| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <clc/clc.h> |
| |
| #include "config.h" |
| #include "math.h" |
| #include "../clcmacro.h" |
| |
| struct fp { |
| ulong mantissa; |
| int exponent; |
| uint sign; |
| }; |
| |
| _CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) |
| { |
| /* special cases */ |
| if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) |
| return mad(a, b, c); |
| |
| /* If only c is inf, and both a,b are regular numbers, the result is c*/ |
| if (isinf(c)) |
| return c; |
| |
| a = __clc_flush_denormal_if_not_supported(a); |
| b = __clc_flush_denormal_if_not_supported(b); |
| c = __clc_flush_denormal_if_not_supported(c); |
| |
| if (c == 0) |
| return a * b; |
| |
| struct fp st_a, st_b, st_c; |
| |
| st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127; |
| st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127; |
| st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127; |
| |
| st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000; |
| st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000; |
| st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000; |
| |
| st_a.sign = as_uint(a) & 0x80000000; |
| st_b.sign = as_uint(b) & 0x80000000; |
| st_c.sign = as_uint(c) & 0x80000000; |
| |
| // Multiplication. |
| // Move the product to the highest bits to maximize precision |
| // mantissa is 24 bits => product is 48 bits, 2bits non-fraction. |
| // Add one bit for future addition overflow, |
| // add another bit to detect subtraction underflow |
| struct fp st_mul; |
| st_mul.sign = st_a.sign ^ st_b.sign; |
| st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul; |
| st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0; |
| |
| // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel |
| if (st_mul.exponent == 0 && st_mul.mantissa == 0) |
| return c; |
| |
| // Mantissa is 23 fractional bits, shift it the same way as product mantissa |
| #define C_ADJUST 37ul |
| |
| // both exponents are bias adjusted |
| int exp_diff = st_mul.exponent - st_c.exponent; |
| |
| st_c.mantissa <<= C_ADJUST; |
| ulong cutoff_bits = 0; |
| ulong cutoff_mask = (1ul << abs(exp_diff)) - 1ul; |
| if (exp_diff > 0) { |
| cutoff_bits = exp_diff >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask); |
| st_c.mantissa = exp_diff >= 64 ? 0 : (st_c.mantissa >> exp_diff); |
| } else { |
| cutoff_bits = -exp_diff >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask); |
| st_mul.mantissa = -exp_diff >= 64 ? 0 : (st_mul.mantissa >> -exp_diff); |
| } |
| |
| struct fp st_fma; |
| st_fma.sign = st_mul.sign; |
| st_fma.exponent = max(st_mul.exponent, st_c.exponent); |
| if (st_c.sign == st_mul.sign) { |
| st_fma.mantissa = st_mul.mantissa + st_c.mantissa; |
| } else { |
| // cutoff bits borrow one |
| st_fma.mantissa = st_mul.mantissa - st_c.mantissa - (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0); |
| } |
| |
| // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign |
| if (st_fma.mantissa > LONG_MAX) { |
| st_fma.mantissa = 0 - st_fma.mantissa; |
| st_fma.sign = st_mul.sign ^ 0x80000000; |
| } |
| |
| // detect overflow/underflow |
| int overflow_bits = 3 - clz(st_fma.mantissa); |
| |
| // adjust exponent |
| st_fma.exponent += overflow_bits; |
| |
| // handle underflow |
| if (overflow_bits < 0) { |
| st_fma.mantissa <<= -overflow_bits; |
| overflow_bits = 0; |
| } |
| |
| // rounding |
| ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1; |
| ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0); |
| ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits)); |
| ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits)); |
| |
| // round to nearest even |
| if ((trunc_bits > grs_bits) || |
| (trunc_bits == grs_bits && last_bit != 0)) |
| st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits)); |
| |
| // Shift mantissa back to bit 23 |
| st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits)); |
| |
| // Detect rounding overflow |
| if (st_fma.mantissa > 0xffffff) { |
| ++st_fma.exponent; |
| st_fma.mantissa >>= 1; |
| } |
| |
| if (st_fma.mantissa == 0) |
| return .0f; |
| |
| // Flating point range limit |
| if (st_fma.exponent > 127) |
| return as_float(as_uint(INFINITY) | st_fma.sign); |
| |
| // Flush denormals |
| if (st_fma.exponent <= -127) |
| return as_float(st_fma.sign); |
| |
| return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | ((uint)st_fma.mantissa & 0x7fffff)); |
| } |
| _CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float, float, float) |