blob: cde78713b5541e8a524880a5a4883890da26ab71 [file] [log] [blame]
//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements interprocedural passes which walk the
/// call-graph deducing and/or propagating function attributes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <iterator>
#include <map>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "function-attrs"
STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
STATISTIC(NumReturned, "Number of arguments marked returned");
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
STATISTIC(NumNoFree, "Number of functions marked as nofree");
STATISTIC(NumWillReturn, "Number of functions marked as willreturn");
STATISTIC(NumNoSync, "Number of functions marked as nosync");
STATISTIC(NumThinLinkNoRecurse,
"Number of functions marked as norecurse during thinlink");
STATISTIC(NumThinLinkNoUnwind,
"Number of functions marked as nounwind during thinlink");
static cl::opt<bool> EnableNonnullArgPropagation(
"enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
cl::desc("Try to propagate nonnull argument attributes from callsites to "
"caller functions."));
static cl::opt<bool> DisableNoUnwindInference(
"disable-nounwind-inference", cl::Hidden,
cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
static cl::opt<bool> DisableNoFreeInference(
"disable-nofree-inference", cl::Hidden,
cl::desc("Stop inferring nofree attribute during function-attrs pass"));
static cl::opt<bool> DisableThinLTOPropagation(
"disable-thinlto-funcattrs", cl::init(true), cl::Hidden,
cl::desc("Don't propagate function-attrs in thinLTO"));
namespace {
using SCCNodeSet = SmallSetVector<Function *, 8>;
} // end anonymous namespace
/// Returns the memory access attribute for function F using AAR for AA results,
/// where SCCNodes is the current SCC.
///
/// If ThisBody is true, this function may examine the function body and will
/// return a result pertaining to this copy of the function. If it is false, the
/// result will be based only on AA results for the function declaration; it
/// will be assumed that some other (perhaps less optimized) version of the
/// function may be selected at link time.
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
AAResults &AAR,
const SCCNodeSet &SCCNodes) {
FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
if (MRB == FMRB_DoesNotAccessMemory)
// Already perfect!
return MAK_ReadNone;
if (!ThisBody) {
if (AliasAnalysis::onlyReadsMemory(MRB))
return MAK_ReadOnly;
if (AliasAnalysis::doesNotReadMemory(MRB))
return MAK_WriteOnly;
// Conservatively assume it reads and writes to memory.
return MAK_MayWrite;
}
// Scan the function body for instructions that may read or write memory.
bool ReadsMemory = false;
bool WritesMemory = false;
for (Instruction &I : instructions(F)) {
// Some instructions can be ignored even if they read or write memory.
// Detect these now, skipping to the next instruction if one is found.
if (auto *Call = dyn_cast<CallBase>(&I)) {
// Ignore calls to functions in the same SCC, as long as the call sites
// don't have operand bundles. Calls with operand bundles are allowed to
// have memory effects not described by the memory effects of the call
// target.
if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
SCCNodes.count(Call->getCalledFunction()))
continue;
FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
ModRefInfo MRI = createModRefInfo(MRB);
// If the call doesn't access memory, we're done.
if (isNoModRef(MRI))
continue;
// A pseudo probe call shouldn't change any function attribute since it
// doesn't translate to a real instruction. It comes with a memory access
// tag to prevent itself being removed by optimizations and not block
// other instructions being optimized.
if (isa<PseudoProbeInst>(I))
continue;
if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
// The call could access any memory. If that includes writes, note it.
if (isModSet(MRI))
WritesMemory = true;
// If it reads, note it.
if (isRefSet(MRI))
ReadsMemory = true;
continue;
}
// Check whether all pointer arguments point to local memory, and
// ignore calls that only access local memory.
for (const Use &U : Call->args()) {
const Value *Arg = U;
if (!Arg->getType()->isPtrOrPtrVectorTy())
continue;
MemoryLocation Loc =
MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata());
// Skip accesses to local or constant memory as they don't impact the
// externally visible mod/ref behavior.
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
if (isModSet(MRI))
// Writes non-local memory.
WritesMemory = true;
if (isRefSet(MRI))
// Ok, it reads non-local memory.
ReadsMemory = true;
}
continue;
} else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
// Ignore non-volatile loads from local memory. (Atomic is okay here.)
if (!LI->isVolatile()) {
MemoryLocation Loc = MemoryLocation::get(LI);
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
// Ignore non-volatile stores to local memory. (Atomic is okay here.)
if (!SI->isVolatile()) {
MemoryLocation Loc = MemoryLocation::get(SI);
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
} else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) {
// Ignore vaargs on local memory.
MemoryLocation Loc = MemoryLocation::get(VI);
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
continue;
}
// Any remaining instructions need to be taken seriously! Check if they
// read or write memory.
//
// Writes memory, remember that.
WritesMemory |= I.mayWriteToMemory();
// If this instruction may read memory, remember that.
ReadsMemory |= I.mayReadFromMemory();
}
if (WritesMemory) {
if (!ReadsMemory)
return MAK_WriteOnly;
else
return MAK_MayWrite;
}
return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
}
MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
AAResults &AAR) {
return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
}
/// Deduce readonly/readnone attributes for the SCC.
template <typename AARGetterT>
static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter,
SmallSet<Function *, 8> &Changed) {
// Check if any of the functions in the SCC read or write memory. If they
// write memory then they can't be marked readnone or readonly.
bool ReadsMemory = false;
bool WritesMemory = false;
for (Function *F : SCCNodes) {
// Call the callable parameter to look up AA results for this function.
AAResults &AAR = AARGetter(*F);
// Non-exact function definitions may not be selected at link time, and an
// alternative version that writes to memory may be selected. See the
// comment on GlobalValue::isDefinitionExact for more details.
switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
AAR, SCCNodes)) {
case MAK_MayWrite:
return;
case MAK_ReadOnly:
ReadsMemory = true;
break;
case MAK_WriteOnly:
WritesMemory = true;
break;
case MAK_ReadNone:
// Nothing to do!
break;
}
}
// If the SCC contains both functions that read and functions that write, then
// we cannot add readonly attributes.
if (ReadsMemory && WritesMemory)
return;
// Success! Functions in this SCC do not access memory, or only read memory.
// Give them the appropriate attribute.
for (Function *F : SCCNodes) {
if (F->doesNotAccessMemory())
// Already perfect!
continue;
if (F->onlyReadsMemory() && ReadsMemory)
// No change.
continue;
if (F->doesNotReadMemory() && WritesMemory)
continue;
Changed.insert(F);
// Clear out any existing attributes.
AttrBuilder AttrsToRemove;
AttrsToRemove.addAttribute(Attribute::ReadOnly);
AttrsToRemove.addAttribute(Attribute::ReadNone);
AttrsToRemove.addAttribute(Attribute::WriteOnly);
if (!WritesMemory && !ReadsMemory) {
// Clear out any "access range attributes" if readnone was deduced.
AttrsToRemove.addAttribute(Attribute::ArgMemOnly);
AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly);
AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
}
F->removeFnAttrs(AttrsToRemove);
// Add in the new attribute.
if (WritesMemory && !ReadsMemory)
F->addFnAttr(Attribute::WriteOnly);
else
F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
if (WritesMemory && !ReadsMemory)
++NumWriteOnly;
else if (ReadsMemory)
++NumReadOnly;
else
++NumReadNone;
}
}
// Compute definitive function attributes for a function taking into account
// prevailing definitions and linkage types
static FunctionSummary *calculatePrevailingSummary(
ValueInfo VI,
DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing) {
if (CachedPrevailingSummary.count(VI))
return CachedPrevailingSummary[VI];
/// At this point, prevailing symbols have been resolved. The following leads
/// to returning a conservative result:
/// - Multiple instances with local linkage. Normally local linkage would be
/// unique per module
/// as the GUID includes the module path. We could have a guid alias if
/// there wasn't any distinguishing path when each file was compiled, but
/// that should be rare so we'll punt on those.
/// These next 2 cases should not happen and will assert:
/// - Multiple instances with external linkage. This should be caught in
/// symbol resolution
/// - Non-existent FunctionSummary for Aliasee. This presents a hole in our
/// knowledge meaning we have to go conservative.
/// Otherwise, we calculate attributes for a function as:
/// 1. If we have a local linkage, take its attributes. If there's somehow
/// multiple, bail and go conservative.
/// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is
/// prevailing, take its attributes.
/// 3. If we have a Weak/LinkOnce linkage the copies can have semantic
/// differences. However, if the prevailing copy is known it will be used
/// so take its attributes. If the prevailing copy is in a native file
/// all IR copies will be dead and propagation will go conservative.
/// 4. AvailableExternally summaries without a prevailing copy are known to
/// occur in a couple of circumstances:
/// a. An internal function gets imported due to its caller getting
/// imported, it becomes AvailableExternally but no prevailing
/// definition exists. Because it has to get imported along with its
/// caller the attributes will be captured by propagating on its
/// caller.
/// b. C++11 [temp.explicit]p10 can generate AvailableExternally
/// definitions of explicitly instanced template declarations
/// for inlining which are ultimately dropped from the TU. Since this
/// is localized to the TU the attributes will have already made it to
/// the callers.
/// These are edge cases and already captured by their callers so we
/// ignore these for now. If they become relevant to optimize in the
/// future this can be revisited.
/// 5. Otherwise, go conservative.
CachedPrevailingSummary[VI] = nullptr;
FunctionSummary *Local = nullptr;
FunctionSummary *Prevailing = nullptr;
for (const auto &GVS : VI.getSummaryList()) {
if (!GVS->isLive())
continue;
FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject());
// Virtual and Unknown (e.g. indirect) calls require going conservative
if (!FS || FS->fflags().HasUnknownCall)
return nullptr;
const auto &Linkage = GVS->linkage();
if (GlobalValue::isLocalLinkage(Linkage)) {
if (Local) {
LLVM_DEBUG(
dbgs()
<< "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on "
"function "
<< VI.name() << " from " << FS->modulePath() << ". Previous module "
<< Local->modulePath() << "\n");
return nullptr;
}
Local = FS;
} else if (GlobalValue::isExternalLinkage(Linkage)) {
assert(IsPrevailing(VI.getGUID(), GVS.get()));
Prevailing = FS;
break;
} else if (GlobalValue::isWeakODRLinkage(Linkage) ||
GlobalValue::isLinkOnceODRLinkage(Linkage) ||
GlobalValue::isWeakAnyLinkage(Linkage) ||
GlobalValue::isLinkOnceAnyLinkage(Linkage)) {
if (IsPrevailing(VI.getGUID(), GVS.get())) {
Prevailing = FS;
break;
}
} else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) {
// TODO: Handle these cases if they become meaningful
continue;
}
}
if (Local) {
assert(!Prevailing);
CachedPrevailingSummary[VI] = Local;
} else if (Prevailing) {
assert(!Local);
CachedPrevailingSummary[VI] = Prevailing;
}
return CachedPrevailingSummary[VI];
}
bool llvm::thinLTOPropagateFunctionAttrs(
ModuleSummaryIndex &Index,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing) {
// TODO: implement addNoAliasAttrs once
// there's more information about the return type in the summary
if (DisableThinLTOPropagation)
return false;
DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary;
bool Changed = false;
auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) {
// Assume we can propagate unless we discover otherwise
FunctionSummary::FFlags InferredFlags;
InferredFlags.NoRecurse = (SCCNodes.size() == 1);
InferredFlags.NoUnwind = true;
for (auto &V : SCCNodes) {
FunctionSummary *CallerSummary =
calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing);
// Function summaries can fail to contain information such as declarations
if (!CallerSummary)
return;
if (CallerSummary->fflags().MayThrow)
InferredFlags.NoUnwind = false;
for (const auto &Callee : CallerSummary->calls()) {
FunctionSummary *CalleeSummary = calculatePrevailingSummary(
Callee.first, CachedPrevailingSummary, IsPrevailing);
if (!CalleeSummary)
return;
if (!CalleeSummary->fflags().NoRecurse)
InferredFlags.NoRecurse = false;
if (!CalleeSummary->fflags().NoUnwind)
InferredFlags.NoUnwind = false;
if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse)
break;
}
}
if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) {
Changed = true;
for (auto &V : SCCNodes) {
if (InferredFlags.NoRecurse) {
LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to "
<< V.name() << "\n");
++NumThinLinkNoRecurse;
}
if (InferredFlags.NoUnwind) {
LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to "
<< V.name() << "\n");
++NumThinLinkNoUnwind;
}
for (auto &S : V.getSummaryList()) {
if (auto *FS = dyn_cast<FunctionSummary>(S.get())) {
if (InferredFlags.NoRecurse)
FS->setNoRecurse();
if (InferredFlags.NoUnwind)
FS->setNoUnwind();
}
}
}
}
};
// Call propagation functions on each SCC in the Index
for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd();
++I) {
std::vector<ValueInfo> Nodes(*I);
PropagateAttributes(Nodes);
}
return Changed;
}
namespace {
/// For a given pointer Argument, this retains a list of Arguments of functions
/// in the same SCC that the pointer data flows into. We use this to build an
/// SCC of the arguments.
struct ArgumentGraphNode {
Argument *Definition;
SmallVector<ArgumentGraphNode *, 4> Uses;
};
class ArgumentGraph {
// We store pointers to ArgumentGraphNode objects, so it's important that
// that they not move around upon insert.
using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
ArgumentMapTy ArgumentMap;
// There is no root node for the argument graph, in fact:
// void f(int *x, int *y) { if (...) f(x, y); }
// is an example where the graph is disconnected. The SCCIterator requires a
// single entry point, so we maintain a fake ("synthetic") root node that
// uses every node. Because the graph is directed and nothing points into
// the root, it will not participate in any SCCs (except for its own).
ArgumentGraphNode SyntheticRoot;
public:
ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
iterator begin() { return SyntheticRoot.Uses.begin(); }
iterator end() { return SyntheticRoot.Uses.end(); }
ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
ArgumentGraphNode *operator[](Argument *A) {
ArgumentGraphNode &Node = ArgumentMap[A];
Node.Definition = A;
SyntheticRoot.Uses.push_back(&Node);
return &Node;
}
};
/// This tracker checks whether callees are in the SCC, and if so it does not
/// consider that a capture, instead adding it to the "Uses" list and
/// continuing with the analysis.
struct ArgumentUsesTracker : public CaptureTracker {
ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
void tooManyUses() override { Captured = true; }
bool captured(const Use *U) override {
CallBase *CB = dyn_cast<CallBase>(U->getUser());
if (!CB) {
Captured = true;
return true;
}
Function *F = CB->getCalledFunction();
if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
Captured = true;
return true;
}
// Note: the callee and the two successor blocks *follow* the argument
// operands. This means there is no need to adjust UseIndex to account for
// these.
unsigned UseIndex =
std::distance(const_cast<const Use *>(CB->arg_begin()), U);
assert(UseIndex < CB->data_operands_size() &&
"Indirect function calls should have been filtered above!");
if (UseIndex >= CB->arg_size()) {
// Data operand, but not a argument operand -- must be a bundle operand
assert(CB->hasOperandBundles() && "Must be!");
// CaptureTracking told us that we're being captured by an operand bundle
// use. In this case it does not matter if the callee is within our SCC
// or not -- we've been captured in some unknown way, and we have to be
// conservative.
Captured = true;
return true;
}
if (UseIndex >= F->arg_size()) {
assert(F->isVarArg() && "More params than args in non-varargs call");
Captured = true;
return true;
}
Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
return false;
}
// True only if certainly captured (used outside our SCC).
bool Captured = false;
// Uses within our SCC.
SmallVector<Argument *, 4> Uses;
const SCCNodeSet &SCCNodes;
};
} // end anonymous namespace
namespace llvm {
template <> struct GraphTraits<ArgumentGraphNode *> {
using NodeRef = ArgumentGraphNode *;
using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
static NodeRef getEntryNode(NodeRef A) { return A; }
static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
};
template <>
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
return AG->begin();
}
static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
};
} // end namespace llvm
/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
static Attribute::AttrKind
determinePointerReadAttrs(Argument *A,
const SmallPtrSet<Argument *, 8> &SCCNodes) {
SmallVector<Use *, 32> Worklist;
SmallPtrSet<Use *, 32> Visited;
// inalloca arguments are always clobbered by the call.
if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
return Attribute::None;
bool IsRead = false;
// We don't need to track IsWritten. If A is written to, return immediately.
for (Use &U : A->uses()) {
Visited.insert(&U);
Worklist.push_back(&U);
}
while (!Worklist.empty()) {
Use *U = Worklist.pop_back_val();
Instruction *I = cast<Instruction>(U->getUser());
switch (I->getOpcode()) {
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
case Instruction::AddrSpaceCast:
// The original value is not read/written via this if the new value isn't.
for (Use &UU : I->uses())
if (Visited.insert(&UU).second)
Worklist.push_back(&UU);
break;
case Instruction::Call:
case Instruction::Invoke: {
bool Captures = true;
if (I->getType()->isVoidTy())
Captures = false;
auto AddUsersToWorklistIfCapturing = [&] {
if (Captures)
for (Use &UU : I->uses())
if (Visited.insert(&UU).second)
Worklist.push_back(&UU);
};
CallBase &CB = cast<CallBase>(*I);
if (CB.doesNotAccessMemory()) {
AddUsersToWorklistIfCapturing();
continue;
}
Function *F = CB.getCalledFunction();
if (!F) {
if (CB.onlyReadsMemory()) {
IsRead = true;
AddUsersToWorklistIfCapturing();
continue;
}
return Attribute::None;
}
// Note: the callee and the two successor blocks *follow* the argument
// operands. This means there is no need to adjust UseIndex to account
// for these.
unsigned UseIndex = std::distance(CB.arg_begin(), U);
// U cannot be the callee operand use: since we're exploring the
// transitive uses of an Argument, having such a use be a callee would
// imply the call site is an indirect call or invoke; and we'd take the
// early exit above.
assert(UseIndex < CB.data_operands_size() &&
"Data operand use expected!");
bool IsOperandBundleUse = UseIndex >= CB.arg_size();
if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
assert(F->isVarArg() && "More params than args in non-varargs call");
return Attribute::None;
}
Captures &= !CB.doesNotCapture(UseIndex);
// Since the optimizer (by design) cannot see the data flow corresponding
// to a operand bundle use, these cannot participate in the optimistic SCC
// analysis. Instead, we model the operand bundle uses as arguments in
// call to a function external to the SCC.
if (IsOperandBundleUse ||
!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
// The accessors used on call site here do the right thing for calls and
// invokes with operand bundles.
if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex))
return Attribute::None;
if (!CB.doesNotAccessMemory(UseIndex))
IsRead = true;
}
AddUsersToWorklistIfCapturing();
break;
}
case Instruction::Load:
// A volatile load has side effects beyond what readonly can be relied
// upon.
if (cast<LoadInst>(I)->isVolatile())
return Attribute::None;
IsRead = true;
break;
case Instruction::ICmp:
case Instruction::Ret:
break;
default:
return Attribute::None;
}
}
return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
}
/// Deduce returned attributes for the SCC.
static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
// Check each function in turn, determining if an argument is always returned.
for (Function *F : SCCNodes) {
// We can infer and propagate function attributes only when we know that the
// definition we'll get at link time is *exactly* the definition we see now.
// For more details, see GlobalValue::mayBeDerefined.
if (!F->hasExactDefinition())
continue;
if (F->getReturnType()->isVoidTy())
continue;
// There is nothing to do if an argument is already marked as 'returned'.
if (llvm::any_of(F->args(),
[](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
continue;
auto FindRetArg = [&]() -> Value * {
Value *RetArg = nullptr;
for (BasicBlock &BB : *F)
if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
// Note that stripPointerCasts should look through functions with
// returned arguments.
Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
return nullptr;
if (!RetArg)
RetArg = RetVal;
else if (RetArg != RetVal)
return nullptr;
}
return RetArg;
};
if (Value *RetArg = FindRetArg()) {
auto *A = cast<Argument>(RetArg);
A->addAttr(Attribute::Returned);
++NumReturned;
Changed.insert(F);
}
}
}
/// If a callsite has arguments that are also arguments to the parent function,
/// try to propagate attributes from the callsite's arguments to the parent's
/// arguments. This may be important because inlining can cause information loss
/// when attribute knowledge disappears with the inlined call.
static bool addArgumentAttrsFromCallsites(Function &F) {
if (!EnableNonnullArgPropagation)
return false;
bool Changed = false;
// For an argument attribute to transfer from a callsite to the parent, the
// call must be guaranteed to execute every time the parent is called.
// Conservatively, just check for calls in the entry block that are guaranteed
// to execute.
// TODO: This could be enhanced by testing if the callsite post-dominates the
// entry block or by doing simple forward walks or backward walks to the
// callsite.
BasicBlock &Entry = F.getEntryBlock();
for (Instruction &I : Entry) {
if (auto *CB = dyn_cast<CallBase>(&I)) {
if (auto *CalledFunc = CB->getCalledFunction()) {
for (auto &CSArg : CalledFunc->args()) {
if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false))
continue;
// If the non-null callsite argument operand is an argument to 'F'
// (the caller) and the call is guaranteed to execute, then the value
// must be non-null throughout 'F'.
auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
if (FArg && !FArg->hasNonNullAttr()) {
FArg->addAttr(Attribute::NonNull);
Changed = true;
}
}
}
}
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
break;
}
return Changed;
}
static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
&& "Must be a Read attribute.");
assert(A && "Argument must not be null.");
// If the argument already has the attribute, nothing needs to be done.
if (A->hasAttribute(R))
return false;
// Otherwise, remove potentially conflicting attribute, add the new one,
// and update statistics.
A->removeAttr(Attribute::WriteOnly);
A->removeAttr(Attribute::ReadOnly);
A->removeAttr(Attribute::ReadNone);
A->addAttr(R);
R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
return true;
}
/// Deduce nocapture attributes for the SCC.
static void addArgumentAttrs(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
ArgumentGraph AG;
// Check each function in turn, determining which pointer arguments are not
// captured.
for (Function *F : SCCNodes) {
// We can infer and propagate function attributes only when we know that the
// definition we'll get at link time is *exactly* the definition we see now.
// For more details, see GlobalValue::mayBeDerefined.
if (!F->hasExactDefinition())
continue;
if (addArgumentAttrsFromCallsites(*F))
Changed.insert(F);
// Functions that are readonly (or readnone) and nounwind and don't return
// a value can't capture arguments. Don't analyze them.
if (F->onlyReadsMemory() && F->doesNotThrow() &&
F->getReturnType()->isVoidTy()) {
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
++A) {
if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
A->addAttr(Attribute::NoCapture);
++NumNoCapture;
Changed.insert(F);
}
}
continue;
}
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
++A) {
if (!A->getType()->isPointerTy())
continue;
bool HasNonLocalUses = false;
if (!A->hasNoCaptureAttr()) {
ArgumentUsesTracker Tracker(SCCNodes);
PointerMayBeCaptured(&*A, &Tracker);
if (!Tracker.Captured) {
if (Tracker.Uses.empty()) {
// If it's trivially not captured, mark it nocapture now.
A->addAttr(Attribute::NoCapture);
++NumNoCapture;
Changed.insert(F);
} else {
// If it's not trivially captured and not trivially not captured,
// then it must be calling into another function in our SCC. Save
// its particulars for Argument-SCC analysis later.
ArgumentGraphNode *Node = AG[&*A];
for (Argument *Use : Tracker.Uses) {
Node->Uses.push_back(AG[Use]);
if (Use != &*A)
HasNonLocalUses = true;
}
}
}
// Otherwise, it's captured. Don't bother doing SCC analysis on it.
}
if (!HasNonLocalUses && !A->onlyReadsMemory()) {
// Can we determine that it's readonly/readnone without doing an SCC?
// Note that we don't allow any calls at all here, or else our result
// will be dependent on the iteration order through the functions in the
// SCC.
SmallPtrSet<Argument *, 8> Self;
Self.insert(&*A);
Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
if (R != Attribute::None)
if (addReadAttr(A, R))
Changed.insert(F);
}
}
}
// The graph we've collected is partial because we stopped scanning for
// argument uses once we solved the argument trivially. These partial nodes
// show up as ArgumentGraphNode objects with an empty Uses list, and for
// these nodes the final decision about whether they capture has already been
// made. If the definition doesn't have a 'nocapture' attribute by now, it
// captures.
for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
if (ArgumentSCC.size() == 1) {
if (!ArgumentSCC[0]->Definition)
continue; // synthetic root node
// eg. "void f(int* x) { if (...) f(x); }"
if (ArgumentSCC[0]->Uses.size() == 1 &&
ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
Argument *A = ArgumentSCC[0]->Definition;
A->addAttr(Attribute::NoCapture);
++NumNoCapture;
Changed.insert(A->getParent());
}
continue;
}
bool SCCCaptured = false;
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
I != E && !SCCCaptured; ++I) {
ArgumentGraphNode *Node = *I;
if (Node->Uses.empty()) {
if (!Node->Definition->hasNoCaptureAttr())
SCCCaptured = true;
}
}
if (SCCCaptured)
continue;
SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
// Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
// quickly looking up whether a given Argument is in this ArgumentSCC.
for (ArgumentGraphNode *I : ArgumentSCC) {
ArgumentSCCNodes.insert(I->Definition);
}
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
I != E && !SCCCaptured; ++I) {
ArgumentGraphNode *N = *I;
for (ArgumentGraphNode *Use : N->Uses) {
Argument *A = Use->Definition;
if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
continue;
SCCCaptured = true;
break;
}
}
if (SCCCaptured)
continue;
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
A->addAttr(Attribute::NoCapture);
++NumNoCapture;
Changed.insert(A->getParent());
}
// We also want to compute readonly/readnone. With a small number of false
// negatives, we can assume that any pointer which is captured isn't going
// to be provably readonly or readnone, since by definition we can't
// analyze all uses of a captured pointer.
//
// The false negatives happen when the pointer is captured by a function
// that promises readonly/readnone behaviour on the pointer, then the
// pointer's lifetime ends before anything that writes to arbitrary memory.
// Also, a readonly/readnone pointer may be returned, but returning a
// pointer is capturing it.
Attribute::AttrKind ReadAttr = Attribute::ReadNone;
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
if (K == Attribute::ReadNone)
continue;
if (K == Attribute::ReadOnly) {
ReadAttr = Attribute::ReadOnly;
continue;
}
ReadAttr = K;
break;
}
if (ReadAttr != Attribute::None) {
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
Argument *A = ArgumentSCC[i]->Definition;
if (addReadAttr(A, ReadAttr))
Changed.insert(A->getParent());
}
}
}
}
/// Tests whether a function is "malloc-like".
///
/// A function is "malloc-like" if it returns either null or a pointer that
/// doesn't alias any other pointer visible to the caller.
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
SmallSetVector<Value *, 8> FlowsToReturn;
for (BasicBlock &BB : *F)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i];
if (Constant *C = dyn_cast<Constant>(RetVal)) {
if (!C->isNullValue() && !isa<UndefValue>(C))
return false;
continue;
}
if (isa<Argument>(RetVal))
return false;
if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::AddrSpaceCast:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (Value *IncValue : PN->incoming_values())
FlowsToReturn.insert(IncValue);
continue;
}
// Check whether the pointer came from an allocation.
case Instruction::Alloca:
break;
case Instruction::Call:
case Instruction::Invoke: {
CallBase &CB = cast<CallBase>(*RVI);
if (CB.hasRetAttr(Attribute::NoAlias))
break;
if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
break;
LLVM_FALLTHROUGH;
}
default:
return false; // Did not come from an allocation.
}
if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
return false;
}
return true;
}
/// Deduce noalias attributes for the SCC.
static void addNoAliasAttrs(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
// Check each function in turn, determining which functions return noalias
// pointers.
for (Function *F : SCCNodes) {
// Already noalias.
if (F->returnDoesNotAlias())
continue;
// We can infer and propagate function attributes only when we know that the
// definition we'll get at link time is *exactly* the definition we see now.
// For more details, see GlobalValue::mayBeDerefined.
if (!F->hasExactDefinition())
return;
// We annotate noalias return values, which are only applicable to
// pointer types.
if (!F->getReturnType()->isPointerTy())
continue;
if (!isFunctionMallocLike(F, SCCNodes))
return;
}
for (Function *F : SCCNodes) {
if (F->returnDoesNotAlias() ||
!F->getReturnType()->isPointerTy())
continue;
F->setReturnDoesNotAlias();
++NumNoAlias;
Changed.insert(F);
}
}
/// Tests whether this function is known to not return null.
///
/// Requires that the function returns a pointer.
///
/// Returns true if it believes the function will not return a null, and sets
/// \p Speculative based on whether the returned conclusion is a speculative
/// conclusion due to SCC calls.
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
bool &Speculative) {
assert(F->getReturnType()->isPointerTy() &&
"nonnull only meaningful on pointer types");
Speculative = false;
SmallSetVector<Value *, 8> FlowsToReturn;
for (BasicBlock &BB : *F)
if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
auto &DL = F->getParent()->getDataLayout();
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i];
// If this value is locally known to be non-null, we're good
if (isKnownNonZero(RetVal, DL))
continue;
// Otherwise, we need to look upwards since we can't make any local
// conclusions.
Instruction *RVI = dyn_cast<Instruction>(RetVal);
if (!RVI)
return false;
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::AddrSpaceCast:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
FlowsToReturn.insert(PN->getIncomingValue(i));
continue;
}
case Instruction::Call:
case Instruction::Invoke: {
CallBase &CB = cast<CallBase>(*RVI);
Function *Callee = CB.getCalledFunction();
// A call to a node within the SCC is assumed to return null until
// proven otherwise
if (Callee && SCCNodes.count(Callee)) {
Speculative = true;
continue;
}
return false;
}
default:
return false; // Unknown source, may be null
};
llvm_unreachable("should have either continued or returned");
}
return true;
}
/// Deduce nonnull attributes for the SCC.
static void addNonNullAttrs(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
// Speculative that all functions in the SCC return only nonnull
// pointers. We may refute this as we analyze functions.
bool SCCReturnsNonNull = true;
// Check each function in turn, determining which functions return nonnull
// pointers.
for (Function *F : SCCNodes) {
// Already nonnull.
if (F->getAttributes().hasRetAttr(Attribute::NonNull))
continue;
// We can infer and propagate function attributes only when we know that the
// definition we'll get at link time is *exactly* the definition we see now.
// For more details, see GlobalValue::mayBeDerefined.
if (!F->hasExactDefinition())
return;
// We annotate nonnull return values, which are only applicable to
// pointer types.
if (!F->getReturnType()->isPointerTy())
continue;
bool Speculative = false;
if (isReturnNonNull(F, SCCNodes, Speculative)) {
if (!Speculative) {
// Mark the function eagerly since we may discover a function
// which prevents us from speculating about the entire SCC
LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
<< " as nonnull\n");
F->addRetAttr(Attribute::NonNull);
++NumNonNullReturn;
Changed.insert(F);
}
continue;
}
// At least one function returns something which could be null, can't
// speculate any more.
SCCReturnsNonNull = false;
}
if (SCCReturnsNonNull) {
for (Function *F : SCCNodes) {
if (F->getAttributes().hasRetAttr(Attribute::NonNull) ||
!F->getReturnType()->isPointerTy())
continue;
LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
F->addRetAttr(Attribute::NonNull);
++NumNonNullReturn;
Changed.insert(F);
}
}
}
namespace {
/// Collects a set of attribute inference requests and performs them all in one
/// go on a single SCC Node. Inference involves scanning function bodies
/// looking for instructions that violate attribute assumptions.
/// As soon as all the bodies are fine we are free to set the attribute.
/// Customization of inference for individual attributes is performed by
/// providing a handful of predicates for each attribute.
class AttributeInferer {
public:
/// Describes a request for inference of a single attribute.
struct InferenceDescriptor {
/// Returns true if this function does not have to be handled.
/// General intent for this predicate is to provide an optimization
/// for functions that do not need this attribute inference at all
/// (say, for functions that already have the attribute).
std::function<bool(const Function &)> SkipFunction;
/// Returns true if this instruction violates attribute assumptions.
std::function<bool(Instruction &)> InstrBreaksAttribute;
/// Sets the inferred attribute for this function.
std::function<void(Function &)> SetAttribute;
/// Attribute we derive.
Attribute::AttrKind AKind;
/// If true, only "exact" definitions can be used to infer this attribute.
/// See GlobalValue::isDefinitionExact.
bool RequiresExactDefinition;
InferenceDescriptor(Attribute::AttrKind AK,
std::function<bool(const Function &)> SkipFunc,
std::function<bool(Instruction &)> InstrScan,
std::function<void(Function &)> SetAttr,
bool ReqExactDef)
: SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
SetAttribute(SetAttr), AKind(AK),
RequiresExactDefinition(ReqExactDef) {}
};
private:
SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
public:
void registerAttrInference(InferenceDescriptor AttrInference) {
InferenceDescriptors.push_back(AttrInference);
}
void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed);
};
/// Perform all the requested attribute inference actions according to the
/// attribute predicates stored before.
void AttributeInferer::run(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
// Go through all the functions in SCC and check corresponding attribute
// assumptions for each of them. Attributes that are invalid for this SCC
// will be removed from InferInSCC.
for (Function *F : SCCNodes) {
// No attributes whose assumptions are still valid - done.
if (InferInSCC.empty())
return;
// Check if our attributes ever need scanning/can be scanned.
llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
if (ID.SkipFunction(*F))
return false;
// Remove from further inference (invalidate) when visiting a function
// that has no instructions to scan/has an unsuitable definition.
return F->isDeclaration() ||
(ID.RequiresExactDefinition && !F->hasExactDefinition());
});
// For each attribute still in InferInSCC that doesn't explicitly skip F,
// set up the F instructions scan to verify assumptions of the attribute.
SmallVector<InferenceDescriptor, 4> InferInThisFunc;
llvm::copy_if(
InferInSCC, std::back_inserter(InferInThisFunc),
[F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
if (InferInThisFunc.empty())
continue;
// Start instruction scan.
for (Instruction &I : instructions(*F)) {
llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
if (!ID.InstrBreaksAttribute(I))
return false;
// Remove attribute from further inference on any other functions
// because attribute assumptions have just been violated.
llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
return D.AKind == ID.AKind;
});
// Remove attribute from the rest of current instruction scan.
return true;
});
if (InferInThisFunc.empty())
break;
}
}
if (InferInSCC.empty())
return;
for (Function *F : SCCNodes)
// At this point InferInSCC contains only functions that were either:
// - explicitly skipped from scan/inference, or
// - verified to have no instructions that break attribute assumptions.
// Hence we just go and force the attribute for all non-skipped functions.
for (auto &ID : InferInSCC) {
if (ID.SkipFunction(*F))
continue;
Changed.insert(F);
ID.SetAttribute(*F);
}
}
struct SCCNodesResult {
SCCNodeSet SCCNodes;
bool HasUnknownCall;
};
} // end anonymous namespace
/// Helper for non-Convergent inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonConvergent(Instruction &I,
const SCCNodeSet &SCCNodes) {
const CallBase *CB = dyn_cast<CallBase>(&I);
// Breaks non-convergent assumption if CS is a convergent call to a function
// not in the SCC.
return CB && CB->isConvergent() &&
!SCCNodes.contains(CB->getCalledFunction());
}
/// Helper for NoUnwind inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
if (!I.mayThrow())
return false;
if (const auto *CI = dyn_cast<CallInst>(&I)) {
if (Function *Callee = CI->getCalledFunction()) {
// I is a may-throw call to a function inside our SCC. This doesn't
// invalidate our current working assumption that the SCC is no-throw; we
// just have to scan that other function.
if (SCCNodes.contains(Callee))
return false;
}
}
return true;
}
/// Helper for NoFree inference predicate InstrBreaksAttribute.
static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
CallBase *CB = dyn_cast<CallBase>(&I);
if (!CB)
return false;
if (CB->hasFnAttr(Attribute::NoFree))
return false;
// Speculatively assume in SCC.
if (Function *Callee = CB->getCalledFunction())
if (SCCNodes.contains(Callee))
return false;
return true;
}
/// Attempt to remove convergent function attribute when possible.
///
/// Returns true if any changes to function attributes were made.
static void inferConvergent(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
AttributeInferer AI;
// Request to remove the convergent attribute from all functions in the SCC
// if every callsite within the SCC is not convergent (except for calls
// to functions within the SCC).
// Note: Removal of the attr from the callsites will happen in
// InstCombineCalls separately.
AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
Attribute::Convergent,
// Skip non-convergent functions.
[](const Function &F) { return !F.isConvergent(); },
// Instructions that break non-convergent assumption.
[SCCNodes](Instruction &I) {
return InstrBreaksNonConvergent(I, SCCNodes);
},
[](Function &F) {
LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
<< "\n");
F.setNotConvergent();
},
/* RequiresExactDefinition= */ false});
// Perform all the requested attribute inference actions.
AI.run(SCCNodes, Changed);
}
/// Infer attributes from all functions in the SCC by scanning every
/// instruction for compliance to the attribute assumptions. Currently it
/// does:
/// - addition of NoUnwind attribute
///
/// Returns true if any changes to function attributes were made.
static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
AttributeInferer AI;
if (!DisableNoUnwindInference)
// Request to infer nounwind attribute for all the functions in the SCC if
// every callsite within the SCC is not throwing (except for calls to
// functions within the SCC). Note that nounwind attribute suffers from
// derefinement - results may change depending on how functions are
// optimized. Thus it can be inferred only from exact definitions.
AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
Attribute::NoUnwind,
// Skip non-throwing functions.
[](const Function &F) { return F.doesNotThrow(); },
// Instructions that break non-throwing assumption.
[&SCCNodes](Instruction &I) {
return InstrBreaksNonThrowing(I, SCCNodes);
},
[](Function &F) {
LLVM_DEBUG(dbgs()
<< "Adding nounwind attr to fn " << F.getName() << "\n");
F.setDoesNotThrow();
++NumNoUnwind;
},
/* RequiresExactDefinition= */ true});
if (!DisableNoFreeInference)
// Request to infer nofree attribute for all the functions in the SCC if
// every callsite within the SCC does not directly or indirectly free
// memory (except for calls to functions within the SCC). Note that nofree
// attribute suffers from derefinement - results may change depending on
// how functions are optimized. Thus it can be inferred only from exact
// definitions.
AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
Attribute::NoFree,
// Skip functions known not to free memory.
[](const Function &F) { return F.doesNotFreeMemory(); },
// Instructions that break non-deallocating assumption.
[&SCCNodes](Instruction &I) {
return InstrBreaksNoFree(I, SCCNodes);
},
[](Function &F) {
LLVM_DEBUG(dbgs()
<< "Adding nofree attr to fn " << F.getName() << "\n");
F.setDoesNotFreeMemory();
++NumNoFree;
},
/* RequiresExactDefinition= */ true});
// Perform all the requested attribute inference actions.
AI.run(SCCNodes, Changed);
}
static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
// Try and identify functions that do not recurse.
// If the SCC contains multiple nodes we know for sure there is recursion.
if (SCCNodes.size() != 1)
return;
Function *F = *SCCNodes.begin();
if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
return;
// If all of the calls in F are identifiable and are to norecurse functions, F
// is norecurse. This check also detects self-recursion as F is not currently
// marked norecurse, so any called from F to F will not be marked norecurse.
for (auto &BB : *F)
for (auto &I : BB.instructionsWithoutDebug())
if (auto *CB = dyn_cast<CallBase>(&I)) {
Function *Callee = CB->getCalledFunction();
if (!Callee || Callee == F || !Callee->doesNotRecurse())
// Function calls a potentially recursive function.
return;
}
// Every call was to a non-recursive function other than this function, and
// we have no indirect recursion as the SCC size is one. This function cannot
// recurse.
F->setDoesNotRecurse();
++NumNoRecurse;
Changed.insert(F);
}
static bool instructionDoesNotReturn(Instruction &I) {
if (auto *CB = dyn_cast<CallBase>(&I))
return CB->hasFnAttr(Attribute::NoReturn);
return false;
}
// A basic block can only return if it terminates with a ReturnInst and does not
// contain calls to noreturn functions.
static bool basicBlockCanReturn(BasicBlock &BB) {
if (!isa<ReturnInst>(BB.getTerminator()))
return false;
return none_of(BB, instructionDoesNotReturn);
}
// Set the noreturn function attribute if possible.
static void addNoReturnAttrs(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
for (Function *F : SCCNodes) {
if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) ||
F->doesNotReturn())
continue;
// The function can return if any basic blocks can return.
// FIXME: this doesn't handle recursion or unreachable blocks.
if (none_of(*F, basicBlockCanReturn)) {
F->setDoesNotReturn();
Changed.insert(F);
}
}
}
static bool functionWillReturn(const Function &F) {
// We can infer and propagate function attributes only when we know that the
// definition we'll get at link time is *exactly* the definition we see now.
// For more details, see GlobalValue::mayBeDerefined.
if (!F.hasExactDefinition())
return false;
// Must-progress function without side-effects must return.
if (F.mustProgress() && F.onlyReadsMemory())
return true;
// Can only analyze functions with a definition.
if (F.isDeclaration())
return false;
// Functions with loops require more sophisticated analysis, as the loop
// may be infinite. For now, don't try to handle them.
SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges;
FindFunctionBackedges(F, Backedges);
if (!Backedges.empty())
return false;
// If there are no loops, then the function is willreturn if all calls in
// it are willreturn.
return all_of(instructions(F), [](const Instruction &I) {
return I.willReturn();
});
}
// Set the willreturn function attribute if possible.
static void addWillReturn(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
for (Function *F : SCCNodes) {
if (!F || F->willReturn() || !functionWillReturn(*F))
continue;
F->setWillReturn();
NumWillReturn++;
Changed.insert(F);
}
}
// Return true if this is an atomic which has an ordering stronger than
// unordered. Note that this is different than the predicate we use in
// Attributor. Here we chose to be conservative and consider monotonic
// operations potentially synchronizing. We generally don't do much with
// monotonic operations, so this is simply risk reduction.
static bool isOrderedAtomic(Instruction *I) {
if (!I->isAtomic())
return false;
if (auto *FI = dyn_cast<FenceInst>(I))
// All legal orderings for fence are stronger than monotonic.
return FI->getSyncScopeID() != SyncScope::SingleThread;
else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I))
return true;
else if (auto *SI = dyn_cast<StoreInst>(I))
return !SI->isUnordered();
else if (auto *LI = dyn_cast<LoadInst>(I))
return !LI->isUnordered();
else {
llvm_unreachable("unknown atomic instruction?");
}
}
static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) {
// Volatile may synchronize
if (I.isVolatile())
return true;
// An ordered atomic may synchronize. (See comment about on monotonic.)
if (isOrderedAtomic(&I))
return true;
auto *CB = dyn_cast<CallBase>(&I);
if (!CB)
// Non call site cases covered by the two checks above
return false;
if (CB->hasFnAttr(Attribute::NoSync))
return false;
// Non volatile memset/memcpy/memmoves are nosync
// NOTE: Only intrinsics with volatile flags should be handled here. All
// others should be marked in Intrinsics.td.
if (auto *MI = dyn_cast<MemIntrinsic>(&I))
if (!MI->isVolatile())
return false;
// Speculatively assume in SCC.
if (Function *Callee = CB->getCalledFunction())
if (SCCNodes.contains(Callee))
return false;
return true;
}
// Infer the nosync attribute.
static void addNoSyncAttr(const SCCNodeSet &SCCNodes,
SmallSet<Function *, 8> &Changed) {
AttributeInferer AI;
AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
Attribute::NoSync,
// Skip already marked functions.
[](const Function &F) { return F.hasNoSync(); },
// Instructions that break nosync assumption.
[&SCCNodes](Instruction &I) {
return InstrBreaksNoSync(I, SCCNodes);
},
[](Function &F) {
LLVM_DEBUG(dbgs()
<< "Adding nosync attr to fn " << F.getName() << "\n");
F.setNoSync();
++NumNoSync;
},
/* RequiresExactDefinition= */ true});
AI.run(SCCNodes, Changed);
}
static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) {
SCCNodesResult Res;
Res.HasUnknownCall = false;
for (Function *F : Functions) {
if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) ||
F->isPresplitCoroutine()) {
// Treat any function we're trying not to optimize as if it were an
// indirect call and omit it from the node set used below.
Res.HasUnknownCall = true;
continue;
}
// Track whether any functions in this SCC have an unknown call edge.
// Note: if this is ever a performance hit, we can common it with
// subsequent routines which also do scans over the instructions of the
// function.
if (!Res.HasUnknownCall) {
for (Instruction &I : instructions(*F)) {
if (auto *CB = dyn_cast<CallBase>(&I)) {
if (!CB->getCalledFunction()) {
Res.HasUnknownCall = true;
break;
}
}
}
}
Res.SCCNodes.insert(F);
}
return Res;
}
template <typename AARGetterT>
static SmallSet<Function *, 8>
deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) {
SCCNodesResult Nodes = createSCCNodeSet(Functions);
// Bail if the SCC only contains optnone functions.
if (Nodes.SCCNodes.empty())
return {};
SmallSet<Function *, 8> Changed;
addArgumentReturnedAttrs(Nodes.SCCNodes, Changed);
addReadAttrs(Nodes.SCCNodes, AARGetter, Changed);
addArgumentAttrs(Nodes.SCCNodes, Changed);
inferConvergent(Nodes.SCCNodes, Changed);
addNoReturnAttrs(Nodes.SCCNodes, Changed);
addWillReturn(Nodes.SCCNodes, Changed);
// If we have no external nodes participating in the SCC, we can deduce some
// more precise attributes as well.
if (!Nodes.HasUnknownCall) {
addNoAliasAttrs(Nodes.SCCNodes, Changed);
addNonNullAttrs(Nodes.SCCNodes, Changed);
inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed);
addNoRecurseAttrs(Nodes.SCCNodes, Changed);
}
addNoSyncAttr(Nodes.SCCNodes, Changed);
// Finally, infer the maximal set of attributes from the ones we've inferred
// above. This is handling the cases where one attribute on a signature
// implies another, but for implementation reasons the inference rule for
// the later is missing (or simply less sophisticated).
for (Function *F : Nodes.SCCNodes)
if (F)
if (inferAttributesFromOthers(*F))
Changed.insert(F);
return Changed;
}
PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
// We pass a lambda into functions to wire them up to the analysis manager
// for getting function analyses.
auto AARGetter = [&](Function &F) -> AAResults & {
return FAM.getResult<AAManager>(F);
};
SmallVector<Function *, 8> Functions;
for (LazyCallGraph::Node &N : C) {
Functions.push_back(&N.getFunction());
}
auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter);
if (ChangedFunctions.empty())
return PreservedAnalyses::all();
// Invalidate analyses for modified functions so that we don't have to
// invalidate all analyses for all functions in this SCC.
PreservedAnalyses FuncPA;
// We haven't changed the CFG for modified functions.
FuncPA.preserveSet<CFGAnalyses>();
for (Function *Changed : ChangedFunctions) {
FAM.invalidate(*Changed, FuncPA);
// Also invalidate any direct callers of changed functions since analyses
// may care about attributes of direct callees. For example, MemorySSA cares
// about whether or not a call's callee modifies memory and queries that
// through function attributes.
for (auto *U : Changed->users()) {
if (auto *Call = dyn_cast<CallBase>(U)) {
if (Call->getCalledFunction() == Changed)
FAM.invalidate(*Call->getFunction(), FuncPA);
}
}
}
PreservedAnalyses PA;
// We have not added or removed functions.
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
// We already invalidated all relevant function analyses above.
PA.preserveSet<AllAnalysesOn<Function>>();
return PA;
}
namespace {
struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
// Pass identification, replacement for typeid
static char ID;
PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
initializePostOrderFunctionAttrsLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnSCC(CallGraphSCC &SCC) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AssumptionCacheTracker>();
getAAResultsAnalysisUsage(AU);
CallGraphSCCPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char PostOrderFunctionAttrsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs",
"Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs",
"Deduce function attributes", false, false)
Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
return new PostOrderFunctionAttrsLegacyPass();
}
template <typename AARGetterT>
static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
SmallVector<Function *, 8> Functions;
for (CallGraphNode *I : SCC) {
Functions.push_back(I->getFunction());
}
return !deriveAttrsInPostOrder(Functions, AARGetter).empty();
}
bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
if (skipSCC(SCC))
return false;
return runImpl(SCC, LegacyAARGetter(*this));
}
namespace {
struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
// Pass identification, replacement for typeid
static char ID;
ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
initializeReversePostOrderFunctionAttrsLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<CallGraphWrapperPass>();
AU.addPreserved<CallGraphWrapperPass>();
}
};
} // end anonymous namespace
char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass,
"rpo-function-attrs", "Deduce function attributes in RPO",
false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass,
"rpo-function-attrs", "Deduce function attributes in RPO",
false, false)
Pass *llvm::createReversePostOrderFunctionAttrsPass() {
return new ReversePostOrderFunctionAttrsLegacyPass();
}
static bool addNoRecurseAttrsTopDown(Function &F) {
// We check the preconditions for the function prior to calling this to avoid
// the cost of building up a reversible post-order list. We assert them here
// to make sure none of the invariants this relies on were violated.
assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
assert(!F.doesNotRecurse() &&
"This function has already been deduced as norecurs!");
assert(F.hasInternalLinkage() &&
"Can only do top-down deduction for internal linkage functions!");
// If F is internal and all of its uses are calls from a non-recursive
// functions, then none of its calls could in fact recurse without going
// through a function marked norecurse, and so we can mark this function too
// as norecurse. Note that the uses must actually be calls -- otherwise
// a pointer to this function could be returned from a norecurse function but
// this function could be recursively (indirectly) called. Note that this
// also detects if F is directly recursive as F is not yet marked as
// a norecurse function.
for (auto *U : F.users()) {
auto *I = dyn_cast<Instruction>(U);
if (!I)
return false;
CallBase *CB = dyn_cast<CallBase>(I);
if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
return false;
}
F.setDoesNotRecurse();
++NumNoRecurse;
return true;
}
static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
// We only have a post-order SCC traversal (because SCCs are inherently
// discovered in post-order), so we accumulate them in a vector and then walk
// it in reverse. This is simpler than using the RPO iterator infrastructure
// because we need to combine SCC detection and the PO walk of the call
// graph. We can also cheat egregiously because we're primarily interested in
// synthesizing norecurse and so we can only save the singular SCCs as SCCs
// with multiple functions in them will clearly be recursive.
SmallVector<Function *, 16> Worklist;
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
if (I->size() != 1)
continue;
Function *F = I->front()->getFunction();
if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
F->hasInternalLinkage())
Worklist.push_back(F);
}
bool Changed = false;
for (auto *F : llvm::reverse(Worklist))
Changed |= addNoRecurseAttrsTopDown(*F);
return Changed;
}
bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
if (skipModule(M))
return false;
auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
return deduceFunctionAttributeInRPO(M, CG);
}
PreservedAnalyses
ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
auto &CG = AM.getResult<CallGraphAnalysis>(M);
if (!deduceFunctionAttributeInRPO(M, CG))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<CallGraphAnalysis>();
return PA;
}