| //===- RDFLiveness.cpp ----------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Computation of the liveness information from the data-flow graph. |
| // |
| // The main functionality of this code is to compute block live-in |
| // information. With the live-in information in place, the placement |
| // of kill flags can also be recalculated. |
| // |
| // The block live-in calculation is based on the ideas from the following |
| // publication: |
| // |
| // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. |
| // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." |
| // ACM Transactions on Architecture and Code Optimization, Association for |
| // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance |
| // and Embedded Architectures and Compilers", 8 (4), |
| // <10.1145/2086696.2086706>. <hal-00647369> |
| // |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominanceFrontier.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/RDFLiveness.h" |
| #include "llvm/CodeGen/RDFGraph.h" |
| #include "llvm/CodeGen/RDFRegisters.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <unordered_map> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace rdf; |
| |
| static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25), |
| cl::Hidden, cl::desc("Maximum recursion level")); |
| |
| namespace llvm { |
| namespace rdf { |
| |
| raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { |
| OS << '{'; |
| for (auto &I : P.Obj) { |
| OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{'; |
| for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { |
| OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second); |
| if (++J != E) |
| OS << ','; |
| } |
| OS << '}'; |
| } |
| OS << " }"; |
| return OS; |
| } |
| |
| } // end namespace rdf |
| } // end namespace llvm |
| |
| // The order in the returned sequence is the order of reaching defs in the |
| // upward traversal: the first def is the closest to the given reference RefA, |
| // the next one is further up, and so on. |
| // The list ends at a reaching phi def, or when the reference from RefA is |
| // covered by the defs in the list (see FullChain). |
| // This function provides two modes of operation: |
| // (1) Returning the sequence of reaching defs for a particular reference |
| // node. This sequence will terminate at the first phi node [1]. |
| // (2) Returning a partial sequence of reaching defs, where the final goal |
| // is to traverse past phi nodes to the actual defs arising from the code |
| // itself. |
| // In mode (2), the register reference for which the search was started |
| // may be different from the reference node RefA, for which this call was |
| // made, hence the argument RefRR, which holds the original register. |
| // Also, some definitions may have already been encountered in a previous |
| // call that will influence register covering. The register references |
| // already defined are passed in through DefRRs. |
| // In mode (1), the "continuation" considerations do not apply, and the |
| // RefRR is the same as the register in RefA, and the set DefRRs is empty. |
| // |
| // [1] It is possible for multiple phi nodes to be included in the returned |
| // sequence: |
| // SubA = phi ... |
| // SubB = phi ... |
| // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) |
| // However, these phi nodes are independent from one another in terms of |
| // the data-flow. |
| |
| NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, |
| NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain, |
| const RegisterAggr &DefRRs) { |
| NodeList RDefs; // Return value. |
| SetVector<NodeId> DefQ; |
| DenseMap<MachineInstr*, uint32_t> OrdMap; |
| |
| // Dead defs will be treated as if they were live, since they are actually |
| // on the data-flow path. They cannot be ignored because even though they |
| // do not generate meaningful values, they still modify registers. |
| |
| // If the reference is undefined, there is nothing to do. |
| if (RefA.Addr->getFlags() & NodeAttrs::Undef) |
| return RDefs; |
| |
| // The initial queue should not have reaching defs for shadows. The |
| // whole point of a shadow is that it will have a reaching def that |
| // is not aliased to the reaching defs of the related shadows. |
| NodeId Start = RefA.Id; |
| auto SNA = DFG.addr<RefNode*>(Start); |
| if (NodeId RD = SNA.Addr->getReachingDef()) |
| DefQ.insert(RD); |
| if (TopShadows) { |
| for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA)) |
| if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) |
| DefQ.insert(RD); |
| } |
| |
| // Collect all the reaching defs, going up until a phi node is encountered, |
| // or there are no more reaching defs. From this set, the actual set of |
| // reaching defs will be selected. |
| // The traversal upwards must go on until a covering def is encountered. |
| // It is possible that a collection of non-covering (individually) defs |
| // will be sufficient, but keep going until a covering one is found. |
| for (unsigned i = 0; i < DefQ.size(); ++i) { |
| auto TA = DFG.addr<DefNode*>(DefQ[i]); |
| if (TA.Addr->getFlags() & NodeAttrs::PhiRef) |
| continue; |
| // Stop at the covering/overwriting def of the initial register reference. |
| RegisterRef RR = TA.Addr->getRegRef(DFG); |
| if (!DFG.IsPreservingDef(TA)) |
| if (RegisterAggr::isCoverOf(RR, RefRR, PRI)) |
| continue; |
| // Get the next level of reaching defs. This will include multiple |
| // reaching defs for shadows. |
| for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) |
| if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) |
| DefQ.insert(RD); |
| // Don't visit sibling defs. They share the same reaching def (which |
| // will be visited anyway), but they define something not aliased to |
| // this ref. |
| } |
| |
| // Return the MachineBasicBlock containing a given instruction. |
| auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { |
| if (IA.Addr->getKind() == NodeAttrs::Stmt) |
| return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); |
| assert(IA.Addr->getKind() == NodeAttrs::Phi); |
| NodeAddr<PhiNode*> PA = IA; |
| NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); |
| return BA.Addr->getCode(); |
| }; |
| |
| SmallSet<NodeId,32> Defs; |
| |
| // Remove all non-phi defs that are not aliased to RefRR, and separate |
| // the the remaining defs into buckets for containing blocks. |
| std::map<NodeId, NodeAddr<InstrNode*>> Owners; |
| std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks; |
| for (NodeId N : DefQ) { |
| auto TA = DFG.addr<DefNode*>(N); |
| bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; |
| if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG))) |
| continue; |
| Defs.insert(TA.Id); |
| NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); |
| Owners[TA.Id] = IA; |
| Blocks[Block(IA)].push_back(IA.Id); |
| } |
| |
| auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) { |
| if (A == B) |
| return false; |
| NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A); |
| NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B); |
| bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; |
| bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; |
| if (StmtA && StmtB) { |
| const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode(); |
| const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode(); |
| assert(InA->getParent() == InB->getParent()); |
| auto FA = OrdMap.find(InA); |
| if (FA != OrdMap.end()) |
| return FA->second < OrdMap.find(InB)->second; |
| const MachineBasicBlock *BB = InA->getParent(); |
| for (auto It = BB->begin(), E = BB->end(); It != E; ++It) { |
| if (It == InA->getIterator()) |
| return true; |
| if (It == InB->getIterator()) |
| return false; |
| } |
| llvm_unreachable("InA and InB should be in the same block"); |
| } |
| // One of them is a phi node. |
| if (!StmtA && !StmtB) { |
| // Both are phis, which are unordered. Break the tie by id numbers. |
| return A < B; |
| } |
| // Only one of them is a phi. Phis always precede statements. |
| return !StmtA; |
| }; |
| |
| auto GetOrder = [&OrdMap] (MachineBasicBlock &B) { |
| uint32_t Pos = 0; |
| for (MachineInstr &In : B) |
| OrdMap.insert({&In, ++Pos}); |
| }; |
| |
| // For each block, sort the nodes in it. |
| std::vector<MachineBasicBlock*> TmpBB; |
| for (auto &Bucket : Blocks) { |
| TmpBB.push_back(Bucket.first); |
| if (Bucket.second.size() > 2) |
| GetOrder(*Bucket.first); |
| llvm::sort(Bucket.second, Precedes); |
| } |
| |
| // Sort the blocks with respect to dominance. |
| llvm::sort(TmpBB, |
| [this](auto A, auto B) { return MDT.properlyDominates(A, B); }); |
| |
| std::vector<NodeId> TmpInst; |
| for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) { |
| auto &Bucket = Blocks[MBB]; |
| TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend()); |
| } |
| |
| // The vector is a list of instructions, so that defs coming from |
| // the same instruction don't need to be artificially ordered. |
| // Then, when computing the initial segment, and iterating over an |
| // instruction, pick the defs that contribute to the covering (i.e. is |
| // not covered by previously added defs). Check the defs individually, |
| // i.e. first check each def if is covered or not (without adding them |
| // to the tracking set), and then add all the selected ones. |
| |
| // The reason for this is this example: |
| // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). |
| // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be |
| // covered if we added A first, and A would be covered |
| // if we added B first. |
| // In this example we want both A and B, because we don't want to give |
| // either one priority over the other, since they belong to the same |
| // statement. |
| |
| RegisterAggr RRs(DefRRs); |
| |
| auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { |
| return TA.Addr->getKind() == NodeAttrs::Def && |
| Defs.count(TA.Id); |
| }; |
| |
| for (NodeId T : TmpInst) { |
| if (!FullChain && RRs.hasCoverOf(RefRR)) |
| break; |
| auto TA = DFG.addr<InstrNode*>(T); |
| bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); |
| NodeList Ds; |
| for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { |
| RegisterRef QR = DA.Addr->getRegRef(DFG); |
| // Add phi defs even if they are covered by subsequent defs. This is |
| // for cases where the reached use is not covered by any of the defs |
| // encountered so far: the phi def is needed to expose the liveness |
| // of that use to the entry of the block. |
| // Example: |
| // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. |
| // d2<R3>(d1,,u3), ... |
| // ..., u3<D1>(d2) This use needs to be live on entry. |
| if (FullChain || IsPhi || !RRs.hasCoverOf(QR)) |
| Ds.push_back(DA); |
| } |
| llvm::append_range(RDefs, Ds); |
| for (NodeAddr<DefNode*> DA : Ds) { |
| // When collecting a full chain of definitions, do not consider phi |
| // defs to actually define a register. |
| uint16_t Flags = DA.Addr->getFlags(); |
| if (!FullChain || !(Flags & NodeAttrs::PhiRef)) |
| if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. |
| RRs.insert(DA.Addr->getRegRef(DFG)); |
| } |
| } |
| |
| auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool { |
| return DA.Addr->getFlags() & NodeAttrs::Dead; |
| }; |
| llvm::erase_if(RDefs, DeadP); |
| |
| return RDefs; |
| } |
| |
| std::pair<NodeSet,bool> |
| Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA, |
| NodeSet &Visited, const NodeSet &Defs) { |
| return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest); |
| } |
| |
| std::pair<NodeSet,bool> |
| Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA, |
| NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) { |
| if (Nest > MaxNest) |
| return { NodeSet(), false }; |
| // Collect all defined registers. Do not consider phis to be defining |
| // anything, only collect "real" definitions. |
| RegisterAggr DefRRs(PRI); |
| for (NodeId D : Defs) { |
| const auto DA = DFG.addr<const DefNode*>(D); |
| if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
| DefRRs.insert(DA.Addr->getRegRef(DFG)); |
| } |
| |
| NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs); |
| if (RDs.empty()) |
| return { Defs, true }; |
| |
| // Make a copy of the preexisting definitions and add the newly found ones. |
| NodeSet TmpDefs = Defs; |
| for (NodeAddr<NodeBase*> R : RDs) |
| TmpDefs.insert(R.Id); |
| |
| NodeSet Result = Defs; |
| |
| for (NodeAddr<DefNode*> DA : RDs) { |
| Result.insert(DA.Id); |
| if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
| continue; |
| NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG); |
| if (Visited.count(PA.Id)) |
| continue; |
| Visited.insert(PA.Id); |
| // Go over all phi uses and get the reaching defs for each use. |
| for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs, |
| Nest+1, MaxNest); |
| if (!T.second) |
| return { T.first, false }; |
| Result.insert(T.first.begin(), T.first.end()); |
| } |
| } |
| |
| return { Result, true }; |
| } |
| |
| /// Find the nearest ref node aliased to RefRR, going upwards in the data |
| /// flow, starting from the instruction immediately preceding Inst. |
| NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR, |
| NodeAddr<InstrNode*> IA) { |
| NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| NodeList Ins = BA.Addr->members(DFG); |
| NodeId FindId = IA.Id; |
| auto E = Ins.rend(); |
| auto B = std::find_if(Ins.rbegin(), E, |
| [FindId] (const NodeAddr<InstrNode*> T) { |
| return T.Id == FindId; |
| }); |
| // Do not scan IA (which is what B would point to). |
| if (B != E) |
| ++B; |
| |
| do { |
| // Process the range of instructions from B to E. |
| for (NodeAddr<InstrNode*> I : make_range(B, E)) { |
| NodeList Refs = I.Addr->members(DFG); |
| NodeAddr<RefNode*> Clob, Use; |
| // Scan all the refs in I aliased to RefRR, and return the one that |
| // is the closest to the output of I, i.e. def > clobber > use. |
| for (NodeAddr<RefNode*> R : Refs) { |
| if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR)) |
| continue; |
| if (DFG.IsDef(R)) { |
| // If it's a non-clobbering def, just return it. |
| if (!(R.Addr->getFlags() & NodeAttrs::Clobbering)) |
| return R; |
| Clob = R; |
| } else { |
| Use = R; |
| } |
| } |
| if (Clob.Id != 0) |
| return Clob; |
| if (Use.Id != 0) |
| return Use; |
| } |
| |
| // Go up to the immediate dominator, if any. |
| MachineBasicBlock *BB = BA.Addr->getCode(); |
| BA = NodeAddr<BlockNode*>(); |
| if (MachineDomTreeNode *N = MDT.getNode(BB)) { |
| if ((N = N->getIDom())) |
| BA = DFG.findBlock(N->getBlock()); |
| } |
| if (!BA.Id) |
| break; |
| |
| Ins = BA.Addr->members(DFG); |
| B = Ins.rbegin(); |
| E = Ins.rend(); |
| } while (true); |
| |
| return NodeAddr<RefNode*>(); |
| } |
| |
| NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, |
| NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) { |
| NodeSet Uses; |
| |
| // If the original register is already covered by all the intervening |
| // defs, no more uses can be reached. |
| if (DefRRs.hasCoverOf(RefRR)) |
| return Uses; |
| |
| // Add all directly reached uses. |
| // If the def is dead, it does not provide a value for any use. |
| bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead; |
| NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0; |
| while (U != 0) { |
| auto UA = DFG.addr<UseNode*>(U); |
| if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { |
| RegisterRef UR = UA.Addr->getRegRef(DFG); |
| if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR)) |
| Uses.insert(U); |
| } |
| U = UA.Addr->getSibling(); |
| } |
| |
| // Traverse all reached defs. This time dead defs cannot be ignored. |
| for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { |
| auto DA = DFG.addr<DefNode*>(D); |
| NextD = DA.Addr->getSibling(); |
| RegisterRef DR = DA.Addr->getRegRef(DFG); |
| // If this def is already covered, it cannot reach anything new. |
| // Similarly, skip it if it is not aliased to the interesting register. |
| if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR)) |
| continue; |
| NodeSet T; |
| if (DFG.IsPreservingDef(DA)) { |
| // If it is a preserving def, do not update the set of intervening defs. |
| T = getAllReachedUses(RefRR, DA, DefRRs); |
| } else { |
| RegisterAggr NewDefRRs = DefRRs; |
| NewDefRRs.insert(DR); |
| T = getAllReachedUses(RefRR, DA, NewDefRRs); |
| } |
| Uses.insert(T.begin(), T.end()); |
| } |
| return Uses; |
| } |
| |
| void Liveness::computePhiInfo() { |
| RealUseMap.clear(); |
| |
| NodeList Phis; |
| NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| NodeList Blocks = FA.Addr->members(DFG); |
| for (NodeAddr<BlockNode*> BA : Blocks) { |
| auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| llvm::append_range(Phis, Ps); |
| } |
| |
| // phi use -> (map: reaching phi -> set of registers defined in between) |
| std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp; |
| std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. |
| std::unordered_map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it. |
| |
| // Go over all phis. |
| for (NodeAddr<PhiNode*> PhiA : Phis) { |
| // Go over all defs and collect the reached uses that are non-phi uses |
| // (i.e. the "real uses"). |
| RefMap &RealUses = RealUseMap[PhiA.Id]; |
| NodeList PhiRefs = PhiA.Addr->members(DFG); |
| |
| // Have a work queue of defs whose reached uses need to be found. |
| // For each def, add to the queue all reached (non-phi) defs. |
| SetVector<NodeId> DefQ; |
| NodeSet PhiDefs; |
| RegisterAggr DRs(PRI); |
| for (NodeAddr<RefNode*> R : PhiRefs) { |
| if (!DFG.IsRef<NodeAttrs::Def>(R)) |
| continue; |
| DRs.insert(R.Addr->getRegRef(DFG)); |
| DefQ.insert(R.Id); |
| PhiDefs.insert(R.Id); |
| } |
| PhiDRs.insert(std::make_pair(PhiA.Id, DRs)); |
| |
| // Collect the super-set of all possible reached uses. This set will |
| // contain all uses reached from this phi, either directly from the |
| // phi defs, or (recursively) via non-phi defs reached by the phi defs. |
| // This set of uses will later be trimmed to only contain these uses that |
| // are actually reached by the phi defs. |
| for (unsigned i = 0; i < DefQ.size(); ++i) { |
| NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); |
| // Visit all reached uses. Phi defs should not really have the "dead" |
| // flag set, but check it anyway for consistency. |
| bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead; |
| NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0; |
| while (UN != 0) { |
| NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); |
| uint16_t F = A.Addr->getFlags(); |
| if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) { |
| RegisterRef R = A.Addr->getRegRef(DFG); |
| RealUses[R.Reg].insert({A.Id,R.Mask}); |
| } |
| UN = A.Addr->getSibling(); |
| } |
| // Visit all reached defs, and add them to the queue. These defs may |
| // override some of the uses collected here, but that will be handled |
| // later. |
| NodeId DN = DA.Addr->getReachedDef(); |
| while (DN != 0) { |
| NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); |
| for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { |
| uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); |
| // Must traverse the reached-def chain. Consider: |
| // def(D0) -> def(R0) -> def(R0) -> use(D0) |
| // The reachable use of D0 passes through a def of R0. |
| if (!(Flags & NodeAttrs::PhiRef)) |
| DefQ.insert(T.Id); |
| } |
| DN = A.Addr->getSibling(); |
| } |
| } |
| // Filter out these uses that appear to be reachable, but really |
| // are not. For example: |
| // |
| // R1:0 = d1 |
| // = R1:0 u2 Reached by d1. |
| // R0 = d3 |
| // = R1:0 u4 Still reached by d1: indirectly through |
| // the def d3. |
| // R1 = d5 |
| // = R1:0 u6 Not reached by d1 (covered collectively |
| // by d3 and d5), but following reached |
| // defs and uses from d1 will lead here. |
| for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { |
| // For each reached register UI->first, there is a set UI->second, of |
| // uses of it. For each such use, check if it is reached by this phi, |
| // i.e. check if the set of its reaching uses intersects the set of |
| // this phi's defs. |
| NodeRefSet Uses = UI->second; |
| UI->second.clear(); |
| for (std::pair<NodeId,LaneBitmask> I : Uses) { |
| auto UA = DFG.addr<UseNode*>(I.first); |
| // Undef flag is checked above. |
| assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0); |
| RegisterRef R(UI->first, I.second); |
| // Calculate the exposed part of the reached use. |
| RegisterAggr Covered(PRI); |
| for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) { |
| if (PhiDefs.count(DA.Id)) |
| break; |
| Covered.insert(DA.Addr->getRegRef(DFG)); |
| } |
| if (RegisterRef RC = Covered.clearIn(R)) { |
| // We are updating the map for register UI->first, so we need |
| // to map RC to be expressed in terms of that register. |
| RegisterRef S = PRI.mapTo(RC, UI->first); |
| UI->second.insert({I.first, S.Mask}); |
| } |
| } |
| UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI); |
| } |
| |
| // If this phi reaches some "real" uses, add it to the queue for upward |
| // propagation. |
| if (!RealUses.empty()) |
| PhiUQ.push_back(PhiA.Id); |
| |
| // Go over all phi uses and check if the reaching def is another phi. |
| // Collect the phis that are among the reaching defs of these uses. |
| // While traversing the list of reaching defs for each phi use, accumulate |
| // the set of registers defined between this phi (PhiA) and the owner phi |
| // of the reaching def. |
| NodeSet SeenUses; |
| |
| for (auto I : PhiRefs) { |
| if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id)) |
| continue; |
| NodeAddr<PhiUseNode*> PUA = I; |
| if (PUA.Addr->getReachingDef() == 0) |
| continue; |
| |
| RegisterRef UR = PUA.Addr->getRegRef(DFG); |
| NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs); |
| RegisterAggr DefRRs(PRI); |
| |
| for (NodeAddr<DefNode*> D : Ds) { |
| if (D.Addr->getFlags() & NodeAttrs::PhiRef) { |
| NodeId RP = D.Addr->getOwner(DFG).Id; |
| std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id]; |
| auto F = M.find(RP); |
| if (F == M.end()) |
| M.insert(std::make_pair(RP, DefRRs)); |
| else |
| F->second.insert(DefRRs); |
| } |
| DefRRs.insert(D.Addr->getRegRef(DFG)); |
| } |
| |
| for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA)) |
| SeenUses.insert(T.Id); |
| } |
| } |
| |
| if (Trace) { |
| dbgs() << "Phi-up-to-phi map with intervening defs:\n"; |
| for (auto I : PhiUp) { |
| dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; |
| for (auto R : I.second) |
| dbgs() << ' ' << Print<NodeId>(R.first, DFG) |
| << Print<RegisterAggr>(R.second, DFG); |
| dbgs() << " }\n"; |
| } |
| } |
| |
| // Propagate the reached registers up in the phi chain. |
| // |
| // The following type of situation needs careful handling: |
| // |
| // phi d1<R1:0> (1) |
| // | |
| // ... d2<R1> |
| // | |
| // phi u3<R1:0> (2) |
| // | |
| // ... u4<R1> |
| // |
| // The phi node (2) defines a register pair R1:0, and reaches a "real" |
| // use u4 of just R1. The same phi node is also known to reach (upwards) |
| // the phi node (1). However, the use u4 is not reached by phi (1), |
| // because of the intervening definition d2 of R1. The data flow between |
| // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. |
| // |
| // When propagating uses up the phi chains, get the all reaching defs |
| // for a given phi use, and traverse the list until the propagated ref |
| // is covered, or until reaching the final phi. Only assume that the |
| // reference reaches the phi in the latter case. |
| |
| // The operation "clearIn" can be expensive. For a given set of intervening |
| // defs, cache the result of subtracting these defs from a given register |
| // ref. |
| using SubMap = std::unordered_map<RegisterRef, RegisterRef>; |
| std::unordered_map<RegisterAggr, SubMap> Subs; |
| auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) { |
| if (Mid.empty()) |
| return RR; |
| auto F = SM.find(RR); |
| if (F != SM.end()) |
| return F->second; |
| RegisterRef S = Mid.clearIn(RR); |
| SM.insert({RR, S}); |
| return S; |
| }; |
| |
| // Go over all phis. |
| for (unsigned i = 0; i < PhiUQ.size(); ++i) { |
| auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); |
| NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG); |
| RefMap &RUM = RealUseMap[PA.Id]; |
| |
| for (NodeAddr<UseNode*> UA : PUs) { |
| std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id]; |
| RegisterRef UR = UA.Addr->getRegRef(DFG); |
| for (const std::pair<const NodeId, RegisterAggr> &P : PUM) { |
| bool Changed = false; |
| const RegisterAggr &MidDefs = P.second; |
| // Collect the set PropUp of uses that are reached by the current |
| // phi PA, and are not covered by any intervening def between the |
| // currently visited use UA and the upward phi P. |
| |
| if (MidDefs.hasCoverOf(UR)) |
| continue; |
| SubMap &SM = Subs[MidDefs]; |
| |
| // General algorithm: |
| // for each (R,U) : U is use node of R, U is reached by PA |
| // if MidDefs does not cover (R,U) |
| // then add (R-MidDefs,U) to RealUseMap[P] |
| // |
| for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) { |
| RegisterRef R(T.first); |
| // The current phi (PA) could be a phi for a regmask. It could |
| // reach a whole variety of uses that are not related to the |
| // specific upward phi (P.first). |
| const RegisterAggr &DRs = PhiDRs.at(P.first); |
| if (!DRs.hasAliasOf(R)) |
| continue; |
| R = PRI.mapTo(DRs.intersectWith(R), T.first); |
| for (std::pair<NodeId,LaneBitmask> V : T.second) { |
| LaneBitmask M = R.Mask & V.second; |
| if (M.none()) |
| continue; |
| if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) { |
| NodeRefSet &RS = RealUseMap[P.first][SS.Reg]; |
| Changed |= RS.insert({V.first,SS.Mask}).second; |
| } |
| } |
| } |
| |
| if (Changed) |
| PhiUQ.push_back(P.first); |
| } |
| } |
| } |
| |
| if (Trace) { |
| dbgs() << "Real use map:\n"; |
| for (auto I : RealUseMap) { |
| dbgs() << "phi " << Print<NodeId>(I.first, DFG); |
| NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); |
| NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); |
| if (!Ds.empty()) { |
| RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG); |
| dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; |
| } else { |
| dbgs() << "<noreg>"; |
| } |
| dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; |
| } |
| } |
| } |
| |
| void Liveness::computeLiveIns() { |
| // Populate the node-to-block map. This speeds up the calculations |
| // significantly. |
| NBMap.clear(); |
| for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { |
| MachineBasicBlock *BB = BA.Addr->getCode(); |
| for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { |
| for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) |
| NBMap.insert(std::make_pair(RA.Id, BB)); |
| NBMap.insert(std::make_pair(IA.Id, BB)); |
| } |
| } |
| |
| MachineFunction &MF = DFG.getMF(); |
| |
| // Compute IDF first, then the inverse. |
| decltype(IIDF) IDF; |
| for (MachineBasicBlock &B : MF) { |
| auto F1 = MDF.find(&B); |
| if (F1 == MDF.end()) |
| continue; |
| SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); |
| for (unsigned i = 0; i < IDFB.size(); ++i) { |
| auto F2 = MDF.find(IDFB[i]); |
| if (F2 != MDF.end()) |
| IDFB.insert(F2->second.begin(), F2->second.end()); |
| } |
| // Add B to the IDF(B). This will put B in the IIDF(B). |
| IDFB.insert(&B); |
| IDF[&B].insert(IDFB.begin(), IDFB.end()); |
| } |
| |
| for (auto I : IDF) |
| for (auto S : I.second) |
| IIDF[S].insert(I.first); |
| |
| computePhiInfo(); |
| |
| NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| NodeList Blocks = FA.Addr->members(DFG); |
| |
| // Build the phi live-on-entry map. |
| for (NodeAddr<BlockNode*> BA : Blocks) { |
| MachineBasicBlock *MB = BA.Addr->getCode(); |
| RefMap &LON = PhiLON[MB]; |
| for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) |
| for (const RefMap::value_type &S : RealUseMap[P.Id]) |
| LON[S.first].insert(S.second.begin(), S.second.end()); |
| } |
| |
| if (Trace) { |
| dbgs() << "Phi live-on-entry map:\n"; |
| for (auto &I : PhiLON) |
| dbgs() << "block #" << I.first->getNumber() << " -> " |
| << Print<RefMap>(I.second, DFG) << '\n'; |
| } |
| |
| // Build the phi live-on-exit map. Each phi node has some set of reached |
| // "real" uses. Propagate this set backwards into the block predecessors |
| // through the reaching defs of the corresponding phi uses. |
| for (NodeAddr<BlockNode*> BA : Blocks) { |
| NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| for (NodeAddr<PhiNode*> PA : Phis) { |
| RefMap &RUs = RealUseMap[PA.Id]; |
| if (RUs.empty()) |
| continue; |
| |
| NodeSet SeenUses; |
| for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| if (!SeenUses.insert(U.Id).second) |
| continue; |
| NodeAddr<PhiUseNode*> PUA = U; |
| if (PUA.Addr->getReachingDef() == 0) |
| continue; |
| |
| // Each phi has some set (possibly empty) of reached "real" uses, |
| // that is, uses that are part of the compiled program. Such a use |
| // may be located in some farther block, but following a chain of |
| // reaching defs will eventually lead to this phi. |
| // Any chain of reaching defs may fork at a phi node, but there |
| // will be a path upwards that will lead to this phi. Now, this |
| // chain will need to fork at this phi, since some of the reached |
| // uses may have definitions joining in from multiple predecessors. |
| // For each reached "real" use, identify the set of reaching defs |
| // coming from each predecessor P, and add them to PhiLOX[P]. |
| // |
| auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor()); |
| RefMap &LOX = PhiLOX[PrA.Addr->getCode()]; |
| |
| for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) { |
| // We need to visit each individual use. |
| for (std::pair<NodeId,LaneBitmask> P : RS.second) { |
| // Create a register ref corresponding to the use, and find |
| // all reaching defs starting from the phi use, and treating |
| // all related shadows as a single use cluster. |
| RegisterRef S(RS.first, P.second); |
| NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs); |
| for (NodeAddr<DefNode*> D : Ds) { |
| // Calculate the mask corresponding to the visited def. |
| RegisterAggr TA(PRI); |
| TA.insert(D.Addr->getRegRef(DFG)).intersect(S); |
| LaneBitmask TM = TA.makeRegRef().Mask; |
| LOX[S.Reg].insert({D.Id, TM}); |
| } |
| } |
| } |
| |
| for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA)) |
| SeenUses.insert(T.Id); |
| } // for U : phi uses |
| } // for P : Phis |
| } // for B : Blocks |
| |
| if (Trace) { |
| dbgs() << "Phi live-on-exit map:\n"; |
| for (auto &I : PhiLOX) |
| dbgs() << "block #" << I.first->getNumber() << " -> " |
| << Print<RefMap>(I.second, DFG) << '\n'; |
| } |
| |
| RefMap LiveIn; |
| traverse(&MF.front(), LiveIn); |
| |
| // Add function live-ins to the live-in set of the function entry block. |
| LiveMap[&MF.front()].insert(DFG.getLiveIns()); |
| |
| if (Trace) { |
| // Dump the liveness map |
| for (MachineBasicBlock &B : MF) { |
| std::vector<RegisterRef> LV; |
| for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) |
| LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask)); |
| llvm::sort(LV); |
| dbgs() << printMBBReference(B) << "\t rec = {"; |
| for (auto I : LV) |
| dbgs() << ' ' << Print<RegisterRef>(I, DFG); |
| dbgs() << " }\n"; |
| //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n'; |
| |
| LV.clear(); |
| const RegisterAggr &LG = LiveMap[&B]; |
| for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I) |
| LV.push_back(*I); |
| llvm::sort(LV); |
| dbgs() << "\tcomp = {"; |
| for (auto I : LV) |
| dbgs() << ' ' << Print<RegisterRef>(I, DFG); |
| dbgs() << " }\n"; |
| |
| } |
| } |
| } |
| |
| void Liveness::resetLiveIns() { |
| for (auto &B : DFG.getMF()) { |
| // Remove all live-ins. |
| std::vector<unsigned> T; |
| for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) |
| T.push_back(LI.PhysReg); |
| for (auto I : T) |
| B.removeLiveIn(I); |
| // Add the newly computed live-ins. |
| const RegisterAggr &LiveIns = LiveMap[&B]; |
| for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end())) |
| B.addLiveIn({MCPhysReg(R.Reg), R.Mask}); |
| } |
| } |
| |
| void Liveness::resetKills() { |
| for (auto &B : DFG.getMF()) |
| resetKills(&B); |
| } |
| |
| void Liveness::resetKills(MachineBasicBlock *B) { |
| auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void { |
| for (auto I : B->liveins()) { |
| MCSubRegIndexIterator S(I.PhysReg, &TRI); |
| if (!S.isValid()) { |
| LV.set(I.PhysReg); |
| continue; |
| } |
| do { |
| LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex()); |
| if ((M & I.LaneMask).any()) |
| LV.set(S.getSubReg()); |
| ++S; |
| } while (S.isValid()); |
| } |
| }; |
| |
| BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); |
| CopyLiveIns(B, LiveIn); |
| for (auto SI : B->successors()) |
| CopyLiveIns(SI, Live); |
| |
| for (MachineInstr &MI : llvm::reverse(*B)) { |
| if (MI.isDebugInstr()) |
| continue; |
| |
| MI.clearKillInfo(); |
| for (auto &Op : MI.operands()) { |
| // An implicit def of a super-register may not necessarily start a |
| // live range of it, since an implicit use could be used to keep parts |
| // of it live. Instead of analyzing the implicit operands, ignore |
| // implicit defs. |
| if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
| continue; |
| Register R = Op.getReg(); |
| if (!Register::isPhysicalRegister(R)) |
| continue; |
| for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| Live.reset(*SR); |
| } |
| for (auto &Op : MI.operands()) { |
| if (!Op.isReg() || !Op.isUse() || Op.isUndef()) |
| continue; |
| Register R = Op.getReg(); |
| if (!Register::isPhysicalRegister(R)) |
| continue; |
| bool IsLive = false; |
| for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { |
| if (!Live[*AR]) |
| continue; |
| IsLive = true; |
| break; |
| } |
| if (!IsLive) |
| Op.setIsKill(true); |
| for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| Live.set(*SR); |
| } |
| } |
| } |
| |
| // Helper function to obtain the basic block containing the reaching def |
| // of the given use. |
| MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { |
| auto F = NBMap.find(RN); |
| if (F != NBMap.end()) |
| return F->second; |
| llvm_unreachable("Node id not in map"); |
| } |
| |
| void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { |
| // The LiveIn map, for each (physical) register, contains the set of live |
| // reaching defs of that register that are live on entry to the associated |
| // block. |
| |
| // The summary of the traversal algorithm: |
| // |
| // R is live-in in B, if there exists a U(R), such that rdef(R) dom B |
| // and (U \in IDF(B) or B dom U). |
| // |
| // for (C : children) { |
| // LU = {} |
| // traverse(C, LU) |
| // LiveUses += LU |
| // } |
| // |
| // LiveUses -= Defs(B); |
| // LiveUses += UpwardExposedUses(B); |
| // for (C : IIDF[B]) |
| // for (U : LiveUses) |
| // if (Rdef(U) dom C) |
| // C.addLiveIn(U) |
| // |
| |
| // Go up the dominator tree (depth-first). |
| MachineDomTreeNode *N = MDT.getNode(B); |
| for (auto I : *N) { |
| RefMap L; |
| MachineBasicBlock *SB = I->getBlock(); |
| traverse(SB, L); |
| |
| for (auto S : L) |
| LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| } |
| |
| if (Trace) { |
| dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__ |
| << " after recursion into: {"; |
| for (auto I : *N) |
| dbgs() << ' ' << I->getBlock()->getNumber(); |
| dbgs() << " }\n"; |
| dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; |
| } |
| |
| // Add reaching defs of phi uses that are live on exit from this block. |
| RefMap &PUs = PhiLOX[B]; |
| for (auto &S : PUs) |
| LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| |
| if (Trace) { |
| dbgs() << "after LOX\n"; |
| dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; |
| } |
| |
| // The LiveIn map at this point has all defs that are live-on-exit from B, |
| // as if they were live-on-entry to B. First, we need to filter out all |
| // defs that are present in this block. Then we will add reaching defs of |
| // all upward-exposed uses. |
| |
| // To filter out the defs, first make a copy of LiveIn, and then re-populate |
| // LiveIn with the defs that should remain. |
| RefMap LiveInCopy = LiveIn; |
| LiveIn.clear(); |
| |
| for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) { |
| RegisterRef LRef(LE.first); |
| NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled. |
| const NodeRefSet &OldDefs = LE.second; |
| for (NodeRef OR : OldDefs) { |
| // R is a def node that was live-on-exit |
| auto DA = DFG.addr<DefNode*>(OR.first); |
| NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); |
| NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| if (B != BA.Addr->getCode()) { |
| // Defs from a different block need to be preserved. Defs from this |
| // block will need to be processed further, except for phi defs, the |
| // liveness of which is handled through the PhiLON/PhiLOX maps. |
| NewDefs.insert(OR); |
| continue; |
| } |
| |
| // Defs from this block need to stop the liveness from being |
| // propagated upwards. This only applies to non-preserving defs, |
| // and to the parts of the register actually covered by those defs. |
| // (Note that phi defs should always be preserving.) |
| RegisterAggr RRs(PRI); |
| LRef.Mask = OR.second; |
| |
| if (!DFG.IsPreservingDef(DA)) { |
| assert(!(IA.Addr->getFlags() & NodeAttrs::Phi)); |
| // DA is a non-phi def that is live-on-exit from this block, and |
| // that is also located in this block. LRef is a register ref |
| // whose use this def reaches. If DA covers LRef, then no part |
| // of LRef is exposed upwards.A |
| if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef)) |
| continue; |
| } |
| |
| // DA itself was not sufficient to cover LRef. In general, it is |
| // the last in a chain of aliased defs before the exit from this block. |
| // There could be other defs in this block that are a part of that |
| // chain. Check that now: accumulate the registers from these defs, |
| // and if they all together cover LRef, it is not live-on-entry. |
| for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { |
| // DefNode -> InstrNode -> BlockNode. |
| NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG); |
| NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG); |
| // Reaching defs are ordered in the upward direction. |
| if (BTA.Addr->getCode() != B) { |
| // We have reached past the beginning of B, and the accumulated |
| // registers are not covering LRef. The first def from the |
| // upward chain will be live. |
| // Subtract all accumulated defs (RRs) from LRef. |
| RegisterRef T = RRs.clearIn(LRef); |
| assert(T); |
| NewDefs.insert({TA.Id,T.Mask}); |
| break; |
| } |
| |
| // TA is in B. Only add this def to the accumulated cover if it is |
| // not preserving. |
| if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) |
| RRs.insert(TA.Addr->getRegRef(DFG)); |
| // If this is enough to cover LRef, then stop. |
| if (RRs.hasCoverOf(LRef)) |
| break; |
| } |
| } |
| } |
| |
| emptify(LiveIn); |
| |
| if (Trace) { |
| dbgs() << "after defs in block\n"; |
| dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; |
| } |
| |
| // Scan the block for upward-exposed uses and add them to the tracking set. |
| for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { |
| NodeAddr<InstrNode*> IA = I; |
| if (IA.Addr->getKind() != NodeAttrs::Stmt) |
| continue; |
| for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { |
| if (UA.Addr->getFlags() & NodeAttrs::Undef) |
| continue; |
| RegisterRef RR = UA.Addr->getRegRef(DFG); |
| for (NodeAddr<DefNode*> D : getAllReachingDefs(UA)) |
| if (getBlockWithRef(D.Id) != B) |
| LiveIn[RR.Reg].insert({D.Id,RR.Mask}); |
| } |
| } |
| |
| if (Trace) { |
| dbgs() << "after uses in block\n"; |
| dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; |
| } |
| |
| // Phi uses should not be propagated up the dominator tree, since they |
| // are not dominated by their corresponding reaching defs. |
| RegisterAggr &Local = LiveMap[B]; |
| RefMap &LON = PhiLON[B]; |
| for (auto &R : LON) { |
| LaneBitmask M; |
| for (auto P : R.second) |
| M |= P.second; |
| Local.insert(RegisterRef(R.first,M)); |
| } |
| |
| if (Trace) { |
| dbgs() << "after phi uses in block\n"; |
| dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n'; |
| } |
| |
| for (auto C : IIDF[B]) { |
| RegisterAggr &LiveC = LiveMap[C]; |
| for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn) |
| for (auto R : S.second) |
| if (MDT.properlyDominates(getBlockWithRef(R.first), C)) |
| LiveC.insert(RegisterRef(S.first, R.second)); |
| } |
| } |
| |
| void Liveness::emptify(RefMap &M) { |
| for (auto I = M.begin(), E = M.end(); I != E; ) |
| I = I->second.empty() ? M.erase(I) : std::next(I); |
| } |