cl::Hidden, cl::init(false), |
| cl::desc("If the sample profile is accurate, we will mark all un-sampled " |
| "branches and calls as having 0 samples. Otherwise, treat " |
| "them conservatively as unknown. ")); |
| |
| static cl::opt<bool> ProfileAccurateForSymsInList( |
| "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, |
| cl::init(true), |
| cl::desc("For symbols in profile symbol list, regard their profiles to " |
| "be accurate. It may be overriden by profile-sample-accurate. ")); |
| |
| static cl::opt<bool> ProfileMergeInlinee( |
| "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), |
| cl::desc("Merge past inlinee's profile to outline version if sample " |
| "profile loader decided not to inline a call site. It will " |
| "only be enabled when top-down order of profile loading is " |
| "enabled. ")); |
| |
| static cl::opt<bool> ProfileTopDownLoad( |
| "sample-profile-top-down-load", cl::Hidden, cl::init(true), |
| cl::desc("Do profile annotation and inlining for functions in top-down " |
| "order of call graph during sample profile loading. It only " |
| "works for new pass manager. ")); |
| |
| static cl::opt<bool> |
| UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden, |
| cl::desc("Process functions in a top-down order " |
| "defined by the profiled call graph when " |
| "-sample-profile-top-down-load is on.")); |
| cl::opt<bool> |
| SortProfiledSCC("sort-profiled-scc-member", cl::init(true), cl::Hidden, |
| cl::desc("Sort profiled recursion by edge weights.")); |
| |
| static cl::opt<bool> ProfileSizeInline( |
| "sample-profile-inline-size", cl::Hidden, cl::init(false), |
| cl::desc("Inline cold call sites in profile loader if it's beneficial " |
| "for code size.")); |
| |
| cl::opt<int> ProfileInlineGrowthLimit( |
| "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), |
| cl::desc("The size growth ratio limit for proirity-based sample profile " |
| "loader inlining.")); |
| |
| cl::opt<int> ProfileInlineLimitMin( |
| "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), |
| cl::desc("The lower bound of size growth limit for " |
| "proirity-based sample profile loader inlining.")); |
| |
| cl::opt<int> ProfileInlineLimitMax( |
| "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), |
| cl::desc("The upper bound of size growth limit for " |
| "proirity-based sample profile loader inlining.")); |
| |
| cl::opt<int> SampleHotCallSiteThreshold( |
| "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), |
| cl::desc("Hot callsite threshold for proirity-based sample profile loader " |
| "inlining.")); |
| |
| cl::opt<int> SampleColdCallSiteThreshold( |
| "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), |
| cl::desc("Threshold for inlining cold callsites")); |
| |
| static cl::opt<unsigned> ProfileICPRelativeHotness( |
| "sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25), |
| cl::desc( |
| "Relative hotness percentage threshold for indirect " |
| "call promotion in proirity-based sample profile loader inlining.")); |
| |
| static cl::opt<unsigned> ProfileICPRelativeHotnessSkip( |
| "sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1), |
| cl::desc( |
| "Skip relative hotness check for ICP up to given number of targets.")); |
| |
| static cl::opt<bool> CallsitePrioritizedInline( |
| "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore, |
| cl::init(false), |
| cl::desc("Use call site prioritized inlining for sample profile loader." |
| "Currently only CSSPGO is supported.")); |
| |
| static cl::opt<bool> UsePreInlinerDecision( |
| "sample-profile-use-preinliner", cl::Hidden, cl::ZeroOrMore, |
| cl::init(false), |
| cl::desc("Use the preinliner decisions stored in profile context.")); |
| |
| static cl::opt<bool> AllowRecursiveInline( |
| "sample-profile-recursive-inline", cl::Hidden, cl::ZeroOrMore, |
| cl::init(false), |
| cl::desc("Allow sample loader inliner to inline recursive calls.")); |
| |
| static cl::opt<std::string> ProfileInlineReplayFile( |
| "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), |
| cl::desc( |
| "Optimization remarks file containing inline remarks to be replayed " |
| "by inlining from sample profile loader."), |
| cl::Hidden); |
| |
| static cl::opt<ReplayInlinerSettings::Scope> ProfileInlineReplayScope( |
| "sample-profile-inline-replay-scope", |
| cl::init(ReplayInlinerSettings::Scope::Function), |
| cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", |
| "Replay on functions that have remarks associated " |
| "with them (default)"), |
| clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", |
| "Replay on the entire module")), |
| cl::desc("Whether inline replay should be applied to the entire " |
| "Module or just the Functions (default) that are present as " |
| "callers in remarks during sample profile inlining."), |
| cl::Hidden); |
| |
| static cl::opt<ReplayInlinerSettings::Fallback> ProfileInlineReplayFallback( |
| "sample-profile-inline-replay-fallback", |
| cl::init(ReplayInlinerSettings::Fallback::Original), |
| cl::values( |
| clEnumValN( |
| ReplayInlinerSettings::Fallback::Original, "Original", |
| "All decisions not in replay send to original advisor (default)"), |
| clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, |
| "AlwaysInline", "All decisions not in replay are inlined"), |
| clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", |
| "All decisions not in replay are not inlined")), |
| cl::desc("How sample profile inline replay treats sites that don't come " |
| "from the replay. Original: defers to original advisor, " |
| "AlwaysInline: inline all sites not in replay, NeverInline: " |
| "inline no sites not in replay"), |
| cl::Hidden); |
| |
| static cl::opt<CallSiteFormat::Format> ProfileInlineReplayFormat( |
| "sample-profile-inline-replay-format", |
| cl::init(CallSiteFormat::Format::LineColumnDiscriminator), |
| cl::values( |
| clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"), |
| clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", |
| "<Line Number>:<Column Number>"), |
| clEnumValN(CallSiteFormat::Format::LineDiscriminator, |
| "LineDiscriminator", "<Line Number>.<Discriminator>"), |
| clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, |
| "LineColumnDiscriminator", |
| "<Line Number>:<Column Number>.<Discriminator> (default)")), |
| cl::desc("How sample profile inline replay file is formatted"), cl::Hidden); |
| |
| static cl::opt<unsigned> |
| MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden, |
| cl::ZeroOrMore, |
| cl::desc("Max number of promotions for a single indirect " |
| "call callsite in sample profile loader")); |
| |
| static cl::opt<bool> OverwriteExistingWeights( |
| "overwrite-existing-weights", cl::Hidden, cl::init(false), |
| cl::desc("Ignore existing branch weights on IR and always overwrite.")); |
| |
| namespace { |
| |
| using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; |
| using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; |
| using Edge = std::pair<const BasicBlock *, const BasicBlock *>; |
| using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
| using BlockEdgeMap = |
| DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; |
| |
| class GUIDToFuncNameMapper { |
| public: |
| GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, |
| DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) |
| : CurrentReader(Reader), CurrentModule(M), |
| CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { |
| if (!CurrentReader.useMD5()) |
| return; |
| |
| for (const auto &F : CurrentModule) { |
| StringRef OrigName = F.getName(); |
| CurrentGUIDToFuncNameMap.insert( |
| {Function::getGUID(OrigName), OrigName}); |
| |
| // Local to global var promotion used by optimization like thinlto |
| // will rename the var and add suffix like ".llvm.xxx" to the |
| // original local name. In sample profile, the suffixes of function |
| // names are all stripped. Since it is possible that the mapper is |
| // built in post-thin-link phase and var promotion has been done, |
| // we need to add the substring of function name without the suffix |
| // into the GUIDToFuncNameMap. |
| StringRef CanonName = FunctionSamples::getCanonicalFnName(F); |
| if (CanonName != OrigName) |
| CurrentGUIDToFuncNameMap.insert( |
| {Function::getGUID(CanonName), CanonName}); |
| } |
| |
| // Update GUIDToFuncNameMap for each function including inlinees. |
| SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); |
| } |
| |
| ~GUIDToFuncNameMapper() { |
| if (!CurrentReader.useMD5()) |
| return; |
| |
| CurrentGUIDToFuncNameMap.clear(); |
| |
| // Reset GUIDToFuncNameMap for of each function as they're no |
| // longer valid at this point. |
| SetGUIDToFuncNameMapForAll(nullptr); |
| } |
| |
| private: |
| void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { |
| std::queue<FunctionSamples *> FSToUpdate; |
| for (auto &IFS : CurrentReader.getProfiles()) { |
| FSToUpdate.push(&IFS.second); |
| } |
| |
| while (!FSToUpdate.empty()) { |
| FunctionSamples *FS = FSToUpdate.front(); |
| FSToUpdate.pop(); |
| FS->GUIDToFuncNameMap = Map; |
| for (const auto &ICS : FS->getCallsiteSamples()) { |
| const FunctionSamplesMap &FSMap = ICS.second; |
| for (auto &IFS : FSMap) { |
| FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); |
| FSToUpdate.push(&FS); |
| } |
| } |
| } |
| } |
| |
| SampleProfileReader &CurrentReader; |
| Module &CurrentModule; |
| DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; |
| }; |
| |
| // Inline candidate used by iterative callsite prioritized inliner |
| struct InlineCandidate { |
| CallBase *CallInstr; |
| const FunctionSamples *CalleeSamples; |
| // Prorated callsite count, which will be used to guide inlining. For example, |
| // if a callsite is duplicated in LTO prelink, then in LTO postlink the two |
| // copies will get their own distribution factors and their prorated counts |
| // will be used to decide if they should be inlined independently. |
| uint64_t CallsiteCount; |
| // Call site distribution factor to prorate the profile samples for a |
| // duplicated callsite. Default value is 1.0. |
| float CallsiteDistribution; |
| }; |
| |
| // Inline candidate comparer using call site weight |
| struct CandidateComparer { |
| bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { |
| if (LHS.CallsiteCount != RHS.CallsiteCount) |
| return LHS.CallsiteCount < RHS.CallsiteCount; |
| |
| const FunctionSamples *LCS = LHS.CalleeSamples; |
| const FunctionSamples *RCS = RHS.CalleeSamples; |
| assert(LCS && RCS && "Expect non-null FunctionSamples"); |
| |
| // Tie breaker using number of samples try to favor smaller functions first |
| if (LCS->getBodySamples().size() != RCS->getBodySamples().size()) |
| return LCS->getBodySamples().size() > RCS->getBodySamples().size(); |
| |
| // Tie breaker using GUID so we have stable/deterministic inlining order |
| return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName()); |
| } |
| }; |
| |
| using CandidateQueue = |
| PriorityQueue<InlineCandidate, std::vector<InlineCandidate>, |
| CandidateComparer>; |
| |
| /// Sample profile pass. |
| /// |
| /// This pass reads profile data from the file specified by |
| /// -sample-profile-file and annotates every affected function with the |
| /// profile information found in that file. |
| class SampleProfileLoader final |
| : public SampleProfileLoaderBaseImpl<BasicBlock> { |
| public: |
| SampleProfileLoader( |
| StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, |
| std::function<AssumptionCache &(Function &)> GetAssumptionCache, |
| std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, |
| std::function<const TargetLibraryInfo &(Function &)> GetTLI) |
| : SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName)), |
| GetAC(std::move(GetAssumptionCache)), |
| GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), |
| LTOPhase(LTOPhase) {} |
| |
| bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); |
| bool runOnModule(Module &M, ModuleAnalysisManager *AM, |
| ProfileSummaryInfo *_PSI, CallGraph *CG); |
| |
| protected: |
| bool runOnFunction(Function &F, ModuleAnalysisManager *AM); |
| bool emitAnnotations(Function &F); |
| ErrorOr<uint64_t> getInstWeight(const Instruction &I) override; |
| ErrorOr<uint64_t> getProbeWeight(const Instruction &I); |
| const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; |
| const FunctionSamples * |
| findFunctionSamples(const Instruction &I) const override; |
| std::vector<const FunctionSamples *> |
| findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; |
| void findExternalInlineCandidate(CallBase *CB, const FunctionSamples *Samples, |
| DenseSet<GlobalValue::GUID> &InlinedGUIDs, |
| const StringMap<Function *> &SymbolMap, |
| uint64_t Threshold); |
| // Attempt to promote indirect call and also inline the promoted call |
| bool tryPromoteAndInlineCandidate( |
| Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, |
| uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); |
| |
| bool inlineHotFunctions(Function &F, |
| DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
| Optional<InlineCost> getExternalInlineAdvisorCost(CallBase &CB); |
| bool getExternalInlineAdvisorShouldInline(CallBase &CB); |
| InlineCost shouldInlineCandidate(InlineCandidate &Candidate); |
| bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); |
| bool |
| tryInlineCandidate(InlineCandidate &Candidate, |
| SmallVector<CallBase *, 8> *InlinedCallSites = nullptr); |
| bool |
| inlineHotFunctionsWithPriority(Function &F, |
| DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
| // Inline cold/small functions in addition to hot ones |
| bool shouldInlineColdCallee(CallBase &CallInst); |
| void emitOptimizationRemarksForInlineCandidates( |
| const SmallVectorImpl<CallBase *> &Candidates, const Function &F, |
| bool Hot); |
| std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); |
| std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG); |
| void generateMDProfMetadata(Function &F); |
| |
| /// Map from function name to Function *. Used to find the function from |
| /// the function name. If the function name contains suffix, additional |
| /// entry is added to map from the stripped name to the function if there |
| /// is one-to-one mapping. |
| StringMap<Function *> SymbolMap; |
| |
| std::function<AssumptionCache &(Function &)> GetAC; |
| std::function<TargetTransformInfo &(Function &)> GetTTI; |
| std::function<const TargetLibraryInfo &(Function &)> GetTLI; |
| |
| /// Profile tracker for different context. |
| std::unique_ptr<SampleContextTracker> ContextTracker; |
| |
| /// Flag indicating whether input profile is context-sensitive |
| bool ProfileIsCS = false; |
| |
| /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. |
| /// |
| /// We need to know the LTO phase because for example in ThinLTOPrelink |
| /// phase, in annotation, we should not promote indirect calls. Instead, |
| /// we will mark GUIDs that needs to be annotated to the function. |
| ThinOrFullLTOPhase LTOPhase; |
| |
| /// Profle Symbol list tells whether a function name appears in the binary |
| /// used to generate the current profile. |
| std::unique_ptr<ProfileSymbolList> PSL; |
| |
| /// Total number of samples collected in this profile. |
| /// |
| /// This is the sum of all the samples collected in all the functions executed |
| /// at runtime. |
| uint64_t TotalCollectedSamples = 0; |
| |
| // Information recorded when we declined to inline a call site |
| // because we have determined it is too cold is accumulated for |
| // each callee function. Initially this is just the entry count. |
| struct NotInlinedProfileInfo { |
| uint64_t entryCount; |
| }; |
| DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; |
| |
| // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for |
| // all the function symbols defined or declared in current module. |
| DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; |
| |
| // All the Names used in FunctionSamples including outline function |
| // names, inline instance names and call target names. |
| StringSet<> NamesInProfile; |
| |
| // For symbol in profile symbol list, whether to regard their profiles |
| // to be accurate. It is mainly decided by existance of profile symbol |
| // list and -profile-accurate-for-symsinlist flag, but it can be |
| // overriden by -profile-sample-accurate or profile-sample-accurate |
| // attribute. |
| bool ProfAccForSymsInList; |
| |
| // External inline advisor used to replay inline decision from remarks. |
| std::unique_ptr<InlineAdvisor> ExternalInlineAdvisor; |
| |
| // A pseudo probe helper to correlate the imported sample counts. |
| std::unique_ptr<PseudoProbeManager> ProbeManager; |
| }; |
| |
| class SampleProfileLoaderLegacyPass : public ModulePass { |
| public: |
| // Class identification, replacement for typeinfo |
| static char ID; |
| |
| SampleProfileLoaderLegacyPass( |
| StringRef Name = SampleProfileFile, |
| ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) |
| : ModulePass(ID), SampleLoader( |
| Name, SampleProfileRemappingFile, LTOPhase, |
| [&](Function &F) -> AssumptionCache & { |
| return ACT->getAssumptionCache(F); |
| }, |
| [&](Function &F) -> TargetTransformInfo & { |
| return TTIWP->getTTI(F); |
| }, |
| [&](Function &F) -> TargetLibraryInfo & { |
| return TLIWP->getTLI(F); |
| }) { |
| initializeSampleProfileLoaderLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| void dump() { SampleLoader.dump(); } |
| |
| bool doInitialization(Module &M) override { |
| return SampleLoader.doInitialization(M); |
| } |
| |
| StringRef getPassName() const override { return "Sample profile pass"; } |
| bool runOnModule(Module &M) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| } |
| |
| private: |
| SampleProfileLoader SampleLoader; |
| AssumptionCacheTracker *ACT = nullptr; |
| TargetTransformInfoWrapperPass *TTIWP = nullptr; |
| TargetLibraryInfoWrapperPass *TLIWP = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { |
| if (FunctionSamples::ProfileIsProbeBased) |
| return getProbeWeight(Inst); |
| |
| const DebugLoc &DLoc = Inst.getDebugLoc(); |
| if (!DLoc) |
| return std::error_code(); |
| |
| // Ignore all intrinsics, phinodes and branch instructions. |
| // Branch and phinodes instruction usually contains debug info from sources |
| // outside of the residing basic block, thus we ignore them during annotation. |
| if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) |
| return std::error_code(); |
| |
| // For non-CS profile, if a direct call/invoke instruction is inlined in |
| // profile (findCalleeFunctionSamples returns non-empty result), but not |
| // inlined here, it means that the inlined callsite has no sample, thus the |
| // call instruction should have 0 count. |
| // For CS profile, the callsite count of previously inlined callees is |
| // populated with the entry count of the callees. |
| if (!ProfileIsCS) |
| if (const auto *CB = dyn_cast<CallBase>(&Inst)) |
| if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) |
| return 0; |
| |
| return getInstWeightImpl(Inst); |
| } |
| |
| // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight |
| // of non-probe instruction. So if all instructions of the BB give error_code, |
| // tell the inference algorithm to infer the BB weight. |
| ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { |
| assert(FunctionSamples::ProfileIsProbeBased && |
| "Profile is not pseudo probe based"); |
| Optional<PseudoProbe> Probe = extractProbe(Inst); |
| // Ignore the non-probe instruction. If none of the instruction in the BB is |
| // probe, we choose to infer the BB's weight. |
| if (!Probe) |
| return std::error_code(); |
| |
| const FunctionSamples *FS = findFunctionSamples(Inst); |
| // If none of the instruction has FunctionSample, we choose to return zero |
| // value sample to indicate the BB is cold. This could happen when the |
| // instruction is from inlinee and no profile data is found. |
| // FIXME: This should not be affected by the source drift issue as 1) if the |
| // newly added function is top-level inliner, it won't match the CFG checksum |
| // in the function profile or 2) if it's the inlinee, the inlinee should have |
| // a profile, otherwise it wouldn't be inlined. For non-probe based profile, |
| // we can improve it by adding a switch for profile-sample-block-accurate for |
| // block level counts in the future. |
| if (!FS) |
| return 0; |
| |
| // For non-CS profile, If a direct call/invoke instruction is inlined in |
| // profile (findCalleeFunctionSamples returns non-empty result), but not |
| // inlined here, it means that the inlined callsite has no sample, thus the |
| // call instruction should have 0 count. |
| // For CS profile, the callsite count of previously inlined callees is |
| // populated with the entry count of the callees. |
| if (!ProfileIsCS) |
| if (const auto *CB = dyn_cast<CallBase>(&Inst)) |
| if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) |
| return 0; |
| |
| const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); |
| if (R) { |
| uint64_t Samples = R.get() * Probe->Factor; |
| bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); |
| if (FirstMark) { |
| ORE->emit([&]() { |
| OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); |
| Remark << "Applied " << ore::NV("NumSamples", Samples); |
| Remark << " samples from profile (ProbeId="; |
| Remark << ore::NV("ProbeId", Probe->Id); |
| Remark << ", Factor="; |
| Remark << ore::NV("Factor", Probe->Factor); |
| Remark << ", OriginalSamples="; |
| Remark << ore::NV("OriginalSamples", R.get()); |
| Remark << ")"; |
| return Remark; |
| }); |
| } |
| LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst |
| << " - weight: " << R.get() << " - factor: " |
| << format("%0.2f", Probe->Factor) << ")\n"); |
| return Samples; |
| } |
| return R; |
| } |
| |
| /// Get the FunctionSamples for a call instruction. |
| /// |
| /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined |
| /// instance in which that call instruction is calling to. It contains |
| /// all samples that resides in the inlined instance. We first find the |
| /// inlined instance in which the call instruction is from, then we |
| /// traverse its children to find the callsite with the matching |
| /// location. |
| /// |
| /// \param Inst Call/Invoke instruction to query. |
| /// |
| /// \returns The FunctionSamples pointer to the inlined instance. |
| const FunctionSamples * |
| SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { |
| const DILocation *DIL = Inst.getDebugLoc(); |
| if (!DIL) { |
| return nullptr; |
| } |
| |
| StringRef CalleeName; |
| if (Function *Callee = Inst.getCalledFunction()) |
| CalleeName = Callee->getName(); |
| |
| if (ProfileIsCS) |
| return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); |
| |
| const FunctionSamples *FS = findFunctionSamples(Inst); |
| if (FS == nullptr) |
| return nullptr; |
| |
| return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), |
| CalleeName, Reader->getRemapper()); |
| } |
| |
| /// Returns a vector of FunctionSamples that are the indirect call targets |
| /// of \p Inst. The vector is sorted by the total number of samples. Stores |
| /// the total call count of the indirect call in \p Sum. |
| std::vector<const FunctionSamples *> |
| SampleProfileLoader::findIndirectCallFunctionSamples( |
| const Instruction &Inst, uint64_t &Sum) const { |
| const DILocation *DIL = Inst.getDebugLoc(); |
| std::vector<const FunctionSamples *> R; |
| |
| if (!DIL) { |
| return R; |
| } |
| |
| auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { |
| assert(L && R && "Expect non-null FunctionSamples"); |
| if (L->getEntrySamples() != R->getEntrySamples()) |
| return L->getEntrySamples() > R->getEntrySamples(); |
| return FunctionSamples::getGUID(L->getName()) < |
| FunctionSamples::getGUID(R->getName()); |
| }; |
| |
| if (ProfileIsCS) { |
| auto CalleeSamples = |
| ContextTracker->getIndirectCalleeContextSamplesFor(DIL); |
| if (CalleeSamples.empty()) |
| return R; |
| |
| // For CSSPGO, we only use target context profile's entry count |
| // as that already includes both inlined callee and non-inlined ones.. |
| Sum = 0; |
| for (const auto *const FS : CalleeSamples) { |
| Sum += FS->getEntrySamples(); |
| R.push_back(FS); |
| } |
| llvm::sort(R, FSCompare); |
| return R; |
| } |
| |
| const FunctionSamples *FS = findFunctionSamples(Inst); |
| if (FS == nullptr) |
| return R; |
| |
| auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); |
| auto T = FS->findCallTargetMapAt(CallSite); |
| Sum = 0; |
| if (T) |
| for (const auto &T_C : T.get()) |
| Sum += T_C.second; |
| if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { |
| if (M->empty()) |
| return R; |
| for (const auto &NameFS : *M) { |
| Sum += NameFS.second.getEntrySamples(); |
| R.push_back(&NameFS.second); |
| } |
| llvm::sort(R, FSCompare); |
| } |
| return R; |
| } |
| |
| const FunctionSamples * |
| SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { |
| if (FunctionSamples::ProfileIsProbeBased) { |
| Optional<PseudoProbe> Probe = extractProbe(Inst); |
| if (!Probe) |
| return nullptr; |
| } |
| |
| const DILocation *DIL = Inst.getDebugLoc(); |
| if (!DIL) |
| return Samples; |
| |
| auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); |
| if (it.second) { |
| if (ProfileIsCS) |
| it.first->second = ContextTracker->getContextSamplesFor(DIL); |
| else |
| it.first->second = |
| Samples->findFunctionSamples(DIL, Reader->getRemapper()); |
| } |
| return it.first->second; |
| } |
| |
| /// Check whether the indirect call promotion history of \p Inst allows |
| /// the promotion for \p Candidate. |
| /// If the profile count for the promotion candidate \p Candidate is |
| /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted |
| /// for \p Inst. If we already have at least MaxNumPromotions |
| /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we |
| /// cannot promote for \p Inst anymore. |
| static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) { |
| uint32_t NumVals = 0; |
| uint64_t TotalCount = 0; |
| std::unique_ptr<InstrProfValueData[]> ValueData = |
| std::make_unique<InstrProfValueData[]>(MaxNumPromotions); |
| bool Valid = |
| getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, |
| ValueData.get(), NumVals, TotalCount, true); |
| // No valid value profile so no promoted targets have been recorded |
| // before. Ok to do ICP. |
| if (!Valid) |
| return true; |
| |
| unsigned NumPromoted = 0; |
| for (uint32_t I = 0; I < NumVals; I++) { |
| if (ValueData[I].Count != NOMORE_ICP_MAGICNUM) |
| continue; |
| |
| // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the |
| // metadata, it means the candidate has been promoted for this |
| // indirect call. |
| if (ValueData[I].Value == Function::getGUID(Candidate)) |
| return false; |
| NumPromoted++; |
| // If already have MaxNumPromotions promotion, don't do it anymore. |
| if (NumPromoted == MaxNumPromotions) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Update indirect call target profile metadata for \p Inst. |
| /// Usually \p Sum is the sum of counts of all the targets for \p Inst. |
| /// If it is 0, it means updateIDTMetaData is used to mark a |
| /// certain target to be promoted already. If it is not zero, |
| /// we expect to use it to update the total count in the value profile. |
| static void |
| updateIDTMetaData(Instruction &Inst, |
| const SmallVectorImpl<InstrProfValueData> &CallTargets, |
| uint64_t Sum) { |
| uint32_t NumVals = 0; |
| // OldSum is the existing total count in the value profile data. |
| uint64_t OldSum = 0; |
| std::unique_ptr<InstrProfValueData[]> ValueData = |
| std::make_unique<InstrProfValueData[]>(MaxNumPromotions); |
| bool Valid = |
| getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, |
| ValueData.get(), NumVals, OldSum, true); |
| |
| DenseMap<uint64_t, uint64_t> ValueCountMap; |
| if (Sum == 0) { |
| assert((CallTargets.size() == 1 && |
| CallTargets[0].Count == NOMORE_ICP_MAGICNUM) && |
| "If sum is 0, assume only one element in CallTargets " |
| "with count being NOMORE_ICP_MAGICNUM"); |
| // Initialize ValueCountMap with existing value profile data. |
| if (Valid) { |
| for (uint32_t I = 0; I < NumVals; I++) |
| ValueCountMap[ValueData[I].Value] = ValueData[I].Count; |
| } |
| auto Pair = |
| ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count); |
| // If the target already exists in value profile, decrease the total |
| // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM. |
| if (!Pair.second) { |
| OldSum -= Pair.first->second; |
| Pair.first->second = NOMORE_ICP_MAGICNUM; |
| } |
| Sum = OldSum; |
| } else { |
| // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM |
| // counts in the value profile. |
| if (Valid) { |
| for (uint32_t I = 0; I < NumVals; I++) { |
| if (ValueData[I].Count == NOMORE_ICP_MAGICNUM) |
| ValueCountMap[ValueData[I].Value] = ValueData[I].Count; |
| } |
| } |
| |
| for (const auto &Data : CallTargets) { |
| auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count); |
| if (Pair.second) |
| continue; |
| // The target represented by Data.Value has already been promoted. |
| // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease |
| // Sum by Data.Count. |
| assert(Sum >= Data.Count && "Sum should never be less than Data.Count"); |
| Sum -= Data.Count; |
| } |
| } |
| |
| SmallVector<InstrProfValueData, 8> NewCallTargets; |
| for (const auto &ValueCount : ValueCountMap) { |
| NewCallTargets.emplace_back( |
| InstrProfValueData{ValueCount.first, ValueCount.second}); |
| } |
| |
| llvm::sort(NewCallTargets, |
| [](const InstrProfValueData &L, const InstrProfValueData &R) { |
| if (L.Count != R.Count) |
| return L.Count > R.Count; |
| return L.Value > R.Value; |
| }); |
| |
| uint32_t MaxMDCount = |
| std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions)); |
| annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst, |
| NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount); |
| } |
| |
| /// Attempt to promote indirect call and also inline the promoted call. |
| /// |
| /// \param F Caller function. |
| /// \param Candidate ICP and inline candidate. |
| /// \param SumOrigin Original sum of target counts for indirect call before |
| /// promoting given candidate. |
| /// \param Sum Prorated sum of remaining target counts for indirect call |
| /// after promoting given candidate. |
| /// \param InlinedCallSite Output vector for new call sites exposed after |
| /// inlining. |
| bool SampleProfileLoader::tryPromoteAndInlineCandidate( |
| Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, |
| SmallVector<CallBase *, 8> *InlinedCallSite) { |
| auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName(); |
| auto R = SymbolMap.find(CalleeFunctionName); |
| if (R == SymbolMap.end() || !R->getValue()) |
| return false; |
| |
| auto &CI = *Candidate.CallInstr; |
| if (!doesHistoryAllowICP(CI, R->getValue()->getName())) |
| return false; |
| |
| const char *Reason = "Callee function not available"; |
| // R->getValue() != &F is to prevent promoting a recursive call. |
| // If it is a recursive call, we do not inline it as it could bloat |
| // the code exponentially. There is way to better handle this, e.g. |
| // clone the caller first, and inline the cloned caller if it is |
| // recursive. As llvm does not inline recursive calls, we will |
| // simply ignore it instead of handling it explicitly. |
| if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() && |
| R->getValue()->hasFnAttribute("use-sample-profile") && |
| R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) { |
| // For promoted target, set its value with NOMORE_ICP_MAGICNUM count |
| // in the value profile metadata so the target won't be promoted again. |
| SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{ |
| Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}}; |
| updateIDTMetaData(CI, SortedCallTargets, 0); |
| |
| auto *DI = &pgo::promoteIndirectCall( |
| CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE); |
| if (DI) { |
| Sum -= Candidate.CallsiteCount; |
| // Do not prorate the indirect callsite distribution since the original |
| // distribution will be used to scale down non-promoted profile target |
| // counts later. By doing this we lose track of the real callsite count |
| // for the leftover indirect callsite as a trade off for accurate call |
| // target counts. |
| // TODO: Ideally we would have two separate factors, one for call site |
| // counts and one is used to prorate call target counts. |
| // Do not update the promoted direct callsite distribution at this |
| // point since the original distribution combined with the callee profile |
| // will be used to prorate callsites from the callee if inlined. Once not |
| // inlined, the direct callsite distribution should be prorated so that |
| // the it will reflect the real callsite counts. |
| Candidate.CallInstr = DI; |
| if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) { |
| bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); |
| if (!Inlined) { |
| // Prorate the direct callsite distribution so that it reflects real |
| // callsite counts. |
| setProbeDistributionFactor( |
| *DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin); |
| } |
| return Inlined; |
| } |
| } |
| } else { |
| LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " |
| << Candidate.CalleeSamples->getFuncName() << " because " |
| << Reason << "\n"); |
| } |
| return false; |
| } |
| |
| bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { |
| if (!ProfileSizeInline) |
| return false; |
| |
| Function *Callee = CallInst.getCalledFunction(); |
| if (Callee == nullptr) |
| return false; |
| |
| InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), |
| GetAC, GetTLI); |
| |
| if (Cost.isNever()) |
| return false; |
| |
| if (Cost.isAlways()) |
| return true; |
| |
| return Cost.getCost() <= SampleColdCallSiteThreshold; |
| } |
| |
| void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( |
| const SmallVectorImpl<CallBase *> &Candidates, const Function &F, |
| bool Hot) { |
| for (auto I : Candidates) { |
| Function *CalledFunction = I->getCalledFunction(); |
| if (CalledFunction) { |
| ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", |
| I->getDebugLoc(), I->getParent()) |
| << "previous inlining reattempted for " |
| << (Hot ? "hotness: '" : "size: '") |
| << ore::NV("Callee", CalledFunction) << "' into '" |
| << ore::NV("Caller", &F) << "'"); |
| } |
| } |
| } |
| |
| void SampleProfileLoader::findExternalInlineCandidate( |
| CallBase *CB, const FunctionSamples *Samples, |
| DenseSet<GlobalValue::GUID> &InlinedGUIDs, |
| const StringMap<Function *> &SymbolMap, uint64_t Threshold) { |
| |
| // If ExternalInlineAdvisor wants to inline an external function |
| // make sure it's imported |
| if (CB && getExternalInlineAdvisorShouldInline(*CB)) { |
| // Samples may not exist for replayed function, if so |
| // just add the direct GUID and move on |
| if (!Samples) { |
| InlinedGUIDs.insert( |
| FunctionSamples::getGUID(CB->getCalledFunction()->getName())); |
| return; |
| } |
| // Otherwise, drop the threshold to import everything that we can |
| Threshold = 0; |
| } |
| |
| assert(Samples && "expect non-null caller profile"); |
| |
| // For AutoFDO profile, retrieve candidate profiles by walking over |
| // the nested inlinee profiles. |
| if (!ProfileIsCS) { |
| Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold); |
| return; |
| } |
| |
| ContextTrieNode *Caller = |
| ContextTracker->getContextFor(Samples->getContext()); |
| std::queue<ContextTrieNode *> CalleeList; |
| CalleeList.push(Caller); |
| while (!CalleeList.empty()) { |
| ContextTrieNode *Node = CalleeList.front(); |
| CalleeList.pop(); |
| FunctionSamples *CalleeSample = Node->getFunctionSamples(); |
| // For CSSPGO profile, retrieve candidate profile by walking over the |
| // trie built for context profile. Note that also take call targets |
| // even if callee doesn't have a corresponding context profile. |
| if (!CalleeSample) |
| continue; |
| |
| // If pre-inliner decision is used, honor that for importing as well. |
| bool PreInline = |
| UsePreInlinerDecision && |
| CalleeSample->getContext().hasAttribute(ContextShouldBeInlined); |
| if (!PreInline && CalleeSample->getEntrySamples() < Threshold) |
| continue; |
| |
| StringRef Name = CalleeSample->getFuncName(); |
| Function *Func = SymbolMap.lookup(Name); |
| // Add to the import list only when it's defined out of module. |
| if (!Func || Func->isDeclaration()) |
| InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeSample->getName())); |
| |
| // Import hot CallTargets, which may not be available in IR because full |
| // profile annotation cannot be done until backend compilation in ThinLTO. |
| for (const auto &BS : CalleeSample->getBodySamples()) |
| for (const auto &TS : BS.second.getCallTargets()) |
| if (TS.getValue() > Threshold) { |
| StringRef CalleeName = CalleeSample->getFuncName(TS.getKey()); |
| const Function *Callee = SymbolMap.lookup(CalleeName); |
| if (!Callee || Callee->isDeclaration()) |
| InlinedGUIDs.insert(FunctionSamples::getGUID(TS.getKey())); |
| } |
| |
| // Import hot child context profile associted with callees. Note that this |
| // may have some overlap with the call target loop above, but doing this |
| // based child context profile again effectively allow us to use the max of |
| // entry count and call target count to determine importing. |
| for (auto &Child : Node->getAllChildContext()) { |
| ContextTrieNode *CalleeNode = &Child.second; |
| CalleeList.push(CalleeNode); |
| } |
| } |
| } |
| |
| /// Iteratively inline hot callsites of a function. |
| /// |
| /// Iteratively traverse all callsites of the function \p F, and find if |
| /// the corresponding inlined instance exists and is hot in profile. If |
| /// it is hot enough, inline the callsites and adds new callsites of the |
| /// callee into the caller. If the call is an indirect call, first promote |
| /// it to direct call. Each indirect call is limited with a single target. |
| /// |
| /// \param F function to perform iterative inlining. |
| /// \param InlinedGUIDs a set to be updated to include all GUIDs that are |
| /// inlined in the profiled binary. |
| /// |
| /// \returns True if there is any inline happened. |
| bool SampleProfileLoader::inlineHotFunctions( |
| Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
| // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure |
| // Profile symbol list is ignored when profile-sample-accurate is on. |
| assert((!ProfAccForSymsInList || |
| (!ProfileSampleAccurate && |
| !F.hasFnAttribute("profile-sample-accurate"))) && |
| "ProfAccForSymsInList should be false when profile-sample-accurate " |
| "is enabled"); |
| |
| DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites; |
| bool Changed = false; |
| bool LocalChanged = true; |
| while (LocalChanged) { |
| LocalChanged = false; |
| SmallVector<CallBase *, 10> CIS; |
| for (auto &BB : F) { |
| bool Hot = false; |
| SmallVector<CallBase *, 10> AllCandidates; |
| SmallVector<CallBase *, 10> ColdCandidates; |
| for (auto &I : BB.getInstList()) { |
| const FunctionSamples *FS = nullptr; |
| if (auto *CB = dyn_cast<CallBase>(&I)) { |
| if (!isa<IntrinsicInst>(I)) { |
| if ((FS = findCalleeFunctionSamples(*CB))) { |
| assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && |
| "GUIDToFuncNameMap has to be populated"); |
| AllCandidates.push_back(CB); |
| if (FS->getEntrySamples() > 0 || ProfileIsCS) |
| LocalNotInlinedCallSites.try_emplace(CB, FS); |
| if (callsiteIsHot(FS, PSI, ProfAccForSymsInList)) |
| Hot = true; |
| else if (shouldInlineColdCallee(*CB)) |
| ColdCandidates.push_back(CB); |
| } else if (getExternalInlineAdvisorShouldInline(*CB)) { |
| AllCandidates.push_back(CB); |
| } |
| } |
| } |
| } |
| if (Hot || ExternalInlineAdvisor) { |
| CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); |
| emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); |
| } else { |
| CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); |
| emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); |
| } |
| } |
| for (CallBase *I : CIS) { |
| Function *CalledFunction = I->getCalledFunction(); |
| InlineCandidate Candidate = { |
| I, |
| LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I] |
| : nullptr, |
| 0 /* dummy count */, 1.0 /* dummy distribution factor */}; |
| // Do not inline recursive calls. |
| if (CalledFunction == &F) |
| continue; |
| if (I->isIndirectCall()) { |
| uint64_t Sum; |
| for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { |
| uint64_t SumOrigin = Sum; |
| if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { |
| findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, |
| PSI->getOrCompHotCountThreshold()); |
| continue; |
| } |
| if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList)) |
| continue; |
| |
| Candidate = {I, FS, FS->getEntrySamples(), 1.0}; |
| if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) { |
| LocalNotInlinedCallSites.erase(I); |
| LocalChanged = true; |
| } |
| } |
| } else if (CalledFunction && CalledFunction->getSubprogram() && |
| !CalledFunction->isDeclaration()) { |
| if (tryInlineCandidate(Candidate)) { |
| LocalNotInlinedCallSites.erase(I); |
| LocalChanged = true; |
| } |
| } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { |
| findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), |
| InlinedGUIDs, SymbolMap, |
| PSI->getOrCompHotCountThreshold()); |
| } |
| } |
| Changed |= LocalChanged; |
| } |
| |
| // For CS profile, profile for not inlined context will be merged when |
| // base profile is being trieved |
| if (ProfileIsCS) |
| return Changed; |
| |
| // Accumulate not inlined callsite information into notInlinedSamples |
| for (const auto &Pair : LocalNotInlinedCallSites) { |
| CallBase *I = Pair.getFirst(); |
| Function *Callee = I->getCalledFunction(); |
| if (!Callee || Callee->isDeclaration()) |
| continue; |
| |
| ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", |
| I->getDebugLoc(), I->getParent()) |
| << "previous inlining not repeated: '" |
| << ore::NV("Callee", Callee) << "' into '" |
| << ore::NV("Caller", &F) << "'"); |
| |
| ++NumCSNotInlined; |
| const FunctionSamples *FS = Pair.getSecond(); |
| if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { |
| continue; |
| } |
| |
| if (ProfileMergeInlinee) { |
| // A function call can be replicated by optimizations like callsite |
| // splitting or jump threading and the replicates end up sharing the |
| // sample nested callee profile instead of slicing the original inlinee's |
| // profile. We want to do merge exactly once by filtering out callee |
| // profiles with a non-zero head sample count. |
| if (FS->getHeadSamples() == 0) { |
| // Use entry samples as head samples during the merge, as inlinees |
| // don't have head samples. |
| const_cast<FunctionSamples *>(FS)->addHeadSamples( |
| FS->getEntrySamples()); |
| |
| // Note that we have to do the merge right after processing function. |
| // This allows OutlineFS's profile to be used for annotation during |
| // top-down processing of functions' annotation. |
| FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); |
| OutlineFS->merge(*FS); |
| } |
| } else { |
| auto pair = |
| notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); |
| pair.first->second.entryCount += FS->getEntrySamples(); |
| } |
| } |
| return Changed; |
| } |
| |
| bool SampleProfileLoader::tryInlineCandidate( |
| InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) { |
| |
| CallBase &CB = *Candidate.CallInstr; |
| Function *CalledFunction = CB.getCalledFunction(); |
| assert(CalledFunction && "Expect a callee with definition"); |
| DebugLoc DLoc = CB.getDebugLoc(); |
| BasicBlock *BB = CB.getParent(); |
| |
| InlineCost Cost = shouldInlineCandidate(Candidate); |
| if (Cost.isNever()) { |
| ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) |
| << "incompatible inlining"); |
| return false; |
| } |
| |
| if (!Cost) |
| return false; |
| |
| InlineFunctionInfo IFI(nullptr, GetAC); |
| IFI.UpdateProfile = false; |
| if (InlineFunction(CB, IFI).isSuccess()) { |
| // Merge the attributes based on the inlining. |
| AttributeFuncs::mergeAttributesForInlining(*BB->getParent(), |
| *CalledFunction); |
| |
| // The call to InlineFunction erases I, so we can't pass it here. |
| emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction, |
| *BB->getParent(), Cost, true, CSINLINE_DEBUG); |
| |
| // Now populate the list of newly exposed call sites. |
| if (InlinedCallSites) { |
| InlinedCallSites->clear(); |
| for (auto &I : IFI.InlinedCallSites) |
| InlinedCallSites->push_back(I); |
| } |
| |
| if (ProfileIsCS) |
| ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); |
| ++NumCSInlined; |
| |
| // Prorate inlined probes for a duplicated inlining callsite which probably |
| // has a distribution less than 100%. Samples for an inlinee should be |
| // distributed among the copies of the original callsite based on each |
| // callsite's distribution factor for counts accuracy. Note that an inlined |
| // probe may come with its own distribution factor if it has been duplicated |
| // in the inlinee body. The two factor are multiplied to reflect the |
| // aggregation of duplication. |
| if (Candidate.CallsiteDistribution < 1) { |
| for (auto &I : IFI.InlinedCallSites) { |
| if (Optional<PseudoProbe> Probe = extractProbe(*I)) |
| setProbeDistributionFactor(*I, Probe->Factor * |
| Candidate.CallsiteDistribution); |
| } |
| NumDuplicatedInlinesite++; |
| } |
| |
| return true; |
| } |
| return false; |
| } |
| |
| bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, |
| CallBase *CB) { |
| assert(CB && "Expect non-null call instruction"); |
| |
| if (isa<IntrinsicInst>(CB)) |
| return false; |
| |
| // Find the callee's profile. For indirect call, find hottest target profile. |
| const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); |
| // If ExternalInlineAdvisor wants to inline this site, do so even |
| // if Samples are not present. |
| if (!CalleeSamples && !getExternalInlineAdvisorShouldInline(*CB)) |
| return false; |
| |
| float Factor = 1.0; |
| if (Optional<PseudoProbe> Probe = extractProbe(*CB)) |
| Factor = Probe->Factor; |
| |
| uint64_t CallsiteCount = 0; |
| ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent()); |
| if (Weight) |
| CallsiteCount = Weight.get(); |
| if (CalleeSamples) |
| CallsiteCount = std::max( |
| CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor)); |
| |
| *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; |
| return true; |
| } |
| |
| Optional<InlineCost> |
| SampleProfileLoader::getExternalInlineAdvisorCost(CallBase &CB) { |
| std::unique_ptr<InlineAdvice> Advice = nullptr; |
| if (ExternalInlineAdvisor) { |
| Advice = ExternalInlineAdvisor->getAdvice(CB); |
| if (Advice) { |
| if (!Advice->isInliningRecommended()) { |
| Advice->recordUnattemptedInlining(); |
| return InlineCost::getNever("not previously inlined"); |
| } |
| Advice->recordInlining(); |
| return InlineCost::getAlways("previously inlined"); |
| } |
| } |
| |
| return {}; |
| } |
| |
| bool SampleProfileLoader::getExternalInlineAdvisorShouldInline(CallBase &CB) { |
| Optional<InlineCost> Cost = getExternalInlineAdvisorCost(CB); |
| return Cost ? !!Cost.getValue() : false; |
| } |
| |
| InlineCost |
| SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { |
| if (Optional<InlineCost> ReplayCost = |
| getExternalInlineAdvisorCost(*Candidate.CallInstr)) |
| return ReplayCost.getValue(); |
| // Adjust threshold based on call site hotness, only do this for callsite |
| // prioritized inliner because otherwise cost-benefit check is done earlier. |
| int SampleThreshold = SampleColdCallSiteThreshold; |
| if (CallsitePrioritizedInline) { |
| if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) |
| SampleThreshold = SampleHotCallSiteThreshold; |
| else if (!ProfileSizeInline) |
| return InlineCost::getNever("cold callsite"); |
| } |
| |
| Function *Callee = Candidate.CallInstr->getCalledFunction(); |
| assert(Callee && "Expect a definition for inline candidate of direct call"); |
| |
| InlineParams Params = getInlineParams(); |
| // We will ignore the threshold from inline cost, so always get full cost. |
| Params.ComputeFullInlineCost = true; |
| Params.AllowRecursiveCall = AllowRecursiveInline; |
| // Checks if there is anything in the reachable portion of the callee at |
| // this callsite that makes this inlining potentially illegal. Need to |
| // set ComputeFullInlineCost, otherwise getInlineCost may return early |
| // when cost exceeds threshold without checking all IRs in the callee. |
| // The acutal cost does not matter because we only checks isNever() to |
| // see if it is legal to inline the callsite. |
| InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, |
| GetTTI(*Callee), GetAC, GetTLI); |
| |
| // Honor always inline and never inline from call analyzer |
| if (Cost.isNever() || Cost.isAlways()) |
| return Cost; |
| |
| // With CSSPGO, the preinliner in llvm-profgen can estimate global inline |
| // decisions based on hotness as well as accurate function byte sizes for |
| // given context using function/inlinee sizes from previous build. It |
| // stores the decision in profile, and also adjust/merge context profile |
| // aiming at better context-sensitive post-inline profile quality, assuming |
| // all inline decision estimates are going to be honored by compiler. Here |
| // we replay that inline decision under `sample-profile-use-preinliner`. |
| // Note that we don't need to handle negative decision from preinliner as |
| // context profile for not inlined calls are merged by preinliner already. |
| if (UsePreInlinerDecision && Candidate.CalleeSamples) { |
| // Once two node are merged due to promotion, we're losing some context |
| // so the original context-sensitive preinliner decision should be ignored |
| // for SyntheticContext. |
| SampleContext &Context = Candidate.CalleeSamples->getContext(); |
| if (!Context.hasState(SyntheticContext) && |
| Context.hasAttribute(ContextShouldBeInlined)) |
| return InlineCost::getAlways("preinliner"); |
| } |
| |
| // For old FDO inliner, we inline the call site as long as cost is not |
| // "Never". The cost-benefit check is done earlier. |
| if (!CallsitePrioritizedInline) { |
| return InlineCost::get(Cost.getCost(), INT_MAX); |
| } |
| |
| // Otherwise only use the cost from call analyzer, but overwite threshold with |
| // Sample PGO threshold. |
| return InlineCost::get(Cost.getCost(), SampleThreshold); |
| } |
| |
| bool SampleProfileLoader::inlineHotFunctionsWithPriority( |
| Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
| assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now"); |
| |
| // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure |
| // Profile symbol list is ignored when profile-sample-accurate is on. |
| assert((!ProfAccForSymsInList || |
| (!ProfileSampleAccurate && |
| !F.hasFnAttribute("profile-sample-accurate"))) && |
| "ProfAccForSymsInList should be false when profile-sample-accurate " |
| "is enabled"); |
| |
| // Populating worklist with initial call sites from root inliner, along |
| // with call site weights. |
| CandidateQueue CQueue; |
| InlineCandidate NewCandidate; |
| for (auto &BB : F) { |
| for (auto &I : BB.getInstList()) { |
| auto *CB = dyn_cast<CallBase>(&I); |
| if (!CB) |
| continue; |
| if (getInlineCandidate(&NewCandidate, CB)) |
| CQueue.push(NewCandidate); |
| } |
| } |
| |
| // Cap the size growth from profile guided inlining. This is needed even |
| // though cost of each inline candidate already accounts for callee size, |
| // because with top-down inlining, we can grow inliner size significantly |
| // with large number of smaller inlinees each pass the cost check. |
| assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && |
| "Max inline size limit should not be smaller than min inline size " |
| "limit."); |
| unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; |
| SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); |
| SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); |
| if (ExternalInlineAdvisor) |
| SizeLimit = std::numeric_limits<unsigned>::max(); |
| |
| // Perform iterative BFS call site prioritized inlining |
| bool Changed = false; |
| while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { |
| InlineCandidate Candidate = CQueue.top(); |
| CQueue.pop(); |
| CallBase *I = Candidate.CallInstr; |
| Function *CalledFunction = I->getCalledFunction(); |
| |
| if (CalledFunction == &F) |
| continue; |
| if (I->isIndirectCall()) { |
| uint64_t Sum = 0; |
| auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); |
| uint64_t SumOrigin = Sum; |
| Sum *= Candidate.CallsiteDistribution; |
| unsigned ICPCount = 0; |
| for (const auto *FS : CalleeSamples) { |
| // TODO: Consider disable pre-lTO ICP for MonoLTO as well |
| if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { |
| findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap, |
| PSI->getOrCompHotCountThreshold()); |
| continue; |
| } |
| uint64_t EntryCountDistributed = |
| FS->getEntrySamples() * Candidate.CallsiteDistribution; |
| // In addition to regular inline cost check, we also need to make sure |
| // ICP isn't introducing excessive speculative checks even if individual |
| // target looks beneficial to promote and inline. That means we should |
| // only do ICP when there's a small number dominant targets. |
| if (ICPCount >= ProfileICPRelativeHotnessSkip && |
| EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness) |
| break; |
| // TODO: Fix CallAnalyzer to handle all indirect calls. |
| // For indirect call, we don't run CallAnalyzer to get InlineCost |
| // before actual inlining. This is because we could see two different |
| // types from the same definition, which makes CallAnalyzer choke as |
| // it's expecting matching parameter type on both caller and callee |
| // side. See example from PR18962 for the triggering cases (the bug was |
| // fixed, but we generate different types). |
| if (!PSI->isHotCount(EntryCountDistributed)) |
| break; |
| SmallVector<CallBase *, 8> InlinedCallSites; |
| // Attach function profile for promoted indirect callee, and update |
| // call site count for the promoted inline candidate too. |
| Candidate = {I, FS, EntryCountDistributed, |
| Candidate.CallsiteDistribution}; |
| if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, |
| &InlinedCallSites)) { |
| for (auto *CB : InlinedCallSites) { |
| if (getInlineCandidate(&NewCandidate, CB)) |
| CQueue.emplace(NewCandidate); |
| } |
| ICPCount++; |
| Changed = true; |
| } |
| } |
| } else if (CalledFunction && CalledFunction->getSubprogram() && |
| !CalledFunction->isDeclaration()) { |
| SmallVector<CallBase *, 8> InlinedCallSites; |
| if (tryInlineCandidate(Candidate, &InlinedCallSites)) { |
| for (auto *CB : InlinedCallSites) { |
| if (getInlineCandidate(&NewCandidate, CB)) |
| CQueue.emplace(NewCandidate); |
| } |
| Changed = true; |
| } |
| } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { |
| findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), |
| InlinedGUIDs, SymbolMap, |
| PSI->getOrCompHotCountThreshold()); |
| } |
| } |
| |
| if (!CQueue.empty()) { |
| if (SizeLimit == (unsigned)ProfileInlineLimitMax) |
| ++NumCSInlinedHitMaxLimit; |
| else if (SizeLimit == (unsigned)ProfileInlineLimitMin) |
| ++NumCSInlinedHitMinLimit; |
| else |
| ++NumCSInlinedHitGrowthLimit; |
| } |
| |
| return Changed; |
| } |
| |
| /// Returns the sorted CallTargetMap \p M by count in descending order. |
| static SmallVector<InstrProfValueData, 2> |
| GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) { |
| SmallVector<InstrProfValueData, 2> R; |
| for (const auto &I : SampleRecord::SortCallTargets(M)) { |
| R.emplace_back( |
| InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); |
| } |
| return R; |
| } |
| |
| // Generate MD_prof metadata for every branch instruction using the |
| // edge weights computed during propagation. |
| void SampleProfileLoader::generateMDProfMetadata(Function &F) { |
| // Generate MD_prof metadata for every branch instruction using the |
| // edge weights computed during propagation. |
| LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); |
| LLVMContext &Ctx = F.getContext(); |
| MDBuilder MDB(Ctx); |
| for (auto &BI : F) { |
| BasicBlock *BB = &BI; |
| |
| if (BlockWeights[BB]) { |
| for (auto &I : BB->getInstList()) { |
| if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) |
| continue; |
| if (!cast<CallBase>(I).getCalledFunction()) { |
| const DebugLoc &DLoc = I.getDebugLoc(); |
| if (!DLoc) |
| continue; |
| const DILocation *DIL = DLoc; |
| const FunctionSamples *FS = findFunctionSamples(I); |
| if (!FS) |
| continue; |
| auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); |
| auto T = FS->findCallTargetMapAt(CallSite); |
| if (!T || T.get().empty()) |
| continue; |
| if (FunctionSamples::ProfileIsProbeBased) { |
| // Prorate the callsite counts based on the pre-ICP distribution |
| // factor to reflect what is already done to the callsite before |
| // ICP, such as calliste cloning. |
| if (Optional<PseudoProbe> Probe = extractProbe(I)) { |
| if (Probe->Factor < 1) |
| T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); |
| } |
| } |
| SmallVector<InstrProfValueData, 2> SortedCallTargets = |
| GetSortedValueDataFromCallTargets(T.get()); |
| uint64_t Sum = 0; |
| for (const auto &C : T.get()) |
| Sum += C.second; |
| // With CSSPGO all indirect call targets are counted torwards the |
| // original indirect call site in the profile, including both |
| // inlined and non-inlined targets. |
| if (!FunctionSamples::ProfileIsCS) { |
| if (const FunctionSamplesMap *M = |
| FS->findFunctionSamplesMapAt(CallSite)) { |
| for (const auto &NameFS : *M) |
| Sum += NameFS.second.getEntrySamples(); |
| } |
| } |
| if (Sum) |
| updateIDTMetaData(I, SortedCallTargets, Sum); |
| else if (OverwriteExistingWeights) |
| I.setMetadata(LLVMContext::MD_prof, nullptr); |
| } else if (!isa<IntrinsicInst>(&I)) { |
| I.setMetadata(LLVMContext::MD_prof, |
| MDB.createBranchWeights( |
| {static_cast<uint32_t>(BlockWeights[BB])})); |
| } |
| } |
| } else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) { |
| // Set profile metadata (possibly annotated by LTO prelink) to zero or |
| // clear it for cold code. |
| for (auto &I : BB->getInstList()) { |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) { |
| if (cast<CallBase>(I).isIndirectCall()) |
| I.setMetadata(LLVMContext::MD_prof, nullptr); |
| else |
| I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0)); |
| } |
| } |
| } |
| |
| Instruction *TI = BB->getTerminator(); |
| if (TI->getNumSuccessors() == 1) |
| continue; |
| if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) && |
| !isa<IndirectBrInst>(TI)) |
| continue; |
| |
| DebugLoc BranchLoc = TI->getDebugLoc(); |
| LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " |
| << ((BranchLoc) ? Twine(BranchLoc.getLine()) |
| : Twine("<UNKNOWN LOCATION>")) |
| << ".\n"); |
| SmallVector<uint32_t, 4> Weights; |
| uint32_t MaxWeight = 0; |
| Instruction *MaxDestInst; |
| for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { |
| BasicBlock *Succ = TI->getSuccessor(I); |
| Edge E = std::make_pair(BB, Succ); |
| uint64_t Weight = EdgeWeights[E]; |
| LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); |
| // Use uint32_t saturated arithmetic to adjust the incoming weights, |
| // if needed. Sample counts in profiles are 64-bit unsigned values, |
| // but internally branch weights are expressed as 32-bit values. |
| if (Weight > std::numeric_limits<uint32_t>::max()) { |
| LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); |
| Weight = std::numeric_limits<uint32_t>::max(); |
| } |
| // Weight is added by one to avoid propagation errors introduced by |
| // 0 weights. |
| Weights.push_back(static_cast<uint32_t>(Weight + 1)); |
| if (Weight != 0) { |
| if (Weight > MaxWeight) { |
| MaxWeight = Weight; |
| MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); |
| } |
| } |
| } |
| |
| uint64_t TempWeight; |
| // Only set weights if there is at least one non-zero weight. |
| // In any other case, let the analyzer set weights. |
| // Do not set weights if the weights are present unless under |
| // OverwriteExistingWeights. In ThinLTO, the profile annotation is done |
| // twice. If the first annotation already set the weights, the second pass |
| // does not need to set it. With OverwriteExistingWeights, Blocks with zero |
| // weight should have their existing metadata (possibly annotated by LTO |
| // prelink) cleared. |
| if (MaxWeight > 0 && |
| (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) { |
| LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); |
| TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); |
| ORE->emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) |
| << "most popular destination for conditional branches at " |
| << ore::NV("CondBranchesLoc", BranchLoc); |
| }); |
| } else { |
| if (OverwriteExistingWeights) { |
| TI->setMetadata(LLVMContext::MD_prof, nullptr); |
| LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n"); |
| } else { |
| LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); |
| } |
| } |
| } |
| } |
| |
| /// Once all the branch weights are computed, we emit the MD_prof |
| /// metadata on BB using the computed values for each of its branches. |
| /// |
| /// \param F The function to query. |
| /// |
| /// \returns true if \p F was modified. Returns false, otherwise. |
| bool SampleProfileLoader::emitAnnotations(Function &F) { |
| bool Changed = false; |
| |
| if (FunctionSamples::ProfileIsProbeBased) { |
| if (!ProbeManager->profileIsValid(F, *Samples)) { |
| LLVM_DEBUG( |
| dbgs() << "Profile is invalid due to CFG mismatch for Function " |
| << F.getName()); |
| ++NumMismatchedProfile; |
| return false; |
| } |
| ++NumMatchedProfile; |
| } else { |
| if (getFunctionLoc(F) == 0) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Line number for the first instruction in " |
| << F.getName() << ": " << getFunctionLoc(F) << "\n"); |
| } |
| |
| DenseSet<GlobalValue::GUID> InlinedGUIDs; |
| if (ProfileIsCS && CallsitePrioritizedInline) |
| Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); |
| else |
| Changed |= inlineHotFunctions(F, InlinedGUIDs); |
| |
| Changed |= computeAndPropagateWeights(F, InlinedGUIDs); |
| |
| if (Changed) |
| generateMDProfMetadata(F); |
| |
| emitCoverageRemarks(F); |
| return Changed; |
| } |
| |
| char SampleProfileLoaderLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", |
| "Sample Profile loader", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", |
| "Sample Profile loader", false, false) |
| |
| std::unique_ptr<ProfiledCallGraph> |
| SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) { |
| std::unique_ptr<ProfiledCallGraph> ProfiledCG; |
| if (ProfileIsCS) |
| ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker); |
| else |
| ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles()); |
| |
| // Add all functions into the profiled call graph even if they are not in |
| // the profile. This makes sure functions missing from the profile still |
| // gets a chance to be processed. |
| for (auto &Node : CG) { |
| const auto *F = Node.first; |
| if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile")) |
| continue; |
| ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F)); |
| } |
| |
| return ProfiledCG; |
| } |
| |
| std::vector<Function *> |
| SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { |
| std::vector<Function *> FunctionOrderList; |
| FunctionOrderList.reserve(M.size()); |
| |
| if (!ProfileTopDownLoad && UseProfiledCallGraph) |
| errs() << "WARNING: -use-profiled-call-graph ignored, should be used " |
| "together with -sample-profile-top-down-load.\n"; |
| |
| if (!ProfileTopDownLoad || CG == nullptr) { |
| if (ProfileMergeInlinee) { |
| // Disable ProfileMergeInlinee if profile is not loaded in top down order, |
| // because the profile for a function may be used for the profile |
| // annotation of its outline copy before the profile merging of its |
| // non-inlined inline instances, and that is not the way how |
| // ProfileMergeInlinee is supposed to work. |
| ProfileMergeInlinee = false; |
| } |
| |
| for (Function &F : M) |
| if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) |
| FunctionOrderList.push_back(&F); |
| return FunctionOrderList; |
| } |
| |
| assert(&CG->getModule() == &M); |
| |
| if (UseProfiledCallGraph || |
| (ProfileIsCS && !UseProfiledCallGraph.getNumOccurrences())) { |
| // Use profiled call edges to augment the top-down order. There are cases |
| // that the top-down order computed based on the static call graph doesn't |
| // reflect real execution order. For example |
| // |
| // 1. Incomplete static call graph due to unknown indirect call targets. |
| // Adjusting the order by considering indirect call edges from the |
| // profile can enable the inlining of indirect call targets by allowing |
| // the caller processed before them. |
| // 2. Mutual call edges in an SCC. The static processing order computed for |
| // an SCC may not reflect the call contexts in the context-sensitive |
| // profile, thus may cause potential inlining to be overlooked. The |
| // function order in one SCC is being adjusted to a top-down order based |
| // on the profile to favor more inlining. This is only a problem with CS |
| // profile. |
| // 3. Transitive indirect call edges due to inlining. When a callee function |
| // (say B) is inlined into into a caller function (say A) in LTO prelink, |
| // every call edge originated from the callee B will be transferred to |
| // the caller A. If any transferred edge (say A->C) is indirect, the |
| // original profiled indirect edge B->C, even if considered, would not |
| // enforce a top-down order from the caller A to the potential indirect |
| // call target C in LTO postlink since the inlined callee B is gone from |
| // the static call graph. |
| // 4. #3 can happen even for direct call targets, due to functions defined |
| // in header files. A header function (say A), when included into source |
| // files, is defined multiple times but only one definition survives due |
| // to ODR. Therefore, the LTO prelink inlining done on those dropped |
| // definitions can be useless based on a local file scope. More |
| // importantly, the inlinee (say B), once fully inlined to a |
| // to-be-dropped A, will have no profile to consume when its outlined |
| // version is compiled. This can lead to a profile-less prelink |
| // compilation for the outlined version of B which may be called from |
| // external modules. while this isn't easy to fix, we rely on the |
| // postlink AutoFDO pipeline to optimize B. Since the survived copy of |
| // the A can be inlined in its local scope in prelink, it may not exist |
| // in the merged IR in postlink, and we'll need the profiled call edges |
| // to enforce a top-down order for the rest of the functions. |
| // |
| // Considering those cases, a profiled call graph completely independent of |
| // the static call graph is constructed based on profile data, where |
| // function objects are not even needed to handle case #3 and case 4. |
| // |
| // Note that static callgraph edges are completely ignored since they |
| // can be conflicting with profiled edges for cyclic SCCs and may result in |
| // an SCC order incompatible with profile-defined one. Using strictly |
| // profile order ensures a maximum inlining experience. On the other hand, |
| // static call edges are not so important when they don't correspond to a |
| // context in the profile. |
| |
| std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG); |
| scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get()); |
| while (!CGI.isAtEnd()) { |
| auto Range = *CGI; |
| if (SortProfiledSCC) { |
| // Sort nodes in one SCC based on callsite hotness. |
| scc_member_iterator<ProfiledCallGraph *> SI(*CGI); |
| Range = *SI; |
| } |
| for (auto *Node : Range) { |
| Function *F = SymbolMap.lookup(Node->Name); |
| if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) |
| FunctionOrderList.push_back(F); |
| } |
| ++CGI; |
| } |
| } else { |
| scc_iterator<CallGraph *> CGI = scc_begin(CG); |
| while (!CGI.isAtEnd()) { |
| for (CallGraphNode *Node : *CGI) { |
| auto *F = Node->getFunction(); |
| if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) |
| FunctionOrderList.push_back(F); |
| } |
| ++CGI; |
| } |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Function processing order:\n"; |
| for (auto F : reverse(FunctionOrderList)) { |
| dbgs() << F->getName() << "\n"; |
| } |
| }); |
| |
| std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); |
| return FunctionOrderList; |
| } |
| |
| bool SampleProfileLoader::doInitialization(Module &M, |
| FunctionAnalysisManager *FAM) { |
| auto &Ctx = M.getContext(); |
| |
| auto ReaderOrErr = SampleProfileReader::create( |
| Filename, Ctx, FSDiscriminatorPass::Base, RemappingFilename); |
| if (std::error_code EC = ReaderOrErr.getError()) { |
| std::string Msg = "Could not open profile: " + EC.message(); |
| Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); |
| return false; |
| } |
| Reader = std::move(ReaderOrErr.get()); |
| Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); |
| // set module before reading the profile so reader may be able to only |
| // read the function profiles which are used by the current module. |
| Reader->setModule(&M); |
| if (std::error_code EC = Reader->read()) { |
| std::string Msg = "profile reading failed: " + EC.message(); |
| Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); |
| return false; |
| } |
| |
| PSL = Reader->getProfileSymbolList(); |
| |
| // While profile-sample-accurate is on, ignore symbol list. |
| ProfAccForSymsInList = |
| ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; |
| if (ProfAccForSymsInList) { |
| NamesInProfile.clear(); |
| if (auto NameTable = Reader->getNameTable()) |
| NamesInProfile.insert(NameTable->begin(), NameTable->end()); |
| CoverageTracker.setProfAccForSymsInList(true); |
| } |
| |
| if (FAM && !ProfileInlineReplayFile.empty()) { |
| ExternalInlineAdvisor = getReplayInlineAdvisor( |
| M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, |
| ReplayInlinerSettings{ProfileInlineReplayFile, |
| ProfileInlineReplayScope, |
| ProfileInlineReplayFallback, |
| {ProfileInlineReplayFormat}}, |
| /*EmitRemarks=*/false); |
| } |
| |
| // Apply tweaks if context-sensitive profile is available. |
| if (Reader->profileIsCS()) { |
| ProfileIsCS = true; |
| FunctionSamples::ProfileIsCS = true; |
| |
| // Enable priority-base inliner and size inline by default for CSSPGO. |
| if (!ProfileSizeInline.getNumOccurrences()) |
| ProfileSizeInline = true; |
| if (!CallsitePrioritizedInline.getNumOccurrences()) |
| CallsitePrioritizedInline = true; |
| |
| // For CSSPGO, use preinliner decision by default when available. |
| if (!UsePreInlinerDecision.getNumOccurrences()) |
| UsePreInlinerDecision = true; |
| |
| // For CSSPGO, we also allow recursive inline to best use context profile. |
| if (!AllowRecursiveInline.getNumOccurrences()) |
| AllowRecursiveInline = true; |
| |
| // Enable iterative-BFI by default for CSSPGO. |
| if (!UseIterativeBFIInference.getNumOccurrences()) |
| UseIterativeBFIInference = true; |
| |
| // Tracker for profiles under different context |
| ContextTracker = std::make_unique<SampleContextTracker>( |
| Reader->getProfiles(), &GUIDToFuncNameMap); |
| } |
| |
| // Load pseudo probe descriptors for probe-based function samples. |
| if (Reader->profileIsProbeBased()) { |
| ProbeManager = std::make_unique<PseudoProbeManager>(M); |
| if (!ProbeManager->moduleIsProbed(M)) { |
| const char *Msg = |
| "Pseudo-probe-based profile requires SampleProfileProbePass"; |
| Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| ModulePass *llvm::createSampleProfileLoaderPass() { |
| return new SampleProfileLoaderLegacyPass(); |
| } |
| |
| ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { |
| return new SampleProfileLoaderLegacyPass(Name); |
| } |
| |
| bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, |
| ProfileSummaryInfo *_PSI, CallGraph *CG) { |
| GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); |
| |
| PSI = _PSI; |
| if (M.getProfileSummary(/* IsCS */ false) == nullptr) { |
| M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), |
| ProfileSummary::PSK_Sample); |
| PSI->refresh(); |
| } |
| // Compute the total number of samples collected in this profile. |
| for (const auto &I : Reader->getProfiles()) |
| TotalCollectedSamples += I.second.getTotalSamples(); |
| |
| auto Remapper = Reader->getRemapper(); |
| // Populate the symbol map. |
| for (const auto &N_F : M.getValueSymbolTable()) { |
| StringRef OrigName = N_F.getKey(); |
| Function *F = dyn_cast<Function>(N_F.getValue()); |
| if (F == nullptr || OrigName.empty()) |
| continue; |
| SymbolMap[OrigName] = F; |
| StringRef NewName = FunctionSamples::getCanonicalFnName(*F); |
| if (OrigName != NewName && !NewName.empty()) { |
| auto r = SymbolMap.insert(std::make_pair(NewName, F)); |
| // Failiing to insert means there is already an entry in SymbolMap, |
| // thus there are multiple functions that are mapped to the same |
| // stripped name. In this case of name conflicting, set the value |
| // to nullptr to avoid confusion. |
| if (!r.second) |
| r.first->second = nullptr; |
| OrigName = NewName; |
| } |
| // Insert the remapped names into SymbolMap. |
| if (Remapper) { |
| if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { |
| if (*MapName != OrigName && !MapName->empty()) |
| SymbolMap.insert(std::make_pair(*MapName, F)); |
| } |
| } |
| } |
| assert(SymbolMap.count(StringRef()) == 0 && |
| "No empty StringRef should be added in SymbolMap"); |
| |
| bool retval = false; |
| for (auto F : buildFunctionOrder(M, CG)) { |
| assert(!F->isDeclaration()); |
| clearFunctionData(); |
| retval |= runOnFunction(*F, AM); |
| } |
| |
| // Account for cold calls not inlined.... |
| if (!ProfileIsCS) |
| for (const std::pair<Function *, NotInlinedProfileInfo> &pair : |
| notInlinedCallInfo) |
| updateProfileCallee(pair.first, pair.second.entryCount); |
| |
| return retval; |
| } |
| |
| bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { |
| ACT = &getAnalysis<AssumptionCacheTracker>(); |
| TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); |
| TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); |
| ProfileSummaryInfo *PSI = |
| &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); |
| } |
| |
| bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { |
| LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); |
| DILocation2SampleMap.clear(); |
| // By default the entry count is initialized to -1, which will be treated |
| // conservatively by getEntryCount as the same as unknown (None). This is |
| // to avoid newly added code to be treated as cold. If we have samples |
| // this will be overwritten in emitAnnotations. |
| uint64_t initialEntryCount = -1; |
| |
| ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; |
| if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { |
| // initialize all the function entry counts to 0. It means all the |
| // functions without profile will be regarded as cold. |
| initialEntryCount = 0; |
| // profile-sample-accurate is a user assertion which has a higher precedence |
| // than symbol list. When profile-sample-accurate is on, ignore symbol list. |
| ProfAccForSymsInList = false; |
| } |
| CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList); |
| |
| // PSL -- profile symbol list include all the symbols in sampled binary. |
| // If ProfileAccurateForSymsInList is enabled, PSL is used to treat |
| // old functions without samples being cold, without having to worry |
| // about new and hot functions being mistakenly treated as cold. |
| if (ProfAccForSymsInList) { |
| // Initialize the entry count to 0 for functions in the list. |
| if (PSL->contains(F.getName())) |
| initialEntryCount = 0; |
| |
| // Function in the symbol list but without sample will be regarded as |
| // cold. To minimize the potential negative performance impact it could |
| // have, we want to be a little conservative here saying if a function |
| // shows up in the profile, no matter as outline function, inline instance |
| // or call targets, treat the function as not being cold. This will handle |
| // the cases such as most callsites of a function are inlined in sampled |
| // binary but not inlined in current build (because of source code drift, |
| // imprecise debug information, or the callsites are all cold individually |
| // but not cold accumulatively...), so the outline function showing up as |
| // cold in sampled binary will actually not be cold after current build. |
| StringRef CanonName = FunctionSamples::getCanonicalFnName(F); |
| if (NamesInProfile.count(CanonName)) |
| initialEntryCount = -1; |
| } |
| |
| // Initialize entry count when the function has no existing entry |
| // count value. |
| if (!F.getEntryCount().hasValue()) |
| F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); |
| std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; |
| if (AM) { |
| auto &FAM = |
| AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) |
| .getManager(); |
| ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| } else { |
| OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); |
| ORE = OwnedORE.get(); |
| } |
| |
| if (ProfileIsCS) |
| Samples = ContextTracker->getBaseSamplesFor(F); |
| else |
| Samples = Reader->getSamplesFor(F); |
| |
| if (Samples && !Samples->empty()) |
| return emitAnnotations(F); |
| return false; |
| } |
| |
| PreservedAnalyses SampleProfileLoaderPass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| |
| auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| return FAM.getResult<AssumptionAnalysis>(F); |
| }; |
| auto GetTTI = [&](Function &F) -> TargetTransformInfo & { |
| return FAM.getResult<TargetIRAnalysis>(F); |
| }; |
| auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { |
| return FAM.getResult<TargetLibraryAnalysis>(F); |
| }; |
| |
| SampleProfileLoader SampleLoader( |
| ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, |
| ProfileRemappingFileName.empty() ? SampleProfileRemappingFile |
| : ProfileRemappingFileName, |
| LTOPhase, GetAssumptionCache, GetTTI, GetTLI); |
| |
| if (!SampleLoader.doInitialization(M, &FAM)) |
| return PreservedAnalyses::all(); |
| |
| ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); |
| CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); |
| if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) |
| return PreservedAnalyses::all(); |
| |
| return PreservedAnalyses::none(); |
| } |